3

Zj F

THE SYNTHES!S
OF
o REDUNDANT
"4 MULTIPLE — LINE 73 ,
NETWORKS r-
fe 2
Second Annaal Report q’ﬁ: - ﬂ
Contract Noar 3842 (09)
DDC

¥

JUL 271968)

WESTINGHOUSR DEFENSE AND SPACE CENTER
SUNFACE DEVIRON
ADYANCED DEVELOPMENT EINGINEERING

P.0. N 397 e : Baltimore 3, Maryland

P T e

~vl-

‘Best Available Copy

Second Annual Report
Contract Nonr 3842 (00"
For the Period May 1, 1963 to May 1, 1564

THE SYNTHESIS OF REDUNDANT
MULTIPLE-LINE NETWORKS
May 1, 1864

Prepared for the
Office of Naval Research
by
Westinghouse Electric Corporation
Surface Division
.P.O. Box 1897
Baltimore 3, Maryland
Production of this report in whole or in part is perm!

Approved by:

WGD-38516 MOF 1573

ABSTRACT

This report is concerned with multiple-line redundancy, a means of increasing the
reliability of electronic systems. it describes in detail a procedure for synthesizing reduw
dantsystems in an optimum manner. The procedure balances the reliability advantage of
redundancy against the cost, weight and power penalities it introduces. It is alsc applicable
to other problems which require the optimization of a large number of binary decisions. -
report describes a program which has been written to ‘mplement the procedure on a digita}
computer. The program has been run successfully on example networks and is now ready
for specific application.

(W41}

Section
| |

I

I

INTRODUCTION, ., .,
DEFINITIONS , . . .,

A,
B.

TABLE OF CONTENTS

Multiple-Line Redundancy .
Error-Linked and Isolated Functions, , . .
1, Error Linked Functions . . .
2, [Isolated Functions, , ., .

2 e e e .

L N)

3. Isolated and Error-Linked Sources and Sinks

The Arrangement of Restorers and Functions.
1, State of a Location. , , ., .

D R I

e . L L Y

s e v a2 s e & &

.

L T S

2. Array .,,

3, arrayVectors. v . .4 . 0.
4. Region.¢¢000v...
5, Isolating Arrays and Isolated Regions

THE SYNTHESIS OF REDUNDANT NETWORKS . .

A,
B.
C.

General. e e e s e .

Optimization Criterion, ,
The Coefficients of the True Cost Polynomial,
1. Constant Coefficients, . . ., . ., , .. .

»

.

. .

2. Non-ConstantCoefficients ., . ,
3. Designing in the Face of Non-Constant Coefficients . ., . , ., . .

4. SBetting Constant Coeflicients
The Isolating Array Synthesis Procedure, . .

P

L S T T T P Y

L I)

1, TheEffectofaRestorer+« v v 0 v v v s s 4
a, Rellability
b, FunctionmlCost. . . ., .,
2. Determination of the Optimum State of the Location , , .,
3, Optimizing a Location with Other Locations Already

Optimized.

.

.

L A I

L R T

L N

4, Comparison of Two Arrays to Optimize a Location . . . , . . ,

The Detailed Synthesis Procedure.
1. The Generation Procedure . .,
a. Terminology and Background
b. Mechanics of the Procedure.

...........

c. BranchEffects

2-1
2-1
2-5
25
2-6
2-7
2-8
238
2-8
2-8
2-9
2-9

3-1
3-1
3-3
3.3
3-4
3-5
3-8
3-10
3-10
3-11
3-16
3-18

3-18
3-21
3-2¢
3-24
3-24
3-26
3-28

Section

3.
4.
S.

v

v TONCLUSIONS.

APPENDIX A. EXAMPLE DESIGN, ,

TABLE OF CONTENTS (Continued)

The Comparison I'roceas

3. Comparison Within a Branch

bh. Comparison Between Two Branches , . .

¢. Mechanics of the Compartson Process
The Order in Which §'s and #'s are Varied
Test to Determine {f a Function is 1solated

Link-Limit to Simplify the Procedure . . , .
F. The Approximations of the Procedure
G. The Computer Program. . ,

OTHER USES FOR THE SYNTHESIS PROCEDURE.

LIST OF APPENDICES

...........

L I T T T TS

APPENDIX B. A DESCRIPTION OF THE PROGRAM FOR THE COMPUTER
IMPLEMENTATION OF THE SYNTHRSIS PROCEDURE.

Figure

2-1
2-2
2-3
2-4
2-5
2-6

2-7
31
3-2
3-3

3-5

3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14
318
3-16
3-17
3-18

3-19
3-20
3-21
4-1
4-2

LIST OF ILLUSTRATIONS

Example of a Nonredundant Network , . ,
Order J)-Multiple-Line Redundant Network . , , . .
Restoration Between Different Orders/Redundancy

Flow Graph Representing a Redundant Network .

4 e

A Network in Which Functions 3 and 4 are Isolated |, .

L L I B}

e s s s & e n

A Network in Which Functions 1 and 2 are Isclated from Functions

3, 4,5, and 6,

L I T S S B R

Three Examples of Isolated Regions of Functions 1 and 2, .

Nonlinear Variation of Cost of Weight and Weight
Typical Tradeoff Curves for a Redundant System

Finding the Optimum Network Under Weight and Power Constraints ,

The Effect of a Restorer in a Shift Register

The Network that must be Considered When Determining the Effect of a

Restorerinlocation

Optimizing Location 3 with Location 5 Already Optimized ., ,
The Possible Reglons as Locations 3 and 5 Assume All Possible States

Two Reglons with Different Locations Optimized

-

The Posalble Regions as Locations §, 4 and 5 Assume All Pcesible

su”'. . 1] " * » . L] . . » . L] L] . » L]
The Regions of Two Comparabls Arrays

P R e)

Regions Modifledtobs Comparable
Example Networ.. .ad Arrays Generated by First Expansion of the Pod
Example Showing Optimization of Locations within & Branch . ,

Rasults of First, Becond, Third, and Fourth Comparisons,

Example of Branches and Partially Optimized Arrays .

Successive Comparisons « + s o+ ¢ &

L e

P T S S)

A Simple Example to lllustrate the Variation of §'sand#'s.

Network in Which Isolating Array of Function 1 is not Necessarily an

Isolating Array of Function4
Plausible and Implausible Arrays
Exuample of Plausibility Test for Arrays ,
Example Showing the Impossibility Test
Flow Diagrams for Quality Control! Problems. . . .

Sample Network Diagram. - + o « .

DI]

. . 3-15

3-18
3-19
3-2u

. 321
3-22

.. 323
. . 327

3-29
. 3-30
3-31
3-32
3-34

3-35

. . 3-38

. 3-39
. 3-41
4-1
4-3

v/

I. INTRODUCTION

Every electronic component is subject to failure, although modern technology has
reduced the rate of this failure to extremely low levels. As modern warfare and data pro-
cessing require machines which perform more and more sophisticated tasks, the electronics
industry responds with extremely complex equipment requiring prodigious numbers of parts,
Since a nonredundant machine requires the correct functioning of all its components, the
individual small probabilities of failure accumulate to yield a very significant probability of
failure for the equipment, causing an average time between failures of only a matter of hours,
For the repairable machine, this means down time while repair is effected, For the non-
repairable machine, such as might be found in an unmanned orbital satellite or a baliistic
missile guidance system, 1t means failure of 2 mission.

Often the down time associjated with repair or the failure of a mission cannot be allowed
or, ét least, is extremely expensive. To overconie failure of modern electronic equipment,
the use of redundancy has been proposed. In general, the term redundancy refere to extra
equipment incorporated into the system which is above and beyond the minimum required to
implement the task., This additional equipment is merged into the system such that failures
are masked or overcome and the system operation is maintained even though a number of
circuit faillures have occurred,

This study has dealt with multiple-line redundancy, which is described in detail in
Section II of this report. Westinghouse has studied several schemes for incorporating cir-
cuit redundancy into digital machines, and this has been found to be the most effective.

Multiple-line redundancy opsrates, in paraliel, a number of veplicas of each circuit
in the nonredundant network. The number of replicas of a circuit is its order of redundancy.
Groups of circuits called restorers, whoss sole purpose is the corroction of errors which
arise due to circuit fallures, are placed at various points in the network. The redundancy
of circuits plus the restorers provide a network with an ability to withstand a number of cir-
cuit failures without impairment of its opsration.

Past studies by Westinghouse, and a number of other investigations, have shown that
multiple-line redundancy is Indeed 2 valld approach to increasing the reliability of electronic
equipment. This study is devoted to establishing procedures with which the designer can
determine the best way to incorporate redundancy. It seeks to answer the question, "Given
the nonredundant network, the reliability and cost of all its parts and the reliability and cost
of restorers, what is the optimum way to aseign redundancy to the circuits and what is the
optimum way to place restorers in the network?”" This is the problem of synthesis.

1-1

The [irst step toward a procedure to perform synthesis is the proposal of factors which
are to be considered in determining whether one network design is better than another. ‘This
study has combined the factors of cost of the circuits in the network, reliability, wuight, and
power into a single criterion for optimization which is called the True Cost, The network
which has the minimum True Cost is the optimum network.

The most obvious approach to finding the optimum network design is to try all the
alternstives, measuring their True Costs, and picking out the most inexpensive design.
Unfortunately, the number of alternatives one has to consider increases 8o rapidly with the
size of the network that this ~xhaustive search approach is eminently impracticable for all
but the smallest networks, What is desired from this study is a synthesis procedure which
is deterministic, in that it gives the network that minimizes the True Cost, and which can be
performed in a reasonable amount of time with the aid of a computer.

This report describes a procedure called the “"Isolating Array Synthesis Procedure®
which uses a characteristic of multiple-line networks to considerably reduce the number of
calculations from the amount required for exhaustive search. At this point in the study, the
same number of replicas must be provided for all circuits. The procedure is deterministic,
but there are approximations inherent in its operation, and the result may not be the design
which minimizes the True Cost. The approximations are small, however, and for most
problems, the True Cost of the result of the Procedure will be very little greater than the
minimum Trus Cost. The approxiinations are justified by the considerable savings in efiort
that are available through the use of the procedures. The result of this study is a significant
contribution and is the first mesns proposed for {inding the optimum arrangement of restorers
short of an exhaustive search.

The basic concepts of the Inolating Array Synthesis Procedure were introduced in the
First Annual Report (1) aloag with a new reliability analysis technique for multiple line net-
works. Most of the work during the last year was concerned with developing the synthesis
procedure in sufficient detail so that it could be implemented on a digital computer. In the
course of thees studies & numiwr of modifications and simplifications were incorporated into
the procedure that were not present in the version described in the First Annual Report,
hence, this report supercedes the first one. This report is intended to be a complete, self-
contained description of the synthesis procedure, therefore it includes most of the informa-
tion previously reported except for the reliability analysis technique,

1-2

II. DEFINITIONS
A. MULTIPLE-LINE REDUNDANCY

The type of network under study is shown in figure 2-1, Witr .- % lp of this frgure,

several terms used {r. this report maybedefined. The rect: iv: i the figure are non
redundant digital circuits operating on tinary information, Trey dre nus's rad ter dentfi-
cation. The dots in the rectangles indicate the order of redundar. = a5 't - v Pae,
Although the complexity of the circuits is not strictly limitec - -:o ~1scue - tie ost

exact representation of the network results if the circuits are o+ . .15 as possible, per-
forming basic logical operations such as AND, UR, NOR, NOT or the- sequential functions
of {lip-flops or other me.mory devices. The line sefments represent connections between
circuits, A line segment into a rectangle is an input to the circuit and a lire segment out of
a rectangle is an output.

Figure 2-1. Example of a Nonredindant Neiwork

The type of redundancy ut’lized in this report is one studied extensively by Westinghouse
and found to be one of the most ' (ficient types of circuit redundancy. It has been called
multiple-line redundancy and is ‘llustrated by figure 2-2,

In general, multiple-line redundancy is applied by replacing tie single circuif of the
nonredundant network by m identical circuits operating in parallel. The symbol m is called
the order of redundancy. For the example m is 3. The group of circuits is now called a
function,

A particular circvit in a redundant function is identified by its position. The lower
case subscript on the numeral identifying each circuit is the position of that circuit.

2-1

Figure 2-2. Order 3-Multiple-Line Redundant Network

Circuite or networks that are operating correctly or lines which carry correct informa-
tion are said to be successful. The opposite states of incorrect operation or information are
called falled,

The reliability improvement expected with the use of redundant circuits depends on the
ability of the network to experience circuit failure:. without degradation of the network opera-
tion. The use of restorers within the network provides this characteristic, The sets of
three circles in the figure represent restorers. /

The restorer consists of m restoring circuits. ‘If a restoring circuit is operating cor-
rectly, it has the ability to derive the correct output if k of its m inputs are correct. The
restoring circuits for the example are majority gates withk = 2and m = 3. Working re-
storing circuits filter out errors on their inputs. The only reason for an erronecus output
line of a restorer is the fallure of a restoring circuit or the incidence of m - k + I or more
errors on the inpuis to the restorer. In the event of the latter condition, all the restorer
outputs become erroneous since the restoring circuits are identical. Restoring circuit
reliability is assumed to be independent of whether its inputs include failures. If the restoring
circuit has at least k correct inputs, the probability that its output is correct or {ailed depends
only on the reliability of the restoring circuit.

When the functions at the restorer's inpur and oatput are the same order of redundancy,
it has m inpute and m outputs. Its inputs are the outputs of one function, and its cutputs pro-
vide the inputs to nne or more functions,

Restorers may operate on the output lines of a function, as described in this section or
on the input lines tv a function as described in referentces (2), (3), and (4). Studies at
Westinghouse. Hycon Eastern(a). and at IBM“) Indicate the former arrangement i, ™ 9st
eifective. Although it is 1ifficult to prove in general that output voting is always superior to
input voting, this has been the case for every specific example chosen, This report, there-
fore, will assume that all networks are constructed utilizing output voting,

A function which has a restorer on its output is called a restored funriion. Errors on
the output of a restored funclion can be corrected if at least k of the m output lines are
successful. This repcrt assumes that a means is available to correct errors on network
outputs, such that only k of the m output lines need be successful for the network to be
cperating successfully. The functions providing network outputs, then, are also classed as
restored functions,

With s functions in the network, numbers from 1 to 8 identify the functions. There is
a possible location of a restorer at the output of each function; it may or may not contain o
restorer. A restorer after function y is identified by the number s +y. Thus, in this
example in which 8 = 6, restorer 8 operaiss on the output lines of function 2 and restorer 11
operates on the output lines of function 5. '

Two assumptions on the effects of circuit fallures are made for this report. First,
when a circuit (in a function or a restorer) fails, its output is always in error. Secondly,
when a circult in a functic. as an input which is in the failed condition, the outpat of that
circuit is failed. For instan .e, if circuit l‘ is failed, its own output and the outputs of the
circuits 2a‘ 8., and 4. are in error.

Functions are interconnected in the manner shown in figure 2-2, In order that failure
of one circuit in any function does not disable the inputs to two circuits in another function,
only circuits in the same position should be interconnected.

Different functions may have different orders of redundancy, but the order of re-
dundancy may change only after passing through a restorer. Figure 2-3 shows the connection
between functions with different orders or redundancy,

Figure 2-4 gives a more condensed view of the network of figure 2-2. This type of
diagram will be used throughout the remainder of the report. The circles represent re-
storers and the three dots in each symbo! indicate that this retwork {s order three redundancy

B et o e PR

-

o) GOING FROM ORDER S REOUNDANCY
TO ORDER 3.

®) GOING FROM 3708

2-4

Figure 2-3. Restoration Between Different Orders of Redundancy

Figure 2-4. Flow Graph Representing a Redundant Network

throughout. This diagram is used to introduce some terms peculiar to this report which find
considerable use later.

A source of a redundant function y is a function or restorer x so connected to y that a
path can be traced from the output of x to the output of y along the directed line segments of
the diagram. As an example of sources, consider function 6 in figure 2-4. The sources of
function 6 are restorers 8 and 11 and functions 1, 2, 3 and 5, There is no path betwicr func-
tion 4 and function 6.

A function may have primary, secondary or higher order sources depending on the
number of line segments traversed on the diagram when going from the source to the function.

A term which describes the same relationship as source but which eases considerably
future descriptions is sink, I function x is said to be a source of y, functiony can be called
a sink of X. Of course functions or restorers may have primary, secondar- or higher order
sinks,

B. ERROR-LINKED AND iSOLATEDN FUNCTIONS
1, Error-Linked Fui 'tions

In a multiple-'iw redut dant network two functions or restorers are related to
each other by the effect uf fatlure= in buth of them on the operation of the network, Two
terms are defined here which describe opposite effects.

Two functions, two restorers or a function and restorer are said to be ecror-linked
if failures in one can combine with failures in another to cause network failure, even though
the failures in either alone are insufficient to cause network failure,

There are two types of error-linking that may occur, Consider the order three net-
work in figure 2-2, Of course for this order of redivadancy two failures are sufficient to
cause the network to fatl. The flow graph for this example is found in figure 2-4. A signal
flow path is a path along the directed line segments in the direction of the arrow heads. A
restorer interrupts a signa! flow path. The first type of error-linking occurs between two
functions which are on the same signal flow path of the flow graph. For instance functions
1 and 3 are error linked because failure of circuit la anc circuit 3b will cause the output
of function 3 to be in error on a majority of lines, Vrror-linking arises in this manner only
if one function is upstream (against the signal flow) from the other; hence it is referred (0 ..
error-linking from the upstream affect. Function 1 is upstream from function 3. In like
manner restorers B and 11 are also error-linked to function 3.

The second type of error-linking occurs when failures in two functions (or restorers,
not on the same signal flow path combine to cause network failures. In the example, function
1 and restorer 11 are error-linked in this way. For this type of error-linking to occur boia
functions must feed a third function, or, in other words, there is a common function down-
stream (with the direction of signal flow) from both error linked functions, Error-linking
in this manner is referred to as error linking from the downstream effect,

There is no direction implised when function a is said to be error linked to function b,
The statement only indicates that circuit failures in the two functions can combine to caus»
network fatlure. The two statements, a is error-linked to b, and b is error-linked to 4 are
equivalent,

3. lsolated Functions

When two functions are not error-linked they are isolated. Two functions or
restorers are isolated if a circuit failure in one doss not affect the outputs of any of the same
functions as & circuit failure in the other. In figure 2-4, function 5 is isolated from every
other function and restorer in th network,

Functions may be isolated from each other in two ways. First, in a network with
more than one output, two functions may be isolated by the form of the network. In figure 2-5,
functions 3 and 4 form the outputs of a redundant network. No error in a circuit in function 3
can combine with an error in function 4 to cause failure of the network.

Secondly, restorers isolate functions, For instance functions 1 and 2 in the shift
register of figure 2-6 are Isolated from functions 3, 4, 5 and 6 by the restorer in location 2.

Figure 2-6. A Network in Which Functions 1 and 2 are Isolated from Functions 3, 4, 5and6

As long as there are k or more correct inputs to a restorer, errors are not
transmitted from its inputs to its outputs. For instance, a single erroneous input tn the
three input majority gate of the order three restorer has no effect on the output of the gate,
Thus, since there is a restorer at location 2, single errors in 1 and 3 canrot combine to
cause network fatlure,

The concept of isolation is important to the synthesis procedure because it
describes the condition for independence of reliability between two isolated regions. For
instance, in figure 3-8 functions 1 and 2 are isolated from functions 3, 4, 5and 6. The
first two functions form an isolated region and the restorar and the latter 4 functions form
another. Since failures in different isolated regions cannot combine to cause network failure,
the reliabilities of the regions are independent. Hence if R, is the reliability of the first
region and R2 the reliabllity of the second, the probabhility that neither region is failed is

Rle.

3. Isolated and Error-Linked Sources and Sinks

With isolation and error-linking defined, the sources and sinks of a function in a
redundant multiple-line network fall into two classes, The sources and sinks are either

isolated from the function or error-linked to the function. This distinction finds considerable
application in the synthesis procedure,

C. THE ARRANGEMENT OF RESTORERS AND FUNCTIONS

This section introduces some terms and notation which are used to specify arrangements
of restorers or groups of functions in a network. They will find considerable application as
this report progresses,

1. State of a Location

The state of a location indicates whether a restorer is present or not present in
that location, I a restorer is present in location i, location i is said to be filled and its
state is a binary 1, If no restorer is present. location i is said to be empty and its state is
a binary 0.

In general, a binary variable X represents the state of the ith location,
2, Array

During the discussion to follow it will often be necessary to refer to the states of
a set of locations (not necessarily all locations in the network). The general term referring
to the states of the locations in such a set is array. An array is defined 28 a set of filled
and empty locations. The locations and their states completely specify an array.

The term array will alsn 1sed to describe a set of locations some of which
have variable stotes, Of course the variables associated with such locations will be binary.

The array which specifies the states of all the locations in the network as filled or
omptly takes the spacial denignation aetwork array. Each necwork array represents a pos-
sible design of the reduadant network.

3. Array Vectors

Vector notation is used t0 specify the states of the locations in an array. The
binary variable % defines the state of the ith location, and a vector, using as coordinates
the variables represesting the s locations In the hetwork, designates a network array.

(‘10 "o '.o sany l.)
Each: set of values assumed by the binary variables which are the coordinates of
this vector represents a different network array or network design, With s coordinates,

there are 2° different vectors described by the general vector, hence this is the total number
of restorer arrangements applicable to the network.

Arrays which do not include all the network's locations also are identified with the
vector notation. The coordinates representing the locations not in the array are not identifiec
in the vector by a 0 or 1 but remain as an x. For instance, a network with five locations,
numbered 1 through 5, has an array in which locations 1 and 2 are filled, 3 and 4 are empty,
and location 5 is not in the array. The vector representa‘ion of this array is:

(1, 1, 0, 0, x).

No subscript on the x in this vector is necessary. The position of the coordinate
in the vector identifies the corresponding location.

An array which excludes one or more locations really is representing a number of
network arrays, The specification of the states of less than the total number of locations
makes the unspecified locations arbitrary and allows them to assume any value. The vecin
(1, 1, 0, 0, x) represents two vectors, (1, 1, 0, 0, DO)and (1, 1, 0, 0, 1). Ingeneral, if an
array does not specify z locations, the number of network arrays it identifles is 2%

4. Region

Region is a general term referring to a specified set of functions and restorers.
Generally, a region is defined by som« characteristic such as “all functions and only those
functions that are error-linked to fun:tion A are members of the region."

S, Isolating Arrays and Isolsted Reglons

Two very important concepts which find considurable application are isolating
arrays and isolated regions. These should be clearly understood before the detailed pro-
cedure is described,

An Lsolated region or an isolating array is defined for a given group of functions,
so these functions must be specified along with the region or array. Suppose the group of
functions is the set A, An isolated region of the functions in set A consists of a set of func-
tions and reatorers B, which includes the functions in A, such that all functions not in B are
isolated from the functions in A. PFor instance, n figure 2-7 are illustrated three isolated
regions of functions 1 and 3 (set A). The functions and restorers that make up each region
(set B) are also shown in the figure,

Note In the last example of figure 2-7 that not all functions in the region are error
linked to functions 1 or 2. In general it is not required that all functions in the region be
error linked to the functions in ‘ae set A,

2-9

SET B

-@~

FUNCTIONS 1,2
RESTORER |2

cls L 12

]

FUNCTIONS 1,2,3
™ RESTORER 12

G-
G-

UNCTIONS 1,2,3
ESTORERS 8,12

Figure 2-7. Three Examples of Isolated Regions of Functions 1 and 2

For each ¢solated region there is one and only one iso.lating array which, together
with the identity of the given group of functions, completely defines the isolated region. The
array specifies as 1 the locations at the boundaries of the region ir which restorers are
required to isolate functions outaide the region from the given group of functions. Also
specified as either 1 or 0, are all the locations of the functions within the isolated region,
The states of the locations not necessary to define the region are specified as x's in the
isolating array. Only locations required to identify the members of an isolated region are
specified in the isolating array, The isolating arrays of the regions shown in figure 2-7

are:

A, (Olxxx1)
B. (00ixx1)
C. (01ixx1),

2-10

fIl. THE SYNTHESIS OF REDUNDANT NETWORKS
A. GENERAL

The goal of this study is the development of a synthesis prucedure by which the designer
of a redundant multiple-line system can determine in some optimum manner the orders of re-
dundancy of the functions and the placement of restorers in the system. This will be an im-
portant accomplishment because it can be shown that redundancy in the wrong places can be
almost useless and that an improperly placed restorer is sometimes worse than no restorer
at a!l. The most beneficlal synthesis procedure would be one which allowed full flexibility in
the order of redundancy of the functions and placement of restorers, which was deterministic,
in that it resulted in one redundant network which was optimum according to some useful
criterion, and which was easily performed in a reasonable amount of time with the help of a
computer.

The goal, as stated in the last paragraph, is an extremely difficult one to attain and it
has been compromised at this polnt only to bring the problem into a still complex but solv-
able form. The restrictions made for this synthesis procedure are not expected to be perma-
nent. Future studies will attempt to remove them.

The primary restriction on the network is that all the functions must be In the sam=
order of redundancy. This reduces the synthesis problem te finding the proper placement of
restorers. This (s still a significant problem since in an s function network there are 28 pos-
sible restorer arrangements that can be applied to the network.

The procedures are derived with computer implementation in mind. In most cases, the
number of calculations required for the synthesis of large networks will be small relative to
the number required for an exhaustive scarch procedure. The number will still be great
enough, however, to make prohibitive the performance of synthesis by hand for all but the
smallest networks. A computer has been programmed to rapidly determine the optimum
arrargement of restorers in the network.

The following paragraphs of this section will discuss the optimization criterion and the
general principles of the aynthesis procedure.

B. OPTIMIZATION CRITERION

Each of the 2° possible network array vectors represents a different design of the re-
d..ndant system. To choose one of these as a best design, one must have some criterion
with which the many alternative networks may be compared.

3-1

Of course, r&llablllty 1s the first criterlon since the redundancy has been tntroduced to
increase this vital parameter. The cost of the circuitry required to implement a particular
redundant design may also be of importance. For many applications, the weight and power
requirements of alternatives will very probably enter into consideration. The factors of re-
lability, cost of Implementation, weight and power requirements may all enter into the deci-
sion determining the best or optimum design. Other factors may also be significant and should
be considered in the same manner as the assumed factors in the criterion presented below.

To optimize the network with respect to any one of these factors is to suboptimize with
vespect to all the others, 80 this study lumps all of them iInto a single cost expression. The
goal of the synthesis procedure is to find the network which minimizes this cost.

The rellability of the network enters Into the cost expression as the cost of failure of
the network. A failure will always be costly. If this were not so, there would be no point in
incorporating redundancy.

Where the applicatio: of the network is a control function in a satellite or rocket or
where human life is concerned, this cost of failure is exceedingly high and probably overrides
the other factors. On the other hand, If the network Is to be utilized for a ground based com-
puting system, this cost although high, may be low enough so that the other factors enter into
consideration. If K is said to be the cost of failure of the network and R is its rellability, the
expected cost due to failure {s:

(1-R)K. (1

The cost of implementing a particular redundant design is assumed to be linearly de-
pendent on the order of redundancy of the functions and the number of restorers in the net-
work. wtlugl be the order of redundancy cn be the cost of a circult in the | function or
restorsr, the implementation of & redundant network requires the expenditure of

m, cn . (2)
The "all 1" statement over the summation sign indicates that the sum is over all the

functiona and restorers In the network.

The cost equation reflects weight and power penaities by Introducing per unit costs for
these parameters. The weight added by one circuit of the type used In function | 1Is W‘ and
the cost per pound of weight in function | Is cm. The cost associated with the weight of the
natwork can be written:

Describing the costs assocfated with power In the same manner and summing the terms
to obtain the total cost due to power and weight one obtains:

all t
m, [W Cyy + P, cPJ . (4)
A number of other factors which the designer might llke to consi./er in the optimization can
be included in a manner similar to weight and power.

Terms (1), (2) and (4) summed to a single cost expression is called the True Cost.

i
True Cost = 9{: m, (Cn + W‘ CWl + P‘ CPi) + (1-R)K. (5)

The term furthest to the right in equation (5), which is concerned with reliability, is
called the expected cost of failure of the network. The sum of the remainder of the terms
dealing with the costs of implementa. ‘on, weight, power and'any other linear nonreliability
factors is called the functional cost of the network. The network array for which the True
Cost is least is the True Opthiaum.

This report uses an approximation to equation (5) as the criterion for nntimization.
C. THE COEFFICIENTS OF THE TRUE COST POLYNOMIAL

It is Important that one consider the ramifications of choosing the true cost as a basis
for synthesls. Before accepting the use of this parameter the meaning of constant and non-
constant coefficlents should be made clear. Some answer must be given the questions "Can
synthesis be perfurmed In the face of nonconstant coefficients?" and “If eonstant coefficients
are present, how can they be determined”™ This section attempts to clarify these questions.

1. Conatant Coefficlents

The synthesis procedure, as it is described in this report assumes tiat the co-
cffirients of the true cost polynomial are nonvariant as the variables of the synthesis (weight,
power, cost, reliability) take on different values. Thus the cost of adding a restorer to
location | does nct depend on the total welight, power, cost or reliability of the network because

the coefficlents ch’ Wl, CPl’ Pl, Cn and K do not depend on these factors.

If one considers a system as made up of a number of subsystems, each of which
is igolated fro:n each other In the manner of section I1. B. 2, the reiiability of each subsystem
can be deterinined independently of all others. With constant coefficients each subsystem can
be optim .zed independently of all others. The combination of the optimum subsystems wiil
be the optimum s:'stem.

Although the values of the coefficients cannotichange with the variables of the
design, the true cost polynomial does ailow differences between the coefficients assigned to
different functions. Thus Cli' CW!' Wl. CPl and Pl may be different from Cli’ sz, Wz,
sz, PE respectively. Certainly one would expect variations ot Cli’ Wi and Pi from functic.
to function, but variations of CW[and CPl are liable to be more Infrequent. One case whe™
the laiter coefficients might be different for different parts of the system occurs when one
subsystem is located on the ground and another {n a space craft. Certainly differences will

be present betweer the cost/lb. and cost/watt of these subsystems.

Some variation of the cost of failure, K, is allowed within the structure of the
True Cost polynomial. Different subsystems may have different costs of failure if their re:
abilities are always determined independently from each other during the course of desim.
For instance, taking again the example with a subsystem on the ground and one in a spuce
craft, the reliabilities of these two subsystems can very probably be determined fndepende-
hence they can be given diticrent costs of faflure. This is a very useful facility. This situ
ation will be handled in the True Cost calculation by including two expected cost of failure
terms, one for subsystem 1 and one for subsystem 2 as shown below:

Kl(l-Rl) + Kz(l-Rz).

There is gome approximation in this formulation. It is the same sort of approsimation as
Aegcribed in Section MIY.

2 Non-Constant Coefficients

Under the influence of non-constant coefficients the amount added to the true cos
when restorer | s included in the network will depend on the value of welght, power cost
and/or reliability of the remainder of the system. One example of such a situation Is the
condition in which any arrangement of restorers 1s allowed as long as the weight, power,
cost and unreliability remain below upper bounds. Thus a restorer costs nothing if it resu’t
in an acceptable system, and it is not allowed, or has an Infinite cost, If its addition results
in an unacceptable system.

In this day of highly complex systems, it {s common practice to divide systems
into subsystems with a team of engineers responsible for the development of each subaystem
Frequently the design of each subsystem must meet restrictions on weight, power, cost and
reliability allocated by the management responsible for the system as a whole. Whether or
not this is « wise practice, it will result {n non-constant coefficients of the .rue cost equatio
The designer faced with such restrictions cannot assume constant coefficients.

The synthesis procedure described herein cannot be applied a single time to de-
termire the optimum network when coefficients of the true cost e 1ations are not constant.
It can be applied, bowever, a number of timec to provide the design which is optimum within
resi ictions. The use of the procedure under these conditions is dscribed in the next section.

To design with non-constant coefficients, one must consider the system for which
they were determine. Assume a system A exists which can be subdivided into two independ-
ent suhsystems A' and A”. Say for the system A the tota) cost of welght alt!

2 mlC w
varies with weight in a noalinear manner as shown in figure 3-1. This is equlvalx{\ll t!) saying

that there is a non-constant weight coefficient.

WEIGHT

CuUST OF
WEIGHT

Figure 3-1. Nonlinear Variation of Cost of Welight and Weight

Now the variaticn of the cost with weight has been deilned cnly for the total system, hence

the variation of cost with weight for either subsystem is undefined. It is therefore impossible
‘o optimize A* and A" independently using the information of figure 3-1. Thus the conclusion
can be drawn that non-constant coefficients derived for a system can only be used for the
optimization of that system in toto. Tiey cannot be used for the optimization of any subsystem
independently of the rest of the system.

3. Designing in the Face of Nonconstant Coefficients

There are two end results which one might hope to achieve when designing In the
face of non-constant coefficlents. The [irst of these will be to {ind the deslgn which minlmizes
the true cost even though the true cost must be determined from relationships such as that of
figure 3-1. Tue second will be to minimize ane parameter (weight, power, probabllity of
failure or cost) while keeping the other parameters within upper bound restrictions.

The solutions for either of these eri results have a common characteristic: Any
one of the parameters of the solution nas the lc vest valuz possible for the choice of the other
parameters. For instance an optimum solutior for a network which has cost, welgit and
probability of failure as parameters might have C

opt “opt
parameters. [t can be said that this optin.um cesign has the Jowest value of probability of

W and “'p)opt as the values of its

fallure for designs with the cost, Copt' and weight, wopt' In like manner it has the smailest
welght of all designs which have the parameter values (l-P)o pt and Co pt’ and it has the least
cost of all deaigns which have the parameter values (I'P)opt and wo pt’
The solutions of the i{solating array synthes!s procedure with constant coefficients
also have this characteristic. Thus the optimum design of a system which has uon-constant
coefficients must also be an optimum design of the same system when some set of constant
coefficients are assigned. To synthesize the optimum network with non-constant coefficients

one mus find the proper set of constant coefficlelts.

Thi: will be done by & number of applications of the synthesis procedure with
different sets of constant coefficients. The process of finding the optimum will be a search
procedure in which judicious choice of changes in the constant coefficients chould lead to a
more rapid convergence toward the optimum. The search procedure will receive more
study in the .iture.

To see how multiple applications of the synthesis procedure can be used to con-
struct tradeoff curves between the parameters of the system which will ultimately be used to
design a network with nonconstant coefficients, define an optimal network as one which has
one parameter minimized while all others are held constant. As described above the products
of the synthesis procedure with constant coefficients are these optimal networks. Bv varying
the coefficlents of the true cost equation one will arrive &t a number of different optimal net-
works. The valuss of the parametera of these optimal networks are the tradeo(is to be used
in the design of a redundant network.

Thus the synthesis procedure has the abllity to determine curves showing the
tradeoi{s between the parameters of optimal networks. The set of curves describes a mualti-~
dimensional surface on which the paramaters of all optimal networks must fall. The number
of dimensions of the surface is the number of parameters of the network. For instance with
the parametecra weight, power, and failure probabllity, continued application of the synthesis
procedure will yield a three dimensional surface on which all optimal networks must lle. A
plane passed through this surface perpendicular to the power axis gives the two dimensional
tradeotf curve for weight vs. failure probability for a single value of power. If one were to
choose a value of weight which he is willing to expend, he determines {rom this curve the
minimum failure probability that can be obtained for the given expenditures of welght and
power. A typical set of tradeoff curves are shown in figure 3-2.

P‘< Pz
/

RELIABILITY POWER

WEIGHY
WEIGHT

Figure 3-2. Typical Trade Off Curves for a Redundant System

To illustrate the optimization in the face of non- constant coeflicients assume the
System is subject to maximum weight and power constraints such that cost of weight and
power is zero If these parameters lie below the limit and infinite if they lie above. The opti-

mum network is found by drawing these limits on the weight and power curves as in figure
3-3.

5 v AL AN
g “ \t"un
~

Figure 3-3. PFinding the Optimum Network Under Weight and Power Constraints

The maximum reliability that one can attaln under these constraints is the reli-
ability curve furtharmost from the origin that passes within the limits. This is indicated by
RM AX in the figure.

Note that the construction of the tradeoff curves does not require the actual values
of cost per pound of welght, per watt of power, etc. Only when a final design mus! be chosen
do the relationships between the parameters and cost come into play. The information con-
tained in the tradeoff curves pertains to the whole system rather than lsolated parts. ‘There-
fore the coordinates of one point on the surface can be used to determine from the nonlinear
relationships the true cost of the system. By comparing the true costs for a number of points
on the tradeoff curves, the optimum system can be found.

Even if the coefficients are assumed constant and one application of the synthesis
procedure is sufficient to determine the optimum, it very wel) might be advisable to plot the
the tradeoff curves to indicate where the optimum lies on the tradeoff surface. Slight modifi-
cations in the values assigned to the constant coefficients may result in considerably more
palatable values for the parameters of the optimum network.

4. Setting Constant Coefficients

The values of the coeffictents of the true cost polynomial will depend on the system
being optimized and its application, 8o at best this section can give only a general qualltative
appreciation of their determination. A thorough study should preceed the setting of coaffici-
ents to find all the factors which might conceivably bear on the cost ¢ providing the system
under stucy and the costs incurred should it fail. Some of these factors might well be intangi-
ble. An an aid to understanding the problems one must overcome while setting the coefficients,
three examples are presented below. ‘

Cost of Failure

Perhaps the most nebulous of all the coefficients of the true cost polynomial is
the cost of failure. ‘This is because many costs incurred in the event of a fallure are Intangible.
For a military mission one of the more readily avallable costs is the cost of attempting the
mission again if that can be dons. The cost of abandoning ths mission must 2180 be included
in many cases. This may well require the measurement of some intangible or difficult to
estimate quantities. Questions will arise on the value of a human life or nationa) prestige.
Of course it s difficult to answer these questions but it may be attempted to determine a
cost of fallure.

The cost of fatlure should reflect only the costs incurred at the failure of the
system under study. For instance, the system being optimised by the procedure raay be one
experiment of many carried in an earth satellite. Certainly the fallure of this experiment
causes a loss of valuable information. Its loss, however, is not the loss of the entire satel-
lite since other experiments may still be operating.

On the other hand if the system under study is the equipment which encodes the
information from all experiments for transmission to the earth, its failure wiil disable the
link between satellite and the earth, completely aborting the mission. The cost of fallure

" of this system should reflect the cost of the loss of the complete satellite with all its exper!-
ments.

Cost of Implementaticn

The cost of implementation should reflect both manufacturing and engineering.
Different nirts of the system may have different costs. Of particular Interest to the designer

whose goal is to find the optimum placement of restorers will be the cost of providing a re-
storing circuit.

Cost Per Pound of Welght

For a srace mission this f:ctor will probably include the expense of providing a
booster with the power to lift one additional pound of load or the expense of reducing weight
of the vehicle elsewhere by one pound. Generally this doesn't seem to be a linear factor.
Diiferent parts of the system may have different cost of weight coefficients.

Other factors are found in a similar manner. The factors that are included in the
determination of the coefficients are really dependent on the system and its use. True, some
of the coefficients are very difficult to determine precisely, but some attempt should be made
so that one can obtain reasonable relationships between he parameters of the system. The
synthesis procedure itself may potnt out gross errocs in the values of the coefficients by
yielding unreasonable values of the parameters. Sucl uan occarcnce could indicate that the
choice of coefficients has not been realistic and the coefficlents should be reexamined. On
the other hand, the occurence may also mean that the users concept of reasonable values
of the parameters is in error, and this concept should be reexamir «d.

D. THE ISOLATING ARRAY SYNTHESIS PROCEDURE

It has been shown that whether the designer is faced with constant or non-constant co-
efficients, the determination of the optimum design rests on the ability to find the network
which mirimizes true cost for a set of constant coefficients. This is nc small problem in
itself. The most obvious approach to the solution is to try all alternatives, measuring their
costs and picking out the most inexpensive design. Unfortunately, the number of alternative.
one has to consider increases so rapidly with the size of the network that this approach is
eminently impracticable for all but the smallest networks. For instance, a network with 10¢
locations has 2100 or about 1030 different network arrays. If with the aid of a high spcea
digital computer one could determine the cost of each alternative in a millisecond, he would
be able to analyze 3.16 x lolo alternatives peir year. At this rate, it would take 3.16 x 10"’
years to complete the synthesis procedure. This of course is an inordinate time.

Recognizing this exhaustive search approach as impracticable, the study has investi-
gated several other approaches to the problem of synthesis. One of these, named "Isolating
Array Synthesis Procedure” is the most promising.

The end product of the synthesis technique is ideally the one network array for which
the True Cost of Section Ill. B. is minimized. The Isolating Array Synthesis Procedure
tempers this goal somewhat by finding a design which minimizes a cost function which is an
approximation to the True Cost. Its foremost advnntagé is that for most networks it wil!
require far fewer calculations than the exhaustive search routine. The technique is deter-
ministic in that at its conclusion the designer has one design which minimizes the cost func-
tion. This end result may very easily be the True Optimum, but since it i8 an approximation
it may yield another network array which does not minimize the True Cost. The degree of
deviation from the true optimum will be small, and will be the subject of future studies. The
network resulting from the synthesis technique is called simply the optimum.

The following sections describe several considerations which are very important to th:
development and understanding of the synthesis procedure The operations described are the
building blocks of the complete procedure.

1. The Effect of a Restorer

This section is included to give the reader some intuitive feel of the effects of
restorers in a redundant system and of the utilization of these effects in the formulation of a
synthesis procedure.

3-10

To illustrate the effect of a restorer, consider the shift register of figure 3-4,
and assume the states of all the locations in the register except location 5 are specified as
shown.

Figure 3-4. The Effect of a Restorer in a Shift Register

a. Reliahility

The reliability of a network is the probability that at least k lines are <uc-
cessful at each network output. The addition of a restorer wil), of course, change this
probability. In a multiple line redundant netwo.k, in general, it takes more than one circuit
failure to induce network failure. For the example, with majority restoring circuits. two
properly placed circuit failures are required to disable the network. The causes of network
failure can be divided into two classes: 1) the critical circuit failures all occur in the same
function, (i.e. the failure of circuits 7a and 7b disable the network) and 2} the critical circust
failures occur in different functions, (1.e., 8a and 7b). The importance of this clas- fication
is that the addition of restorers can do nothing to reduce the first class but can reduce the
number of combinations of failures in the secosd class.

Now, what is the effect, on reliability, of adding a restorer to a redundant-
multiple-line network? Before the restorer is added, a list can be constructed which includes
all the combinations of functions within which circuit failures can occur to cause the network
to be disabled. For the example network with Xg = 0, this list is shown in table 3-1. En-
tries with only one tunction describe combinations of the first class and entries with two
functions describe combinations of the second class. If the order of redundancy of the ex-
ample were greater, there would be entries with more than two functions. The number

associated with each entry is the number of different combinations of circuit failures that

arise in the listed functions. For instance, there are three sets of two circuits in function 7
whose failure causes failure of the network, 7a-Tb, 7a-7c, Tb-Tc; and there are six - ets of two
failures in the functions 6 and 7, Ta-8b, 7a-6¢c, Tb-8a, Tb-6¢c, 7c-6a and 7c-6b.

Table 3-1. Combinations of Functions in Figure 3-4 with Location 5 empty in
which Two Circuit Failures can occur to cause Network Failure

Combination of MNumber of Fatal
Functions or Combinations of
Restorers Two Circuit Failures

e
DN e O O-IO D LON -

i Pt
oW
[*)

11,4

o X
reeren
- -
D

11,7
34
38
’.‘
3.7
4,5
4,6
4,7
8,0
8.7
8,7
16,8
16,9
8.9

A liot such as the one in table 3-1 is important because it, together with the
reliabilities of the circuits in the function and restorers describes an estimate of the relia-
bility of the network. This estimate, which is described completely in Appendix A of the
First Annual Report is called the Minimal Cut approximation to reliability. The Minimal
Cut approxination gives a lower bound to the true reliability. It is quite accurate when the
reliabilities of the circuits of the network are close to 1, say .99 or greater. This condition
will be met for most netwo: ks for which the synthesis procedure will be used.

BO AP ADRIPI AR ANDIANDWLLULWWWWWWWIWW

3-12

The reliability of the network calculated with minimal cuts is defined as the
probability that none of the sets of circuits listed in table 3-1 fai). Two networks, with the

same list, have the same reliability regardless of how the functions are interconnected.

This approximation to reliability is used to determine the expected cost due to failure in the

optimization criterion.

Ther, assuming the circuit reliabjlity in each function and restorer is known,
using table 3-1, the reliability of the shift register in figure 3-4 can be calculated.

Now, wien a restorer is added to location 5, a new list results.

shown in table 3-2.

Table 3-2. Combination of Functions, in Figure 3-4 with Location 5 Filled,

in which Two Circuit Failures can occur to cause Network Failure

This is

Combination of
Functions or
Restorers

Number of Fatal
Combinations of
Two Circuit Failures

Do O OID NN =

s b b
e
acaw®

o on

o

[- . pas pus
-3

[B~
<
©

- -

DO PO ANARARRNDDWWWWLW WWLWWWW W

Table 3-3. Combinations Lest and Gained with the Addition of
a Restorer in Location 5

Combinations Lost Combinations Added
11,6 -6 14 -3
11,7-6 14,6 -6

3,6-86 14,7-6
3,7-6
4,6-6
4,7-6
5,6-6
5,7-6

Tablc 3-2 is different from table 3-1. Combinations have be~r gained and
lost by the addition of the restorer. The gains and losses are summarized in table 3-3.
When combinations are lost with none gained, the reliability of the network will always in-
crease. However, when combinations are gained, with none lost, the reliability will alway s
decrease. With the addition of the restorer, the network has both gained and lost circuit
combinations whose failure brings about the network failure. It is not obvious, without cal-
culating, whether the reliability has increased or decreased with the addition of the restorer.
If the reliability for all circuits is the same, the number of combinatior becomes the im-
portant parameter; the fewer failure nJucinrg combinations, the greater the reliability. If
this is the situation, for example, the restorer in location 5 is beneficial since its addition
caused 48 combinations to be lost and 15 combinations to be gained.

How has all this come about? What mecha:.ism has the restorer used to
change the list of fajlure inducing circuit combinations? The answer to these questions can
be seen in the error correcting properties of the restorer. From SectionIl. A.. it is known
that errors which appear on the input of a restorer and are insufficient in number to cause
network failure are not passed through the restorer. As long as this condition holds, the
number of errors on the output of the restorer is independent of the number of errors on its
input. Restorer 11 and functions 3, 4 and 5 form the inputs to restorer 14 in location 5, and
functions 6 and 7 are tied to its output. Bince there is no signal path between members of
the two sets of functions which bypasses the restorer, the restorer has isolated the effects
of the circult fallures in 11, 3, 4 and 8 from circult failures in 6 and 7. This is the reason
for the restorer; it is the only beneficial effect inherent in its use.

The inclusion of the restorer has some effects on the reliability of the network
that are not necessarily beneficial. Because the restorer is constructed of real physical
restoring circuits, these circuits are necessarily subject to failure. Since these restoring

3-14

circuits were not in the network before the addition of the restorer, some new error inducing
combinations are introduced witk tneir inclusion. Of course, failure of two of the restoring
circuits causes network failure; therefore, combinations of the first class (in the same func-
tion or restorer) are introduced. The restorer must take on all the outputs nreviously sup-
plied by its function, so combinations of the second class (in two different fun.tions or
restorers) must also be introduced. Note that when a restorer is added to location 3, all the
combinations consisting of functions 5 and its sinks {combinations 5,6 and 5,7) have been
replaced by combinations of the restorer and those sinks (combinations 14,6 and 14,7). In
general, when a restorer is placed in the location of a function, combinations including the
restorer and the sinks of the function will always be gained. Combinations which include
the function and its sinks will always be lost, unless, because of feedback 1n the network.

the sinks in the combinatiors are also sources of the function,

The main point to be derived from this section is that the effect on the relia-
hility of the network. due to a change ir state of a particular location, is independent of
some of the functions and the states of some of the locations of the network. Note that the
combirations which include functions 1, 2, 8, 9 or restorer 16 do not change at all with the
addition of the restorer in locatio: 5. No combination lost or gained includes any of these
functions or restorers; while all other functions and restorers in the network are included 1n
une of the entries of table 3-3. As far as noting the difference in relizbility between the net-
works with and without a restorer in location 5, these functions might just as well have been
left out of the network and only the network of figure 3-5 considered.

O—{ {1

Figure 3-5. The Network that must be Considered when Determining
the effect of a Restorer in Location 5

Since this small network need only be considered. it is reasonable to say that
the effect of the state of location 8 on reliability is independent of the form of the network
before restorer 11 or after function 7 as long as restorer 16 is present.

All this is 80, becauvse restorers 11 and 16 have isolated funct, .~ ..om
functions 1, 2, 8, v, and restorer 18. There are no failure inducing combinations which in-

¢lude Tunction 5 and any of these functions and restorers.

3-15

The network of figure 3-5 is called an isolated region of function 5. Every
function or restorer not in the region is isolated from function 5, and every function or re-
storer within the region is error-linked to function 5. This region is described by an array
called an isolating array of iunction 5, which specifies the states of locations on the bound~
aries of the region and within the region. For this example, the isolating array is (X, 1,0,
0,0,0,1,7.,X). Locations 1, 8, and 9 are unspecified, X'd, because their states have no
bearing on the effect of the state of location 5 on the reliability of the network.

b. Functional Cost

In the synthesis procedure, the decision whether to fill a locatiun or leave it
empty for a particular isolating array will depend on the functional cost of Section II1. B.,
a8 well as the reliability. The effect on the functional cost of adding a restorer to location
5 is an obvious cne. The restorer can in no way decrease or increase the costs of any other
function or restorers in the network. It canonly add on its own cost. If CN is the cost of
the network without the restorer in location 5 and CR is the cost of the restorer, CN +C
is the functional cost of the network with the restorer. A restorer can only increase the
functional cost of a network, and the amount of increase is independent of the functions or
interconnections of the network.

R

2. Determination of the Optimum State of the Location

The effects of acding a restorer to location 5 have been srown for the example.
Now the problem is how to determine whether it is best to put a restorer in location 5 or
loave it empty, the state of the other locations given,

First, if the designer is interested only in maximizin,, reliability, he will determine
which state is more reliable and choose that one. It has aiready been indicated how this is
done using the minimal cut approximation to reliability. It should be remembered here that
when maximum reliability is the goal, the optimum state of location § does not depend on the
functions or restorers which are isolated {rom function 5 when there Is no restorer in that
Jocation. The state of location § should be set {0 maximize the reliability of its isolated
rogion. Perhaps this fact is mors easily accepied if it is remembered that If a network is
made up of a number of independant parts, the maximum reliability of the network is obtained
when the reliability of each part is maximized.

If the designer is interested only in minimiging the functional cos®, he would steave
the location empty regardless of the construction of the network, since tne restorer only in-
creases cost. Of course, If the designer I8 only inluresied in thir parameter, he would not
be using redundancy.

3-16

In the synthesis technique, both of these factors are considered jn the optimization
of the state of a location. They are used together 1n the True Cost equation,

For determining the optimum state of location 5, in the example, the True Cost*
is calculated for the network which includes all the functions or restorers error-linked with
function 5 when location 5 is empty. This network is the isolated region. The cost of this
region is calculated first with location 5 empty and then with a restorer added to location 5.
Both the functional cost and the expected cost due to failure wili change wth the addition of
the restorer. The state of location 5 which has the least True Cost is Judged the optimum
for the array of states taken on by the other locations in the network, (X,1,0,0,0,0,1,X, X).

Since this comparison has been made not considering the form of the network be-
yond restorers 11 and 16, the decision on optimum state of location 5 is the same even though
restorers may be added to locations 1, 8, and 9 or any set of these locations. Then this de-
cision is good for any set of states taken on by locations 1, 8, and 9.

Table 3-4 lists the network arrays for which the optimum state of location 5 is
determined by optim:zing the location in the isolated region identified by the isolating array.
Table 3-4. Network Arrays in which the Optimum State of Location 5 is

Determin: 1 by Optimizing the Location in the Isolated Region
Identified by the Array (X, 1,0,0,0,0,1,X,X)

(0,1,0,0,0,0,1,0,0)
0,1,0,0,0,0,1,0, 1)

1,0,0,0,0,1,1,0)
v.1,0,0,0.0,1,1,1)
(1,1,0,0,0,0.1,0,0)
{1,1,0,0,0,0, 1.0, 1)
(1,1,0,0,0.0.1,1,0)
(1,1,0,0,0,0,1,1,1)

The results of this saction are extremely important to the synthesis procedure
because it has shown how the principle of isolation has been used to optimize a location in a
number o. arrays through just two caiculations of the True Cost.

* An approximation used in the procedure for the determination of this cost is described
in Secticn . F,

3. Optimizing a Location with Other Locations Already Optimized

It was described in the last section how a location within an isolated region can be
optimized regardless of the states of locations outside the region. This section shows that
a location can be optimized even though soine of the other locations in the region are already
optimized.

Consid: r the regions in figure 3~6 in which location 5 has been optimized by pre-
vious calculations for the two possible states of location 3. % is now desired to optimize
location 3.

A &3 4 8 pmme @ 6 promd T |eemsmmm

Figure 3-68. Optimizing Location 3 with Location 5 Already Optilmlzed

The optimum state of a location will be either 1 or 0 depending on the results
of some comparison of true costs, but usually in the examples of this report the fact that a
location has been optimized will be indicated by a @ which can take on either 1 or 0. This
convention is used in figure 3-6. O indicates only that a location has been optimized. It in
no way reflects the optimum state of a location. In fact if two locations are specified as @
one may be restored while the other is not,

Note that the @'s in figure 3-8 may have been determined by the methods of the last
section and that they may indeed be different. For a moment, assume they are the same.
Then since the regtons in "a" and ‘D" are identical and sfnce location 3 is isolated by restor-
ers in locations 2 and 7, the optimum state of location 3 can be determined by comparing the
true costs of regions a and b. The optimum region is the one with the lowest true cost, and
it is represented by the array, (X100001XX), in which locations 3 and 5 are optimized.

9-18

Now, what if the optimum state of location 5 were not identical for the two regions?
The true costs of the regions "a" and "b" can still be compared to determine the optimum
state of location 3. To illustrate this assume for location 5 that @ = 0 for region ""a’ and
@ = 1 for region b.

With locations 2, 4, 6, & 7 specified as in figure 3-6 there are four possible con-
figurations the region can assume as locations 3 and 5 take on all possible states, These are
shown in figure 3-7 with their arrays.

3 4 P~ 3 6 7 p——— (XI100001XX)

(X100101XX)

3 PO- 4 -] 6 poud T p——=— {(Xi1GO00IXX])
3 -O—- 4 -] —O— € jwed 7 e (X 1IOIQIXX)

Figure 3-7. The Possible Regions as Locations 3 and 5 Assume All Possible States

QRQQ
i

From the previous comparisons one knows that with restorers in location 3 and 7
and none in locations 4and 8, location 8 should be empty. Thus region c is less costly than
region d, and the latter region han been eliminated by the previous comparison. Also from
a previous comparison one knows that with restorers in 2 and 7 and none in locations 3, 4,
& 8, location § should be filled. Thus alternative a has been eliminated in a previous com-
parison,

Thus to find the optimum state of location 3 with 3 already optimized. it is only
necessary to compare regions b and ¢,

The result of the comparison will be an array with two locations optimized,
(X100001XX). The values of the @'s are determined by the least expensive region. Thus if
region b is least expensive, the 0 in location 3 will be 0 and the ¥ in location 5 will be 1 If
region ¢ is Jeast expensive, the @ in location 3 will be 1 and the @ in location 5 will be 0.
These results are very important because they make it possible fo optimize a location and
usc the results of the comparison to simplify subsequent determinations of the optimum state

uf other locations.

It is important that when two regions are compared to optimize a location that the
same location be ptimized in both regions. To illustrate the opposite consider figure 3-8.

A O— 3 4 Qe § 6 pewad T |=m(XI0000IXXX)

) O— 3 - 8 fm o 6 i—-{ 7 Je(XI10001XXX)

Figure 3-8. Two Regions With Ditferent Locations Optimized

Comparison of these two arrays will of course determine which has the lowest true cost, but
the question is what to do with the result. It cannot be said that the comparison yields the
array, (X10001XXX), with three locacions optimized, because not all the alternative states

of the three locations have been considered. For instance, assume that the €'s in butii regions
aand b are equal to 1. Of the eight possible regions that occur when locationx 3, 4, and 5
assume all possible values shown in figure 3-9, only two, a and e have been eliminated by
previous comparisons.

The results of the comparison of the regions in figure 3-8 will yleld either f or c.
Thus four of the eight alternatives have not even been considered, hence the comparison
cannot yield the optimum values of Jocations 3, 4, and 8.

‘The findings of this section can be stated in general. Two arrays can be compared
to optimize a location in spite of the presence of previously optimized locations. However,
the same locations must be optimized in each array. The results of the comparison w'll be
an array which is optimiged for all locations optimized before the comparison plus the loca-
tion optimized by the comparison. The values of the 0's in the new array will be the states
of the corresponding locations in the least expensive of the two regions in the comparison.

3-20

6 jued 7 (X100001Xx)

6 7 = (X100101XX)

1 3 7 = {X101001XX)

—O— 6 7 r—(XlOIIOIXXl .

6 f"' 7 = {X110001XX)

ool

6 b=d 7 b=(x110100001 {

] € 4 7 PM=(X111001XX)

(X111 01XX)

slefelo]efele

3—0—4
O

o5

Figure 3-9. The Possible Regions as Locations 3, 4, and 5 Assume All Possible States

4. Comparison of Two Arrays to Optimize a Location

1n the synthesis procedure to be described in the following pages a frequently
referenced operation will be the comparison of two arrays to optimize a location. This sec-
tion is devoted to the description of this operation.

Two arrays are sald to be comparable if there is one and only one location which
takes on the 1" state in one of the arrays and the ‘0" state in the other and every lccation
specified as O in one array is also specified as @ in the other array. For example the arrays.

(1011XX0X0)
and
(1001XX010)
are comparable. On the other hand, the arrays:
(1010XX0X0)
and
(1001XX010)

or the arrays:

(1011 XXXX0)
(1001XX010)
are not comparable.

Comparable arrays can be used to derive two regions which are identical except
for one location and possibly some previously optimized lccations; hence the comparison of
comparable arrays (or alternatively the comparisons of the regions) yields an array with one
mure location optimized.

Since an array may have a 1 or 0 where a comparable array has an X, regions
specified by comparable arrays may not be identical. For instance for a nine function shift
register two con.parable arrays are:

(IXXXXXXXX)
P001XXXXX)

These arrays form the regicns shown in figure 3-10, a and 3-10, b respectively.

Pigure 3-10. The Regions of Two Comparable Arrays

Although the arrays fulfill the requirements for comparability their regions cannot
be compared because they do not include the same functions. To form the regions which
are to be compared to optimise » location, the regions wili be made to include every function
that is in either region specifiedbythearrays. Thus the regions of figure 3-10 will be modi-
fied to appear as in figure 3-11.

Figure 3-11. Regions Modified to be Comparable

Now the true costs of the two regions of figure 3-11 can be compared to uptimize

the state of location 1 for the given values of the other locations.

In summary comparable arrays differ in one and only one location such that a)
appears in one of the arrays and a 0 appears in the other. Exctuding the differing location
any location which is specified as 0 in one array must be 0 or X in the other array and any
location specified as 1 in one array must specify as 1 or X in the other. Befure two array.
can be compared to optimize a location, the regions must be made to include the same func-
tions. Every function included in either of the regions of the arriays must be included in
both modified regions.

3-23

E. THE DETAILED SYNTHESIS PROCEDURE

The procedure described in this section differs in one basic respect from the procedure
described in the First Annual Report to perform the same function, The First Annual Report's
procedure generated all the isolating arrays of function 1 and placed them in a list. It then
searched through the list to find the proper arrays to compare in order to optimize locations.
The current version, here described, generates the arrays in the order they are needed, and
makes all possible comparisons with an array before another array i8 generated. The long
list of arrays is no longer necessary, hence the memory space and search time required for
the computer implementation ii the procedure are greatly reduced. Major portions of the
mew procedure are the techniques required to generate arrays in the proper order and to
recognize the proper arrays to be compared.

This section describes all the steps of the Isolating Array Synthesis Procedures. The
activities of the procedures can be divided into parts, those dealirg with: 1, The generation
the isolating arrays in the proper order and 2. The comparisons of the arrays to optimize
locations. In the procedure the generation and comparison activities are performed con-
currently but for this description they will be treated separately.

From time to time names are introduced into the text which are variables in the
program which implements the procedure on a digitas computer. These are introduced to
ease the description of parts of the procedure, rather than to illustrate the construction of
the program. A description of the program is reserved for Appendix B.

1. The Genr:ration Procedure

a. Terminology and Background
(1) General

The problem of gensrating the isulating arrays is equivalent to the problem
of generating the isolated region which they represen'. To help visualize the process used to
generate theso arrays, think of the generation procedure as constructing s pod, which, at
any given time, encloses a part of the network which includes function 1. This enclosed
part of the network is isolated by restorers or the form of the network from the remainder
of the network and forms an isolated region which is independent of the remainder of the
nstwork. Every function and restorer within the pod is to be error linked to the first function.
The generation process begins as an enclosure about a single function (function 1) in the nei-
work and as it develops, the area enclosed by the pod increases until, finally the entire
network is engulfed by the pod.

3-24

(2) Incompletely Specified Arrays

The boundaries of the area enclosed by the pod are locations in the network
and they are reierred to in the isolating arrays as 3 ‘s and @§'s. These designations are
variables and will take on the states 1 and 0 - 1. e. the location described by the 3 or @ will
be allowed to first be restored, then be unrestored. When one location with % or ¢ is
allowed to vary two new arrays are generated, the 1-substituted and the 0-substituted arrays.
Arrays which include one or more 3 's or §'s are referred to as incompletely specified
arrays. They are intermediate, or transition, arrays in the generation procedure. They
eventually give rise to completely specified arraye (arrays which contain no 3's or #'s).

Tne generation of completely specified arrays is the purpose of the generation procecure.

(3) The Implications of 8 and @ Variation

As previously discussed, an imaginary poc is constructed about a given
functicn in the network and this pod is allowed to expand until the entire network is en-
compassed. U this first function is selected at some place in the middle of the network this
expansion of the pod can taxe two directions with respect to the signal flow: upstream or
downstream from the function selected. The difference in the effects experienced lies in the
manner in which error-linking occurs, When the expansion occurs in the upstream direction
the first type of error linking, the upstream type, occurs, hence upstream boundaries at the
pod are specified as §. Conversely, when the expansion is proceding in the downstream
direction, downstream orror-linklu in possible, hence 3 specifies the downstream
boundaries of the pod. If the 3's and §'s were replaced by I's, the enclosed area would form
an {solated region of function 1.

(4) Effects of 8 and §f Varistion

8 and § are variable states for a given location. Their presence in an
array means that the array is incompletely specificd and that more arrays will be generated
from this array. One at a time each 3 and § will take on the two possible states 1 and 0.
Hence, the variation of & 3 or §f yields two arrays. The 1-substituted and the 0-substituted
arrays. When a 1 is substituted for a 8 or §, a restorer is assumed in that location and no
errcr-iinked functions are added. However, when a 0 1s substituted, the ahsence of a
restorer is assumed and error-linking takes niace between the function whose output was
the § or @ and its error-linked functions. The mannsr in wiich error-linked functions are
added is cetermined by whether a 8 or §f was varied. Varying a 3 adds error-linked
functions according to the downstream effect whereas a § adds error-linked functions
accos ding to the upstream effect. Each newly added error-linked function'a location takes
on the variable designation 8 or § depending upon whether it was added while moving

upstream or downstream. If it was come upon while moving downstream a 8 is added, if
upstream a § is added in the proper location. fi's are added due to upstream error-linking
while 3 and §'s may be added due o downstream error-linking.

{§) The Pareht Array

In order to Initiate the generation procedure an incompletely specified
array must be constructed which builds this imaginary pod about the function selected as
function 1 in the network, This is accomplished by assuming the output of this function to
be a 3 and any input error-linked functions as @'s. Since this is the initial array, that which
gives birth to all others, it is referred to as the parent array. Allowing the § anu @'s to take
on their varjable states allows the pod to grow and encompass an increasing rumber of functions.

(6) Example

Figure 3-12 a. shows a network and its parent array. The imaginary pod
encloses only function 1, its output (downstream) is specified as 8 , its input (upstream) is
sperified as §. Figure 3-12 b. reprosents the result when the $ in location 1 is allowed to
vary - the two arrays shown result. The 1-substituted array (1§ xxxxx) adds no new error-
linked funciisa. The O-substituted array (Of x x § 3 x) has added two new error-linked
functions due to the downstream effect. I no restorer is assumed in location 1, function 1
is error-linked to function 8. Function 6 was found by moving downstream from function 1,
hence, it is specified as 3 and may introduce more downstream effects when it is allowed to
take on the 0 state at a later time. Function 8 was found by moving upstream from the function
which has inputs from two branches. When this location is allowed to take on the two states,
a 0-subetitution should introduce only upstream effects, hence it is designated §. The new
pod encloses function 1 and 6. This occurs when the variable locations 2, 5 and 6 have taken
on the 1 state simultansously. The pod has expanded in the downstream direction.

b. Mechanics of the Procedure

The aln. of the generation procedure is to arrive at all the completely specified
(no 8's or §i's) isolating arrays of function 1, In addition it is nccessary to make the proper
comparisons betwesn these isolating arrays in order to optimize the states of the locations of
the mwtwork.

As the pod about the first function is increased in size, not only are Lsolating
arrays of function 1 generated, but other functions arc incorporated such that isolating arrays
of these functions are «lso being generated. H:nce, comparisons can be made io optimize
these other locations in addition to location 1. The method which is used to genzrate and
compare these arrays will be discussed here

- G- g——— - — - - ——

———— _rmumnv POD
— 3 2 o 1 (e |~l_¢ 7 f
1 ' :
) i e 2
(SOXXXXX)
— 4 5 >
NETWORK AND PARENT ARRAY
e e u NEW POD
‘ !
— 3 2 fope] 1 e 6 [7 |
! i
® \ | - -~
- (19XXXXX)
‘4 s (0@ XX08X)
FIRST EXPANSION

Figure 3-12. Example Network and Arrays Generated by First Expansion of the Pod

All isolating arrays generated by the synthesis procedure are derived fium the
parent array. The parent array normally containg a number of variable designations (3's or
¢'s). When a substitution is made for a 3 or #, two arrays result, one with a 1 substituted
for the 8 or #§, the other with a 0 subatituted. Both of these arrays will contain all the re-
maining 3 's and §'s from the parent array. In addition the 0-substituted array may have
added mort error-linked functions (3's or §i's). The parent array and its two derivations
are shown in Figure 3-12 for the network shown.

f both arrays generated are incompletely specified the 0-substituted array is
temporarily stored* and the procedure operates on the 1-substituted array, varyir; the next
3 or #. The procedure continues to operate on the derivations of the 1-substituted array
until all completely specified arrays resuit and all those comparisons which are necessary at

* In the program implementing the synthesis procedure, a list is maintained of incompletely
specified arrays awaltiag processing. When an array is processed it is removed from the
list, This list is calied INCAR. In subsequent discussions this name is used to describe
the list.

3-27

this point have been carried cut. A more detailed asalysis of the comparisons which are
made will be presented in 4 subsequent discusc.on®, Then the O- hatituted derivative of the
porent array is operated up:n.

c. Pranch Effects
(1) Branch Formation

If this 1-substituted array should give rise to two additional incompletely
specified arrays, again the 0-substituted «f the two is temporarily stored and the 1-substituted
is operated upon. This ‘pe of procedure leads o the formation of "“branches' of arruys.

It can also be true that a 1 substituted array may be completely specified while its partner,
the 0-substituted array, is incompletely specified. I this is true the 1-substituted array is
carried through as many comparisons as possible (this will be further explained iater) and
the 0-substituted array is then operated upon to generate additional arrays.

(2) Branch Ends

A Branch End is encountered when the two arrays generated from an
incompletely specified array are both completely specified. This halts the generation process
for this branch and after ths necessary comparisons are finished, the next branch is con-
sidered.

The next branch is begun by locating the last incompletely specified a.‘ray
to be temporarily stored: (In INCAR). Operation on this array yvields the next branch. This
process continues unti) there are no remaining incompletely specified arrays in storage.
This means that the last branch has been developed and all possible jsolating arrays of the
first location have been gensrated.

2. The Comparison Process
a. Cowmparison Within a Branch

A typical branch which might be developed in the generator procedure is
shown In figure 3-13. This branch contains several completely apecified arrays as well 2s
a number of transitory incompletelv specified arrays.

*s The concept of comparison is introduced here to give the reader a feel for the con-
tribution of the generation process to the comparison and optimization process.

NETWORK BRANCH

(xxxi) (n
B (sgxxo)w-—(lxxxo)*m)
l_ ; 2 s _'L‘ s l \(IXXIO) (2)
(1X$00)

\(moo; (s)

Hosxxo)l (1¢000)

(11000} (4)

(10000} (5}

Figure 3-13. Example Showing Optimization of Locations Within a Branch

Any completely specified array in the branch differs from each of those which
follew it 1n the same branch by only one specified location, i.e. there is a location in the
array which is in the 1 state which in each ~f the arrays following is in the 0 state. This is
due to the manner in which the arrays are generated, When this location was varied, first a

1 was substituted, then a 0. The 1-substituted array was completely specified; the 0-
substituted array was incompletely specified, leading to additional arrays. Those fuliowing
arrays have additiona) 1's and 0's where th.. 1-substituted array contains X's. These
additional 1's and 0's were introduced due to the 8's and #'s which were introduced by the
0-substitution. However these locations were not specified as 1 or 0 in the first array.

Notice, in Figures 3-13, array 7 has only 2 specificd locations, 1 and 5.
Each of the arrays following in the branch differ from array 1 in location 5+,

Physically, array 1 (figure 3-13) represents an isolated region of function * as
do the othes completely specified arrays. 1f the region which is lucluded in array 7 but not in
array | is added to the region for array 1, the two resulting regions will differ in only one
location. Compariso. of these two arrays will yield an array with one lovation optimized,
that location by which ihe two arrays differ. Likewise, comparison of array 1 with each of
the others will yleld arrays with one location optimized. (Sce flgure 3- 14a).

* The example of figure 3-13 illustrates the format in which a branch is written, The arrows
indicate two arrays which are generated when a variable is allowed to take on its two states.
This format is employed to help the analyst identify those comparisons which must be
performed.

In general an array is compared with each array generated before it which differs from it
in only one specified location. This criteriou can easily be seen by use of the branch
tecimnique since any two ayrays which are in the same branch differ from each other {s only
one specified location. Hence, by examining the entire generation true for a network

the comparisons which will be made will be evident.

array result

2 (1XX10)
3 (1X100)
4 (11000)
5 (10008)

a. Resuits of the first comparison; array 1 with arrays 2, 3, 4 and 5.

array result
3 (1X108)
4 (11000)
5 (10068)

b. Results of second compariscn - array 2 with 3, 4 and 5

ATray result
4 (11000)
5 (10800)

¢. Results of third comparison - array 3 with 4 and 5

array result
8 (10000)

d. Results of fourth comparison - array 4 with 5
Figure 3-14. Results of First, Second, Third, and Fourth Comparisons

Since array 1 differs from each of these generated after it in the same location,
the optimized location will be the same for sach comparison. Now if array 2 {s compared with
each of those following, another location will be optimized in arrays 3, 4, and 5.

Successive comparisons of 3 with 4 and 5, and 4 with § will finally yield an
array with four Jocations optimized. These four optimized locations are optimum under the
conditions of array 8, §.e. if the restorer configuration of array 5 (a restorer in location
1) exists the four optimised locarions represent the best possible configuration of restorers
for the network.

b. Comparison Between Two Branches

The result of comparisons in a given branch yields, in general, an array with
x rumber of locations optimized for a given restorer configuration. The next branch generated
in the procedure will, likswise, produce an array with x number of locations optimized, but
for a different configuration of restorers. Figure 3-15 shows such a condition.

a b
a) (01899) (011¢9) (0111¢) (o1111)
TNN{01108) ~—{(01110)

\:ouox)
c 01100)
i

01008) ‘g;gg;;

a
b) (OISW)?(OIIW)———-oresult {01100)
(010§@) ———eresult (01008)

Figure 3-15. Example of Branches and Partially Optimized Arrays
a. The branches for an example
b. The partially optimized arrays that arise in the example

Given the system of arrays shown in figure 3-15, arrays b and ¢ were
generated from array a and, nence, differ from each other in only one location, that which

was varied. Each gives rise to a branch,

These two branches must differ in only this one specified location. Therefore,
after the comparisons are made for each branch, two arrays result each of which centains
two optimized locations each for a given configuration of restorers shown in figure 3-15b.
These two arrays may now be compared to optimize yet another location. These three
locations are now optimized under the restraint of the configuration of restorers describe!
by the remaining specified locations in the resulting array. Now, however, there is one
less specified, non-optimised location than there was in each of the arrays which had two
locations optimized. In general, successive comparisons between 'branch results” increase
the number of optimized locations and decrease the restraints until, finally, these result in
& comparison betwesn two arrays each of which has all but one location optimized and which

differ in this one location. Comparison of these two arrays ylelds the optimized network.
¢. Mechanics of the Comparison Process

tn order to avoid the storage and manipulation of a large number of completely
specified arrays, each array is compared and optimized as many times as possible im-
mediately after ite genaration. The comparison rule may be stated as follows: A completely
specified array is compared immediately with that array in storage which has the same
numter of locations optimized.

The first completely specified array generated will represent the smallest
possible isolated region which Includes the first function. Itisa result of 1's being substituted
for all the §'s and @'s in the parent array. The next completely specified array generated
will represent a slightly larger region and will differ from the first in one specified location,
An immediate comparison can be made to optimize this location subject to the restraints of
the 1's in the second array.

K 1}

(1XXXg) —e(1200x1)1
(1XX@0) —o{1XX10)2
(1X900) ——e(1X100)3
(19000) —{11000)4
{10000)5 i

Figure 3-16. Successive Comparisons

Refering to figure 3-16, upon generation of array 2 an immediate comparison
may be made between arrays 1 and 2. This is done even before the remainder of the a~rays
are generated, This results in array 2 with one location optimized (1XX10)*. The third
array generated (initially no locaticns optimized) may be compared immediately with the
first array which also has no locations optimized. This comparison results in one optimized
location (location 5). This is the same location as the previous comparison optimized since
both arrays differ from the firat array in this same location. Now the second and *hird arra-
may be compared cince eack is optimized in one location. This comparison results in a
second opti.uized location (locati.m 4). This progression is not unlike building a staircase -
each new array must complete all the comparisons of its predecessor before it can optimize
an additional l.cation. This progression continues until the end of a branch is reached. Thr-
final array, optimized as much as possible, contains the most optimized locations and the
{ewest restraints in the branch. When the end of the branch is reached and this array with
the most locations optimized is obtained, all the other arrays that were generated in the
branch must be dropped from consideration. Only the array with the most locations optimized
is retained. This step assures that no two partially optimized arrays have the same number
of locations optimised.

For the example, when array § is generated it has no optimized locations and
therefore compares to array 1. This yisids one optimized location (10000). Comparison is
then made with array 2, which also has one location optimized, yielding (10000), After
successive comparisons with 3 and 4 which have respectively 2 and 3 locations optimized the
resulting array is (1). The same result was noted in figure 3-14,

As the next branch is generated the completely specified arrays which are generated
in it may be compared only with arrays which differ from them in one specified non-optimized
lucation.

* In the procedure partially optimized completely specified arrays are stored in 2 memory
location called KOMPAR. Along with ihis array is a list, KLO, which indicates ‘he
mmber of locations optimized in each entry in KOMPAR.

The initial array in a new branch is a 0-substituted array which resulted from
the 1 and 0 substitution for a 8 or @. The 1-subsetituted array formed the previous branch.
This 0-substituted array differs from its partner (the 1-substituted array) and any predccessor .
in only one specified location, Any other arrays generated from the 1-substituted (partner)
array will differ from the 0-substituted array in more than cne specified non-optimized
location. Hence, comparison between members of two different branches is invalid except
tor the one final array which has the greatest number of locations optimized. This one array
is a representative of Lue entire branch for successive comparisons. Every location which
was varied after the formation of the 1-substituted array which gave rise to the branch, was
later optimized. It may be thought of as an optimized, 1-substituted array and it differs from
the 0-substituted array and all its derivatives by only one non-optimized location. The com-
pletely specified arrays generated from the 0-substituted array compare and optimize locaty. u>
in the staircase manner as did the previous branch until the same number of locations are
optimized as the previous branch. Then comparison i8 made between the results for the two
branches, and an additional location is optimized. The result is the array which represents
the optimum case for a larger branch (that made up of two smaller branches). The next
brarch initiates a new stalrcase until the previously high number of locations optimized is
reached where upon comparison can b. made between branches. This process continues until
all locations but one are optimized for two arrays and a final comparison between then, is
made. The result of this comparison is the optimum network.

3. The Order in Which 8's and §'s are Varied

‘The gensration of arrays during the synthesis procedure is accomplished by letting
the 'sand #'s In incompletely specified arrays assume the 1 and 0 stale. At any one point
in the procedure, only one 5 or § is to be varied at a time and the nrccess generates two
arrays, the 1-specified array and the 0-specified array.

When one has an incompletely specified array with several 8's and §'s, he must
determine the proper one to vary. The successful completion of the procedure depends on
the proper choice,

Consider the point In the procedure in which a 0-specified array called A hus had
as many locations optimized as possible. This array is to be placed in KOMPAR and i« new
incompletely specified array called B is to be chosen from INCAR to generate a new branch.
From the way in which the synthesis procedure is performed, one knows that there will be
one and only one location which is specified as 1 in array A and specified as 0 in array B.
Call this location y.

3-13

During the optimizations that take place in the branch derived from the array B,
there will arise one or more completely specified arrays cailed C which have the same
number of locations optimized as A. When this occurs, arrays A and C will be compared,
optimizing location y. As described in Section III. D. 2, for this comparison to be a legitimate
one, array C must have optimized exactly the same locations as array A. This happy result
is assured if the 6's and @'s are varied in the correct order in the branch derived from
array B.

To determine the correct order of variation, consider the goal of having exactly the
same locations optimized in C as are optimized in A. This will be assured if the {irst
locations optimized in the branch derived from array B are exactly those locations optimized
in array A. The order in which the 5's and §'s are varied determines which locations will
be optimized first. It happens that if there is more than one & or @ in an array, the locatior
varied first is optimized last, the location varied second is optimized the second from the
last and 80 on. For a very simple example of this, consider figure 3-17.

— 2 I]—o

Figure 3-17. A Simple Example (o Illustrate the Variation of § 's and #'s

PARENT ARRAY (50)

Vary!~z the §in 2and the & in 1 in that order, one obtains the tree:

1
(2 (ST
(o1)
3
(10)
4
(00)

By comparing arrays (1) and (3), oo optimizes location 1 yielding the array
(0 1). By comparing arrays (3) and (4), one optimizes location 1 yielding (8 0). Comparing
the arrays (9 1) and (00) optimizes location 3. By varying locations in the order 2 - 1, the
locations have been optimized in the order 1 - 3. If the order of variation had been 1 - 2,
the order of optimization would have been 2 - 1.

Stating the forgoing in a8 more formal manner, say that in array A the set of
optimized location is &, and in array B the set of locations which are 5's or #'sis p .
The rule for the order in which the locations in the set o are varied is: The 6 's or §'¢ in
locations in the set » but not in the < should be varied before the 6's and §'s in both the

-4

sets ¢ and p . Following this -ule assures that the jocations optimized in A will be optimized
first in the branch generated from B so that the proper comparisons ca. be made.

The mechanism, used in the synthesis proceaurc f .c choosing the correct § or #
to vary, has been made somewhat more restricted than the general rule to simplify automation.
It involves the use of an array in which the last 0-specified array to be optimized is stored
(the last array optimized before a new branch is originzted). In the program this array Is
called IPOPAR. This name is used in the following discussion.

The optimized locations in IPOPAR are indicated by Oo's and Ol's. The in-
completely specified array from which the new branch is to be generated is scanned from the
left for 3's or §'s. When one is found, the corresponding location in IPOPAR is tested to
see ifitisa 00 ora Ol. I it is one of these values, the scan continues to the right until
another 8 or @ is found and the test repeated. If the location in IPOPAR is neither 0‘
00, the 3 or § in that location of the incompletely specifizd array is varied and the synthesis

or

procedure continues to the next step,

If all of the 3's and #'s in the incompletely apecified arruy are 0's in TPOPAR,
the procedure varies the left most one.

4. Test to Determine if a Function is Isolated

An important condition which must be met nefore a location can be optimised is
that the location's function must be isolated. Calling the location to be optimized k and its
function j, this means that with location *. empty, the function j must not be error-linked to
any function whose location is an X. Tn illustraie a case where this condition is not met,
consider the network in figure 3-18.

Figure 3-18. Network in Which Isolating Array of Function 1 is not Necessarily an
Isoiating Array of Function 4

3-8

Two isolating arrays of function ! are the arrays:

(0000XXX)
and (0001X0CX)

Function 5, 6, and 7 in both these arrays are isolated from function 1 by the form
of the network. At first glance, these two arrays appear to be comparable; the result being
an array with location 4 optimized: (0000XX). This is not true, however, because the optimum
state of location 4 may depend on the states of locations 5, 8, and 7. Certainly one can see
that the dacision on the optimum state of location 4 depends on whether or not locations 5 or 7
include a restorer. If location 5 is empty the decision also depends on whether or not
location 6 includes a restorer,

Such a condition :nay easily arise in the synthesis procedure, because the generation
procedure creates arrays which isolate function 1, but there is no guarantee that they isolate
any other function.

Tu allow for this occurence, the procedure tests to see if a location is isolated
before it optimizes it. For example, say that the two arrays, IWORKG und JARC*, each
with three locations optimized, are to be compared:

IWORKG = 0000X X X)
JARC =(0001XXX)

The optimization of locations 1, 3, and 3 are acceptable, because an array which
isolates fuaction 1 and specifies location 2 as 0 also isolates function 2. [In like manner
function 3 is isolated by an array which isolates function 1 and specifies location 3 as 0. To
detormine if location 4 can be optimised the procedurs tests the array IWORKG to see if It
isolates function 4. It finds that location 4 cannot be optimized.

A function is tested for isolation by checking to see if all of the locations of its
primary sinks and all of the locations of the primary sources of these sinks are specified by
01, ‘l’ or 03 in the array. If such is the case, one can be sure the function is isolated. If
such s not the case and some of these locations are specified as X's, the function is not
isolated and the comparison cannot be made. For the (vample function 5 is a primary sink of
function 4 and function 7 is & primary source of this sink and both locations are X's. Therefore,
function 4 is not isolated.

* These are the computer program names given to arrays that are to be compared. They are
used here simply to aid in the description,

When the condition of isolation i8 not met, the array must be modified so that the
function becomes isolated. This is done by placing 8 's on all the primary sinks of the
function whose locations are X, and @'s on all the primary sources of these sinks whose
locations are X. For the example array this yields: (0000 B Xy).

This type of array is called an Indirectly Incompletely Specified Array to indicate
tke indirect manner in which the array became incompletely specified. The array is treated
like a norma) incompletely specified array and is placed in INCAR for further processing.

As the 38's and @#'s take on the 1 or 0 state in subsequent processing function 4 will be isolated.
Note that these arrays may include optimized locations.

The synthesis procedure subjects every function to a test for isolation before its
location is optimized.

5. Link-Limit to Simplify the Procedure

Even through the synthesis procedure is designed to require a far lower number
of calculations than the exhaustive search procedure, for large networks the time required
for synthesis may still be excessive. There is a rule of thur. -, however, which can be used
in the procedure to considerably reduce the number of array: ~enerated and the number of
calculations made. This rule is called the link-limit.

The link-limit states that there will be a limited nu.qber of fun~tions error linkcd
to any restored function. Since the banefits of redundancy dep 'nd to a considerable extent on
the presence of restorers in the network, the optimum desiyn of any network will probably
include a number of restorers. During the synthesis procedure comparisons between network
designs in which most of the location are smpty probably do not contribute to finding the
optimum. The use of the link-limit elimirates from consideration most of these unnecessary
comparisons.

The simplification requires the introduction of n quantity JTHLD. * This quantity
is the maximum number of error-linked functions which all play & part in providing the input
to a restorer. Thus JTHLD-1 is the muximum number of error-linked sources a restored
function may have. The quantity JTHLD ia fixed by the designer und represents what he feels
to be a reasonable limit. Considerations on the setting of the quantity will be presented later
in this section. The link-limit eliminates from corsideration every array for which the
number of error-linked sources of any of its restorers functions exceeds the limit. Theoe
arrays are called implausible. Figure 3-19, a and ¢ represent arrays which are implausihle
when JTHLD equals 3, Figure 3-19, b represents un array which is plausible.

* Once again this '8 program terminology introduced for simplicity.

3-37

A 0 i ¢
. s s | Q—O—Isls “ 5 6

Figure 3-19. Plausible and Implausible Arrays

In every application of the synthesis procedure for a large network, many arrays
will arise which are implausible. Elimination of these arr~ys from the synthesis procedure
will consicerably reduce the nun.oer of calculitions which will be required for synthesis.
With the link-limit lavmkl are introduced by two mechanisms.

First, each array is tasted for slausibility as it is compared with other arrays to
optimize locations. As an array, IFNORKG, enters the comparison procedure with no
locations optimized, an array is found in KOMPAR with no locations optimized (if one exists).
This array is st equal to JARC. IWORKG is tested for plausibility and if it is found
implausible, JARC is called the best of the two arrays without any further calculations.
JARC necessa::iy has one more 1 (restorer) than IWORKG so it is more likely plausible,

One locstion has 20w beeaa optimised ia JARC and the array is nuw set equal to IWORKG for
another pres ‘rough the comparison process and another plausibility teast. By finding the
array im:lausible, (wo cost determinations have been sliminated. It is unnecessary to
determine the cosis uf either IWORKG or JARC since IWORKG is implausible. The plausibility
tent ~ontinues at ~ach pass through the comparison process until a nlausible array is found,
then the systhesis procedss nurmally.

If IWORKG is fonind plausible the comparison procedes normally. No further
pirusibility tests are made on this array as more locations ere optimized, Subsequent
opti- :izations can only add more restorers fo the network, hence increase the array's
chances for plausibility.

An an example of the [orgoing considerations consider the array A, in figure 3-20
which is to be compared with arrays &4, C, D and E which are stored in KOMPAR.

nrtptis comnne g - e .o - o eve -

become 1 as the branch is generated from the incompletely specified array. After this is
done,the locations which are 0's in the new modified array will be 0 in every array which will
be derived from the incompletely specified array being tested.

When it is determined that every array that will be generated from an incompletely
specified array is implausible, the array is called an impossible array.

For simplicity call the array drawn from INCAR A, and the modified test array B.
To test the possibility of A only locations which are 0 for all members of the branch will be
made 0 for the test array B. To assure that this occurs, 1's will be assigned to B in two
ways. First the locations which are 1's, 3's, or #'s in A are made 1 in B. All these
locations will assume the] state in some array generated in the branch.

Secondly 1's will be added to some of the locations which are to be optimnized in
the branch. Generally whenever a branch is being worked on, there will be some list of
partially optimized arrays in KOMPAR. Each member of this list will have some number of
locations optimized, and no two me.nbers will have the same number optimized. If one were
to look down the list of number of locations optimized, KLO, he might find something like;
0,1, 2,5, 6, 5. The list in general will not include every integer from zero to some maxi-
mum number, but will contain one or more gaps. While working on this branch, the lowest
gap will be filled. First an array with three Jocations optimized will be generated and then
an array with four locations. The last array to be generated in the branch will be compared
with svery array is the list of partially optimised arrays until an array is found with one
more location optimised than the greatest consecutive integer in the list. The purpose of
the branch generated from array A is to gonsrate aa array with the same number of locations
optimised as the array in KOMPAR with the emallest sumber of locations optimized above the
gap. Thus for the example the brasch is to generate an arvay with § locations optimized.
Call this array C. The locations optimised ia C are the locations to be made 1%s in the test
array B.

Now there are some seros still remaining in array B. Every array generated from
A will have at least this many sercs. Tiue if the array B is tested for plausibility and found
implausible one knows that every array ia the branch will be impisusible. Array A is then
judged impossible,

The impossible arruy cannot be thrown out because some of its 3's or §'s may
open paths into parts of the network which can not be reached in any other manner. Many
of the calcuiations that are made in the branch can be discarded however, because if the
procedure were continued in the normal manner, all comparisons made in the branch will be
between implausible arrays.

-31
This Document Contains
Missing Page/s That Are
Unavailable In The
Ooriginal Document

[R

The unnecessary comparisons are eliminated by constructing a new array D by
combining the arrays A and C. The array D is formed by replacing with one exception the
contents of every location in array A with the contents of the locations which are specified as
1, 0, Ol, or 00 in array C. Locations specified as X in C take on the swuates specified in A,
The one exception is the location which would have been optimized by comparing an array
generated in the branch with array C. Call this location y. Location y will have been 0 in
array A and 1 in array B. It is made O in the newly constructed array D.

The array D will still be impossible but it now contains a number of optimized
locations. These have been found with no comparison at all. The reason for not optimizing
location y directly by replacing it with a 1 ig that this location hus not been checked to see if
it is isolated. By leaving location y as 0 and continuiiig the synthesis procedure from this
point,this check is made as a matter of course. ‘

The array D may or may not contain 3's and #'s. The next step in the procedure
after the generation of this array is to check for this property. If it does contain 38's and/or
#'s it is an incompletely specified array and is placed in INCAR, the incompletely specified
array list, If it does not contain these variables it continues on its way to have more locations
optimized, The first comparison to be made will be with array C. Since array C is plausible
and array D is not, array C should be the superior. If the choice of JTHLD is wrong this
may not result. If JTHLD is 00 great the error will be corrected in subsequent operations,

If JTHLD is too small, utilising the link-limit may not result in the optimum.

To illustrate the second use of the link-limit consider the situation illustrated by

figure 3-21. The arrays in this figure are purely hypothetical, they represent no real net-
work.

(00010010001§) Array A KOMPAR XLO
(069010010101X) (]
Arnay C (00010011001X) 5
(120000 XXXXXX) 0
(01 200X00XXXXX) 1
(001 XAXXXXXXX) 2

Figure 3-21. Example Showing the Impossibility Test

It can be seen by comparing arrays A and C that y is location 8. Array B is constructed by
first placing 1's in all locations which are 3's or #'s in array A. Then placing 1's in all
locations specified as 9's in array C. Array B appears as below:

(111111100011) Array B.

3-41

This is the test array. All arrays generated from array A will have at least the 0's present
in array B. Say that array B is judged implausible indicating that Array A is impossible.
Thus all the arrays generated from array A are implausible, Array D i8 formed by com-
bining arrays A and C in the manner previously describod.

(086100100019) Array D

This array replaces array A in the synthesis procedure. By using the link-limit all the
array generations comparisons and cost calculations that would'have been required to
optimize tiie five locations have been eliminated, This is an extremely significant savings
especially apparent for large networks and small values of JTHLD.

Whether JTHLD is too great or too small depends on the maximum number uf
error-linked sources to a restored function in the optimum network (the cne which wouid be
derived without using the link-limit). U JTHLD-1 is greater than this riaximum, e pro-
cedure should yield the optimum network. If JTHLD-1 is set less than thi¢ maximum the
result may not be the optimum. Such a condition may be flagged if the result of the procedure
has one or more restored functions with exactly JTHLD-1 error-linked sources. Ii this
occurs JTHLD might have been set too low, and the aynthesis should be tried again with a
greater JTHLD,

For systems with feedback, under some conditions a poorly choser JTHLD will not
be 80 easily flagged. If the optimum design has no restorers in a feedback loop, and the
JTHLD is Jess than the number of functions in the loop, the procedure may yield a design
with several restorers in the loop. ‘There may be no restoredfunctions with exactly JTHLD-1
error-linked sources.

Although the link-limit tests have been inciuded in the computer program to perform
synthesis, they have aot been thoroughly tested to measure their advantages. They will yield
consideradble reductions in the time required for synthesis, however, especially when
rastorers are fairly close together in the optimum network.

F. THE APPROXIMATIONS IN THE PROCEDURE

The Isolating Array Synthesis Procedure does not find the network which minimizes
the True Cost of equation 4. The technique uses an approximation of this cost, so that the
characteristic of isolation can be used to considerably reduce the number of calculations that
must be performed in the optimiszation procedure.

3-42

Assume a set of functions are chosen from the network and cailed members of the set Q.
The locations of the set Q are to be optimized, but for the moment let the locations of every
member of the set Q be empty, Now let the locations of the functions not in the set Q take on
an array of states with some locations filled and some empty.

The functions and restorers not in Q can be divided into two sets, E andI. A member
of set E is error-linked to at least one of the members of set Q and a member of set [is
isolated from every member of Q. Three disjoint sets have now been defined.

The approximation is based on the method of computing the reliability of redundant
networks which is described in detail in Appendix A of the First Annual Report. This

appendix shows that the rellability of a network, R, can be factored into two terms R, and

1
RE such that:

R = R!RE'

Rx consists only of factors which contain the reliabilities of circuits in functions in the
set I, outside the isolated region. RE consists only of factors which contain the reliabilities
of circuits in functions in the sets E and Q, inside the isolated region.

Now say the states of the locations within the set Q are to be optimized, with the
locations not in set Q specified as some array. When a restorer is placed in a location, it
takes on the function's outputs. The functions and restorers that were error-linked to the
function alone are now error-linked to the function or its restorer or perhaps both, but no
new functions are error-linked with the combination. Then, as restorers are added to the set
Q, the sets I and E remain the same. No new terms are lntroducodlntonl, so it does not
change, but Rl.’ changes because of changes in the set Q.

The optimum array of the states of the locations in the set Q (given the array of the
locations not in Q) is that which minimizes the True Cost. The functional costs of the sets
Q. 1, and E are independent and are reprusented by l‘q' Fl, and FE respectively. The
True Cost for this network is written:

True Cost = Fl + F' + l'q + (l-Rl.R‘) K 6)

Since only the members of set Q are allowed to change, only the terms FQ and RE of
the True Cost will vary. Say there are two different arrays of the locations in Q, Q' and Q",
whose True Costs are being compared. The difference between the cost of the two networks is:

True Cost (Q') - True Cost (Q") = FQ(Q') - FQ(Q")

o[l-R‘RE(Q')] K- [I-R,RB(Q")] K
- FQ@) - Fg@") « Ry [RE(Q") - RE(Q')] K (1

3-43

For most situations, the value of RI will be very close to 1 and will have very little
effect on the decision between the arrays Q' and Q"". Then the approximate difference be-
tween the true costs of the two arrays is:

True Cost (Q") - True Cost (Q") ™ FQ(Q') - FQ(Q")
« [rg@n - rg@n] x ®)

The optimum array of the locations in set Q found using this equation is independent
of the functions or restorers in the set I. The equation affirms that the optimum state of a
set of locations does not depend on the functions or the stare of the locations that are isolated
from the functions in the set. This is a very important approximation and it is the crux of the
Isolating Array Synthesis Procedure. Its use considerably reduces the number of calculations
the designer will have to make for the synthesis of a large multiple-line network.
]

In the procedure, the only costs calculated are the costs of the isoiated regions i .de
up of the sets Q and E. This cost is called the region cost and is:

PQ) = FQA) + Fg + [l-RE(Q‘)] K (9)

The region cost is independent of the set I. The difference between region costs for the
arrays Q' and Q" results in equation 8.

hmmmmmwl!‘u.wwlviunoturlounlyenect the
results of the synthesis procedure. If the result is different from the True Optimum, the
cost of the resulting setwork will probably aot be much greater than the minimum True Cost.

The approximation assumes that the optimization of a small isolated region, independent
of the rest of ihe network, is consistent with the optimization of the whole network. The
approximation optimises a region, assuming the rest of the network is perfectly reliable.
The difficulty is that the actual cost of fajlure of the isolated region is dependent on the
reliabllities and location states outside the region. For example, coasider the extreme case
where the reliability of circuits in & function outside the Lsolated region is zero. These
circuits caanot operate correctly, and the astwork is surely failed. A restorer acded to
minimize the cost of 3 region is really no help at all to the total network, since it has already
failed. The restorer can only add to the functional cost of the network. The procedure does
not take into consideration functions outside the isolated region, so the result of the pro-
cedure {n this case may not be optimum.

-4

This extreme example has turned up the approximation in the procedure, but this is
not serious. A good portion of the network need not be considered when determining the
optimum state of a location. This proves to be so valuable an attribute that it far outweighs
the approximation brought to light in this section.

it does only lead to a slight approximation, because almost all networks that wil] b»
synthesized will have extremely high reliability specifications. When optimizing a location,
using some small portion of the network, it is not very erroneous to assume that the rest

of the network is working. Under this assumption, the procedure as described so far is
perfectly valid.

When K, the cost of failure, is so high that the goal of the design is to maximize the
reliability of the network, the procedure is valid without any approximation. No matter what
the reliabilities of the functions outside the region which inciudes some function y
the optimum state of location y is the one which minimizes the probability of failure of the
region and therefcre, minimizes the expected cost of failure of the region. Utilizing the
optimum cannot decrease the reliability of the network, and it will increase it if the rest of
the network is not sure to fail.

G THE COMPUTER PROGRAM

The synthesis procedure has been programmed for implementatior on an IBM 7094.
The program uses FORTRAN 2 and FAP coding. The FAP was included to increase the speed
of the program and to reduce the amount of memory required in the synthesis of large networks.

The program ha# run for simple networks Maving up to 30 functions. The networks are
simplified 10 shorten the time requiredfor desbugging rwas. Final debugging will allow the
synthesis of networks having up to 98 fuactions. This upper limit is easily expanded by
changing a few limits in the program.

The program has not been reproduced for this report, but a flow diagram outlining the
main steps of the program can be found in Appendix B.

3-45/48

IV. OTHER USES FOR THF SYNTBESIS PROCEDURE

If the discassions of this Paper are couched 1~ more general terms. it becomes apparent
that the isalating array synthesis procedure is applicable 1o problems other than Tinding the
optimum arraungement of restorers in 2 redundant network. In fact, the prorvedure is appl:-
cable to 2 whole class of problems, the charicteristics of which are desiribed in s secton.

Consider the problem in whick 2 large number of decisions are 1o he made. Each
decision 1s binary in that there are two alternatives avatlahle. and ame must be choser. All
decisions are alike in that the same alternatives are avalanle for eazh. The prablem 15 to
choose values for each decisian 1o ortirire some parameter. For the redundancy application
this parameter is True Cost and the decision to be made 15 Whether or not 1o it Jude 2 restor-
er at a location. The characteristic which makes this problem a difficwlt une 18 that no s1nct
subset of decisions can be made independently of al} other decisions,

mwmdfwl-lwammm. The nudes represent
Mvi&mmamuhem.mhhgmhﬂwgmww&n.
the 0 rerations. mmumammwumum canozoically
Uitulﬂﬂyummhm. Wkualhe!wimepmdectrmr
circuits, ‘!hl.alutymuﬁ-uw. '

Figure ¢-1. rmmhmwm
Mtunchupeuﬁmttﬂpnﬂiebuhuﬂvdymwmepromm that arrive at that

poimm&mauymﬂmmbnhy. This is calied the quality coutro! test. The cost of
mwvmmmbeeunﬂmydﬁem-oﬁrnﬂnbencm of test per proguct

ad

associated witk: each operation. The cost of the unit thrown away depends on how far it has
progressed through the manufacturing process. Thus, there is a cost assoclated with each
operation which represents the cost of throwing away the product after that operation.

Each operation in the process has a constant probability of producing a faulty unit.
The probabilities may differ for different operations. The number of products thrown away
in the manufacturing process is assumed small relative to the number passing through it, so
it ts assumed that there is the same wmber of products passing through each operation.
With these assumptions the expected cost per product of performing a quality control test after
operation { is:

P, C + Qi
Where P = the probability of the product being faulty at the ith operation.

Ci = the cost of throwing away the product after the ith operation. Ql = the cost of
performing the quality control test on the product after the ith operation.

I quality control tests are performed after every operation in the set M, the total cost
due to fnulty manufacturs is:

L§M
LR

The problem is to minimise this cost by optimally making the decision at each operation
whether or not to make a quality control test. The decisions cannot be made independently
becauss the value of " at any oparation depends on where the fault eliminating quality control
tests have been performed peevious to the operation. Thus, the declsion cannot be made ata
particular operation withowt considering what other decisions have been made. In fact, no
strict subset of decisions can be made independently of all other decisions.

The solution to this probiem can b found with the synthesis procedure. There are
other examples one might postulate that will illustrate the class of problems to which the
procedure is applicable, but this one and the redundancy example should be sufficient to at
least show that the class s not empty.

A. GENERAL CHARACTERISTICS OF THE CLASS

‘With the help of the two examples, the general characteristics of applicable problems
will now he pointed out.

e~ -

1. Form

The problem must be representable by a network diagram such as shown in figure
4-2. The nodes and line segments should deccribe the physical aspects of the situation under
study and the relationships between them.

Figure 4-2. Simple Network Diagram

2. Decisions

At each node a binary decision must be imnade. The decision determines the inclusion
or exclusion o1 some object or opecation. The decision does not modify the network diagram
in any way, but it affects some parameter of the network. It is impossible to determine the
effect of some strict subset of decisions without knowledge of some deciiions not in the subset,
The decision for the redundancy example was whether or not to include a restorer after a
function; and for the quality control example, it was whether or not to provide a quality control
test after an operation.

Given the state of all but one of the decisions, it should be relatively simple to make
the remaining decision. This restriction is {ncluded to keep the problem within bounds. The
synthesis procedure requires that many determinations of the optimum decision for one node
be made with knowledge of the state of the other nodes. If one of these determinations is diffi-
cult to perform, the procedure will take too long to implement, hence it will be impractical.

3. Parameter to be Optimized

There {8 some calculable parameter of the network which is affected by the dectsions
made at the nodes. The goal of the procedure is to optimize this parameter by determining
the best set of decisions at the nodes, The parameter for the first example was True Cost,
and for the second it was cost.

4. 1solation Occasioned by an Affirmative Decision

The characteristic of isolation provided by a restorer (an affirmative decision) has
been described in Bection VIL. B. 2 of the report. To illustrate the characteristic for the
quality control example consider the simple network diagram of figure 4-2.

Assume the network diagram of figure 4-2 represents a manufacturing process.
An affirmative decision at node 2 represents the inclusion of a quality control test after
operation 2. This test removes all faulty products from the process at this point, hence the
probability that a product is faulty at nodes 3, 4, 5 or 6 is independent of the deciston made
before node 2. The expected cost due to faulty manufacture can now be calculated independently
for the networks before and after node 2, and their sum will be the total expected cost. The
affirmative decision has resulted in isolation.

5. Isolation Not Occasioned by a Negative Decision

This characteristic prevents the problem from becoming a trivial one. If both
negative and affirmative decisions resulted in the isdlation of decisions, each decision would
be completely isolated from every other decision. This would make it possible to make each
decision independently of all others. Of course the synthesis procedure is not needed for
problems in which all decisions can be made independently.

The final two characteristics deal with negative and 2{firmative decisions. Of
course, by the reversing the definitions of negative and affirmative, the characteristics can
just as well read that negative decisions result in isolation and affirmative decisions do not.
H a problem posesses these characteristics it {s amenable to solution by the Isolating Array
Synthesis Procedure.

4-4

V. CONCLUSION

The Isolating Array Synthesis Procedure has been developed to the point where it is now
available for evaluation and use. The program to implement the procedure on a digitat com-
puter has been run successfully for several example networks. The first large scale synthesis
task is being readied.

The time required for synthesis depends primarily on the number of functions in the
network, the interconnection pattern between the functions and the value assigned to JTHLD,
the maximum number of error-linked functions providing the inputs to a restorer. At this
time the number of networks synthesized with the procedure is insufficient to estimate the
time required.

Several projects still remain to be performed. The program for the synthesis procedure
provides a tool for its own evaluation and the discovery of insights concerning the placement
of resoters in redundant networks. A carefully designed test schedule should reap consider-
able benefits in the understanding of redundant networks.

The discovery of a procedure to concurrently optimize the order of redundancy of the
functions of the network and the placement of restorers within it has not yet been accomplished.
However, some initial probes into this area have indicat~d that this additional task can be
done with some modifications of the present procedure. The accomplishment of this task
will allow the different functions in the network to assume different orders of redundancy in
an optimum manner. Particularly important is the ability to find the optimum network in which
only order three redundant and non-redundant functions sre allowed. A procedure with this
ability appears to have the most immediate application. Some future study should be devoted
to this problem.

This study has developed a tool of significant value to engineers charged with the design
of redundant-multiple-line networks ihe procedure finds the optimum placement of restorers
in networks of arbitrary topoloy:y Th.s procedure is a significant contribution to the state-of-
the-art because it performs an nj:.imization never before achieved except by exhaustive search.
The techniques described here: . r- 1y also sind applications in the solution of other problems
which are concerned with makin;, a largc set of binary decisions in an optimum manner.

5.1/2

APPENDICES

N
. .
B
e
Kl
)
P ,
»
A N

Appendix A

EXAMPLE DESIGN

To ilustrate the performance of the synthesis procedure, this example design is pre-
sented in figure A-1. It shows both the array generation procedure and the array comparison
procedure. The arrays that are generated by comparisons and contain optimized locationws
are underlined. The comparisons that have been made are noted for the first branch of the
tree. The symbol ¢ indicates a comparison of true costs. An equation of the form: @ -

c (@] ¢ @ indicates the arrays which take part in the comparison and the order
in which the comparisons are performed. For Instance, this equation indicates that array 9

is formed by first comparing arrays 3 and 8, and then comparing thc result of this comparison
with array 1. ;

For the example JTHLD i8 set equal to 3, so regions with [our or more error-linked
functions are not considered in the synthesis. The possibility test is illustrated but the plausi-
bility test cannot be shown in such a dizgram.

v

ssmpesold sisemukg AL jo spdurexy PANIAA V [~y 3amBid

(30 XXXXXX ol 1 XXXXXX ot
Parent Arm\w“xxu X,

\‘ IXXXXXX) @ axlxxx @ Dc@
L™ 10X e#XXX ¥
\‘wm‘xxx\-uuxuxxx D
lu)wtuxi wxwxxx-é TR Se
wxl'uxxx: 3 T 10B10x
r\uoxulxxx-
XX
\ 10X0IXXX:
L (10X00X XX unooxxx\
ToxOmxx; e b

»-ox‘xxux»\ouxxuxwou 13X1OLIXXTTX! 101
010X 3EX \-onr:ou‘ 01IXXI08 g o

\ 011x
o1

011XX019 xaid117,
101100006\ 101

)
Yordxoon s
‘\ou- S‘

010XI38 X:—010X119X -e0!
1IC10X1008) ™0j0.
e

010X10 B8 [N e

w00#44 33 X) oxoxouxnlnm) e
D10X0000 et 1N A1000
e Rore o
00196 33 X) \
01000
0011683 X,
00100800)
(90000008} 0010938 X)\ Y001 11P8 X}0/00111:
[Note 3] foouum‘iooun
A v
000 #o38 x) 0011038 X) Yo0111¢
[Note 3] { Note 3 {Nate
Ne‘es
1 Mne'lr Incompletely speciited Array (Section JII E §) iy
2. Comph sprcidind O-svbetituted Array (Section 0T E § ¢} ¢
3 l-p-ubh Arny (Bection 1. E 3) 3]
¢ Qpivmum Array The no' o

X D

T

axn @ onenxx g

wed

B ®

3 . .
BRXS _eenitixx @ aewen. & focy
Mo U088 x o 6 IU0IE — 10010011 D . .
xsuww&-\mx'mo. Y] Ci2e 3
’ . 1001001¢, i3 Nae 2
R 18081X 196188011 1; e
X, 18U0DIXL
INX= e 16000093 & 160U B ‘:::ml 8 el
\ AR 2
10010000 {8 ' 1 2
. L (10900811
Y
\mooooa\ , Ssoboons
(19000010,
+ Vieed e 2
b V106000101 TNate 2°
\ 3, r1esomol.
Y1000000; -
x:m
v} 3 . N
. 160000000 [Nute 2]
.
[]
W Nae 2
2 1] UL O RN
. 3
% -woortiton
001108
NOOUITI et 2
e

Appendix B

A DESCRIPTION OF THE PROGRAM FOR THE COMPUTER
IMPLEMENTATION OF THE SYNTHESIS PROCEDURE

L GENERAL DISCUSSION

The following serve as inputs to the program:

Coanections of the network

Threshold for the link-limit

Order of redundancy

Number of functions

For each function and restorer, the cost of:
2. Impleme: ation

b. Fower

c. Weight

Cost of failure (K)

Reliabilities of each function and restocer
Minimum sumber of lines for successful operation
The number and Lis of cutputs of the network.

L o A I S

e ®» 30

The output of the program is an array showing the optimum placement of restorers in
the network,

Figure B-1a shows a six-eloment network whose aptimization tree is manually developed
as an example in the discuseion of the program which follows. A geseral flow diagram of this
program is illustrated ia figure B-3.

Input {aformation 10 the program (s entered at block A. Reliabllities and costs of vari-
ous arrays are calculated ia the hlock at the bottom which ia designated as K. The remainder
of the program serves to develop (ke tree accondiag 10 the rules of the synthesis procedure
and o route the varions geasrated arrays 10 their proper places.

A. THE CONNECTION TABLE (JCONT)

Let us now examise how the configuration of the aetwork to be optimized is coaverted
iuto cor guter input information. For the setwork is figure B-1a a coanection table of the
type shown in figure B-1(b) may be comstructed. In essence, this table is a2 matrix where
the columns represent the outputa of the desigmated functions aad the rows the inputs to the
desigmated functions. A 1" represents a comsec .0n. Thusly, it may be seen from figure
B-1a and B-1b, that a "1"” in(2, 1) means that the output of fuaction 1 is the input of functiom 2.

i1 23886
S ted ¢ bo et rocro% [oTo]o]oTo]o
NETWORK W™ . 2|1 iojofolo]0
- | fod 2 3{o/rjolo]o]o
alojoit|pfo]0
(A EXABPLE NETWORK S toq & s{njtjojojo;o
s¢{oopiolifo;
ITAs 2 3 e s s T
¢} eBXX ANX)
(2) (1XX XXX)
(3) (08X XKK) = (4) (OIX XXX)
(S) (00§ XBX) — (§) (0! X8X)~— ($) (DO; XiX)
19) (OO XO8) = (iD) {001 XO!)
c gvl::nucnmmm | (1) (001 X00)

(7} (000 £6X) = (NOD 180) === (DOD HIK} = (ODO D!}
| (000 106) (D00 100}

(000 D&X) == (DOO O1X)
1000 D08 = (DOO 001)
(000 0OD)

Figure E-1. Examgle far the Descrigtion of the Computer Program

Likewise, the 1's in (3, 3)2ad (3, 3) siguily that the owiput of 2 serves as input to functions 3
aad §. Similar infermation is in this way entored into, and stored as, a matrix in the cam-
pultr memery for all the remaining functions of the sstwerk. All other locations in the
connection table, these et egual & 1's, are et 10 0.

8. THE PARENT ARRAY
The parent array is furmed frem the comssction table by placing a § in location 3 of the

arrag, a § i every Jocattar. ‘vaere a “1% agpears ia the first row of the connection table, and
an X ia all ramaining locations.

C. I[TA

For reasns vhich will ister bocome more evident, 32 measure of distance {rom the
parest array is made along the tree (soe figure B-1) as it develops. This distance measure-
ment is ia the form of asceading integers calied ITA. Thes, the paremt array is at ITA 1.
the mext grown of ..rrays 3¢ ITA = 2, etc.

1. SET UP CONNECTION TABLE
A 2. SET UP PARENT ARRAY AND
MAXE (w0 % QUALTONT

: !

1. EXTRACT INCAR (ITA) i. PLACE (WORKG IN INCAR (ITA) *]
2. PLACE IWORKG (N INCAR (1TA) o | - SEARCH TO FIND (AST ARRAY
1 J, SET EXTRACTED ARRAY OF £1 IN INCAR
INTO IWOMK 1. SET IWORK = IWORKO N
1. ADVANCE 1TA s
s | 2 wopan test LT
3, CREAIE IWORK AND IWORKO | v ULt o
' ?
IWOR!.| STORE IN : PLACE |
< [“'"J“G" IWOEK0 . [INCAR (ITA) j ‘ L KOMPAE (1A} j

vEs

WORKG A
1=SURSTITUTED
AMMY

PUACE o '3 AMD F'S

H

<

U

1RAY IN INCAR
L] PAR

XOM

RRAY IN INCAR

. SEER NEXT ARRAY

AFTER GAP OF
CONSECUTIVE GROUP

. SUBSTITUTL &5

N 1 AST WHERE
THE ARRAY CHOSEN
ABOVE HAD THEWM

[}]
IWORKG
INDIRECTLY
INCOMPLETEL Y
SPECIFIED

L

RSN

1. IF IWORKG IS FAUSIBLE
PROCEED TO J2.1F (MPLAUSIBLE,
OPTIMIZE PROPER LOCATION BY

{NDICATING NEED FOR RESTORER.

2, CREATE ERROR LINKED SOURCE
MATRX

i

1. OBIAIN R(g FOR IDEC

<. UBTAIN TRUE COST Of 1DEC
S, RETURN 10 IF IDELw=ARC

i

1. SET ARRAY WITH LOWER TRUE
COST EQUAL 10 IWCRRG

2. SUBSIIUTE @

IWORKG

Figure B-2, General Flow Diagram

B-3 4

D. KOMPAR

Completely specified arrays, when stored, are kept in a block in memory designated as
KOMPAR. This block is a two dimensional matrix :n which completely specified arrays are
stored in locations corresponding to their ITA values. The form which this matrix takes is
shown in figure B-3. Thus, for example, the array in KOMPAR (5) is (001 X1X).

ARRAY

(600 000)
(IXX XXX)
(01X XXX)
(000 000)
(901 X1X)

=
oub““h‘l’

(061 xe1)

Figure B-3. An Example of Arrays Stored in KOMPAR

E. KLO

A count of the number of locations optimized is made for each array in KOMPAR and
this number is stored in a list called KLO, The ITA value of the array with the given number
of locations optimized s also included in the KLO list. The form of this list is shown in
figure B-4,

LOCATIONS
OPTIMIZED ITA
° 3
1 3
3 5
s]

Fgure B-4. The KLO list

If we des1 ' to find an array in KOMPAR with no locations optimized we need only
search through the KLO list to {ind that such an array exists at ITA = 2. Now looking
through KOMPAR for the array at ITA = 2, we can extract (1XX XXX), which indeed, has
zero locations optimized.

F. INCAR

Incompletely specified arrays are stored in a similar manner as are ones which are
completely specified. The block in memory in which the incompletely specified arrays are
stored is called INCAR, and takes the form of figure B-5. Arrays are placed in INCAR as
shown. Whenever they are extracted, the location is filled with zeros.

iTA ARRAY
1 {000 000)
2 (08X XXX)
3 (000 000)
4 {001 X§X)
” "
" 1"

Figure B-5. INCAR With Arrays Stored at ITA = 2 and ITA = 4

G. SYMBOL CODING

The symbols 1, 0, §, §, J_@, 6;, and Oo are represented in the program by the numbers
0 thru 6 as shown in figure B-6.

SYMBOL CODE
0o ° 0
1 1
. 3
% 3
p 4 4
1 1
| 6

Figure B-6, The Coding Symbols of the Program

Thus the array (10X 5083) is converted to the representative numerically-coded array
(1045065). Likewise (9, @, XX XXX) is represented by (2344 444).

H. PACKING AND UNPACKING

In FORTRAN it would be necesaary to utilize one storage location for each code number
in an array. Therefore, the array (2344 444) would require seven words, the first one "2,
the next ''3", etc. By using FAP subroutines, arrays such as the above can be neatly packed
into single words, effecting a twelve times reduction in array storage requirements. In the
above example the array (2, 3, 4, 4, 4, 4, 4) would be packed as (234444400000), *

Whenever the number of symbols to be packed exceeds 12, more words are added.
For example, when the program is packing 2 100 symbol array, nine words must be assigned
to the array. The eight éxtra locations needed to f{ill the ninth word, a partially completed
word, are filled with zeros.

When an array is to be used in the FORTRAN program it must {irst be unpacked sc that
each symbol is designated by its own word. A special unpacking subroutine is used to accom-
plish this.

L IPOPAR TEST

Assigning 1's and 0's to-§'s and #'s in an incompletely specified 2rray must be done in
proper order, so that those locations previously optimized must be viried last. (See Section
OLE.3). A record of these previousiy optimized locations is kept in an ai ray in memory which
is called IPOPAR. The IPOPAR test must then nicnuruy precede the aasigning of 1's and
0's to incompletely specified locations in IWORK,

J. DEVELOPMENT OF THE TREE

We are now ready t see how the tree illustrated in figure B-1c is developed by the
program of figure B-3, as the program proceeds thru its various paths. An enumerated
description of thase paths now follows.

PATH 1
Block Biep
A 1. Input information describing the network enters the computer in the

form of a connection table.
2. The ITA is set to 1.

3. From the connection table the paresit ariay is formed (figure B-1c,
(1)) and set into IWORK, The flow now enters B.

* The maximum number of symbols which may be stored in the IBM 7094 memory word is 12.
Each number is in the octal system.

B®

PATH 1 (Continued)

Block Step

B 1.
2.
3.

C 1

D 1.

E 1.

G-

F l.
l.

R 1.

.is completely specified) we enter E instead of H.

The ITA number is advanced to 2.

The IPOPAR tiest is made to determine which location is to be varied.

First a 1 is substituted for that location and the array is termed a
"1-substituted array". It is designed in the program as IWORK].
Likewise an array ter'med the "0-substituted array' is generated by
substituting 2 "'0'" in the proper location and adding the appropriate
§'s and £'s. The array {8 named IWORKO, IWORK! and INORKO
are represented in figure B-1c 28 arrays (2) and (3), respectively.

n the first pass into block C, IWORKG is created by being set equal
to IWORK1. On the second. pass INORKG will become IWORKO.

A test of the specification of IWORKG is made here. Since INORKG
is array (2) in figure B-1c and is not incompletely specified (i.e., it

1

‘The number of locations optimized in IWORKG (number of 8's) is
determined. In this case the number is 0.

In order to find a suitable array to compare with INORKG, a search
is made thru the XLO list for an a:'ray in KOMPAR with the same

sumber of locations optimiised .e 0's. Since this is the first path,
RO previous arrays exist 0 snable a comparison, and the flow exits

-Pimo8.

The arcay is & 1-substituted array; -

“The array is placed into KOMPAR (3), where "2" {s the present ITA

number. It appears in figure B-3 at ITA of 2 (arrays with higher
ITA's) not exist at this point of the program). Furthermore, a
note is made in the KLO list (figure B-4) that in KOMPAR of ITA-2,
an array exists with 0 locations optimized.

Path | now ends with a second entry into C.

i

Block Step
C 1 Since this is the second entryinto C, IWORKG now becomes TWORKO,
which is (3) in tigure B-1c.
1. IWORKG is incompletely specified and the flow exits into H,
1. The array is 0-substituted and we proceed to Q.
1 INCAR of ITA=2 is empty since this is the first incompletely specified
array encounteréd at iliis I'TA number.
P 1 IWORKG is placed in INCAR (2) as shown in figure B-7.
2. A search through INCAR for the last array in it, is made. 1In this
case, the last array is the array just placed into INCAR in 1, above,
This array is now entered into the array called IWORK, as the pro-
gram completes PATH 2 on its entry into B,
ITA ARRAY
1 (006 000)
3 (063 xx%)
s ' {000 000)
4 {000 000)
” "
" "
Figure B-7. INCAR With an Array at ITA = 2
PATH 3
' Block Btep
B 1 ITA is increased from 2 to 3.
2. IWORK, which is array (3) in figure B-1c, undergoes the IPOPAR
test to find which location must next be varied.
3. IWORKI1 and INORKO are crested by the substitution of a 1 and 2 0

respectively in the location Zound in 2 above. In figure B-1c these
arrays are (4) and (5) respectively.

. FQ

PATH 3 (Coutinued)

Block Step

C 1. This being the first rass into C for the new IWORK1 and IWORKO,
IWORKG is set equal to IWORK1.

D L IWORK] is (4) in figure B-1c and is not incompletely specified. The
{low proézeds to E.

E 1. The number of locations optimized in IWORKG is 0.

F 1. There is an array in KOMPAR with no locations optimized. The KLO
list reveals it is at ITA-2. In KOMPAR (2) the array (1XX XXX) is
listed and is array (2) in figure B-1c.

G 1. In the comparison of the KCMPAR array and IWORKG, the location

to be optimized is the one which contains a 0" in one of the arrays
and a "1" in the other array. This location is found here.

2. The arriy found in KOMPAR (2) is extracted by setting it into an
array called JARC.

3. JARC is made to look like INORKG by changing all those locations
‘which are "X" in JARC to those symbols occupying the same locations
in TWORKG. Thus, in this path the second Jocation in-array (2),
figure B-1c, asswmes the value of the second location of (4), figure
B-1c. JARC and IWORKG are now ready for comparison,

H 1. IWORKG is not inéirectly incompletely specified and the flow enters 1.

I 1. I ofder 10 be coingared for cost, IWORKG aad JARC are made equal
% IDEC ons st a time (. ¢. the cost is first found for IDEC = IWORKG
and them for IDEC = JARC. This first time, then, IDEC = IWORKG,

J 1. The plausibility is performed for IWORKG. If IWORKG is implausible
the Jocation t0 be optimized is set to 9, and the flow skips to E1 in
path 4.
2. U plausible, the error-linked source matrix* is created for IDEC =
IWORKG.

The error-linked source matrix i# used in the reliability analysis as described in the .
First Annual Report.

B-10

B e

PATH 3 (Continued)

Block Step
K 1
2
3
I 1.
1L
K 1
2.
A 1.
2.
PATH 4
Block Step
E 1
F 1.
1.
R 1,
PATH 5
Block Step
C 1.
D 1

Lower-bound reliability is computed for INORKG.
True cost is obtained for IDEC and stored.
Since IDEC = TWORKG, 'the flow returns to 1.

IDEC = JARC
The error-linked source matrix for IDEC = JARC is created.

Lower -bound reliability is obtained.
True cost is computed for IDEC and stored.

The array with the lower true cost is chosen and set into IWORKG as
the flow returns to E and the path is completed.

If the 1-substituted array is chosen as most optimum, then 8y is sub-
stituted in the location to be optimired. If the O-substituted array is
optimum a 90 is placed in the location to be optimized.

‘The number of Jocations optimized in IWORKG is one,

In KOMPAR there is no array at this moment with one location
optimived.

Array {4) ia figure B-1ic, is a 1-subsiituted array.

The array is piaced isto KOMPAR of ITA = 3. The program returns
to C to complete path 4. ‘The irray appears in KOMPAR ag shown in
figure B-3 at ITA =3 and its number of locations optimized (one)
appears in the KLO list with ITA = 3.

As the flow enters C for the second time TWORKG becomes TWORKU(.
‘This is array (5) in figure B-1c.

JWORKG is incompletely specified.

B-11

PATH 5 (Continued)

N 1.
Q 1
P 1
2,
3.

IWORKG is NOT a 1-subsiiinted array.

INCAR «of ITA =3 is mot full since no array has previously been
placed into this position.

IWORKG is placed into INCAR {(3). -
The last array is songht in INCAR.
This last array, which is the one inserted in P1, is puolled out of

INCAR 2na set into IWORK. TFigune B-B shows INCAR (8) as array (5)
«of figure B-lc.

ITA ARRAY
1 {000 DOO)
2 1960 1000)
3 {006 XEX)
4 {000 (00)

Ai " bl

PATHS
Block
B

B-12

Shep
i
2.

3.

r—]

Boeop

Figure B-8. INCAR With An Array at ITA = 3

ITA is adnvanced 0 3.
The IPOPAR test indicates which location is $o be varied.

A 1" and "0" are sibstitubsd for this Jocation 4o create TWORKI and
TWORKO. These represect arrays (8) and (7) in figure B-lc,
respectively.

IWORKG bépoeves TWORK L.
TWORKG is incomgletely specified.
TWOBKG is a 1-substituted array.

JWORKG is stored in INCAR (4). See figure B-R.

N e ———

ITA ARRAY
1 0D ©OD)
2 150D 0D)

3 {0BD 00D)
4 (001 X3:) . . . ;

,

PATH 7
Blok Biep

r 1.

D 1.

N 1.

Q L

L 1.

2.

1.

Figure B-B, INCAR With 4n #rray (B) atITA = 4

IWORKG becomes TWORKL.

IWOREG is inoompletely specitied.

IWORKG is 2 O-substituted arrey.

INCAR (4) is Tull. ¥ contuins armay 16) Figune B-1c.

INCAR (&) is extracied.
mhmouhmcm«@) and agpears in figure B-10,
'mmcumyum s placed inio PWORK,

ITA ARRAY
['{ 000 1000)
2 (000 ©OG)
3 {900 ©0p)
r . 5 {000 35x)

Figure B-10. INCAR With Array {7) =t ITA = 4

B3

—————

5,

PATH 8

Block Step

B 1L
2.
3.

c 1

D 1

E 1

F 1

G 1
2.
3.

H 1.

3K, 2
PATH ¢
Block Step

E 1.

¥ 1,

G

H 1

5K, 2

ITA is advanced to 5.
The IPOPAR test determines which location is to be varied.

A 1" and "0'" are substituted in this lecation to form TWORK1 and
IWORKO.

IWORKG becomes IWORK1 (array (8) , figure B-ic).
IWORKG in not incompletely specified.
The number of locations optimized is 0.

There is an array in KOMPAR with an equal number of locations
optimized. TtisatITA = 1,

The location is 1.
JARC becomes array (1) figure B-1c.

JARC is made to look like IWORKG by placing a '0" a 1", and
another '"1", in locations 2, 3, and 5 respectively.

IWORKG is not indirectly incompletely specified. The plausibility
check is made. If implausible, the optimized array, containing.a 0
in location 1, is set equal to INORKG. The array is (801 X1X).

The number of locations optimized is 1.

‘There is an array in KOMPAR with an equal number of locations
optimized, It is atITA = 3.

The number of the lotation to be optimized is 2,
JARC becomes (#iX XXX).
JARC is changed to (8111 X1X).

No

The plausibility check {8 made. If implausihle, WORKG and JARC
ars compared and the least costly becymes [he npw JWORKG, with 9's
in locations 1 and 2. The new IWONRKL is, then, (091 X1X).

PATH 10
Block Step
E 1. The number of locations optimized is 2.
F 1. There 18 no array in KOMPAR with an equal number of lacations
optimized.
S 1. The array is a l-subsiituted array.
R 1. IWORKG is placed in KOMPAR (5) and appears so in figure B-3.

PATHS 11 and 12

By similar method array 10 figure B-1c is generated and compared to array (1) to give
an array with one location optimized. This partially optimized array is then compared with
the array in KOMPAR (3) and that kesulting array with the one in KOMPAR (5) to yield in
KOMPAR (6) an array with 3 locations optimized (see figure B-3).

Array (11) is likewise developed until 2 comparison can be made with the partially
optimized array of KOMPAx (6) to yield an array with four @'s. This array is the output of
Z and is set to INORKG,

PATH 13
Block Step

E 1. 'The number of lu~" ions optimized in INORKG is four.

F 1. There is no array in KWPAR with an equal number of locations
optimized.

S 1. IWORKG is not a 1-substituted array.

U 1. A search thru INCAR reveals that the last array, which hasg never
been extracted is at ITA = 4, This is array (7) in figure B-1c. The
array is now extracted,

2. IWORKG is therefore placed in KOMPAR (4).
T 1. A check is made to determine whether the last array, extracted in

Ul, is possible.

If the array is possible, it is placed into INORKG and the chain is
generated.

R-15

PATH 13 (Continued)

T 2

Block Step

e

T If the array is not possible, the flow contines to V, where the array
described in Section HI. E, 5 is constructed, In W, the flow is routed
to either C or E, depending on whether the array is incompletely

specified or not.

In a similar manner the remainder of the tree is developed until eventually a search
through INCAR for the last array reveals that there are no more arrays stored in INCAR.
At this point the existing INORKG will have all its locations optimized (either 91 or 90).
This optimum array is then placed into IOPTAR and represents the optimized network and the
desired final result.

The Indirectly Incompletely Specified Case

Section II1. E. 4 discusses the occurrence of the Indirectly Incompletely Specified Case.
In the program this case is determined when IWORKG is tested at H. A "yes" decision sends
the flow to 0, where §'s and §'s are placed in the necessary locations. Upon leaving 0, the
flow continues {0 H and the remainder of the program as already described.

K. REFERENCES

1. Jensen, P.A., W. C. Mann, and M, R. Cosgrove, "The Synthesis of Redundant
Multiple-Line Networks", First Annual Report Contract NONR 3842(00), May 1, 1963
(AD No. 410573).

2. Mann, W, C,, "Systematically Introduced Redundancy In Logical Systems",
1961 IRE International Conv. Reé. 9, Pt. 2, 241-263 (March, 1961),

3. Jensen, P. A., "Four Redundant Configurations', Westinghouse Electric Corp.,
Electronics Division, Advanced Development, December 1, 1961, (Riport No,
EE-2600),

4. McReynolds, J., "Evaluation of the Majority Principle as a Technique for
Improving Digital System Reliability'!, Hycon Eastern, Inc., July 8, 1858, ,
(HEI Publication No. M-57T) First Annual Report for Contract NONR-2133(00).

T
—
(-]

