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ABSTRACT

This report in concerned with multiple-line redundancy, a mean. of increasing the

reliability of electronic systems. it describes in detail a procedure for synthesizing red•u

dantsystems in an optimum manner. The procedure balances the reliability advantage of

redundancy against the cost, weight and power penalties it introduces. It is also applicable

to other problems which require the optimization of a large number of binary decisions. '.

report describes a program which has been written to "mplement the procedure on a digital

computer. The program has been run successfully on example networks and is now ready

for specific application.
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I. INTRODUCTION

Every electronic component is subject to failure, although modern technology has

reduced the rate of this failure to extremely low levels. As modern warfare and data pro-

cessing require machines which perform more and more sophisticated tasks, the electronics

industry responds with extremely complex equipment requiring prodigious numbers of parts.

Since a nonredundant machine requires the correct functioning of all its components, the

individual small probabilities of failure accumulate to yield a very significant probability of

failure for the equipment, causing an average time between failures of only a matter co hours.

For the repairable machine, this means down time while repair is effected. For the non-

repairable machine, such as might be found in an unmanned orbital satellite or a ballistic

missile guidance system, it means failure of a mission.

Often the down time associated with repair or the failure of a mission cannot be allowed

or, at least, is extremely expensive. To overcorme failure of modern electronic equipment.

tihe use of redundancy has been proposed. In general, the term redundancy refers to extra

equipment incorporated into the system which in above and beyond the minimum required to

implement the task. This additional equipment is merged into the system such that failures

are masked or overcome and the system operation is maintained even though a number of

circuit failures have occurred.

This study has dealt with multiple-line redundancy, which is described in detail in

Section II of this report. Westinghouse has studied several schemes for incorporating cir-

cuit redundancy into digital machines, mad this has been found to be the most effective.

Multiple-line redundancy operates, in parallel, a number of replicas of each circuit

in the nonredundant intwork. Tih number of replicas of a circuit is its order of redundancy.

Groups of circuits called restorers, whose sole purpose is the correction of errors which

arise due to circuit failures, are placed at various points in the network. The redundancy

of circuits plus the restorers provide a network with an ability to withstand a number of cir-

cuit failures without Impairment of its operation.

Past studies by Westinghouse, and a number of other investigations, have shown that

multiple-line redundancy is Indeed a valid approach to increasing the reliability of electronic

equipment. This study is devoted to establishing procedures with which the designer can

determine the best way to incorporate redundancy. It seeks to answer the question, "Given

the nonredundant network, the reliability and cost of all its parts and the reliability and cost

of restorers, what is the optimum way to assign redundancy to the circuits and what is the

optimum way to place restorers in the network?" This is the problem of synthesis.
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The first step toward a procedure to perform synthesas is the proposal of factors which

are to be considered in determining whether one network design is better than another. This

study has combined the factors of cost of the circuits in the network, reliability, wuight, and

power into a single criterion for optimization which is called the True Cost. The network

which has the minimum True Cost is the optimum network.

The most obvious approach to finding tb,- optimum network design is to try all the

alternatives, meuuring their True Costs, aMd picking out the most inexpensive design.

Unfortunately, the number of alternativws one has to consider increases so rapidly with the

size of the network that this ,xhaustive search approach is eminently impracticable for all

but the smallest networks. What is desired from this study is a synthesis procedure which

is deterministic, in that it gives the network that minimizes the True Cost, and which can be

performed in a reasonable amount at time with the aid of a computer.

This report describes a procedure called the "isolating Array Synthesis Procodure"

which uses a characteristic of multiple-line networks to considerably reduce the number of

calculations from the amount required for exhaustive search. At this point in the study, the

same number of replicas must be provided for all circuits. The procedure is deterministic,

but there are approximations inherent in its operation, and the result may not be the design

which minimizes the True Cost. The approximations are small, however, and for most

problems, the True Cost of the result co the Procedure will be very little greater than the

minimum True Cost The approximations are Justified by the considerable savings in effort

that are available through the use of the procedure. The result of this study is a significant

contribution and is the first meao proposed for finding the optimum arrangement of restorers

short of an exhaustive Neareb.

The basic concepts d the Iso•ating Aray Synthesis Procedure were introduced in the

First Annual leport (1) aong with a mew reliability analysis technique for multiple line net-

works. Most of the work during the last yoar was concerned with developing the synthesis

procedure in sufficient detail so that it could be implemented on a digital computer. In the

course o: thes studies a nun;tar of modificatioas and simplifications were incorporated into

the procedure that were not present in the version described in the First Annual Report,

hence, this report supercedes the first one. This report is intended to be a complete, self-

contained description of the synthesis procedure, therefore it includes most of the informa-

tion previously reported except for the reliability analysis technique.

1-2



IL DEFINITIONS

A. MULTIPLE-LINE REDUNDANCY

The type of networkuwder study is shown in figure 2-J. i'tý', i.- i•.]p of this f,'gu'-.

several terms used i. this report maybe defined. The rect- it,". ).1 tPe fihg:r, •arer.n

redundant digital circuits operating on :;Inary information. Tr.t:y Are. ', reti t,.r identifi-

cation. The dota in the rectangles indicate the order of redund:e. i ... ... o.

Although the complexity of the circuits is not strictly limitet ... tfi- wost

exact representation of the network results if the circuits are lnpf. . .a.-ý pos.•sible, per-

forming basic logical operations such as AND, UR, NOR, NOT or tly. :equential functions

of flip-flops or other menory devices. The line segments represent connections bt'ween

circuits. A line segment into a rectangle is an input to the circ:uit and a line segment out of

a rectangle is an output.

i 3 4

Figure 2-1. Example of a Nonred-indant Network

The type of redundancy ut'lised in this report is one studied extensively by Westinghouse

and found to be one of the most- Ittclent types of circuit redundancy. It has been called

multiple-line redundancy and is .liustrated I.y figure 2-2.

In general, multiple-line redundancy is applied by replacing t1* single circuit of the

nonredundant network by !m identical circuits operating in parallel. The symbol m is called

the order of redundancy. For the example m is 3. The group of circ'uits in now called a

function.

A particular circuit in a red.udant function is identified by ie position. The lower

case subscript on the numeral identifying each circuit is the position of that circuit.
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5ble Ileiled.

Ti Feigblt upro2-e.Orert eMlpetswith te- use ofRedundant citwrcutk eensoh

abilityal of imntwok to uaperleace cicuit failuret, without degradation of the network opera-

tie. The use of restomes within the network provides this characteristic. The sets of

three circles In the figure represent restosms.

The restorer consists of m retoeirS circuits. .11 a restoring circuit is operating cor-

rectly, it has the ability to derive the comect output if k of its mn inputs are correct. The

restoring circuits for the example ane majority gates with It -2 and m u3. Working re-

storing circuits filter out errors on their inputs. The only reason for an erroneous output
line of a restorer in the failure of a restoring circuit or the Incidence of In - k + 1 or more

errors on the inputs to the restorer. In the event of the latter condition, all the restorer

outputic become erroneous since the restoing circuits are Identical. Restoring circuit

reliability is assumed to be independent of whether Its inpts Include failures. If the restoring

circuit has at least It correct inputs, the probabillity that Its output is correct or failed depends

only on~ the reliability of the restoring circuit.
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When the functions at the restorer's input and output are the same order of redundancy,

it has m inputs and m outputs. Its inputs are the outputs of one function, and its outputs pro-

vide the inputs to one or more functions.

Restorers may operate on the output lines of a function, as described in this section or

on the input lines to a function as described in referen:e,, (2), (3), and (4). Studies 3t

Westinghouse, Hycon Eastern(S), and at IBM(4 ) Indicate the former arrangement I., -mL

eifective. Although it is 4ifficult to prove in general that output voting is always superior to

input voting, #his has been the case for every specific example chosen. This report, there-

fore, will assume that all networks are constructed utilizing output voting.

A function which has a restorer on its output is called a restored function. Errors an

the output of a restored function can be corrected if at least k of the n output lines are

successful. This repcrt assumes that a means is available to correct errors on network

outputs, such that only k of the m_ output lines need be successful for the network to be

operating successfully. The functions providing network outputs, then, are also classed as

restored functions.

With s functions in the network, numbers from I to a identify the functions. There is

a possible location of a restorer at the output of each functiou; it may or may not contain a

restorer. A restorer after function y is identified by the number a + y. Thus, in this

example in which a m 6, restorer 8 operates on thW output lines of function 2 and restorer II

operates on the output lines i function 5.

Two assumptions on the effects of circuit failures are made for this report. First,

when a circuit (in a function or a restorer) fails, its output is always in error. Secondly,

when a circuit in a functick as an input which is in the failed condition, the outp-it of that

circuit is failed. For insts.A.e, if circuit 1i is failed, its own output and the outputs of the

circuits 2a, 3a' and 4a are in error.

Functions are interconnected in the manner shown in figure 2-2. In order that failure

of one circuit in any function does not disable the inputs to two circuits in another function.

only circuits in the same position should be interconnected.

Different functions may have different orders of redundancy, but the order of re-

dundancy may change only after passing through a restorer. Figure 2-3 shows the connection

between functions with different orders or redundancy.

Figure 2-4 gives a more condensed view of the network of figure 2-2. This type of

diagram will be used throughout the remainder of the report. The circles represent re-

storers and the three dots in each symbol indicate that this retwork is order three redundancy



I

a) GOING FROM ORDER 5 REDUNDANCY
TO ORDER 3.

b) GOING FROM 3 TO$

Figure 2-3. Restoration Betwn Different Orders o Redundancy
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2 a 3 4

Figure 2-4. Flow Graph Representing a Redundant Network

throughout. This diagram is used to introduce some terms peculiar to this report which find

considerable use later.

A source of a redundant function x is a function or restorer x so connected to y that a

path can be traced from the output of x to the output of y along the directed line segments of

the diagram. As an example of sources, consider function 6 in figure 2-4. The sources of

function 6 are restorers 8 and 11 and functions 1, 2, 3 and 5. There is no path botwtwr, func-

tion 4 and function 6.

A function may have primary, secondary or higher order sources depending on the

number of line segments traversed on the diagram when going from the source to the function.

A term which describes the same relationship as source but which eases considerably

future descriptions is sink. II function x is said to be a source ct y, function y can be call.-d

a sink of x. Of course functions or restorers may have primary. secondar', or higher ord'r

sinks.

B. ERROR-LINKED AND ISOLATED FUNCTIONS

1. Error-Linkod Fl.'tions

In a multiple-'ýi, redut dint network two functions or restorers are related to

each other by the effect of ;ailuret In buth of them on the operation of the network. Two

terms are defined here which describe opposite effects.

Two functions, two restorers or a function and restorer are said to be e.-ror-linked

if failures in one can combine with failures in another to cause network failure, even though

the failures in either alone are insufficient to cause network failure,



There are two types of error-linking that may occur. Consider the order three net-

work In figure 2-2. Of course for this order of redL.,dancy two failures are sufficient to

cause the network to fail. The flow graph for this example Is found in figure 2-4. A signal

flow path is a path along the directed line segments in the direction of the arrow heads. A

restorer interrupts a signal flow path. The first type of error-linking occurs between two

functions which are on the same signal flow path of the flow graph. For instance functions

I and 3 are error linked because failure of circuit la ane circuit 3b will cause the output

of function 3 to be in error on a majority of lines. lError-linking arises in this manner only

if one function is upstream (against the signal flow) from the other; hence it is referred to 4ý.

error-linking from the upstream effect. Function I is upstream from function 3. In like

manner restorers 8 and 11 are also error-linked to function 3.

The second type of error-linking occurs when failures in two functions (or restorers,

not on the same signal flow path combine to cause network failures. In the example, function

I and restorer 11 are error-linked in this way. For this type of error-linking to occur bt.ih

functions must feed a third function, or, in other words, there is a common function down-

stream (with the direction of signal flow) from both error linked functions. Error-linking

in this manner is referred to as error linking from the downstream effect.

There is no direction implied when function a is said to be error linked to function b.

The statement ol Indicates that circuit failures in the two functions can combine to caug,

network failure. The two statements, a is error-linked to b, and b is error-linked to A_ are

equivalent.

2. Isolated Functions

When two ftctitom are ant otcro-lisked they ane isolated. Two functions or

retorero sn isodled 9 a clrcult failure in owe does not affect the outputs of any of the same

fucb as a circuit failure In the otmr. in figure 2-4, function 5 is isolated from every

other function and restorer in tM' network.

Functions may be isolated from each other in two ways. First, In a network with

more than one output, two functions may be isolated by the form of the network. In figure 2-5.

functions 3 and 4 form the outputs of a redundant network. No error in a circuit in function 3

can combine with an error in function 4 to cause failure of the network.

Secondly, restorers isolate functions. For instance iunctions 1 and 2 in the shift

register of figure 2-6 are Isolated from functions 3, 4, 5 and 6 by the restorer in location 2.
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Figure 2-5. A Network in Which Functions 3 and 4 are Isolated

Figure 2-6. A Network in Which Functions I and 2 are Isolated from Functions 3, 4, 5 and 6

As long as there are k or more correct inputs to a restorer, errors are not

transmitted from its inputs to its outputs. For instance, a single erroneous input tV the

three input majority gate of the order three restorer has no effect on the output of the gate.

Thus, since there is a restorer at location 2, single errors in I and 3 cannot combine to

cause network failure.

The concept of isolation is important to the synthesis procedure because it

describes the condition for independence al reliability between two isolated regions. For

instance, in figure 2-0 functions 1 and 2 are isolated from functions 3, 4, 5 and 6. The

first two functions form an isolated region and the restorer and the latter 4 functions form

another. Since failures in different isolated regions cannot combine to cause network failure.

the reliabilities of the regions are independent. Hence iU R1 Is the reliability of the first

region and R2 the reliability of the second, the probability that neither region is failed is

R1 t2 ,

3. Isolated and Error-Linked Sources and Sinks

With isolation and error-linking defined, the sources and sinks of a function in a

redundant multiple-line network fall into two classes. The sources and sinks are either

2-.



isolated from the function or error-linked to the function. This distinction finds considerable

application in the synthesis procedure.

C. THE ARRANGEMENT OF RESTORERS AND FUNCTIONS

This section introduces some terms and notation which are used to specify arrangementb

of restorers or groups of functions in a network. They will find considerable application as

this report progresses.

1. State of a Location

The state at a location indicates whether a restorer is present or not present in

that location. If a restorer is present in location i, location I is said to be filled and its

state is a binary 1. If no restorer is present. location i is said to be empty and its state is

a binary 0.

In general, a binary variable x represents the state of the ith location,

2. Array

During the discussion to follow it will often be necessary to refer to the states of

a set of locations (not necessarily all locations in the network). The general term referring

to the states of the locations in such a set Is arra. An array is defined as a set of filled

and empty locations. The locations and their states completely specify an array.

The term array will alas aed to describe a set of locations some of which

have variable suttes. O course the variables associated with such locations will be binary.

The arM which spscfles the states of all the locations in the network as filled or

eotn* tdhts th @Mid deSipimset !Lwo art. Bach network array represents a pos-

sible desoga ths redoM aet atnk.

L. Array Veetors

Voctor taUn is ed to specify the states of the locations in an array. The

binMry variable xa disthes U ste of d Ith location, and a vector, using as coordinates

the variables repseting Uhe • locations in the betwork, designates a network array.

(XI, "2, x 3, ... , x 8)

Eact set of values assumed by the binary variables which are the coordinates of

this vector represents a different network array or network design With s coordinates,

there are 2s different vectors described by the general vector, hence this is the total number

of restorer arrangements appliable to the network.
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Arrays which do not include all the network's locations also are identified with the

vector notation. The coordinates representing the locations not in the array are not Identfiec

in the vector by a 0 or I but remain as an x. For instance, a network with five locations,

numbered 1 through 5, has an array in which locations 1 and 2 are filled, 3 and 4 are empty,

and location 5 is not In the array. The vector representation of this array is:

(1, 1, 0, 0, x).

No subscript on the x in this vector is necessary. The position of the coordinate

in the vector identifies the corresponding location.

An array which excludes one or more locations really is representing a number of

network arrays. The specification of the states of less than the total number of locations

makes the unspecified locations arbitrary and allows them to assume any value. The vec; ja

(1, 1, 0. 0, x)represents two vectors, (1, 1, 0, 0. 0)and (1, 1, 0, 0, 1). In general, if an

array does not specify z locations, the number of network arrays it identifies is 2z.

4. Region

Region is a general term referring to a specified set of functions and restorers.

Generally, a region is defined by somo characteristic such as "all functions and only those

functions that are error-linked to func.tion A are members of the region."

5. Isolating Arrays an Isoltted Regions

Two very important concepts which find conaldarable application are isolating

arrays and Isolated regions. These should be clearly understood before the detailed pro-

cedure is described.

An Isolated region or an isolating array is defined for a given group of functions,

so these functions must he spcifiod along with the region or array. Suppose the group of

functions is the set A. An isolated region of the functions in set A consists of a set of func-

tions and restorers B, which includes the functions in A, such that all functions not in B are

isolated from the functions in A. For instance, In figure 2-7 are illustrated three isolated

regions of functions I and 2 (set A). The functions and restorers that make up each region

(set B) are also shown in the figure.

Note In the last example of figure 2-7 that not all functions in the region are error

linked to functions 1 or 2. In general it is not required that all functions in the region be

error linked to the functions in the sot A.
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SET i1•'LFUNCTIONS 1,2
A • ••..•-RESTORER 12

C D5 j 4 1ý12 ý I ý 2 S9 3 ,j1 • UNTIONS 1,2,3

E STORE'RS 8,12

Figure 2-7. Three Examples of Isolated Regions of Functions 1 and 2

For each isolated region there is one and only one isolating array which, together

with the Identity of the given group of functions, completely defines the isolated regiorn. The

array specifies as I the locations at the boundaries of the region in which restorers are

required to isolate functions outside the region from the given group of functions. Also

specified as either I or 0, are all the locations of the functions within the isolated region.

The states of the locations not necessary to define the region are specified as x's in the

isolating array. Only locat'.ons required to Identify the members of an isolated region are

specified in the isolating array. The isolating arrays of the regions shown in figure 2-7

are:

A. (Olzxz1)
B. (Olxxl)
C. (o1lzal).
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ITT. THE SYNTHESIS OF REDUNDANT NETWORKS

A. GENERAL

The goal of this study is the development of a synthesis procedure by which the designer

of a redundant multiple-line system can determine in some optimum manner the orders of re-

dundancy of the functions and the placement of restorers in the system. This will be an im-

portant accomplishment because it can be shown that redundancy in the wrong places can be

almost useless and that an improperly placed restorer is sometimes worse than no restorer

at a.1. The most beneficial synthesis procedure would be one which allowed full flexibility in

the order of redundancy of the functions and placement of restorers, which was deterministic,

in that it resulted in one redundant network which was optimum according to some useful

criterion, and which was easily performed in a reasonable amount of time with the help of a

computer.

The goal, as stated in the last paragraph, is an extremely difficult one to attain and it

has been compromised at this point only to bring the problem into a still complex but solv-

able form. The restrictions made for this synthesis procedure are not expected to be perma-

nent. Future studies will attempt to remove them.

The primary restrictInn on the network is that all the functions must be in the sam?

order of redundancy. This reduces the synthesis problem to finding the proper place-pent of

restorers. This is still a significant problem since in an s function network there are 2s pos-

sible restorer arrangpments that can be applied to the network.

The procedures are derived with computer implementation in mind. In most cases, the

number of calculations required for the synthesis of large networks will be small relative to

the number required for an exhaustive search procedure. The number will still be great

enough, however, to make prohibitive the performance of synthesis by hand for all but the

smallest networks. A computer has been programmed to rapidly determine the optimum

arrargement of restorers in the network.

The following paragraphs of this section will discuss the optimization criterion and the

general principles of the synthesis procedure.

B. OPTIMIZATION CRITERION

Each of the 2 possible network array vectors represents a different design of the re-

d..ndant system. To choose one of these as a best design, one must have some criterion

with which the many alternative networks may be compared.
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Of course, reliability Is the first criterion since the redundancy has been introduced to

Increase this vital parameter. The cost of the circuitry required to Implement a particular

redundant design may also be of Importance. For many applications, the weight and power

requirements of alternatives will very probably enter into consideration. The factors of re-

liability, cost of Implementation, weight and power requirements may all enter into the deci-

sion determining the best or optimum design. Other factors may also be significant and should

be considered in the same manner as the assumed factors In the criterion presented below.

To optimize the network with respect to any one of these factors is to suboptimize with

respect to all the others, so this study lumps all of them Into a single cost expression. The

goal of the synthesis procedure is to find the network which minimizes this cost.

The reliability of the network enters into the cost expression as the cost of failure of

the network. A failure will always be costly. If this were not so, there vuld be no point in

incorporating redundancy.

Where the applicatio: of the network is a control function in a satellite or rocket or

where human life is concerned, this cost of failure Is exceedingly high and probably overrides

the other factors. On the other hand, If the network Is to be utilized for a ground based com-

puting system, this cost although high, may be low enough so that the other factors enter into

consideration. If K is said to be the cost of failure of the network and R is its reliability, the

expected cost due to failure Is:

(I-R)K. (1)

The cost of Implementing a particular redundant design is assumed to be linearly de-

pendent on the order of redudhabcy of the functions and the number of restorers In the net-

work. Letting E4 be time order of redoadaey Cfl be the cost of a circuit in the I function or

restorer, the ImplemeolUlon of a redeadiat network requires the expenditure of

I nk It' (2)

The "all I" statement cmov the summation sip indicates that the sum is over all the

functions and restorers In the network.

The cost equation reflects weight and power penalties by Introducing per unit costs for

these parameters. The weight added by one circuit of the type used In function I Is WI and

the cost per pound of weight in function I is C Wf The cost associated with the weight of the

nmwo'k can be "iz Itten:

mI I WI CW. (2)
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Describing the costs associated with power In the same manner and summing the terms

to obtain the total cost due to power and weight one obtains:

all I

E m IW(Cwi 1  P p .
(4)

A number of other factors which the de31ier might like to consl.2Pr in the optimizAtion can

be included in a manner similar to weight and power.

Terms (1), (2) and (4) summed to a single cost expression Is called the True Cost.

True Cost mI (CII + WI CWi + PI CpI) + (I-R)K. (5)

The term furthest to the right in equation (5), which is concerned with reliability, is

called the expected cost of failure of the network. The sum of the remainder of the terms

dealing with the costs of Implements, 'on, weight, power and any other linear nonreliability

factors Is called the functional cost of the network. The network array for which the True

Cost Is least is the True Opthu

rhis report uses an approximation to equation (5) as the criterion for nntImization.

C. THE COEFFICIENTS OF THE TRUE COST POLYNOMIAL

It is important that one consider the ramifications of choosing the true cost as a Lsz2:

for synthesis. Before accepting the use of this parameter the meaning of constant and non-

constant coefficients should be wade clear. Some answer must be given the questions "Can

synthesis be performed In the face of nonconstant coefficients ?" and "If ocnstant coefficients

are present, how can they be determined This section attempts to clarify these questions.

1. Constant Coefficients

The synthesis procedure, as it is described in this report assumes that the co-

effirlents of the true cost polynomial are nonvarlant as the variablea of the synthesis (weight,

power, cost, reliability) take on different values. Thus the cost of adding a restorer to

location I does nc depend on the total weight, power, cost or reliability of the network because

the coefficients CwI, W1, Cpt, P I C11 and K do not depend on these factors.

If one considers a system as made up of a number of babsystems, each of which

is Isolated froin each other In the manner of section in. B. 2, the retiability of each subsystem

can be determined independently of all others. With constant coefficients each subsystem can

be optim zed Independently of all others. The comblntion of the optimum subsystems will

be the optimum s.'stem.
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Although the values of the coefficients cannotichange with the variables of the

design, the true cost polynomial does allow differences between the coefficients assigned to

different functions. ThusC I, CW,, Wi, CpI and PI may be different from CII, CW2, W2 ,

C P2' P respectively. Certainly one would expect variations of C i, Wiand PI from functio
to function, but variations of C and C are liable to be more infrequent. One case whe",

the latter coefficients might be different fGr different parts of the system occurs when one

subsystem is located on the ground and another in a space craft. Certainly differences will

be present between the cost/lb. and cost /watt of these subsystems.

Some variation of the cost of failure, K, is allowed within the structure of the

True Cost polynomial. Different subsystems may have different costs of failure if their re:

abilities are always determined independently from each other during the course of desi-•n.

For instance, taking apin the example with a subsystem on the ground and one in a space

craft, the reliabilities of these two subsystems can very probably be determined independe,

hence they can be given dilicrent costs of failure. This Is a very useful facility. This situ

ation will be handled In the True Cost calculation by including two expected cost of failure

terms, one for subsystem I and one for subsystem 2 as shown below:

K 1(-R ) + K2(I-R2).

There Is some approximation In this formulation. It Is the same sort of approuiinALi0-l as

described In Section mY.

2. Non-Constant Coeffleents

Under the influence of non-constant coefficients the amount added to the true cos,

when restorer I Is included In the network will depend on the value of weight, power cost

and/or reliability of the remainder of the system. One example of such a situation Is the

condition In which any arranpment of restorers Is allowed as long as the weight, power,

cost and unrellability remain below upper bounds. Thus a restorer costs nothing if It resu't

In an acceptable system, and It is not allowed, or has an infinite cost, If its addition results

in an unacceptable system.

In this day of hioly complex systems, it Is common practice to divide systems

Into subsystems with a team of engineers responsible for the development of each sub.-ystem

Frequently the design of each subsystem must meet restrictions on weight, power, cost and

reliability allocated by the manapment responsible for the system as a whole. Whether or

not this is a wise practice, It will result in non-constant coefficients of the .rue cost equatiot

The designer faced with such restrictions cannot assume constant coefficients.

3-4



The synthesis procedure described herein cannot be applied a single time to de-

ternmine the optimum network when coefficients of the true cost e.,aations are not constant.

It can be applied, however, a number of ttmef to provide the design which is optimum within

rest,.ictions. The use of the procedure under these conditions is d'•scribed in the next section.

To design with non-constant coefficients, one must consider the system for which

they were determined. Assume a system A exists which can be subdivided into two independ-

ent subsystems A' and A". Say for the system A the total cost of weight all I w

varies with weight in a nonlinear manner as shown in figure 3-1. This is equiv a li•ht tL saying

that there is a non-constant weight coefficient.

ILI
01-

WEIGHT

Figure 3-1. Nonlinear Variation of Cost of Weight and Weight

Now the variation of the cost with weight has been del:ned only for the total system, hence

the variation of cost with weight for either subsystem Is undefined. It is therefore impossible

!o optimize A' and A" independently using the information of figure 3-1. Thus the conclusion

can be drawn that non-constant coefficients der[%ebd for a system can only be used for the

optimization of that system In toto. Tiey cannot be used for the optimization of any subsystem

independently of the rest of the system.

3. Designing in the Face of Nonconstant Coefficients

There are two end results which one might hope to achieve when design!ng in the

face of non-constant coeffIclente. The first of these will be to find the design which minimizes

the true cost even though the true cost must be determined from relationships such as that of

figure 3-1. Tue second will be to minimize one parameter (weight, power, probability of

failure or cost) while keeping the other parameters within upper bound restrictions.

The solutions for either of these es results have a common characteristic: Any

one of the parameters of the solution nas the Ic test value possible for the choice of the other

parameters. For Instance an optimum solutior for a network which has cost, weight and

probability of failure as parameters might have Cop, Wopt and (0-P)opt as the values of Its

parameters. It can be said that this optirizm c esign has the lowest value of probability of



failure for designs with the cost, Copt. and weight, W opt. In like manner It has the smallest

weight of all designs which have the parameter values (l-P)opt and Copt, and it has the least

cost of all designs which have the parameter values (1-P)opt and Wopt'

The solutions of the Isolating array synthesis procedure with constant coefficients

also have this characteristic. Thus the optimum design of a system which has non-constant

coefficients must also be an optimum design of the same system when some set of constant

coefficients are assigned. To synthesize the optimum network with non-constant coefficienlts

one mus find the proper set of constant coefficieh.ts.

Thh will be done by a number of applications of the synthesis procedure with

different sets of constant coefficients. The process of finding the optimum will be a search

procedure in which judicious choice of changes in the constant coefficients should lead to a

more rapid convergence toward the optimum. The search procedure will receive more

study in the ,jture.

To see how multiple applications of the synthesis procedure can be used to con-

struct tradeoff curves between the parameters of the system which will ultimately be used to

design a network with nonconstant coefficients, define an optimal network as one which has

one parameter minimized while all others are held constant. As described above the products

of the synthesis procedure with constant coefficients are these optimal networks. By varying

the coefficients of the true cost equation one will arrive at a number of different optimal net-

works. The values of the parameters of these optimal networks are the tradeoffs to be used

in the design of a redundant network.

Thus the synthesis procedure has the ability to determine curves showing the

tradeoffs between the parameters of optimal networks. The set of curves describes a m.,lti-

dimensional surface on which the parameters of all optimal networks must fall. The nuirber

of dimensions of the surface Is the number of parameters of the network. For instance with

the parameters weight, power, and failure probability, continued application of the synthesis

procedure will yield a three dimensional surface on which all optimal networks must lie. A

piane passed through this surface perpendicular to the power axis gives the two dimensional

tradeoff curve for weight vs. failure probability for a single value of power. If one were to

choose a value of weight which he is willing to expend, he determines from this curve the

minimum failure probability that can be obtained for the given expenditures of weight and

power. A typical set of tradeoff curves are shown In figure 3-2.
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RELIABILITY POWER

Figure 3-2. Typical Trade Off Curves for a Redundant System

To illustrate the optimization In the face of non-constant coeflicients assume the
system Is subject to maximum weight and power constraints such that cost of weight and
power is zero if these parameters lie below the limit and infinite if they lie above. The opti-
mum network is found by drawing these limits on the weight and power curves as in figure

3-3.

-WMAX

1MAN

POWER

Figure 3-3. I'Lnding the Optimsm Network Under Weight and Power Constraints

The maximum reliability that one can attain under these constraints Is the relI-
ability curve furthermost from the origin that passes within the limits. This is Indicated by

RMAX in the figure.

Note that the construction of the tradeoff curves does not require the actual values
of cost per pound of weight, per watt of power, etc. Only when a final design must b" chosen
do the relationships between the parameters and cost come Into play. The information con-
tained in the tradeoff curves pertains to the whole system rather than isolated parts. There-
fore the coordinates of one point on the surface can be used to determine from the nonlinear
relationships the true cost of the system. By comparing the true costs for a number of points
on the tradeoff curves, the optimum system can be found.



Even If the coefficients are assumed constant and one application of the synthesis

procedure is sufficient to determine the optimum, it very well might be advisable to plot the

the tradeoff curves to indicate where the optimum lies on the tradeoff surface. Slight modifi-

cations in the values assigned to the constant coefficients may result in considerably more

palatable values for the parameters of the optimum network.

4. Setting Constant Coefficients

The values of the coefficients of the true cost polynomial will depend on the system

being optimized and its application, so at best this section can give only a general qualitative

appreciation of their determination. A thorough study should preceed the setting of coeffici-

ents to find all the factors which might conceivably bear on the cost i providing the system

under stut.y and the costs incurred should it fail. Some of these factors might well be Intangi-

ble. An an aid to understanding the problems one must overcome while setting the coefficients,

three examples are presented below.

Cost of Failure

Perhaps the most nebulous of all the coefficients of the true cost polynomial is

the cost of failure. This Is because many costs Incurred In the event of a failure are intangible.

For a military mission one of the more readily available costs is the cost of attempting the

mission again if that can be done. The cout of abandoning the mission must also be included

in many cases. This may well require the measurement of some intangible or difficult to

estimate quantities. Question wilU arise on the value of a human life or national prestige.

Of course it is difficult to amnwer those questions but It may be attempted to determine a

cost of failure.

The cost of failure should reflect only the costs Incurred at the failure of the

system under study, Fot Instance, the system being optimized by the procedure may be one

experiment of many carried In an earth satellite. Certainly the failure of this experiment

causes a lose of valuable information. Its loss, however, is not the loss of the entire satel-

lite since other experiments may still be operating.

On the other hand if the system under study Is the equipment which encodes the

information from all experiments for transmission to the earth, its failure will disable the

link between satellite and the earth, completely aborting the mission. The cost of failure

of this system should reflect the cost of the loss of the complete satellite with all its experi-

monte.
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Cost of Implementation

The cost of implementation should reflect both manufacturing and engineering.

Different p:irts of the system may have different costs. Of particular Interest to the designer

whose goal is to find the optimum placement of restorers will be the cost of providing a re-

storing circuit.

Cost Per Pound of Weight

For a s,,ace mission this f'tctor will probably include the expense of providing a

booster with the power to lift one additional pound of load or the expense of reducing weight

of the vehicle elsewhere by one pound. Generally this doesn't seem to be a linear factor.

Different parts of the system may have different cost of weight coefficients.

Other factors are found in a similar manner. The factors that are included in t!,e

determination of the coefficients are really dependent on the system and its use. True, some

of the coefficients are very difficult to determine pre",sely, but some attempt should be made

so that one can obtain reasonable relationships between the parameters of the system. The

s~nthesis procedure Itself may point out gross errors in the values of the coefficients by

yielding unreasonable values of the parameters. Such an occurence could Indicate that the

choice of coefficients has not been realistic and the coefficlents should be reexamined. On

the other hand, the occurence may also mean that the users concept of reasonable values

of the parameters is In error, and this concept should be reexamir "d.
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D. THE ISOLATING ARRAY SYNTHESIS PROCEDURE

It has been shown that whether the designer is faced with constant or non-constant co-

efficients, the determination of the optimum design rests on the ability to find the network

which minimizes true cost for a set of constant coefficients. This is no small problem in

itself. The most obvious approach to the solution is to try all alternatives, measuring their

costs and picking out the most inexpensive design. Unfortanately, the number of alternativi.

one has to consider increases so rapidly with the size of the network that this approach is

eminently impracticable for all but the smallest networks. For instance, a network with 10(,

locations has 2100 or about 10 different network arrays. If with the aid of a high spcee

digital computer one could determine the cost of each alternative in a millisecond, he would

be able to analyze 3.16 x 1010 alternatives per year. At this rate, it would take 3.16 x it

years to complete the synthesis procedure. This of course is an inordinate time.

Recognizing this exhaustive search approach as impracticable, the study has investi-

gated several other approaches to the problem of synthesis. One of these, named "Isolating

Array Synthesis Procedure" is the most promising.

The end product of the synthesis technique is ideally the one network array for which

the True Cost of Section Il. B. is minimized. The Isolating Array Synthesis Procedure

tempers this goal somewhat by finding a design which minimizes a cost function which is an

approximation to the True Cost. Its foremost advantage is that for most networks it wi'

require far fewer calculations than the exhaustive search routine. The technique is deter -

ministic in that at its conclusion the designer has one design which minimizes the cost func-

tion. This end result may very easily be the True Optimum, but since it is an approximation

it may yield another network array which does not minimize the True Cost. The degree of

deviation from the true optimum will be small, and will be the subject of future studies. The

network resulting from the synthesis technique is called simply the optimum.

The following sections describe several considerations which are very important to thm

development and understanding of the synthesis procedure The operations described are the

building blocks of the complete procedure.

1. The Effect of a Restorer

This section is included to give the reader some intuitive feel of the effects of

restorers in a redundant system and of the utilization of these effects in the formulation of a

synthesis procedure.
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To illustrate the effect of a restorer, consider the shift register of figure 3-4,

and assume the states of all the locations in the register except location 5 are specified as

shown.

IQ 2, Ila 3C 40 50 
6
a 7Q l60 Sg 90

Figure 3-4. The Effect of a Restorer in a Shift Register

a. Reliability

The reliability of a network is the probability that at least k lines are quc-

cessful at each network output. The addition of a restorer will, of course, change this

probability. In a multiple line redundant netwo.k, in general, it takes n'ore than one circuit

failure to induce network failure. For the example, with majority restoring circuits, two

properly placed circuit failures are required to disable the network. The causes of network

failure can be divided into two classes: 1) the critical circuit failures all occur in the same

function, (i.e. the failure of circuits 7a and 7b disable the network) and 2) the critical circuit

failures occur in different functions, (i.e. , 6a and '7b). The importance of this cla:.o firation

is that the addition of restorers can do nothing to reduce the first class but can reduce the

number of combinations of failures in the second class.

Now, what is the effect, on reliability, of adding a restorer to a redundant-

multiple-line network? Before the restorer is added, a list can be constructed which includes

all the combinations of functions within which circuit failures can occur to cause the network

to be disabled. For the example network with x5 - 0, this list is shown in table 3-1. En-

tries with only one function describe combinations of the first class and entries with two

functions describe combinations of the second class. If the order of redundancy of the ex-

ample were greater, there would be entries with more than two functions. The number
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associated with each entry is the number of different combinations of circuit failures that

arise in the listed functions. For instance, there are three sets of two circuits in function 7

whose failure causes failure of the network, 7a-7b, 7a-7c, lb-7c; and there are six efts of two

failures in the functions 6 and 7, 7a-6b, Ua-6c, 7b-6a, Tb-6c, 7c-6a and 7c -6b.

Table 3-1. Combinations of Functions in Figure 3-4 with Location 5 empty in
which Two Circuit Failures can occur to cause Network Failure

Combination of ruumber of Fatal
Functions or Combinations of
Restorers Two Circuit Failures

1 3
2 3
3 3
4 3
5. 3
6 3
7 3
8 3
9 3

11 3
16 3
1,2 6
11,3 6
11,4 6
11,5 6
11,6 6
11,7 6
3,4 6
3.5 a
3,6 6
3.7 6
4.5 6
4,6 6
4,7 6

5.? 6
6,7 6
16,8 6
16.9 6
8.9 6

A lint such as the one in table 3-1 is important because It, together with the

reliabilities of the circuits in the function and restorers describes an estimate of the relia-

bility of the network. This estimate, which is described completely in Appendix A of the

First Annual Report is called the Minimal Cut approximation to reliability. The Minimal

Cut approxtra•ation gives a lower bound to the true reliability. It is quite accurate when the

reliabilities of the circuits of the network are close to 1, say .59 or greater. This condition

will be met for most ntwo'ks for which the synthesis procedure will be used.
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The riplm•iablty of the network calculated with minimal cuts is defined as the

probability that none of the sets of circuits listed in table 3-1 fai). Two networks, with the

same list, have the same reliability regardless of how the functions are interconnected.

This approximation to reliability is used to determine the expected cost due to failure in the

optimization criterion.

Then. assuming the circuit reliability in each function and restorer is known,

using table 3-1, the reliability of the shift register in figure 3-4 can be calculated.

Now, when a restorer is added to location 5, a new list results. This is

shown in table 3-2.

Table 3-2. Combination of Functions, in Figurn 3-4 with location 5 Filled.
in which Two Circuit Failures can occur to cause Network Failure

Combination of Number of Fatal
Functions or Combinations of

Restorers Two Circuit Failures

1 3
2 3
3 3
4 3
5 3
6 3
7 3
8 3
9 3

11 3
14 3
16 3
1,2 6
11,3 6
11,4 6
11,5 6
3,4 6
3,5 6
4,5 6
14,6 6
14,7 6
6,7 6
i6,s 6
16,9 6
8,9 6
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Table 3-3. Combinations Lost and Gained with the Addition of

a Restorer in Location 5

Combinations Lost Combinations Added

11,6 -6 14-3
11,7 -6 !4,6 - 6
3,6-6 14,7 -6
3,7 -6
4,6 - 6
4,7 - 6
5,6 - 6
5,7 -6

Table 3-2 is different from table 3-1. Combinations have be~n gained and

lost by the addition of the restorer. The gains and losses are summarized in table 3-3.

When combinations are lost with none gained, the reliability of the network will always in-

crease. However, when combinations are gained, with none lost, the reliability will always

decrease. With the addition of the restorer, the network has both gained and lost circuit

combinations whose failure brings about the network failure. It is not obvious, without cal-

culating, whether the reliability has increased or decreased with the addition of the restorer.

If the reliability for all circuits is the same, the number of combinatior" becomes the im-

portant parameter; the fewer failure .-..iucing combinations, the greater the reliability. If

this is the situation, for example, the restorer in location 5 is beneficial since its addition

causea 48 combinations to be loet and 15 combinations to be gained.

How has all this come about? What mechai.asm has the restorer used to

change the list of failure Inducing circuit combinations? The answer to these questions can

be seen in the error correcting properties ot the restorer. From Section II. A.. it is known

that errors which appear on the input of a restorer and are insufficient in number to cause

network failure are not passed through the restorer. Ab long as this condition holds, the

number of errors on the output of the restorer is independent of the number of errors on its

input. Restorer 11 and functions 3, 4 and 5 form the inputs to restorer 14 in location 5. and

functions 6 and 7 are tied to its output. Since there is no signal path between members of

the two set of functions which bypasses the restorer, the restorer has isolated the effects

of the circuit failures in ii, 3, 4 and 5 from circuit failures in 6 and 7. This is the reason

for the restorer; it is the only beneficial effect inherent In its use.

The Inclusion of the rLatorer has some effects on the reliability of the network

that are not necessarily beneficial. Because the restorer is constructed of real physical

restoring circuits, these circuits are necessarily subject to failure. Since these restoring
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circuits were not in the network before the addition of the restorer, some new error inducing

combinations are introduced with tneir Inclusion. Of course, failure of two of the restoring

circuits causes network failure; therefore, combinations of the first class (in the same func-

tion or restorer) are introduced. The restorer must take on all the outputs Dreviously sup-

plied by its function, so combinations of the second class (in two different fun.-tions or

restorers) must also be introduced. Note that when a restorer is added to location 5, all the

combinations consisting of functions 5 and its sinks (combinations 5,6 and 5,7) have been

replaced by combinations of the restorer and those sinks (combinations 14,6 and 14, 7). In

general, when a restorer is placed in the location of a function, combinations including the

restorer and the sinks of the function will always be gained. Combinations which include

the function and its sinks will always be lost, unless, because of feedback in the network.

the sinks in the combination. are also sources of the function.

The main point to be derived from this section is that the effect on the relia-

bility of the network, due to a change in state of a particular location, is independent of

some of the functions and the states of some of the locations of the network. Note that the

cormbir.ations which include functions 1, 2, 8, 9 or restorer 16 do not change at all with the

addition of the restorer in locatio: '). No combination lost or gained includes any of these

functions or restorers; while all other functions and restorers in the network are included in

one of the entries of table 3-3. As far as noting the difference in relizbility between th, net-

works with and without a restorer in location 5, these functions might just as well have been

left out of the network and only the network of figure 3-5 considered.

?I

Figure 3-5. The Network that must be Considered when Determining
the effect of a Restorer in Location S

Since this small network need only be considered, it Is reasonable to say that

the effect of the state of location 5 on reliability is Independent of the form of the network

before restorer II or after function 7 as long as restorer 16 Is present.

All this Is so, because restorers II and 16 have isolated funci. ,,um

functions 1, 2, 8, it, and restorer 16. There are no failure Inducing combinations which in-

clude function 5 and any of these functions and restorers.
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The network of figure 3-5 is called an isolated region of function 5. Every

function or restorer not in the region is isolated from function 5, and every function or re-

storer within the region is error-linked to function 5. This region is described by an array

called an Isolating array of function 5, which specifies the states of locations on the bound-

aries of the region and within the region. For this example, the isolating array is (X, 1,0,

0,0,0, 1,7.,,X). Locations 1, 8, and 9 are unspecified, X'd, bec;ause their states have no

bearing on the effect of the state of location 5 on the reliability of the network.

b. Functional Cost

In the synthesis procedure, the decision whether to fill a locati(n or leave it

empty for a particular isolating array will depend on the functional cost of Section II. B.,

as well as the reliability. The effect on the functional cost of adding a restorer to location

5 is an obvious one. The restorer can in no way decrease or increase the costs of Any other

function or restorers in the network. It can only add on its osin cost. If CN is the cost of

the network without the restorer in location 5 ,nd CR is the cost of the restorer, CN 4 CR

is the functional cost of the network with the restorer. A restorer can only increase the

functional cost of a network, and the amount of increase is independent of the functions or

interconnections of the network.

2. Determination of the Optimum State of the Location

The effects of aoding a restorer to location 5 have been s0own for the example.

Now the problem is bow to determine whether it is best to put a restorer in location 5 or

leave it empty, the state of the other locations given.

First, it the designer is interested only in maximizin6 reliability, he will determine

whkth state is more reliable and choose that one. It has already been indicated how this is

dose using the misimal cut approimatilon to reliability. It should be remembered here that

when maximmn reliability is the goal, the optimum state of location 5 does not depend on the

functions or restorers which are Isolated from function 5 when there is no restorer in that

location. The state of location S should be set to maximize the reliability of its isolated

region. Perhaps this fact is more easily accepted if It is remembered that if a network is

made up of a number of irAdpe@Wdm parts, the maximum reliability of the network is obtained

when the reliability of each part is maximized.

I the designer in Interested only in minimizing the functional cost, he would leave

the location empty regardless of t#w construction of the network, since tne restorer only in-

creases cast. Of course, if the designer in only iAu,,restiu In thls parameter, he would not

be uslng redundancy.
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In the synthesis technique, both of these factors are considered in the optimization
of the state or a location. They are used together in the True Cust equation.

For determining the optimum state of location 5, in the example, the True Cost*is calculated for the network which includes all the functions or restorers error-linked withfunction 5 when location 5 is empty. This network is the isolated region. The cost of thisregion is calculated first with location 5 empty and then with a restorer added to location 5.
Both the functional cost and the expected cost due to failure will change with the addition ofthe restorer. The state of location 5 which has the least True Cost is judged the optimumfor the array of states taken on by the other locations in the network, (X, 1, 0.0, 0.0. 1. X. X).

Since this comparison has been made not considering the form of the network be-
yond restorers II and 16, the decision on optimum state of location 5 is the same even though
restorers may be addedtolocations 1, 8, and 9 or any set of these locations. Then this de-
cision is good for any set of states taken on by locations 1, 8, and 9.

Table 3-4 lists the network arrays for which the optimum state of location 5 is
determined by optitnizing the location in the isolated region identifled by the isolating array.

Table 3-4. Network Arrays in which the Optimum State of Location 5 isDetermint i by Optimizing the Location in the Isolated RegionIdentified by the Array (X, 1,0,0,0,0, 1,X,X)

(0, ,O,00.0,1,O,100)
(0,1,0,0,0,0,1,0, 1)

,0,0,0,0,1, 1,0)
tu, ,O,00,0. O, 1,1, 1)

(1, 1,0, 0,0.,0. 1,0,0)

(1,1,0, 0,0.0. 0I, ,)

(1, 1.0,0,0,0, 1, 0, 1)

The results of this section are extremely important to the synthesis procedurebecause it has shown how the principle of isolation has been used to optimize a location in a
number o: arrays through Ju-* two calculations of the True Cost.

Ali approximation used in the procedure for the determination of this cost is described
in Sectir.n ITH. F.



3. Optimizing a Location with Other Locations Already Optimized

It was described in the last section how a location within an isolated region can be

optimized regardless of the states of locations outside the region. This section shows that

a location can be optimized even though some o! the other locations in the region are already

optimized.

Considt r the regions in figure 3-6 in which location 5 has been optimized by pre-

vious calculations for the two possible states of location 3. Tt is now desired to optimize

location 3.

Figure 3-6. Optimizing Location 3 with Location 5 Already Optimized

The optimum state of a location will be either I or 0 depending on the results

of some comparison of true costs, but usually in the examples of this report the fact that a

location has been optimized will be indicated by a O which can take on either I or 0. This

convention is used in figure 3-6. 0 indicates only that a location has been optimized. It in

no way reflects the optimum state of a location. In fact if two locations are specified as 9

one may be restored while the other is not.

Note that the Ws in figure 3-6 may have been determined by the methods of the last

section and that they may indeed be different. For a moment, assume they are the same.

Then since the regions In "a" and '"b are Identical and since location 3 is isolated by restor-

era in locations 2 and 7, the optimum state of location 3 can be determined by comparing the

true costs of regions a and b. The optimum region Is the one, with the lowest true cost, and

it is represented by the array, (XIGOO1XXO, in which locations 3 and 5 are optimized.
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Now, what if the optinmum state of location 5 were not identical for the two regions?

The true costs of the regions "a" and 'b" can still be compared to determine the optimum

state of location 3. To illustrate this assume for location 5 that 9 = 0 for region "a" and

0 1 1 for region b.

With locations 2, 4, 6, & 7 specified as in figure 3-6 there are four possible con-

figurations the region can assume as locations 3 and 5 take on all possible states. These are

shown in figure 3-7 with their arrays.

a (XIOOlOXX)

C • • --- xilooolxx)

Figure 3-7. The Possible Regions as Lications 3 and 5 Assume All Possible States

From the previous comparisons one knows that with restorers in locationi 3 and 7

and none in locations4and6, location 5 should be empty. Thus region c is less costly than

region d, and the latter region has been eliminated by the previous comparison. Also from

a previous comparison one knows that with restorers in 2 and 7 and none in locations 3, 4.

& 6, location 5 should be filled. Thus alternative a has been eliminated in a previous com-

parison.

Thus to find the optimum state of location 3 with 5 already optimized. it is only

necessary to compare regions b and c.

The result of the comparison will be an array with two locations optimized.

(XIQO0G0XX). The values of the O's are determined by the least expensive region. Thus if

region b is least expensive, the 0 In location 3 will be 0 and the 60 in location 5 will be I If

region c is least expensive, the 0 in location 3 will be 1 and the 0 in location 5 will be 0.

These results are very important because they make it possible to optimize a location and

ust the results of the comparison to simplify subsequent determinations of the optimum state

uf other locations.
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It is important that when two regions are compared to optimize a location that the

"same location be iptimized in both regions. To illustrate the opposite consider figure 3-8.

A O _:F 0 _[D ýý ý ýlXIOeOOIXXX}

....Q.... S]..[3... 100 XX

Figure 3-8. Two Regions With Different Locations Optimized

Comparison of these two arrays will of course determine which has the lowest t1'ue cost, but

the question is what to do with the result. It cannot be said that the comparison yields the

array, (XIOOelXXX), with three locations optimized, because not all the alternative states

of the three locations have been considered. For instance, assume that the Q's tn býti, regions

a and b are equal to 1. Of the eight possible regions that occur when locations 3, 4, and 5

assume all possible values shown in figure 3-9, only two, a and e have been eliminated by

previous comparisons.

The results of the comperison of the regions In figure 3-8 will yield either f or c.

Thus four of the eight alternatives have not even been considered, hence the comparison

cannot yield the optimum values of locations 3, 4, and 5.

The findings of this section can be stated In general. Two arrays can be compared

to optimize a location in spite of the presence of previously optimized locations. However,

the same locations must be optimized in each array. The results of the comparison w'll be

an array which is optimlsed for all locations optimized before the comparison plus the loca-

tion optimized by the comparison. The values of the 4's in the new array will be the states

of the corresponding locations in the least expensive of the two regions in the comparison.

3-20



4 5 'F3J-.XIOIOOoIXX)

Fiur 3-.TePsil ein sLcaan3 .ad5Asm UPsible State

Twiarasure sa-d.toheecomparble ieinsa octhere3 4,on and onssmeAly Ponsbe locatioewic

taken on the "I" state in one of the arrays and the "0" state in the other and every location
specified asS 0In one array Is also specified as B in the other array. For example the arrlkys.

(1 0 1 1 X x aOX 0)
and

(1 0 0 1 X X 0 10)
are comparable. On the other hand, the arrays:

(10 l0OX X a X 0)
and

(1 0 0 1 X X a 1 0)

or the arrays:
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(10 1 lXXXXG0)

(100 1 XX9 IQ)

are not comparable.

Comparable arrays can be used to derive two regions which are identical except

for one location and possibly some previously optimized locations; hence the comparison of

comparable arrays (or alternatively the comparisons of the regions) yields an array with one

inure location optimized.

Since an array may have a I or 0 where a comparable array has an X, regions

specified by comparable arrays may not be identical. For instance for a nine function shift

register two ctua.parable arrays arp:

(I XXXXXXXX)
(000 1 X X K X X)

These arrays form the regions shown in figure 3-10, a and 3-10, b respectively.

Af

Figure 3-10. The Regions of Two Comparable Arrays

Although the arrays fulfill the requirements for comparability their regions cannot

be compared because thy do not include the same functions. To form the regions which

are to be compared to optimlealocation, the regions wilt be made to include every function

that IstnMtler regonspeciftsdbythearrays. Thus the regions of figure 3-10 will be modi-

fled to appear as In figure 3-11.
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Figure 3-11. Regions Modified to be Comparable

Now the true costs of the two regions of figure 3-11 can be compared to ujtimize

the state of location 1 for the given values of the other locations.

In summary comparable arrays differ in one and only one location suc'h that a I

appears in one of the arrays and a 0 appears in the other. Exciuding the differing location

any location which is specified an 0 in one array must be 0 or X in the other array and any

location specified as I in one array must specify as I or X in the other. Before two arraj-

can be compared to optimize a location, the regions must be made to include the same func-

tions. Every function included in either of the regions of the arrays must be included in

both modified regions.
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E. THE DETAILED SYNTHESIS PROCEDURE

The procedure described in this section differs in one basic respect from the procedure

described in the First Annual Report to perform the same function. The First Annual Report's

procedure generated all the isolating arrays of function I and placed them in a list. It then

searched through the list to find the proper arrays to compare in order to optimize locations.

The current version, here described, generates the arrays in the order tiey are needed, and

makes all possible comparisons with an array before another array is generated. The long

list of arrays is no longer necessary, hence the memory space and search time required for

the computer implementation di the procedure are greatly reduced. Major portions of the

new procedure ire the techniques required to generate arrays in the proper order and to

recognize the proper arrays to be compared.

This section describes all the steps of the Isolating Array Synthesis Procedures. The

activities of the procedures can be divided into parts, those dealirg with: 1. The generation rx,

the Isolating arrays in the proper order and 2. The comparisons of the arrays to optimize

locations. Jn the procedure the generation and comparison activities are performed con-

currently but for this description they will be treated separately.

From time to time names are introduced into the text which are variables in the

program which implements the procedure on a dgibtaA computer. These are introduced to

ease the description of prts of the procedure, rather than to illustrate the construction of

the program. A descriptios of the program is reserved for Appendix B.

1. The Oswratiom Procedtre

a. Tormliop and Background

(1) General

The problem of generating the laKlating arrays is equivalent to the problem

of generating the Isolated region which they represent. To help visualize the process .used to

generate these arrays, tbhik of the generatio, proredure as constructing a pod, which, at

any given time, encloees a part of the network which includes function 1. This enclosed

pert of the network is Isolated by restorers or the form at the network from the remainder

of the network and forms an isolated regioo which is independent of the remainder of the

network. Every function and restorer within tho pod is to be error linked to the first function.

Th generation process begins a an enclosure about a single function (function 1) in the net-

work and as it develops, the area enclosed by the pod increases until, finally the entire

network is engulfed by the pod.
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(2) Incompletely Specified Arrays

The boundaries of the area enclosed by the pod are locations in the network

and they are reierred to in the isolating arrays as 8 's and O's. These designations are

variables and will take on the states I and 0 - I. e. the location deescribed by the a or 0 will

be allowed to first be restored, then be unrestored. When one location with I or 0 is
allowed to vary two new arrays are generated, the 1-substituted and the 0-substituted arrays.

Arrays which include one or more 8 's or O's are referred to as incompletely specified

arrays. They are intermediate, or transition, arrays in the generation procedure. They

eventually give rise to completely specified arrays (arrays which contain no 8 Is or O•s).
"Ine generation ,f completely specified arrays is the purpose of the generation procedure.

(3) The Implications of 8 and 0 Variation

As previously discussed, an imaginary pou is constructed about a given

functiGn in the network and this pod is allowed to expand until the entire network is en-

compassed. If this first function is selected at some place in the middle of the network this

expansion of the pod can taie two directions with respect to the signal flow: upstream or

downstream from the function selected. The difference in the effects experienced lies in the

manner in which error-linking occurs. When the expansion occurs in the upstream direction

the first type of error linking, the upstream type, occurs, hence upstream boundaries at the

pod are specified as 0. Conversely, when the expansion is proceding in the downstream

direction, downstream error-linkig is possible, hence 8 specifies the downstream

boundaries of the pod. If the AIs and O's were replaced by I's, the enclosed area would form

an isolated region of function 1.

(4) iffects of5 sad # Variation

a and 0 are variable states for a given location. Their presence in an

array means that the array is incompletely specificd and that more arrays will be generated

from this array. One at a Utns each 8 and 0 will take on the two possible states I and 0.

Hence, the variation of a I or 0 yields two arrays. The I-substituted and the 0-substituted

arrays. When a 1 is substituted for a a or 0, a restorer is assumed in that location and no

errcr-Unked functions are added. However, when a 0 is substituted, the absence of a

restorer is assumed and error-linking takes nlace between the function whose output was

the i or 0 and its error-lnked functions. The manner in wilich error-linked functions are

added is aetermined by whether a 8 or 0 was varied. Varying a 8 adds error-linked

functions according to the downstream effect whereas a 0 adds error-linked functions

accoz ding to the upstream effect. Each newly added error-linked functlon'3 location takes

on the variable designation a or 0 depending upon whether it was added while moving
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upstream or downstream. f it was come upon while moving downstream a & is added, if

upstream a 0 is added in the proper location. O's are added due to upstream error-linking

while & and O's may be added due to downstream error-linking.

(5) The Parent Array

In order to initiate the generation procedure an incompletely specified

array must be constructed which builds this imaginary pod about the function selected as

function I in the network, This is accomplished by assuming the output of this function to

be a 9 and any input error-linked functions as O's. Since this is the initial array, that which

gives birth to all others,it is referred to as the parent array. Allowing the I a'ia O's to take

on their variable states allows the pod to grow and encompass an increasing number of functions.

(6) Example

Figure 3-12 a. shows a network and its parent array. The imaginary pod

encloses only function 1, its output (downstream) is specified as 8 , its input (upstream) is

sperified as 0. Figure 3-12 b. reprosents the result when the I in location I is allowed to

vary - the two arrays shown result. The 1-substituted array (10 xxxxx) adds no new error-

linked funcij.l.m. The 0-substituted array (00 x x 0 8 x) has added two new error-linked

functions due to the downstream effect. If no restorer is assumed in location 1, function 1

is error-linked to function 6. Function 6 was found by moving downstream from function 1,

hence, it Is specified as 8 and may introduce more downstream effects when it is allowed to

take on the 0 state at a later time. Function 5 was found by moving upstream from the functioi,

which has inputs from two branches. When this location is allowed to take on the two states,

a 0-substitutino should Introduce only upstream effects, hence it Is designated 0. The new

pod encloses function I and 6. This occurs when the variable locations 2, 5 and 6 have taken

on the I state simultaneously. The pod has expanded in the downstream direction.

b. Mechanics of the Procedure

The &in& of the eermation procedure Is to arrive at all the completely specified

(no I's or O's) isolating arrays of function 1. in addition it is necessary to make the proper

comparisom betwom. these isol&tn arrays in order to optimize the states of the locations of

the network.

As the pod about the first function is increased in size, not only are isolating

arrays of function I generated, but other functions are incorporated such that isolating arrays

of these functions are also being generated. H mce, comparisons can be made to optimize

these other locations In addition to location 1. The method which is used to generate and

compare these arrays will be discussed here
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- .... IMAGINARY P0O

(A)
I(A} &OXX XX)

NETWORK AND PARENT ARRAY

I.- NEW POO

3 2

(9)

(IIXXXXX)
- (OGXXSSXI

FIRST EXPANSIONI

Figure 3-12. Example Network and Arrays Generated by F irst Expansion of the Pod

AU isolating arrays generated by the synthesis procedure are derived f'urn t.he

parent array. The parent array normally contains a number of variable desagnations ( V's or

0's). When a substitution is made for a I or 0, two arrays result, one with a I substituted
for the 8 or 0, the other with a 0 substituted. Both of these arrays will contain all the re-

maining 8 's and Ols from the parent array. In addition the 0-substituted array may have
added m.ore. error-linked functions (I's or O's). The parent array and its two derivations

are sh)wn in Figure 3-12 for the network shown.

If both arrays generated are incompletely specified the 0-substituted array is
temporarily stored* and the procedure operates on the I-substituted array, varyir,4 the next
1 or 0. The procedure continues to operate on the derivations of the 1-substituted array

until all completely specified arrays resuplt and all tMose comparisons which are necessary at

In the program implementing the synthesis procedure, a list is maintained of incompletely
specified arrays awaltiag processing. When an array is processed it is removed from the
list. This lilst is called INCAR. In subsequent discussions this name is used to describl,
the list.
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this point have been carried rut. A more detailed aaalysts of the comparisons which are

made will be presented in A subsequent distussc.n'. Then the O- hatituted derivaive of the

lr..ent array is operated up: m:.

c. 1ranch Effects

(1) Branch Formation

If this 1 -substituted array should give rise to two additional incompletely

specified arrays, again the 0-substituted ,.4 the two is temporarily stored and the 1-substituted

is operated upon. This pe of procedure leads to the formation of "branches" of arr. ys.

It can also be true that a 1 i•ubstituted array may be completely specified while its partner,

the 0-substituted array, is incompletely specified. If this is true the l-substituted array is

carried through as many comparisons as possible (this will be further explained later) and

the 0-substituted array is then operated upon to generate additional arrays.

(2) Branch Ends

A Branch End is encountered when the two arrays generated from an

incompletely specified array are both completely sAcified. This halts the generation process

for this branch and after the necessary comparisons are finished, the next branch is con-

sidered.

The next branch is begun by locating the last incompletely specified a.'ray

to be temporarily stored: (In INCAR). Operation on this array yields the next branch. This

process contiuies until there ae so remalet imcompletMly specified arrays in storage.

This mem that the last branch has beae developed and all possible Isolating arrays of the

first location mavs bee. siersted.

3. The Compariim Proce

a. Comparison Within a Branch

A typical D•reh which might be developed in the generator procedure is

shown in figure •'-1$. This branch contains sveral completely specified arrays as well as

a number of transitory incompletely specified arrays.

** The concept of comparison is Introduced here to give the reader a feel for the con-

tribution of the generation process to the comparison and optimization process.
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NETWORK SNANCH

(6XXX), -(OIxX•4) (OXXXO) (1)

2 .4'• 4(, 5jx o._ I_.) (,)

(Ixxoo, ) (3)

k-q°6xx*) ( (11000) (4)
" F10-000) (0)

Figure 3-13. Example Showing Optimization of Locations Within a Br~nch

Any completely specified array in the branch differs from each of those which

follcw it in the same branch by only one specified location, I. e. there is a location In the

array which is in the 1 state which in each 'f the arrays following is in the 0 state. This is

due to the manner in which the arrays are generated, When this location was varied, first a

1 was substituted, then a 0. The 1-substituied array was completely specified; the 0-

substituted array was incompletely specified, leading to additional arrays. Those fllowina

arrays have additional I's snd 0's where tU. 1-substituted array contains X's. These

additional l's and O's were introduced due to the t'o and O's which were Introduced by the

0-substitution. However these locations were not specified as I or 0 in the first &.rray.

Notice, In Figures 3-13, array 7 has only 2 specified locations, I and 5.

Each of the arrays following in the branch differ from array I in location 5s

Physically, array 1 (figure S-13) represents an isolated refion of function I as

do !he other comrletely specified arrays. If the region which is i~acltded in array 7 but not in

array I is added to the region for array 1, the two resulting regions will differ in only one

location. Comparzsoa, of these two arrays ,lll yield an array with one lo,,ation optimized,

that location by which ihe two arrays differ. Likewise, comnparison of array I with each of

the others will yield arrays with one location optimized. (See figure 3-14a).

* The example of figurie3-13 illustratc. the format in which a branch is written. The arrows

indicate two arrays which are generated when a variable is allowed to take on its two states,

This format is employed to help the analyst identify those comparisons which must be

performed.

In general an array is compared with each array generated before it which differs froin it

In only one specified location. rhis criterio~a can easily be qeen by use of the branch

technique since any two arrays which are in the same branch differ from each other ir. only

one specified location. Hence, by exanrining the entire generation true for a network

the coriparisons which will be made will be evident.



array result

2 (1XXiB)

3 (1X1oo)
4 (11000)

5 (10006)

a. Results of the first comparison; array 1 with arrays 2, 3, 4 and 5.

array result

3 (lX10)

4 (1100)

5 (10000)

b. Results of second comparison - array 2 with 3, 4 and 5

array result

4 (11000)

5 (10000)

c. Results of third comparison - array 3 with 4 and 5

array result

5 (10o00)

d. Results of urth comparison - arra 4 with 5
Figure 3-14. Results of First, Second, Third, and Fourth Comparisons

Since array I differs from each of these generated after it in the same location,

the optimized location wilU be the sa for each comparison. Now if array 2 is compared with

each of those following, another location will be optimized in arrays 3, 4, and 5.

ftccesslve comparlsu m of 3 with 4 and 5, and 4 with 5 will finally yield an

array with four locations optnim•ed. These four optimized locations are optimum under the

conditions of array 5, I.e. if the restorer configuration of array 5 (a restorer in location

1) exists the four optimised locatlons represent the best possible configuration of restorers

for the network.

b. Comparison Between Two Branches

The result of comparisons in a given branch yields, in general, an array with

x number of locations optimized for a given restorer configuration. The next branch generated

in the procedure will, Ilewise, produce an array with x number of locations optimized, but

for a different configuration of restorers. Figure 3-15 shows such a condition.
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a ba) (01 VO•)---(01100) •-f11 -- (011t1)

S"Z o01101)

(10 (000 (01011)

"~~~.01010)
b) (01 $ 0) (01100) ------ result (01100)

(O1000)-----.•result (01090)

Figure 3-15. Example of Branches and Partially Optimized Arrays
a. The branches for an example
b. The partially optimized arrays that arise in the example

Given the system of arrays shown in figure 3-15, arrays b and c were

generated from array a and, hence, differ from each other in only one location, that which

was varied. Each gives rise to a branch.

These two branches must differ in only this one specified location. Therefore,

after the comparisons are made for each branch, two arrays result each of which contains

two optimized locations each for a given configuration of restorers shown in figure 3-15b.

These two arrays may now be compared to optimize yet another location. These three

locations are now optimized under the restraint of the configuration of restorers describe,'

by the remaining specified locations in the resulting array, Now, however, there is one

less specified, non-optimized location than there was In each of the arrays which had two

locations optimized. In general, successive comparisons between '"branch results" increase

the number of optimized locations and decrease the restraints until, finally, these result in

a comparison between two arrays each of which has all but one location optimized and which

differ In this one location. Comparison od these two arrays yields the optimized network.

c. Mechanics of the Comparison Process

In order to avoid the storage and manipulation of a large number of completely

specified arrays, each array is compared and optimized as many times as possible Im-

mediately after its generation. The comparison rule may be stated as follows: A completely

specified array is compared immediately with that array in storage which has the same

numb~er of locations optimized.

The first completely specified array generated will represent the smallest

possible isolated region which Includes rise first function. It is a result of l's being substituted

for all the 3 's and O's in the parent array. The next completely specified array generated

will represent a slightly larger region and will differ from the first in one specified location.

An immediate comparison can be made to optimize this location subject to the restraints of

the l's in the second array.
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(X O) (IX~J) -- e(X~O)

(t x~o)-----(IXl00)3
(10000)---11ooo)4

S. ... (10000)5

Figure 3-16. Successive Comparisons

Refering to figure 3-16, upon generation of array 2 an immediate comparison

may be made between arrays I and 2. This is done even before the remainder of the a-rays

are generated. This results in array 2 with one location optimized (IXXIQ)*. The third
array generated (initially no locations optimized) may be compared immediately with the

first array which also has no locations optimized. This comparison results in one optimized

location (location 5). This is the same location as the previous comparison optimized sinrp

both arrays differ from the first array in this same location, Now the second and third arra'

may be compared since each is optimized in one location. This comparison results in a

second opt',ired location (locati ,n 4). This progression is not unlike building a staircase -

each new array must complete all the comparisons of its predecessor before it can optimize

an additional Lcatlon. This progression continues until the end of a branch is reached. Th,

final array, optimized as much as possible, contains the most optimized locations and the

fewest restraints in the branch. When the end of the branch is reached and this array with

the most locations optimized is obtained, all the other arrays that were generated In the

branch must be dropped from consideration. Only the array with the most locations optimized

is retained. This step assures that no two partially optimized arrays have the same number

of locations optimised.

For the example, when array 5 is generated it has no optimized locations and

therefore compares to array 1. This yields one optimized location (10000). Comparison is

then made with array 2, which also has one location optimized, yielding (10000). After

successive comparisons with 3 and 4 which have respectively 2 and 3 locations optimized the

resulting array is (1). The same result was noted in figure 3-14.

As the next branch is generated the completely specified arrays which are generated

in it may be compared only with arrays which differ from them in one specified non-optimized

location.

* In the procedure partially optimized completely specified arrays are stored in a memory
location called KOMPAR. Along with this array is a list, KLO, which Indicates thie
number of locations optimized in each entry in KOMPAR.
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The initial array in a new branch is a 0-substituted array which resulted from

the I and 0 substitution for a S or 0. The 1-substituted array formed the previous branch.

This 0-substituted array differs from its partner (the I-substituted array) and any predecessor.

in only one specified location. Any other arrays generated from the I-substituted (partner)

array will differ from the 0-substituted array in more than one specified non-optimized

location. Hence, comparison between members of two different branches is invalid except

lur the one final array which has the greatest number of locations optimized. This one array

is a representative of tlie entire branch for successive comparisons. Every location which

was varied after the formation of the 1-substituted array which gave rise to the branch, was

later optimized. It may be thought of as an optimized, 1-substituted array and it differs from

the 0-substituted array and all its derivatives by only one non-optimized location. The com-

pletely specified arrays generated from the 0-substituted array compare and optimize locatiý k,,

in the staircase manner as did the previous branch until the same number of locations are

optimized as the previous branch. Then comparison is made between the results for the two

branches, and an additional location is optimized. The result is the array which represents

the optimum case for a larger branch (that made up of two smaller branches). The next

branch initiates a new staircase until the previously high number of locatiorz optimized is

reached fttere upon comparison can b. made between branches. This procoss continues until

all locations but one are Optimized for two arrays and a final comparison between then, is

made. The result of this comparison is the optimum network.

3. The Order in Which 8 'a and O's are Varied

The generation of arrays during the synthesis procedure is accomplished by letting

the 's and O's in incompletely specified arrays assume the I and 0 state. At any one point

in the procedure, only one I or 0 is to be varied at a time and the ,irecess generates two

arrays, the 1-specified array and the 0-specified array.

When one has an incompletely specified array with several 5 's and 01s, he must

determine the proper one to vary. The successful completion of the procedure depends on

the proper choice.

Consider the point In the procedure in which a 0-specified array called A htas had

as many locations optimized as possible. This array is to be placed in KOMPAR one, i new

incompletely specified array called B is to be chosen from INCAR to generate a new branch.

From the way in which the synthesis procedure is performed, one knows that there will be

one and only one location which is specified as I in array A and specified as 0 in array B.

Call this location y.
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During the optimizations that take place in the branch derived from the array B,

there will arise one or more completely specified arrays catled C which have the same

number of locations optimized as A. When this occurs, arrays A and C will be compared,

optimizing location y. As described in Section HI. D. 2, for this comparison to be a legitimate

one, array C must have optimized exactly the same locations as array A. This happy result

is assured if the 6's and l's are varied in the correct order in the branch derived from

array B.

To determine the correct order of variation, conxider tht? goal of having exactly the

same locations optimized in C as are optimized in A. This will be assured if the first

locations optimized in the branch derived from array B are exactly those lucations optimized

in array A. The order in which the 5,s and P's are varied determines which locations will

be optimized first. It happens that if there is more than Lne, 6 or 0 in an array, the locatior

varied first is optimized last, the location varied second is optimized the second from the

last and so on. For a very simple example of this, consider figure 3-17.

PAkRENT ARRAY (60)

Figure 3-17. A Simple Example to Illustrate the Variation of 5 's and O's

Varyif", the 0 in 2 and te & inIin that order, one obtain the tree:

(01)

(10)
4

(00)

By comparing arrays (1) and (S), oir optimizes location I yielding the array

(0 1). By comparing arrays (3) and (4), one optimizes location I yielding (0 0). Comparing

the arrays (0 1) and(00) optimizes location 2. By varying locations in the order 2 - 1, the

locations have been optimized in the order 1 - 2. U the order of variation had been I - 2,

the order of optimization would have been 2 - 1.

Stating the forgoing in a more formal manner, say that in array A the set of

optimized location to 0, aad in array B the set of locations which are 6 'o or O's is .

The rule for the order in which the locations in the set p are varied is: The 6 's or Oes in

locations in the set a but not in the should be varied before the 6 's and O's in both the
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sets a and p . Following this -ule assures that the locations optimized in A will be optimized

first in the branch generated from B so that the proper comparisons cA.i be made.

The mechanism, used in the synthesis proceouro f ,r choosing the correct 9 or 0

to vary, has been made somewhat more restricted than the general rule to simplify automation.

It involves the use of an array in which the last 0-specified array to be optimized is stored

(the last array optimized before a new branch is originzted). In the program this array is

called IPOPAR. This name is used in the following discussion.

The optimized locations in IPOPAR are indicated by 00's and 01's. The in-

completely specified array from which the new branch is to be generated is scanned from the

left for 3 's or 0's. When one is found, the corresponding location in IPOPAR is tested to

see if it is a 9 0 or a 01. If it is one of these values, the scan continues to the right until

another 8 or 0 is found and the test repeated. If the location in IPOPAR is neither 01 or

0., the & or 0 in that location of the incompletely speciflcd array is varied and the synthesis

procedure continues to the next step.

If all of the 8's and O's in the incompletely specified arr.y are O's in TPOPAR,

the procedure varies the left most one.

4. Test to Determine if a Function is Isolatte

An important condition which must be met nefore a location can be optimized is

that the location's function must be isolated. Calltng the location to be optimized k and its

function J, this means that with location !. empty, the function j must not be error-linked to

any function whose location is an X. To illustrate a case where this condition is not met,

consider the network in figure 3-1a.

Figure 3-18. Network in Which Isolating Array of Function 1 is not Necessarily an
Isolating Array of Function 4

3-35



Two isolating arrays of function I are the arrays:

(ooOoxxx)

and (0001XXX)

Function 5, 6, and 7 in both these arrays are isolated from function I by the form

of the network. At first glance, these two arrays appear to be comparable; the result being

an array with location 4 optimized: (OO0OXX). This is not true, however, because the optimum

state of location 4 may depend on the states of locations 5, 6, and 7. Certainly one can see

that the decision on the optimum state of location 4 depends on whether or not locations 5 or 7

include a restorer. If location 5 is empty the decision also depends on whether or not

location 6 includes a restorer.

Such a condition may easily arise in the synthesis procedure, because the generation

procedure creates arrays which isolate function 1, but thb'e is no guarantee that they isolate

any other function.

"Tv allow for this occurence, the procedure tests to see if a location is isolated

before it optimizes it. For example, say that the two arrays, IWORKG and JARC*, each

with three locations optimized, are to be compared:

IWORKG - (000 0 X X X)

JARC - (o0o1XXX)

The optimization of locations 1, 2, and 3 are acceptable, because an array which

isolate@ •uctlon I and specifies location 2 as 0 also isolates function 2. In like manner

function 3 is Isolated by an array wich isolates function 1 and specifies location 3 as 0. To

determine if location 4 can be optijmsed the procedure tests the array IWORKG to see if it

isolates function 4. it flat that location 4 cannot be optimized.

A function is tested for Mot" by checking to see if all of the locations of its

primary sinis and all of the locations ol the primary sources of these sinks are specified by

0, 1, 01, or 0. in the array. if such is the cas, one can be sure the function is isolated. If

such is not the case and some of these locations are specified as X's, the function is not

isolated and the comparison cannot be made. For the ( 'mple function 5 is a primary sink of

function 4 and function 7 is a primary source of this sink and both locations are X's. Therefore,

function 4 is not isolated.

* These are the computer program names given to arrays that are to be compared. They are
used here simply to aid in the description.
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When the condition of isolation is not met, the array must be modified so that the

function becomes isolated. This is done by placing 8 's on all the primary sinks of the

function whose locations are X, and O's on all the primary sources of these sinks whose

locations are X For the example array this yields: (0O00 9X0).

This type of array is called an Indirectly Incompletely Specified Array to indicate

the indirect manner in which the array became incompletely specified. The array is treated

like a normal incompletely specified array and is placed in INCAR for further processing.

As the W's and 0's take on the I or 0 state in subsequent processing function 4 will be isolated.

Note that these arrays may include optimized locations.

The synthesis procedure subjects every function to a test for isolation before its

location is optimized.

5. Link-Limit to Simplify the Procedure

Even through the synthesis procedure it designed to require a far lower number

of calculations than the exhaustive search procedure, for large networks the time required

for synthesis may still be excessive. There is a rule of tlir. -, however, which can be used

in the procedure to considerably reduce the number of arrayi .,enerated and the number of

calculations made. This rule Is called the link-limit.

The link-limit states that there will be a limited nuonber of functions error llvIl.cd

to any restored function. Binc* th benefits of redundancy dep ,nd to a considerable extent on

the presence of restorers in the network, the optimum design of any network will probably

include a numbet of restorers. During the synthesis procedure comparisons between network

designs in which most of the location are empty probably do not contribute to finding the

optimum. The use of the Unk-limit elimifates from consideration most of these unnecessary

comparisons.

The simplification requires the Introduction of a quantity JTHLD. * This quantity

is the maximum number of error-linked functions which all play a part In providing the input

to a restorer. Tius JTHLD-I is the nmaimum number of error-linked sources a restored

function may have. The quantity JTHLD is fixed by the designer and represents what he feels

to be a reasonable limit. Considerations on the setting of the quantity will be presented later

in this section. The link-limit eliminates from coritedration every array for which the

number of error-linked sources of any of its restorers functions exceeds the limit. These

arrays are called implausible. Figure 3-19, a and c represent arrays which are implausible

when JTHLD equals 3. Figure 3-19, b represents an array which is plausible.

• Once again this !s program terminology introduced for simplicity.
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Figure 3-19. Plausible and Implausible Arrays

In every application of the synthesis procedure for a large network, many arrays

will arise which are implausible. Elimination of these arr-.ys from the synthesis procedure

will consicerably reduce the nun~oer of calculations which will be required for synthesis.

With the link-limit savings are introduced by two mechanisms.

First, each array is tested for plausibility as it in compared with other arrays to

optimize locations. As an array, IWORKG, enters the comparison procedure with no

locations op'Imized, an array is found in KOMPAR with no locations optimized (if one exists).

This array is sit equal to JARC. IWORKG Is tested for plausibility and if it is found

implausible, JARC is called the best of the two arrays without any further calculations.

JARC wecsea. ;iy bee am more I (restorer) t'an IWORKO so it is more likely plausible.

One Iocttins has wor been opiamsed Im JAC and the array is nuw set equal to IWORKG for

another eas 'l'oung the eml•tslas prcems ad another plausibility test. By finding the

array lm.,l b, io cost det•eIns have been eliminated. It is unnecessary to

determine the cosis d OheJr IMWOM or JARC since IWORKO is implausible. The plausibility

tefast odilm•e at b pas th O the conparim• process until a ilausibie array is found,

then the symhlmis PMoed• wtmaly.

If M O is fated plausible the eomparism procedes normally. No further

p:'!ustbllty tests are mads an ti array s more locations are optimized. Subsequent

opti- isatsis can only add more restorer t to the network, hence increase the array's

chances for plausibility.

An an example of the forgoing consIderaltlons consider the array A, in figure 3-20

which is to be compared with arrays B, C, D and E which are stored in KOMPAR.
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become 1 as the branch Is generated from the Incompletely specified array. After this is

dome,tbe locations which are O's in the new modified array will be 0 in every array which will

be derived from the incompletely specified array being tested.

When it is determined that every array that will be generated from an incompletely

specified array is implausible, the array is called an impossible array.

For simplicity call the array drawn from ICAR A, and the modified test array B.

To test the possibiity of A only locations which are 0 for all members of the branch will be

made 0 for the test array B. To assure that this occurs, l's will be assigned to B in two

ways. First the locations which are l's, &'s, or O's in A are made I in B. All these

locations will assume the I state In some array generated In the branch.

Secondly l's will be added to some of the locations which are to be optimized in

the branch. Generally whenever a branch Is being worked on, there wil be some list of

partially optimized arrays In KOMPAIL Each member of this list wil have some number of

locations optimized, and no two members will have the same number optimized. If one were

to look down the list of number of locations optimized, KLO, he might find something like;

0, 1, 2, 5, 6, 9. The list in general will not Include every Integer from zero to some maxi-

mum number, but will contain one or more ppg. While working on this branch, the lowest

gap will be filled. First an array with three locations optimized will be generated and then

an array with four locations. The last array to be ge'ated in the branch will be compared

with every array is the Hst d partially optimdsed apys until an array is found with one

mote location optimized t-- the peetst anset In~ter in the lIsL The parpose of

the brmah geeraed from armay A If tosa an aryr with the same number of locations

optimized As the array In MOMN wth smalsooest mber ao locations optimized above the
pp. Tim for th1e eaple to brook Is to @n- an array with 5 locations optimized.

Cal this array C. The losiomns optlnmbed in C an the loeatlene to be made 1'I In the test

array 3.

Now there are some eoso still M remalo In array B. ivory array generated from

A will have at least this many Nros. 1m If the array B is tested fra plausibility and found

Implausible one Im nthat *ery array Is the branch will be Implausible. Array A is then

- impossible.

The Impossible array cannot be throwa out because mom l its I 's or Ols may

open paths Into parts of the network widch can nat be rbeaed in any other manner. bany

of the calculations that are moade in the branch cam be discarded however, because If the

procedure were contimd in the naemal manner, all comparlsons made in the branch will be

betwee Implausible arrays.
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The unnecessary comparisons are eliminated by constructing a new array D by

combining the arrays A and C. The array D is formed by replacing with one exception the

contents of every location in array A with the contents of the locations which are specified as

1, 0, 01. or 00 in array C. Locations specified as X in C take on the states specified in A.

The one exception is the location which would have been optimized by comparing an array

generated in the branch with array C. Call this location y. Location y will have been 0 in

array A and I in array B. It is made 0 in the newly constructed array D.

The array D will still be impossible but it now contains a number of optimized

locations. These have been found with no comparison at all. The reason for not optimizing

location y directly by replacing it with a I is that this location has not been checked to see if

it is isolated. By leaving location y as 0 and continuiug the synthesis procedure from this

point, this check is made as a matter of course.

The array D may or may not contain a's and O's. The next step in the procedure

after the generation of this array is to check for this property. If it does contain 3's and/or

O's it is an incompletely specified array and is placed in INCAR, the incompletely specified

array list. If it does not contain these variables it continues on its way to have more locations

optimized. The first comparison to be made will be with array C. Since array C is plausible

and array D is not, array C should be the e'.gerior. If the choice of JTHLD is wrong this

may not result. U JTILD is too great the error will be corrected in subsequent operations.

If JTHLD is too small, utilising the link-limit may not result in the optimum.

To Ilustrato the second use of the link-lmit consider the situation illustrated by

figure 3-21. The arrays In thi figur are purely hypothetical, they represent no real net-

work.

(000100100010) Array A KOMPAR KLO

( l0010010101X) 6

Array C (010011001X) 5

(IX c -DO D=) 0
(o1------) 1

(001X700000:XX) 2

Figure 3-21. xzample Showing the Impossibility Test

It can be seen by comparing arrays A and C that y is location 8. Array B is constructed by

first placing I's in all locations which are $'s or Ols in array A. Then placing l's in all

locations specified as 0's In array C. Array B appears as below:

(111111100011) Array B.
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This is the test array. All arrays generated from array A will have at least the O's present

in array B. Say that array B Is judged implausible indicating that Array A is impossible.

Thus all the arrays generated from array A are implausible. Array D is formed by com-

bining arrays A and C in the manner previously describid.

(0Q100100010) Array D

This array replaces array A in the synthesis procedure. By using the link-limit all the

array generations comparisons and cost calculations that would have been required to

optimize the five locations have been eliminated. This is an extremely significant savings

especially apparent for large networks and small values of JTHLD.

Whether JTHLD is too great or too small depends on the maximum number uf

error-linked sources to a restored function in the optimum network (the one which would be

derived without using the link-limit). If JTHLD-1 is greater than this r.xaximuw, tile pro-

cedure should yield the optimum network. If JTHLD-I is set less than this maximum the

result may not be the optimum. Such a condition may be flagged if the result of the pro,-edure

has one or more restored functions with exactly JTHD- I error-linked sources. Ifthis

occurs JTHLD might have been set too low, and the synthesis should be tried again with a

greater JTHLD.

For systems with feeback, under some conditions a poorly choser. JTHLD will not

be so easily flagged. If the optimum design has no restorers in a feedback loop, and the

JTHLD is less than the omiber ol functione in the loop, the procedure may yield a design

with semer restorers in the loop. Ther way be no restored functions with exactly JTHLD-1

error-linbed sourc•.

Althouh the linU*-lit tWat hae been included in the computer program to perform

synthesis, they iew mat beve tmoroh t~tod to measure their advantages. They will yield

considerable redacto the OwmU equired for synthesis, however, especially when

restorers are fairly close together in the optimum network.

R. THE APPRO=MATIONS INt TRE PROCIDURE

The Isolating Array Synthesls Procedure does not find the network which minimizes

the True Cost of equation 4. The tochnlque uses an approximation of this cost, so that the

characteristic of isolation can be used to considerably reduce the number of calculations that

must be performed in the optimization procedure.
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Assume a set of functions are chosen from the network and called members of the set Q.

The locations of the set Q are to be optimized, but for the moment let the locations of every

member of the set Q be empty. Now let the locations of the functions not in the set Q take on

an array of states with some locations filled and some empty.

The functions and restorers not in Q can be divided into two sets, E and 1. A member

of set E is error-linked to at least one of the members of set Q and a member of set I is

isolated from every member of Q. Three disjoint sets have now been defined.

The approximation is based on the method of computing the reliability of redundant

networks which is described in detail in Appendix A of the First Annual Report. This

appendix shows that t0e reliability of a network, R, can he factored into two terms R, and

RE such that:

R = RiRE.

R, consists only of factors which contain the reliabilities of circuits in functions in the

set I, outside the isolated region. RE consists only of factors which contain the reliabilities

of circuits in functions in the sets E and Q, inside the isolated region.

Now say the states of the locations within tle set Q are to be optimized, with the

locations not in set Q specified as some array. When a restorer Is placed in a location, it

takes on the function's outputs. The functions and restorers that were error-linked to the

function alone are now error-linked to the function or its restorer or perhaps both, but no

new functions are error-lnked with the combination. Then, as restorers are added to the set

Q, the sets I and Z remain the same. No new terms are introduced into R , so it does not

change, but R1 changes because of changes In the set Q.

The optimum array of the states of the locations in the set Q (given the array of the

locations not in Q) is that which minimLses the True Cost. The functional costs of the sets

Q. 1, and E are independent and are reprosented by FQ. F1, and FE respectively. The

True Cost for this network is written:

True Cost - F. + F 3 .+ FQ + (-RIR 3 ) K. (6)

Since only the members of set Q are allowed to change, only the terms FQ and REZ of

the True Cost will vary. Say there are two different arrays of the locations in Q, Q' and Q",

whose True Costs are being compared. The difference between the cost of the two networks is:

True Cost (Q') - True Cost (Q') = FQ(Q') - FQ(Q")

+ [,-R 1.,(Q)'] K- [,-,RIR(Q." K

- FQ(Q') - FQ(Q") . RI [RE(Q") - RE(Q-)] K (7)
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For moat situat~ons, the value of RI will be very close to I and will have very little

effect oan the decision between the arrays Q' and Q". Then the approximate difference be-

tween the true costs of the two arrays is:

True Cost (Q') True Coat (Q") s FQ(Q') - FQ(Q")

+ [RE(Q") - RE(Q')] K. (8)

The optimum array of the locations in set Q found using this equation is independent

of the functions or restorers in the set I. The equation affirms that the optimum state of a

set of locations does not depend on the functions or the state of the locations that are isolated

from the functions in the set. This is a very important approximation and it is the crux of the

isolating Array Synthesis Procedure. Its use considerably reduces the number of calculations

the designer will have to make for the synthesis of a large multiple-line network.
I

In the procedure, the only costs calculated are the costs of the isolated regions rr &de

up of the sets Q and E. This cost is called the region cost and is:

P(Q') = F QW) + F " + ["l-a(Q')] K (9)

The region cost is independent of the set L The difference between region costs for the

arrays Q' and Q" results In equation B.

In alwast all cases the assuaptiAo that i• is equal to I will not seriously effect the
results od the synthesis procetre. If the result is differest from the True Optimum, the
cost of the reoiuttIg Wtwoek will probaby Not be mauh preater than the minimum True Coat.

The apl•roimatiaa ues tm ae / W opti only of a small isolated region, Independent
of thw rest od Ike neftwok, ts caslitent with dte ptlmbsatlo of the whole network. The

appromatuom optimias a regim, abosmiag tde rest o the network is perfectly reliable.
The difficulty to tht te actual cost of faMr of the isolated region is dependent on the

reliabilities and localis sates 1Ousids the region For example, consider the extreme case
where the reliability 0 etcuit, In a lusctioo ontaIf the isolkte region is zero. These

circuits cansit operate Correctly, Oad ONe Ifftwork is surely failed. A restorer added to
minimize the coet of a regoo Is really no I0lp at all to the total network, since it has already

failed. The restorer can oay add to the hactioaal cost of the network. The procedure does
not take into consideration functilos outside the isolated region, so the result of the pro-
cedure in this case may not be optinmum.
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This extreme example has turned up the approximation in the procedure, but this is

not serious. A good portion of the network need not be considered when determining the

optimum state of a location. This proves to be so valuable an attribute that it far outweighs

the approximation brought to light in this section.

It does only lead to a slight approximation, because almost all networks that will b'?

synthesized will have extremely high reliability specifications. When optimizing a location,

using some small portion of the network, it is not very erroneous to assume that the rest

of the network is working. Under this assumption, the procedure as described so far is

perfectly valid.

When K, the cost of failure, is so high that the goal of the design is to maximize the

reliability of the network, the procedure is valid without any approximation. No matter what

the reliabilities of the functions outside the region which includes some function y

t.he optimum state of location y is the one which minimizes the probability of failure of the

region and therefore, minimizes the expected cost of failure of the region. Utilizing the

optimum cannot decrease the reliability of the network, and it will increase it if the rest of

the network is not sure to tail.

G THE COMPUTER PROGRAM

The synthesis procedure has been programmed for lmplementation on an IBM 7094.

The program uses FORTRAN 2 and FAP coding. The FAP was included to increase the speed

of the program and to reduce the amount d memory required in the synthesis of large networks.

The program hLs run for aimple networks kavg up to 3D functbos. The networks are

simplified to shortn the time requir*dfordebo rums. Flua debugging will allow the

synthesis of networks hAvwig up to N fumctiom. This upper limit is easily expanded by

changing a few limits in the prop•sam.

The program has not been reproduced for this report, but a flow diagram outlining the

main steps of the program can be found in Appendix B.
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IV. OTHER USES FOR THE SYNTHESIS PROCEDURE

If the disc sio f thsP aper are couched i' more eneral terms. i becomes apparethat the isolating array synthesis procedure is a1hcable to problems other tha finding theoptimum arrangement of restorers in a reduaftnt network. In fact, the proredure is appli-cable to a whole clas of problems, the charicteristics of whifh are ksc~rib*d in this secti ,

Consider the problem in whict a large =n=ber of decisicns are to he mad*-. Ea-bdecision in binary in ta there are two alternatire a'a:lahke, and mne must be chuser. AUldecisicas are alike in that the same alter-•ativ are available for ea::h. The problem is to
chooe valves for each decision to cptiziize soe paraweer. For the redunwdacy applicanisthis parameter is True Cost and the decision to be made is vwhethr or non to mcilude a restor-
er at a location. Me characteristic which makes this problem a dificult oe is that no B•izrlsubset of deciAous can be ma independently o all other decisions.

Of course, finding the oimum placemeot of restarers in multple line betw(rks s cniapphcaut of the syntzesis procere. To illustraW tat the class of problems also ame.ablltto solutiow by this meas is sitem y, a hypoiftcal quality cobrol problem is here pzesena
Let the da = of fVaig 4-1 rvp m a U acturiag proress. The nades represenindiviukal operw, a to the Pem, &aW tIe C a m indicate the sequemal Orer .,

theommbanc Thgis • IsWMMctwwga ProCt hich mxdber" *ireqa cn•amicall.d it is fawd b ma Sm p t isae. la itiaLime for in,•craia electroici
ctre . TW. a hdtv I Is mu a* .

rTip 4-I. ri Ina sm w a .i cautC r Praew

After ea~c operation tt in rmp lo eba wtily test all the prodit t at arre ajt Wthatpoiad Uthrow awy all t hare •fA•y. iis is calledI * quL.•. COrWJ *eK. The71 os afthe test will depend cc the comleity a e proftel so there will be a cout 1cit per pr•c1
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associated with each operation. The cost of the unit thrown away depends on how far it has

progressed through the manufacturing process. Thus, there is a cost associated with each

operation which represents the cost of throwing away the product after that operation.

Each operation in the process has a constant probability of producing a faulty unit.

The probabilities may differ for different operations. The number of products thrown away

in the manufacturing process is assumed small relative to the number passing through it, so

it ts assumed that there is the same iumber of products passing through each operation.

With these assumptions the expected cost per product of performing a quality control test after

operation i is:

P, Ct + Qt

Where P, = the probability of the product being faulty at the Itth operation.

C I the cost of throwing away the product after the ith operation. Q, = the cost of

performing the quality control test on the product after the ith operation.

If quality control tests are performed after every operation in the set M. the total cost

due to faulty manufacture is:

The problem is to minimise to cost by optimally making the decision at each operation

whether or not 6o make a quality coatrol tse. The decisions cannot be made Independently

because th valse d at #Aany opemati deped on where the fault eliminating quality control

tests Mave beea perfoemed previous to *b operation. Thus, the decision cannot be made at a

particular operalon wit cansidel" wh other decisions have been made. In fact, no

strict aem t of detesiem as be made Independently of all other decisions.

The solution to Mats problem cam be fod with the synthesis procedure. There are

other eamples one might postilat bAt will Illustrate Mae class of problems to which the

procedure ts applicable, but this one and the rehmdndcy example should be sufficient to at

least show that the ClUa Is not empty.

A. GENERAL CHARACTER7UTCS OF THE CLAN

With the help of the two examples, the general characteristics of applicable problems

will now he pointed out.
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1. Form

The problem must be representable by a network diagram such as shown in figure

4-2. The nodes and lne segments should describe the physical aspects of the situation under

study and the relationships between them.

Figure 4-2. Simple Network Diagram

2. Decisions

At each node a binary decision must be made. The decision determines the inclusion

or exclusion ot some object or opeeation. The decision does not modify the network diagram

in any way, but it affects some parameter of the network. It is impossible to determine the

effect of some strict subset of decisions without knowledge of some deciflons not in the subset.

The decision for the redundancy example was whether or not to include a restorer after a

function; and for the quality control example, it was whether or not to provide a quality control

test after an operation.

Given the state of alU but one of the decisions, it should be relatively simple to make

the remaining decision. This restriction ts included to keep the problem within bounds. The

synthesis procedure requires that many determinations of the optimum decision for one node

be made with knowledge of the state of thw other nodes. If one of these determinations is diffi-

cult to perform, the procedure will take too long to implement, hence it will be impractical.

3. Parameter to be Optimtaed

There i some calculable parameter of the network which Is affected by the decisions

made at the nodes. The goal of the proce~dre is to optimize this parameter by determining

the best set of decisions at the nodes. The parameter for the first example was True Cost,

and for the second It was cost.

4. Isolation Occasioned by an Affirmative Decision

The characteristic of isolation provided by a restorer (an affirmative decision) has

been described in Section VII. B. 2 of the report. To illustrate the characteristic for the

quality control example consider the simple network diagram of figure 4-2.
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Assume the network diagram of figure 4-2 represents a manufacturing process.
An affirmative decision at node 2 represents the Inclusion of a quality control test after

operation 2. This test removes all faulty products from the process at this point, hence the
probability that a product is faulty at nodes 3, 4, 5 or 6 is independent of the decision made
before node 2. The expected cost due to faulty manufacture can now be calculated independently

for the networks before and after node 2, and their sum will be the total expected cost. The

affirmative decision has resulted in Isolation.

5. Isolation Not Occasioned by a Negative Decision

This characteristic prevents the problem from becoming a trivial one. U1 both
negative and affirmative decisions resulted in the IsOlation of decisions, each decision would
be completely isolated from every other decision. This would make it possible to make each
decision independently of all others. Of course the synthesis procedure is not needed for

problems in which all decisions can be made independently.

The final two characteristics deal with negative and affirmative decisions. Of

course, by the reversing the definitions of negative and affirmative, the characteristics can
Just as well read that negative decisioms result in Isolation and affirmative decisions do not.
If a problem poses... the characteristics it Is amenable to solution by the Isolating Array

Synthesis Procedure.

4-4



V. CONCLUSION

The Isolating Array Synthesis Procedure has been developed to the point where it is now

available for evaluation and use. The program to implement the procedure on a digital com-

puter has been run successfully for several example networks. The first large scale synthesis

task is being readied.

The time required for synthesis depends primarily on the number of functions in the

network, the interconnection pattern between the functions and the value assigned to JTHLD,

the maximum number of error-linked functions providing the inputs to a restorer. At this

time the number of networks synthesized with the procedure Is insufficient to estimate the

time required.

Several projects still remain to be performed. The program for the synthesis procedure

provides a tool for its own evaluation and the discovery of insights concerning the placement

of resoters in redundant networks. A carefully designed test schedule should reap consider-

able benefits in the understanding of redundant networks.

The discovery of a procedure to concurrently optimize the order of redundancy of the

functions of the network and the placement of restorers within it has not yet been accomplished.

However, some initial probes into this area have lndicat,,-d that this additional task can be

done with some modifications of the present procedure. The accomplishment of this task

will allow the different functions in the network to assume different orders of redundancy in

an optimum manner. Particularly important is the ability to find the optimum network in which

only order three redundant Wad non-redunduat functions are allowed. A procedure with this

ability appears to have the most Immediate application. Some future study should be devoted

to this problem.

This study has developed a tool of significant value to engineers charged with the design

of redundmnt-multiple-line aetworke ihe procedure finds the optimum placement of restorers

in networks of arbitrary topolofy Thns pr.%cmure is a significant contribution to the state-of-

the-art because it performs an %dwitzation never before achieved except by exhaustive search.

The techniques described here. r.-.y also find applications in the solution of other problems

which are concerned with makiL3, a largc set of binary decisions in an optimum manner.
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Appendix A
EXAMPLE DESIGN

To illustrate the performance of the synthesis procedure, this example design is pre-

sented in figure A-i. It shows both the array generation procedure and the array comparison

procedure. The arrays that are generated by comparisons and contain optimized locatione

are underlined. The comparisons that have been made are noted for the first branch of the

tree. The symbol c indicates a comparison of true costs. An equation of the form: G -

[@ c c 0 indicates the arrays which take part in the comparison and the order

in which the comparisons are performed. For instance, this equation indicates that array 9

is formed by first comparing arrays 3 and 8, and then comparing thl result of this comparison

with array 7.

For the example JTHLD is set equal to 3, so regions with four or more error-linked

functions are not considered in tht: synthesis. The possibility test is illustrated but the plausi-

bility test cannot be shown in such a diagram.

A. 4
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Appendix B
A DESCRIPMlN OF THE PROGRAM FM VE~ E COMPL-TER

IMPLEMENTATION OF THE SYN7HESI PSIOCEDUPE

L GENERAL DUSCUS63ON

The followin serve as inptst to the progam:

1. Connections of the network
2. Threshold for the link-limit

3. Order of re&1nxncy

4. Number of functions
5. For each function and restorer, the cost at:

a. lmpleme: : tionl

b. Power
C. Weigh

6. Cost of fa.~ure (K)
7. Reliabilities of each functlion and restorer
8. Minimum number at limes for successful operati4o1

9. The number and 115%. of osotp of the network.

T1he outpu of the progras is an armay shewing the optimum placement of restorers wn

the network.

FaWO 11-18.~ af hiZ-ulsmA Iet 101 Whose qlMIanISSM tree is mValiY developed
as an savpis is Ou dismelin of do prepwm whichlMaws. A general flaw diagram of this
program is tllngtraWs in tiue S-L

Input Wairmial~i to the Sip- is eafted at Moek A. fabU~ttes and costs of wart -
ous arrays sar eaablculaIs doth block at So boo uwhc is del~pstm as K. The remainder
of the progroam serves to develop te tree accordin la th rulses a Owe synthsis procedture
and to r.ea the warlose wseeusted army# to fthir peps pisces.

A. THX CO!I3ICTIu TANAE (I"aI

Let us now examin how he coniguratinale Owh network to be optimited is canevnod

into cor,"uer input information. For the nebtok Is figure B-1a a comnctiam table of the
type sI.,wn in figure 3-1(b) may be camoructsd In essne, d tai ble to a matrix wbare
the columns represe the anod of tho designatd ineictions and the r ows the inpus tote
designated fuimctions. A "I" represet a comc 4&n Thesly, it may be mee. from figure
9-lU and B- lb, Mhat a 'T, in (2, 1) nuenes ha the am* of fuseban I is thme input of function 2.
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D. KOMPAR

Completely specified arrays, when stored, are kept in a block in memory designated as

KOMPAR. This block is a two dimensional matrix in which completely specified arrays are

stored in locations corresponding to their ITA values. The form which this matrix takes is

shown in figure B-3. Thus, for example, the array in KOMPAR (5) is (001 XlX).

ITA ARRAY

1 (oW 000)
2 (Oxx XXX)

3 (six xxx)

4 (000 000)
5 (eel xlx)
6 (001 xll)

Figure B-3. An Example ol Arrays Stored in KOMPAR

E. KLO

A count of the number of locations optimised Is made for each array In KOMPAR and

this number is stored in a list cailed KLO. The ITA value of the array with the given number

of locations aptimised Is also incltded in tOe KO list. The form of this list is shown in

figure 8-4.

140CATIM

0
1I

$ 6

lrFre 3-4. "Tw KLO list

If we des - to find an array in KOMPAR with no locations optlmized we need only

search throu~ the KLO list to find that srch an array exists at ITA - 2. Now looking

through KOMPAR for the array at ITA - 2, we can extract (IXX XXX), which Indeed, has

zero locations optimized.



I.

F. INCAR

Incompletely specified arrays are stored in a similar manner as are ones which Ire

completely specified. The block in memory in which the incompletely specified arrays are

stored is called INCAR, and takes the form of figure B-5. Arrays are placed in INCAR as

shown. Whenever they are extracted, the location is filled with zeros.

ITA ARRAY

1 (000 000)

2 (0$. XXX)

s (000 000)

4 (001 X$X)
of t9

t¢

Figure B-5. INCAR With Arrays Stored at ITA = 2 and ITA = 4

G. SYMBOL CODING

The symbols 1, 0, 9, 0, X, 91, and 90 are represented in the program by the numbers

0 thru 6 as shown in figure 3-6.

SYMBOL CODE

o 0
1 1

%1 3
%o s
X 4

1 5
* 6

Figure B-6. The Coding Symbol. of the Program

Thus the array (IOX 5 001 ) to converted to the representative numerically-coded array

(1045065). Likewise (0I go XX XXX) is represented by (2344 444).
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H. PACKING AND UNPACKING

In FORTRAN it would be necessary to utilize one storage location for each code number

in an array. Therefore, the array (2344 444) would require seven words, the first one "2",

the next '3", etc. By using FAP subroutines, arrays such as the above can be neatly packed

into single words, effecting a twelve times reduction in array storage requirements. In the

above example the array (2, 3, 4, '4, 4, 4, 4) would be packed as (234444400009). *

Whenever the number of symbols to be packed exceeds 12, more words are added.

For example, when the program is packing a 100 symbol array, nine words must be assigned

to the array. The eight extra locations needed to fill the ninth word, a partially completed

word, are filled with zeros.

When an array is to be used in the FORTRAN program it must first be unpacked so that

each symbol is designated by its own word. A special unpacking subroutine in used to accom-

plish this.

I. IPOPAR TEST

Assigning l's and O's to'. S's and O's in an incompleteli specified array must be done in

proper order, so that those locations previously optimiz^,d must be uried last. (See Section

II. E. 3). A record of these previously optimized locations is kept in an at ray in memory which

is called IPOPAR. The IPOPAR test must then necessarily precede the- assigning of l's and

Ols to incompletely specified locations i. IWOIXL

J. DIVEZLOPMENT OF THE TREL

We are now ready to te bow the tree illustrated in figure B-Ic is developed by the

program ol figure B-2, as the program proceeds thru Its various paths. An enumerated

descr•ption ol these paths now follows.

PATH I

Block 8t

A 1. Input information describing the network enters the computer in the

form of a connection table.

2. The ITA is set to 1.

3. From the connection table the parent airay is formed (figure B-ic,

(1)) and set into IWRML The flow now enters B.

• The maximum number of symbols which may be stored in the IBM 7094 memory word it 12.
Each number is in the octal system.



PATH I (Continued)

Block

B 1. The ITA number is advanced to 2.

2. The IPOPAR test is made to determine whivh location is to be varied.

3. First a 1 is substituted for that location and the array is termed a

"1-substituted array". It is designed in the program as IWORKI.

Likewise an array termed the "0-substituted array" is generated by

substituting a "0" in the proper location and adding the appropriate

S's and O's. The array Is named IWORKO. IWORKI and IWORKO

are represented in figure B-lc as arrays (2) and (3), respectively.

C 1. '6n the first pass into block C, IWORKG is created by being set equal

to IWORKI. On the second. pass IWORKG will become IWORKO.

D 1. A test of the specification of IWORKG is made here. Since IWORKG
is array (2) in figure B-Ic and is not incompletely specified (I. e., ft

jf completely specified) we enter E instead of H.

E 1. The number of locations optmizd in IWORKG (number of e's) is

determined. In this case the number is 0.

F 1. Ia order to d a maibble array to compare with IWORKG, a search

is made On ew KLO list for an array in KOMPAR with the same

wAmber a locationsq timted I. P *0. Since this is the first path,

M. previOus arys es tO eabs e a comparison, and the flow exits

U 1. The array isa•l-rebstl/rued arra •

R 1. The array is placed into KOMPAR (2), where "2" is the present ITA

number. It appears in figure B-3 at ITA of 2 (arrays with higher

ITA's dl mot exist at this point of the program). Furthermore, a

mote is made in the KWO list (figure 0-4) that In KOMPAR of ITA-2,

an array exists with 0 locations optimized.

Path I now ends with a second entry into C.
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PATH 2

Block SLtep

C 1. Since this is the second entry into C, IWORKG now becomes IWORKO,

which Is (3) in figure B-ic.

D 1. IWORKG is incompletely specified and the flow exits into H.

N 1. The array is 0-substituted and we proceed to Q.
Q I. INCAR of XTA=2 is empty since this is the first incompletely specified

array encountered at UhLt ITA number.

P 1. XWORKG is placed in INCAR (2) as shoin in figure B-7.

2. A search through [NCAR for the last array in it, is made. In this
case, the last array is the array just placed into INCAR in 1, above.
This array is now entered into the array called IWORK, as the pro-
gram completes PATH 2 on its entry into B.

ITA ARRAY

1 (000 000)
2 (othx xxx)
s (o0oo ow)
4 (000 000)

i9 
91

99 
9,

Fligar 3-. I4CAR With an Array at ITA - 2

PATH S

B 1. ITA is incrased from 2 to 3.

2. IWORK, which is array (3) in figure B-1c, undergoes the IPOPAR
test to find which location must ,ext be varied.

3. IWORKI and IWORKO are cratted by the substitution 0f a I and a 0
respectively in the location found in 2 above. In figure B-Ic these
arrays are (4) and (5) rerpectively.



PATH 3 (Continued)

Block Step

C 1. This being the first rass into C for the .new [WORKI and IWORKO,

IWORKG is set e to IWORKI.

D I. IWORKI is (4) in figure B-Ic and is not incompletely specified. The

flow pzqo,-ds to E.

E 1. The number of locations optimized in 1WORKG is O.

F 1. There is an array in KOIWPAR with no locations optimized. The KLO

list reveals it is at ITA-2. In KOMPAR .(2) the array (lXX XXX) is

listed and is array (2) in figure B-ic.

G 1. In the comparison of the KOMPAR array and IWORKG, the location

to be optimized is the one which contains a "0" in one of the arrays

and a "I" in the other array. This location is found here.

2. The array found in KOMPAR (2) is extracted by setting it into -an

array called JARC.

3. JARC is made to look like IWORKG by changing all those locations

vhich are 'T' in JARC to tiom symbols occupying the same locations

iuIWORKG. Thus, in this path the second location in array (2),

figu*e B-Ie, asnrs tOe value of the second location of (4), figure

B-ic. JA Cad IWOMKG are now ready for comparison.

H 1. IWOMKG Is #M iodtresmty buompletely specified and the flow enters I.

1. In o*er io tbe a•esr for omi, IMORKMG mad JARC are made equal

60 MDC on at a t i.e . te cogt is first foamd for IDEC = IWORKG

and Otw for IDtC : JAtC, This first time, then, DEC = IWORKG.

J 1. The plaus"ity a5 performed for IWORKG. If IWORKG is implausible

the locsU to be o~pmsed It saetto , Sand theflow skips to El in

paM 4.

2. If plausble, the error-linked source matrix* is created for IDEC

IWORKG.

* The error-linked source matrix is used in the reliability anmlysis as described in the
First Annual Report.
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PATH 3 (Continued)

Block Step

K 1. Lower-bound reliability is -computed for IWORKG.

2. True cost is obtained for IDEC and stored.

3. Since IDEC = IWORKG, the flow returns to L

I 1. IDEC = JARC

J ' The error-linked source matrix for IDEC = JARC is created.

K 1. Lower-bound reliability is obtained.

2. True cost is computed for DEC and stored.

Z 1. The array with the lower true cost is chosen and set into IWORKG as

tb±e flow returns to E and khe path is completed.

2. If the 1-substituted array is chosen as most optimum, then 01 is sub-

stituted in the location to be optimizei. If the D-substituted array is

optuimum a Do is placed in the location to be optimized.

PATH 4

Block Se

E 1. The uimber of locatimos optmized in IWORKG is one.

F 1. ia KOMPAR tHe6 Is so array at U& momeat with -one location

S 1. Array 44) in figare 3-1c, is a l-adbbtulted -array.

R 1. e array is plaacd Into KOMPAR of ITA = 3. The program returns

to C to complete pi 4. 'The array appears In KOMPAR as shown in

figure B-S at ITA = 3 aad Its number of locatlonv ptimized (one)

appears Ii the KLO list wita ETA = 3.

PATH 5

Block Step

C I. As the flow enters C for the second time TWORKG becomes IWORKO.

Th'i is array (5) In figure B-lc.

D 1. WORIG is Imeompletely.iec Vfied



PATH 5 ',(Continued)

BILok Step

N L ~I MRKG I~s NOT a 2-siibscfuted 2rray.

IQ [ NCAR .of I TA = 3 Is not fiul since no 2r~ray has previously been

placed into. this position.

P 1. I.W.OIG is placed into 12,4CAXR,.(3).

2.. The last ;array is soqght in ING~AR.

M" Ths ast axxay, whirh is themne inserted in P1., is pulled out of

INCAltand set into I1WOML Esw ~ hw NCR(B sary~3
;of figure B-2c.

ITA ARR~AY,

2 11000 ~000)
:3 '(D06 XSX)

4 kD00 (000)

P36we 5-4. INCAR IM An Arsay at ITA =3

PAIN 4

B 1. ITA Is afmeWio2

2. he I'UWAR tog a~ hWC&0 VA ocat10 uM iS *0 be V26ed.

3. A 'IT" zAd IV" are *dwW~d 1 at' is3 Uoca±Mm toe cnmte IM M -and

!WOM-O. These rrep az Anrlay 0() &Ad(7 In (fige B-1c1

respectuvely..

(C I. ORKG bedýmea DOOM.

S 1.. WOMG io bwamplawey mmecffies&

x L. ~WO1KG is a 1-.wbotuwe azy..

S 1. WORMC' is Aim" in VOZAR (4).. See fige R-SL
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L IWORKG is ducnwa~peteq.y spaifil,

L W01K IsCA a(i M&s ik t te ~A1r~ay.'6 iuel-c

L MOCKAR ((4) us e*rav"s.

1. 'The tesutmtiwr=y cc Li. *iA placi Ambc l K.

2 ~~((Ow (0~

4 
ý IX)

lUguzre S-10. INCAR With Atray 17).at MlA =4



PATH 8

Block Step

B 1. ITA is advanced to 5.

2. The IPOPAR test determines which location is to be varied.

3. A "1" and "0" are substituted in this location to form IWORK1 and

IWORKO.

C 1. IWORKG becomes IWORKI (array (8) , figure B-ic).

D 1. IWORKG in not incompletely specified.

E 1. The number of locations optimized is 0.

F 1. There is an array in KOMPAR with an equal number of locations

optimized. It is at ITA = 1.

G 1. Thi% location is 1.

2. JARC becomes array (1) figure B-ic.

3. JARC is made to look like IWORKG by placing a "0" a "1", and

another "1", in locations 2, 3, and 5 respectively.

H. 1. IWORKG is not indirectly incompletely specified. The plausibility

J, K, Z check is made. If implausible, the optimized array, containing, a 0

in location 1, is set equal to IWORKG. The array is (001 XIX).

PATH 0

Block S.t p

E i. The number of locations optimized is 1.

V 1. There is an array in KOMPAR with an equal number of locations

optimized. It Is at ITA = 3.

G 1. The number of the location to be optimized is 2.

2. JARC becomes (#I(X X)C•.

3. JARC is changed to (O8il XIX),

H 1. No

J,K, Z The plausibility cheark is made. If I~plauxjblt, IWORKG and JARC

art compared atld the least agstly b&,.Ln41 i flpo n.iW IWORKG, with Q's

in locations 1 *nd 2. The new IWO/MJUK Is, then, (01 XIX).

~- 14



PATH 10

Block S

E 1. The number of locations optimized is 2.

F 1. There is no array in KOMPAR with an equal number of locations

optimized.

S 1. The array is a 1-substituted array.

R 1. IWORKG is placed in KOMPAR (5) and appears so in figure B-3.

PATHS 11 and 12

By similar method array 10 figure B-lc is generated and compared to array (1) to give

an array with one location optimized. This partially optimized array is then compared with

the array in KOMPAR (3) and that kesulting array with the one in KOMPAR (5) to yield in

KOMPAR (6) an array with 3 locations optimized (see figure B-3).

Array (11) is likewise developed until a comparison can be made with the partially

optimized array of KOMPAit (6) to yield an array with four G's. This array is the output of

Z and is set to JWORKG.

PATH 13

Block Step

E 1. The number of lk'' tons optimized in IWORKG is four.

F 1. There is no array in K4WPAR with an equal number of locations

optimized.

S 1. IWORKG is not a 1-substituted array.

U 1. A search thru INCAR reveals that the last array, which has never

been extracted is at ITA = 4. This is array (7) In figure B-ic. The

array is now extracted,

2. IWORKG is therefore placed in KOMPAR (4).

T 1. A'check is made to determine whether the last array, extracted in

Ul, is possible.

If the array is possibJe, it is placed into IWORKG and the chain is

generated.

S....



r
PATH 13 (Continued)

Block Step

T If the array is not possible, the flow contines to V, where the array

described in Section I.11 E. 5 is constructed. In W, the flow is routed

to either C or E, depending on whether the array is incompletely

specified or not.

In a similar manner the remainder of the tree is developed until eventually a search

through INCAR for the last array reveals that there are no more arrays stored in INCAR.

At this point the existing IWORKG will have all its locations optimized (either 01 or 00).

This optimum array is then placed into IOPTAR and represents the optimized network and the

desired final result.

The Indirectly Incompletely Specified Case

Section .I. E. 4 discusses the occurrence of the Indirectly Incompletely Specified Case.

In the program this case is determined when IWORKG is tested at H. A "yes" decision sends

the flow to 0, where A's and O's are placed in the necessary locations. Upon leaving 0, the

flow continues to H and the remainder of the program as already described.
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