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SUMMARY

A study is made of the attenuation of acoustic waves by a suspension

of fluid droplets in a fluid medium. Special attention is given to the case of

small droplets for which the effect of the surface tension is not negligible.

Both the droplets and the surrounding fluid medium are considered to be

viscous and thermal conducting. The droplets are allowed to execute large

translational motion and to undergo a small deformation from a spherical

shape. It is shown that the result of Epstein and Carhart on the attenuation

of sound waves in a gas with the suspension of liquid droplets is applicable

even when the displacement of the droplet is large compared to its radius.

The effect of surface tension is to increase sound attenuation in two-phase

medium by increasing the thermal dissipation. This effect is important

in the suspension of gaseous bubbles in liquid for small droplets and is

negligible in the case of a gaseous medium containing liquid droplets. The

explicit forms for attenuation, the drag force on droplets, and the heat

transfer rate between phases are given for the case which is applicable to

a gas containing liquid and solid droplets. The expression for the attenuation

which is applicable to the suspension of gaseous bubbles in a liquid is also

given and is found to be completely dominated by the thermal dissipation.
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SYMBOLS

OL sound speed ot undisturbed medium

A viscous wave potential

C surface tension per unit length

C" , CP• specific heat at constant volume and constant pressure

e ,,ternal energy per unit nwass

"frequency of the incident wave

H,,, n Aankel and Bessel functions

k, KZ, K wave numbers of acoustic, thermal and viscous waves

number of droplets per unit u volume

P pressure

Pr• 'Legendre and associated Legendre functions

radius of the droplet

r radial coordinate

'R, • principal radii of curvature at a given point of the droplet

surface

temperature

LIL fluid velocity

L•.f velocity of the mass center of the droplet

rectangular cartesian coordinate

attenuation coefficient

0(%r coefficient of volume expansion
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,Y-* specific heat ratio

5p 5 displacements of the droplet and gaseous med,,irn

coefficient of dilatational viscosity

e polar angle

/< thermal conductivity

X" I acoustic wavelength

dynamic and kinematic viscosities

radial displacement of a point on the surface of the droplet

in f--64 + j stress tensor

density

incident wave potential

acoustic and thermal potentials

azimuthal angle

±I dissipation function

W f- 7-,L.+angular frequency

S--.= thermal diffusivity

"P " "Prandtl number

(, )o equilibrium quantities

R( C real part

( )o&-. time average

( )variables inside the droplet

kilocycle per second



I. INTRODT CTION

The attenuation of acoustic waves in two-phase medium has attracted

(l)* Uattention repeatly since the publication of Sewell's paper Until present

time, the analytical treatment( 1 ) ? is limited to the cases where the

displacement of the droplet is small compared with the size of the dro:Iet and

the effect of the surface tension can be neglected. These assumptions were

consistently mentioned as the possible causes of the discrepancies between

(4), (5), (6)
the existing theoree and the experimerntal- ,es(ult 5 In view of

this, a generalized theory will be presented by introducing the surface tension

effect and allowing the free movemnent of the droplets by formulating the basic

equations with respect to a moving coordinate system fixed in the droplet.

Both media are considered to be viscous and heat conducting and a small

defor-nation of the droplet is allowed. Attention will be confined to the cases

where the incident wavelength is much greater than the size of the droplet

and there is no interaction between the droplets (low volume concentration).

The attenuation coefficient, drag force on the droplet, heat transfer

rate between phases. and the ratio of the droplet displacement to the particle

displacement ol the surrounding fluid medium are obtained. The explicit

expressions of these quantities are given for the case applicable to the

suspension of liquid droplets in - -as and' *th. comnparson 'a made with Epstein

and Carhart's theory. Also, the expression for the attenuation which is

applicable to a liqud containing gas bubbles is obtained. j

* Numbers in pa-entheses refer to References at the end of the paper.

I



11. FORMULATION OF THE PROBLEM

Consider a train of acoustic waves de.scribed by a potv'ntiil

MK - t.)] impinging upon a spherical droplet. The line-arized

equations governing the motion of a viscous and heat conducting fluid in a

fixed cartesian coordinate system assume the form,

(3 + Q -Ot -~ (I) C

a t a90 j

_a - o ak -K a -, T (3)

a tax- ax(-L3ax%

Instead of referring these equations to axes fixed in space, they shall

be referred to axes originating at the center of the droplet and moving with the

velocity U.ct) in the x 3 -direction. This transformation enables one to write

the boundary conditions in a simpler form in the case of lirge oscillatory motion

of the droplet when a spherical coordinate system is used. Retaining the same

set of dependent variables, one find that the form of the governing equations and

the incident potential •D•.L• are unchanged by referring to the moving coordinate

system. In this transformation the terms containing space and time derivatives

remain the same because of the linearization. However, it should be noted that

UL still denotes the fluid velocity as observed in the coordinate system fixed

The boundary conditions to be satisfied on the surface ot the droplet are

the equality of the normal and tangential velocity components, the temperature.
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the heat flux, and the normal and tangential stresses with due account of the

effect of surface tension. For a small droplet, the effect of surfact tension

is to limit the deformation of the droplet to small derivation from spherical

shape. One may thus evaluate the boundary conditions at Y -T, , Let the

superscript prime refer to the variables inside the droplet and $ (et) be the

radial displacement of a point on the surface of the droplet. The boundary

conditions are:

LA*. Ue (5)

7-7 (6)
A1T ( 6

SaT •_<aT'
a- -r (7 )

TI'.=- T T (8)

Thr--.]'r' z-2 -F T i (9)

the second term in the right hand side of Eq. 9 is the surface force, C( --- -

It is obtained by assuming the shape of the droplet is slightly different from

the spherical one (-5 <<1). A workable form of Eq. 9 can be obtained by

taking the derivative with respect to time and setting L~rL - c-c0

The mathematical forms of the basic equations and initial conditions are

same as Epstein and Carhart{3) although the independent variables have a

different physical meaning. Furthermore, except for ý term in Eq. 9, the

(3)
boundary conditions are also identical to Epstein and Carhart 3 Indeed, the I

I
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problem may be solved in a similar way. The calculation is, of course, long

and tedious. For clarity sake, the detailed calculation will not Le reproduced

here. However, the method of solution is outlined below and the principal

results are given.

The solution of our boundary value problem can be expressed in terms

of three potentials, namely acoustic (ý,, thermal 0., and viscous 0 . Once

these three potentials are known, the various physical quantities can be calculated.

A- -'7 + V Ar e 0 (10)

L - -w:- SInEA) (11)

- I a __•__ I ()1" •1• r ar LA)(Z

- -- - p,) + c-' -bz (13)

L w.a r'( ý"+ ýý+ ý?z (.'ct3 (14)

ee at- a (15)

4 LI a e~aA ~ 'r 3a _-n ae rO ar (

uw= TT,-- o (17)

where -- +,ý,-.-c,*and cx, Ox-, CK ., oz, ' 2. are functions of the

properties of the two-phase medium and the frequency of the incident wave

(see Eq. 18). Since the main ir.terest is the attenuation due to the presence of
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small droplets, it is assumed that the attenuation of the incident wave by

viscosity and heat conduction is emal! in the fluid nedi..n iAi the absence of

droplets. In other words, the study is limited to the cave where the ampli-

tude of the incident wave decreases relatively little over the region occupied

by the droplets ( al -- ( • -.- -. --' >z r. ).

This means that parameters e < In such cases,

C 0,(0, ,% ,_ are given approximately as follows.

0(i L WM -(

C? Co. V a! - C< P, - ).

The equations governing c, 4., and A are,

K1) 0- (19)

(v 2 - k:) <F - 0 (20)

(V+- 2 ) A -- o (2-1)

where

K'- K-LbLo £+ aa'

and the solution of the system satisfying the initial and boundary conditions

(including the surface tension) can be written in series form:

(J 4 -mm 2:0( i -,(K ) C0 )Lt (22)

t - r 2(z n-t-) H K )Rk(.L05 e) Bumet.(-~ (Z3)

nMIL 0



F

6

#A'- Lr• (P+•) H (Kz r)F oseC e .(- ,,t) (24)

rnmo

ri- o

A•-.•_ YL C .( n +, 1) H'- r•, Kr) P,,? or5 ,,e•.- .•)Il

where T-jI-n, Hnj Fand • are Besselh Nankel, ILegendre and associated

Legendre (order 1) functions respectively. The coefficients Br•, Cr~, E,, B•, C•

and D.~are determined from the six boundary condi~tions given by E~qs. 4to 9.

The values of these coefficients for r• 0 and Th- I are given in Appendix. It

is sufficient to consider first two terms of the expansion because of the rapid

convergence of the series for « *< If O• denotes • -

: ,, •M,• \ roK < ,\ I

each term in the series after r• •- | is an order c=• times smaller than the

preceeding. In terms of the small parameter QL|, the relative order of magnitude

of the coefficients are r

C0 •o,,, • ,. o,, , •
C,0 "K C,' - ,, L-z o. (29)

where • = . The physical interpretation of these coefficients

is that for a given incident wave of unit amplitude these coefficients give the

magnitude of amplitudes for reflected waves outside and tranes,,vted waves inside

the droplet.
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The deformation of the droplet • is

S--n F__(AC-0,56) .co e• ,xp.- Zwt (30)
h--V

where Arican be determined from the relation -"C_058

Hence rn - 0 corresponds the pulsation of the droplet and n - I gives the

translational motion of the droplet as a whole. Therefore, the term due to

surface tension is not present for n -= * Terms with M > I correspond to the

change of the shape of the droplet and describe tht higher modes of deformation.

IMl, ATTENUATION

When a sound wave propagates through a medium, its intensity decreases

in proportion to -oaX•where a( is the attenuation coefficient and X. is the

distance traversed by the wave. When there are n droplets per unit volume,

the total energy loss per unit volume per unit time will be r , where -• F

is the average time rate of the energy dissipation per single droplet. The ex-

pression of 0( is

CK - Q1 (31)

where E - C. L..4.O l. , the intensity of the incident wave.

Let L4Jand 4 K be the viscous and thermal dissipation functions per

unit volume. respectively. Then the energy dissipation is

4d t 0.. ..

where J and -- T'T . Integrating Eq. 32

over a volume surrounding the droplets, we obtain

d1E D

C~~t z C~~o Z (?•-n t )r +BO%(3
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o(tr r) -a + OR Br~r rS ) (34)
n•O

where is complex conjugate of Br.

Let c,) k , and . be the attenuation coefficients due to

the presence of viscosity, heat conduction, and surface tension, respectively.

Neglecting terms of rs >1 (they are small if ct<e I ), the expression for 0<

can be written as the combination of these three terms.

o(- /+ C< A + 4 CI 1 (35)

A. Attenuation Applicable to the Suspension of Liquid Droplets

in a Gas, ioe. 6• < < 1' C <- I., X <.-C I•

The explicit attenuation coefficient 0< , and &Xare

(36)

cKACr 36(~i +j~ (37)

~ao~= c4(38)

where P- , & -- ,--- -E volume

fraction of the droplets.

B. Attenuation Applicable to the Suspension of Gaseous Bubbles

in a Liquid, i.e. >at> coefficient >>< a

The explicit attenuation coefficient 0X/• (X• Mg and 4Dre !
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Z%, +(39)

3e 161 Oh\ C05 7 St'PF' 1*'\ (40)

0 1,.A (41)

IV. GENERAL DISCUSSION OF THE RESULTS

A. Attenuation

The effect of surface tension is to alter the thermal dissipa-

tion resulting from heat conduction, while no effect on viscous

dissipation is produced. This effect is found to be negligible in

the case of the suspension of waterdroplets in air, i.e. o•-

Hence, if the droplets differ only slightly from the spherical

shape in the course of motion, Epstein and Carhart's results for

the sound attenuation in a gas with the suspension of liquid

droplets apply even if the displacement of the droplet is large

compared to its radius. On the other hand, for water containing

air bubbles, the presence of the surface tension is to increase

the thermal attenuation by a factor of 1.5 for rT -=1 4 0- n'

(see Fig. I). This effect becomes less pronounced as the size

of the droplets increase.

For air containing waterdroplets, the ratio of thermal

attenuation to the viscous attenuation is
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2ý& C ' Z:(42)

Me 0

,M lO

-X 0- P. -'- (43)S• ••-, -z ,.r- • •(3

It is seen that the thermal attenuation is predominant at low

frequency range while the viscous attenuation is more important

at higher frequency range (see Fig. 2).

For the suspension of air bubbles in water, it is seen

from Eqs. 39 and 40 that the thermal attenuation completely

dominates the viscous attenuation for all values of • and

•, os' . This attenuation is caused by

thermal dissipation inside the bubbles and -s approximately

giver b

la 4 4 L + 1 5Z 0(44)

Ct •:(45)

for I•

B. Droplet Displacement j
Te equation of -motion of the droplet is

M -_ LAP (iT &o - .e -- .5 n t)) CAZ (46)

where m and 8 are the mass and surface area of the droplet

respectively. T~wr and are given by Eqs. 15 and 16.

TTV'U
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Evaluating the integral for r )- j , and dropping the terms of

0 (O-CI) and higher, one obtains expressions for the drag

force Fo0 and the amplitude of the droplet velocity U

oi- -(48)

where b-IKlr. Eq, 48 can be reduced to the following form

which is applicable to air containing water droplets.

-3•.K,,.S-H,,k>) (49)

36 .(. )4-j Z(,& - 0 Ho bW

The above expression can also be obtained by calculating the

surface velocity of the droplet.

tI,....(UV-coSe - -as s%*M)'r..% - 2e~ (50)

This expression is identical to Eq. 49 upon substitution for

B, and 01 .

The ratio of the droplet displacement !5 to the radius of

the droplet is

r.' -1to 3654;tNzb)-+Z(S-)HQoLb) (51)

In the limit of audibility, the range of the sound intensity level(7)

is from 0 to l35db(decibele) at I KC based on threshold sound

pressure of Zx io- dyne per sq. cm. This corresponds to

sound intensity E. of 161 to 'I C erg. per sec. per sq. cm.
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and a velocity amplitude of Ft Y, It" to '10 cm. per sec.

in air. For W =-- = KC and droplet size of 2 microns

( t m= 6K IC3), it is found that in the case of the suspension

of the water droplets in air, the droplet remains relatively

m otionless ( - o.2 1__
mto s T)5 at an intensity level of BZkband

at 7Zdb.

The ratio of the droplet displacement to that of the

surrounding medium is

5r- 3 6 Lb~) (52)

4 b. (53)

This ratio is plotted as a function *(see Fig. 2) for air

containing water droplets. approaches to unity as

approaches to zero which agrees with our intuition that at

low frequencies there is little relative motion between the

droplet and the surrounding gas. It approaches as

4 CN 0 This agrees with the classical result for a sphere

(8)
set in motion by an oscillating non-viscous fluid

C. Limiting Cases for Attenuation, Drag Force, and Heat Transfer

Rate

1. Attenuation: In case of low frequencies ( u_< )

the attenuation coefficients C< t and 0•: for <<
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are approximately given by

0+-N(-I-R 1 + (55)

where NI• and .-

2. Drag Force: The force acting on the droplet is given

by Eq. 47 and can be reduced to the following form

which is applicable to the suspension of water droplets

in air.

4 38 IIz(.obY* A LO (56)

For low frequencies ( ), Fois approximately

given by

F.- m t 4ý_18 0-t OL• (57)

On the other hand, for low frequencies

T (58)

Hence

FP-- Gv/tA ),ULFxr) -+ o(. 5) (59)

It is recognized immediately that the first term of the

expression for F.,is identical to Stoke's formula of a

sphere moving with a velocity of - in a viscous
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medium. Furthermore, the first term of the

coefficient of viscous attenuation given by Eq. 54

agrees with the dissipation function calculated on

the assumption of validity of Stoke's formula.

3. Heat Transfer Rate: The heat transfer rate between

the droplet and the surroudding gaseous medium per

unit time and per unit area is

(60)

aMa)
- Vr-'{,)o.,.1  (o,, -- + ,* C,& Bo , . a. o c.

where • is the surface area of the droplet and dot

on Bessel and Hankel functions denote the differentia-

tion with respect to their respective arguments. In

case of low frequency range, % is approximately given by

- DC Rs (AO)B. 0,.1 NOCCj) CO(61)

Let 7mjand Ts denote the temperature of the gaseous

medium at infinity and the surface temperaturb of the

droplet, respectively. Then the temperature difference

"TU - Ts takes the following form

Te-Tn - -lo (62)

Then in low frequency range
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k- r,,-' (-T.4, (63)

The heat transfer coefficient h ~T -T3

corresponding to the first term of the expansion is

Sr'.- ,which is equal to Nusset No. ( zhr )

of 2 Z- agrees with the result for the heat transfer

to a sphere when Reynolds No. tends to zero and heat

exchange is by conduction only (9). At low frequencies,

it is noted from Eq. 64 that the temperature difference

"I-TS is proportional to 0 ( . I

I
I
I
I
I
I



"APPENDIX

The assumptions made for obtaining the coefficients are (1) the

acoustic damping length f is large compared with the region occupied

by the droplets, i.e. K W " .ŽL. . (2) The droplet is small

compared with the acoustic wavelength r0 << >,I

L•8. 6 3K ao HO'C1-Z

- C

I I 2

C 13 C(T



+ b'J Hb -9 -- 6•' tbb)

L~iNaCU~- L31 (Oi ) H e aHe -6[3 U6 eo, -- z. (. l-, L 6) -l (6)C-54 Ha L6)• -4 z c. -S o (-i,6)>] Ml e,,i (S +Z) 6", ý6) -Sa> (V>)

In obtaining D, and , we neglect the terms containing C and

since these terms are small compared with the others.

For 6 [ , , and Ib S2 , the expression of B, and 0,

can be reduced to the following forms:

Hi-t (b _) Now . ,I3
0 ' •a.
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TABLE I

Physical Constants of Water and Air at 20° C and Atmospheric Pressure

Used in Preparation of Figures I and 2 and in Equations 36, 37, 40, 41, and 52.

.5 9 c- e * -Ný ý 3 e . S Ol Z

Water 1.45 x 105 1.00 0.011 1.43 x 10-3 1.0 1.00336

Air 3.30 x 104 1.29xi0-3 0.141 0.187 0.24 1.4
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FIG. I THEORETICAL ATTENUATION PARAMETER AND
DISPLACEMENT RATIO FOR WATER DROPLETS IN AIR
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FIG. 2 THEORETICAL ATTENUATION PARAMETER
FOR AIR BUBBLES IN WATER


