602622

スタン

Division of Engineering BROWN UNIVERSITY PROVIDENCE, R. I.

THE ATTENUATION OF ACOUSTIC WAVES

IN A TWO-PHASE MEDIUM

BY

JOSEPH C. F. CHOW

Qualified requesters may obtain " copies of this report direct from DDC.

ABL / X96

Hercules Powder Company Allegany Ballistics Laboratory Cumberland. Maryland Contract NOrd 16640

May 1963

ABL/X96

Condensed Report on

THE ATTENUATION OF ACOUSTIC WAVES

IN A TWO-PHASE MEDIUM

By

Joseph C. F. Chow

Division of Engineering

Brown University

Providence, Rhode Island

May 1963

Copy No.

This research was supported by the Hercules Powder Company, Allegany Ballistics Laboratory, Cumberland, Maryland under Subcontract No. 85 To Prime Contract NOrd 16640 with the Bureau of Naval Weapons of the U. S. Navy

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Professor B. T. Chu and Professor R. A. Dobbins for their guidance during the investigation. The support of this project by the Hercules Powder Company, Allegany Ballistics Laboratory, Cumberland, Maryland is hereby acknowledged.

SUMMARY

A study is made of the attenuation of acoustic waves by a suspension of fluid droplets in a fluid medium. Special attention is given to the case of small droplets for which the effect of the surface tension is not negligible. Both the droplets and the surrounding fluid medium are considered to be viscous and thermal conducting. The droplets are allowed to execute large translational motion and to undergo a small deformation from a spherical shape. It is shown that the result of Epstein and Carhart on the attenuation of sound waves in a gas with the suspension of liquid droplets is applicable even when the displacement of the droplet is large compared to its radius. The effect of surface tension is to increase sound attenuation in two-phase medium by increasing the thermal dissipation. This effect is important in the suspension of gaseous bubbles in liquid for small droplets and is negligible in the case of a gaseous medium containing liquid droplets. The explicit forms for attenuation, the drag force on droplets, and the heat transfer rate between phases are given for the case which is applicable to a gas containing liquid and solid droplets. The expression for the attenuation which is applicable to the suspension of gaseous bubbles in a liquid is also given and is found to be completely dominated by the thermal dissipation.

iii

TABLE OF CONTENTS

			Page		
Ac	knowle	dgement	ii		
Summary					
Sy	mbols		v		
I.	I. Introduction				
II.	I. Formulation of the Problem				
III.	Attenu	lation	7		
	А.	• Attenuation Applicable to the Suspension of Liquid Droplets in a Gas			
	в.	Attenuation Applicable to the Suspension of Ganeous Bubbles in a Liquid			
IV	Gene	ral Discussion of the Results	9		
	А.	Attenuation			
	в.	Droplet Displacement	10		
	с.	Limiting Cases for Attenuation, Drag Force, and Heat Transfer Rate	12		
		1. Attenuation	12		
		2. Drag Force	13		
,		3. Heat Transfer Rate	14		
۸	sondir				

Appendix

References

Table I

Figures

SYMBOLS

ao	sound speed of undisturbed medium
Ā	viscous wave potential
C	surface tension per unit length
Си, Ср	specific heat at constant volume and constant pressure
e	internal energy per unit mass
f	frequency of the incident wave
Hn, Jn	Hankel and Bessel functions
KI, KE, K	wave numbers of acoustic, thermal and viscous waves
n	number of droplets per unit volume
$N = \frac{4}{3} + \frac{\eta}{\mu}$	
12	pressure
P_n , P_n^m	Legendre and associated Legendre functions
۲.	radius of the droplet
r	radial coordinate
R_1, R_2	principal radii of curvature at a given point of the droplet surface
Т	temperature
u	fluid velocity
Up	velocity of the mass center of the droplet
Χi	rectangular cartesian coordinate
X	attenuation coefficient
$\propto_{\mathbf{v}}$	coefficient of volume expansion

۲ ۰ - ۲	specific heat ratio
5p, 5g	displacements of the droplet and gaseous medium
η	coefficient of dilatational viscosity
θ	polar angle
κ	thermal conductivity
$\boldsymbol{\lambda}_{i}$	acoustic wavelength
μ , ν	dynamic and kinematic viscosities
5	radial displacement of a point on the surface of the droplet
$\pi_{ij} = -p\delta_{ij} + Z_{ij}$	stress tensor
e.	density
Φω	incident wave potential
φ ,, φ _z	acoustic and thermal potentials
arphi	azimuthal angle
Ψ	dissipation function
$\omega = 2\pi f$	angular frequency
R= K	thermal diffusivity
R= E	Prandtl number
()。	equilibrium quantities
R()	real part
()av.	time average
()'	variables inside the droplet
KC	kilocycle per second

 \mathbf{v}_1

I. INTRODUCTION

1

The attenuation of acoustic waves in two-phase medium has attracted attention repeatly since the publication of Sewell's paper^{(1)*}. Until present time, the analytical treatment^{(1), (2), (3)} is limited to the cases where the displacement of the droplet is small compared with the size of the droplet and the effect of the surface tension can be neglected. These assumptions were consistently mentioned as the possible causes of the discrepancies between the existing theories and the experimental results^{(4), (5), (6)}. In view of this, a generalized theory will be presented by introducing the surface tension effect and allowing the free movement of the droplets by formulating the basic equations with respect to a moving coordinate system fixed in the droplet. Both media are considered to be viscous and heat conducting and a small deformation of the droplet is allowed. Attention will be confined to the cases where the incident wavelength is much greater than the size of the droplet and there is no interaction between the droplets (low volume concentration).

The attenuation coefficient, drag force on the droplet, heat transfer rate between phases, and the ratio of the droplet displacement to the particle displacement of the surrounding fluid medium are obtained. The explicit expressions of these quantities are given for the case applicable to the suspension of liquid droplets in a gas and the comparison is made with Epstein and Carhart's theory. Also, the expression for the attenuation which is applicable to a liquid containing gas bubbles is obtained.

1

^{*} Numbers in paventheses refer to References at the end of the paper.

II. FORMULATION OF THE PROBLEM

2

$$\frac{\partial \rho}{\partial t} + \rho \frac{\partial u_{1}}{\partial x_{1}} = 0 \qquad (-1, 2, 3) \qquad (1)$$

$$\frac{\partial U_{i}}{\partial t} = \frac{1}{\rho_{0}} \frac{\partial \Pi_{i}}{\partial x_{i}} \qquad (2)$$

$$\rho_{\partial t}^{\partial e} = -\rho_{\partial X_{i}}^{\partial u_{i}} + \kappa \frac{\partial^{2} T}{\partial X_{i} \partial X_{i}}$$
(3)

Instead of referring these equations to axes fixed in space, they shall be referred to axes originating at the center of the droplet and moving with the velocity $U_p(t)$ in the χ_3 -direction. This transformation enables one to write the boundary conditions in a simpler form in the case of large oscillatory motion of the droplet when a spherical coordinate system is used. Retaining the same set of dependent variables, one find that the form of the governing equations and the incident potential $\Phi_{(k)}$ are <u>unchanged</u> by referring to the moving coordinate system. In this transformation the terms containing space and time derivatives remain the same because of the linearization. However, it should be noted that U_k still denotes the fluid velocity as observed in the coordinate system fixed in space.

The boundary conditions to be satisfied on the surface of the droplet are the equality of the normal and tangential velocity components, the temperature, the heat flux, and the normal and tangential stresses with due account of the effect of surface tension. For a small droplet, the effect of surfact tension is to limit the deformation of the droplet to small derivation from spherical shape. One may thus evaluate the boundary conditions at $\Upsilon = \Upsilon_0$. Let the superscript prime refer to the variables inside the droplet and Ξ (0, t) be the radial displacement of a point on the surface of the droplet. The boundary conditions are:

$$U_{r} = U_{r} \tag{4}$$

$$u_{e} = u_{e}^{\prime}$$
 (5)

$$\tau - \tau$$
 (6)

$$\kappa \frac{\partial T}{\partial r} = \kappa' \frac{\partial T}{\partial r}$$
(7)

$$\Pi_{r_{\Theta}} = \Pi_{r_{\Theta}}$$
(8)

$$\Pi_{rr} - \Pi_{rr} + \frac{c}{r_{r}^{2}} \left[2 - 2\xi - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial \xi}{\partial \theta}) \right]$$
(9)

the second term in the right hand side of Eq. 9 is the surface force, $C(\frac{1}{R_1} + \frac{1}{R_2})$. It is obtained by assuming the shape of the droplet is slightly different from the spherical one $(\frac{5}{T_0} << 1)$. A workable form of Eq. 9 can be obtained by taking the derivative with respect to time and setting $\frac{35}{2} = Ur|_{r=r_0} - U_p \cos \theta$

The mathematical forms of the basic equations and initial conditions are same as Epstein and Carhart⁽³⁾ although the independent variables have a different physical meaning. Furthermore, except for $\frac{c}{\Gamma_0^2}$ term in Eq. 9, the boundary conditions are also identical to Epstein and Carhart⁽³⁾. Indeed, the problem may be solved in a similar way. The calculation is, of course, long and tedious. For clarity sake, the detailed calculation will not be reproduced here. However, the method of solution is outlined below and the principal results are given.

The solution of our boundary value problem can be expressed in terms of three potentials, namely acoustic ϕ_i , thermal ϕ_z , and viscous \overrightarrow{A} . Once these three potentials are known, the various physical quantities can be calculated.

$$\overrightarrow{\mathbf{U}} = -\nabla \mathbf{\Phi} + \nabla \mathbf{X} \overrightarrow{\mathbf{A}} \qquad \mathbf{A}_{\mathbf{r}} = \mathbf{A}_{\mathbf{0}} = 0 \tag{10}$$

$$U_r = -\frac{\partial \Phi}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A)$$
(11)

$$U_{0} = -\frac{1}{7} \frac{\partial \Phi}{\partial \theta} - \frac{1}{7} \frac{\partial}{\partial r} (rA)$$
(12)

$$T - \alpha_1(\phi_{(1)} + \phi_1) + \alpha_2 \phi_2 \tag{13}$$

$$P = -i\omega \rho_{o} \left(\gamma_{i}(\varphi_{ii} + \varphi_{i}) + \delta_{z} \varphi_{z} \right)$$
(14)

$$\Pi_{r_0} = \mu \left\{ -\frac{\partial}{\partial \Theta} \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} - \frac{\Phi}{r^2} \right) - \left(\frac{\partial^2 A}{\partial r^2} - \frac{2 A}{r^2} \right) + \frac{1}{r^2} \frac{\partial}{\partial \Theta} \left[\frac{1}{\sin \Theta} \frac{\partial}{\partial \Theta} \left(A \sin \Theta \right) \right] \right\}$$
(15)

$$\Pi_{rr} - \mu \kappa^{2} \left[\beta_{i} (\varphi_{ii} + \varphi_{i}) + \beta_{2} \varphi_{2} \right]$$

$$+ z \mu \left\{ - \frac{\partial^{2} \varphi}{\partial r^{2}} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \left(- \frac{\varphi_{2}}{r^{2}} + \frac{1}{r} \frac{\partial A}{\partial r} \right) \right] \right\}$$
(16)

$$U_{\varphi} = \Pi_{r\varphi} = 0 \tag{17}$$

where $\phi = \phi_{u_1} + \phi_1 + \phi_2$ and $\alpha_1, \alpha_2, \beta_1, \beta_2, \xi_1, \xi_2$ are functions of the properties of the two-phase medium and the frequency of the incident wave (see Eq. 18). Since the main interest is the attenuation due to the presence of

small droplets, it is assumed that the attenuation of the incident wave by viscosity and heat conduction is small in the fluid medium in the absence of droplets. In other words, the study is limited to the case where the amplitude of the incident wave decreases relatively little over the region occupied by the droplets ($l_1 = \frac{za_0}{\omega} \left(\frac{N P \omega}{a_0^2} + \frac{R \omega}{a_0^2} (t-1) \right)^{-1} >> 2r_0$). This means that parameters $\frac{N P \omega}{a_0^2} \approx \frac{R \omega}{a_0^2} << 1$. In such cases, $\alpha_{1,} \alpha_{2}$, $\beta_{1,} \beta_{2}$, $f_{1,}$ and f_{2} are given approximately as follows. $\alpha_{1} = -\frac{i \omega T_0 \alpha_V}{\alpha_0^2}$, $\beta_2 = i - \frac{3}{2} N R$, $f_1 = i + \frac{i N P \omega}{a_0^2}$, (18) $\beta_1 = 1 + i \frac{3}{2} \frac{N \mu \omega}{a_0^2}$, $\beta_2 = i - \frac{3}{2} N R$, $f_1 = i + \frac{i N P \omega}{a_0^2}$,

The equations governing φ_i , φ_z , and A are,

$$\left(\nabla^2 + \mathbf{K}_i^2\right) \mathbf{\Phi}_i \quad - \quad 0 \tag{19}$$

$$\left(\nabla^2 + K_z^2\right) \Phi_z = 0 \tag{20}$$

$$(\nabla^{z} + \kappa^{z}) A = 0$$
 (21)

where

$$K_{i}^{2} = \frac{\omega^{2}}{\alpha_{i}^{2}} \left\{ 1 + i \left[\frac{NPW}{\alpha_{i}^{2}} + \frac{\Omega \omega}{\alpha_{i}^{2}} (s - 1) \right] \right\}, \quad K_{i} = \frac{\omega}{\alpha_{o}} \left\{ 1 + i \frac{1}{2} \left[\frac{NPW}{\alpha_{o}^{2}} + \frac{\Omega \omega}{\alpha_{o}^{2}} (s - 1) \right] \right\}$$

$$K_{i}^{2} = \frac{i\omega}{12}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2\Omega} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac{\omega}{2D} \right)^{\frac{1}{2}}, \qquad \qquad K_{i}^{2} = (1 + i) \left(\frac$$

and the solution of the system satisfying the initial and boundary conditions

(including the surface tension) can be written in series form:

$$\mathbf{q}_{ij} = \sum_{n=0}^{\infty} i^{n} (2n+i) \operatorname{Tr}(k_{i}r) \operatorname{Fr}(\cos \theta) \operatorname{exp}(-i\omega t)$$
(22)

$$f_{i} = \sum_{n=0}^{\infty} i^{n} (2n+1) H_{n}(\kappa_{i} r) F_{n} (cose) B_{n} exp(-iwt)$$
(23)

$$\Phi_2 = \sum_{n=0}^{\infty} i^n (2n+1) \operatorname{Hn}(k_2 r) \operatorname{Pn}(\cos \theta) \operatorname{Cn} \exp(-i\omega t)$$
(24)

$$A = \sum_{n=0}^{\infty} i^{n} (2n+i) H_{n}(Kr) P_{n}^{I}(\cos\theta) D_{n} \exp(-i\omega t)$$
 (25)

$$\Phi_{i}^{\prime} = \sum_{n=0}^{\infty} i^{n} (2n+i) J_{n} (k'r) P_{n} (\cos \theta) B_{n} \exp(-i\omega t)$$
 (26)

$$\Phi_{n=0}^{\prime} = \sum_{n=0}^{n=\infty} i^{n} (2n+1) \operatorname{Jn} (k_{2}^{\prime}r) \operatorname{Pn} (\cos \theta) \operatorname{C}_{n}^{\prime} \exp(-i\omega t) \qquad (27)$$

$$A' = \sum_{n=0}^{\infty} i^{(2n+1)} J_{n}(k'r) P_{n}^{T}(\cos\theta) D_{n}^{'} exp(-i\omegat)$$
(28)

where J_n , H_n , P_n , and $P_n^{\mathbf{x}}$ are Bessel, Hankel, Legendre and associated Legendre (order 1) functions respectively. The coefficients B_n , C_n , D_n , B'_n , C'_n and D'_n are determined from the six boundary conditions given by Eqs. 4 to 9. The values of these coefficients for n=0 and n=1 are given in Appendix. It is sufficient to consider first two terms of the expansion because of the rapid convergence of the series for $\frac{r_0}{\lambda_1} << 1$. If α_1 denotes $\frac{2\pi f r_0}{\lambda_1} (-r_0 \kappa_1 << 1)$ each term in the series after n-1 is an order α_1^2 times smaller than the preceeding. In terms of the small parameter α_1 , the relative order of magnitude of the coefficients are

$$B_{0} \sim a_{1}^{3}, \quad B_{0}^{1} \sim \delta, \quad C_{0} \sim a_{1}^{2}$$

$$C_{0}^{1} \sim a_{1}^{2}, \quad B_{1} \sim a_{1}^{3}, \quad B_{1}^{1} \sim \delta$$

$$C_{1} \sim a_{1}^{3}, \quad C_{1}^{1} \sim a_{1}^{3}, \quad D_{1} \sim a_{1}, \quad (29)$$

$$D_{1}^{1} \sim a_{1}^{1}$$

where $\delta = \frac{\beta_0}{\beta_0^4}$. The physical interpretation of these coefficients is that for a given incident wave of unit amplitude these coefficients give the magnitude of amplitudes for reflected waves outside and transmitted waves inside the droplet.

The deformation of the droplet
$$\xi$$
 is
 $\xi = \sum_{n=0}^{\infty} A_n P_n(\cos \theta) \exp_n - i\omega t$ (30)
where Ancan be determined from the relation $\frac{\partial \xi}{\partial t} = U_r|_{r=r_0} - U_p \cos \theta$
Hence $n = 0$ corresponds the pulsation of the droplet and $n = 1$ gives the
translational motion of the droplet as a whole. Therefore, the term due to
surface tension is not present for $n = 1$. Terms with $n > 1$ correspond to the
change of the shape of the droplet and describe the higher modes of deformation.

III. ATTENUATION

When a sound wave propagates through a medium, its intensity decreases in proportion to $\exp(-\alpha z)$ where α is the attenuation coefficient and x is the distance traversed by the wave. When there are n droplets per unit volume, the total energy loss per unit volume per unit time will be $n\frac{dE}{dt}$, where $\frac{dE}{dt}$ is the average time rate of the energy dissipation per single droplet. The expression of α is

$$\alpha = \frac{n}{E_{o}} \frac{dE}{dt}$$
(31)

where $E_{\bullet} = \frac{1}{2} \rho_{\bullet} a_{\bullet} \overline{U}_{(i)}$, the intensity of the incident wave.

Let $\biguplus_{\mathcal{K}}$ be the viscous and thermal dissipation functions per unit volume, respectively. Then the energy dissipation is

$$\frac{dE}{dt} = \int (\Psi_{\mu} + \Psi_{k})_{au} d\nabla \qquad (32)$$
where $\Psi_{\mu} = \frac{\partial U_{i}}{\partial X_{i}} T_{ij}$ and $\Psi_{k} = \frac{K}{T_{o}} (\nabla T)^{2}$. Integrating Eq. 32

over a volume surrounding the droplets, we obtain

$$\frac{dE}{dt} = -2\pi \rho_0 a_0 \sum_{n=0}^{\infty} (2n+1) R (B_n + B_n B_n^*)$$
(33)

$$\alpha = -\frac{4\pi n}{\kappa_{i}^{2}} \sum_{n=0}^{\infty} (2n+i) R (B_{n} + B_{n} B_{n}^{*})$$
(34)

where B_n^* is complex conjugate of B_n .

Let $\bigotimes_{\mathcal{H}}$, $\bigotimes_{\mathcal{H}}$, and $\bigtriangleup_{\mathcal{H}}$ be the attenuation coefficients due to the presence of viscosity, heat conduction, and surface tension, respectively. Neglecting terms of n > 1, (they are small if $\alpha_1 << 1$), the expression for \bigotimes can be written as the combination of these three terms.

$$\alpha = \alpha_{\mu} + \alpha_{\kappa} + \Delta \alpha_{\kappa} \tag{35}$$

A. Attenuation Applicable to the Suspension of Liquid Droplets in a Gas, i.e. $\delta <<1$, $\delta <<1$, $\pi <<1$.

The explicit attenuation coefficient Δ_{μ}, Δ_{k} and Δ_{k} are $\Delta_{\mu} = \frac{9}{2} \in \left(\frac{\nu}{a_{o}r_{o}^{2}}\right) \frac{16(1+4)4^{4}}{16y^{4}+72\delta y^{3}+81\delta(1+2y+2y^{2})} (36)$ $\Delta_{k} = 3 \in \left(\frac{\nu}{a_{o}r_{o}^{2}}\right) \frac{4(k-1)(1+k^{2}y)p_{e}y^{4}}{4p_{e}^{2}y^{4}+12(\delta q_{e})p_{e}^{2}y^{3}+9(\delta q_{e})} (37)$ $\Delta_{k} = \Delta_{k} \sum_{k=1}^{\infty} \left(\frac{2\zeta}{3r_{o}R^{2}}a^{\frac{1}{2}}\right)^{n} (38)$

where
$$P_r = \frac{R}{K}$$
, $\delta = \frac{R}{R}$, $\sigma = \frac{M}{M}$, $\chi = \frac{K}{K}$, $\epsilon = volume$

fraction of the droplets.

B. Attenuation Applicable to the Suspension of Gaseous Bubbles in a Liquid, i.e. $\delta \gg 1$, $\delta \gg 1$, $\infty \gg 1$.

The explicit attenuation coefficient \bigotimes_{μ} , \bigotimes_{κ} , and \bigtriangleup_{κ} are

$$\Delta X_{k} = X_{k} \sum_{n=1}^{\infty} \left(\frac{2C}{3r_{o} \rho_{o}^{\dagger} d_{o}^{2}} \right)^{n}$$
(41)

IV. GENERAL DISCUSSION OF THE RESULTS

A. Attenuation

The effect of surface tension is to alter the thermal dissipation resulting from heat conduction, while no effect on viscous dissipation is produced. This effect is found to be negligible in the case of the suspension of waterdroplets in air, i.e. $\frac{c}{r_o \rho_o^2 q_o^2} <<1$. Hence, if the droplets differ only slightly from the spherical shape in the course of motion, Epstein and Carhart's results for the sound attenuation in a gas with the suspension of liquid droplets apply even if the displacement of the droplet is large compared to its radius. On the other hand, for water containing air bubbles, the presence of the surface tension is to increase the thermal attenuation by a factor of 1.5 for $r_o = 10^{-4}$ Cm. (see Fig. 1). This effect becomes less pronounced as the size of the droplets increase.

For air containing waterdroplets, the ratio of thermal attenuation to the viscous attenuation is

$$\frac{\alpha_{\mu}}{\alpha_{\mu}} \xrightarrow{\gamma \to 0} (r-i) \xrightarrow{3}{2} P_{r} \left(\frac{c_{\mu}}{c_{\mu}}\right)^{2} \sim 7.2 \qquad (42)$$

$$\frac{\alpha_{k}}{\alpha_{p}} \xrightarrow{\gamma \to \infty} (r-1) \frac{2}{3} P_{r}^{-\frac{1}{2}} \sim 0.3$$
(43)

It is seen that the thermal attenuation is predominant at low frequency range while the viscous attenuation is more important at higher frequency range (see Fig. 2).

For the suspension of air bubbles in water, it is seen from Eqs. 39 and 40 that the thermal attenuation completely dominates the viscous attenuation for all values of $\frac{1}{2}$ and $\frac{1}{2}$, $\left(\frac{\frac{1}{2}}{\frac{1}{2}} \sim 10^{5}\right)$. This attenuation is caused by thermal dissipation inside the bubbles and is approximately giver $\frac{1}{2}$

B• Droplet Displacement

The equation of motion of the droplet is

$$m_{p}\frac{du_{p}}{dt} = \int (\Pi_{rr}\cos\theta - \Pi_{r\theta}\sin\theta) ds \qquad (46)$$

where m_p and S are the mass and surface area of the droplet respectively. \prod_{vr} and $\prod_{v\Theta}$ are given by Eqs. 15 and 16.

Evaluating the integral for n - 1, and dropping the terms of $O(\alpha_1^2)$ and higher, one obtains expressions for the drag force F_D and the amplitude of the droplet velocity \overline{u}_p :

$$F_{D} = \frac{4}{3}\pi \rho r^{2} \omega \left[-\alpha_{1} + 3i\alpha_{1}^{2}B_{1} + 6H_{1}(b)D_{1} \right]$$
(47)

$$\overline{u_{p}} = \delta r_{0}^{-1} i \left[-\alpha_{1} + 3 l \alpha_{1}^{2} B_{1} + 6 H_{1}(b) D_{1} \right]$$
(48)

where $b = K r_0$. Eq. 48 can be reduced to the following form which is applicable to air containing water droplets.

$$\overline{U_{p}} = \frac{-3ik_{1}\delta H_{z}(b)}{3\delta H_{z}(b) + 2(\delta - i) H_{0}(b)}$$
(49)

The above expression can also be obtained by calculating the surface velocity of the droplet.

$$\overline{U_{p}} = (\overline{U_{r}}\cos\theta - \overline{U_{\theta}}\sin\theta)_{r=r_{\theta}} = \frac{3L}{r_{\theta}} \left[-\frac{\alpha_{r}}{3} + B_{r}H_{r}(\alpha_{r})(2\cos^{2}\theta) \right]$$
(50)
$$- \sin^{2}\theta + D_{r}H_{r}(b)(2\cos^{2}\theta - \sin^{2}\theta) + D_{r}bH_{\theta}(b)\sin^{2}\theta \right]$$

This expression is identical to Eq. 49 upon substitution for B_1 and D_1 .

The ratio of the droplet displacement \mathcal{F}_{p} to the radius of the droplet is

$$\frac{S_{p}}{r_{0}} = \frac{U_{ull}}{\omega r_{0}} = \frac{3SH_{2}(b)}{3SH_{2}(b) + 2(S-1)H_{0}(b)}$$
(51)

In the limit of audibility, the range of the sound intensity level⁽⁷⁾ is from 0 to |BEdb(decibele) at | KC based on threshold sound pressure of 2×10^{-4} dyne per sq. cm. This corresponds to sound intensity E. of 10^{-9} to 10^{-9} erg. per sec. per sq. cm. 12

and a velocity amplitude of $\eta \times 10^{-5}$ to $\eta 0$ cm. per sec. in air. For $\omega = 1$ KC and droplet size of 2 microns $(\eta = 6 \times 10^{-3})$, it is found that in the case of the suspension of the water droplets in air, the droplet remains relatively motionless $(\frac{5p}{16} \le \frac{1}{5})$ at an intensity level of 52 dband $\frac{5p}{16} \sim 2$ at 72 db.

The ratio of the droplet displacement to that of the surrounding medium is

$$\frac{5_{e}}{5_{g}} = \frac{3\delta H_{2}(b)}{3\delta H_{2}(b) + 2(\delta - 1) H_{0}(b)}$$
(52)

$$\frac{3q}{3q} - 1 - \frac{2(s-1)H_{0}(b)}{3sH_{2}(b)} + O(y^{3}) + \cdots + y <<1$$
(53)

This ratio is plotted as a function $\frac{4}{3}$ (see Fig. 2) for air containing water droplets. $\frac{5_{p}}{5_{q}}$ approaches to unity as $\frac{4}{3}$ approaches to zero which agrees with our intuition that at low frequencies there is little relative motion between the droplet and the surrounding gas. It approaches $\frac{3}{2}\frac{P_{0}}{P_{0}+2}$ as $\frac{4}{3}\frac{P_{0}}{2}$. This agrees with the classical result for a sphere set in motion by an oscillating non-viscous fluid ⁽⁸⁾.

C. Limiting Cases for Attenuation, Drag Force, and Heat Transfer Rate

> 1. Attenuation: In case of low frequencies (y << 1), the attenuation coefficients \propto_{μ} and \propto_{k} for $\delta << 1$

are approximately given by

$$\propto_{\mu} - N \frac{9 4^{4}}{8 \delta} \left[1 - 4 + O(4^{2}) + \cdots \right]$$
 (54)

$$\propto_{k} - N(r-1) \frac{P_{r} y^{4}}{Li^{2}} \left(1 + P_{r}^{\pm} y + O(y^{3}) + \cdots \right)$$
(55)

where $N = \frac{\epsilon_{12}}{\alpha_{0} r_{12}^{2}}$, and $L = \delta \frac{c_{12}}{c_{11}}$.

2. Drag Force: The force acting on the droplet is given by Eq. 47 and can be reduced to the following form which is applicable to the suspension of water droplets in air.

$$F_{D} = -4\pi \rho r^{3} \omega k_{1} = \frac{H_{2}(b)}{38H_{2}(b) + 2(6-1)H_{0}(b)}$$
(56)

For low frequencies ($\mathcal{Y} \leq 1$), \mathcal{F}_{D} is approximately given by

$$F_{D} = 6\pi \mu r_{0} \left(\frac{-\overline{u}_{w} z b^{2}}{9 \delta} \right) + o(y^{5}) + \cdots$$
 (57)

On the other hand, for low frequencies

$$\overline{U}_{(i)} - \overline{U}_{p} - \frac{-\overline{U}_{(i)} - 2b^{2}}{9\delta} + O(y^{5}) + \cdots$$
(58)

Hence

$$F_{p} = 6\pi\mu r_{0}(\overline{u}_{i}, -\overline{u}_{p}) + o(y^{5}) + \dots$$
 (59)

It is recognized immediately that the first term of the expression for $F_{\mathcal{D}}$ is identical to Stoke's formula of a sphere moving with a velocity of $\overline{U_{\mathcal{U}}} - \overline{U_{\mathcal{P}}}$ in a viscous medium. Furthermore, the first term of the coefficient of viscous attenuation given by Eq. 54 agrees with the dissipation function calculated on the assumption of validity of Stoke's formula.

3. Heat Transfer Rate: The heat transfer rate between the droplet and the surrounding gaseous medium per unit time and per unit area is

$$g = \frac{1}{5} \int k \frac{\partial T}{\partial r} \Big|_{r=r_0} ds$$

$$= k r_0^{-1} \Big\{ \alpha_1 \Big[\alpha_1 f_0(\alpha_1) + \alpha_1 H_0(\alpha_1) B_0 \Big] + \alpha_2 \alpha_2 H_0(\alpha_2) C_0 \Big\}$$
(60)

where S is the surface area of the droplet and dot on Bessel and Hankel functions denote the differentiation with respect to their respective arguments. In case of low frequency range, Q is approximately given by $Q = \kappa r_{\bullet}^{-1} \left[-\alpha_{1} \frac{q_{1}^{2}}{3} + i\alpha_{1} \alpha_{1} H_{\bullet}(\alpha_{1}) B_{0} + i\alpha_{2} \alpha_{1} H_{\bullet}(\alpha_{2}) C_{0} \right]$

$$- \alpha_{1} H_{0} (\alpha_{1}) B_{0} - \alpha_{2} H_{0} (\alpha_{2}) C_{0}$$

$$(61)$$

Let $T_{(i)}$ and T_3 denote the temperature of the gaseous medium at infinity and the surface temperature of the droplet, respectively. Then the temperature difference $T_{(i)} - T_3$ takes the following form

$$T_{ii} - T_3 = -X_i H_0(a_i) B_0 - X_2 H_0(a_2) C_0$$
 (62)

Then in low frequency range

$$q = Kr_{0}^{-1}(T_{u_{3}} - T_{s}) + O(y^{s}) + \cdots$$
 (63)

The heat transfer coefficient $h_1 \left(=\frac{T}{T_{(1)}-T_3}\right)$ corresponding to the first term of the expansion is $K r_5^{-1}$, which is equal to Nusset No. $\left(=\frac{2h r_5}{K}\right)$ of 2 z agrees with the result for the heat transfer to a sphere when Reynolds No. tends to zero and heat exchange is by conduction only ⁽⁹⁾. At low frequencies, it is noted from Eq. 64 that the temperature difference $T_{(1)} = T_5$ is proportional to $O(\omega^2)$.

APPENDIX

The assumptions made for obtaining the coefficients are (1) the acoustic damping length L_1 is large compared with the region occupied by the droplets, i.e. $k_1 = \frac{\omega}{a_0}$, $k'_1 = \frac{\omega}{a'_0}$. (2) The droplet is small compared with the acoustic wavelength $r_0 << \lambda_1$.

$$\begin{split} n &= 0 \\ B_{0} &= -\frac{i \frac{q^{2}}{3} \left(\delta (\frac{q_{1}}{a_{1}})^{2} - 1 \right) + i \alpha_{1} \frac{\alpha_{1}}{\alpha_{0}} \left(\delta \frac{q_{1}}{a_{1}} - 1 \right)^{2} - \frac{\alpha_{2} H_{1}(\alpha_{3})}{H_{0}(\alpha_{0})(1 - \chi Z)}}{1 - \frac{2C}{3 r_{0}} \rho_{0}^{1} \alpha_{0}^{2}} \\ B_{0}^{1} &= \delta \left(1 - \frac{2C}{3 r_{0}} \rho_{0}^{1} \alpha_{0}^{2}} \right)^{-1} \\ C_{0}^{-} &= \frac{\alpha_{0}}{\alpha_{0}} \left(\frac{\delta \frac{q_{1}}{\alpha_{1}} - 1}{H_{0}(\alpha_{0})(1 - \chi Z)} \left(1 - \frac{2C}{3 r_{0}} \rho_{0}^{1} \alpha_{0}^{2}} \right)^{-1} \\ C_{0}^{-} &= \frac{\alpha_{0}}{M_{0}} \left(\frac{\delta \frac{q_{1}}{\alpha_{0}} - 1}{A_{0}(\alpha_{0})} \right) \left(1 - \frac{2C}{3 r_{0}} \rho_{0}^{1} \alpha_{0}^{2}} \right)^{-1} \\ C_{0}^{-} &= \frac{\alpha_{0}}{M_{0}} \left(\frac{\delta \frac{q_{1}}{\alpha_{0}} - 1}{A_{0}^{2} J_{1}(\alpha_{0})} - C_{0} \right) \\ n - 1 \\ B_{1}^{-} &= i - \frac{\alpha_{1}}{3} \left(1 - \delta \right) G \\ B_{1}^{1} &= -\frac{\alpha_{1}}{\alpha_{1}} G^{1} \\ C_{1}^{-} &= -\frac{\alpha_{1}}{3 \kappa_{2}} \frac{(2 + \chi - 3 \frac{\alpha_{1}}{\alpha_{1}} G^{1} + 2(1 - \chi)(1 - \delta)G] J_{1}(\alpha_{1}) + (\frac{1}{2} \frac{1}{G^{1} - 1} - (1 - \delta)G] \alpha_{2} J_{0}(\alpha_{2})}{2(\chi - 1) J_{1}(\alpha_{0}) H_{1}(\alpha_{0}) + \alpha_{2}^{1} J_{0}(\alpha_{2}) H_{1}(\alpha_{0}) - \chi J_{1}(\alpha_{0})(\alpha_{0} - \alpha_{0}) \\ C_{1}^{1} &= -\frac{\alpha_{1}}{3 \kappa_{2}} \frac{\alpha_{1}}{2(\chi - 1) J_{1}(\alpha_{0}) H_{1}(\alpha_{0}) + \alpha_{2}^{1} J_{0}(\alpha_{0}) H_{1}(\alpha_{0}) - \chi J_{1}(\alpha_{0})(\alpha_{0} - \alpha_{0}) \\ C_{1}^{1} &= -\frac{\alpha_{1}}{3 \kappa_{2}} \frac{\alpha_{1}}{2(\chi - 1) J_{1}(\alpha_{0}) H_{1}(\alpha_{0}) + \alpha_{2}^{1} J_{0}(\alpha_{0}) H_{1}(\alpha_{0}) - \chi J_{1}(\alpha_{0})(\alpha_{0} - \alpha_{0}) \\ \end{array}$$

લ ૮ ૮ az)

$$D_{i} = \frac{a_{i}}{b} (\delta - i) M \left\{ (3\delta H_{2}(b) + 2(\delta - i) H_{0}(b)) M - \varepsilon (\delta + 2) b H_{i}(b) J_{z}(b) \right\}^{-1}$$

$$D_{i}^{-a_{i}} - a_{i} \left(1 + S + \frac{3iSB_{i}}{2i} \right) + D_{i} \left(2b H_{0}(b) - 6S H_{i}(b) \right)$$

$$2b' J_{0}(b') - 6J_{i}(b')$$

where
$$\delta = \frac{R_{e}}{P_{e}}$$
, $\delta = \frac{\mu}{\mu}$, $\chi = \frac{K}{K_{1}}$, $a_{1} = K_{1}T_{5}$, $a_{2} = K_{2}T_{0}$,
 $b = KT_{0}$, $Z = \frac{J_{1}(a_{2}^{1}) a_{2} H_{1}(a_{2})}{a_{2}^{1} J_{1}(a_{2}^{1}) H_{0}(a_{2}^{1})}$
 $G = \frac{H_{2}(b)[b'J_{1}(b') - 2(1-\delta)J_{2}(b')] - \delta H_{1}(b)J_{2}(b')}{[3\delta H_{2}(b) + 2(\delta - 1) H_{0}(b)]M - \delta(\delta + 2)bH_{1}(b)J_{2}(b')}$
 $G' = 3\delta G$, $M = b'J_{1}(b') - 2(1-\delta)J_{2}(b)$

In obtaining D_1 and D_1^{\dagger} , we neglect the terms containing C_1 and C_1^{\dagger} , since these terms are small compared with the others.

For $\delta \leq 1$, $\delta <<1$, and $|b| \leq 2$, the expression of B, and D, can be reduced to the following forms:

$$B_{i} = i a_{i}^{3} (1 - \delta) \frac{H_{2}(b)}{3\delta H_{2}(b) + 2(\delta - 1) H_{0}(b)}, D_{i} = \frac{3i B_{i}}{a_{i}^{2} b H_{2}(b)}$$

REFERENCES

- Sewell, C. J. T. "Extinction of Sound in a Viscous Atmosphere by Small Obstacles of Cylindrical and Spherical Form", Phil Trans. Roy. Soc. London, (A) 2 10, 239, (1910).
- 2. Epstein, P. S. "On the Absorption of Sound Waves in Suspensions and Emulsions", Theodore von Karmon Ann. Volume, 162, (1941).
- 3. Epstein, P. S. and Carhart, R. R. "The Absorption of Sound in Suspensions and Emulsions. I. Water Fog in Air", J. Acoust. Soc. Am. 25, 552, (1953).
- 4. Laidler, T. J. and Richardson, E. G. "The Absorption of Supersonics in Smokes", J. Acoust. Soc. Am. 9, 217, (1938).
- 5. Hartman, G. K. and Focke, A. B. "Absorption of Supersonic Sound Waves in Water and in Aqueous Suspension", Phys. Rev. 57, 221, (1940).
- 6. Allinson, P. A. and Richardson, E. G. "The Propagation of Ultrasonics of Liquid Globules in Another Liquid", Proc. Phys. Soc. 72 5, No. 467, 833, (1958).
- 7. McLachlan, N. W. Noise, Oxford University Press, 1935.
- 8. Lamb, H. "Hydrodynamics", Dover publication, 6th ed., p. 514.
- 9. Eckert, E. R. G. and Drake, R. M., Jr. Heat and Mass Transfer, 2nd ed., 250, McGraw-Hill Book Company, Inc., New York, 1959.

TABLE I

Physical Constants of Water and Air at 20[°] C and Atmospheric Pressure Used in Preparation of Figures 1 and 2 and in Equations 36, 37, 40, 41, and 52.

	ao <u>Cm.</u> sec	Po gr	V cm ² v sec	12 cm ² sec	Co <u>cal</u>	8
Water	1.45×10^5	1.00	0.011	1.43×10^{-3}	1.0	1.00 ³³⁶
Air	3.30×10^4	1.29×10 ⁻³	0.141	0.187	0.24	1.4

