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Chapter VII

NONLINEAR TRANSFORMATIONS OF THE NORMAL RANDOM PROCESS

(?ower spectra)

1. General Solution, Obtained by Correlation Method.

The normal random process occupies a central place in the majority of the practi- ,.

cal applications of the theory being discussed here. Therefore a systematic expo-

sition is in order, of the transformations undergone by a normal random process in

its passage through radio-equipment components of various types.

It has been noted above, that the problem of the passage of a nonmal random

process through linear systems is a comparatively simple one, since the process re-

tains its normal distribution at the output; only the correlation function of the

process, and the power spectrum corresponding to it, are subject to change. All

formulas necessw to the computations are contained in Section 2, Ch.VI. Therefore,

the principal interest is presented by the problem of the nonlinear transformation

of a normal random process.

In the present chapter Lne indicated problem will be restricted to a stv':r only g

of the correlation function and power spectrum of a process at the output of a non-

linear system. For this we -shall employ the general methods indicated in Section 6,

Cho VI.

Let, at the input of a nonlinear system, there act a random process constituting

a sum of the determined process (e.g., signal) S(t) and a stationary normal random

process with a zero mean value (e.g., fluctuation noises). In accordance with (5.96)%

the two-dimensional distribution function of this process has the form of

, + 01r@,)-2R (I0.) Ux-42)
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where a i = S(t), a 2 = S(t +t), while R R(r) and a, is the correlation coeffici.ent

and dispersion of the stationary portion of the randon process.
4

Substituting (7.1) into (6.5), we obtain the expression for the correlation

function of the random process at the output of a nonlinear system with a character-

istic of y = f(x), at the input of which there acts a determined signal in sum with

a stationary normal random process

-=-Z '(7.2)

a1,, - 2k 0, - U1 Ix,- u-) + x1 - a,(2

X e 2.k- dxldx2.

Effecting in (7.2) the substitution of x1 forox, and of x for x2 , and adopt-

ing the designations

we reduce the expression for the correlation function to the form of

'"2 -I _R IF- O(X.) f (*2) X

(t_- .,- -2R ,-., ) (,-., ) + _:B.:) (7.3)
X e "(I- dxldx.if

For computation of the double integral in (7.3) we shall employ the first of

the methods indicated in Section 6, Ch, VI.

In the case under discussion, the one-dimensional distribution functions cor-

responding to w2 (Ix 1 ,rx 2 , 2') are equal to

6- go),
W- c(X) e 2

.I (7-

with the variables x, and x2 covering the range of from -a to + Co If the functions'

(7.4) are adopted as weighting functions, then, as is known (of. the book of V. L.

Gonchareov cited on p. 241), the a;,,regates of orthogonal polynomials corresponding
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to them are the Hermi te polynomiale Hn( - ) and n(X- 2) (cf. Appendix VII).

-" An expansion of (6.57) for a two-dimensional normal distribution function has the

following form:

i9 " (z, -- a'--2R (x --.) (x,.-- ,) + (r, -. ,)'

(X -' (t- .H 1) 1 )' 2 ... )

We substitute the series thus obtained under the integral sign in expression

(7.3) - -

-- Gx W - .,4 =x, x - a)
X2e 2 d=,dx.

Changing the order of suiriation and integration, and noting that the "variables

'2 21

of integration are thereby separated, we find

OC a)H X_ 1) i

£ B(.t(= - 3t (x)H (x--,)e- 2 dx,-(7.)

Then from (7.6) we obtain the desired expression for the correlation function of

a random process at the output of a nonlinear system

'B ( )= (OX2) (7.Xs)1 H X2*2

a-O

where Clnand c2 n1 are obtained from cn, it in (7.7) in place of 'K are respectively4

* Expension (7.5) may be obtained without difficulty if, with the employment of in- A:i

r" tegral representation of a two-dimensional normal dltluinfnto nterms of
a two-dimensional characteristic function and, with the expansion into~ a series of

expression, the integrals are expressed in terms of Hermite polynomials.

ofthe oratinare utiper oeparaied, ae pidtothvrabLsiteitga

n! (is . x 'e d



assumed OL and c . Since in the general case correlation function (7.8) dependsL

on tiile, therefore, before calculating the power spectrum, it is necessary to average

this correlation function over time

B'(C)==Ii- S B(;,t)dt. (7.9)

2

Since in the series (7.8) only the coefficients Cin and C2n are functionls of

time,

* R" (7.10)

4-0

where r-i

Subjecting (7.10) to a Fourier transformation, we-obtain an explicit expression

for the power spectrum of a" normal random process which has passed throligh a non-)
linear system

F(w)--4 B" (t)coswz-=__4E~ *(_ . ,,, .%,,
F =!d ( co$w?. (7.12)

2. Case of Stationary cd Narrow-band Input Prozess.

Let the determined portion of a normal process be lacking. Then w- 0, and

from (7.8) we obtain the expression for the correlation function of the process at

the output of a nonlinear system upon the input of which there acts a stationary

normal random process (e.g.. noise in the absence of a signal)

(7.13)

wher ~ S(@X)~x~e'dx.(7.14)
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The first term in the series (7.13) corresponds to the direct component (dis-

rr crete portion of the spectrum), and the sum of the remaining terms, to the continuous

portion of the power spectrum of a random process at the output of a linear system.

Let the power spectrum of a stationary normal process be a narrow-band one, .e.,2
let it be concentrated in a relatively narrow frequency band about the high frequency

, at which spectral density is at its maximum and with respect to which the

spectrum may be considered symmetrical. An example of such a process may be found

in noise at the output of a linear system, the band of which is much smaller than its

resonance frequency. In accordance with (5.82) the correlation coefficient may be

represented in the form of

R (t) = R, (,) cos (7.5)

- where Ro() is the correlation coefficient of the envelope of the random process at

hand. Substituting (7.15) into (7.13), we find

, - Cos t. (7.16)

We replace the powers of the cosines in (7.16) by the sum of the cosines of the

multiple arcs according to tbe well-knwa, .rarulas

Co( (R cs2 n- ) ].
,,,,.

cos z=~(7.17)

Then expression (7.16) of the correlation function of the process at the output

of a nonlinear system will take the form of

§- 2
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+2 (1nik
,-") -  o s ( n)cos(-) (.9)

Adopting the designation r = n - k and changing the order of summation in the

double sums, we obtain

* (2n!2

O2n-

+ (2n tiy n- ) o , o + 
I

(2* - 1)!1

C 2n-I
(2n- ( o2r - o +

r-2 L ,-r

+ (2n)! 22-.1o o. (7.20)
IP-| ,

Designating

(~?)SBO 0) ) R,

- n) 2 R O (7.22)

a I-,

we rewrite (7.20) in the form of

B (T) =Bo () +B (t) cos wo.T+

+ B,,_ (c) Cos (2r OT) + Br (t) Co 2rw0?. (.4

The power spectrum is, in accordance w.th Khinchin's theorem, equal to a Fourier

transformation of B(r). If the Fourier transformation of each of the items in (7.24)

is designated by F (CO), i.e.,r ST (,(Q ',(,)cos root os,,,dc. (7.25)
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then we obtain the following expression for the power spectrum of the random process

41 at the output of a nonlinear system
F (-)= F,(,.)+ F1 (w)+~ F!,(w). (7.26)

o (-2

A graphical representation of this spectrum is shown in Figure 48 (the dotted line

indicates the spectrum of the normal, stationary process acting on the input of the

system).

,Al Nt

Fig. 48. Power spectrum of narrow-band random process after 4

nonlinear transformatlon.

The first tem in (7.26) represents the low-frequency portion of the power

spectrum (the so-called video spectrum) of the random process at the output of a

nonlinear system. The second term corresponds to the portion of the power spectrum

of the outpu%-, pruess lying about frequency c. wheri. is also concentrated thi

spectrum of the input process. The remaining terms in (7.26) correspond to the high-

frequency portions of the power spectrum of the process at the outrut of a nonlinear

system. which lie about the odd and even harmonics of frequency& "

The video spectrum Fo(w) is of greatest interest in the study of demodulation

processes in radio receivers, whereas the spectrum band F (W) is important to the

study of the modulation process in radio transmitters.

From (7.21) - (7.23) it can be seen that for the computation of a power spectrum

it is necessary to obtain inverse Fourier transformations of the powers of the cor-

k
relation coefficients R Cc). The higher is k, the less are the spectrum densities

k 0

corresponding to R0 V') a brt the wider is the frequency band occupied by the spectrum.

For large instances of k. computation of the power-spectrum component which cor-
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77-,

responds to R (') is complex. However function R" (M9 diminishes so rapidly, that

( " an appropriate approximation may be employed. Thus, for instance, if the spectrum

of a random process is uniform in band A , then according to (6.18)

Rtai

ti 6

Since -2) there is permissible the approximation

and the power spectrum (inverse Fourier transformation) corresponding to this ap-

proximation is equal to

2 e
--.

q - -I # 2

Fiue- 9shw the powr spectra crrsodin to 2' for k 1. 29*6

the manner In which the correlation function and spectrum of a normal random process

are transform.ed in its passage through a linear detector*, whose charactee.stic has

'| • Here and in the future, in accordance with Section 1 Ch.Vj detection is reearded
only as a nonlinear and noninertial process. The subsequent action of the filtering
element must be treated separately.

--Ts- 2 ,/v 26 1
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the form of

x =>0. 1

( X<O (7.27)

(the constant multiplier for x is assumed equal to unity, which is not essential

since it serves the purpose or scale and may always be taken into account in the

final results).
The coeffiients c in series (7.13) are in the case at hand obtained from the

integral

C. x 8 ,,(x)e Xdx.

When n = C and n = 1 we obtain directly

X21

C"- o d - (7.28)
ilV

When n 2, we obtain by integrating by parts

Xv 40

€= (-,)' x d' x=!-!i)Z+f. {' .- 'I"

* 2

X - d -' d. f
or

Substituting (7.28) (7.30) into (7.13), we find

B ()= IiR 0)+ Ri. (o)A4)

Bearing in mind (cf. Appendix VII), that
H,,,(0)=( 1? (2k- I)!!. HI.(O=O

F-TS-981 117 262 -
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oil
we obtain the following expiession for the correlation function of a stationary

normal random process which has passed through a linear detector&

B " +! R ( ) ( 1('2n 3)1!!.P ,l
21t 2- +2 (7.31)

Series (7.31) a be summed up, and then the expression of the correlation function

4 is represented in the final form-

I B [ 1 r i I] R() + -- -2() (7. 2)

By expanding (7.32) into a series, it is not difficult to verify that it coincides

with (3.71). As can be seen from (7.32). the difference between the correlation

functions of the processes at the output and input of a linear detector is an even

function of the correlation coefficient of the input process Eco'.respondingly series

(7.31) contains, besides the first power of the correlation coefficient, only even

powers of R(r) .

)e If the power spectrum of a stationary normal prucess is concentrated in a

relatively narrow frequency band around the high frequency Wi) in such a manner, that

for the correlation coefficient R (-t) of this process formula (7.15) is valid, then,

in accordance with (7.24) and (7.30),

el (7,33)
B ()= So () + T Ro () cos w.ot + B2, () cos 2rw ,;

or
Uo ) ' ""__ __ _ _ _

x-2 (2n)! 2'1 (7.V4)

V I~~(2n -t)!' '
')!!P(n R (i) .

-- (2n)! 2() (7.35)

* The fact that the correlation function of a process at the input of a linear de- '

tector does not contain any other odd powers of R except the first, is not unexpecte) '
In fact, (7.27) may be represented in the form of the sum of two functions

f(x) = x + f1 Cx),

where fl (x) = f(x) - x will be an even function of the argument x.

F-TS-9811/V 263



The first term Bo(2) in expression (7.33) corresponds to the direct component and to

the low-frequency portion of the continuous power spectrum of a random process atUi

the output of a linear detector. Series (7.34), which represents function Bo(T),

may be summed up, and its sum may then be expressed in terms of full elliptical

integrals of the first K(R ) and second E(Ro ) kinds (cf., e.g., 1. Yanke and F. ide.
0

Tables pf functions. Gostekhizdat, 1948)

B i . (R.
K (7.36)

After a Fourier transform.tion of (7.34) and (7.36), we obtain the low-frequency

portion of the power spectrum of a process at the output of a linear detector. The

first term in P; ansion (7.34) yields the direct component, and the sum of the

Fourier transformations of the even powers of the correlation coefficient yields the

continuous spectrum.

* £

Fig. 50. tow-frequency spectrum of random process which has

passed through a linear detector.

Figure 30 shows the continuous low-frequency spectrum of a process at the output

of a linear detector, for the case when the power spectrum of a normal stationary

process at the input is uniform in a band whose width is equal to d . The ex-

ponential series for Ro in (7.34) converges so rapidly, that in practice for the

computation of the spectrum it is possible to restrict one's self to only the term

Ro. Then for the case under consideration the low-frequency portion of the continu-

ous spectrum will have the form of a right triangle with a base of A. This ap-

proximate spectrum is designated in Figure 50 by the dotted line (compare Fig. 49)
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Comparison with the exact spectrum indicates an entirely satisfactory approximation.

• The relationship or the areas of the continuous exact and approximate spectra (i.e.,

of power, concentrated in the low-frequency range) is equal to (2 t-)

and the spectrum density, when W 0, (i.e., the correlation time) is 6% greater for

the exact than for the approximate spectrum. In distinction from the approximate

one, the exact spectrum contains frequencies higher than A , but their intensity is

negligibly small.

The second term - R (r) cos ior in expression (7.33) corresponds to the

undistorted (with accuracy to the constant multiplier) reproduction, at the output

of a linear detector, of the spectrum cf a stationary normal random process.

The succeeding terms Br (r) cos 2ruV In e-pression (7.33) correspond to the

high-frequency portions of the power spectrum of a process at the output of a linear

detector, whicn lie about the even harmonics of frequency w . The correlation time

and, consequently, the spectrum densities when Q = 2r o diminish sharply with a

) rise in the hartonic number 2r, since in the expression 3 [cf. (7.35)] the least

exponent of R (T) is equal to 2r. The areas of the continuous spectra (i.e.. the
0

powers) situated about the harmonics of&%, diminish in irverse proportion to the

agL.ude rF(..r + 3,,).

4. Approximation of Non-linear Charactertstics by Exponent' al Series

If the function f(x), which proides an analytic concept of the characteristic

of a nonlinear system. Is continuous together with its derivatives, then it can be

resolved into Maclaurin series

( (0) + X (0) + ." (0) + +. + (7.37)

For this reason the nonlinear characteristic f(x) is frequently (for instance, in

cases of full-wave detection) approximated by an exponential series of the type of

(7.33)
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the coefficients of which must be equal to the corresponding coefficents of series

(7.37).

With such an approximation it is not difficult In the general case to determine -

the coefficients c inand c2 in series (7.8). These coefficients are obtained from

integral (7.7), which in the case under consideration has the form ofO

72K~. )'~x..~ x (7.39)

The integrals in (7.39) are easily computed. if the Integrand function be represented

as a derivative with respect to the parameter Of InTen

C = a,oA L X" e 2 dx

(" )
Ea 6s I S(X+d)ve =d

) where m Is a distribution mom~ent of the (.V - kQth order of a normal distribution

with unitary dispersion. and a zero mean. Differentiating w,,ith respect tot

0 and employing (3.80), w~e find

=-N~aAGj'* (Ah+2i) (2r -1)11 s'",

or. after changing kc n + s In the summation indexI , 0 afe42r (n+s+2r ~~)!2- *1a
=a (n+ + 1 V-. (7. 43!!

*In practice, a sumation with respect to iI will contain only a small number ofL
terms. This will indicate that the coefficients apLtrigwt et~
turn to zero. For the sake of generality we retain the sumimation. for all positive
instances of )
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4

It is.necessary to bear in mind, that when r = 0 it is conventional- that (2r -I)t

(1 1. It is further necessary to average in time the product of cIn. c2n, upon which

depend CA(t) and oC(t). Designating by2..

(741

we find from (7.10), (7.11) and (7.40) the averaged correlation function of a process

at the output of a nonlinear system

B*B

3wt, nvt=u 1 , i-OO(7.42)

X •2,+s+,'  t2+r) (a + s+ 2 rj)(n + 2 + 2r2 X
(A + s,)t (n + s2)! (2r - 1),9 (2r,- 1)!! & R(

Sit $21 Al

T the discrete portion of the power spectrum correspond (in the sense of a

Fourier transformation) the terms where n = 0, and to the continuous portion, the >4

terms where n >0.

If the determined portion of a normal process is lacking, then in (7.42) all

the terms disappear, with the exception of those obtained when s = s2 = 0. Then

from (7.42) we find the following expression for the correlation function of a

stationary, normal random process which has passed through a system, the nonlinear

characteristic of which is approximated by the exponential series (7.38)

(0)-- "(.+V,, o:,, o2x+2 g+2r,X

X C -t+')(0 tr)(,,- ),, (+,1- ,

and since the sumation along r and r is separable, therefore

Let us write out several of the first terms of summation (7.43), neglecting the ap-

proximating coefficients a1  higher than n = 5
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.......... A (j,., ~ -- '~ t ~ -'-~ . 4 .

B(t) [.,+ a@O+ 3a4o4+...1+
+ R()[aatz) + 1S,) aI' +.o1 +

+V R(Q)[ae,+6a 4 ,+...12+ 6R3.())[as*' +10a. (7.4

In expression (7.44), the firsa line yields the power of the direct component,

the second line corresponds to the undistorted reproduction at the output of a non-

inear system of the input power spectrum, and the succeeding terms are equal to the

products of the second-, third-, and higher-order nonlinear distortions of this

spectrtm.

Let us investigate in greater detail the case when the characteristic of a non-

linear system is approximated by a parabola

y = a. + aix + a2x2. (7.5)

In this case from (7.40) we find

CO ao + a2*2 + a1az 4. :2t2,

C . - Owhren n 3,.

where cc (t)= .

Let us introduce the designations

c -- ia'+2at~2t. (7.47)

wher im_ t ( - t),
ST

Jr

-- $

7. J M
(7.48)

S (t S t t
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Ir i1

B,., ,1 SlJ2tl ,t) .f (7.50-) "

-F
-T
TB...)--i ,s, €os, ,+ t) d,.

__ (7.51)

The magnitude A. represents the direct component of the process, and the magni-

tude Ws its mean power. The magnitudes Bs(). Bs (-L ) and Bs, sa(r) are respectively

2
the autocorrelation functions of process S(t), of its square S (t) and the mutual

correlation function of S(t) and S2 (t).

With the employment of the designations introduced above, the expression of the

averaged correlation function of the random process obtained as a result of the

quadratic transformation of a normal process, may be represented in the form [cf.

(7.42)] Of
B.=(a + o a,2) (ao + a222 + 2a, A, + 2aW) ++. ,.y)+ 2aaB, (c) B, 2 B,. )
+ a [a -,- 4ala2A* +4a B, (t)] R (r) + 2a2 4R 2 ). (7.52)

Each item in (7.52) has a clear physical interprecation. The first line yields

the power of the direct component, the second line cnrresponds to the discrete portion

of the spectrum, and the last line to the continuous portion of the spectrum.

The direct component contains elements both of the determined and of the random

parts of the process at the input, the share of the determined part of the process in

the direct component being equal to 2ao(aIAS + a2Ws), and the share of the random

part coming to (a0 + a2 G)2. In addition, the direct component also contains the

mean power of the beat between the components of the determined and the random parts

of a normal process. This latter is equal to 2a2 ail s + a.Ws).

The discrete spectrum after quadratic transformation reproduces the discrete input

spectrum [the term aI Bs() and also contains combination harmonics of the mutual

: -TS-9811/V 269 .



beats of the components of the determined part of a normal process ! the succeeding

terms in the second line of formula (7.52)]

The continuous spectrum after quadratic transformation reproduces the input

continuous spectrum (the term a CaR(T)] * and also contains combination harmonics

:1of the mutual beats of the components of the random part [tetrLa 'R()
and of the components of the determined and the random parts [the remaining terms in

the last lizie of formula (7.52)]

5. Square-law Detection of an Amplitude-modu!ated Signal in the Presence

of Noise.

Let us assume, that the determined part of a normal process constitutes an

amplitude-modulated signal

S (t) =U (t) cos to (7.53)

the highest harmonic in the spectrum of the envelope u(t) being much smaller than

the carrier frequency o"

Let us assume that the stationary random part of the normal process represents

noise, the power spectrum of which is concentrated in a relatively narrow frequency

band about the ---.me hi.h frequen:y £&o" Then the correlationi coef'clent R et) of

the noise may be represented in the form of (7.15).

Let us employ the results of the preceding section for solving tho problem of

the detection of an amplitude-modulated signal in the presence of noise. It is ob-

vious that, in order to restore the low-frequency envelope u(t) from the radio signal,

the detector must contain, in addition to a nonlinear element, a filtering element

which separates out the low-frequency components and suppresses the high-frequency

ones.

Let us first examine the nonlinear transformation of the signal with the noise,

assuming for the sake of a simple illustration of the general results, that as the

i,( nonlinear characteristic of the detector there serves the parabola y = a x . (The

coefficient a2 may be assumed equal to unity, since it serves the purpose of scale
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4(

and may always be taken into account in the final results).

From (7.52) when ao = a, =0 and a2  1, we find

B9 (I=04 + 2W. + B., (:) + 402B (,t) R () + 2R 2 ( )"  (7.5.)

IIWe now determine the magnitudes Ws B. and B.2 for an amplitude-modulated signal. ,

Substituting (7.53) into (7.48), (7.49) and (7.51), we obtain respectively

r

W5,! ir U3 (t) Cos! wddt

r 22 (7.55)
h M -

-h~ ~M 2 - u(t)ldt + I2tlo Id;

*2 2 - ?

1 r

"4 r_

u (t)u(t +(. Cos )ot costo (I di

+---1m- u nm- (t)u(t+ j)dt+

(tJr.OS2. t 'J l

-) •
!7

lr

+.I 1m I S au(t) u)[t +cos2wt+cos2 (t+)+. .~ ~ ~~~ e u0s (t)d to) Cos;)r,, dt - ,.mot coS2( ( +,)dt "'i

-I !

-. lirn a 3 l a(it+l[cIC ot+.sCol,(t+)dt +

4:": .M2

r]
4r



-=77

(cnt d)

+I 4im gu2iU2 (t+ cos 4w (I) dt.
72

it can be shown that, vi th the assumption made above concerning the spectrmo 4

the sle-nal envelope, a -whole series. of limits in the cited expressions turns to zero.

For this use should be made of the fact, that

11M 1 5 cos at coso. (t +)di

=1 -- im - Cos[(0. w.) t+ tjdt +
2 r.T .

-i7 (M58)

5i Cos[(W+ )t +Oit WC
I1

I cos aowcwhex

r~r

Wex ~Il4. U2(i) dt... ~ (7.59)

where WI is the mean power of the modulating signal u(t).
In (7.56) the second linit also turns to zero and, consequently

Ir

whare 2 (r) Is the autocorrelation function of the modulating signal, with Bu (0)
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In (557) the second and fourth limits turn to zero and, consequently.

cos&4t (7.61)
(761

-- + -2 cos 2we* B..

where BEL2.(-r) is the autocorrelation function of the square of the modulating signal.

Substituting (7.59) - (7.61) into (7.54), taking (7.15) into account, we find

(c) -- + o2B. (0) + -L B.. (B ) + o2B. () Ro h) +
" (7.6211

4.a(C) + B.. (C) (+ 02B, (C) R0( +,34R2 (C cos 2wt, (.2

where R (,r) is the correlation coefficient of the envelope of the noise at the input:.:

of the square-law detector.

In the absence of a signal it follows from (7.62) that

B *44 [1 + R.2 (c)+ R.' (c)cos 2w),J. (.3(7.61)

In distinction from a linear detector Lcf. (7.33)], for which the output cor-
relation function of noise is expressed as an infinite series in terms of the ex-

ponents of the input correlation coefficient R(r), the correlation function of noise

at the output of a square-law detector contain: no power of R(' hi Zher t.ian thf '

second.

Raploying the expressions obtained for the correlation function and performing

a Fourier transformation, it is possible to determine the corresponding power

spectrum.

We shall illustrate the sequence of the computation of the power spectrum of a

random process at the output of a square-law detector, by an example in which the

modulating signal is harmonic, with a frequency ofin , i.e.,

(t) -"go ( + m cos 91). (7.64)

Let us, in addition, assume that the power spectrum of noise at the input of th'

detector Is uniform in the band of A and is symmetrical with respect to the high



frequency (0* (, , t'> 2(1 ). Then in accordance with (6.18) the correlating

coefficient of the process at the input of the detector is equal to

R e (Q cosO --u- cos we. (7.65)
Y

To determine the correlation function of the process at the output of a square-

law detector we shall employ formula (7.62). We shall first compute the magnitudes

•u and Bu2.

Substituting (7.64) into .(7.60) and (7.61). and also taking into account (7.58).

we find
T

a* + mCOf)[+m (7.66)

i4 (ifcso)
2 Cs 

T (7.67)

n.,(t) --lim 0U +mcosQt)[I + mcoslQ(t+)'dlt--

=u(~n++n4 oa+cs2) (7.68)

Substituting (7.66) - (7.68) into (7.62) and effecting a regrouping of the terms,

we obtain

[2 + I + mcosto+oi

+-Cos 20t Cos ?Ac+ u:, *R.(t) (I + !Cos t)4m+7-9

+ 44 (t + oe. (I + c os t cos 2w,,t +

+*4R ft) Cos 2w,,

with R (r) being determined from (7.65).

To compute the power spectrum of a process at the output of a 5quare-law de-

tector it is now necessary, in accordance with Xhinchin's formula (5.44), to effect
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an inverse Fourier transformation on B*(2'). Prom the expression of the correlation

function (7.61)) it is evident, that this spectrum consists of two parts: discrete( ,)

and continuous. The first terms of (7.69), not containing RO (), after the Fourier

+ransformation yield delta-functions, i.e., these terms correspond to the discrete

part of the power spectrum of the process. The terms with R ('v) correspond to the
a

continuous part of the spectrum, the terms containing the multiplier cos 2 edrcor-

responding to the high-frequency range of the continuous spectrum, and the rest to

its low-frequency range.

Let us designate by FA(f() the discrete part of the power spectrum of a process

at the output of a square-law detector. Then from (7.69) we obtain*

_ F( 2 92+U1+ + ) '±(w -- 2.o) +

+ 4ms (7.70)
+ -i-- [8 Zo- 2 -) +8 (to - 2m* + Q)1

+128(6 2wo 22)± + ( 2m, +2)].j 1
The first term in (7.70) corresponds to the direct component of the process at

the output of the detector. The share of the signal in the direct component is equal

to 0 (I +.- ), and the share of noise is ar 4
2

Besides this, the mean power of th. beat between the harmonic components of the

signal and the noise equal to o- U (I + -- ) enters into the composition of the

direct component. The remaining terms of the discrete power spectrum (7.70) owe

their existence to the mutual beats of the harmonic components of the signal in its

passage through the square-law detector.

We pass to the determination of the continuous power spectrum. Let us designate

its low-frequency and high-frequency parts by F (W) and FB((O). respectively. From

(7.69) we find

* To each cos it corresponds a semi-sum of the delta-functions (cf. Appendix IV).
Here are written out only those delta-functions, vhose arguments turn to zero with pos- -
itive frequencies. For preservation of the power relationships the coefficients
of these functions are doubled.
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'7'-'-I- 7702

F(4.) ' =4 2 R (t) cos ardc +

+ +24 POO (})Cos- tCosa,: h + 44 JR; Cos -rdt

= , {')+ F,-)+ F3 (-). 1
We compute each item in (7.71) separately. Since according to our assumption

the spectrum of the noise at the input is uniform in 
the band A , therefore

4%,0 O.<<- ,

F ~U 204IofRe (1) Cos wtdvc (7.72)

Spectrum F, (4) is uniform- in a low-frequency band with a width of '6 , eft

:.,Vt ofj~ - *1). -3yoyig (7.72) and bearingj-ni mind the condition that 4%> 2 as,

we find

a)e = 2 mR Re( ) os cos-

s e M R (t) cos (w --) )- --

= IF ,. +0) +- Ft 1- )..4

4, -) "4'T 
(7 7 1.

or
-1 Its< 2*

29 elu A -4-.<+f

Spectrum F2(()) is sVIown in the center of Figure 51. 'a

Fig. 51. Components of continuous spectrum.
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Let us finally compute the third item. F (9ji). For this we employ the relation-

ship:* if f (v) and (co are a pair of Fourier transformations, then

P(-t)Cos ~SO(U) -,) du.
4a (7.74)

Assuming in (7.74) f M~ 20' RO (W an hn0< . ()
when W> we obtain

\F(w)=4R4(0) Cos wcd?±_

Spectru fro (7.69), th h frfa theh trsgl corspin toas the highfqec

(Fig.~ ~ ~ ~ ~ ~ ~~~~~~~~i 51 ih) umn pF~jFWadFW efn h obtaiqnedcy tare

III 3

52) a).

Fig. 52. C ontinuous spectrum difrfoh oroessodn ateutpu of- itlw
freueny artonl b th~mutilie sare-a dTeteor C)i bandb h

shift~~~a ofl() n ow ihfrequency ange, b w hihfeunc y pttoemicatopbarp

cosat qa o / Fg 2 )



The full power of the continuous part of the spectrum, as can be seen from

Figure 52, is evenly distributed between the low-frequency and the high-frequency

ranges.

Components F1 40) and F2 (0) of the continuous spectrum and the corresponding

items in the high-frequency range are dependent on the beats of the harmonic com-

ponents of the signal with the components of the noise at the input of the detector,

which fill band d . This part of the continuous spectrum at the output of a detec-

tor is sometimes called the continuous spectrum of signal-noise cross-modulation.

Component V (W) of the continuous spectrum and the corresponding item in the

high-frequency range are dependent on the beats of any two elementary noise con-

ponents at the input of the detector, the low-frequency component being obtained on

the basis of subtractive combination ha-monics, and the high-frequency component on

the. basis of additive harmonic!;. Since, with a fixed band L at the input, the

number of pairs of harmonic components with a definite frequency difference diminishes

as this difference is increased, the intenbity of the spectrum under consideration

diminishes, this diminution taking place accordin6 to the linear law for the rectan-

gular form of the input spectrum. The spectrum FS(&) depicted on the right side of

Figure 51 obviously coincides with the low-frequency spectrum of the process at the

output of a square-law detector, on the input of which there acts only a stationary

random process (noise in the absence of a sigaa).

Comparing this spectrum with the spectrum shown by the bruken line in Figure 50,
we conclude that the low-frequency continuous noise spectra, at the output of a linear.

and of a square-law detector, in the first approximation coincide with one another,

It is clear that, if the action of the filtering element of the detector is taken

into account, the high-frequency components will be suppressed.

The ratio of the power of cross-modulation to the power of the noise is equal to
Fn (4) + P,(-W di

-(-ey( + . (7.76)
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i.e., to the ratio of the mean power of the signal to the full power of the noise at

the input of the detector. Therefore with a strong signal (u. >> o ) the princlpal

part of the continuous spectum at the output of a square-law detector has to do

with signal-noise cross modulation, anl with a weak signal (u <<or) the principal part j

is played by the continuous noise spectrum. In accordance with this, with a strong

signal the form of the power spectrum approaches that of a step-shaped curve with

slightly sloped steps (Fig. 53, left), and with a weak signal the spectral picture

resembles "a triangle with a saw-tooth hypotenuse" (sic) (Fig. 53, right).

\ U

Fig. 53. Comparison of power spectra with strong and weak signals.

In the general case of an arbi'tr-jTy amplitude-modulated signal, the structure

of the power spectrum at the output of a square-law detector will be analogous. The

terms of correlation function (7.54) which do not depend on R(zT), will yield in the

spectrum a direct component and discrete components from the mutual beats of the

harmonic components of the signal. The terms in (7.54) proportional to R('r) will

yield the continuous cross-modulation spectrum, and the terms proportional to R2(-r)

will yield the continuous spectrum resulting from the passage through the detector

of noises alone.

6. Solution Obtained by Contour Integral Method.

In many cases the nonlinear characteristic is approximated by the function

(x)=ao+axa'+...+a.x*-...•, x>x,
( f(x)-O, X<X0 , (7.77)
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where X is the cutoff voltage.

C An expression for the power spectrum of a normal random process, which has

passed through a nonlnear system with a characteristic of (7.77), may be obtained by' -

"the method set forth in Sect, 1, The indicated method A s successfully used in the I
investigation of the half-wave detection of a stationary normal random process (cf.sect,' ,

.3).. However, if the normal process contains also a determined part, then diffi-

culties may arise in the time averaging procedure according to formula (7.9). In 71

order to facilitate the solution of the problem, it may prove useful to employ the

method of contour integrals, bearing in mind that function (7.77) permits a repre-

sentation in the form of (6.62)*. 1
Let us then assume, that the characteristic y= f(x) of a nonlinear system per- 

'

mits representation by the contour integral (6.62) and let us return to the general

expression (7.2) for the correlation function of the random process at the output of A

a nonlinear system, at the input of which there acts a normal random process.

Substituting (6.62) into (7.2) and changing the order of integration, we find

B!B ( ) --" - I g( i') x3.2 17
4x @, J/LuI 2 7ffl

S(7*78)--(,- ,,) (7.
x55e "('") '(z','+jxdxdujl~du,.

The double integral along xI and x2 represents a two-dimensional characteristic

function of normal distribution. Therefore, employing (3.95), we obtain

B - 2 y( Nu?+ 21hy M+ uI )

ot - I 1g9(iu) g(iz)e(4,,+"",)e "da"du,. (7.79)

In integral (7.79) only the multiplier e contains the magnitudes

a, = s(t) and a2 = s(t +r), which depend upon time. Therefore in the time averaging

of the correlation function B(,, t) only this multiplier is averaged. Designating

-4 I, 1 7e48')N,+s(t+,7d,

*Q1 ,.., )=,, -. , (7.80)

* Of course, characteristic (7.38) may be represented in the form of a sum of two

characteristics of the (7.77) type: fi(x) + f (-x), and then the method of contour

integrals may be expanded to full-wave detection.
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we find from (7.79) the followring expression of the averaged correlation function

y B*(Wr) of a random process at the output of a nonlinear system

- (" +2

Let us assume that the determined part of the process constitutes a periodic. function

of' time with a period of T. Approximating the periodic function S(t) by the first

N + I terms of the Fourier series

2n
St=An Co

and noting that the averaging in (7.80) may in this case be made for one period, we

obtain the following expression of the function 0.(U ",,rt)

Ira

or, introducing a new variable v = - and separating out the direct component A.

we find

SM ~ Ii WcOR+vs,cos nP +

We promudrtesmainsginteintegrand function the elementary

-u sinl--sinlfln Yu +2ua cos Lt.-

wherin he haseanae des nt dpen onv. The expression (7.82) may now be

e"04 r-0 " (7.83)
I.v
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The integral in (7.83) is a zero-order Bessel function of N variables

x 4 )/'ft, +d1' + 241U, COSt!!. (a~ 1 2, .. N).

A Bessel function of N variables may be expanded Into a short series of ordinary

Bessel functions*, then

*(191 , t) e
x ~ L~,x,) ~,(,) .. 4x),(7.85)

where k =2 k + *..

Le t us emine more closely the case of the purely harmonic signal S(t)=a cos

T*In this case from (7.85) we find

10(I) 0( 1U 4 2)u o (7.86)

Employing the addition theorem, well-known in the theory of Bessel functions

(cf., e.g. G. N. Vatson, "Teoriya besselevskikh funktsiy", For. Lit. Pub. Hse. 149,

P. 91)fi~.,G. N. Watson, "A Treatise on the Theory of Bessel Functionsl", 2nd ed.,

New York, *i944 it is possible to represent (7.86) in the form of the series

**(aa, ~, 92 = (au1) . (au2) cos (7.87)
afto

where6 C. , ~ 2 when n ; 1.

If now (7.87) is substituted into (7.81) and, besides that, there is employed

an expansion of the comultiplier e .inotesrs

e.4h U.8..V(IIP~h 8 (.88

C f. M. 1. Akimov. On the Bessel Flanctions of Many Variables. Leningrad, 1929,
pp. 47 - 49. L0 funktsiyakh besselya ninogikh peremennykh.7J

F-TS-981 i/v 282



then in the double integral (7.81) it will be possible to separate the variables of

Integration and to represent the correlation function B*(Z) in the form( compare

(6.65)) of

5( ), e~ o"IT Cos tf-X
M T1

g (ul)uk . aul e dl g(iu) uk J.(aa,) e du,.

Designating em

Ax W-g (im) unV, (au) e d,(.9

we finally obtain

B* M T,(7.909)

Analogous computations for the case when the signal consists of two harmoni-c

vibrations a o :2

a, os t+Oa COS W1,15

lead to the formula

B~c)=~ ~ ~ " Rk (,t)h,4. Cos 2f! tCos 2xi t, 79

where-
~ g~i~u~J.(ali) J. (au)e du.

Let us assume that the power spectrum of the stationary part ot the process is

concentrated in the narrow frequency band about the carrier frequency W. 2 JzM of
T

the signal. Then the cox relation coefficient may be represented in the form of R(?r)

o R(-r) cos w~r cf. (7-15)J. and from (7.90) we obtain
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Replacing the powers of the cosines by the sum of the cosines of the multiple arcs

according to formula (7.17) and (7.18) and effecting the same transformations as in

#2, it is not difficult to transform (7.91) into an expression analogous to (7.24j

I
B'()- =... cs ~o =,B,(t cos "o-4- -

u-.O S-

+1 .. E 8B2,,...,c) [cos(n+2r-.)wocos(n-2r+l);o.:)I+ (7.92)

*s .O*

,-4. .. . B ,,., ()[cos (n + 2r) ot 'cos (n- 2r)t

where '

B. (,) .. k.2k (7.93)

, = __-_ (2 - ) ! 22

-1

, 4k (h2 R2,t) -0 1 2-' h2.2,_Ro(). (7.94')

The power spectrum of a process at the output of a nonlinear system is obtained

by a Fourier transformation of B*(V). The discrete part of this spectum correspcnds

to the first sum in (7.12), while the remaining terms" of this equation yield the,

continuous part.

It can be seen from (7.90), that determination of the power spectrum of the sum

of a periodic signal and a stationary normal random process reduces, after nonlinear

transformation, to the computation of Fourier transformations of the exponents of the

input correlation coefficient and of the integrals (7.89), which depend on the char-

acteristic of nonlinearity g(iu). For the nonlinear characteristic

.1 (.) - Xo)'.:">Xo (7.95)' l o0, + < X*

J the function ,v,,)=4;(v+I -  , and contour c coincides with the true axis,

C skirting only the ori n of the coordinates along a semicircle in the lower half of

the plane(Fig. 54). In this case the coefficients (7.89) are expressed as integrals
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r.l
of the type of hIt(+)

(•- (7.96)

The integrals (7.96) may be computed by means of the expansion of e-'W4 and J (au) "

into exponential series and by the replacement of = u2, after which the problem
reduces to the computation of the contour integrals V-'e-cd '  (contour c*

is shown in Fig. 54), which simply coincide with the %ell-known integral represent-

ation of the gamma-function (cf. M. A. Lavrent'yev and B. V. Shabat. Metody teorii

funktsiy kompleksnogo peremennogo (Methods of the Theory of the Functions of the

Complex Variable). Gostekhizdat, 1951, P. 373) ]

Fig. .54. Contours of Integration, c and c*.

7. Ideal Signal Limitation in the Presence of Noise

As an example to illustrate the contour-integral method, let us examine the

correlation function and power spectrum of a process at the output of an ideal

limiter with a characteristic of

1-o, (X<X).

if at its input there acts the sum of a harmonic signal and noise which constitutes

a normal, stationary random process, the power spectrum of which is concentrated in

a narrow frequency band about the signal-carrier frequency.

It is obvious that the nonlinear characteristic (7.97) is a special case of

(7.95) when 0= 0, and therefore the solution to the problem at hand is provided by
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formulas (7.90), (7.96) if in them it is assumed that ); 0.

() Let us first consider the case when the signal is absent, i.e., when a = 0.

Then from (7.96) it follows, that all the coefficients hnk turn to zero, with the

exception of the coefficients corresponding to n = 0.

Employing the technique used on p. 135, we find

r U ee~bud elM,(7.98)--" u" e- -2'e-tx4"du
* -

When k 1, from (7.98) we find (cf. Appendix VII)4 _* 2

To the direct component of the limited noise there corresponds a term equal, when

k =0, to

* (7.100)

where F is the Laplace function (cf. Section 7, Ch. I).

Dabstituting (7.99) and (7.100) into (7.92) and taking into account (7.93) -

(7.94'), we obtain an expression for the correlation function of normally distributed

noise, which has. passed through the ideal limiter, in the following form:

2

Bv (1) + e.2

(2k)2

(2k)
[ .2 (7.101)

(2k 1!94)(kI, . osWe+

* 2kI

+ (26-2( _ * cos(2
f-I-I 0-

+ H,,,t " T]cs2

t, ,-,T/ ;
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From this expression there can, by means of a Fourier transformation, be de-

) termined the power spectrum of limited noise. This spectrum has a form character-

istic to nonlinear transformations, i.e., (besides the direct component) it consists

of a video band and of bands situated about frequencyWo and about harmonics of that

frequency. The energy distribution between the video band and the carrier-freqo ency

harmonics depends on the limiting level.

Let us make use of (7.101) in order to examine in somewhat greater detail the

case of low limiting, in which the mean-square value of the noise amplitude is much

greater than the height of the limiting level xo << o Since when k is odd (7.100).

contains only even powers of x.1 , and when k is even only such odd powers, there-

fore ignoring the powers of xOfo- higher than the first, we obtain for the case at

hand

(I ., -,, " -  " ( )+

e.( 2 f -I

1-- (2n-(2r - n

+° i it ' (t) Cos we +

a- (2n ,1)!2o2 0A +1(2n 3 )!12!!2ni
4((2n2-n)R22n+

2e (2n)! 224 (~ o Ro.7 )

It can be seen from (7.102) that when xo = 0. the spectrum of the limited noise

is concentrated only in the vicinity of the carrier frequency ( e and its odd harmonicdA

[Cf. the terms in (7.102) enclosed in the parentheses]. When xo 0, but xo << o ,

• combination spectral components appear in the video band, and in the bands situated

about the even harmonics of , but the power corresponA ng to these parts of the

spectrum is much less than in the bands about the odd harmonics of 0  .4

Figure 35 shows the power spectrum for xo < 0" with the condition that the A( A!

noise spectrum at the limiter input is uniform in band . The spectrum in the
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\1ow limiting[itlA
Fig. 55. Noise spectrum with low limiting level.

vicinity of carrier frequency %O is determined by the Fourier transformation of the

expression

[(2n-- ),!22 , _-2
The firs.t, principal term in (7.103) repeats the form of the input spectrum.

The difference of the form of the output spectrum from that of the input spectrum is

determined by the succeeding terms, whose influence is, however, insignificant. The

form of the spectrum in the vicinity of the carrier frequency is shown in Figure 56.

In the same figure the broken line indicates the power spectrum of noise at the

limiter input. It can be shown that when x-- 0 the area of the section of the

output spectrum in the vicinity of carrier frequency W , shown in Figure 56, is

equal +o 0.8 of the area of the input spectrum, i.e., 20% of the noise power becomes

the power of the odd harmonics of the carrier.

Let us note, that these same power relationships are preserved with the ideal

limiting of a sinusoldal voltage, for which xo  0, since in this case the output
0V

voltage has the form of a periodic pulse sequence with a density of 0.5.

A~ - __1 I

Fig. 56. Spectrum of noise in vicinity of carrier frequency.
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With an increase in the limitlag level xo/ a, the distribution of power to

various parts of the power spectrum changes substantially. Thus, for instance. with

x o  0' the principal part of the mean power of the process at the output of the X

limiter is concentrated in the video band and about the frequency 6o , the power cor-

responding to the video band amounting to approximately 25% of the total power, and ;

that corresponding to carrier frequencyw amounting to 50% of the total power "Fig.

57). The same phenomenon also takes place in the high limiting of sinusoidal voltage; 4

here the density of the square pulses at the output of the limiter diminishes, and

with it also the power of the first harmonic of the cadence frequency.

High limiting

IAA

Fig. 57. Noise spectrum with high li,,.ting level.

Let us consider what changes are undergone by the correlation function and the

power spectrum if a signal is present, restricting ourselves to the case when the

abscissa of the operating point coincides with the cutoff voltage (xo = 0). Then

from (7.96) there follows (cf. 'ppendix VI)

- (7.0.)

Since with a whole negative a gamma-function is limitless, it can be seen from *.?.

(7.10+) that hnk- 0 when n + k = 2r (r.= 1, 2,...). Sabstituting the expression -

hOfrom (7.104) into the first sum of formula (7.82), we obtain the periodic part --

of the correlation function

F I ((ak x+

(7.10-). 2r.= 1,)cos(2....). I) t. i t
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to which corresponds the discrete part of the power spectrum of the process at the

(p limiter output*:

1t} (7.106)X r.,% )• Ft n._-1i 2n,-- U±22 [a -(2a-l)0,l.

If o--0, then employing the asymptotic resolution of a hypergeometric functio

(cf. Appendix VI) and taking into account that

from (7105')we find

Ft(2
II-

which will provide the power distribution in the spectrum of a periodic sequence or,"

square pulses with a density of .

Selecting from the succeeding sums of (7.92) terms for which n = 0, we obtain

(ded:.cting the direct component) a correlation function correspondin to the con-

tinuous spectrum which is formed by the beats of the noise components. This cor-

relation function coincides with (7.102) if in that expression the last tem, which.

has the magnitude xo for a multiplier, is discarded. The remaining terms of (7.92):-.

in these sums (n,0) correspond to the continuous spectrum which is formed by the

beats of the signal and the noise components. All the even harmonics in (7.92)

diappear in the case under consideration.

An explicit expression of the correlation function of a random process at the

output of a limiter, in terms of the correlation coefficient of the noise at the in'

a,
put of the limiter and the ratio ;7, is obtained after the substitution into (7.92,

Cf. footnote, p. 275.
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of the expressions (7.9)) - (7.94t) with account being taken of (7.104).*

8..Calculation of Signal/Noise Ratio After Nonlinear Transformation.

The content of many radlo-engineering problems lies in evaluating the influence

of interference on useful signals. For the solution of problems of this type it is

necessary first of all to stipulate a criterion, un the basis of which there can

take place a quantitative comparison of the interference-killing features of various

systems. The choice of a specific criterion for the evaluation of interference-

killing features depends on the method used for separating (observing) the si-nal at

the output of the system.

Very often there is employed as such a criterion the power ratio of signal to

noise (or the square root of that ratio), known for short as signalfuoise and

designated as n . For calculating this ratio there is employed the theory, set

forth above, of the transformations of random-process power spectra in linear and

non-linear systems. We emphasize, that the evaluation of interference-killing

features by the indicated criterion required a knowledge of only the most general

statistical characteristics of random processes, and not the probability distribution

of instantaneous values.

Since a unit of radio equipment constitutes a series of standard links, each of

which consists of two linear systems with one nonlinear system between them, it is

sufficient to consider the manner of calculating the signal/noise ratio at the output

of a standard link (Fig. 43).

Let us assume, for the sake of definiteness, that on the input of a standard

link there acts a signal, which is a determined function of time, and a noise which

SAn expression of the correlation function for the case when the process at 'L

limiter input is not a narrow-band one, is cited in [5) • When x0= 0 and under .he
condition that the normal process at the input is stationary, the correlation function
may be represented in the form of

B) 4-arcsinR,)
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constitutes a normal stationary random process. Since the signal and the inter-

ference pass through the linear system independently, we again have at the input of

the nonlinear unit the sum of a determined signal and of normally distributed noise,

the spectra of which are deformed according to the frequency characteristic of the

linear system, as was indicated in Section 2,Ch.VI. Therefore it is not difficult to

compute the power ratio of the signal and the noise at the input of the nonlinear

element (abbreviated: signal/noise ratio at input). The power spectrum of the processi,

at the output of the nonlinear unit has a more complex structure. As has been indi-

cated more than once in the present chapter, this spectrum consists of three parts.

The discrete part of the spectrum Fc~c (6)corresponds to the beats between the com-

ponents of the useful signal. One part of the continuous spectrum, Fw(L,,XJ. is

formed by the beats of the noise components, and the other part, F (W) is formed by
the mutual beats of the signal and noise components.

Let C() be the frequency characteristic of the linear system (filter) which

follows the nonlinear element. Then the power spectrum of the process at the output

of a standard link is equal to

F (a)=C' (,,) [F x, +() + xw (, ) +F- (1)]. (7.107)

In order to compute the signal/bioise ratio at the output of a standard link, it

is necessary to decide whether the 0(0) FcXW(W) part of the output spectrum should

be imputed to the signal or to the noise. In this connection there result two

varieties of power criteria for the eialuation of iiterference-killing features:

a) the beats between signal components and noise are imputed to noise,

b) the beats between signal components and noise are imputed to the signal.

The first criterion is used in the evaluation of the interference-killing

features of comunications systems, in which by c/n is understood the square root

of the ratio of the power of the useful signal with interference absent ir. the pass

band of the filter, to the power of the interference in the same band, computed with

the signal present. In this case the signal/noise ratio is computed according to the
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formula

\2 FA (o) dG. (?.108).,"

where F~ )C, (0) F'~.)H.

F. (a) c(w) [F.x. (w) + .x,WJ

In probl~ems dealing with the detection of a weak signal, cocae nnoise.

the presence of beats between the signal and the noise facilitates the detection of

the signal, and~the employment of the second criterion may prove more excpedient. in

4

A ~ ~~whereNosmen 74)

Along wihteqatzto fsgasb iean efetv en faugment-

ing the inefrnekligfaue frdoequipmient is the quantization. of'

signals by amplitude. In Izis case the entire continuous dynamic range is divided

into a series of discrete levels. The signal-quantization niechani-sm at the trans-

mitting end roduces to the transmiss~on, in place oal a given instantaneous signalf-I value, of the value of the discrete level closest to it.

The quantization of signals by amplitude cmakes possible the effective suppression

of interference, if only the mean-square value of the interference is small in corn- vA
parison totedifference bewe h iceelvl.Quantization led osivnal J

distortions which are called quantization noise.

Signal quantization by amplitude forms the basis of all pulse-code modulation

c f. footnote, p. 163.
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Fig. 58. Non-linear network with sawtooth characteristic.

(P. C.M. M sic. 1KM] ) systems.

Let us determine the correlation function and power spectrum of quantization

noise, assuming that the signal is a normal stationary random process with a zero

mean, a dispersion of 0' and a correlation coefficient of R().

The quantization error, i.e., the difference between the initial and the

quantized signal, may be regarded as a result of the transformation of an initial

signal in the nonlinear system with a saw-tooth characteristic, shown in Figure 58

4 m~O--1 ±,...(7.110)~m=O, =t1, :t%....

whereS is the distance between the discrete UV s.

Employing (7.2) and taking into account (7.110), we find the following express-

ion for the correlation function B(T) of quantization noise

F'4

B (t) 1 ( XI it)

X (Xj- M24) e =" .dxjdxj.

Effecting a replacement of the integration variables

MIS. -2 X

,--S=TY
atd desiang a- we, obtain
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~~or

' (:)-= 32 F - yL (x' ) e- F'  t-R' dxdy,

S1(7.112)

where

'11 1

L(xy)- "  - •(7.113)

The summation indices in the expression of function L(x,y) may be separated by

effecting the replacement

ml +m,=nI, ml-m 2  n2 . (7.114)

The new indices nI and n2 also vary from -co tooc, but they must be either

both even, or both odd. After substituting (7.114) into (7.113) and after the

sipllest of transformat-' -s, we have

toS.8 i/vXy)4n 29,5- 4n

L (jcy): e e - +

+ ' J 4"(2n,+j4-.Iy}+(2bs,4"l} Oo RnxR 4"l ( 1)(x--Y '(24tI)'

The integration variables in integral (7.112) may now also be separated, for

which it is sufficient to effect the replacement

• Z"-'., y=U.-V. (7.115)

ThetrasfomatonJacobian of (7.115) is equal to two, and the area of intecration

"" in the plane (u,v) Is a rhombus bounded by the line u + v = + 1. In virtue of the ';

full symmetry, integration may take place only with respect to positive values of" !
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- A-F

variables u and v (one-fourth of the rhombus), the amount of the integral being

multiplied by four. In this manner we obtain

2MJ,(2U+2n.) a* - a(2v+2n,)

-"4 0.R) , , ), + (6

_____________1+ a* M41)Si2v+ 2% +1)
+ 7 4(1+R) e 4(1-R) jd.

- dud-*

Additional simplification of expression (7.116) may be attained, if the sums

entering into it are transformed by means of the Poisson formula (cf., e.g. B.

Van der Pol' and Kh. Bremmer. Operatsionoye ischisleniye na osnove dvukhstoronr.ego ,'

preobrazovaniye Laplasa (i.e., Balth Van der Pol and H. Bremer, "Operational Calculus .

Based on the Two-sided Laplace Integral" [N. Y., 1950 ), For. Lit. Pub. Hse., 152, ,:

p. 131):

SA) -- h (z) e*"dx.

Employing this formula, we find
a,"(u +"") ___-- __ P "'

e I+1 -P +R T 
_rx

nu""l (7.117)

- ~ ~ 2 iSrX+n, PI

i X[ !+2Ee Cos~j
I2

e i Rl-R _ _ _X

, ,,, ( , _ m( 7 -1 1 8 )
[I +2 ej co ,r.I

' -I

4(1+R) 

0_FR 
+

e - 0'00+R)
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X[1+2 (-r)'e cos (
i-i £

&tbstituting (7.117) - (7.120) into (7.116), and noting that the expcnential

factors in these sums cancel out with the exponential factor of the integrand

4l function, after elementary transformations we obtain

. (7.121)

+f fd(l + R. a) f,(I -Rv)I ddv,

where i-L designated

Ia a.Z)==4 +2y 2Cos T (7.122)

h~az)- x 1- )'- Cos L_
2- (7.123)

Now .he integration in (7.121) may be brought to a conclusion with no particu-

lar difficulties, since the integrals subject to computation are tabular. Omitting

i the alZebralc transformations, we cite the final re.-,!t

4nfgis' -- =' !e" TF A4n'1' ..+
e4') 112 - sh - +

i I a-,

_+ 1 _h!_ -

"* ,, , '(7.124 )~4
al-e2

If "''s(-1-( a-A)"'

Let us assume that the difference 8 between the discrete levels is much less

than the mean-square value a of the signal. This -.. ;umption is almost always

realized. Then <1. Taking this last inequality Into account, it is possible
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in (7.124) to neglect the double sumscomparedi'hithe first smn, and, replacing the

hyperbolic sine by its asymptotic expansion, we obtain the following approximate ex-

pression for the correlation function of quantization noise, sufficient for most

problems of practical interest

'0 e ' a ' lUS)- AX.J (7.125)

The full power of the quantization noise (the dispersion of quantization error)

is equal to

a (o)- I' Y- = '
-- 20 ,, - -6"-- (7.126)

i.e., one-twelfth of the square of Lhe distance between the discrete levels. It is

not difficult to notice that, in the case under cons'deration, the dispersion of

errQr coincides with the dispersion of a random variable uniformly distributed over

the inte-val of from 0 to 8 . This is so because with a small difference between

the discrete levels, the quantization error is sufficient-ly closely approximated by

segments of straight lirnes (with the exception of those cases, when the signal

between the discrete levels passes through the extreme).II
Let us determine the power spectrum F(CO) of the quantizatin noise with the

assumption that the spectrum of the initial signal is uniform in band 6 . The

correlation coefficient of such a signal, is in accordance wiM,,'6.18), equal to R(Cr)=

Then from (7.125), employing Khinchin's theorem, we find

F 4 Cs -W-d-. (7.127)

C into a series and restricting ourselves to the first two terms

(which is permissible, since the integrand functions in (7.127) diminish rapidly

with an increase in the magnitude of ?% ), we obtain -
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Fs) -- 3 SWd.(718S 0 e co 'n

The integrals obtained under the summation sign have already been encountered
above (cf. p. 228). Substituting in (7.128) the magnitudes of these integrals, we
find the power spectrum of quantization noise in the form of

The correlation time, in accordance with (5.32) and (5.47) is

F (0) 3 -I U-f37-

or n-I

a (7.130)

i.e., the correlation time of the quantization noise is approximately 2/ times

less than that of the initial si.rnal. When 0 <(1,--arrelation between the quanti-

zation errors in the consecutive selections of signal values is practically absent.

Accordingly, with a reduction of the distance between the discrete levels the power

spectrum of the quantization noise becomes uniform in a wider frequency range, with

a simultaneous decrease in the maximum of spectrum density.
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Chapter VIII

STATISTICAL CHARACTERISTICS OF THE E!NELOPE AND PHASE 0F A NO. UIL PANDOM P.ROCESS

1. Formulation of the Problem. and its Generl Solution.

Let us examine a narrow-band linear system, at the input of which there acts a

determined process (the sig nal) together with a stationary normal random process

(noise).

In accordance with the results of Sect. 5, Ch. VI the stationary process at the

output of a narrow-band linear systemi with a resonance frequency of 44 may be repre-

!! sented in the form of I

, A (t) cos wt + C' (t) sin mot,

where A(t) and Cft) are independent, stationary random functions .ich have normal

laws of distribution with zero mean values, dispersions of 0 and correlation coef-

fibcients of R0 (z').

Let the signal 0(t), which has passed througTh a linear system, consist of a J

high-frequency vibration of the frequency &@, modulated by amplitude and by phase,

i.e., I0I
Then the random process of the linear system under exami3nation is described by the

random function

1(- I[((t) +U(t)cos w44. ICQ)+vQ) siltf,(

which may be represented in the form of I A

I M E Q) Cos to( )0. '(.')I

i . .where E(t) and (t) are the envelope and phase* of the random process 4't), defined i
SIn some works (a-'. e.-., Ill ) by the phase of a process is meant the suim 0-1ty t t)

In avoidance of error it should be kept in mind, that here by phase is meant only he
random function if(t).
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by the formulas

E =£tI/.[A tQ+U(t)2+[C(C)r+ (tl)2 , (8.2) 1
¢ (t) +v (t)

t ytQ=-arctg? t -- r gAQ)-i--() (8.2') =:

In many applications considerable interest is afforded by the problem of deter-

minin- the distribution functions of the envelope E(t) and phase T (t) of the normalL random process(8.1), a general solution of which is indicated in Sect.7, Ch. Vi.

Fonmalas (6.79) and (6.30), there cited, provide a basic solution to the indicated

problem. For this it is sufficient, to insert the explicit expressions of n-di-

mensional distribution functions in place of Wnl and wn2 . The practical application

of these formulas is complicated by a considerable difficulty in the computation of

the participating integrals. We shall limit ourselves here to obtaining the dis-

tribution functions of the first two orders.

2. Distribution Functions of the Envelooe. I
The problem of obtaining the first distribution function of the envelope of a

normal distribution function - (8.1) coincides fully vith the problem solved in Sect.S,

Chapter III of the probability density of the length of a plane vector, the con-

ponents of which are independent and are normally distributed with parameters of

[u(t), a'] and [v(t). *-I, where (Y is the dispers-on of the stationary part of process

4(t). Eploying (3.38), we write the first distribution function of the envelope

where
at, (1) at (t) + (0.

Thus, the r~rst distribution function of the envelope of a normal process coin-L I cides in the general case -ith the generalized Rayleigh law of distribution. This
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function for various fixed values* of I/r is shown in Figure 24. As the ratio oc/0o

is increased, the distribution law of the envelope approaches the normal [cf. 
(3 .40j.

When the signal is absent (at = 0), the distribution law (8.3) turns into an

ordinary Rayleigh distribution law (cor:esponding in the indicated figre to the

first curve on the left)

W, e rO,0.(.)2 1-

W, (r)--0, ,<0.

The integral distribution law of the envelope, i.e., the probability that E(t)

does not exceed a riven magnit.ude r, follows directly from (8.?)

J r4- dr.P Er,=-.2*1 (rat dr
ir1 

4

Integrating by parts and employing the relationship

jk1. (au) du = 1-. (au).

we obtain .' ,

a-

The curves of the integral distribution law (8.*-) were shown in Fi:uru 25.

Passing to the determination of the second distributioa function of the envelope

of a normal process, we shall restrict our detailed computations to the case where

SI 'the signal is absent.

Employing (5.?4) and (6.79) when n = 2, we obtain the desired two-dimensional

distribution function of the envelope
,2-2R.1,. , s(0.R

=. -t)2 Ci e deldeO -

IS Rpvirscoo~f-, (8.5)

________e ~':Je d~1dO2,
•N~ (I Ie,,>o ,,>

* I.e., for the fixed instant of time t = t*; thereafter@L(t) should always be con-1,

sidered in a fixed instant of time. N
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For computation of the double integral in the right part of (8.5) it is use-
r ful to effect a replacement of the variables

V (3.6)

which corresponds to a rotation of the coordinate axes through an angle of 450

(Figure 59). It is not difficult to satisfy oneself that the transformation

jacobian of (8.6) is equal to unity.

%

I41
% Ai

Fig. 59. Rotation of the coordinate axes.

First integrating along w(Figure 59), we find
21 lt Cos (0. - -OJ,

N.r,r, o,, u 2

•z-2. ( . )

i =- i z+}ed -udia .

i)*- DIC.SS" € "J"2 L,,, cog,

2d -je dy
(2,( ye

I of the oddness of the integrand function, is
Th rplce--n o y= e lrt intC negas n o hc, yvru

~dz=O.

_ -a

and te oter (f. Sctio ~ haptr II) is eulro
-;iC M 87

2'L ____ dz

q~ V1 20



II

Thus we obtain the two-dimensional distribution function of the envelope of a

stationary normal random process

Wgri, i, Q f e 10 r, r>0, r2>0, (8.3)
____- I, - t(' - R2I

WSe(,', ,s ) 0, , <0, r,<O0.

'Wni r-=-, - 0, and from (8.8) there follows

0

2w,(,j, r,. oo)= e .'. -

i.e., the two-dimensional distribution function is, as was to be expected, equal to

the product of the ordinary Rayleigh distribution functions which represent the one-

dimensional probability densities of the envelope of a stationary normal random

process for W.- o.

The general expression for the n-dimensional distribution function of the envel-

ope of a stationary normal process has been obtained in [9] in the form of a product

of exponential and Bessel functions.

The case when a regular si-nal is present is considered analogously, although

the computations turn out to be more cumbersome. Here there will be cited only the

final expression of the two-dimensional distribution function of the envelope

W2 ("', , ) e X64(1 -RD(8.9)
, R 1r2  i.- . r] [ -..

as ~ [ (I- 2 )I 4 kM- I L RD L1 1

wherea= c'(W),o a A (t+ ), ande = 1 with miO.
1 4 In

If the signal constitutcs a harmonic vibration of the frequency Ao and the ampli-

tude u0, then a t, uO, and from (6.9) there follows

( .()-R e - (8.9')(X%',, r2r,_ 1 , r T, " W.,

""l('"2J] 1. k=or ; °) "'+ ,R4)j"

When r-.-... , R -- 0 and from (8.9) we find
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W2 (ri, fl, A)- 0 lo

i.e., the two-dimensional distribution function is equal to the product of the one-

dimensional distribution functions (8.3).

3. Correlation Function of the Envelope

Having the expressions of the two-dimensional probability density of the envel-

ope, it is possible to find its correlation function, since the latter is a second

mixed moment of distribution. To compute in this connection the double integral, it

is expedient to employ the method set forth in Sect. 6, Ch. VI, of expmnding the two-

dimensional probability density into a serics of the respective orthogonal poly-

nomials.

Let us examine in detail the sequence of defirmining the correlation function

of the envelope of a stationary normal random process. The two-dimensional dis-

ttribution function is here determined by formula (8.8), and the one-dimensional dis-

tribution corresponding to it - by formula (8.3). If the function

over the interval (O,c) is taken as a weighting function, then to this weighting

function there corresponds the aggregate of orthogonal Laguerre* polynomials V, (-i)"

The expansion of two-dimensional distribution function (8.8) into a series of

these polynomials has the form of

V22
_________ +F(-R , 2e Rar r.,o)2

0(-R) 10 Ca (IRi) J 4 X (8.10)

"' .- o " \2 J "\ 7"
8-20

Employing expansion (8.10), we represent the correlation function of the envelope by

* B definition, the Laguerre po2ynomials are equal to
d"

L,(x) , (-+

(cf. V. L. oncharov "Teoriya interpolirovaniya i priblizheniya funktsi" (Theory of
Interpolation and Approximation of Functions), Moskva, Gostekhizdat, 1954).
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the series (), r2, :rdr 2 -

m qs Rr2 ~ ? ~ 2 -2,

a 0 2 (,/.

t ~~ ~ ~ ~ ~ L ), -- 41.-. "j" ,,e dr dr2,

and since the variables in the double integral are separible,

80 (8.11),'1) e-23d4,. - ) 0. .

or B*0(,)=o2 R (')c2. (8.12)

i 
C2

(8.12,)where xI~~~)2dx.(.1)

The computation of integral (8.12') is carried out very simply, if use is made

of the link which exists between the Laguerre and the Hermite polynomials 
(cf. V. I.

Smirnov, Kurs vysshey materatiki (Course in Higher Mathematics), V. III, part II,

GITTI, 1949, p. 576):

r2 (8.13)

Then 2-sc,,-2ff (-'1 (''',,(x) e dx

2 2

2

and integrating by par'Ls twice, we find*

Cn= n! U 2 0) nn!(8.14+)

V n;2.

For n 0 and ni 1 it follows directly fromn (8.12') and (8.13) that*

00

(8.11')

* cf. Appendix VII,.
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Substituting (8.14) - (8.14") into. (8.12), we obtain the expression for the cor-

relation function of the envelope of a stationary normal random process

4 +1 22N (8.15)
Ms-2

which coi.cides (with an accuracy to the last constant factor) with (3.74)*. This

correspondence is to have been expected, since the power spectrum of the envelope is

the low-frequency part of the spectrum of a stationary normal random process after

its linear detection.

For the case of a harmonic signal present with an amplitude of uo , the cor-

relation function of the envelope has been computed in [2] and has the following form:

Bo 272 (1,)2e-
0"0

X F n-m- , +' •

4. Nonlinear Transformations of the Envelope. The Square-law Detector.

It has been noted in Sect, 7, ChVI, that the random process, obtained by the

nonlinear transfcrmation of a narrow-band random process, may be represented by the

series

M(t)= 0(E) + f, (E) cos [wot -(] +
+ f2(E) cos [2wof- 2,f (1)]+.,

where
i '(E) '' (E SCos csn*d- (t0o- 2,---' n >O).

Each of the components of random process l(t) is of the same nature as random

process O(t). i.e., represents a product of the slowly chaneing envelope fn(E) by

* The indicated correspondence becomes obvious, if under the summation sign,

is replaced by [-.
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cos n. ma1- V(t)J, the power spectrum of fn(E) being principally concentrated in

the frequency range close to ncW. In particular, the spectrum of fo(E), as well asi0
the spectrum of E, is concentrated in the range of low frequencies adjacent toC = 0.

It is of interest to obtain the first two distrib-ition functions of the random

process f (E), which is obtained as a result of the nonlinear transformation of the

envelope of a normal random process. For this it is sufficient to effect the ap-

propriate replacement of variables in (8.3) and (8.9) according to the formulas of

Sect. 1, Ch. III.

Let us, for example, consider what will be the distribution functions of the

envelope of a narrow-band normal random process after square-law detection. In the

case under consideration

1 0 [EQI==E(e).(8.16)

Let us begin by determining the two-dimensional distribution function of E2 (t).

The problem is, in formula (8.9) to make the transition from the variables r1 and r 2

to the variables

pl-=,, p2=r2 .... (8.17)

Although the inverse function r = + is two-valued, nevertheless, since

r> 70, r 2 > 0, to each point in the plane ) there will correspond only one

point in the plane (r1, r2). The transformation jacobian of (8.17) is equal to

d(p,. P:) I 2r, 0 i=4r~r 2 .
'--! 0 2r2 I

I ploying (3.10) and taking into account that d -- - we obtain

the two-dimensional distribution function of the .quare of the envelope

R, s, p,,; r 1)= 4 (.2_ e X

0 - )

( pi>O, p,>o.
1309
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4

If the signal is absent, then = U0, and

_ _ .,_ e to _ - • (8.19)
;.I , t,,,p , ) &( -Ii V. [-

The one-dimensional distribution function is not difficult to obtain.from (8,18),

if t- O. Then

W2 (e,)= e o , p> 0 . (8.20)

When o. o-, the Bessel Punction may be replaced by its asyr'ototic epproxi-

mation

1I
Then the distribution law of (8.20) may be represented in the form (cf. #5, Chapter

III) of

W(, )-, ,p>0. (3.21 )
P>O.

* ~2p4V x@

curve of the distribution function (8 ? ) for several fixed values of. - is

shown in Figure 60. Curve I corresponds to the absence of a sigrnal.

44,

4,

1."Ii

{. Fig. 60. Distribution function of' the square of' the envelope

",of a normal random process. 1. = 0, 2. - - = 1, 3. -- = 2,

4. --- =3.
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The di tribution furction corresponding to it is equal to

-,P-K > (8.20')

This is the so-called exponential distribution.

The two-dimensional distribution function of the square of the envelope may

al.o be obtained by the method of characteristic functions (cf. Sect. 7, Ch. VI).

Thus, in accordance with (6.81), the two-dimensional characteristic function of

the square of the envelope of a stationary normal random process is equal to

S"' ; .x 1  (8.22)E)2 (0 V2-"i .,, e 2X,

) (I- -

i.e., to the square of the integral ..

'N-A 2R. (z,..+ X2

I ( I "e 2:(I-R ) dxldx2 "

R-IO, (8.23)

14 2

NO e io( 1  2e dx -4: (- x2vT'

A detailed computation of integral (8.23) is cited in Appendix V.020102 S2i: 3' + 1 R2)
Consequently

--G (8.23) =)

I -4 ( -+3) -,4:; (8.24)

A d ffecting in (8.24) an inverse Fourier transformation (c. Appendix VIII), we

1 obtain a second distribution function of the envelope of a stationary random process,

differing in no way from (8.19). The case where a regular signal is present may be

marked out in an analogous manner. It is clear that for the investigation of the

distribution functions of the square of the envelope, direct replacement of the

variables in (8.9) is more simple than the employment of the method of characteristic ~*

functions. However, with wore complex nonlinear transformations of the envelope

f0 (E), when a function inverse to C cannot even exist, the method of characteristic
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functions becomes one of the most effective procedures in solving the problem.

Having the expressions of the two-dimensional probability density of the square

of the envelope, it is possible to find its correlation function, employing for this

I purpose the method of expansion in terms of orthogonal polynomials. As an example,

let us determine the correlation function of the square of the envelope of a station-

ary normal random process, the two-dimensional distribution function of which is

griven by formula (8.19), and whose one-dimensional distr.bution function is equal to

-A!e - when p > 0. If this one-dimensional distribution function

is taken as a weightin& function over the interval of (0, o), then to it will cor-

respond the aggregate of orthogonal Laguerre polynomials (cf. footnote on

p 06).

An expansion of the two-dimensional distribution function (5.19) into a series

of these polynomials has the form of

40(1-R)~ e
• ~~~ -_______

(8.25)

Employing (8.25), we represent the correlation function of the square of the envel-

ope by the series

Be6 0'I 2a3I

X e dpdp = 44Ra

• Where

j .-- x& (x) e-dax.hee(8.27)

Employing the definition of the Laguerre polynomials (cf. footnote on p. 306), it is

not difficult to compute integral (8.27):
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T I.7 1M M IMn nI -- -- --. 7.-Z7_

-- 7-- (zer x ex WC") n .

4

C '' xee~o 'x ")x

0

fom(x) r s a

'Consequently, in the series (8.26) only the first two coefficients, c0 and c2 differI

CO=J exdx =I, c, x (I x) e-dx 1.

Thus, the correlation function of the square of the envelope of a stationary normal

process is equal to
BOl(, 4= 44 1! + Ro(2l(.2)

rom a comparison of (8.23) and (7.63), it can be seen (as should have been

expected) that the power spectrum of the square of the envelope coincides with the

low-frequency part of the spectrum of a stationary normal random process after its

square-law detection.

In the case under consideration an expression of the correlation funtior, may

be obtained directly from (8.24), if use is made of formula (5.16'). Differentiating

eI(v , v2) first with respect to Vl, and then to v2, we obtain from (8.24)

e__ 434 (I - ) 11-2i:2 (t-,+v) - 4:4 (I-R-) ,y +2
dvdu, II --Z:-21vj + v2) -44 (1 - R vlv~p

12Le2 + 40 (I - RIO) va (4- + 80 (1 - R2) t,|
+ 1 - 210 (r, + v2)- 40 (1 -Q VIV2Pwherefrom

4*-1 (1--j) +-8°4 =4*4 (1 + )' i

which does not differ from (8.28).
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5. Statistical Criteria for Detection of Signals in Noise.

A distinctive feature of the contemporary theory of electrical signal trans-

mission in communications, radar and telemechanics systems, is the fact that in this

theory an evaluation of the influence of interference is not restricted to such a

general criterion as the signal/noise ratio (cf. Sect. 8, Ch. VII), but employs the

finer statistical properties of the processes, which make 't possible to judge the

authenticity of the data received. Whereas for calculation of the signal/noise ratio

it is sufficient to have the power spectrum of the process at the output of the de-

vice from which the data is being picked up, an evaluation of the authentieity of

received data by any statistical criterion will always require a knowledge of the

multidimensional distribuition functizns of the process.

From these statistical positions let us examine the problem of the detection of

a signal in noise.

Let the operator observe, on an indicator, a random-process envelope which may

represent either noise olone, or the sum of a signal and noise. He does not know in

advance whether a signa. is present, and must decide this question on the basis of

observations. Let the observations be fixed at a definite place, i.e., the problem

being solve. concerns the presence of a signal at a given point. The operator has

made the following decision: he considers that the signal is present, if the voltageT

at the given point exceeds a certain arbitrary level uo, and that it is absent in thel

contrary case. What is the probability that such a decision will yield the correct

answer?

It is clear that an erroneous answer may be given in two mutually exclusive in-

stances: 1) when the signal is absent, but the voltage exceeds the level uo (event A)

2) when the signal is present, but the sum of the signal and the noise does not ex-

ceed the level u. (event B).

The probability of event A, i.e., that two events will be combined, the absence

( of a signal and the exceeding by noise of the level uo, is according to the rule of

multiplication (cf. Sect. 3, Ch. I), equal to the a priori probability of the absence
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of a signal, multiplied by the a posteriori probability of exceeding the level uo

(__ under the condition that a signal is absent.

The a prioAi probability q we shall take to be given, and the a posteriori

probability of the noise exceeding level uo is not difficult to obtain from the first

distribution function W1 (r) of the noise envelope [cf., e.g., (8.3')]

P{E>uoII-PjE<uOI=t- wi(r)dr-

w, (r) dr.

Then

.... P(A) =q [w, (r) dr.
(8.29)

The probability of event B , i.e., that two events will be combined, as the

presence of a signal and the failure to exceed level uO , is according to the rule of

multiplication equal to the a priori probability of the presence of a signal, multi-
plied by the a posteriori probability of the failure to exceed level under the

condition that a signal is present.

The a priori probability of the presence of a signal is equal to

p=I -q,

and the a posteriori probability of the failure to exceed level u0 is not difficult

to obtain from the first distribution function of the signal-and-noise envelope (cf.

e.g., (8.31

P(Ba~u.H4 WI(R, u)dR.

Then
PI(5) p W, (R, u)ldR.

(8.30)

Since events A and B are mutually exclusive, on the basis of the rule of ad-

dition (cf. Sect. 2, Oh. I) we find the probability of an erroneous answer

P(A or 6)=P(A)-P(5)=q w(r)dr +

+ , (R. u) dR.
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or P(A or 5)- - W(R, u)dR+

+ q w, (r)dr).

Consequently the desired probability of the correct answer is equal to

P(u*, .)=-P(A or B)=p[W,(R, u)dR+

" (8.31):q -{qw,(r) dr.

The question, however, arises: what is the best way of selecting the arbitrary

level uo? It is clear, that if this level is chosen sufficiently high, the proba-

bility P(A) of the false detection of a signal will be small, but the probability

P( B) of missing a true signal may be considerable. Conversely, with a sufficiently

low level of uo the probability of missing a signal will be small, but the proba-

bility of false detection may become considerable.

It is possible to formulate the problem of selecting the optimum magnitude of

U0 , for which the probability P(uo, u) with given distribution functions of sianal

and noise is at a maximum. Computing from (8.31) the derivative and equat-

ing it to zero, we obtain the equation for determining the optimum level

qw (u0) pW(uO, 1). (8.32)

When p = q the optimm level i s determined by the point of intersection of the

distribution curve of noise with the curve of the joint distribution of signal and

noise (Figure 61). As can be seen from the figure, with a strong signal the level

u0 must be chosen high, and with a weak signal this level approaches the mean-square

noise voltage.

It is not difficult to notice an analogy with the problem cited in Sect. 4, Ch. I

if the communication "yes" is made to correspond with the signal, and the lighting of

the green lamp with the exceeding of the voltage on the indicator of level u.
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optimum surface So which divides the space into the ranges 3 c and G so, that the

probability P (3cs u) is at a maximum with given distribution functions of signal

and noise. The equation for this surface is determined from the relationship

qw, (z,. z2 .... z.) PWN (zI, z2... Z4, [,
which for N = I was cited above. For two observations when p = q = it permits

alsoa geometricalintrpretation. The optimum line dividing the plane (4, ) into

two ranges is a prcjection of the line of intersection of the noise-distribution

surface with the joint signal-and-noise distribution surface.

the If the time intervals Ti. between the observations are sufficiently -reat, then

I the magnitudes 4, -a5 be considered mutually independent.

Then
Wx (R, .... , .,.. )W,(R.u... W(R.. u)

w (r,....r, :,.... _)=w, (r,)...w, (rW,.

In this case, for a weak signal the equation for the optimum surface So has the

form of

i.e., constitutes a hypersphere. epresentinE this equation in the form of

we conclude that in the event of a weak signal the operator must compare the mean-

square value of N observations with the mean-square value of the noise. if % 2 z A.,

then on the basis of N observations he draws his conclusion as to the presence of a
signal.

If N is sufficiently great, then it is possible to show that the probability of

a correct answer with p q is in the optimum case computed according. o the

formula
- ...

P(.u)F(. j BAI

where F(x) is the Laplace function.
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r'.rumla (8.34) makes it possible to indicate the minimum number of measurements
I -- I

necessary to obtain a correct answer with the required reliability for a given ,

The depLndence curve of function P on -.. is shown in Figure 62.
N 2:2

Ut

Fig. 62. Probability curve for right answer in optimum case.

Above there has been examined a statistical criterion for the detection of a

signal in noise, which provides the maximura probability of a right answer with one or

with several observations. This criterion i called the criterion of "the ideal ob-

server".

Other statistical criteria are, however, also possible. For instance, in some

cases it is important that the probability P(S ) of missin- an existing signal does

not exceed some constant K. In this case with a given number of N observations it

is necessary to select a criterion for which the probability P(A) of false detection

is at a minimum under the condition that PC) ..K (the Niemann-Pearson criterion).

There can be selected c statistical -riterion of the "successive observer",

which with given probabilities of missing and of false detec .ion will make it possible,

to reduce the number of observations N. According to this criterion an N-dimensional

range of possible signal and noise values is broken up into three: '43c and an

intermediate one. If, when n <N, the agg-'egate of observed values falls into th .

intermediate range, then the following observation is made, and so on until this a,- Y-,

gregate falls either into range G or ranee GC , after which a decision is made as

to the presence or absence of a signal.

A comparison of the indicated three statistical criteria for the detection of a:

signal in noise is represented schematically in Fizure 63 (in the general case ranges



G and 0are not one-dimensional). A detailed presentation of the employment of

statistical methods in the problem of signal detection in noise will be found by the

reader in[(31 [6

a)

or

b)

n '

ble *

al)

Fig. 63. Comparison of statistical criteria for detection of signal in
noise. a) ideal observer; b)Niemann-Pearson observer; a) successive

*~'i Iobseiver.
6. One-dimensional Distribution Function of Phase

We pass to the study of the statistical characteristics of the phase of a normal
a

random process. In accordance with the general formula (6.80), the on-iesoa
'es
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distribution function or the phase of random process (3.1') is equal to

n f(r cos 6--u)' 4. (r shi,-)'

0

EffectinE elementary transformations, we obtain

so t-99 a* r' - 2r (u cot 4 : .v n )

Wl , Tug e" re dr."

Designating

U, (t) +V 2 (1)--2(t) 0,(t) =- arctg

we rewrite (8.35) in the form of ,, 0 CO,($-AS

" (, t)- -- - " re- dr.

(8.36)

The integral in (8.35) is calculated by means of a replacement of the variable of

integration j
="~- ) cos- C (0-0s)],W.! (O. t) -- -e-- e .co. - re- - dr -

1c20(MW40e) 
3-

e [r+ct cos (-) 'dr,

-2 Cos (0*-os) . .

wherefrom, introducing the Laplace function (cf. Sect. 7, Ch. I), ine fid
-6-

.e +
. +± aco(-e.) F" [±cos(,,-o.)I (8.37)

If the signal constitutes a harmonic vibration with a frequency of Wo and an
amplitude of uO, then u=U, 0 0, and from (8.37) there follows

I 2W, (a) + ,- F (s cos EO) eX (8.38)

whereby s is represented the ratio of the amplitude of the signal to the mean-

square vAue of the noise. It is obvious, that in a fixed moment of time dis-

tribution (8.37) has the same form as (8.38), if only the ori;in of the coordinates

is transferred to the polnt 0 = e, and there is designated s--

Let us examine distribution (8.33) more closely. Fir-ure 64,a shows a set of
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phase di.ttribution curves, computed accordine to formula (8.38).

'43

U%

I ,

478

, gS t

3St?

4 $ '1

w ,.we --. a) ,w ou n I

0 Po 0 to 12O fXJ wo
b)

Fig. 64. Distribution function of phase of normal random process:

{ a) probability density WI ( )

b) integral function P()(cf. P. 326 and further).

As can be seen from (8.38) and from F ure 64,a the distribution function w, (e)

is even along 0,i.e., the distribution curve corresponding to it is syrL etrical

with respect to the ordinate axis. When s =0
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'taich corresponds to a uniform phase distribution for pure noise. With the presence

of a signal, as s increases, the probability density for 0 = 0 also increases, being

equal to
so

2-x (8.39)
At the boundaries of the interval (-f, Y') the probability density is less than

and, as s increases, tends toward zero

e et -[-( (8.40)

When E = + the probability density is equal to

-27
W, e

It is easy to see, that
0 sin'S

W1 9) 0)e (8.41)

i.e., that the probability densities of two points, symmetrically situated with re-
spect to the +-A6 axis at a distance ofT - , differ by 2cos@

When s <<I, i.e., with a signal amplitude much snaller than the mean-square

value of the noise (weak signal), from (8.38), expanding the right part into an

exponential series in terms of s and restricting ourselves to terms of the second

order of smallness, we obtain
,sose _. s cos2 9 (8.42)

In this case, with an accuracy to quantities no greater than s2, the point of

intersection of Wi (9) with the line WI = is equal to

e* = -arccos 8.43)

Therefore when i0i<o" W1 (0) and when jel>e" W, (E))

from (8.42) it follows, that with a very weak signal the phase distribution function

constitutes a cosinusoid, displaced along the ordinate axis by the amount of 2'

with an amplitude of _fS
2V "
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if s ose>2,5 <-1, s>2, i.e., with a signal amplitude much

-reater than the mean-square value of the noise (strong signal), from (8.38) we

obtain
Cs 8n' 

-I, e ( .e

1 hen 0 ,- (s >2.5) it may be considered that W(e) ( , and for small

values of e
soot

1V1 (0) =4 7- e1, l•(8.45)

i.e., the distribution law for a phase is normal with a dispersion of

equal to the noise-signal ratio in the initial normal random process.

As -s increases, the phase probability density approaches the delta-function (cf.

Appendix iV)

lira W , (0) .( )• -,W (8.46)

which characterizes the distribution of the signal phase 'assumed to be zero) in the

absence of noise.

We compute the nu-merical characteristics (distrIbution moments) for function

mO}= 0-W, (e)de.
-(8.4?)

For computing the integral it is useful first to represent W (9) Vy a Fourier

series along e over the interval (-rT, Z.). ?or this it is sufficient to expand the

integrand function in (8.35) into a Fourier series in terms of e, and to make use

of the well-known equality from the theorj of Bessel functions (cf., e.g. G. N.

Vatson, "Teoriya besselevykh funktsiy" (3. N. Watson, A Treatise on the Theory of
Bessel Functions) For. Lit. Publ. Hse., 1949, p. 31)

4($z) eeAO

---, (3.48)

=1, (sz) +±2 1. (sz) Cos no.
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Then we obtain the sum of the integrals

Wi(0)~~~j~(sz) zj~z

st W a* s
++ 2 = I "(sz)ze 2 dzcos no.

R-I 0O

Employing an expression of the integrals obtained, in terms of degenerate hyper-

geometric functions (cf. Appendix VI, we find the desired resolution of W (G) into

a Fourier series

W, (="+ a,, o O, (8.49)

where there is designated
r (I + ls

k+I,
Substituting (8.49) into (3.47), and taking into account that the product 0"

cos k 0 is an even function whfen n is even and an odd function when n is odd, we

obtain
c o

2, + E La, 02cos k@ do,
h-" -" (8.51)

m2,,,-O rO 2,

3 .3

Since the mean value of m, 0, the random-phase dispersion a coincides with

the second distribution moment, and from (8.51) we have

02,=m 2 =4= + a 0 2cos k0d0,

or, after computing the integral,

.=- + 4 (8.52)
ki-I

With a weak signal it is possible to restrict one's self to the first terui of a

series (8.52), and then

i,-"- "3a - ,-V2,,,. (4-. 2,.-
.2 AIUe-7 - 4 a , "-- 2F 2, -

{_. or .N s<I- . .- 3 (8.53)
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For a stron. signal, the phase dispersion diminishes with the increase in

signal amplitude, with

0 •

Equality (8.54) is obtained from (8.52), if use is made of an asymptotic series

for the degenerate hypergeometric functions (cf. Appendix VI).

7. Errors in Measurin7 Phase of Harmonic Vibration due to Presence of Noise.

At the present time, increasingly widespread application in experimental en- 'T

gineering is being made of the so-called phase method of measurements, linked with

the transformation of the process under examination into a process of frequency

change or of alternating-volta-e phase.

It is well known *hat, in amplitude measurements, instrument sensitivity is

limited by fluctuation noise. In phase measureents, fluctuation noise leads to

variations in the manltude of the phase difference between two signals, which is

beinc- measured. In this connection interest is afforded by the question of errors

in phase measurement, which are caused by the presence of noise.

Let there be measured the phase of a high-frequency harmonic vibration with an

amplitude of u in the presence of narrow-baud, normal, stationary noise. What is

the probability that the error in the measturement of the fluctuation phase does not

exceed some fixed magnitude e ? It is obvious, that this probability is simply ex-

pressed in terms of the integral distribution function

P ITI <01 t(0) d 2rW(~0) (3.55)

where W (0) is determined by formula (5.38).

Let us introduce the abbreviated designation

Substituting (8.38) itto (8.55) we obtain

2e 2 d. (8.57)
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The integral in the rig~ht part of (8.57) is investigated in Appendix IX. Rai-

ployinL, formulas (9) and (12) obtained in this appendix, we find

P(0=F(ssinO) - i-)±2Vcssine. scosO). 8.8

cosO),(8.58')

The function V(h, q) has been tabulated by Nicholson (cf. Biometrica, V. 38,

19143). These tables have been employed to plot the set ofl curves for the integ-ral

law of the distributilon of phase P(O), which is shown in Figure 64,b.

We note, that from (8.53) there directly follows

P(it-O)+P(O)=2F(s sin). (.9

From (3.59) we find whene

P (±2 ='P (8.59'). t

-iIf S cos e0 3 , then function V permits the 'following asymptotic representati.on:

2V(s sine0, s cos 0) ~F(s sin )- T- (8.60)

Substituting (3.60) into (8.58), we obtain an asymptotic formnula for the probability

of P(O), which is valid when s; Cos 0 3.

P(e)=2F(ssinfO)-l.(861

If s'<1 (eak ignal), then, taking (8.42) into account, we find

Pi P(0) + $in +!!- sin 2. (8.62)

8. Two-dimensional Phase-distribution Function.

In accordance with (6.80), the two-dinensional dist.ribution function of the

phase of the normal random process -(8,1) is equal to

W2(01, ON, t) - j rir2 dr~dr, X

X *XP( 2 ,,e {(r Cos 0. ui2+ (risin 01 .. J):+ (8.63)
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+R (rcos0- g,)(r 2 siCO 2 -V:) +(2 R(csi.u,(~oO-s±(8.63) I'

+(rsin 1 -vj) rl sn 0 - v)1)(Cont'd)

where oil('a ii 2 =iiU+'). V=V(t), V2=V(t+t)-

When u =v =0, which corresponds to a two-dimensional distribution of the

phases of a stationary normal random process, there follows from (8.63) '
2-, -2U~arcos (t-,

X 1V(0 1O,, 4x'4(IR~)~j2@ru 2.(-RP) dr1dr2. (8.64)

A computation of intezral (8.64), cited in 1i , 4] , leads to the expression

-J~arcsrlt
I1- RI,2.l)r 2 (8.65)

where - 0 ~. ~ 2:

* y=R~os~1-0 ).(8.66)A

When r -.. ue R0 (r)-ap , Y-..O0, and from (8. 65) there follows

fIt is evident from (8.66) that when 45 - ron h edistr-.1butiorn func-

tion W2 (e 1,e2,-r const, i.e., the intersections of the probaoility surface

~2(e9e2  ) y th plne 1 -E) 2 = 0, and by those parallel to it, are straight

lines, parallel to the surface 1( 9 3 2 ) and, consequently, the probability sur-

face or the phase of pwre noise is a ruled surface. Besides that, function

W2  1  'r) is even alono $9 1 G 2. i.e., the plane 0 1: 2 is the plane

SAs is well known, a ruled surface is formed by the movement of a straight line

(the generatrix) as it slides alon, some curve (the directrix). The equation of~ the

directrix in the case at hand is provided by formula (8.65).
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of symmetry of the distribution surface.

A change in the level of the location of the indicated straight lines of the

constant probability density is determined by the intersections of surface W2 (0 1 ,

G, 'r) by the set of parallel planes 49,+G = const, which is orthogonal to the set

of planes G1 - = const. One of these intersections (by the plane @t + e= G)

is shown in Fi-ure 65. The maximum probability density, corresponding to &1 = G9,

is equal to

W 2 .. 4r2Y I I_ 02 (8.67)
Oj

From (8.67), it follows that W2  . F , i.e., a correlation between the

phases increases the probability density of G1 = G2 ' this density increasing limit-

lessly when r- 0 ( RO - ) " Furthermore, if between the correlated phases

Sand t + r) there takes place a constant displacement, equal to then

from (8.65) there follows )= , i.e., in this case the probability density

is less than in the absence of correlation by the quantity T "When Zr--O:i

""o-4I) the probability density of a displacement of - tends toward zero.

Fig. 65. Intersection of phase-distribution surface of noise
by the plane e1= - e .

1) Ho 0.9; 2) RO 0.7; 3) R = 0.2; 4) O.

The minimum density, corresponding to e t = n + Q , is equal toI 1I R
Re'Wl~()- -arc cos --- ")" (8.67)

From (8.67') it follows that W2  i(?') < q., i.e., correlation between the phases

diminishes the probability density of G= e + X, this density tending toward zero

when I- 0 (Ro I
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From (8.65) it is not difficult to obtain the distribution function of the phase

difference~( t +1(t)_ _ __I

-- ix- Y3 +Y(I -yP312
W = ,6" (8.68)

The two-dimensional distribution function of the phase of a normal process, for

the case when there is present the signal u(t) cOS40ot, has the followin. form:

R,2 I +a 2W2 (h, ,( 1) - e X
4,,,(_.2 e

2- 2' 2;.~~~~ I XFf:~~-fI)}X IF a' q-" (MI X

X IF, + + I ,

212 2 k' 2

X- O IF, O + a

where u,-Ro, u,-e, 1

,=. - Cos 0, = C2o 8,2

(870a,=.(t), . 2=u(t+). (8.70)

Formula '8.61) is sufiTcientLy c-,bersome*. n z:rtain cases, it is r, ore convenient

for the analysis to employ a formula which results, if the two-dimensional phase-

distribution function is represented by a multiple Fourier series in trms of vari-

ables O1 and G .  For this in integral (3.63) we assume v 0, go over to the vari-

ables z I  2 =  and employ formula (3.48). Then we obtain

1 f - -1 =2

- X~ W PI'[(l-e ' 02 /' 40(le )j '

~' Izjz 2e ReI s el"01-%4 "

xs - ou .1 e If[R1Lzlft#udz,dZ2.

A certain simplification of formula (9.6?) may be attained by employing/ relation-
ship (8) of Appendix VI.
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ChangIn- the order of summation and integration and introducing designations

for the expansion coefficients 2

A,.( t)or ex,.-nan .... , on-'~ e 24 3 2 2,t

1 2 RMu

I, [R!z'z -R'-2 1z [us Ru1 e ")- 2da -6-R .2) 1 L -Ri dzd,",
we obtain the desired expansion of the two-dimensional phase-distribution function

into a multiple Fourier series

,-.- ,,- -,,.. - (8.72)

If the signal is absent (uI = u2 = 0), then from (8.72)we obtain, the expansion

into a Fourier series of the two-dimensional distribution function of the phase of

a stationary normal random process

W2 (O,, 02,:- 1 , = E I
• -- *d(3.73)

•where ao
A, )=AN(,)= 4,,I-R ) Z Z2 >.

12 (8.74)

X IjR ) 0 dz,,dZ2.

Since Ar SA.r (8,73) may be rewritten in the form, of

•W2 (0, 0,,t )= AO + 2 A, Cos r (e, -. (0.75)
,-,,

The coefficients Arare computed by the expansion of function is, . into
the exponential series

~R

A,=O

Ma+ y42 e dzdz, (8.76)
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.- "___________________

tD r2 _+ (8.76)

Fro (876)itfollows that the constant term in (8.75) is always equal to

Having the series expansion (8.72) of the two-dimensional phase-distribution

function, it is not difficult to compute also the correlation function of the phas~l
aB,(i , UP(t)(t +) 11

0,02Le1 -t2 (01, e2, -r f) delde2 =
OD

The arible inthedouble integral are separable, and the computation of each

integ-ral is not dif'ficult. As a resul.0t we obtain

89()'2 A,(I~t.:

,--0a rs- a---o

If~~ thr is no s(nal then

R. + K AL

and. ~ ~ ~ 9 ePlyn 87) efn ha e Coiepanst uion f uhe creltion fnto fasai

ary nom radom proes is l' ncsar sohv h ttsia hreriesi ofpoer of

phase. T tbto o t.Lpoi- h itiu4M o

tained ~ ~ 9 inVels h pha, ts Cotine iul Doti histribution runctio

of Cos (t). For this It is sufficient to use the relationships which make it
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possible to find the laws of distribution for functions of random variables (cf.

Sect. 1, Ch. III).

We find first thn one-dimensional distribution function of cos (t). From

(8.38), by means of the replacement of the variable z = cos 0 , we find the fol-

lowi.g expresson f:r the one-dimensional probability density of cos f (when

-7 7 Z7 the function 0(z) arc cos z is two-valued):

W, () ir re (W), P - 1+ ic() I (8.79)

and since

' then*

W, (Z) -=- e- ." CS ZF= ($Z) eT] 2s oita

-l~z~l.

Figure 66 shows a set of the curves of distribution (8.80) for several valies

of s. When s = 0 (pure noise) the curve yields the well-known distribution of a

harmonic vibration of unit amplitude and random phase [cf. (3.16)]

W,()-1 W _.lll (8. o,0

When s > 0 the curve becomes asymmetrical, the probability density for a given s

when zI> 0 is greater than when z2 .-z. This is linked to the fact that the

probability density of the phase whenJ < is greater than when lot ., , i.e.,

that positive values of cos e are more probable than negative ones. Quantitatively

this difference is determined from the equality

i > (8.81)

by== te Z>O.

* Alt .:agh the distribution function of the phase and of the phase cosine are denoted
by the same letter W, it is necessary in the future to remember, that these are dif-
ferent functions.
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Fig. 66. Distribution function of phase cosine
of a normal random process.

Eploying expansion (8.49) of the function W e into a Fourier series and bearing

in mind, that cos k arc cos z = Tk(Z), where TR(Z) is a k-th-order Chebyshev poly-

nomial 'of the first kind, it is possible to obtain the following expansion of W (z)

into a series the Chebyshev polynomials

WW=[+ 2[ a. T. (z)
h-I

The coefficients ak are determined by formula (8.50).

Let us compute the distribution monents of cos , making use of expansions

(7.17) and (7.18) of the powers of the cosine with respect to cosines of multiple

arcs. Taking into account the property of orthogonality of trigonometric functions,

we obtain [cf. (8.49)]

in= + a,cos r -i 2 (2n) (8.83)
-- ,-! k-O

A-I, d( .)1 (")+ -" a,,,
}, " el dO -- n -i a -k)( k)

k-U

c re [ k- cos2n

- ) (8.84)

-2k 10 Oa.

The first two distribution moments of cosp are equal to

.. M, =tat= v 2.,, 2 -,.-2
d (S, (8.85)
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We indnowtheprobability, that cos~ z

It is not difficult to express this probability irn terms of the integral phase-A

distribution function F(19)

P 1 4I o 4P<1P 17< accsz

or
F~(z=-P (arc cusz).

(.7)

From (8.87) it follows, that the probability of i -,z 0-Uat z cos 1, simply

coincides with P(arc cos z), and for computin& this probability it is possible to

employ the curves and formulas cited in Section 7.

The probability that Cos is positive is equal to

I -FO)=P(8.88)

Orc Cos
If there is no signal (s SO0), then P(arc cos z) - X and then [com~pare

F, (Z)rI -- arcosz.

To determine the two-dimensional distribution function of a phase cosine it is

possible to employ expression (3.69) or (8.72), effecting in them the replacement of

variables z =Cos 9e 2

The inverse functions are two-vJ~ued when -X<0~ -~ 2'<:

therefore to each point of planie (z1, z ) there correspond four points ofl plane>2 -ITe)
1= arc cos zj, 12 =- arc cos z1,

=-arc cos z2, On are cos z2.

The moduli of the transformation jacoblans are, as is not difficult to compute,

F-TS_98II 335



equal to O(A11, 2.) I -I , e,) i--I ' i. "2

I z(ZI, Z3) d(zj.z)
,_ (8.89)

Let us examine in greater detail the case of the absence of a signal. From ex-

pression (8.75), taking into account (8.39) we find

+ W2 (e., 022, + W2 (912, (e21- T) + W2 M(2- e22, t)l

- + - A, [Cos (r arc cos z,) X

X cos (r arc cos z2) -- sin (r arc cos z1) sin (r arc cos z2)] +

+ A, (cos (r arc Cos z) cos (r arc cos z2) +

+sin (r arc Cos z,) sin (r arc Cos z,)]'

4

4 r 402 A, os (r arc cos z,) X

X cos (r arc cos z2)],

and, introducing the Chebyshev polynomials T (z) = cos (r arc cos z), we obtain
r

X[I,+ 2  A, T,() T, (2)]

-- I ;I -- !--z I

where A (T) is determined according to formula (8.74).
r

Let us note that series (8.90) represents the expansion of a two-dimensional

distribution function of the phase cosine of a stationary normal random process in

terms of orthogonal Chebyshev polynomials, v.hich fully corresponds with the general

method of resolution, indicated in Sect. 6, Ch.VI, since the one-dimensional dis-

tribution function of cos , equal to over the interval of -1 z < 1,

coincides with the weighting function of polynomials T(z).

With the aid of expansion (8.90) it is not difficult to find the correlation

function for cos P
-. 6
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- A, ,

where +1

In such a manner [cf. (8.74)]

In such a mannr c,- ((.'1') B 2z2A, (1--

:11- R2)(8.91)

2( J~JZaIA R C-~i dzldz,
2__(1_____

or, taking into account (8.76), we obtain

2" n!' (n ++
n-I, (8.92)j-') 0 + + +.:<,_ r.,,-,, .

8 -- f " F b " - '-'": J , ! . .

It is also possible to represent the expression for the correlation function of

the phase cosine in another form. For this the double integral of (8.91) should be

expressed in terms of hypereometric functions, whi.ch in the case at hand are re-

duced to full elliptical integrals. Omitting here a presentation of the indicated

transformations, we cite only the final ,'esult

(8.33)

where K and E are full elliptical integrals of the first and second kind, respectively.

The correlation function of cos may be computed witLout prelininary detenmi-i

nation of the two-dimensional distribution function, which is particularly important

for the case when a signal is present, since in this case determination of the in-

dicated function leads to cumbersome computations. It is clear that (of. footnote

on p. 313) +1+1 ,

B (T) = zzW 2 (z. z,. ,)dzldz,

-SCos 10,Cose8:W2(e1, et. )d@eIde 2 . (Q~
F-Sit -- 7
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where W2( V , t') is the two-dimensional probability density of the phase. &1-

ploying (8.72) and changing the order of summation and integration, we find

X Cos 2pe"t+")'eC(m - ' 2 df4 1d02 .
In virtue of the o? iogonality of the trigonometric functions,

5cos Ole" ~'d0 - I*

10, n 4-T-

r,-m r ==!-=- T.Icos @2e -r{1 Id62±
Thus, we obtain the following general expression of the correlation function of

cos? in the form of the series

8()X 1 1 == ,-,*1.,,, 1 (). (8.95)
r--00

whose terms are determined by formula (8.71). If there is no signal, then all the

terms, with the exception of A turn to zero and (8.95) turns into (8.91).

I0 A

10. Statistical Characteristics of the Derivatives of the Envelope and Phase

Let us examine first the more general problem of determining the joint dis-

tribution of the envelope, the phase, and their first derivatives for the random

process (8.1), assuming that these derivatives exist. In order not to encumber the

presentation with analytical coputations, we restrict ourselves to the case, when

. the determined part of the process is a harmonic vibration With the constant anpli-
1 tude U (v-M 0).

The starting point for the solution of the indicated problem is a four-di-

mensional distribution of the envelope and phase of a normal random process

W4 -(ft r, 0, 02, T) 'ro exp•-- X (8.96)

X [(rI cos0 1- u), -r+ sin'O1 4- (r, cos Og-- u)2 + r sin2 0,-
-. -- 2l(r1cos,.- u)(rcos e2 -..u) +r,rzsineisinO 2}I}.
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We now effect, in distribution function (8.06), the replacement of variables

Pa - ~,(8.07)
01V-0

2 12

The transformation jacobian of (8.97) is equal to
I 0. ?-O 0

0 0

A Ut,. P1. Q , "- (8.98)
aq, Vr1f, e0 1, "1 0 0 I-- "

2

0 0 •

Therefore

S(2m-)(I _k2) 2 : -R2)

X ([(p, +1,j pz) cos + 42_ A +(p. )- uY±s .+ 4

×{(!;- .,)c(.,- j .)-, +

+(,. + P2)(P -P) sin ( 1 .+5')sin (. ?_ 2))

If in (8.Q) one is to pass to the limit when r ---o0, then ri- p2 - r,

D -' -e, and 72- -- d ,t and. in this manner there will be obtained the desired

distribution of the env.ope, the phase and of their derivatives in coincident in-

stants of time.

Takinv into account, that Ru(t)= I -RO(0)+0(M and taking the limit, we ob-

tain*
, i ~ ~~~~W4 (r,, '' % e-

.2G4d2 4r (8.100)

where there is designated w2 V-Ro (R( < 0).

if the stationary part of the normal process at the input of a linear system is

white noise, then it is not difficult to express the magnitude RO( )-

in terms of the band of the linear system, making use of the appropriate formulas for

The indices "I" of the variables are omitted.
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the dispersion of the derivative, which are cited in Sect. 3, Oh. VI. It is then

necessary in the indicated formulas to assume W. = 0. since BO(?) results from B(t')

when w.4= 0. Then for the ideal linear system lt-Y-R,'(0) and for a

linear system with a gaussian frequency characteristic

From (8.100),irtegrating along e and e', we determine the Joint distribution

function of the envelope and its derivative in coincident instants of time

W2 (r, r')-
e 20

.- V e e dO'dO,

wherefrom

Comparing-(8 .101) with (8.3) we find 4
• *. i

i.e., the Joint distribution of the envelope and its derivative is equal. to the

product of the distribution function of the envelope (generalized Rayleigh function)

by the distribution function of the derivative, which turns out to be normal with a
2 A

zero mean and a dispersion of (A)

Having the expression W2 (r, r'), it is not difficult, employjn, (5.105), to de-

termine the average number of intersections, in a unit of time, of a fixed level-

r r by the envelope of a normal random process

4J (x,) 2in" 1W, (r),

(w) is the average of the positive values of a normally distributed deriva-where m1

tive, equal to nl+) - i

Therefore

S 2 "- W(8.02)

2340



-9 7

It can be seen from (8.102), that the distribution curves of the envelope, which are

shown in Figure 24, represent on a certain scale also the average number of the over-

shoots of the envelope.

Let us now determine the joint distribution function of the phase and its deriva-

tive, Integrating (3.100) with respect to r and to r'. Integration with respect to

r' is effected immediately, yielding

~~'CO ~ ~ o - -(+j~aCOSOw~~,-e ' fr~e "\ " e " dr. (.133)
(W4,0 -) dr.

Finally, interrating with respect to e , we find the distribution function of the

derivative of the phase of a normal random process

5 3e ra e "'re drdO
• -1 u(8.104), -5 --.

e I 'I e  " dr

The integral in the right part of (8.104) is cxpr'essed in terms of a hypergeometric
function (cf. Appendix VI). Then W1 (91') may be written in the form of

W'(O')- 23 r(-a)sV Y'2e(±-i
0" 2- OL a/ 2 0

or, introducing the designations S-±, V- +-, we obtain
.,!

e R F( , ~,(.105)

It can be seen from (8.105), that function W,1(e') is even and the curie corresponding

to it is syaoietrical with respect to the ordinate axis. A set of the curves of W (e)

for several values of s is shmwn in Ksure 67.

Fbr a stationary normal random process (u = 0) the distribution function of the

derivative of the phase is equal to

"- +
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Fig. 67. Distribution function of phase derivative
of normal randon process.

In this case it is also not difficult to find the probability, that the derivative of

the phase will not exceed in absolute magnitude a given frequency. .

P (1I'l ---2 Wj'(O')d8'-- .,.-- aI8

(I -) (8.107)

Ifn > then
I 11 I , "'

P} 01<1") 1- (8.107)

If u <<, then, resolving the hypergeometric function in (8.105) into a Taylor'l

series and restricting ourselves to two terms of the resolution, we obtain

2., a~~.) +~J.(8.108)

When u > o , employine an asymptotic resolution of the hypergeoetric function,

we find
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* we'- e ' (8.108')

The magnitude W)1 , as has been indicat I above (cf. Sect. 3, Ch. VI)., is pro-

portional to the band of the power spectrum of the initial process. 1When e'<W'

and u *Vo the distribution of the phase deriv-itive is normal with a dispersion of

The mean value of the phase derivative is, in view of th3 s . -y of W1Ce ),

equal to zero*. in an attempt to compute the dispersion of the phase derivative we

are blocked by the divergence of the inte-ral E, Wj(')dO'. In fact, it can be

seen from (8.106), for instance, that W(e') diminishes when G---o as e and,

consequently, the integrand function in the indicated integral dir.inishes as e

i.e., too slowly to ensure a conver-ence of the improper integral. Thus, the dis-

persion of the phase derivative is unlimited. Distribution (8.105) represents one

more example (cf. p. 133) of the distribution of a random function, for which a dis-
4

persion does not exist.

As a numerical characteristic of the distribution of a phase derivative, there
may be taken the average of its absolute values, i.e.,

M.I I = 6 ,( W,¢o do'=2 j" W,(R),. (I. IOo)

Substituting in (8.109) the expression for W (EY') from (8.104) and changin , the order

of integration, we obtain

se 2-4 ~lr

20, ur\ x

or, expressing the hypergeometric function in terms of a Bessel function (cf. Ap-

pendix VI), we find

Cf. Footnote, P. 301. Consequen-;ly, here we are speaking of the mean value of thet"
deviation of the frequen:v from WO0 "



If the determined part of the process is lacking (u =0), then

(8.111)

11. Correlation Fuanction and Power Spectrum off Process at the Output of

an TFM Discriminator

To conclude the present chapter let us find the correlation function and power

spectrum of the phase derivative off a normal stationaryf random process.

This problem assumes still more sig-nificance with the development of frequency-

modulation enoineering. As is well known, a receiver designed for the reception of i
ffrequer.7~-modulated oscillation~s has, followingr the amplifier, two nonlinear elements:

a limiter and an FM discriminator. ILI the effective Width o~f the power spectrum of a

normal stationary random process acting on the rf-amplifier input Is much greater

than its pass bandwidth, then the normal random process 4(t) at the output of the

rf-ampliffier will be a narrow-band one, and may in accordance with (6-Y',) be repre-

sented in the form:
I)A (t) cos (ot + C () sinfl

_jfA2_-Q)+C2Q()CO co -arcg-) 4)

If, besides that, the power spectrum of 4 (t) is symmetrical ;,.:th respect to the

central frequency coo , then A(t) and c(t) are uncorrelated, and their correlation

functions B(r) are equal to each other. To simplify the mathematical calculations,

it may be assumed that, after limiting, the process is equal to*

e)=Cos[W arctg~--

Then the random process at the output of the FX discriminator coincides w:ith the

phase derivative of a nor-mal random process

0() -d acgC(I)=CQI).A'Q)A (0-C'(1)
dt A 1 At y + l (t)(.1)

*A solution of the problem With more general assumpti .concerning the limit~s
characteristics Is cited in (14] 3; 1

F-TS-181 1/V 344



The correlation function of random. pr'oces 1 (t) is equal to V1

' C(t) At ()-A(I)C' (t) C(t-1-),4 (t+-)-A(t,)C'(t--.)• (8.113)

* ~~~A (tt)C2t +2 -) +C 2 (t

It can be seen from (8.113), that in order to determine BA (z,), it is necessar-y

to have an eight-order distribution function of the random variables A(t), AI(t),

A(t +r), A,(t +r), C(t), c'(t), c(t + V). C'(t +-r).

In virtue of the fact that the random variables A(t) and C(t) are uncorrelated,

the indicated distribution function is equal to the product of two normal distri-1
bution functions of the fourth order, for each o' which the defininz determinant has

>1 the form of (5.103).

For subsequei~t computations it is convenient to employ an integral represent-

ation of these distribution functions in terms of the four-dimensional characteristic

functions corresponding to them (cf. 3.95').

wd x:, x , x,,x )=.

04 4 ( 8.114)A L 55 t-h-

1- " 2dv 1...dv4,

(2 555e e 2 dul ... dU4,
where rlk coincides the elements of determinant (5.103), and 0, B(O).

Taking into account (8.114) and (8.115), we find

"'" X+ , x

' 
- Y 

times
x " W4 (X,.... X2) W4(y1 .... y2)dx,...dy2" (8.116)

so" 4 4-, P" * 2.;I
= P A' 4-1- " Z

"+M dx. ... dY2 duv . . . du.4

The integration with respect to xI, x yyt . and x2" Y ' Y2
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in (8.116) is separable and reduces to the computation of four fourfold integrals of

the sane type.

Let us examine the integral

?l- r 1X -1 Vivo. fx~.7u "'dxldx~dyidy*.

Enploying the delta-function (cf. Appendix IV), it is possible to represent this

integral in the form:

'K -'V)(2 Y dxldy1.@ X2+y2

Transformation should now be made from the variables xI and y, to the polar co-

ordInates a nd (4.
[I

X,-pCOST, y,-PSInf;

then

K, V(2  )a(u 2) (Q I( sineI ' (r" aC st Sill ddp.

But

sin C(, Co +Uk Was) d?=

I "f' ( u

e- d

"# +

Ii -_(-j2 (PY t +,,l)Cos

iF where

Thus

K, () .4 (P 2 ,-4- de

F-S0 11 4



and since

(*) gJa~p~~+I4dp

i ~Al V'l/ × 2 .
then - i0&'V 2 ) (U2 ).

(8.117)

Analovously

xy

II

' ~~~~X e-1z.,-ny,, , dxl x d, dyd,= (8. 118 )

v~ ~~ V-' (V2+x, , ) &'(U2_ )(.10

S + U

K3 == 1  YIX2

Xt e1 
(tin4 (1) .it +y.11.) dxodx ldy2dy2 = (311)

xN. V2 + U2 'V) U)

property of the delta-functXon and o its derivative, we obtain

A-- I , _I

X2X

S [t i' ((1) ( (4) ad ( i) a (t)1 Xf

Xe (. d= o. . .du+ =
L(J + 34

X [U4'(t4) (U4 + 3& (4) '(11)]

+~~~~~ 4,+ '++ +++



77 717

( "j I u tt) + 44R I (u va - V U)

"~ , u + 2R '-v+2RU;,'

2 1 1 3 3 dV do3dU/dU 3.

Subsequent computations of the multiple integral are simplified, if use is made

of the substitution of the variables of integration:

V,- Co s (a + U).,=" si, ( + P).
u-,- cos , - sin

Then B. = (R" cos m + R'2 rpsi n2 C) X
Then U4~)

8000

-(s I-P' I2R'p Cos 2)
X e dddrdp-

2x e (R, cosx-.tP-.so

0 0
2x,

+ R'2rp S si n2 e-RrP cosa d) drdp.

Taking into account that Cos fnle - cs 6 ( I (a) and employing formulas

(3) and (7) of Appendix VI, it is not difficult to carry the integration out to the

end and to obtain the desired expression of the correlation function of the random

process at the output of 4n FIM discriminator

B.(, -2[ (r - ' ) ( ) l', 2!?. 3')
= R - 12'  (C) R- R"( )

The power spectrum of a random process at the output of an FM discriminator is

obtained by means of a Fourier transformation effected on B2 (V).

Let the random process at the input of the rf-amplifier be "white noise", and

the frequency characteristic of the rf-amplifier be a gaussian curve. Then taking

* Since R(O) = 1, then from (8.121) it follows that the magnitude BQ (r) becomes
unlimited when o-. 0. However, taking into account the finite width of the dis-

4" criminator-filter pass bard, the correlation function of the process at the output
of a FY receiver will have a finite value when r = 0.
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into account (6.19) and (6.46), ue find an expression for the correlation coefficiet"

LI playing a role in (8.121)

4 (8.122)R(0)-- e

wherefrom Ott-

in (8.122) and (5.123) the parameter is linked with the power band width of

the rf-amplifier by the relationship A . Substituting (8.122) and (5.121)

into (8.121), we find

(8.124)
In 0"_

----- I1n(I -e )2

The power spectr'.m is, in accordance with (5.44) equal to

F2 M)-- cos. In (I - e 2) dv.

Expanding the logaritm into a series and integrating by terms, we obtain

F ) .2 If e 2 cos wcd-
- 0 (8.125)

ft-I

The intensity of the power spectrum when £0 0 is equal to

where (X) is a fliemann zeta-function. Bearing in mind, that (3/2) 2.612*, we:

find

F1 (0) 1 .86 VI= ,,86..

'W vhen W - ' /9

C cf. e.g., Ye. Yanke and F. Ende. Tablitsy funktsiy (Tables of functions),
Gostekhizdat, 1'?4, p. 372.
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Figure 68 shows the curve of power spectrum (8.125).

Fig. 68. Power spectrum of process at output of F discriminator.
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Chapter IX

PASSAGE OF NO.VMAL RANDOM PROCESS THROU(nH STADARD ;UWIO-EQUIPYXNTSECTIONS

1. Statement of the Question and the Method of Solving it

It has already been noted in Sect. 1, Ch. VI that a characteristic feature of

many staves in the operation of radio equipment is the transformation of electrical

signals, which generally speaking are random processes, in a standard section con-

sisting of three consecutive elements: the input linear system, the nonlinear (non-

inertial) element, and the output linear system. (Fir. 43).

If a normal random process is actinZ on the input of a standard section, then

finding the power spect:am of the process at its output presents in principle no dif-

ficulties. Past the input linear system the process remains normal, and the spectrum

is deformed in accordance with the shape of the frequency characteristic of this

linear system [cf. (6.4)]. As a result of nonlinear transformation the distribution

functions of the process cease to be normal, but the spectrum of the transformed

process can still be determined throu.h the use of one of the methods set forth in

detail in Chapter VII. Therearter it is sufficient to take into account the se-

lective action -f the output linear system, employing formula (6.4).

However, in many cases a knowledge of the power spectrum of the process at the

output of a standard section is insufficient, and it is necessary to know such finer

characteristics of random processes as the distribution functions. The determination

of distribution functions is tied in with considerable difficulties, of both a theo-

retical and a computational nature, since for this it is necessary to solve the

problem of the transformation of the distribution function of random process in a

linear system upon who3e input there acts a r.-ocess which is not normal (cf. Sect. 8,

Chapter VI).

In those cases where the process at the input of a standard section is not
4.

normal, this difficulty appears already in the first stage of the investivation. It
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may constitute an obstacle not only to the solution of the problem of determining

the distribution functions, but even to that of the problem of finding the power

spectrum of a process past the nonlinear element, since for this it is necessary to

!now the second distribution function of a random process at the input of the non-

linear element (i.e., at the output of the preceding linear system).

There exists a limited number of precise solutions to the problem of determin-

ing the distribution function of a process at the output of a standard section,

which have been obtained with some special assumptions as to the nonlinearity charac-

teristic and the statistical properties of the random process at the input.

An approximate method of determining the one-dimensional distribution function

consists in computing a.certain number of distribution moments. This method permits

generalization [4] , but even in its simplest form, as it was set forth in Sect. 8,

Chapter VI, its practical application is tied in with cumbersome calculations.

In the present chapter there is examined a precise solution to the problem of

determining the one-dimensional distribut'on function of a process at the output of

a standard section, with two fundamental restrictions:

1) the random process at the input constitutes the sum of a determined signal

S(t) and a stationary normal random process with a uniform spectrum ("white noise"),

and with an intensity (average power per unit of band) equal to -a

2 the characteristic of the non-linear element is quadratic: y = x2 (the con-

stant multiplier is omitted).*

2i The problem under consideration obviously coincides with the following problem,

of important significance in many radio-engineering applications (location, com-

munications, etc.).

The input of an rf-amplifier is acted upon by a determined signal S(t) and by

fluctuation noises. The signal is subjected with the noises to square-law detectors

e s solution of the problem for more general assumptions, where the multLplier
serves as the nonlinear element, is cited in E71
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* ! and to the subsequent filtration. What is the distributio,. function of the signal

and the noises at the output of the filter?

In the following exposition, the terminology connected with this special problem

is preserved for the sake of greater definiteness. Two cases are considered: a) a

wide-band rf-amplifier and b) a narrow-band rf-amplifier (the width of the frequency-

characteristic band is much less than the central frequency). In the first case the

process after nonlinear transformation is assumed equal to the square of the random

process at the output of the rf-amplifier. In the second case the process after non-

linear transformation is assumed equal to the square of the envelope of the random

process at the output of the rf-amplifier (i.e., the high-frequency component of the

process is discarded).

We shall- show that the processes at the input and output of the standard section

in question are linked by an integral relationship. Let the linear systems of the

standard section be charactarized by their pulse transfer functions: the rf-ariplifier

by the function h (r) and the filter by the function h2 (T). The link between the
12

pulse transfer function and the square of the frequency characteristic of a linear

system is provided by the form-alas in Sect. 2, Ca. VI).

Let us designate white norm,,al noise by (t). Since the signal and the noise

pass through a linear system independently, the process at the output of the rf-

amplifier will be a sum of two items: the determined S1(t). and the stationary normal

random process 1 (t), each of which may be represented by Duhamel's interral (cf.

6.3)
S, (t) hi 0) (I j

-) 5(9.1)
hi= 5 h, (--)d . (9.2)

From (9.1) and (9.2) there follows the possibility of representinz the square

of the random process at the output of the rf-amplifier in the form of
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(9-3

+Wv)] dudv.
If a (t) is the process after filtration (i.e., at the output of the standard

section), then

F( t) h 2 ( ) [S I Yt _ + E. ( t - )1 2 d t, (9 .4 )
-O

or, substituting into (9.4) the expression (0.3) and replacin- the variables of in-

tegration u and v by u- " and v - r, we obtain

V-O -- e

where + Z(t - v)1 dudo.

K(u,v) = 5 (u -. (C) h I ( -,)d- (9.6)

Expression ( -5) represents the desired integral transformation, byj which the

process at the output o the standard section is linked to the process at its Input.

We shall call the function (u,v), which depends only on the characteristics of the

rf-amplifier and the filter, the nucleus of this transfor.ation*.

In problems dealing ith the envelope of the process at the output of a standard

section, there is placed under the sicn of integral (0.4J) not the square of the

random process at the output of the rf-amplifier, but the square of its envelope,

Here it is useful to emploj the concept of the nai-row-band normal random process in
the form of a sum [of. (6.39)]

, f) + S () = RA()S () cos Wot +i. + 11,(t) + S, (t)] sin,,ot. : 7

Thus the solution of the problemn at hand has been reduced to a determination of

the statistical characteristics of integral (9 5), for which there will be necessary

a more detailed study of the properties of such integral transformations.

* In taking into account the physical feasibility of the rf-alplifier. and the filter,
it should be assumed that h1 (t) = 0, h2 (t) = 0 when t < 0.

.i *. . -TS-91/V 355



Since consideration has been Siven above to the nonlinear transformations only

of the envelope of a narrow-band normal random process(Sec.i4hapter VIIi)and not to

the nonlinear transformations of wide-band normal random processes, therefore 12,

which contains a detailed computation of the first two distribution functions of the

square of a wide-band normal random process, is prerequisite to a solution of the

principal problem to which the present chapter is devoted. In a certain measure this

section may serve as a standard example in the determlnation cf the distribution

functions of random processes undergoing nonlinear transformations.

2. Distribution Functions of the Square of a Normal Random Process

Let us fi.d the ti;ro-dimensio-al distribution function of the s. .are of a normal

random p'-ocos:., having e=ployed the general .o-.ralzs for thc replacement of vari-

ables in distribution functions undergoi::g transfcrr.:ation (cf. Sect. 1, Ch. III);

where

We designate by w2 (xl, x2 , , t) and %21- y2 , r t) the two-dimensional dis-

tributon functions of a normal random process and, respectively, of its square.

2Since the function inverse to y = f(x) = x is two-valued, to each point with the

coordinates yl > 0, y 2 0 0 there iI. correspond four points in plane (xl , x 2 ):

X11= VKy. X=2-1/79)

Then in accordance with (3.7)
W2 ~ ~ ~ , 0I Y2-,, T., 0 ]2( 2 +VinJ,. Y,. ;. t)=w2 (x,,, x,,, 1., 1) d(Y.))+

.j-w(x x. 1).1u Gx.1 ,) j-w2 x,x . ,%-i d(xit.rt)j J 4...
W2 (Z11- X22- 'I jj.y2n) I(X 1  (9.9)

+ 02(09, J *, '- ) 1- -x I

The absolute values of all four jacobians in 9) do not differ from each other and
!

are equal to
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Substituting the expression (7.1) of the two-dimensional function of a normal

random process into (9.9) and taking into account (9.8), we find

___ I ,(-R

- ,+, , (a ,-Rn, ,.Nar,€o-. R,), V,,+R'Y,,

+ e "'t-R') e

,-I ("d&,ya+ (a- Rai)Ir,, v

+ e .',-R,, +
+ e -

-- (a Ra s) IV- (2- Ra)Vy i-ys

+ e

4+.R-.. .,+,

I W, P -R,

hic e C1 - (1 - '2)

R(--R )(
+ e '~ Ch - a4V~ 2  R,)

Transforming the hyperbolic cosines of the sum and diff.ernce and jrouping the terms

with cosines and sines, we find the desired expression for the two-dimensional dis-

tribution function of the square of a normal random process:

________2. e e 2@'(1-R'J X

Wg ~ ~ ~ ~ Yy (ya: -2 R)ai)Vy ( -

X (ch FR rvYY cli Yh (a' Ra) ch - 1L2 -(I- ") 2(I -RA) t( - ) (9.10)

+sAhIR Y~y' A [ 7t(a, - Ra2) lAh[),( 2 a)]Mir- w) of(I R2) J 6 2 (1- Rk

y>0., y2>0.

A JIf the determined part is missing- (a1  a 0), then from (9.10) we obtain the tuo-
1 2

dimensional distribution "unction of the square of a stationary normal random process

S tYI. Y2. e (9.1)

it is not difficult to obtain a one-di-iensional distribution function from (9.10),
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if 'r'-. (-4 0); then

2 3 8ch , 'C. (9.12)

Ithen a = O, we obtain the probability density of the square of a random variable dis-

tributed according to the normal law

W, --- e , >0. (9.1

which does not differ from (3.14).

If a*o, then in (9.12) the iyperbolic cosine may be replaced by its asympto-

tic approximation

Then distribution function (9.12) may be rewritten in the form of

W1 (Y'Q'

Figure 61 shows the curves of distribution function (9.12) for several fixed

values of--. Curve I corresponds to (31-13), i.e., to a purely randon, process.

T-

2 4 o

Fig. 69. Distribution function of a square of normal random process.

The expressions (9.10) and (9.12) 3btained above represent the distribution

functions of the square of a normal random process in the most general forn, when no

supplementary assumptions are made with respect to the shape of its power spectrum.

For the problem under consideration in this chapter, thi -is equivalent to the absence

of any special restrictions with respect to the shape and central frequency of t:e

frequency characteristic of the input linear system of the standard section. If,
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however, this linear system is such that its linear characteristic Is symmetrical

with respect to the central frequency . , and its band width is 4d <<W,, then the

normal random process at the output of such a system will be a narrow-band one. Then

its square will consist of two ter:nis: a low-frequency one, coincidin- with the

square E2(t) of the envelope of a ncrmal process, and a high-frequency one, equal to

E2(t) cos 2 [W -t- y(O] . The distribution function of E2(t) were determined in

Sect. 4, Ch.8 [cf. (8.15) and (8.20)) . The distribution of the high-frequency con-

ponent nay be obtained from a consideration of the product E2 (t) cos 2 4- 5Dfd)J.

The low-frequency term of the square of the envelope of a stationary normal random

process, Oq), is distributed according to the exponential law, vrith the phases

equiprobable. .hployin:r (3.25) and taking Into account ,0.20t) and (3.80'), we find

the one-d'.mensionai distribution funct'on W12 (y) of the high-frequency terni

' " _- - dz=
V1. (9.15)

where Ko z) is the Bessel function of an imaginary argurent of the second kind and

of a zero order (c&. G. N. Vatson (Watson), Teoriya besselevykh funktsiy (A Treatise

on the Theory of Bessel Functions). Foreign literature Pub. Hse., 1'.-9, p. 200).

A curve of the function W12 ( ") is shown in Figure 70.

4 4

Fig. 70. Distribution function of the high-frequency term of
the square of a normal random process.

-3 ne Result from the Theorj of Inte-ral Forms

Let us now return to the study of integral transformation -9.5); for this it
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will be necessary to draw upon one result fromi the theory of integral forms. Omit-

tine, here the proof of this result which is referred to one of the handbooks on

integral equations (cf. e.g., I. G. Petrovsky, Lektsii pc teoril inte£ alnykh

uravneniy (Lectures on the theory of integral equations), Gostekhizdat, l-40), we

shall restrict ourselves here to several geometrical analogies.

Let us consider the continuous function y = f(x), in the interval (a,b). For

a full determination of this function it is necessary to assign to it values at every

point in the indicated interval. Fowever, some concept of this function is provided

by its values at n points x, x2 ... x. .  Let us adopt the desi:-nation y. f(xi)

C i = 1, 2,...n).. The numbers y, Y2, ...y. may be regarded as the components, in

an n-dimensional space, of a vector drawn from the origin of the coordinates. Thus

to the function f(x) there corresponds the vector (y, y 2 . . y. ). The greater is n,

the more precisely is the function approximated by this vector. The length (or the

"notr") of this vector is equal to . +Y+ - ... Y. Taking the lir~it when

n-+ , it is natural to call the "length" ("norm") of the function f"x) the magni-

tude P WX. The function is called normalized, if its norm is equal, to

.1. The scalar product of the two vectors Y, Y2 "Y)) and (2  y2)

is provided by the formula Yj) Y" ao;alogously, we shall call the scalar'product of

the two functions f1 (x) and f2 (x) the integral Sf(x)12(x)dx. Twc vectors are

orthogonal, if their scalar product is equal to 7.ero. The condition for the ortho-

gonality of the functions is written in the form of

11(z) x) x= 0.
The equation for a 2-nd order surface in an n-dimensional space is put quad-

ratically and has the form

* ki1yl, const,

with k = ki The corresponding analogue in the space of the functions is the

integral form
C b b:1 K(u, v) ( u)f(v) dudu- const,
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where the nucleus K(u,v) is symmetrical, i.e., K(uv) K(vu).

It is well known that the equation for a second-order surface(7k, 1.yy 1 const

may be reduced to the canonical form::12 -(m

if the transformation is made to such a system of coordinates, in which the principal

axes of the surface serve as the coordinate axes. This reduction to the canonical

form is effected by the linear transformation

1-1

the vectors (all, aj 2 , ...ajn) forziin-: an aegregate (i = 1, 2, ...n) of orthogonal,

nor.aalized vectors, directed along the principal semiaxes of the surface under con-

sideration. To the true semiaxes there correspond 0;O. If m < n, the surface

degenerate3 into a cylindrical one. It is proved that the coefficients ai4 of the

transformation satisfy the system of linear homogeneous equations

ai =1 k,1a41

Completely analogously, an integral forn urith a symmetrical nucleus may be

represented in the form of the finite or infinite sumunation*

bb

4-1
where

" f (x) ,(x) dx, (9.17)'
(

and the functions (?(x). (i 1 1, 2, ... ) are an aggregate of orthogonal, normalized

functions, each of which satisfies the iomogeneous integral equations

v ()= K (X, y) Tj (y) dy, (9. 17' )

(°*When the upper !!.Tit of a summ[ation may be finite or infini'te, only Its lower

limit is indicated.
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The solutions for (x) are called proper ortho.-onal functions, and the numbersli-

the proper values of integral equation (9.17'). If a lar7e number of the proper

functions is f.nite, the nucleus of the integral equation is called a degenerate one.

Formula (9.16), and (9.17) and (9.17') which are linked to it, represent that

result from the theory of integral forms which is employed for studying the dis-

tribution function of the random process at the output of a filter.

This formula also follows from the possibility of expandin; the symmetrical

nucleus K(u,v) into the series

) (9.18)

Let us note that the expansions (7.5), (8.10) and (8.25) of symmetrical two-di-

mensional probability densities are expansions of the type of (9.18).

4. Characteristic Function of Random Process at Output o[' F 1 ter

. Pi Seio -1 1rr *as -aaw that the rcandqm Drocess at the a ntitof a filter~ Vs

A represented by the integral form

160s)= j jK(u, v)[S(t-U)+W(-U)[S(t-V)+
+ t (t - v)l duda,

the nucle'a K(u,v) of which, as is not difficult to see from (9.4), is symmetrical.

Then, employing (9.16), we represent the preceding expression in the form of the sum-

mation
____Is, ( _) + (9. 19

where, in accordance with (9.17) and (9.17'),

S () - x) pL(x) dx, (9.20)

74 M t -- (t --z) T, (x) dx,

- (9.21)

and I(x) and are the proper orthozonal functions and the proper values of the

homogeneous ir.tegral function-.
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4P (X)= K (x, y) T(y) dy. (9.22)

The nucleus of integral equation (9.22) is expressed in terms of the pulse tranfer

functions of the rf-amplifier and filter according to formula (9.6).

Equation (9.22) may be reduced to a different equation, the nucleus of which is

the product of the correlation coefficient of the noise at the output of the rf-

amplifier and the pulse transfer function of the video filter. For this we substi-

tute (9.6) into (9.22) and change the order of integration

,Ix), h2 h, (X -- S hi (Y -- (y ) dyd-c"

Having multiplied both parts of the last equality by h (x - z) and intenrating with

respect to x, we obtain

111= 0h2 ) h, (x--,h, (x- z) dxd,.

where there is designated t(z)- S?(x)hI(x-z)dx. But according to ,0.,31) the

correlation coefficient of white noise at the output of an rf-amplifier is equal to

R()-- h i(u)h( +t)du.
-0

Consequently, f(z) satisfies the integral equation

1(z) = 1-. R (z - c) h2 (t) f (,) d, (9.22)

The problem of the study of the statistical characteristics of the random process

S2(t) is now reduced to a determination of the distribution functions of the sum of
the squares of random processes Si(t) + q4(t), in which S.(t) are determined, and

4i(t) are random. Since we are restricted to the determination only of a one-di-

mensional distribution function, it is sufficient to carry out all further investi-

gation in an arbitrary, but fixed moment of tme t. We shall show that the random

variables W)and 71(W whenT(j are uncorrelated. This makes it possible for

us merely to define the joint determination of $(t), 19(t), ... t) as the

V product of their one-dimensional dist.ribution functions.

N
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Let us then examine the mean value of the product

=---) S ?h(x),(YlmI(t- x) (t- y)}dxdy"

Bearing in mind that the correlation function of white noise is equal [cf. (5.8,1)

to

and taking into account the filtering property of the delta-function (cf. Appendix

IV), we find

1 {hq) (t)}=oI j?, (x)?,Iy)8(x-y)dxdy=
~~ I

(x) 7, (x) dx.

But tho functions ri(x) are mutually orthogonal, therefore

M, 0oM,,(0 k*J.
Q.E.D.

Since it is a condition of the problem that the white noise (t) at the out-

put of the rf-amplifier has a normal distribution, the distributions of 7 (t), rep-

resented by integrals of (t). will also be normal. Then in virtue of (9.23) their

joint distribtton will be equal to the product

(9.24)
iI

Having the product (9.24), it is now not difficult to obtain the expression for

the desired one-dimensional distribution function of the random process j(t) at th

output of the filter. For this there should first be determined the characteristic

finction E1 (v,t) of summation (9.19). Employing formulas (3.73) and (3.76), we fin

(I)-(9.24)e"0,t)=3..: .e W ,.y,,.... 4 ..*.)X (9.25)
- -
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YX.

dy~dy....dy.. ..-- ...s flA ×

, - (9.25)

Fmt d (cont'd)

L0 1 21 V~II
--=.F ex e dy,.

Completing the square of the exponent under the integral and integrating (cf. Sect. 8,

Chapter IM), we obtain after simple algebraic transfornations

e, ( --)=I e (9.26)

For the case of a narrow-band process, the expression for the envelope E (t) at

the output of the filter is, in accordance with (9.7), obtained from (9.19) by the

replacement of [S, (t) + (t)12 by the sum of squares

E2()= ts {[s. () + ,11 (t)? + S,(t) (9.27)

where

,(t)= S s,,- x)y(x), ,t,= . ,(x) (.28)
-. 0 W-AO *P d SCI1)(ax~X

VI- t (t-x)(x)dx. Ec (t- ) (2' ))

Then the one-dimensional characteristic function of this envelope is obtained analo-

gously to (9.25)

'01 (V, 0- .. exp oiv " (SA + j )2+ (+(SC, +y)'1 X

It II1( i ;1c-Adxd,,
x -" e7

(9.30)

IS.exp iv A,+ X,2 x
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Each of the multiple integrals in the curved brackets coincides with (9.25), if

only S is replaced by SAj or respectively by Sj. Therefore, taking into account

(9.26), we find

Ali CI al. _'

e1(v, =11 21ua3  
I-23. (9.3)eI I

The desired one-dimensional distribution function of the random process (or

envelope) at the output of a filter is obtained from (9.26) or respectively from

(9.31) by an inverse Fourier transformation.

In principle, the problem before us appears to be solved. However, in formulas

(9.26) and (9.31) thx're figure the characteristic numbers ,j , for the determination

of which it is still necessary to solve the integral equation (9.22) or (9.22').

Only in one special case does the solution of this integral equation turn out to be

extremely simple. This is the case of an output filter whose frequency character-

istic is uniform at all frequencies. Tn this case h2(") = (t1, and from (9.6),

taking into account the filtering property of the delta-function, we find

K(u, v)h (u)i('). (9.32)

Comparing (9.32) with (9.18), we become convinced that the nucleus is degenerate,

since there corresponds to it only one proper value ofu and one proper functionI

(a) = C; (h, ) wthA being determined from. the condition that () is normal-

ized, i.e., that

a 3 k1'(u) du = YxIC (o~) d=1.

--. 40C2 (a) do=a
The relationship I- thus constitutes the dispersion of noise

at the output of an rf-arplifier.

From (9.26) we find in this case

3 (9.33)
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where S2(t) is a signal which has passed thrcugh the rf-amplirier.

. Sirce the output filter hes an unrestricted band, formuia (9.33) yields the

expression ior the cliaracteristic function of the square of a normal random process

With a dispersicn or 6 An inverse Fourier transf ormation of it coincides with

(9.12) (Nith, of course, the appropriate replacement of a by 0T1, and of sI by a).

From (9.31) we have in this case

e (9.34)

where C (t) is the envelope of a signal at the output of the rf-amplifier. Formula

(9.34) ltields the expression for the characteristic function of the square of the

envelope of a normal random process. Its inverse Fourier transformation coincides

with (3.20).

Let us note that the method set forth above may be generalized and employed for

calculation of the ,multi-dimensional characteristic functions of a random process at

the output of a standard section of the type under consideration [1.

5. An Approximate Method of Determinin, the iLustribution Functlon

With the exception of one special case, cited at the end of the precedin.,

section, the solution of intezral equation (9.22) is a sufficiently laborious process.

Since, besides, in the majority of cases in practice this solution is obtained by

approximate methods, it is worth our while to consider the approximate methods of
directly deternining the distribution function of a process at the output of a filter,

avoiding the stage of solvin- integral equation (9.22). One such method, consisting

in the computation of a number of distribution moments, was cited in #8, Chapter VI.

This method may be applied in detail to the problem considered in the present chapter,

if account is taken of (9.26) or (0.31).

Let-us regard as nuamerical characteristics of the random processes at the out-

put of a filter not the moments, but the cumulants (cf. p. 109)of one-dimens onal

-distribution.
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By definition a n-th-order cumulant is equal to

From (9.26) we find2

wherfromby consecutive differentiation we find the n-th-order cumulan~t of rarndom
i process -(t):

22
Sk. (t) (232. +.,, (212)- sn S,! (, + 2°)  " 2-2 (9-35) ,!

In exactly the same manner, from (9.31) there can be found the cumulant of the

envelope E2,t) of the process at the output of a filter

kno- () 2 1) 1 I~ (2,:2)- i A ~1) 4-S'Q)

The series enterinZ into (9.35) and (9.3-) may be expressed through iteration of the

nucleus K(n) u,v), and that itself exclides the proper numbers A.. The iterated

(n),
nucleus K (u,v), is obtained from the basic nucleus K(u,v) by means COP.(n-1) in-

tegrations

A'(. I= .. .K(u, x1)K(x1 , x2).

A 9(9.37)

K K(xa-_, v) dxldx2... dx,.

Substituting under the integral sign of (9.3?) in place of K(xk, Xk+l) its ex-

' I pansion (9.18), and bearing in mind that the a.ggregate of functions C (XK) is

orthogonal and normalized, we obtain

(, (, u)g= du .(9.38)

Analogously

S 3(t ) int (tu)(u, v)dudu WQ(3

'( Substitutinr (9.339) and (9.39) into (9.35), we find
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k,. (t) (2:IY'2iL{± fK( (au) da +

Thus, employing (9.40), it is possible to determine arbitrary-order cumulants

of the one-dimensional distribution function of a random process at the output of a

filter, without solvin- the integral equation. It is not difficult to write an ex-

pression, ana.Logous to (9.40), for the cumulant of the envelope as well. If the

signal is absent, then the double integral in (9.40) disappears.
After some number of the cumulants of a random process has been found, the

question arises as to the means of their employment in the approximate determination

of a one-dimensional distribution function. The desired distel•bution function is

for this parpose usually represented in the forn of a resolution into assilned ortho-

gonal functions; thp coefficients of this resolution are expresse d in teris of the

distribution cum.ilants. As the systen of ortho -onal functions into which the reso-

lution takes place, there .s usually taken the function (x)= ILe - 2  and its

derivatives (Grammat-Chalier se,'es, Bdeworth series, cf. 2..ramer i.e., Harold

Cramer] . MatematiTheskiye retody statistik. .:athe~natLcal ?ethods of Statistics3

Moskva, For. Lit. Pub. Hse., 1-43). Sometimes it is more convenient to employ a

resolution of the distribution function into a series on the basi.s of the Laz'erre

functions [2]

Let us cite here an expansion into an Edgeworth series. Let w1(x) be the de-

sired distribution function of the random process at the output of a filter, and k

k2 , k3 be the first three cumulants of 'this distribution. Then the first four tenis

of the expansion of w (x) into an Edgeworth series have the form of

(X -I h1 (3)15-k
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where ',f are derivatives of ?() , and the raariitudes

1. an d 7'. oicde with the coefficieats of' asyr,,T.etry. and excess of' d-is-

tribution w1(x) [:f. (3.63)]

Let us note that thle Ed--eworth seri.es has already been, employed earlier In 42,

Chapter IV in an evaluation of the rap-diy of convergence of' the distributio

function of a sun of independent randomi variables with~ a normal one. A comiparison

of' (9.41) with (4.19) establishes the complete iden~tity of the two equalities.

Figure 71 shws graphs of' the derivatives .5. . (x). and v X it

such coefficients as they' have when they enter into expansicon ('1.41) The curves of'

(4) (6)
(x) and (x) are syimne tXcal writh respect to x = 0, and '.!he third deriLva-

tive (3(X introduces an asymmetrical element into the expression~ -f the di--S

tribution function.

Fi. 1. Derivatives of' the unction (X 2

6 ExaM21e of' Calculation of Distributlon j'inction of Proce-ss at Filt--er Output

As an illustration of' the method set forth above, we ci-te the example of' Cal

culatin., the distribution function of a random process at the output of a standard

section consisting: of' an rf'-amplif'ier, a square-law detector and a video filter (2).

Let the frequency characteristics of the rf'-aiiplifier and the filter be SIM-

metrical and describable by the gaussian curves*

_____________Cl()=e +

CS e

*Cf. note on p. 229 concernin- the physical feasibility of linear systems with
ass I~ned frequency cnaracteristi zs.
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The corresponding- pulse transfer functions have the form of

ki ' P(9.42)

k ,, -i p e C.C
_ ' - (9.42')

The parameters 1 and 2 are simply expressed in terms of band A1 of the rf-ampli-

fier and of bandd of the filter (cf. p. 229)

A =V4P,, a,=11tp 1 . (9.43)

We introduce desicnations for the ratio of these parameters

* p2 UsV -= (9.44)

Substituting (9.42) and (9.42') into (9.6) and performing the integraticn, we find

K(u, v)1 4  e O(U+2) e?(45)

The iterated second-order nucleus is, in accordance with (9.37), equal to

40-PI,2 cos wo (a - v)R (aU, )-- K(., X)K(X, )dx= ()+2)(,) ×x (
-I+2), +1 (9.46)

Xe-,[r_, "+-' (*.

Analogously the ite,' rd third-order nucleus is

(a=,= (UY) RKO(, v) dy = 8z X=() +

S(9.47)

Precisely expressed, the nucleus K(u,v) and its iterations contain second items,

which are small to the point of disappearance if to > > 40,

EN ploy-inr (9.45) - (9.47), we find

- (9.480)

"1 a a o (9.49)

* -3
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Let us assume that the detennined part of the process at the input of a
estandard section constitutes a harmonic signal wth a constant amplitude of S(t):

cos 6t (the f requency w coincides with the resonance frequency of the rf-ampli-

fier). Then, taking into account (9.45) - (9.41,), we find that the double integrals

in (9.40) are, for the example under consideration, equal to

a(9.52)

Q_)j2 + ))(2SQ+d)u- (9.51)(0.52)

Substituting (9.4) - (9-53) into (9.40), we obtain cumulants of the "i"rst three

orders for the randon process at the output of the video filter.

The first-order cumulant (or the mean value) is equal to

k, A* = .2A At (9.54)

The second-order cumulant (or the dispersion) is equal to
,A2

21r Yi+F± 4  V -T 4 (9-55)

,~I A.--,'2 2N-T~)

The third-order cumulant (or the thIrd-order central mnent) is equal

: , The coefficient of asymmetry of the one-dimernsional distribution function of a

• } random process at the output of the filter is equal to
2_(0_+)_1______) (7.5),~ ~ ~ ~ ~ 1 3-,,+./ . .7

where of is the oof eei e v the effect- e

value oces at the output of the rf-aie plifier.
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It could be possible, in a completely analog-ous manner, to continue to compute

cumulants of a higher order. Ile cite merely the final result:

k_ ,,) (_ )

Having the magnitudes of the cuntulants, and expanding into a series in terms of

orthogonal functions [e.g., series (9.41)], it is possible with an assigned degree

of precision to plot the distribution function of a random process at the output of

the video filter.

Figure 72 shows the curves, obtained by the indicated method, of the one-di-

mensional distribution function of the process at the output of a standard section,

for the case when only "white" noise Is applied to its input. To each curve there

corresponds a constant ratio v of the width of the filter band A to half the width

of the rf-amplifier band

45

Fig. 72. Distribution function of process at outpnt of
standard section (s = 0)

In Fiyres 73 and 74 'these same curves are plotted for cases where there is act-
ing a sinusoidal signal as well, the ratio - = 2 en equal, respectively, to

ratioeulrepetveyt

one and to two. When v--***(curves I in Figs. 72, 73, 74), i.e., as the filter

band width increases, the curves of the distribution functions approach the respective

curves shown in Figure 60.It
It can be seen fron the curves shown that, is the filter band Crows narrower

(v - 0), the distribution functions approach the nornal. This nor alization of a

randon process at the output of a narrow-band linear syctem is, as has been noted in
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4 71

A 46

420

Fig. 73. Distribution function of process at output
of standard section (s = 1).

40

4.\ 1' 5 I

4121

Fig. 74. Distribution function of process at output
of standard section (s = 2).

Sect. 8, Oh. VI, a consequence of the central limit theorem. The tendency toward

normalization increases with an increase in the signal/noise ratio s at the output

of the rf-arplifier.

In the first approximation the degree of nonialization of a randci process at

The output of a filter may be evaluated by means of the coef"iclent of asymmetry k,

the dependence of which on v and s is given by fornula (9.57) and by the graphs cor-

responding to it in Figure 75.

42

1|

Fig. 75. Coefficient of asymetry of process at output of standard
section, in relation to the ratio s = _ with fixed value of v = A.
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With small 0 and a constant s, the coefficient of asymiietry is, as follows frota
2 , (9.57), proportional to ---- . This coincides with the result obtained

in [61 , by the method set forth in Sect. 8, Ch. VI, for a standard lin: which con-

il I sists of an rf-amplifier, a linear detector and a narrow-band filter, the frequency

characteristics of the rf-amplifier and the filter being rectangular.
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CHAPTER X

POWER SPECTIRA OF SIONALS, MODULATED BY RANDOM PROCESSES

1. The Pulse Random Process

In pulse engineering, which has undergone considerable development in recent

years, many problenns lead to an investigation of the sequence spectra of identical

pulses. The basic parameters, characterizing the geometric shape or position of

these pulses (amplitude, duration, instant of origin of leading edge, etc.) can chance

in accordance with a given law or can be random functions of time. The latter takes

place when the pulses are distorted by random interference, or when the modulation of

the pulse sequence may be regarded as a random process. A sequence of pulses whose

parameters are random variables we shall call a pulse random process.

If the pulse shape is given and one of its geometric parameters is random, then

to the pulse sequence there corresponds a sequence of random, variables, namely: to

the beginning of each cadence interval there may be assigned a randon value of the

pulse parameter. Such a random sequence represents a special case of a random

process with discrete ti:ne, the theory of .hich is developed in parallel with the

theory of random process with continuous time.

A pulse random process is generally non-stationa-y. Thus if the moments of U
pulse emergence are periodic, and the parameters characterizing the ;eo.Ietr'c sha-e

are random, then it is obvious that the two values of a pulse random prc o3s, at the

moment of passage of a pulse and in the interval between pulses, are independent.

The values of a random process may become statistically related, if two moments in

time are examined with reference to the passage of an aribtrary pair of pulses.

Finally, the value of the examined random function is uniquely determined for the
interval between the pulses.

Thus the correlation coefficient of a pulse random process can, 'with a given

magnitude r of the difference of two instants in time, take any value from zero to
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one. The mean value of a pulse random process also depends on time. In the inter-

vals between pulses it is always equal to zero, whereas for time instants corre-

sponding to the passage of pulses, the magnitude of the mean value may differ from

zero and may be different for various pulses.

A pulse random process is determined by an infinite number of realizations,

each of which constitutes a sequence of pulses. Let us segregate one (for instance

the k-th)of these sequences and examine 2N + I pulses, located on both sides of the

zero pulse linked with the origin of the time reading.

Let us designate by Zk (W) the spectrum density (Fourier transformation) for

the function describing this sequence, and let the distance between its extreme

pulses be (2N + I)T. Since the pulse process is nonstationary, the mean power of the

pulse sequence [cf. (5.42)] Gk(')= lim (0) 1 will depend on k, i.e.,

on that one of the realizations of the pulse random process for which this power is

computed.

In order to determine the power spectrum F(W) of a pulse random process, it is

necessary to perform a supplementary averaging of GOk() for the multiplicity of

realizations. Thus the power spectrum of a pulse process is determined from the

relationship

This same power spectrum may be obtained by a Fourier transfozmation of the cor-

relation function, averaged over time, of a pulse random process. However in the

subsequent presentation, formula (10.1) will be used to calculate the power spectrum

of a random process, and the correlation function of this process is found by means

of a Fourier transformation of the power spectrum F(4.

(k)
Let us examine some realization (t) of a pulse random process.

To each pulse there may be assigned a numeral - a number (positive or negative)

of the natural series. Let a pulse, belonging to this realization and emerging at

the moment in time t , be described by the function -. This
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function ust satisfy the condition On'(t)-H 0 when t < 0. The sequence 2N + 1

of the pulses of the examined realization may be analytically expressed by the sum-

mation () •,

Let us assume , -n T+ +-- where T is a positive constant and let

(K) (iin(&) be the Fourier transformation of )) . We designate

-~k F~k)(w) e" '. (10.2)

Then the Fourier transformation of (f:}) will be equal to

( ) e li . (10.2 )

It is assumed that the pulses do not overlap, i.e., that in each cadence interval

there emerges one pulse, and only one. Ths condition siLnifies that the possible

values of the random var'able 11 and of the random duration of the n-th pulse do not

exceed T/2 in absolute value.

Let us now write the spectral density (Fourier transformation) of the sequence

of 2N + 1.pulses. Considering (10.2'), we find

ZN (-) = ~ V)eT. (10.3)

To determine the power spectrum of the pulse random process -Re substitute (10.3)

into the general formula (10.1)

F () =m, (im ... j # V( )e"'n (10.4)

Changing in (10.4) the order of transition to the limit and of the averaging for the

multiplicity, we obtain

Jim. M+ 1)e (10.5)

It can be seen from (10.5), that to determine F() it is necessary first to find the

average for the multiplicity (i.e., for the index k) of ZN ) N. Since
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therefore

-- -(10.6)

Here the line over V indicates a conjugate-complex quantity. SerreEating in

summation (10.6) the terms corresponding to n j, we obtain

M M

Ifl (I ZhN()21M 1{ z I V,(h'i2+ Vh)he( 4 iT

and since the average of a sum is equal to the sum of the average items, therefore
N

M a-- (10.7)
a+

From this point on the investigation is restricted only to such pulse processes,

in which the statistical characteristics of the pulses do not depend on the numeral

thereof, and the statistical characteristics of a combination of pulses depend on the

relative position of the pulses and do not depend on which of them is selected as the

zero one. With these restrictions the quantity

(-)=,,{I V?)2} (10.3)

does not depend on the pulse numeral n, and the quantity

.i.,()-m IV VI () (10.9)

depends only on the difference n - j of the numerals of two pulses.

Then
~ tV'I'}=(N + 1) Kn)

a MI (10.10)

and the double summation may, after the simplest of transformations, be represented

in the form of
N 2M
SMg{V~)1e(t 2j (2N + I-p)Hll(u) cospeaT.(1.)
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Substituting (10.10) and (10.11) intu (10.7) and taking into account (10.5), we find

IN
S. 2 1(10.1?)

41 (P" , COSPwT}

If the pulses are mutually Independent, then

_ V( H (_)12, (10.13)

where H()-m (Vh)}.

(10.14)

We designate
IN

I #- (10.15)

Then formula (10.12) may be rewritten thus:

2 1 K(w) -H (W) 2+ (oi,) ..
2N (10.16)

+ 12 i m I + 2E(I - ~P-r COS PWTJ}

Noting that

I

SN sill (-- I)2+ 1• .. j e l. I r I
,,2+ -- ,N I--N "- c iT

sin--
and that

,~ ar=/ 2rr.
#__sin +! w" = T= 2ur.

i:~~0 r:, , 2,

we find Jim A. c() # c 2 -

where r is any whole number (including zero as well).

For determining the unknown constant c we take the integral of both parts of the

or last equality within the limits of- to - Then
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I

. ( .. n6A77.-,)cosdIM

41im {l .. ...p__cos,,p,€,lnp,: _ 2

In this manner

"" • -- ')" C1017

Substituting (10.17) into (10.16), we obtain the following general expression

of the power spectrum of a pulse random process:

2 Co- ' (10.18)

'. in which the functions K((a), H(4)),Lf(w) and Hp (CL) are determined by formulas (10.8),
4P

(10.14), (10.15) and (10.9).

If the pulses are mnutually independent, then Hp (CL)= H (ca) I i and in (10.13)
it should be assumed that (a)) 0 . In this case the pulse distortions (axnpli-

tudinal, in duration and in position) are similar to white noise. Irn some problems

the assumption of pulse independence may rest on entirely Cirm ground. Correlation

~~between pulses may be neglected, if the correlation time "0 T. Thus, for instance

i j in examining at the o'utput of a receiver a seuneof video pulses distorted by

fluctuation noise, these distortions may be considered to possess the character of

i white noise if the pass band width of the receiver, A , where Z' is the pulse

;t duration.

I Problems may, however, also be encountered in which it will be necessary to take

into account the bands of the previou stages, i.e., correlation between the pulses.

O The general expression (10.18) of the power spectrum of a pulse random process i

consists of a continuous part
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and a discrete part4 . 2,

F1 w)~IHw~2 (.T) (10.20)

which consists of discrete lines on frequencies which are multiples of the mean

frequency-f of pulse repetition. The ratio of the full power of the comrponents of

the continuous spectrum to the full pow:er of the components of the discrete spctu

is equal to

S ~w I ' + P(-)I d

It is not difficult to see 'that if distortions are absent, then K(O) 1(4!t0)1
2=j() j ,wee:~i h pcrmdnity of the undistorted pulse. Here the

continuous part of the spectrza disappears, and the discrete part coincides with the

power spectrum of the periodic sequence of unmodulated pulses. Therefore, in those

cases where the distort 'ions are caused by interference, it is valid to identify the

continuous part of spectrum (10.19) with the interference spectrum, and the discrete

part (10.20) with the spectrum of the useful si:gnal. In this case the rati~A com-

puted according to (10.21), will yield the ratio of the power of the i~nterference to

the po-rer of the signali-1- In other problems where the useful modulation of the

pulse sequence is of a statistical character (for iastarice tne :-odulation of speech

in multichannel telephony), the contirnuous part of the spectrun carries useful in-

formation.

If the pulse parameters (amplitude, time of emergence, duratCion) are, besides

purely random distortions, subjected to modulation by a ;iven periodic funcition of

time, ther. the discrete part (10.20) of the power spectru.'n must be supplem~ented by j

terms containing~ delta-functions at frequencies corresponding to the components of

the resolution of the indicated periodic function into a Fourier series.

In the succa,'UAng sections there are examined some special cases of randomr
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pulse processes, for which the random factor is one of e parameters characterizin

i |the shape of the pulse or the instant of its emergence. Formula (10.18) also pe.rits

an investigation of more general cases, when the indicated random distortions act

simultaneously.

2. Sequence of Equidistant Pulses havirn Equal Vdth and Random jirlitude

Let us examine a sequence of equidistant pulses of given shape, which are of

equal width and of random a~mplitude.

Let us designate by r(4/) the spectrum density of a pulse with an amplitude equal

to unity, which emerges at the instant of time t = 0. Let us designate by T the

period of repetition of the pulses, and by the random amplitude of the n-th pulse
n

(Fig. 76).

Fig. 76. Sequence of equidistant noises of equal width and with
random amplitude.

Since in the case at hand , O and F,() Ig(w) ,it follows

from (10.2) that

(10.22)

4 Substituting (10.22) into (10.8) and (10.9), we obtain

En (" e (1"3
Hit ImIt Ig(U))2 }=g (0)j2m 1 {E 1.Ji '  ~~................ .....#,- ., ,I(I- =I (P ,.

4[" Let V1 (x) be the one-dimensional distribution anction of the random api
4'untio of he nd m -pl-tude

,,equal for all pulses, i.e., for any n. The mean value of a and the dispersionn'
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F'. 77,- . * _ ___

00 of the random amplitudes of the pulses are equal to

mj~ =a=~ xw1 (x) dx,'
(10.25)

} -=v'= (-p)2w, (x)dx.

Let w2 (x,y,r) be the two-dimensional distribution function of the random ampli-

tudes 4. , which depends only on the relative position of the pulses '=(h-J)T,

i.e., only on the difference in the numerals of these pulses. We designate by R.1-

RI(n-J)T] the correlation coefficient of the random amplitudes of the pulses;

then m, {(%-a)(-' -a)} =2 R_=

~(x a) (y a) w,[x, y, (n-)T]dxdy. (10.26)

Emaploying (2.74) and '3.53), it is not difficult now to express K(4) and F"- in

terus of the numerical characteristics of the random amplitudes of the pulses

K( I Ig (w) 12 (32 -F a2). (1o.-27)

f in I g (W) 12 (02R.-, + a2).

(10.28)

If the amplitudes of any pulse pair are independent, then

R, 0, pOO, (10.29)

and from (10.13) and (10.28) it follows that

H.) a g (-.(10.30)

Substituting (10.27), (10.28) and (10.30) into (10.13), we obtain the final ex-

pression for the power spectrum of the pulse randon process under consideration:

22 ;2 +~1F (-) = FIg -)' { ,()
ga (10.31)

, ". . rm-- 5 --..

where by is designated

,()2lim I Nt- V_ )R,.ccs PwT. (10.32)
. p-I
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It follows from (10.31) that the power spectrum of a sequence of equidistant

- pulses of random amplitude depends on their correlation function and does not depend

on the form of the distribution function of the random amplitudes.

If the random amplitudes of ar pair of a sequence of rectangular pulses are in-

dependent, then such a pulse process may be regarded as the amplitude modulation of

the second kind* of pulses by white noise. Since, when condition (10.29) is ful-

filled, - , it follows from (10.31) that for this case we find

F1) t,)Ij2 +{ 1 a 2  2r (10.33)

The continuoas part of power spectrum (10.33) has the same shape as the spectrum!

of a single pulse, and its intensities are proportional to the dispersion 0' . The

discrete part of this spectrum corresponds to a period'c sequence of pulses of the

same shape, but with a constant an-plitude equal to the mean value a. Thus with a

given pulse shape, the spectrum under examination is determined only by two numerical

4 characteristics, the mean value a and the dispersion 0.

The powet-correspondin- to the continuous part of the spectrum is equal to

20

and that corresponding to its discrete part is

0 as

2at _2rr2 2a2

The ratio of the power of the continuous and the discrete parts of the spectrum

is equal to

I .' (10.34)

i.e., to the square of the ratio of the mean-square value to the mean value of the

random amplitude of the pulse.

• As is well known, in pulse-amplitude modulation of the second kind, the amplitudei
of each of the pulses remains constant, equal to that value of the modulatinr !
function which corresponds to the leading edge of the given pulse [ 5)
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Figure 77 shows the power spectrum of a sequence of equidistant- rectangular Puls~es

twith a duration of ' , modulated in amplitude by white noise.

- Discrete spectrzn

ontinuous spectrum

Fig7. 77. Power spectrum of a sequenv~e of mutually independent

rectangul1ar pulses with random awiplitude.

From (0.-33) it is not difficult, by means of an inrverse Fourier transformation,

to find also the correlation function of a 3equence of mutually independent rectan-

gular pulses with random araplatude (Fi-r. '73). Here the discrete part of the spectrum

is transform~ed into a periodic sequence of triangles (Fig.- 7c9a):

CD cc ~2 ( 9 ~c~w

nea th pont?' 0TFi .9 e)

B.()=0 51i's l''h T 1i) (10.35)

Let us return to an examination of the general case, for which the NjJ("p

is not identically equal to zer..
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Fig. 78. Correlation Iunction of a sequence of mutually
independent rectangular pulses with random ampli-

tude.

iT

J

4 Fig. 79. a) Periodic part of the correlation function showm
in Fig. 78; b) Aperiodic part of the correlation

function shown in Fig. 78.

If RfR .converges, then the limit in the right part of (0,32) exists and'4 -I

is determined ')y the formula* I

,(w)=2 JR,cospor. (10.36)
p-I

We designate by the Four'i.r transformation of the correlation coefficient

;2 !R (1c)) e-4"-- 4 JRI(c cos w-c d.
I.

1. If N T) Is a stationarl process W-.th dtscre.p t'me, re-or~zenti.n: a sequenz: c'random amplitudes, then is the spectrum density of th s proess. by1whic

4'S-81/

the ulseampltude aremoduated



Then fro:zt (10.36), it follows that I + ft(iJis a periodic function with a period

of ZIT , which within the limits of A to -M. (sic?) coincides with Y W). If the
Tr T Tf(&A

inequality (10.33) is not fulfilled, but d<- then, representing as the su

of the two items

(10.39)

we obtain from (10.37)

R 2z) ypw el-duw 9(Cos atdw +
4' 4

(10.40)

7
Then the series (10.36) may be broken down into a sum of two series:

0) w(=) , (10.1)

where

+11 (a)- 2 E R,, cos pwZ,
A~i (10.4,2)

1'12 2 1,2 , Cos pwT.

(10.43)

The functions (W~~.. and tics)a:-e periodic Panctions, which (to an accura -Y

of a direct comp-jrent, equal to anity) coincide vtith tefncton F 4 4(fist'

in the secto:- to 79..~ and the second in the sector f rom -1 to A . Here the second

periodic function is shifted with respect to the first by half of 'the period -T
The correlation function, correspond-'n~ to this part of the spectrum, rperesents a

sum of the delta-functions 6 (T - PT) -Aith an intensity which diminishies ith the

growth of the rnumeral. p.

With the arbitrary quantity a we act in a completely arialoicus manner, r,-pre-

sentinz the correlation coe~ficier't in the fcrrn of a sum correspondinZ to the break-

4. up r,.' inte-ral (':0.40) into sectors whi*ch a:,e multiples of -

Let us examine as an example the continuous part of the power spectrumi of a
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sequence of equIdistant rectan-ular pulses, modulated in amplitude by noise with a

spectrum uniform in the liited band . in this case the correlation coefficient

of the random amplitudes of any pair of pulses is equal to

Par (10.44)

I- If the width of band satisfies the inequality (10.3S), then the examined

j power spectrum will have the form of periodically recurrin.- bands with a width of

2 , at frequencies which are multiples of " (i.e., of the frequency of pulse re-
T

currence), limited. underneath by the abscissa and above by the curve -(i) V (Fig.

0). AsA is increased the width of these bands increases, and ien the -aps

j between the cadence frequencies disappear. In this case the power spectrum does not

differ from a spectrum with an endless band of modulating noise (Fig. 77).

'I Fix. 80. Power spectrum of sequence of rectangular pulses, modu-
lated In amplitdX by noise occupyn_ : limited b-' of

frequuvrc its.

Cenerally with a band width of , which is a multiple of half the pulse re-

currence frequency, as can be seen from (10.44), the correlation coefficien.t turns

to zero (p 0), and, consequently, ,W) --= 0, i.e., the power spectrum must

coincide with the spectram corresponding to an endless band of modulating noise.

liowever. it does not follow from this that the amplitudes of any pulse pair must be

independent. In this present case we have still another example of the fact that

two quantities, for which R = 0, are not necessarily independent (cf. P. 73 ).

It cars also be seen from (10.44) that, as the width of the modulating noise band

-j .- is increased, the maxima of the quantities .p for a given p diminish in inverse pro-

portion to , as a result of which the defcrmaticn of the envelope of the continuous
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spectrum when d-a becomes constantly less noticeable. vith 4T>> I it is virtu-

ally possible to consider that this spectrum does not difter from. a spectrum cor-It
responding to modulation byr white noise.

3. SequenCe of Pulses havin; Eq-al Aplitudes and Durations, but a Randor, Drer ence

Time.

Let us examine a sequence of pulses of :fiven shape wich have equal amplitude

and duration, but a random time of emer:ence (Fi 8).

I I

Kg. 81. Sdquence of pulses having equal a.,pltudes and
duration, but a random emercence time.

Let ( be the spectrinm density of a pulse enier. ing at the time instant, t =.

Since in the case at hand Fn( ) = g , it therefore foio,..;5 fron (10.2) that
n

V6 =g(O)e(1.)

Subst .t'-: S (i0.15) into (10.8) and (10.?), we obtain

MK(, )=,. 4 lg(-)l') = ()I2; (10.46)

_/ ()=m,, I Ig(w) 11e'' -" ) Ig (w) Jm1 fe' ' - ").
(10.47)

Let w1 (x) be the one-dimensional dj' stribution function of the randon variables

A equal for all pulses, i.e., for any n, and let -w (x,y, T) be the two-di-

mensional distribution function of these random variables, dependin, only on the

relative position of the pulses, i.e., on the difference n - j of the pulse numerals.
We also introduce the characteristic function ea ( of the two-di-

mensional law of distributionL i e2(*1, ., t) - f (x, y, t)e' (-+ldxdy,

F-T3-?81 i/V 3W0
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with the aid of which the expression (10.47) can be rewritten in the form of

k H3.- ,hl=Jg (w) 2[,, -. , (n-)Tr ]lo..)

if the moments of emergence of any pair of pulses are independent, then

H (W) g (W)(10.49)

where ( is the characteristic function corresponding to the one-dimensional dis-

tri bution w (x).
We designate by (W) the limitK 2N

2  2 l()---im (- (10.50)

Substituting (10.46) and (10.41) into (10.18) and employin2 (10.50), we find the

f-nal expression for the power spectrum of the pulse random process under examination

F(w)==jIg(w)j2{1.-Io,(w)12i +,() +

Distinct from spectrum (10.31), the power spectrum (10.51) denends on'tho ahtl-

acteristic functions of the distrilution laws of randorn deviations from the pulse

emergence time nT, the square of the modulus of the pulse spectrum density serwng,

as tn (10.31), as a pr. ortio-lity factor.

When the random moments of emergence o: any pair of pulses are independent,

which corresponds to time modulation of the second kind* by wh'te noise, then

-. , 0T)= (w)12,

and from (10.50) it follows that 0 .

From 00.51) for this case we have
ilF(w)-!jgI(,)j2{ 1-_1e,(W)12+

* As is well known, with pulse-time modulation of the second kind, the positIon of
each of the pulses in a given cadence period is determined by the value of the modu-
latin. function at the beginnine of this cadence period E 5 ]
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From (10.52) it can be seen that the intensities of the discrete part of the

power spectrum, with time modulation of the second kind of the pulses by white noise,

are proportional to 1 1 (4) , an" the intensities of the continuous part of the

spectrum are proportional to 1 - i.e., in sum these intensities are equal

to the square of the modulus of the spectrum density of a pulse (the power of a

single pulse).

The power of the process corresponding to the continuous part of the power

spectrum consists of

and that corresponding to its discrete part is approximately equal to

2 j g c)1 0 t)1 o

4. Examples

Let us examine several specific examples of sequences of pulses with equal ampli-

tudes and durations, but which emerge at random -moments in time.

A. Modulating noise-normal

Let the deviations of the emergence time of the pulses from the mean value con-

stitute a horual stationary random pronesr' (modulating noise) with a zero mean value

and a correlation coefficient of R('). The one-dimensional and two-dimensional char-

acteristLc functions of the process are equal to [cf. (3.79) and (3.95)]

01 (w)= e (, (01 , t) =e (10.53)

Substituting (10.53) into (10.50), we obtain (under the assumption that IRpI

converses) as expression of the function Na u) in the indicated example

2 -2-ew Cos For= (1

* Here, of course, is violated the condition of non-overlapping formulated in #I.
However, if the dispersion ~of the modulating noise is small in comparison to T2 ,

the error due to the violation of the indicated condition will be ne.:ligible.
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where R)

ResolvLng the exponential function into a series and changing the order of sum-

mation, we find

1 Al R;cosPW
h-Il p-I

and, introducing the designation

,w 2 R(10.55)

we obtain

'(w~- Z W () (10-56)
&-I

We designate by (1j) the Fourier transformation of the k-th degree of the cor-

relation coef"ien

() , e-- dr=2 JR(r)cos wd. (10.57)

Then under conditions analogous to (I0.31) and (10.39), expression (10.55) re-

presents a Fourier series (asqum of Fourier series) of a periodic function with a

period of T coincidin- withiz, the lim' ts of one period with YK ( W) . if the

spectrum of the modulating noise is uniform in the limited band A , and, consequently,

the correlation coefficient satisfies the relations','p (10.44), ther.. ( &)

represent respectively a periodic step-shaped and a periodic saw-tooth function.

Wen the width of band A of the modulating noise is a multiple o± half the pulse

recurrence frequency, R = 0, as can be seen from (10.53), 0 . :n this

case the power spectrum coincides with the spectrum corresponding to an endless band

of modulating noise, and has the form of

F . Ig()111- +(1o.5 )
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For rectangular pulses with a height of u and a duration of 2', the spectrum

density is = sin and the power spectrum is equal to

) rZ t+ e' -  x') - (10.58,)

The corresponding correlation function has a periodic part:

, -- I 2"o

2402 2- 'cos -7-'
r-l

where ,'
a,--- e. si'•

and an aperiodic part

2 J( - e")cos ,dw.
0

The expression for f3 '-r) represents a sua of two inte-rals, the first of which

is equal to

2: T 4 L

and the second, through integration by parts. is reduced to the sum of tabular in-

tecsrals
!,o Sint? fee,,u

+ 2 T4 }I .T

where $inmte
dw =. t>1O, >0,

ka~t)==~)ecos wtdo) i0k2 (Il- ''o) ~ e f >0. 0>0..

and (X) is a Kranp function (ef. p. 26).j F-TS-981 1/V 394i



Figures 82 and 83 show the power spectrum and correlation function of a periodic

sequence of rectangular pulses with a constant amplitude of u o and a duration of Z,

whose instant of emergence is distorted by white normal noise with a dispersion of

0

/discrete part f.
continuous p~r-t

X;:,

Fig. 82. Power spertrum of a sequence of mutually independent

rectangular pulse, emerging at a random instant in time.

Fig. 83. Aperiodic part of the correlation
function of a sequence of mutually independ-
ent rectangular pulses, emergin- at a random

instant in time.

The power of the discrete part of spect.um (10.58') in the case under examination

is equal approximately to

*u n dio gft2'[O 2: _(I- _

and the power of the continuous part of this spectrum is

sin

' When 1 a, employin. an asymptotic resolution for ' X) [cf. (1.4c) and
(2.20) ],we obtain )-

2#5



-3-

B. Exponential distribution of the modulating noise.

t Let the one-dimensional and two-dimensional distribution functions of the time

intervals between pulses be riven by expressions (3.20') and (3.19)*. The charac-

teristic functions corresponding to them are determined by formula (3.24). It fol-

lows from this formula that

e, (,) - . _
,(0 , --) i+ 400 (1- R2) 2 -Is to

Then from (10.50) (under the assumption that IR converges), we obtain the fol-

lowing expression of function j()

f2 (0) 2cos pwT.
1+ UV.0 R.

in accordance with (10.51) the power spectrum of the pulse random process under ex-

amination has the form of

mX

(l-T 1- 2() I

a( (10.59)~os + , pwT +, (10.59)

If the spectrum of the ,nodulatn,7 noise is uniform in bandd , which is a multi-

ple of half the pulse recurrence frequency, then R = O(p : 1). Then the power

P
spectrum coincides with the spectrum corresponding to modulation by white noise, and

from (10.59) we find .
S: F(,)-- 1960) 11 (r !-! O + L

C. Other forms of distribution of white noise

, 'l Let us examine two more examples of the position modulation of pulses by white

noise. Let the noise distribution be uniform over the interval from- cT to OCT

* Let s note, that if in the exponential dstribution (.20') the substitution
Vit : is made, we obtain w(d) = e-", i.e., the probability that a random

otio . Cflont np 9variable distributed according to Pois.son's law,(1.4),Till not emerge duringthe period
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i!Ii i; - ..a2 The correspondln.v characteristic -'Unction, according: to (3.85),

to is equal to

The poer spectru i t cas s

WT-.i= , I,. [- 4 .+1-

-+ - ' (2) x r - .- (10 .6 0)

sT2

If the noise distribution is equal to [c. (3.15)]

then te coherp e uharacteristic function, acordin- to (3.90), is

and the power spectr i s is

(10.61)

' • [1,--
5. Sequuee of Eeuidistant Pulses with Eeual Ax.plitude and Random uration.

s~ ~ F.8. equence ofeqistn pulses of -ieshpwchav h e ua amplitude and randomain

Let -Wti 6 be the spectral density of a pulse ernergIn- at t1he noient of time

t 0. le designate by , the random duration of the n-th pulse (Fig. 84). Then

7ncethepule e a ) c t te r s t q(o.u) 0

+. + Since the pulses are emercjn..- at constant intervals in time, equal to T, vn-- 0 , +

MC - z,



and from (10,2) it follows that

W> V.=F.(.)=(., =,). (10.63)

Substituting (10.63) into (10.8) and (0.-), we obtain

y(()=m,f Ig(. ") I2 }, (10.64)

M, (- Q 0.65)

Let W (Ix) be the. one-dimensional distribution function of the random durations

the same for all pulses, ".e., for any n, and let w,(x, y, Z) be the two-di-

mensional distribution Tfunctiorof these rardm vriables, depeadlng only on the rela-

tive position of the pulses, i.e., on the difference n - j of the pulse numerals.

Then from (10.64) and (10.65) it Collows* that

g() l(c. X) 12", (x) dx,(1.6

._,(m)= J g(g, )g( T Y)iT [x, y, (n-J)Tjdxdy. (10.67) I
If the widths of any pair of pulses a.-e independent, then

() g (.,x) w, (x) dx - g (wy)w.(y)dy 0

where

' We designate by (Q}) the limit

Then from the general formula (10.13) there follows the Cinal expression of the power
spectrum of the pulse random process under examination

S(K(e ) IfI w) It' +%o) (o+

t* Srictly speaking', the limits of integration should be restricted by the interval.
i (0, T). Here unrestricted interration linmIts are taken conditionally considering the

footnote on p. 3,r2.
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in which the function F(9, H(W), and are determined by formulas (10.66)

, - (10.69).

In distinction from spectra (10.31) and (10.51), ir, power spectrum (10.70) the

statistical characteristics of the process and the spectrum density of a single pulse

cannot be separated, they enter jointly into function K(W) arid H (4j".

If the random widths of any pair of pulses are independent, which corresponds

to time modulation o. the second kind* by white noise, then H (W) RM04 and fromp
(10.69) it follows that 0. Then fron (10.70) for this case we have

V" (=- (10.71)

With very small dispersions of random pulse w-idths, power spectrum (10.70) does

not differ in structure from the spectrum of a se,;uence of equidistant. Pulses with

random amplitude. in fact, with smaller instances of x, the function :(to, x) may be

resolved into a Taylor series, being limited by the linear tern

Since g(W , 0_- 0, it follows from (0. 67) and (10.72) that

HJ () W- XYW 2 (X, y, pT) dxdy.
-,-0 --Co

Considering that

and

5xytv2 (x, y, pT) dxdY =01 (pT).

where b,(?) is the correlation function of the random pulse widths, we find

,~ ~ (B) (pT) \ O.

As is well known, with pulse-width modulation of the second kind the width of each
of the pulses is equal to the value of a modulating function correspondIng to the
leading (or trailine) edge -f the given pulse [51
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from which it always follows that

2 (00) iag t g

lo 1
and arethemea vau )(0:..+4 (10.75)

where ?oand 0' are the mean value and the dispersion of the random pulse width.

Substituting (10.73) - (10.75) intv (10.70), we find41y *2±G21imz(
!! ~ I '2 1. 8p, 2r

F (,)-.,) ,..,rn2" "-')R cs~' (10.76)

F--.
where

R, (10.76')

Comparing (10.76) ,ith (13.31), we become convinced that the power spectra of pulse

sequences, modulated in amplitude and width, have the same form with small temporal

dev iation.

6. Unilateral ltodulation of Rectangular Pulses in Wldth

Let rectangular pulses-wLth a height of X emer e periodically at intervals of

time T, and let the width modulation take place as the result of random shifting of

the trailing edge of the pulse. Let us designate by 2 the width of an unodulated

pulse and by w2(x, y, r) the distribution function of the random, deviation from Z.,

The function g(,, x) in the case underexam'nation will be equal to

r= e l (e',,el, ,0

giP ''"

X (C- - e-  - ) 2 (x, y. pT) dxdy

WC AP( + "4- (vy2 (x, ypT)dxdy-

- e " v(x) dx - e" ' * ", (y) dy,

400



and, introducing the characteristic functions of the random width deviatIon, we o5-

tain

LI +8, ,,2 - e,pT) e (w) e (- ). (10.73)

From (10.78), directing p --c, we obtain H(J) and with p 0 we obtain K(W):

1 11' = LI + ())I(-e"e()-- e , (-w)]. 10.78')

K LO 12- e", O (w) -e' -- w)],

.(10.78'")

With modulation by white noise the continuous part of the spectrum has the form

w2
F . () _ .()1) (10.79)

and the discrete part
F, (w) = W2T [ I + I 1, (0) - I-. ele (W)-

e-4" W)2xr(10-7?')

if the random deviations of pulse width from are subject to the normal law*

with a zero mean, a dispersion ofa'Aand a correlation coe 'i'"ent of i(r),thsn. con-

sidering (10.53), we obtain from (10.78)

~ e-,.'IR e le,
. -")-

or; i ,(=)=6 2 + e-  -  -2e os=,]
/(10.30)

From (10.73') and (10.7S") we also find

w),=.. (1 + e.'e.. _ 2e- cos =,""(10.81)AfIf (0 1=" (1+.,scs n

K(,w)-(I - cos wt). 0.3')

" Cf. footnote p. 3?2



Substituting (10.80) and (10.31I) into (10.69,), we obtain (under the assum1ptiona that
V '~jR~ converdes) an expression for the function

4,S (W) --0e-"'' (eRP"* -Icos pwl'.

Expanding the exponen~tial functicn into a series, changing; the order of summation and

desig~nating

2 Rkcos wT,(10.82)

we obtain__e" &2-

k! (10.83)

The functions do not differ from the function jJ(w) examined above [f

* . (10-55)].

Substitutin,: (10.31), (10.81') and (10.03) into the c-eneral formula (10.70), we

obtain the power spectrum of a sequence of rectangular pulses with unilateral w-idth

modulation by normal noise

F1 w) ~ f - ~''+e'' ~~L~h ()
CD (10.84)

+ '(I + e*" 2e 2Cos W%) 1 (0- 29l

With modulation by white noise the sum"natio~n along- k in (10.84) Is absent, since

here i(4)E 0 . Just as in the types of pulse random processes~ examined above,

ith modulation by uniform noise with a limited band the power spectrum turns out to

be the same as for white nioise, if the width of band A is a multiple of half the

pulse recurrence frequency. Fig;ure 85 and M3 show the power spectrum and the cor-

relation function of the sequence of rectangular pulses w-ith unilateral width modu-

lation by white normal noise with a dispersion of a r. As in the pulse

random processes examined above, the power spectrum consists of a discrete and a

continuous part, and the correlation function correspondingly of a periodic and an

aperiodic part. However, these functions have also their characteristic differences.

Let us compare, for instance, the correlation functions with amplitude modulation
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*and with width modulation by white noise (Figs. 73 and 86). 'di-th amplitude modu-

latio. the idth~ rof all the pulses is fixed, overlapping of pulses ceases with a

displacement of r* r and therefore the periodic part o! the correlation function

turns to zero when -r- r7 I'1 r

COatinuous spectrum

discrete spectrum

F'i-. 85. Power spectrum of sequen~ze of mutually inde-)endent
rectangular pulses with unilateral random width

Modulat[ion.

Fig. 86. Correlation curction of sequence of 'mutually in-
dependent, rectangular pul-ies wit;L unilateral

random width modulation.1.

With width modulation the trailing edge of the pulses is randomly displaced and

therefore with a change in 'C' the overlapping does not cease simultaneusly for all

pulse pairs in two realizations of z~ pulse random process. To this corresponds a

rounding of the bottom angles and an expansion. of the range of positive values o-7 the

correlation fu'nct .or.. It can also be seen that the top angle of the triang:le in

Figure 78 becomes rounded in the periodic part of the correlation fDinction shcwn i.n

Figure 86. But the aperiodic part retains the angular point when V- 0

Ltployiig (3.35) and (.90) andi bearin- in mind (1.8)and (10.78"), it i.sno

difficult to write the expression of the power spectrum ofl a sequence of rectaniular

pulses -wth unilateral width modulation by white noise in those cases, where the Us-

tribu.tion of this noise is unit'o-m or coincides with the distribution of harmonic



vibration with a random phase. In the first case,

" ~~F M ": 4 m r 2 ,, Cos WT+ +
F.({ GO2 T C(10. 5)

and in the second
1, (awr) + I -J (aT)cs -o +

-PO (10.86)

In (10.85) and (10.56) the quantitycT is equal to the maximum possible displacement

of the trailing edge of the pulse.

From a comparison of (I0.t34), (10.35) and (10.86) with (13.58'), (10.60) and

(10.61), it can be seen that the continuous parts of power spectra of sequences of

rectangular pulses with constant amplitude and width, emerin at a random instant
in time, differ from the corresponding spectra with unilateral moduation in duration

only by the factor 4 sin

In Figure 87 are superposed the continuous parts of the power spectra of

sequences of rectangular pulses with unilateral width modulation by white noise for

the three shifts examined above. For comparison (broken curve) there is also in-

cluded the conti.nucas spectrum of a sequence of rectangular pulses, modulated in

amplitude by white noise. All the spectral densities refer to the correspondin

values whenA)= 0, which are not difficult to determine from (10.84) - (10.86):

2alla 2u2tz2T2200
,F3(0) = 2' , 1,2(0)-: , 'PI(0) =_
'() 2T .3T T • (10.87)

9T

(for normal noise the maximum edge d-splacement is assumed to be i T x 3o' ). With

2u6g1-2amplitude modulation, as can be seen from (10.33), F(O) =

* This conforms fully with (5.63), since a sequence of pulses modulated in position
may be regarded as the difference between a pulse sequence with unilateral width
modulation and the same sequence retarded by the quantity a .
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1 2 3 4 5 6 7 ofu

Fi6. %7. Comparison of power spectra for three forms of distribution

of pulse trailing-edge shifts.

1) normal distribution, 2) ulrfor,% distribution

3) distribution of sinusoid with random phase.

Since the spectral densities wlth&) = 0 characterize the correlation time of a

random process, it can therefart-e setn from (10.87) that the ninimum correlation

time corresponds to random edge shifts, distrbuted according to the normal law.

444

4

4 2

' i.88. Comparsion of correlation functions for three forms of
i distribution of pulse trailin---ed,:e shift.

I1) Norna! distribution 2) Unifrix distr-ibution 3) Dis-

40
3-S-S 1 /



This is illustrated by Fi,-'ure 88, wherein are shown the aperiodic parts of cor-

I relation functions of the examined pulse sequences. For comparison (in Fig. 88) is

included the aperiodic part of the correlation function of an amplitudef-modulated

pulse sequence. in 'hIs figure are showm the non-dimensIonal values of the correlation

functions, obtained through division by 2u2a. Let us note that the continuous parts

of spectra, as well as the aperiodi.c parts of correlation functions, do not dpend

on the duration of the unmodulated pulse.

7. Bilateral idth odulation of Rectangular P ases

In the bilateral width modulation of rectangular pulses, it is of interest to

examine the following two cases.

A. The leading edge and the trailing edge are shifted independently.

Then

go, xx X' U. el" dt e 2 e(' xt

-e e -L) (10.88)"

UO 2 eIasz1)

(e- -e 0
If the statistical characteristics of the shifts of the leading edge and of the

trailing edge are the same, then from a comparison of (10.88) with (10.77) we become

convinced that, in the case under consideration, the continuous parts of the power

spectra and the aperiodic parts of the correlation functions will differ from the

corresponding spectra and correlation functions for unilateral modulation only by a

constant factor, equal to two.

B. The trailing and leading edges of the pulse are shifted by the same a:ount,

but in opposite directions (symmetrical bilateral width modulation), in this case

(a eX*==go e 2e"h-J e, (10.9)

and from (10.67) we obtain

F--S++;.. -" 406 ..... - ' ' -
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With modulation by white noise the continuous part of the spectr has the form

F.(W)=[K(w)j-IH(,u) 121 --0.211 -1 8, (10.91)

+I -01 (2w) e-1 -+ [WI w-1) - E(. 2O) e0,

and the discrete part

Slows that F .u) U J

~~~~~~~~~~~F (,,) = (- {@1 --l(,,)I e ,, ,(,) o ,%( .'2

wIT (to COS Wo,)I, (W- 1r I,
G- Cmparing wi0 2 th (10.71), we see thnat the continuous spectrum te-th synt-

metrical bilateral eridth modulation differs from an analogous spectrum with un'-
lateral modulation by the supplementary item U02s

ZF0,1W ) W 8 (2w01COS WF

It is not difficult to write out the power spectra for the distribution of

modulatin, white noise examined above

2 I1+e - Cos w)(I-e +

(10.93)

r-ft
(normal distribution).

.4I
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P2 0 + I1RWINOT sli au

do i0.94.)J

(uniform distribution),

4 CM) Vo2 J4)o (2w) Cotoe±(095
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Fi-. 70. Aperiodic portion of the correlati.on function

of a rectan-ylar pul.3e sequence with bilateral width

in contrast with unilateral modulation, the continuous portions of spectra and

the corresponding: aperlodic portions of correlation functions it) this case depend up-

on the width, r-, of' the unrnodulated Pulse.

Let us note that the discrete parts or power spectra (1C03), (10.-94) and (iO.-15)

do not differ from the correspond in_ discrete parts of power spectra (10.58'), (i0.60)

and (1(..61) of sequences of rectangular pulses with constant ampli1tude and width

emerdini: at randomn instants -n time.

The modulation of' rectan-ular pulst s in position is soieti.-ies regarded as a

special case of bilateral width modulattn, when the trailin- and leading- ed--es are

shifted in one direction by the same amount( ~ where theinx1

refers to the leadingv edg-e and the index 2 to the trailing; edge of the pulse) . Or,

the basis of such a point of vi'ew of modulation in position, it could be possible to

repeat anew the conclusions derived from the results cited in Section i

8. "Ealuation of the Noisproof pualities of Pulse Signalir&_ _Systems

Let us employ the power spectra obtained above for an evaluation of the re!sist-

ance of' pulse signaling systems with pulse-amplitude modulation (PAM) anid pulse-width

modulation (FwX) to fluctuation noise. It is known that demodulation (iere-

storatiori of the modulatin- siznal at the receivin.: end) is effected fo'r other forms

of pulse modulation by means of transformi nv the received pulses eith er into PAY. or

?M. After this the modulatin- signal is se.gregated by the a-f filter.

The noiseproof propcrty of a signalingr? system is characteri17ed by the ratio 4.

by which is understocd tbc- square root of the ratof the power of the useful signal

F-TS-8111VIto.?
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P., in the absence of interference in the pass band of the filter, to the power or

the noise PT in the same band, the latter being computed with the presence of a
si-al, but in the absence of useful modulation (cf. Sect. 8, Ch. VIi. and also (6] ).

The process at the filter input in pulse signaling systems constitutes a pulse

random process. If F c(al and Fd( are the continuous and the discrete (except for

the direct component) parts of the power spectrum of this process, and C(Q) is the

frequency characteristic of the a-f filter, then it is not difficult to determine the

magnitude of Pc and P from the for: ulas

P,LF,, () o),, (10.96)
o,= , (W)C2(w)d.(o.7)

0

For the rectangular frequency characteristics of an a-f filter with cutLoff

frequency 4 , these formulas are simplified and the ratio - may be represented in

the for £

SF ( ) dow

On- A~ f
•-JF oom.

0

If T is the pericd of pulse recurrence, and r is the width of an unnodulated pulse,

then, as is well known,

T(,9.)

U nder these conditions in the a-f filter hand, the continuous power spectrum

FK((,a) of a pulse random process does not take into account the mutual dependence of

the pulses, i.e., does not differ from the spectrum of a sequence of pulses modulated

by white noise.

For a PA.M signalling system, employing (10.33) and taking account of (10.99),

we find
P. F. (w) dw g (&)d 2d -()..

; 0

The power of the signal in the filter transmission band, with modulation by a

F-TS-081 1/V 410
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sinusoidal signal to a depth m, is equal to
£li "

P-- F do)= g (0)1.

The ratio of signal to interference in PA, is, in accordance with I0.01) equal

C (10.100)

where 2x
S>2.

(10.101i)

Formula (10.101) is the basic formula for calculatin- the i""terference-killin-

feature of systems with PAM in which the modulatinj si.nal is segregated hy an a-f

filter, and also of systems with other forms of pulse modulation irn wich transform-

ation into AM takes place.

Let us now examr're the interference-killin- features of a system with unilateral

Pr.r. I- cT 's the maxinum parasitic deviation of the leadin, edge- due to fluctuation

noise, and A Is the filte" band, then in effect << '. oL -T atua fact, with

a highest reproducible audio frequency of 6 = 2• 13 kc and a m;xui parastic

leadingr-edge deviation of a T 0.510-  ee, the product oeTd s t-10 z

Therefore, as is seen from, Figure 3'7, in the audio-frequerzcy ranje the continuous
power spectruq -Ih the unilateral r-dth modulation of rectangular pulses is virtu-

ally uniform. Therefore

2x 2x

or, taking account of (10.S7),

P. 2x(13. 1 2)

where p is a constant factor which depends on the form of distrbution of the modu-

latng noise (for normal distribution a n-, and for uniform distributionf3).

The signal power is

j" 2-TS-(1/1 03
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where 'r is the mnaximum useful tim'e shift of' the pulse leadiry- ed-re in miodulation by

a signal.

Substituting (10.102) and !10.103) into (10.)R), we obtain

whe'el is determined according to formula (10.101). $

Formula (10.10L) is also valid for bilateral width modulation, if only the

factor 0.5 is introduced, since the spectrum density wth = O, as has been indicated

in Section 7, is four times -reater for bilateral modulation as for unilateral.

-Formula (10.104) is the basic formula for calculating the interference-killing

features of systems with F., and also of systeris W-th other fors of pulse modu-

lation in which transformation into W". takes place.

The maximum parasitic deviation of the leading edge (or the mean-square amount

of noise) is determined on the basis of the characteristics of the communrcation

channel in accordance with well-knso m formulas[5].

9. Continuous-Enission .. stens

Systems of continuous emission with amplitude and angle (frequency or phase)

modulation are widely used (aloe.-. with pulse systems) for the transmissicn of

messaZes. Tn these system.s the processes a; hhe output of the modulto.s represent

high-frequency oscillaton (the carrier), modulated in amplitude and phase (frequency)

by a random prucess. This randn process cc-ntiinc both useful irformn'on (speech,

music, television, etc.) and interference (fluctuation noise); the useful part of the

process can, as has already been indicated above, be determined or random.

To simplify the exposition we shall restrict ourselves to modulating processes

which are normal stationary, random processes. The method set forth is, with certain

computational complicati,,.n, expandable for the case when the indicated processes

also contain determined parts [Q]

In the most zeneral form the modulated carrier may be written analytically in

the following manner (mixed m:du!ation):

4I412



-A)E cos [u,/ + '?()]. (10.105)

where E(t) and (t) are correlated random processes. Let ~ and benormal,

stationary random processes which modulate the amplitude and phase of the high-
A

frequency carrier oscillation.

These processes are slowly-changing ones, and their power spectra are located

in the low-frequency range; the highest frequency in the modulating-function

spectrumn which i:3 worth taking into account is much smaller than the carrier frequency

Jo.

For the broken linear characteristic of an amplitude modulator, the link between

the random function E(t) and (t) is given by the relationship

(1o.1o6)E(t) = M. (t) < -A,

SIwhere A0Is the amplitude of the carrier and m A J~~2 is th.e raodulatIon factor.

Since the instantaneous values of a normal random process may, on the absolute scale,

be of any order of magnitude whatsoever, therefore in principle overrodul1tion

(m > 1) will always be in effect. Eowever, if the dispersion W is small in

comparison to A , then the overmodulation may in practice be neglected. The rela-

tive time . of the overnodulatior is easy to evaluate from the equality

~T AA9_

With Cr -A , employing the asymptotic expansion of the Laplace function 'C'.
2.20), we obtain

. - e .(10-107)
AA

Conversely, if O> (very strong overmodulation ), then, expandin: the Laplace

function into an exponential series,(see 2.19), we obtain

v ,= I0I,)
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Let the characteristics of the angle modulators be linear. Then the link be-

tween the random functions (')and 41t) is very simple. For phase modulation

t*M I) 1 E* 1),(10.108)

and for frequency modulation s

M (t) k2  i) d(10.10?)

where k and k are resoc-t1ively the characteristic slopes of the phase and frequency

1 2

modulators.

It is of practical interest fo find the general expression for the power

spectrum of a carrier modulated in amplitude and phase by normal random processes. in

solvin- this problen there will first be determined the correlation function, and

thereupon by means of an inverse Fourier transformation - the desired power spectrum.

The subsequent computations are greatly simpl'f'ed, if (10.105) i represented

in the form of'

IQ) =Re {E (I) eleL . ( 10.110)

in addition, takinZ- into account that the link between E(t) and p t) is provided by

a broken linear characteristic, and er.ployin- the representation of thIs character-

istic by a contour inte-ral (cf. p. 284 ), it is possible to write E(t) in the form'

of

S( ,) (1 0.S (a)

where c is Lhe contour shown in Figrure 54.

The correlat'on function of the random process 4(t)(cf. p 76 ) is equal to
' i s~(14=81, WOW + 9
I { =l Ree m, 1 1 (t) +E O( e(t)

Designating t employ (1::?::),

-* :'we obtain

S4 2F-T 11/V 14



We introduce a four-d mensional characteristic function for the four correlated,

normally distributed random variables k~ , , i (the mean values of which

are assumed equal to zero)
44

e4u1  , a X mauhua (10.113)

where mkn is the mean value of the product of the k-tb and n-th random variabls.

Each of these mean values has the following sense:

2 1( 
Io. 114mj= 1 22m=k 2M1 ~--~ As) O's(014

- (W) B= @) (A s.)', (,). (10.115)

where O C and Ra(') are the dispersion and the correlat'on coefficient of the modu-

latinT process $o ( ;

m3--M--M, -- (10.116)

where oy and R (t) are the d.spersLon and the ccrrelation coeCfi :ient of the random

process I' ( )

M 13 M3 1 km1  M A 0,(018

m,4=m,= k(10.118)
M2 = m32 = kMI Y (+) IP(t= kB*a ?) (10. 120)
m.~nh =M = , . T +), 1B~ =;. 0), 0. )

I( 10)
I" 4m4=m 1 {a( t)Q~)~A., (10.121)

z , where Ba (t/ and B+CL(z') are mutual correlation functions of the random process

C(*M and W

It is not difficult to note that

Mi F-TS-,+A,#,+9 ,-9, 94 (U, U,
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Employini. (10.113) - (10.121), we obtain

&(ul + 2R, u,.,+UP{e~l 'i~'" + ' i } -- Ie A X (10O. 122)

Xe -  ('-R) e" ~* 0) o- s~ (t)1 M. - lBe, (0) -l.a (')I U,}.

in the right-hand part of formula (10.122) the first factor represents the two-

dimensional characteristic function of the process 1( () , the second one repre-

sents the characteristic function (with a value of the argument equal to unity) of

the dIfference / ( + r)- ( *, and the last factor takes into account the co.-

relational link between the random orocesses 1 ,t ( )  and *

Substituting (10.122) into (10.112 ), we find the expression of the correlation
function of a carrier modulated in amplitude and phase by mutually correlated

stationary normal random processes

B (T) - 2 e- . ('- Re

C C'

) ; l ( 0) (O - Ba4 (0)l i' - ([BO. (0) - 8#2 (') "a) I (V f ) 1
Xe.2 dulduglui 21 ",

If the modulatin- processes and ) and are norcoheren t, then 8B&

0, and expression (10.123) is considerably simplfied and may be represented as the

product

B BA B*(10.124)

' Iwhere A. r - $5 +

A ('= Re I I

X- e , (10.125)

* Cf. (5.62) when rz 0.

* It is important to take this correlational link into account, for instance, in
problems connected with the investigation of noise in magnetron renerators.
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is the correlation functiln of the carrier modulated only in amplitude, and
II (t) e(R (10.126)

is the correlation function of the carrier modulated only-in phase (or frequency).

10. Amplitude Modulation

The correlation function of an amplitude modulated carrier by a i.ormal statirn-

ary random process is, in the case of a broken linear characteristic of the amplitude

modulator, represented by formula (10.125). To compute the double integral in the

right part of (10.1'.5) it is sufficient to employ the expansion (7.38), after which

the integratLon variables divide and the ex-pre.sion for B (') takes the followin-

form

o' O €,, A-02 R0 _'h2  (10.127)

v-0

where

-- e - A) du.

(10.128)

Makin- use of the procedure employed on p. 135 , we find

k ,=V-2)_An -10.1-8 )

where (x) -C

BriployinE for-aula (8) of Appendix VI, the coefficient hr may be expres-.ed in

terms of degenerate hypergeometric furnctIons:

I k" \(rt) ____ A-

2 2
V-2A., 3 Ag

+ 2-/-\'I

(10.128,")
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I
Substituting (10.,2.) into (10.127), we "Ind

S8 A Co (-) WA11 R' (10.129)

Here 4p(,)(X)=FP(X)=VL je - is a Laplace function (cr. Appendix II),

and

-F(x)dx.

Let us first examine the case when i in which the overmodulation 'MaY

in practice be neglected (cf. (10.107)). In this case

- ) f A n N- A ll - , A ,,

and the rest of the items in (10.12() may be ne.lected. Then

A2 0 J

2 -Cos to- + TBa ( cos wo.

The power spectrum F A?'), which cor'esponds to B (-), is equal to
AA

FA(s)=2A 2cos tot cos ,- d: +

+2 ' B. 1)cos wo" cos w :- = -.A O , (a - 0) +

+ V'f B.(1-) cos (o-oi)'rd:
0

-f- V Ba (:) cos (,% + ,,) -d:.

(10.*1310)

With the assumption that the bandwidth of the audio-frequency spectrum F 
(w), which

a

A modulates the random process, is much less thanW6o , the last term in the ricght part

of (10.130) may be neglected and the spectrum of the amplitude-modulated carrier may

be written in the fom*

CA 2
PA Wj (12)(10.131)

Cf. footnote, p. 275.
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From (10.1) it can be seen that, in the case at I.Pnd, the spectram of the amplitude-

modulated carrier is obtained by superimposing on the carrier a discrete spectru

line at Gja&J of the continuous spectrum of the modulatin process, this spectrum

being- multiplied by a constant coeCficient of(T)Za:d shifted "nto the ht:h-frequency

range by the amount6Jo . This linear link between the modulated oscillation spectrarn

and that of the modulatinj process comes about from the initial assumption of ne/li-

ibly small overmodulation:.

The other extreme case, whei. C,> -9 ccrresponds to very strong overaodulqtion

(the relativc. time of oermcdulatioa is close to i, f. 10.107'). In this case in

the sunimation alon- ia of formula (10.123') (sic) it is possible to restrict one_-

self to the first terms and then from (10. 127) we find

BA -2 Al

Since I ,~- r--O,

co, r=2n4-1,

(- ,)' ( r=2n (n= 1, 2,...),

then

BA()=2 coso'o (+Y +_ R,). (1.132.

The expression '10.132) differz- from 7.31) oniy by the factor costT a-.d there-

fore, taking (7-32) into account, it may be rewritten in convoluted form

BA 0) [1+ arc sin R, (,t ±V R + (10.133)

From a coviparison of (10.133) with (7.32), it can be seen that with strong over-

modulation the spectrum of an amplitude-modulated carrier coincides with the spectrum

of the odulating random process which has passed through a linear detector, this

spectrum bein- multiplied by a constant coefficient of and shifted Into the high-

frequency ran.e by the ariount 6). " In distinction fro;, the case of nesliibly seall

,@av.r dulation. in the present case the modulation is a nonlinear transfo.i.ation, as

~~ 5T-9311/V 4'



r a result of" which in the spectrum of the modulated carrier there appear supplesic-ntary

harmonics from the beats of the carrier with the components of the modulating procezs.-

V~ rCarrierItI6

2 S P
Fig. 91. Pov cr spe-trurn of a carrier mnodulated in. amplitude

by a statiLonary nornial process.

1-- neglirgibly sma 11 overmod ulat ion; 2-- ztronbg ovvrncadulation.

Fi-ure 91 showis the citinuou; noectra oil a carrier modul.ated in± amoitudr- by a

stationary normal process, tne spectrxn: ov rah has the f orr of a ga-ussian curve

-xith a band of *ie, F (4')) F~ C: J
The first curve in Fi~ure 1 refers t u thie -ase of negligi*ble overmcdulation and

reproduces the spectrum F (41) shiftzd '- thle amoun~t w., and the second curve refer.s

to the case of strong; overmodulation. Both c;urves are norm:alized by dividin;- each

ordinate by F A(We)). In the second oase the spectr.- of the modulated carrier is

somewhat wider than the spectrum of the raodulatin-, process due to the products of

the nonlinear transformation.

11. Frequency NModulation

The correlation function of a carrier modulated In .7requency 'by thne normal

stationary process with a linear characteristic of the frequen~cy rio-dulator,

is with 0 ,0 represented by formula (10.123), in which W adR are the dis-

persion and the correlation coeficlent of the random function (6) inked

F- TS- 1'311 iV 420



with ()by the relationship (10.101). Let us designate by Fv(w) the power spectum

'I,
4 or" the modulating process.

Then, employing (6.11), it is not difficult to write the pcwer spectrum

of the process which is an integral of the modulating process:

r (.)=(10.1')

and, consequently, (
2 R. (t) BO LS dw

( s - (10.135)

d;=B(0)=L FU(W . (0 .135')

, Substituting (10.135) and (10.135') into (10.126) and employing rninchints formula

(5.44), we find the pc.wer spectrum of a carrier modulated in frequency by a nor-mal

stationary random process
F e (,=4 B# (T) cos w:d.

0

2AO - os wo cos wd-
0

(I-COS cu) o(" - o6)

0

-- C" I l-cOs wtc) FjM --
+ A' e cos(W (0) d,"

0

The second integral in the rioht part of (10.136) may be rejected, since in the

irrtegrand function the exponential factor changes slowly in comparlson to cos(wvia,:)%

Thus*
ks

* -osJ(Z-c-s mo) FMdd..
(O)=A.' e Cos (w-w) d. (10.137)

Let us assume that the spectrum of the modulating process is uniform in the band,

from zero to d , i.e.,

* Let us note that formula (10.137) yields also the spectrum of a carrier modulated

in phase, if only k2 is replaced by k1 , and the factor - in the exponent underI the integral sign is dropped.
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where o is the mean-square deviation of the frequency from the carrier (the ef-
Fw

fective frequency deviation). It is customary to call the ratio of O Ft to the maxi-

a modulatinA frequen.-tA the effective frequency-modulation index m = E Employ-

ing (10.I.$), we find from (10.137) after replacing the integration variable in the

exponent

•-, i 2(

F* __ ' cos (w-w)d: (10.139)

The integral in the exponent is expressed in terms of the integral since

i" lint

Effectin- the substitution 7,d X , we obtain finally

A) -m IWz 'ga. 21
2 XF*()Lcs '-=~x (10.140)

eCos dx.

Let us examine the two limiting conditions tii 1 1 arid m 44. The first condition

is equivalent to the assumption that the width or the spectrum of the modulating

process is narrow in comparison to the effective frequenc'y deviation. Such condiTioris

are realized, for instance, in radio broadcasting on ultrashort wavelengths and in

television sound. ,,

In this case, resolving the function sir.(x)- 7 " . ... , t is Suf-

ficient to restrict one's self to the first term. Then (compare p.228 )

A; -

-j- e(M0.0.
T o- (10.141)
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Thus, in the frequency modulation of a carrier by a stationary normal random

S - process whose spectrum is narrow in comparison with the effective frequency deviation,

the power spectrum of the modulated carrier has the shape of a gaussian curve with

the peak at point 4.) r (Fig. '2). The bandWt4th of this spectrum is equal to (cf.

p. 229)

2 di

Fir. 92. Power spectrum of a carrier modulated in frequency
by a stationary normal process.

In the case of narrow-band frequency modulation m << 1, a good approximation .ay

be obtained if, in place af function sin(x)- " in ( 3.40) there is ta xe ,
X

its asyrptotic value when x , , equal to-. Then (compare 5.57)

A0 e ' 2 Co dxF .(.)-Lx~ 2 co~~~
&

or 2 um 4  |

" ,,'A ,, , m'<1.

(-) + ,,-,,), (10.142)

Thus, in the frequency modulation of a carrier by a stationary normal process

whici is wide in comparison to the effective frequency deviation, the power spectra%

of the modulated carrier has the same form as the spectrum of white noise at the out-

put of a linear RC circuit (compare p. 230 ). The bandwidth of this spectrum is equal

to a In distinction from the preceding case, in which

the ratio h of the spectrum band of the modulated carrier to the band of the odu-

latin- process depended linearly on the modulation index m, in the present case this

relationship bpecomes quadratic.
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Chapter Xi

ELE*TNTS OF IN P'ATICN TFCRY

1. Probablity-theory methods are mathematical research ethods, adequate to a

whole series of radio engireerin- problems; this has been illustrated by numerous

f examples in the precedin" chapters. The application and developnent of these methods

has played an important part In the progress of radio engineering science in recent

years.

Along w th the successful solving of specific problems, works have appeared in

which the problem of the transmission of electrIcal signals is stated in the Imost

general terms. The ienerallzed statement, based or applied practice, of the problem

of the effectlveness and reliabilit- of electrical co zunicatiois .yte.s has become

the start~n- point for a tranch of protabUty theory at present n "r vi-or)Is

development, namely information theoj.

The purpo.se and scope of the present bosk do not .ermIlt -ivin. an at all satis-

factory survey of the present state of in&'ri.iation theory. Cnly the basie crc.ept

t.1l be set forth, and sore general results will be formulated, ir order to direct

the attention of the reader to the chain of reasonInIha of this theory and t- arouse an

interest in the stud of' "t.

2. The purpose of every communication system is to restore at the receiving end

the message sent at the transmittin end*.

By message is meant any data (information) subject to transmission. 3uch in-

formation may be speech, music, an image, a text, a photo, codes, telecontrol c Xl-

mands, etc. In informatIon theory the mesage is regarded as a random process, sInce

if at the receiving end the content of the message is known for certain in advance,

then there is no sense in e-fect.n: the transmIs.sion of such a message.

* Here is meant not only co=,lunication in the customary sense, but any form of
.Atransmission of useful data by means of electrical signals, as, for instance, radar,

te!3metry, autoriatic control systems, computing ,,achInes, etc.

F I/



12. R. 0. Medhurst. The power spectrum of a carrier frequency modulated by zussian

f' noise. Proc. IRE, No. 43, No. 6, 1^55.

13. J. L. Stewart.. Frequency modulation noise in oscillators. Proc. IRE, 44, 'o. ,

14. i. S. Gonorovskly. Phase Fluctuation in A Tube Regenerator. DAN, 101, No. 4,

1C55.

-I4

-- 2

~y.

...-4 .. - . , . ../< x x~.y . . ,.



The device producing the nessage is called the ,iessa.e source (or infortlation

source). The statistical structure of the message is the mathematical characteristic

of the message source.

BY discrete source is meant a source whose product is a random process 1ith dis-

crete tine, i.e., which represents a sequence of random variables (cf. Sect. 10, Oh..±,.
and also Sect. 1, ch. V). An example of a discrete source is a device transmittin-

letters or code.

By continuous source is neant a source whose product is a continuous randc' j
process. An example of a continuous source is a device transmitting speech or music.

In the general case the product of a continuous source may be a randon function of

several variables as, for instance, in t,.ee-diensional television, where besides

depending on tL.e, the message depends also on three spatial coordinates. By mearns
of quantizing a continuous messa-e, or by replacing each realization of the m.essage

by a sequence of base pulses (cf. Sect. 1, Ch. V), a continuous source car be trans-

formed into a discrete one.

For a message to be transmitted by means o. a radio-engineer'n/ system, it must

be transformed into an electrical signal.

An aggregate of devices along which signals pass is called a channel. The con-

cept of a channel embraces all the technical devices which transform the signal gl:r to

transmission, effect its transmission and reception, and complete the transfor- atio

of the received signal, as well as the medium used for transmitting the signal from

the transmitter to the receiver.

If to a given signal at the input of a channel there always corresponds one and

the same siEnal at the output of the channel, then such a channel is called an

interference-free channel. In an interference-free channel Uhe signals at hath ends

of the channel are linked by a definite functional relationship. Th r problem of

communication in this case is reduced to the identification

With one of the possible realizations of the message.

The presence of interference 'noise) brings about an irregularity in the
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indicated functional relationship between the message sent and the signal received.

In the same manner as a message, interference is regarded as a random process.

Therefore cases are possible when various signals at the output of a channel will

correspond to one and the same message, and conversely, it may be possible to

identify the signal received with several possible realizations of the message.

Both the source and the chawnel may be characterized by their fine statistical

structure, i.e,, probability distribution functions may be assigned to them. For the

source these will be a prior" distribution functions of the message (t), and for a

channel with interference they will be a posteriori disteibution functions of the
probability of obtaining s.-nal I (t) at the output, under the conditin that messag e

(t) was sent (or a poste-ior- distribution functions of the probability that

message 4 ft) was sent if signa! 7 0 was received). However, for comoarin.

various sources and channels, some n:umerical characterIsti-cs of these distribution

functions are'used in information theorj.

3. Let us e:anine a discrete message source. We assume that the number of

various elements, of whIch any realization of the iessa~e may be composed, is finite.

The acg re.gate of these elements, xi I I 1, 2, .... m) is called the alphabet of the

-ouce. An alphabet may be an ajgregate of various letters of a given language, of

code symbols, or of conve--tianal commands. Any realization o_ a message represents

a sequence of elements, each of which may be repeated an arbitrary number of times.

In the realization, the ime elements will thus be distinguished by the place the-,

occupy in the sequence. Therefore in distinction from an element in an alphabet, it

is expedient to introduce a separate name - symbol - for an element in the realiza-
tion of a message.

tinLet the var'ous realizations of messaou (.) (t to, to + 1,... t 0 + n -1)

be composed of n consecutive symbols and let P be the probability of the appearance

o f'realization ( t). The number of vrrious realizations consistin6 of n symbols Is,

with the given alphabet of- m symbols, obviously equal to N = rmn. If the appearance

of each realization is treated as a separate even., then the ad--re.-ate of N real-

- 1 4



:iations Will conprise a complete set of events Pj= i

S Thn a-rount -InPj is (by definition) called the quantity of information about

event -The mean quantity of information for one realization is equal to

JT.

H. P, III pi,

i.e., coincides with the entropy of the law of distribution of the message (cf. Sect. 11,

Chapter II). Here the ave-age quantity of information for one symibol delivered by

the source is equal to Hn . If the random process (t) is stationary, then there
n

exdsts a limitI ~~~H=fim ££ I 2

which depends only on the nature of the source and is called the entropy of the

source,

Let there be known. the average number IM of the Fymbols delivered by the source

in a arniL of ti ,e. Then it is possible to introduce also the entropy of the source

in a unit of time, by the formula

~~~H'--%H. (13

The magnitude H', being the mean quantity of information in a unit of time, may be

called the speed of delivex of information by the source.

If all the symbols in the realizations are mutually iandeder t, itd P21""

pm are the a priori probabilities of appearance of the elements of the alphabet, then

with a s, fficiently lar.e n the probability of appearance of any realization will be

equal tc

P=,,;"' ... PD.-D.... 1  Pn'j'-5' P Pml "

and, consequently, the mean quantity of information for one realization is

H,=- In P=- n E.PInp,. (11.4)
'-[

The source entropy is in this case equal to

I
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TV

HO,)- - P, In pi II5

In the general case k n symbols are statistically linked by a k-dimensional

distribution law. Such a group of symbols is called a k-gram. Monc:jrams (k = I)

are symbols themselves in case they are mutually independent. Diagrams are Croups

of two symbols, linked by the two-dimensional distribution law Pi'j" The source

entropy for one diagram is equal to
~m n!

,,.=- (11p,1 In,(1.6)
i~i.-I ,-.I

and~~~~ ~ ~ th(nrp orasmo s 2)
and the entropy for a symbol Is , H Analogously the source entropy for a

k-gram is
M M" ".. In,.., '" , .,

4 -I ik -1

and the entropy for a symbol is H( )  I

Bearing in mind the inequality (2.120), it is not difficult to conclude thatH H and analogously H H i.e., taking- into account the statistical

interdependence of the symbols reduces the sourbe eCro- 6y.

4. The simplest discrete source is one which delivers sequences of symbols

consisting of two possible elements. An example of this is a source of telegraphic

messages, whose alphabet consists of two elements: "yes" or "no" (cf. Sect. h, Ch. I,

and also Fig. 2). If all the symbols are mutually independent, then the probatilLty

I of the appearance of any one of N = 2 realizatons, consistin- of n o.mtbols, will

be equal to P = where p and q = I - p are a priori probabilities of the

appearance of each of two possible elements and r is any whole number not exceeding

n. However, with a sufficiently large n, r w np and, consequently the mean quantity

of information for one realization will comprise
Hn ,- -InP---In (p'q"-') -- -In (Ppqnq)- '.,

-n(p Inp-qInq),

and per symbol delivered

I(p IIn +qInq).(1.
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The quantity T n (11.3) does not depend on n and reprtsents the entropy of the

telegraphic message source.

For the data of the example in #4, %Chater 1, = ?(ye-s") 510, q ?(no")

3/8, the source entropy is equal to H = -(513 ln5/3 4- 3/8 'n3/0) = O.(7 natural

un-It/symbol.

5. If all the elements of the alphabet are equiprobable, then with a suf-

f.,,iLently large n all N realizations of the message will also be equiprobable. In
that case, as has been indicated in Sect. U, Ch. Ii, th entropy Rn "s at it. :,a:dinuu'

and is equal to ), = XN = n In m. The source entropy ;ith a g\,en number of m

elements will ir. this case be equal to 3ts maximum value of im = ln m.max

in the general case sonu elements -i i e m:)re probable, and others less so, and

the same property Vil be possessed 1y the real zation:s, as a result , which Hr, <
WIth a g7iven H it would havt been possible to obtair the sane am of

nn max* n .. b a r he s n o n of

information with a smaller rumber o f < N real-zations, if L-hy ha" all *eEn equI-

probable. Therefore the quantity H H cais lled interior (or .xces:) Inforvation,• "rax

and the rati.o
SH

m a -H H

Re = _ =I 119
mat Hmax InM

is called thi coeCfic'ent or- excess, or sinpl. he excess, of th souc'ce. I. the ex-

Saple idicated above 1a = In 2 = 0.7 natural unit/symbol, and the coefficient of

excess is equal to R= 1 - . .
-07

As has been noted above, the source entropy -.s nurther di:a'nished, and conse-

quently, the excess is further increased, if betweer the symbols or groups of symbols

there exist statistical relationships. Thus, for the alphabet of the Thn.n:i..
language, consisting of twenty-six letters, the raaxii au. entropy is equal to a

lan.Uage cosistnz rY Fmax
lo 22

6 = 4.7 binary units/smbol*. If it is taken into account that the leters are

not equiprobable, but remain independent (monogram), then the entropy falls to 4.14

* Cf. footnote, p. 82.
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binary units/symbol. The additional consideration of the statistical structure of

the language yields a correspond-nz., reduction of the entropy to 3.56 birnary units/

symbol (diagram) and 3.3 binary units/symbol (triogram). If account is taken of the

SI probability of the appearance of individual words in a complete sentence, the entropy

falls to a quantity smaller than one binary unit per symbol, which corresponds to an

excess of more than 780.

6. One of the general results of information theory is the theorem of the elimi-

nation of excess in a message by means of appropriate coding. By coding is meant any

mutually unique transformation of the realizations . of mssa-e e 't) into the

realization of another message (or signal) f(t), i.e., from the ,rathematical point

of view coding is a functional transformation of the message.

It is clear that when coding with utmost brevity the -more frequently encountered

realizations and employing lonzer code combinations for realzatlons rarely en-countered, 1%. rae0 n

countered, "t becones possible for us to reduce the avera:-e number of s bols in the

coded realization in compar'son to the original one. Let the realezation c,

sisting of n successive synbols and having a probability' of P., be coded into the

JJ~'realization r * consistin.- of n. symbols. The ratio myb eadda- h o

efficient of compression of the -iven realization. The mean statistical value of

this ratio for ai] possible realizations *j. consistin- of n symbols, is equal to

The limit '-'

p=lim I&.r "w (l1.11)

is called the coefficient of compression of a message with a given code.

It has been proven (cf. (13]), that if the entropy of a Tessage is equal to -I

then the smallest possible value of the coefficient of compression is equal to I -

.. 4 _ B.-. Ehploying this theorem, it is possible to find the bottom limit

f :., to the compression of a message which may be accomplished by means of an optirum
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codification. Thus, in the ab.ove-indicated example of the telegraph message, the

excess is extremely small and the possible compression cannot exceed 5,0, whereas with

a 78% excess an Enlish text permits a compression of 4.5 times.

The theorem just formulated and the existing methods of proving it establish the

possibility of a compression limit, but give no indications as to how the optimum

code should be arrived at. With the practical application of various methods of

codification for compressing a message, it is possible on the basis of this theorem

to evaluate the extent to which the method employed approaches the cptplum.

7. We pass to the quantitative character of a channel. The connection of a

source, producing the messages 1 =, 2, ... N) with a priori prol -Alities of

P(j), to a channel leads to the appearance at the output of the channel of a new
source, producing the signals (k =, 2, ...N) with the a poster-ori proba-

bilities P.fk). T' at the input of the channel the quantity of informiation about the

realization was measured by the quantity - ir. P(j), then at the output of the

channel the quantltJ of information about this realization is equal to - In Fk(J).

Thus the quantlty of information about the realization & Lhas changed in the channel

by the amount - in P(j) + In P (j) In - The mean quantity of information-kk P( G)
for one realization of the transmitted message, contained in the signal at the output

of the channel, is equal to*

P U)

Substituting by the rale of multiplication P(j) S it is possible to

rewrite (11.12) in a forin symmetrical with respect to and
• P(I. k)

hi-I -

If the interference in the channel is so strong that the signal 1 at the output

of the channel becomes independent of the transmitted message , then P(j, k) = P(j)

P(k), and from (11.13) it follows that II= 0, i.e., such a channel transmits no

* The curved bracketsf j indicate not a funct.on of the raadom variables and??
but some numerical character stic linked with these var~ables.
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information about the message . Conversely, for a channol without interference it

is always possible uniquely to determine the transmitted message on the basis of the

signal received. Therefore for a channel without interference P(j) = 1 if k =j,

and is equal to zero with k Then from (11.12) it follows that .{ , t --

-EP(J)]P(J)=Hn{j, .e .in this case the quantity of infomation contained in
I-I

signal at the output of the cha e!, about the message , is equal to the source

entropy Hn, or to the quantity of information about contained In 4 itself.

Introducing conventional entropies (Sect. 11, Chapter Ii), it is not difficult to

f;nd from (11.13) another expression for the mean quantity of information

MN

I-I I-I

N N N N

0P k-I P-I P-I i- I

i~ 1.111)

where
N

H.,P (k)H., ) (Hflh i (
k-I

is the average (for all possible instances of k) value of the a posteriori entropy

of the message.

The quantity H shows how great the mean indeterminacy for one real-

ization is, in determining the transmitted message on the basis of the s1-nal re-

ceived after transnfssion over a channel with interference. This quantity, called

uncertainty, is an important characteristic of interference in a channel. For'a ohan-

withou interference H { 0 , i.e., the uncertainty is equal to zero. This

signifies that between the possible realizations of the signal and the message there

exists a functional congr.ence. Therefore, for instance, codin- may be regarded as

transmission along a channel without interference.

If the source at the input of a channel is stationary and source resultir.- from e
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connect ith the Thannel is also stationary, then there exst he limits

Then the quantity

represents the mean quantity of information obtained in the transmission over the

channel of one symbol.

Introducing, in accordance with (1.3), entropy per unit of time in place of

entropy per symbol, we obtain the mean increment of information per unit of time

1, (, -) ==HI ,',(11.17)

which characterizes the speed of transmission of information over a channel from a

given source.

The full sym.-etry of (11.13) with respect to and < makes it Possible to rep:'e-

sent the mean quantity of informatlon per symbol in the form of

where 1 -is the a priori source entropy at the outpat of the channel,

ITE41 -'is the average value, for all possible message realizations, of the a

posteriori entropy ,f the signal at the output of the channel.

3. For an illustration o' the introduced concept let us turn again to the ex-

ample in Sect. 4, Oh. I. At the input of the channel there enter symbol sequencEs

consisting of "yes" or "no" ele-ments, the a priori probabilities of which are P("yest)

= 5/8 and P("no") = 3/8. At the output of the channel symbol sequences are observd

which also consist of two possible elements: "green" and "red", the a priori proba-

bilities of which are equal to each other P("green") = P("red") = . The a posteriori

probabilities of the transmission of message elements in the reception of a signal

element are equal to

P"green" ("yes") =3/4, P"green" ("no"f)*.

P"red" ("yes") = j, P"red" ("Ino")
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The amount or unreliability per ~Ulis equal to

H',J (k4 4  4  T/ 2  (7 +2  Y 2 /

0.63 natural unit/syrrbol

The entropy of the source under examination has above been found equal to

H 0 = .67 natural unit/symbol. Then onL the basis of formula (Ii1.i14) we find

the mean quantity o'l -tnfortma-tion obtained for one symbol at the output of the channel J
14

i o .67 - 0.63 = 0.04 natural -unlt/symlbol.

9. By the carrying- capacity of a channel is meant the maxirrum possible speed Of I

transmission of Infor-mation

The maxim.m -Is taken 6n the basis of all the possible messa-e sources which may

transmit sig7nals over tLhe channel. This q,,uantity must depend or~y on the channel

properties and is the most iimportant characteristic of the chanrel.

For a channel wlthoul.t interference the unreliability if 0 ,and tther

max*

Since the coding. of a messa-e may be reg arded as its tk-ransmission over a channel rith_

out interference, It therefore folloiis from th-e theoren on messag-e conpressin, (cf. 6

above) that by means of ap~ropriaze coding. it is possible to bring- the source entropy

to a maximum, equal to the carryinE ca-pacity of the channel.

10. A most important result of information theory is Shannon's Theorem on the

optimum utilization of channels iwitlh interference by means of appropriate coding OA.

the transmItted nessai.e.

The difference should immediately be emphasized between coding in a chatinel ,rith-

out. interference for miaximum messaje compressicn., and cod!ing- in a channel with inter-

fLerence with the purpose of combattitig interference. in the first case the codine is

directed at removal of the excess present in the messaZe, while in a channel Wit

interference tran~smission -with excess symbols is a reliable means of reducing mis-

p 1takes. TIhe simplest (but not the best) method of introducIng excess is m-'ultiple
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repetition. In an ordinary text, due to the hig-h excess, errors in the trans"'.Ission

of individual letters are easilyr corrected on the basis of rieanirLn_.

it could be expected that as the requirements of transmi-ssion reliability are I

increased, the transtaissi1on speed should approach zero. 3hannon has shown that, in

actual fact, the carrying, capaci-ty of' a channel has a fully determined value, dif-

ferent from zero, no matter how Low the error frequency may be. In 5iannon's

Theorem two quantities are emnployed. in evaluat.i.- the interference-proof features

of a channel - the probability of error, and unreliability (i.e., the mean value of

the a posteriori m-,essa:ge entropy). Therefore, as has been Justly pointed out by

A. Ya. XhinChin[) it is preferable to spea'k of two thIcore-ms, wAtho.it unitin.

then under a coui'on headin-;.

Theorem I. Let C be the c arryi-n r capacity the chaannel, and P' C be theI

rate of produ'ntion of information by the source, and let E > 0 be of any desired

)Idelfree of smallness. it is possible to code the output of the source 4' !t) into a

sicgnal JOC in such a nanner, tChat each realization 4iof' the -nessa-e, consist'n-

of' a sufficiently larz-e nunber? of' n synbols, will turn into realization o f the

s' znal of' n + n symbols and that, in transmittintg the si --na.l over the channel, it

is possible upon its realizati1on at th'e output, urith a probability exceedin: I E

correctly to determIne the messa,;e sent.

Theorem I!*. Let C be the carr-yi-n: capacity of the channel, and H' < C be the

rate of' production of informnation by the channel. It Is possible so to codIe the out-

put of the source that twhe rate of inforrn~tion transmission I' would be as close as

desired to H', i.e., to the rate of the production of this information by the source.

in view of (11.17) this indicates the posslbiliV.y of' transmittinC a messa--e over the

chaannel wilth as little unreliability as may be desired.

1t should be noted ag~in that, as also in the case of the theorem on message

compression, the cited theorems indicate only the possibility of optimuim coding, but

7 1 * As has been shown in II2,the second theorem may be obtain-ed as a consequen~ce
of the first.
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not the means of its practical realization. These theorems are of the nature of

V limit theorems (as are also Lyapunov's theorem and the law of large numbers). The

following problem of practical significance is to find convenient approximations to

the limit relationships, as has already been done for the central limit theorem and

in error theor-y for the law of large numbers (cf. Chapter IV).-

t1. In order to emphasize the general nature of information theory, it may be

pointed out that from the point of vi.ew of this theory, it is also possible to ex-

arine problems dealing with the reliability of systems consisting of a large number

of elements (the simplest of which, cf. in Sect. h, Ch. I). There is a complete

analoar between the concepts of "nessa:e" and "systems", "message symbol" and "system

elements", between a statistical description of an interruption in the functi nin of

a system element and a statistical description of a channel with interference. A

system cons-stin- only of elements in series is analogous to a message entirely lack-

ing in excess symbols. Reservation, i.e., the introduction of excess elements in a

system which functions in parallcl, is the most effectIve method of increasin2 its

reliability. This, however, leads to an increase of the physical volu-ie of the equip-

ment and of its cost, which in a certain sense is equ'valent to decreasing the a.ount

of information for one symbol. it would apparently make definite sense to formulate

problems of system reliability mathematically in the same form as problems in message

transmission, and to apply to this case the general theorems of information theory. i

12. The concept of the quantity of information In transtaission over a channel

is generalized for the case of continuous sources. Referring the reader to works tI], !
S4), (171 for general and rigorous generalizations, we shall restrict ourselves to

the simplest ones.
The probability of an event, consisting in the fact that the values of the

continuous message (t) are located on the interval of (x, x + dx), is equal to wI

(x) dx, and the probability of the same event, under the condition that. at the output

1of the channel the signal ?t) is observed, is equal to w(xfy)dx. The increment in

the amount of information is equal to in . The mean quant'ty of informatIon
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with respect to message 4' (t), contaired in sigrnal 't), is equal to

(11.20)

or

.w2 (x, y (11 .2)

? - -

Analogously to the manner in which (1114) was obtained from (11.13), from formula

I(11.21) with consideration of (2.114) we obtain

I~, ~) 5w11 (x) In w,1 (x) dx +

+ W12 (Y) fdy~l H~ MI, } (

where H is the a priori entropy of message ,(t), and H[] is the nean value

of the a posteriori entropy of message 4 (t), under the condition that signal (t)

was received.

The quantity H() retains the designation of unreliability.

The full symmetry of (11.21) with respect to x and y makes it possible also to

write

i1, t =- CO W12(y)lnW 12(y)dy +
-00

+o a,, (x)H,,.,x=, 1-,} --Mq1). (11 .23)
-vC

For channels with a limited transmission band it is possible also to introduce

the concept of rat* I' of information transmission, if I is multip'-ed by the number

of data (excerpts) M per unit of time by which are determined those signals whose

i spectrum occupies the limited frequency band. This number M is determined on the

basis of the well-k-nown Kotelnikov's theorem (ef. Footnote, p. 186) rnd is equal to

M 2F data/see, where F is the highest frequency in the signal spectrum. Thus

. ,1 -2F1.,, . (11.24)

It should, however, be kept in mind that between the discrete and continuous

cases there are a number of substantial differences. Tius, for instance, functional

transformations of symbol sequences can change their length, but do not change the
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probability of emergence and, consecic.ently, the entropy for one realization. The

functional transformation of a continuious message changes the probability distri-

bution function and with it the entropy of'thene,-sar.e. If H is the en-

trop, of message (t), then, employing (2.114) and (3.11>, it is not difficult to

write the entropy of signal 4 (t)

where w(x 1 ,...xn) is the n-dimensional distribution function of (t), and D is the
transformation jacobian of the variables x. to the variables y. = f(x 1'"'x

Only in transformations for which jD = I (for instance, the addition of M (t)

with an arbi.trzadydetermined function of tl:ae) does the entropy retain its value.

Thus, in effecting functional trtansformation.3 on continuous messages, it is possible

by means of chaning the distribution function ("redistribution" of the probabilities)

to attain the desired change in entropy.

13. Let us assume that the transmitted message ant the interference
in the channel Care independent random processes, and let w (z) be the dtstribution

function of the interference. Since the signal at the outpqt-o the channel is

= , therefore

w(yfx) = -1

and

H I-j) = W 1, Wxw(ylx) Inw (ylx) dydxj

j - 40

W1 Iua~~nt' W3 (W dz,
or

i.e., the mean value of the a poster-ori entropy of the received signal under the
condition that messae4 was sent, is equal to the entropy cf the interference.

Substituting (11.25) into (11.23), we obtain
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It%,i)== { -H {j. (11 26)

Since H t Idoes not depend on the messate source , the mximum value of I ,

is attained at the naximum of entropy H 3f the received si-,aI. Therefore,

takin- into account (11.11) and (11.24), Is oossible in the case under exainaticn

to compute the carrying capacity of a channel, wherein the s' nal-and--nterference

band is limited by a maximum frequency F, by means of the formula

Let us suppose that the interfcrencc is distributed according to the norma! law
2

wlth a dispersion of 0 , and let u5 assume that the mean powers of the transmitted

sinals are linitee b, t.he quantity C

In view of the independence of the interference and sinal., the mean po'xers of

the s*.inaIs -ece'ved are limi ted by the quaint'tty 0' ,47 A: has -;ready been

noted in jil., hapter IT, a continuous random variable with a l'tEd dispersion has

maxi.um entropy if it is distributed normally. ith respect to the probiem at Iand,

this si-nifies that the rate of information transmission in the channel will be at

its maximum If the signals at its output are nor.ally di stributed. Since the inter-
ference is inde. endent of the si-nals and is also norrnal, the latter is equivalent

to a requirement for a normal distribution of the transmitted signals.

According to (2.113) the entrop: of a ncnally distributed siignal with a di s-

persion of 0' + '. is equal to

2l 2
and the entropy of the interference is

ZH I '2 e

Therefore in accordance with f'11.27) tbe carrying capacity of a channel ith band F,

in which there acts a normally-distributed interference with a r,.ean power of 0'

is equal (w-'t..h a mean power of the transmitted s'gnals of 0' z) to
C
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"f~ I=i + g;.2

it can be seen from that if the interference is weak (o .< O

then the quantity of information about , when s known, is "rea.

and becomes unlimited when -- 0.

Conversely, the quantity of information rapidly diminishes with an increase in

the interference dispersion. It also follows from this formula that with a decrease

in the si.gnafinterference ratio .- , it is possible to preserve the carry'."

capacity of the rhaniel by w'dening its band T and, conversely, it is possible to

narrow band F at the cost of increasing the signal/interference ratio.

Dmploying Shannon's Theorem (10, above) It is possible to assert further tha

with appropriate coding of the message it will be possible to trans mi t sigrnals with

as small a probability of error as desired If only the rate of transmission over the

channel does not exceed its carrying capacity, which is deternmed by formula (11.28).

To attain the maxinum transmission rate the message must be coded in such a manner

that the transmitted signals have a normal law of distribution.

14. The general aspect of information theory makes it possible to specify the

follo-ing groups of nrcblea.s, which are of Itmportance in setting up or analyzing any

comnunications system .

1 ) Optimum coding of the transmitted message into a signal possessing; minimum

exce-s. The elimination of excess is attained by limitation, by the employment of a

priori information (such as the data of the system itself or the shape and paraneters

of the signals employed), and also by means of the elimination of statistical inter-

relationships in the message (decorrelation). A whole series of decorrelation

methods is known: consolidation (codes h a lag), linear prediction, dynamic codes,

spectral codes (emphasis of individual f:'equencies), spectrum conpression, etc..

* "f. footnote P . 426.
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The reduction of excess increases the efficiency of a system, but lowers its

Lreliability. A second group of problems arises.
2) Optimum coding of the transmitted to provide the most interference-

proof transmission of this signal over a channel with noise. 'Here belong, above all,

various methods of modulation in wIlde-band systems (frequency, pulse, code, etc.).

3) The third group of problems is linked with the question of the practical

possibility of extracting the useful information contained in the signal at the out-

put of a channel, i.e., with the possibility of separating the transmitted siznal

from interference. The indicated possibility is realized by various methods of sepa--

rating the signal out at the receiving end: amplitude limitation, frequency (optimuM

filters, comb filters) and time methods (storage, correlational reception). These

1 are joined by methods of error detecticn in the received signal and of the automatic

correction of these errors by means of corrective codes.

15. in connection with problems of reception, considerable interest is affordedJ

by the following problem. It is possible, according to Shannon's Theorem, so to code.,

a message into a signal transmitted over a channel with interference, that on the

basis of the received si-nal It will be possible to deterine the transmitted nessa-e,

ith as small a probability of error as desired, so long, as the rate of informat-1

transmission does not exceed the carrying capacity of.the channel. However, in a

nu.ber of cases the comun~ication system Is given, and there is no pos-sibIlity of -4

arbitrarily coding the transmitted message. Let us therefore assume that the sta-

] j tistica! characteristics of the transmitted signal and of the interference in the

channel are given. What in such a case is the optimum method of reception, and what

are those minimum probabilities of error in the determination of the transmitted

signal on the basis of the received one which may be attained by means of receiver

improvement?

This problem was formulated and solved by V. A. Kotel'knikov (21 . We shall

pause briefly on the basic idea of the cited wrk, restr.cting ourselves to the

simplest case of the transmission of a discrete signal, any of whose N realizations



. - W. R

consists of a sequence of n symbols.

Each of the symbols of the sequence may be treated as a coordinate of a given

realization of the transmitted sicnal in a space of n dimensions. "hen to each

realization there corresponds a point in the n-dimensional space, and to tie aggre-

gate of all the possible realizations off the transmitted signal there correspond N

various points aI, a2, ...aN of this space. At the output of the channel the real-

izations of the signal.will also represent sequences of n symbols, to which will

correspond N points of the space x,, x2 ,...x. The points in space corresponding to

the signal at the channel output will not, however, coincide with the points cor-

responding to the transmitted signal, and between the points aj and x there is not,

due to the random character of the interference, even a functional relationsh.p. The

problem of reception lies in restoring the transmitted signal aj on the basis of the

received signal, i.e., on the basis of point xk.

Let us break down the entire space of n dimensions into X non-overlappin-

regions Gi(i =1, 2, ...N) and let us consider that if the received signal x has

fallen into a region 3V then the signal a. has been transmitted (compare with Sect.5,1
Chapter VtI~). With sone probabilities the point xk may fall into any of N regions.

in case this point corresponds to the transmitted signal al and does not fall into

a region Gi , the receiver erroneously reproduces a signal different from a.. De-

pending on the configurations of the regions 3, the probabilities of error will. be

greater or less. It is possible to formulate the problem of dttermining an optimum

breakdown of the signal space into the regions UG( i 1, 2, ... N), for which the

probability of the correct reproduction of the sent signal is the maximum one. A

receiver which effects an optimum breakdown of the space, and which yields the MinL-
mum number of incorrectly reproduced signals, is called an ideal one according to

Kotel'nikov. The interference-resistant quality of an ideal receiver, attainable as

a limit for ,iven statistical characteristics of signal and interference, is called

the potential interference-resistant quality.

In the simplest case, when all the realizations of a signal are equiprobable,

_T3 v 444*l I
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the optimum breakdowm of the space is one in which any point x of the space refers

to a rezion ni of that signal, to whose representational point a the given point is

closest of all. This same rule for the construction of an ideal receiver is also

retained for nonequiprobable realizations of a signal, but under the condition that

the intensity of the interference be sufficiently low.
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The Normnal Law of DistributionApedxII

Fi)e dw z X

S0.0 0.5000 0.39894 2,0 0,97725 0,05.399I

0.1 0.53983 0,391,95 2,1 0,98214 0.04398

0.2 0,579'26 0,39104 2,2 0,98'uI0 0.03.547

0.3 0,61791 0,381-39 2.3 0.98928 0,02833

0.4 0.65542 0.36827 2.4 0,99180 0.02239

O,5 0,69146 0,35207 2.5 0,9379 0.01753

0,6 0,72575 0.33322 2,6 0.99534 0.01358

0.7 0,75804 0,3122.5 2,7 0,99653 0,01042

0.8 0.78814 0,28939 2.8 0,99744 0,00792

0,9 0,81594 0.26609 2.9 0,99813 0,00595

1.0 0,84134 0.24197 3,0 0,99865 0,00443

1.1 0.86433 0,21785 3,1 0,99903 0,00327
1.2 0,88493 0.19419 3,2 0.99931 0.00238

1.3. 0,90320 0.17137 3,3 0.99952 0,00172

1.4 0.91924 0.14973 3.4 0,9996 0,0023

1.5 0,93319 0.12952 3,5 0,99977 0.00087

1.6 0,94520 0,11092 3,6 0,99984 0,00061

1.7 0.9643 0,09405 3,7 0,9998 0.00042

1.8 0.96407 0.07895 3,8 0,99993 0,00029

1.9 0.97128 0.06562 3,9 0,99995 0.00020
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- Appendix IV

The Delta-Function .
By definition the delta-function (t -t) for any real parameter to is equal

to zero when t-f to and is unlimited when t = to 0

(0, tj~d*

The integral of this function within the limits of- oto+ o is equal to unityI

&(t~t0 )dt= L (2)

Stri*ctly speak'n:-, the delta-function is obtained as the limitin&- one of a -

sin;:le-paramneter set of functions. Many examples of such sets of curves can beA

pointed out. One such set, as has been pointed out in Sect, 3, Ch, TI, is the set of 1

normal d str'_bution functions with a constant average value or a and vith a variable

mean-square 4
I,-

Another~ example is the set of functions

Y' .1)

v ~~ ~ heh is -/t A

Ifthe dugrationt~ o f quae pulse as ou aprce, hen duat is a d reuto uhose

f The duration of ele iscaused wt anry liiedo, thn aotos a t result ofichat

to, uncion ~t)has the folloVinZ remarkable property

The coiwol~~te of a detdfn tio wI aYl td-n cniuu t h on

21T (15)V 5



The property expressed by C crwala (5) may be called the filtering property of a

delta-function. A delta-function actually acts as a. filter; rnultiplyir., an arbi-

trary function fL(t) by 6( t-to) a.-.d intejgratin- with respect tc t, we isolate one

value of this function I'(t 0 ), i.e., that value which corresponds to zero olf the argu-

ment of the delta-Zunution t -t 120. Let us note that in the filtering integral of

*(5) the integration limits of ~aand~ +0 ay be replaced by any pair of Llinite nun-

~' bers a and b, if only the point t-Ato ie within the interval (a, b). The proof of

formula (5) is obtained, if under the integral sign in place of S(t -tb)there isH

placed any function approximating it and ther. a limit is taken (Fig. 93).

) .7. 11~. !.trn property of a delta-function.

L et us L n Un s- Cram(For'-r i-Sil nity Then of~tu: of he half sum of t

dela-uncios ~S~+4) 8t-t)I is,'h ao on i s (CE), i eq at to l

if~ n nto athn invers () foour tato~ain eefn
fnrueis of tha yintenRy fteqiFouier unt~. the peatriableso t hn Oi om 6



(6) arid ()may 'e-..han--e places.

The derivatives or a delta-A'unct'ion art- ecx'iriu ars limzits of the correspondiflg-

derivatives of the approximatin, functions. Thas, for instance, If for such ar. ap-

proxi~iation there are emplojed normal distribut ton functions when 4r- 0, 'then for

the n-th derivative of the delta-function we obtain the followin., deflinition

I~Q) dLej5} (8)

Just as for the delta-function itself, its derivatiLve s are equal to zero when t 0.

The behaviour- of the derivatives when t =0 is complex. Thus, for instance, the

first derivatv., of the delta-function

Is equal to + u when the or-.*;i-n oA' the co-Nrdinatles is approached from the left

(t 0') and is equal to - C0at -When the originri .s approached from the right (t 0

In the vicinity of t =0 the behavior olf (t) is comparable ith the behavior ofL

the function 1/lt.

The filter1n. property of the delta-function ex-tends also to its derivatives.

The conivolu ; of the n-th 71-der derivative of a delta-'CuncLion with Pny function

which.- has a continuaous n.-thl-order derivative at the point to, is equal to X

If' the derivative f~n(t) underg,-oes an interruption at the point to, then

5~00 +Q)11 41d-) (10-0) Z~

Let us find the spectrum (Fourier transformation) of the der-*vative of a delta-

fuiction. Raioyi n, (1)., we obtain

P1(tI '#4 1 di- e-e-- - 10)

If to 0, then fron (10) it follows that the spectium of tcn (t) is equal to

(-~n.
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Appendix V

Computation of the Integral Apdx

*1 (1)

K= e-T'"")dxdy,
where

f (x,y) -a1jx' + 2a12xy + a22y' +2a,x + 2ay + a, (2)

is the positively determined quadratic form.

Expression (2) represents the equation of a second-order surface - an ellipsoid.

BY rotation of the axes and translatior if the origin of the coordinates it is pos-

sible to reduce this equation t the canonical fo..q

0 (av) ---- U2 + 4 + C,()

which, besides the free ter,,, contains only the squares of the vanrtables u and v.

With such a substitution of the variables, integral (I) is reduced to the for, , i

Ke o  (Ddudv,

-30 -00
where D is a transforniation jacobian. Since the transformation of the coordinates

amounts only to a translation of the origin and a rotation of the axes, D I. There-

fore

1(= e (%n, 192C)dudv=

C list a lotsI

3= 5 du e dv.
Since S d / ,

"-0

Then c
K-__

X. (4)

Thus, the computation of integral (1) has been reduced to fitding the quantities

.~F I, i+ -,-1./vl 4 £51-



S? , and C. in the theory of quadr-Ptic forms, -it is proved that~ 1 and

are roots of the characteristic equation

12-fix +4=0,

the coefficients of which are expressed in terms of the coefficients of the quadratic

form (2)
it=all+an, /,=a.==a -a1,(6

and the constant Cis found on the basis of the form

where
all a, 2 a 3

13~ a,, anj a2,
a,, a23 a3. (8)

Into fonirula (4) there enters only the product XiA 2 of the roots of equation (5),

equal to the free term 1 Therefore the desired integral is equal to
2l-

2x (9)

Let us employ formula (9) for computing 62 ('I , v2 ) in 49, Chapter III. E'fectin,;
• X l -a , n y = - a 2

42first a substitxtion of the interation variables x = y" a 2 -

we reduce (v 1 , v2) to the form
" I el(a8,,+ Gli)

x2 , ( z .) ey .(

e. -. 4
The in ral in (10) is a special case of (1) when

a, I = 2  a12

a,, isivl, an iiOv,, a33.O.

From (6) and (3) we find

(Pi1 -f), I r4 55
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I~ 2,

ilelp 0
Then2

02 (01, VS)2v e'Ra'aa4)2x VT_7' 2X

XT

which does not differ in substance from (3.95).1'

By means off formula (~)there is also computed the inArte,:ral (8.23), whi-ch is a

special case of the integra. (1) when

R02-) a~--... 2w 2,
-Ra

From (C) and ( e8) ine

= ..j. 21(, + vs)

)Then, employing (9), vte find

_ _ _ _ +,vX 2w
g.i1C 2/ 2(u + vX,)

1 201.. +1'Ia V2)

Appendix "I

The lfyper~eouietric Function

The general ex<pression of the hyper,;eometric function is provided y the 'olliow-

Ing series , 8 .,. , , )

r_____r_(.)_r___2 r(7j+n)r(yj1 -n) ..r(7,+n)*W

CI



,Aher r 2, s = I, there is obta'ned the conventional hyper'eometric series

x)=(~ +llx +T.

+ e(.+?)(e4-2)W+1)(J+2) X+8 (2)

When Q = = 1, series (2) is transformed into a geometric progression with o

the denominator x.

Another Important special case of function (1), extensively employed in this

book, is the degenerate (or confluent) hypergeometric function (r 1, s 1)

IF1 i, a, x))±!xl(a+)(+2 ) xa
.,( 1+I + - +)+ + )

The value of this function when x 0 C is linked w;.th its value for -x by the re-

lationship

,F ,c, "1, x)=e,F,(T-a, T,-x).() i,

For large negative values of the 'argument x, there takes place the asymptotIC

- expansion _r). __ 1),

If . -n (n is a positive integer), then 1 F, (-n,yr, x) is transfo,med Into a

polynomial of the n-th Dower with respect to x. When Q(= n, -= i(. and m are in-

tevers), |FI (n,m,x) is expressed in terms of polyno:ials and exponential functions

of the argument x. If = a snd = m , then F (n/2, .i, x) -.s expressed by iteans -,

of exponential and Bessel functions of the argument x. Thus, for instance,

IF, e,,- ' () ,.

IF, H ' I,- - e-'  (I-X.C-x) o +x/ X , (' ,!

I,,('. 2. _)e-[,.()+,(;)] 2, +

There is expressed in terms of a degenerate hyperveomretric function the following

(A frequently encountered -nteral of the product of a potential, a Bessel and an

T-0I1 1457.00



~fln~'~ v-,4

exponential function

(gL1JjaI) e 'dt = I2VF + I(7
#01 ~t 1) 2 4tJ

By a substitution of G( or IiO wth account taken of (4), from 7)there is also

obtained the expression of the inteerral, containin .eBessel function of the 1.-
mac-inary argument

1,~tI (,it) eP"'dt

r (E2 K !i jF 1 (j+, V+?

in terms of degenerated hyper,;eometric functions it is also possible to express
X.I.

the derivatives of the function it(x)-e 2

(x)) k(-~

b Appendix VII

1-ermite Polynom!.als

The H-emite polynoials H Wx are defined by the relatiosin

By reiterated partial integration it is not difficult to show that

nI, mI,
3H (x)H, (x) e 2axc =(2)

(0, Mon.

wherefrom it can be seen that 1-erite polynomials represent an aggreg:ate of orthorona)

polynomials.

From the definition (I), it follows that H (x) is a polynomial of the n-tb pow-er,n

dthis polynomial containing only even po~wers of' x when n is even~ and on~ly odd pow~ers]
of x Oen n is odd.j



Any three consecutive Her-ite polynomials are linked by the recurrent relation-

~ship

op. (x) xH, (x) - nH_, (x). (3) j
The first five Hermite Polynomials have the form A

HO (X) 1 , HI Wx-' =X, H2, Wx =- 11 -

H3 (X) =x 3 - 3x, H4 (x) = x - 6x2 + 3.

The expressions fir Hermite polynomials of a higher order are obtained by means of

(3). +II
Expandin:: the function (t)=i 2 into a Taylor series, we obtain

e 2 (4)

From '%) when x 0, employing the well-known expansion into a series of the I
function e and comparin- the coefficients for equal powers of t in the left-hand

and right-hand parts, we find 1
fH2 (0) If (2n. )1, ()=o. ()

Appendix VIII

2 Inverse Fourier Transfornation of P_ V- .

Let us find the inverse Fourier transformation of the tw-dimensional charac-

teristic function (3.24), i.e., let us calculate the double inte;rl

WX (2. h- 1) 4 1 .- (8 I+,)-4a+dvid(-) "i

Let us represent.the integrand function in the form of a product of two factors, one

of which depends only on one integration variable.

1- ,, (u,+o,)- ,uv, (- Re)
I - 24

I-th ~ 2,(I-R (1-.'u ) 21u 1

Employing (2), we first intesate with respect to the variable v1 , considering the

other variable v2 to be fixed, i.e., we calculate the integral
)



I ... -Wlg( 3

Rj sustiuton f 'neintegration variable

I IlOIV1#2U

the inte,-ra1 (3) is reduced to the flo r

*8 ~ 210% (1-R02) I :l% (5)

2L

In the theory of -amuia-functions it is proved* that

P1>0
0, <~(6)

SubstitutirZ f,6) into (5), we finrd

Employing 7) we find

W, (PI, P2. $t q2 v
'2g2* j-2ictQ,(I-R~ 71v)d2

t~ :- .- 21#1u 2 0-R) (8)262

After simple transroritiations anid after a subst-Itution or the integratio vA.bl

integral ()is reduced toth fr

p>0.

The intega nter~n-ai part of (10) coincidsw th t~qe well-known

*cr.., e.g., B. Van der Pohl and H. Brenngr. 0'peratsionnoye ischesleniye na osnove
dvu!&hstoronne,-,o preobrazovarniya Laplasa (Operational Calculus on the Basis of a
?Reversilble Laplaoe :-unct'.on). F'or. Llt. NO.). HIouse. 1i152, p. 38.
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integral representation of a zero-order Bessel function of an ima-in,ry ar.-ument

Q (Cf. G. M. Watson, Teor'ya besse!evyK funkts'y (Theory of Bessel Nmctlons). For.

Lit. Pub. Ise, 19k'), p. 200).

Thus the desired two-dimensional d'stribution function is equal to

PW, P. >OR

W2(P,. P2- '0=(), P1<0. P2,<0.

which does not differ frovi (3.i9).

Appendix IX

Nicholson's Function

Let us investigate the inte ial -

scos)e d, '1o I
which figures in thn right-hand part of (8.57) Substituninto (1) the expression

for the Laplace function F~x), we obtain

( cos o 1.e 0 S C4?
Kov) _ 2 2 dyd(.

{ 0

Effecting now the substitution of integration variables

x =sin , y C y.

we find
sin I .P - (S "

,. K (0) e- dydx. )

Let us now se-oarataly examne the two cases of a - r, nd >

1) *. We shall in this case designate intedral (I) by (-. ). The

2
area of Integration for K !G) is shom in 7izure -4.

Let us breakdown the interval of integration alone y in (2) Anto two sectors

" . / ,.+ II ...



sin o 
1( (fr~7 I e dydx+

S -

mt. ei 2 dydx

s.i I o$ w
22 2jj

0

is ~ ~ g easil cluaebyarasformit~atio n t hela cAinatel

2).)

In~K tPe d.idst enea t(5):~n..s~--

K0= 4~ ,~5~2 (1 dydx -

The Inegdral a sbrkr onit wo n "~r ig 4. I~~a

is~~~ eail cac)ae byatanyritint plrcoriae
2xI

~ (5)



has been sU(d5.ed by H'icholson (er. Bionetrica, V. 33, 1-1:3). The cited work also
KA,

Presents tablesof s "nite 'ral for a chanc;e in the paraneters 1" and ; rrof o to 3

at intervals of 0.1. Cooparin2 (6) and '.7), we fird

K" 2V (s sin O, s cos.S). (8)

aSubstituting (L), (5) and (3) in't (2, we obtain
j ()F(in (), e o+ ai e

-2 (9)
+2VlssinO, scosfi.

From (7) it can be seen that V(0,q) = Vfh,O) = 0. Therefo.-e K(0)-0 and

'2

2) e j . We shall "in this case desi-nate inte-ral (1) by X 2( ). Let us

break down the interval of intevraticn alonr G -nto two:".

2s 2
K2 (6)- - cos cF (s C-s ) e di '

I sSint 9 (10)

-i~s-CosF (s os) -2 d?.

The first integral coincides with K In the second inte, ral we e.fect the sub

stitution r= -

Then

?) 2 d)eK1 (a) 2 1 FcosF(scos?)e "

and since .',-s cos - 1 - s Cos then

2s 2

()-- o[I -Flscos ,le d
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-~ W.. ..- - - -

2

-F=2Sd(s sin e +

+~~,cos F (s cos ?e 2 d==

=2[F(ssinf)- FsI 1 (-

-v Scos .(s cos ?e 2

or, takin,; into account ('1), we fi~nd

K2(O 2K, +-- -42F (s si n) - 2F (s) - F (s sin 6) +F

or
K2 6) == F(s sin 4) - - -+

(22

:1So
2V ( sin0, s cs '

'e7 f)i
95

T" 1011/



List .of the Gost enerally Ui-ed Notations
ui~wbezs indicate the paeS on whic: the designations

were introduced)

A, - rando-a event, 2.

- randoni event, converse to A, 4.

A(t) - randoia function, 237..

Ao - anplitude of carrier oscillation, 413,3

f a - parameter of normal distribution, 46

B - random event, 6
B() - correlation function, 168.

Bo( - correlation function of envelope, 307%

B A(z) -correlation function co.resopondin to the discrete part of the power

spectrun, 289.

B - correlation function correspondin2 to the continuous part of the po,::er

spectin, 394.

) correlation functon, averaged over tine, of a nonstatIonary rando:

process, 257.

C - carry -n; capacity of a chinnel, 436.

C(t) - randon function, 237.

C(W) - frequency characLteristic of a linear system, 216.
.k

- binomial coef'ficient, 16.

D - determined, 57, transformation jacobian, 89,

- a:- aebraic supplement (A!-ebralcheskoye dopoineniye), 57.

E - 4nelope of a set of curves, 236.

E - elliptical inte:ral of the 2-d kind, 264,

e - base of natural 16:aritluas sonetLies the syr.bol exo is used).

F- Taplace function, 30, one-JI-met.slonal inte.ral distrLbution function, 4O,

hihest frequency in a spectrum, 439.
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n - n-dinenslonal interal distrbut'on L\-nction , 55.

Flk - one-dhiensional intej;ral distribution f,uction of the random variable

- degenerate hyper eometric function, 457.

F- intensity of white noise, 20L.

F(C) -power spectruar, 188.

f(x) - characteristic of a nonlinear system, 216.

G - region of space, 55.

r ()- pulse spect..am, %82. 4
H - entropy, 80.

H' - rate of production of infonration, 429.

Hn - Hermlite polynonial of the n-th order, 458. ...

t(t) - ourier t.i:.isfor natio n of the square of a freqaency cl-araete 'iStic, 220.

H.) - spectraa conporient of a pulse process, 380.

h~t) pulse transition function, 2 19 .

hn!- coefficients of the expansion into a series of a correlation function,

283.

I n - n-th order Besse! functi-on of an inaL:inary ar.-;unent, 94.

i - quantity of information, 433.
I' - rate of transmission of information, 435.

K - kernel of an integral transfor..aation, 355.

K - full elliptical integral of the first kind, 264.

.(W) - spectrum conponent of a pulse process, 379.

k - [italicized - event occurrence number with independent tests, 15.

k - coefficient of asymmetry, 69.

k(iO) - transmission function of a linear system, 217.

L'O- Laguerre polyno.'ial, 306.'

%.) - mean number o: symbols emitted in a unit of tine, 29.

k central moment of the k-th order-, 64.

i~-'rs~Si491
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Mk - initial moment or the k-th order, 63.

- dispersion, 65, It

M I"mean value, 6

m - index of modulation, 422.

P,p - probabilities, 3.

PC- power of signal, 183.

P " power of noise, 183.

- ortho-onal polynomials, 'A1.

q - probabl-I-ty, 15.
R - correlation coefficient, 73 , 181.

Ru - coefficient of excess, 431.

S - Student distribution, i76.

S(t) - deter!nirsed part of a randoi process, 165.

s - ratio of siinal amplItude to the -..ean-square value of noise, 121.

j T - time of observatlor, period of repetition, [no pe -e reference iven].

Tn - hebyshev polynomial of the n-th order, 334

- current time, (Standardized measurement error, 153). [sic.]

- potential difference, 2

u(t) - envelope of determined slgnal, 270.

V - Nicholson function, 461.
W, W, W - distribution functions (probabilities densities), 42. _

wn - n-dimensional distribution function, 56.

wlr - one-dimensional distribution function of the random variable ;, 57.

x, y, z - arguments of distribution functions, 45.

ZT- spectrum of piece of realization, 185.

- parameter o1 the generalized Rayleigh function 10q reliability 152

circuit damping, 229.

/ I 2-non-d!menl.ional magnitudes of detenmined signals, 2,r4, 05.
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-magnitude, proportional to the transmiss'or- band, 228.

r - gamma-function, 31.

Y - coefficient of excess, 70.

- delta-functicna, 451.

A L - iidth of transmission band, 224.

- accuracy, 151.

8 - characteristic function, 107.

" nondimensional characteristilc function, 111.

S- Poisson-distribution parameter, 29.

1A- power ratio of continuous and discrete spectra, 332coefficient of com-

pression, 432.

V- relatLve occurrence frequency of an ever t, 2 , decree of nonlinearity, 2P4.

- parameter of normal law of distribution, 4L6.

Kramp function, 26.

phase 6o page reference gvren]

f - modulation frequency, 273.

G)- present frequency [no Page rererence give

0 - central frequency of spectrum, 202 , frequency of carrier oscillation, 413.

2 - R"(o), 210.

[ - temporal shift t!Io page reference :iven]

- correlation time, 181, pulse duration, 394.

- random variables, 5.

t(t),A (t) -randon functions, 15f9.

() - realization of a random function, 160.I

(n) _ binomial coefficient, 16.

(2k-1). - product of all odd numbers of a natural series to 2k 1, inclusive, 114

(2k) A product of all odd numbers of a natural series to 2k, inclusive, 115.

j 0' O(x)- order of majnitude of x, 23.
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SUBsJECT INDEX

A

A posteriori probability (cf. conditional probability), 6A priori probability, 6

Addition, rule of, 4, 6
Approximation of nonlinear characteristics by exponential series. 265

Arithmetical mean of random variables, 149

Asymptotic formulas for hypergeometric function, 456
of Laplace, 23-27
of Poisson, 29-32
of Stirling, 21

Autocorrelation function, 172
Average number of intersections of a given level. 211

B

Bayes formula, 9, 317
Bessel function, 94, 302

, many-variable, 282
Binomial law, the, 16, 17 ;!

Boltzmann's constant, 223

C
7-i.

Carrying capacj ty, 436
Central limit theorem, 129

, two-dimensional, 138

4.) Channel, 427
, without interference, 427
,with ,27

Characteristic functions of a normal random process, 280
a normal sum of independent random variables, 114, 117 V

a random-phase sinusoid, 116, 123
a random process, 162
a random process at the output of a filter, 362-367

a sum of independent random variables, 109, 110
a uniformly-distributed sum of independent random

variables, 116, 121
an aggregate of random var'ables, 110, 112
random variables, multi dimensional, 112

two-dimensional, 111
the square of a normal random process, 367
the souare of the envelope of a normal random
process, 311

Characteristic of a nonlinear system, 216
Chebyshev inequality, 150
Chebyshev polynomials, 334
Coding, 432
Coefficient of asymmetry, 69, 109, 134, 370

of a process at the output of a standard link, 375
of a Rayleigh distribution law, 69 "

Coefficient of compression, 432
Coefficient of excess, 70, 109, 134, 370
Coherence, 182
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Conditional probability, 6, 72
Condition of the physical feasibility of a linear system, 21?

+ 'fm Continuity of stationary random process, 196
Convolute of distribution functions, 94
Convolution. theorem of, 220, 277
Correlat'ion coefficient, 73
Correlation function,

. definition, 170
, multidir.ensional, 248
, properties of, 176-181

of a carrier modulated in amplitude by a normal process, 420
of a carrier modulated in frequency by a normal process, 420
of a normal process after limiting, 286
of a normal process at the output of a linear detector, 263
of a normal process at the cutput of a linear network, 220
of a normal process at the output of a nonlinear network, 240
of a normal process at the output of a square-law detector, 269,

273
of a periodic process, 176
of a phase cosine, 338
of a pulse random process with a random time of emergence. 395
of a pulse random process with re.naom amplitude, 386 i
of a pulse random process with random duration, 402-3
of the derivative of a random process, 200
of the envelope of a normal process, 306, 308
of the phase derivative of a normal random process, 348-49
of the phase of a normal process, 332
of the square of the envelope of a normal random process, 312, 314

Correlation time, 181of white noise which has passed through a linear network, 225

Correlator, 175 +
Covariance, 73
Cumulatts of a random process at the output of a filter, 372
Cutoff voltage, 279

D

Delta-function, 48, 200, 275, 290-291, 346, 391, 451, 453
, derivatives of, 453
, filtering property of, 452

Derivative of a normal random process, 209
stationary random process, 196 -

Detection of a periodic signal in noise, 181, 184
Determined part of a random process, 165
Deviation of a random variable, 64
Direct component, 173, 240, 269, 275, 286
Dispersion, conditional, 77
Dispersion of a random process, 167

random summation. 106
random variable, 65, 67, 68

distributed according to the binomial law, 67
Distribution, exponential

generalized Iayleigh, 99, 103, 302
normal, 46, 57
Poisson, 30Rayleigh, 61, 62
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Distribution, i n
SSimpson, 122 .°

, Student, 154
, ,12o

Distribution cunmulants, 109
Distribution curve, 43
Distribution function, condltional, of random variables, 7 6-79

, generalized Rayleigh, 99, 103, 302
* multidimensional, 56 1
* normal, 46, 57 i
random variables, 40-45
two-dimensional 51, 161 4

of a phase cosine, 334, 336
of a random phase sinusoid, 91, 92
of a random process, 160
of a random process, multi-dimensional, 162
of a random process at the output of a standard link, 247-251,

+,+. 367
of a sum of random variables, 93
of the derivative of the envelope of a normal random process,
340

of the envelope of a normal random p~rocess, 302-306, 309- 31
of the phase derivative of a normal random process, 340

of the square of a normal random process, 356-359
Distribution mode, 44
Distribution moments, central, 64

initial, 64
Distribution surface, 531 Duhamel's integral, 217, 354

' Edgeworth series, 369 4
Elliptical integral of the first kind, 264

of the second kind, 264

Entropy, 80-85, 43 0
, conditional, 84
of normal distribution, 82

Envelope method, the, 243, 244 71

Envelope of a random process, 235, 301
Ergodicity, 170-174[1 Error function, 26
Errors in phase measurement, 326
Events, certain, 3

contradictory, 3
equiprobable, 4
impossible, 3
incompatible, 3
independent, 4
practically certain, 27

Excess, 431
Expansion of an integral form with a symmetrical kernel into a series, 361

Expansion of two-dimensional probability density into a series, 240, 256, 312, 336
Exponential distribution, 310 -+
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Fluctuation noise, 210
Formula of total probability, \9
Fourier transformation, 188
Frequency characteristic of a linear system, 216
Functional transformations of random variables, 86-809

G

Gamma-furction. 31
Gaussts law of probability distribution, 46
Generating function of a discrete random variable, 126
Gilbert transformation, 236

H

Hermite polynomials, 135, 458
Hypergoemetric function, 102, 290, 330, 417, 456

Ideal limiting, 285
Ideal observer, 319
Integral distribution function, 40

normal distribution function, 48, 49
of a random process. 222
Rayleigh distribution function, 61

Integral theorem of Laplace, 25) .interference-resistant properties of pulse communication systems, 409

Interval of confidence, 153
Iterated kernel, 368

Joint probability distribution, 51-55

Kernal, iterated, 368
Kernel of an integral transformation, 355, 360-362
Khinchin's theorem, 188
Kramp function, 26, 115

L

Laguerre function, 325
Laguerre polynomials, 306
Laplace function, 325
Law of large numbers, 145, 151
Law of probability distribution, 38

1 binomial, 40
multidimensional, 55
normal, 45-51, 57-60

-x •one-dimensional, 40
, uniform, 40
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Limit theorem, central one-dimensional, 129
two-dimensional, 138

Linear detector, 261-265
Lyapunov theorem, 129, 250

evaluation of rate of convergence of, 134

M

Mathematical expectation, 64Markvo chains. 36
Mean-cquare error, 232
Mean value of a complex random variable, 75

conditional random variable, 77
random process, 167

, for the aggregate. -.67
* over time, 173

random variable, 64,66, 67''
'random variable distributed according to the

binomial law. 66
sum of random variables, 105

Message, continuous, 427
, discrete, 427

Message source, 427
continuous, 427

, discrete, 427
Method of contour integrals, 242, 243, 279
Modulation in duration of square pulses, bilateral, 406

unilateral, 400
|_ Modulator, amplitude, 413

, frequency, 414,~~ pha se, 414 i :.'

nMost probable number of an event, 19, 20" Multiplication, rule of, 6, 8 t

Mutual correlation function, 182, 237
of a random process and of its derivative, 198

N

Narrow-band spectrum, 203
Nicholson function, 463
Niemann-Pearson criterion, 319
Normal random process, 205, 208, 254, 301

, derivative of, 208

Normalization of a random process by a narrow-band linear system, 250
Normalized deviation of a random variable, 65
Number of occurences of an event, 15, 39
Numerical characteristics of an aggregate of random variables, 72, 73
O n q functions of random variables, 104, 107' random variable, 63, 66

Occurrence frequency of an event, 2. 3 -

Optimum linear systems, 231-235
Orthogonal functions, proper, 362
Orthogonal polynomials, 241
Overmodulation, 413
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Passage of white noise through a system with a gaussian frequency characteristic, 228

an ideal linear system, 226
an oscillatory circuit, 229

Phase of a random process, 235, 320, 326
Poisson distribution, 30-31
Poisson function, 30-31
Possible values of a discrete random function, 38
Power spectrum, determination of, 186-191

, narrow-band, 203
. wide-band, 204

Power spectrum at the output of a linear system, 219
at the output of a nonlinear system, 239

of a carrier modulated in amplitude by a normal process, 417
of a carrier modulated in frequency, 420
of a generalized telegraphic signal, 191-195
of a normal process after limiting, 285
of a normal process at the ouiut of a linear detector, 261
of a normal-process at the output of a square-law detector, 270
of a pulse random process with random amplitude, 383

with random durati3n, 397
with random time of emergence, 388-389

of the derivative of a random process, 349
of the integral of a rindom process, 222

of auantization noise, 293-299
of the envelope o:" a normal process, 306

Power width of pass band, 225ft 0 Probability density, 43 .4'.
10 Probability of a posteriori, 6

a priori, 6
an event, 2

Proper values, 362
Pulsation of a random process, 179
Pulse-code modulation, 293
Pulse random process, 376
Pulse transfer function, 217

Quantity of information, 433
Quantization, 163
Quantization noise, 293

H

Radio equipment, elements of linear (inertial)., 216
non-linear (non-inertial), 216

Random experiment, 2
Random process

continuity of, 196
differentiability of, 196

, ergodicity of, 170
, narrow-band, 202, 257
, normal, 205, 208, 254, 301

kJ , stationarity of, 166
, wide-band, 203
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Itifiom .process
, with a/discrete spectrna, 198
, with discrete time, 376
, witiriout consequence, 170-

Random variables, continuous, 38
, tcorrelated, 73
, discrete, 38

'Random walk" problem, 142
Realization of a random process, 160
Reliability of radio equipment, 9, 11

S
Se~dodrmoment, mixed, 73 i.

Semiinvariant 109
iequence of base impulses, 163 ns,

isequence of independent testsio5,17
Set-of events, 9 er3

eShennon's Theorem, 37
Shot effect, 32, 33 16,4

'Signal', telegraph, 12, 3
Ti'al/noe ratio, 282, 443

-.Standard link of radio equipment, 218
-Sitationrity, 166 c9

.in the broad and narrow senses, 169
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Theorem of Khinchin, 188
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Shannon, 43 7

'Transformation jacobian, 89

Transient process in a linear system, 221
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