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ABSTRACT

Linearized free-streamline theory is used to calculate the spray-
sheet thickness and lift-slope for a flat plate, cavitating, two-dimensional
hydrofoil in a channel of finite depth with an upper free surface and lower
boundary partly free and partly rigid. Only the case of zero cavitation
number is considered. Scme measurements were made of the submergence
of a hydrofoil of four inck.:3 chord beneath the undisturbed free s_rface at
velocities of 12 and 18 ft. 'sec. These agree with the trends of the theory
but not with the magnitudes, the submergence always being greater than

that predicted by the theory.
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1. Introduction

Recently, several papers dealing with the presence of a free
surface in the proximity of a lifting, fully cavitating hydrofoil have appear -

ed. Of these, one by Dawson and Bate“) is primarily experimental.

In their work a cavitating or ventilated flat plate hydrofoil was investigated
near a free surface. The submergence was varied so that the hydrofoil
went from’ a cavitating condition to a planing condition near the surface.

Forces were measured in this experiment and compared to the results of

_several free-streamline theories applicable to this tvpe of flow. One of

these is a linearized theory for the flow of an infinitely deep stream past
a cavitating hydrofoil in the presence of a free surface. This is the linear-

(2) (3)

ized theory due to Schot. Johnson considers both flat plate and cam-
bered hydrofoils of finite aspect ratio near a free surface. This latter
work is largely experimental. In these cases mentioned, both experiment
and theory are concerned with hydrofoils at small angles of attack relative-
ly near a free surface, i.e. two chords and less, and with small cavitation
numbers approaching zero. Furthermore, the influence of gravity has been
everywhere neglected. The most complete taeory which has so far been

produced, is ar. exact non-linear theory due to Green. (4) He considers in

one of his papers the planing of a two-dimensional flat plate, without the

influence of gravity, on a stream of finite depth. Although Green's work is
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exact and the linear theories reported by Schot and referred to by Dawson

and Bate are not, Green, however, did not computc a suificient number

of cases of interest to users of water tunnels. Furth-ermore, his solutions
are not presented in an easily usable form. All free surface water tunnel
experiments are conducted in a channel of finite depth, as opposed to the
amlyseiiﬁf Refs. (2) and (3). The measurements of Dawson and Bate,
particularly near the free surface, do not agree well witk the calculations

bf the submergence effect to be found, for example, in Ref. (2), and it was
suggested in Ref. (1) that the discrepancies are probably not due only to

the influence of gravity, at least as estimated by current planing theories. (5)
Briefly, the submergence effect on the lift of a flat plate hydrofoil is to in-
crease the lift force as the surface is approached. In the limiting case of
zero cavitation number, the cavity is, of course, infinitely long and the
lift-slope goes from the value of ®/2 for infinitely deep submergence to
the value w at the surface for infinitesimal angles of attack. In the experi-
ment of Ref. (1) the lift increases more slowly as the surface is approached
than is indicated by linearized theory for flows of infinite depth and zero
cavitation number. Incidentally, the lift-slopes are reasonably well ac-
counted for by the theory. Until a complete solution accounting for all of the
effects of non-zero cavitation number, channel depth and neighboring free
surface is available, the exact cause of this discrepancy probably cannot

be determined. In the present report, however, it has been decided to

remove at least one of the drawbacks of the theoretical work mentioned

previously; namely, there is a bottom at a finite distance beneath the hydro-
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foil. Of course, Green's exact theory accounts for this effect. It was be-
lieved, however, that it was no more work to solve the problem anew by
means of the linearized free streamline theory than to recalculate Green's
exact solution. In fact, because of the flexibility afforded by the linear
theory in determining the flow past relatively complex shapes and non-
zero cavitation numbers, it was decided to follow this course rather than
that of the exact theory. The linear theory, while suffering notable limita -
tions is expected to provide a good value for the lift-slope at vanishing
angles of attack and to account properly for the effects of submergence
depth of channel, and even for the effect of a finite length of the bottom
channel if such is the case.

The results of the calculations to be presented herein should be
of some value to the users of water tunnels. Extensive tables and charts
of the various force and geometric quantities involved are presented. In
addition, the method of computing the results and the approximations for
digital computations used herewvith, are discussed in some detail* so that
the reader may calculate additional cases for himself. In a subsequent
report it is planned to consider the case of non-zero cavitation numbers.

2. Formulation of the problem

We shall apply tihe free streamiline theory to the steady, two-dim-
ensional flow past a flat plate. The stream is of finite depth with the upper

surface bounded by a free surface, and the lower surface bounded partly by

A companion report (Ref. (8)) may also be consulted for the computaion-
al method used.
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a solid wall and partly by a free jet. The plate, which has both sharp
leading and trailing edges, is inclined at a certain angle of incidence. A
spray sheet is formed at the leading edge but the flow off the trailing edge
is smooth. The sharpness of the edges allows one to expect that the
separations of flow occur at these points as shown in Fig. 1. Far down-
stream, the spray sheet and the free jet become inclined at certain angles
to the oncoming flow. The magnitude of the velocity along these surfaces
equals that of the free stream.
Certain simplifications are then introduced into the problem:
i) the gravity effect is neglected throughout the analysis,
i) the cavitation number is zero (infinitely long cavity),
iii) the angle of incidence of the plate with the free stream
as well as the final inclinations of the spray sheet and
jet are assumed to be small so that linearization of the
problem is permitted.
If we denote the velocity by ; then a complex perturbation velo-
city function
w(z) = u - 1v (2.1)
can be introduced such that ;= U(l +u, v).
The dimensionless perturbation velocity components u(x,y) and
v(x,y) are assumed to be much smaller than unity. Applying the usual
linearized boundary condition on the free surfaces, the plate and the solid

wall, we have
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u =0 on all free surfaces (constant pressure and speed)
v = -a on the wetted side of the flat plate,
v = 0 on the solid wall forming part of the lower boundary.

The linearized version of the above problem may then be depicted
schematically in a complex z-plane as shown in Fig. 2.

One would notice that after linearization, the stagnation point on
the plate coincides with the leading edge, furthermore, the streamline
at that point splits into two branches.

In addition to the above boundary conditions, the perturbation

velocity components must satisfy the following physical conditions:

i) there is a singularity at the leading edge,

ii) the streamline has a continuous slope at the plate-
cavity juction (Kutta condition),

iii}  the perturbation velocity components vanish upstream
lat x = —w).

3. Preliminary results

We denote the depth of the stream at upstream infinity by H, the
thickness of the spray sheet by &6, and the final inclinations of the spray
and jet by 91 and 92 respectively. These quantities, essential in our
calculations of the force coefficient and the flow geometry, are to be deter-
mined from the theory. In addition, the following quantities are specified:
U the velocity of the free stream, Ch the length of the plate, a the

angle of incidence, h the height of the plate leading edge above the bottom



wall, and 1 the length of the bottom solid wall downstream of the leading

edge. The submergence of the hydrofoil beneath the undisturbed oncoming

flow is the difference between H and h, i.e., H - h. We shall now make

a preliniiﬁ;.ry calculation based on continuity and momentum considerations

which gives -sor;\e useful relations between the forces and flow geometry.
The ultimate thickness of the spray sheet and lower jet must

equal the upstream depth by the continuity relation. Thus if ¢ = 6/H, the

thickness of the jetis (I - ¢« )H. The drag on the plate can be found from

a momentum balance and in terms of € it is . F
U2H
D=2 [o=+1- o‘] 3.1
|9, (1 -¢) . ( )
using the approximation cos@ =1 - 8%/2 etc. When the hydrofoil is a H

flat plate the force on the plate must be normal to the surface. Thus, if
L and D are the lift and drag force perpendicular to and parallel to res-
pectively the oncoming flow of speed U,

D= Ltana = La (3.2)
where a, assumed small, is the angle of attack of the plate with respect

to the oncoming flow.

The lift coefficient is defined as

L

C, o
L zetU%C,
hence
_ 6 2, (1-¢€) z] -
B, = C‘E[Ol r Lt (3. 3)

h




Given the depth above the bottorn, h, and the upstream depth,
H, we may expect that the spray sheet thickness, 8, and hence € will
vary with angle of attack. We anticipate that in the linear theory already
sketched in section (2), velocities and hence angles such as 0x , etc. are

proportional to a. the angle of attack. Thus

oo &[R35 ]

and the ratios 91/0 etc. , will be independent of a in the present theory.
But 6, within our linear theory, can contain a linear term in a. Now
in the limit as a approaches zero, the spray sheet thickness will ap-
proach d. Thus we can put

6=d-ag (3. 4)
where g 1is a function only of the geometrical ratios Ch/d, Ch/h which

has to be determined from the theory. For vanishingly small angles of

dC 0 \2 6\2
L _ 4/ hi 2
T‘T‘CLQ_EE[( °> +d<°) ] (-3

and for larger angles (restricting ourselves now to the case of a rigid, flat

attack we will have

bottom for which 6 1is zero) we have
2
6 \2
C. = {..Cl_ _deg (L (3. 6)
L C C a
a L h h
We will now develop the linear theory to determine the quantities
(Ol/a), (6 /a), and g. With these and given values of d. h, and Ch
2

the spray sheet thickness, submergence and lift of the hydrotoil can be

deterimined.




4. Theorz

CO“Sider the traHSfOrmtion
Z = - b og + -C og - 5. 4

where { = § + in.

The flow in the physical plane is mapped into the upper half { -plane
and the entire boundary of the flow goes into the real axis, shown in Fig. 3.
The leading and trailing edges of the plate in the z-plane are at the origin
and -1 respectively. Upstream infinity, A, transforms into infinity. The
end of the solid wall, B', the free jet, B, and the spray sheet, C, have their
corresponding image points at - b', b and c¢. The value of b approaches
b' as the length £ is extended to infinity. The quantities b', b and c are
parameters whose numerical values will be determined later from the map-
ping function. We know, however, at this stage c > 0, b'z b> 1.

The complex perturbation velocity in {-plane, denoted by

v(l)=u-iv

takes the following boundary values on the Rt L or § axis.

v=0 —oo<§<-b'
u=20 -b'<§<-l
v=-a -«<E< 0
u=0 0<E< .

The flow in the upper half § -plane can be continued analyiically
into the lower half by
VL) = -V (D). (4.2)
On the RL { axis, two branch cuts appear; one starts from & = -

to -b and the other from § = -1 to the crigin. These cuts correspond
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to the plate and the solid wall in the physical plane respectively.

We now

have a boundary value problem involving the unknown function v ({) which

can be formulated and solved as a Hilbert problem.

(6)

We introduce the auxiliary function

- 4
H(Q)-l\/(g+l)a+bv) ’ (43)

which as the following prcperties

i) H(C)

has the proper branch cuts ({ = 0,-1,~b' andw

are branch points).

ii} It provides the correct leading edge singuiarity (square

root singulaity).

i1ii) On the R T axis;

ImH=0 -w0< § < -b'
RfEH=0 -b'< § < -1
REH= - \/(1+§)(b’+§)’ImH:O -1<§< 0
R{EH=0 0<§.
A new function
G() = v(L) H(L) (4. 4)

is then formed which has on the RE L axis.

ImG

ImG

ImG

ImG

=0 -x< § < -p'

=0 —:)’<§<—i

- 5 -1<€E< 0
(T +E)(b' + &)

=0 0<¢§ .

(6)

of Plemelj's formula. the solution of the Hilbert
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problem is given irnmediately by

O

In order to evaluate the final inclinations 9l and Gz we notice

that according to the linearized theory, the streamline has a slope

%=0=v. (4. 6)

In addition, the boundary conditions on the free surface require

that everywhere u = 0. Hence, we obtain
o
.- .8 fletDictbl 3’ -t _dt_
Gl- Imv(c)-w \/ pn ), W—;-ty —t '’ (47)

o
_ _a /(b-l')(b'-b) 1 / -t
and Oz- -Imv(-b) = -3 b S‘ Py 70079 dt . (4.8)

The mapping function gives us the following relations of the de-

sired parameters.

1 1
Ch= -blog(l-g)—c log(l+-c-), (4. 9)
. b’ b'
B' = —blog(l+3-)=-clog(l->), (4.10)
where B' =8~ inwh,
and h=%b. (4.11)

By specifying the ratio Ch/h and the length of the wall £, values of

b', b and c can be calculated from these simultaneous equations. The
detailed evaluation of these quantities will be given in a later part of the
report.

The geometry of the problem can also be solved since the velocity

No complimentary function is needed here and Eq. (4.5) is the complete
solution.




field is now known. To simplify the matter, the limiting case of an infinite-
ly long solid wall will be worked out ( for which b = b'). The recader may

refer all quantities in the following calculation to Fig. 4.

_ dt [ -t
Denote J -S_‘;t — V(l+ﬂ(b+ﬂ , (4. 12)

thus 6 - -1\/(31%?_"21.1, (4.13)

w
oz =0 (4. 14)
_ 6 (c+l)(c+b) 2
and CLQ q ARLESA el S | (4. 15)

Since b>1 and c¢> 0 at all times we may introduce new para-
meters k and k' such that

kz: <1

ol

and k'?=1-%x <1
(7)

The integral J can now be written in terms of known eliptic functions

in the form

Jsz[ﬂ(——i—,k)-K] (4. 16a)
or in an alternate form
C 2\/[1?
J =7 m Z\O (N!),k) - b+C K (4. ](‘)b)

where

A (k) = _[ EF(y, k') + KE(U, k') - KF(J, k')]

is Heuman's Lambda function, K and E are the complete elliptic integrals
of the first and second kind of modulus k, and F(y,k') and E(y,k') are

the incomplete elliptic integrals of the second kind of amplitude ¢, and
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modulus (compiementary) k'.

The next quantities that we wish to determine are the submergence,
H-h, and the spray sheet thickness, 8. With reference again to Fig. 4,
one may derive the submergence by combining the continuity equation and
geometry of the flow, i.e.,

H-h=d-e', (4.17)

where e' is the rise in free surface from upstream infinity to the point
N at the distance d above the leading edge of the plate. The same re-
lations give the spray sheet thickness.

6=d—(e'-e—Cha), (4.18)
where e is the drop along the lower cavity wall from the trailing edge to
downstream infinity. Comparing the above expression for & to our de-
finition of g given in Eq. (3.4), one may immediately write

g=é-(e'—e)—Ch. (4. 19)
We shall apply our present theory to determine e and e'.

In linearized theory, it is known that the vertical difference be-
tween two points on the same streamline can be calculated by considering
an integral, in the physical plane, of the form

gv dx,
where values of v are taken along horizontal lines which approximate the
actual streamline. In our problem, all free surfaces in the physical plane
are mapped onto the real axis of the [ -plane. The above integral can then

be replaced by an equivalent one,

5vmg§ dt
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carried along the real {-axis. This enables us to write with reference to

Fig. 3, w0
dz
=\ v(L) dag , (4.
e Ag; g a-g
* b
and e - vig) g 9% - (4.

The lower limit, n, in Eq. (4.20) is the image of N in the
z-plane and has to be determined by solving a transcendental equation.

Finally, with the aid of the mapping function in Eq. (4.1) one may write

H
Ale

where M 1is the double integral

MSb+§

where 1 is th% double integral
- o

I:L[bli& +§fc] \/(§+lg),(§+b).\;'€§-_tf ramTg 48 ¢

M, (4.

\ /(§+l)(§+b) \ /
§ t 1+ (b+t dé . (4.

_a
and e—-ﬁ-l, (4.

20)

21)

22)

23)

24)

25)

All that now remains is to determine n and to evaluate the double integrals

M and 1.

1) The number n:

For the calculation of n, one has to utilize the mapping function in

Eqg. (4.1). Since N is purely imaginary and n real, the substitution of

N for z and n for ¥ into Eq. (4.1) gives

b log n:;b

+(‘logn£ =0,
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or (/b + 1)® (nfc - 1) = 1 (4. 26)
Equation (4. 26) is a transcendental one, such that for given values of b
and ¢, n must be determined by iteration. One knows, however, that
n lies in the interval bounded by ¢ and 2c.
ii) The double integral M:

The inner integral in Eq. (4.23) can alsc be expressed in terms of
complete elliptic integrals of the first and third kind. If we further re-
place the integration variable £ by 1/s, M can now be written as a

single integral,
! L
n

M:ZKgn[ L +T_‘;s]\/°“ ds-tS [ L +l_‘:s} °© _ ds,
s+k? s(s+k?) o Ls+k® ¢ s

o U

where W= sin’} \/ 5 _ .
s + k?

The first integral in Eq. (4.27) can easily be reduced to incomplete

(4.27)

elliptic integrals and M now can be expressed as

Ele , k') 2; 2
M = 4K[ 1 + ckulllibie) Mg ,a?,k")+ ck F(e ,k')]
K2 ck¥+ 1 11 1 +ck? l
1
n 1 c %(W,k)
-ng. +r—— - ds (4.28)
“o | s+k®

where ¢ :sin-l\/ 1 <=g-, and a%=1+ck®> 1.
1 1+nk? 1

The remaining integral will be treated numerically. For this pur-

pose one must examine the behavior of AO/s for small s. By definition,

A (%K) = ,27[ (E-K)F(¥, k') + KE(W, k')] .




For any non-zero k, W approaches zero as s approaches zero. One
may therefore apply binomial expansions to the integrands of F(¥,k')
and E(¥,k') and integrate term by term. By so doing the asymptotic

behavior of /})(\I’,k) as ¥ approaches zero is found to be
A(EK)~E Ev+o@). (4. 29)

A second expansion of ¥ is then carried out to yield, for small values

= 3
AR (%) S
s+k s + k?

Hence, by keeping only the first term,

of s,

E

We have therefore found that the term ;\O/s 1s singular at s = 0, how-

A (Y, k)

2
~
S i

ever, the singularity is of the order of one half, and is thus integrable.
In order to facilitate numerical computation, we regroup the integrand

in the following form;

L] A,

‘ 1-cs s

D __S*kz

1
R T R - A N
—, 2 1 CcSs . 2 " S s
€ s +k L b(S+k)

|

{w

—&Eg.ﬁ[ L, € ] £ (4.3
‘0 s + k® F-cs '\/s(s+kz)

The singular behavior of the integrand 1s thereby subtracted out. so that
the first integral presents no difficulty in computation and the sccond

integral can be integrated 1n closed form.




16

Summarizing the results for M-integral, we have

E(' vk') 2
1 ck®(1 +c 2
M - 4K [ — + Slre) g a2 e <k F(c.o,.k')]

k® . ck?+ 1 1+ck?

sE . [ eZGO—t 1-t ]

SOt (R log - log | v
95 1-t
k2 \Il + nk? \/a = 2
)

A (¥, k)
1 C 2E o’
+§—-—-—-——+——-———- [-——-—-——-——‘N—————-—]ds. (4. 33)
o“[s+ k2 l'cs] Vs(s +k?) s
where a =1 +—-§— ,Goz sinh} /—l—z- , tl = a +\/a2— 1
nk

ck?
and t =a-\/a=-1.

ii1) The double integral I:

K The treatment of the integral 1 is quite similar to that of M.
First, the inner integral is expressed in terms of complete elliptic in-

tegrals to reduce I to the single integral,

b
b
1=:S[b_g-cfg] [1-a6.0] et (4. 34)
1
where B = sin ! f"g—ls"f—r' 0< ﬁf%

The whole 1 integral will be treated numerically. As in treating the M

integral, we shall examine first the behavior of the quantity (1- AO)/(b-— £)

near & = b. With the aid of Legendre's relation, i.e.,

EK'+E'k—KK':;-,

w
the term, | - z’}){ﬁ,k) vanishes as P appreaches 5, or when £ ap

proaches b. One can show further that in the neighborhood of b, l-—z’\0




behaves like the square root of the quantity b - &, or more precisely,

1_/})(ﬁ,k)~%‘- [k-E-: - Kk'] b-¢§ (4. 35)

We therefore apply the same technique as we did in the trcatment of M

integral to yield.

b s Ix+ Iz (4. 36)
where b
1 1:573-% [1 -Aé(p,k)] at
1
b
=nS—B—%§-< [1-1%(5,}0]- %L% - Kk'] b-§ }d&
1
+4k'[kE,'-Kk'] , (4. 36a)
and b
1 = -nc) - :g [1 -z\b(p,k)] dt . (4. 36b)
1

The numerical computations are described in detail in the appendix.
All numerical integrations are carried out on the IBM 7090 computer at
the computing center at the Califorma Institute of Technology.

5. Limiting cases

The present solution contains several geometrical rarameters such
as h,f, etc. When these parameters approach zero or infinity several
interesting but simpler flows are obtained Recovery of results for simple
flows from solutions of a more general one often serves as an indication
of the correctness of the general solution and also provides one cortam s -
ful information about the behavior of the solution near such himats We

shall consider sceveral cases.  The parameters to be varied are the dis -




tances h and d, and the ratios Ch/d and Ch/h. In all cases, we are
interested in the behavior of the slope of the lift coefficient CLa. The
length of the wall I is equal to positive infinity, i.e. a completely rigid
bottom for the first four cases and negative infinity (or a free jet) for the
last one.

All cases are for vanishing angle of attack so that we may put
6 =d.
Case l: The infinitely deep stream (h =) .

Given a plate of finite length Ch' the limit Ch/h" 0 implies that

h or b approach infinity, or that the stream becomes infinitely deep.

CL as a function of Ch/d is then given by the simultaneous equations
a

1 1
d —?log(l+n‘/d)

L2
1 w w 2
C I + — l-(l —)
L ch7a(*d)[ * g ]

as may be found from Eqs. (4.9) and (4. 15). These results agree with
(2)

C,/d

those uf Schot Again it should be noticed that as the submergence

approaches zero, CL tends to the limit #, and for the infinite fluid

case, C, approaches w/2.

L
Case 2: Planing on a stream of finite depth (d == 0).

Since d, the spray sheet thickness, vanishes, this case corres-

ponds to that of planing. We obtain for this limit

4 2
C S K
La Chu
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near d = 0. Introducing a new parameter kl , such that

Y-k
} 1 + k'

Reference (7) gives the following expansion ot K

. . 1 1 . 2
where F 1is the usual hypergeometric function.
Now we let the depth of the stream become large and the leading

terms of the following expansions are readily obtained:

1 1\, of1
r = (- ) < oL).

b3/
.0, 1 11 1
2 - Y + -
K= (3) [1 ‘75t 3z 0(19)]’
. ox 11
and CLQ -—C:[l +2—E+-§-2-—t;i- + O(bs)] .

From the mapping relation, we have

"Cho a1 oL
h —b Z.E"b3

and if the above relations are combined for s'mall ratios of Ch/h , MO

have the approximate result

— : y N I'»lz
CLa _-n'[l + U 102ZK0OK (C,h.x. ]

The first term is the result of planming waith anfinite depth at infimte

(5

The total expression for C ignoring terms less

Froude numhber. [

a
than b~% is very close to the result of Dawson (1) which grves

- . <o 2
C, - [1 0.103 ((,h.h)] .
a




Case 3: Flow past a cavitating plate near a solia wall (d —»o).
This limit corresponds to the case of infinite submergence. The

plate, however, is held at an arbitrary distance from the wall. CL as
a

a function of the distance h{(or b) is now governed by the simultaneous

equations
4b
C, = (K- EP
La Ehn
and
_ 1 1
Ch—-—glog(l—-g)-l.

We will now obtain the first order wall effect by letting h become

large. We obtain after a little manipulation the approximate result

C =“[1+o.zos\/c/h]
L 2z h
The constant term again is a well known result of infinite fluid flow.

Case 4: The case of very large chord (Ch -+ ).
There are two simple limiting situations: One of zero submergence
and one of infinite submergence. We will consider them separately.
i) Zero submergence. We may set ¢ in the mapping function
to be zero to obtain

nC
h _ | S
exp [— T ]»l—ﬁ-k.

The slope of lift coefficient now becomes

KZ

L, ChTT

for this case. Now we will let the chord become large compared to the
depth, so that Ch/h approaches infinity and k' approaches zero. The
K function has then the well known behavior

K= log 4/k'.




21

If we substitute log 4/k’, for K into CL , we have
a

Iim CL
2 1

C,/h—ax =
h/ Ch7h
or CL grows linearly in Ch/h when C’n/h is large.
a
This result is almost intuitively apparent since the plate 1s then
subject to stagnation pressure over the whole surface.
ii) Infinite submergence.

The mapping yields the relation

C
h © | 1
—TTT -‘H- * log (l‘g),
and the lift slope
_3b 2
CL T (K- E)*.
G h
As b=1],
aC 2
4 1 1 h
C e (log-%-l)———(l* )
and ‘ C
] Iim La

We get the same result as the previous case.
Case 5: The free jet (£ = —ow) .

The entire flow in this case be omes a free jet. The parameter
' in Eq. (4.10) approaches plus infinity as the bottom wall viarishe -
and the asymptotic angles of inclination. Ol and O, given in Fgs b 7

and (4. 8). can be integrated in closed form to give the following resalt

for CL with the use of Eqg. (3.5)
a
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B[ (- & (-4 ]

This result and that of mapping function (Eq. 4. 9) give the com-
plete solution for the cavitating flow past a flat plate hydrofoil in a free
jet. As a further special case to illustrate the effect of a lower free jet
let us take the submergence to be infinite. Then, ¢ approaches infinity

and the mapping function Eq. (4. 9) becomes

cyfh=-Liog (1-4)- ok .

When the hydrofoil approaches the bottom closeiy, b approaches unity

and the following approximate formula for C L ¢an be quickly establish-
a

et & [ ()]

ed

a h
valid for large values of Ch/h. Thus, the lift slope vanishes when the
hydrofoil is on the lower free surface and grows linearly with depth
for small submergences.

6. Numerical Results

The majority of the numerical results presented herein are for
the case of the infinitely long bottom wall. To bring out the salient
features of this more common situation, we have chosen several values
of Ch/h' within the usual range of experimental interest, and calculated
the lift slope, CLQ’ the spray sheet contraction, 6/d, as functions of
the ~hord spray-sheet thickness ratio, Ch/d, and the dimensionless sub-
mergence ratio, (H-h)/Ch. These are shown in Figs. 5, 6 and 7 res-

pectively.
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An inspection of Fig. 5 brings out the fact that the effect of the
bottom and that of the free surface are in the same direction; namely,
to increase the lift slope. Moreover, the influence of both the bottom
and the free surface extends to many chords and decreases even then

at a slow rate. For example, the fully submerged limit (C, = 7/2)is

L
a

not reached even with a submergence of 100 chords; and the presence of

the bottom 1s still in evidence with ten chords of depth beneath the foil.

Interestingly, the spray sheet contraction 6/d shows only a
minor dependence on channei depth ratio, Ch/h, but it is affected to a
marked degree by the angle of attack. This is, of course, just the effect
of g as indicated in Eq. (3. 4). In fact, it would have been perhaps more
illustrative to plot the ratio of g/d rather than that of 6/d as i1s done
in Fig. 6. In any cvent, even at the moderate angle of six degrees, the
spray sheet can become significantly less than distance d. We may add
that previous linearized theories have not distinguished between these
quantities.

The submergence of the hydrofoil beneath the undisturbed sur-

face is given in Fig. 7 for various ratios of Ch/d and chord-depth
ratio Ch/h. The submergence, like the spray sheet will depend apon
the angle of attack. At vanishingly small angies, the submiorgence be-
comes cqual to the quantity d. but even at small angles 1t 1s seen to
become appreciably less than this The submergence ratios in Fag. 7
are calculated for a = 6°. The hmiting case x = 0 1s also shown. [t
is not surprising that for small values of Ch/h and large values of

Ch/d that the submergence can become negative even leading to the
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situation in which the entire hydrofoil lies above the undisturbed water
level. This result is well-known from the previously mentioned work of
Green.

For the finite-length bottom calculations, we chose the case
where the plate is in midstream, thatis b = ¢, and Ch/hz 0.4, be-
cause this situation corresponds to the usual experimental conditions
in the Free Surface Water Tunnel at C.1. T. Figure 8 shows Cl“u
versus 1 /Ch for this case. When the bottom extends to approximately
six chords downstream from the leading edge of the flat plate the free
Jet effect becomes negligible, so that the lift slope is essentially the
same as that calculated for the infinite bottom case. Similarly, at
approximately six chords upstream the lift slope approaches that of the
completely free jet. This result shows that the length of bottom required
to establish the infinite bottom effect is in reality only a few chords - say
about three downstream of the hydrofoil. Interestingly, nearly the in-
finite fluid case is achieved when the bottom stops just underneath the
leading edge of the hydrofoil. Seemingly, the free-surface effect and
the bottom effect are then just about cancelled out.

The details of the present calculations are discussed in the
Appendix and the intermediate parameters needed for the calculations
and for calculations at other angles of attack than given so far are tabu-
lated in Tables 1 and 2. The geometrical parameters b and ¢ and the
dependence of J on the quantities are graphed in Fig. A-1 of the Appen-

dis..
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7. Discussion

It would be desirable to be able to present experimental data con-
firming the theory just outlined. The ubiquitous presence of gravity,
however, makes all such hopes faint; zero cavitation number --resulting
in physically unrealistic infinite jets--is not possible in a gravitational
environment. The indicated lift-slope values of Fig. 5 for geometries
similar to those used by Dawson and Bate are far higher than those
extrapolated from their experiments which were conducted at non-zero
cavitation numbers. Undoubtedly the effects of the free surface and the
rigid bottom are greatly augmented for zero cavitation number, in fully

wetted flow, a relatively slight effect on C for the geometry of Fig. 8

L
a

would be expected, for example. Nearer the free surface it becomes
possible to approach more closely the conditions of zero cavitation number
so that the conditions of the theory will be more accurately met there.

To investigate this point a flat plate hydrofoil was mounted in a
two-dimensional, parallel wall insert six inches ' ide in the Free Surface
Water Tunnel similar in type to the one used by Dawson and Bate. Two
photographs of the hydrofoil and resulting spray sheet are shown in Fig 9
In these photographs three water surfaces can be seen the level exterior to
the two-dimensional insert, the lower and upper boundaries of the cavity.,
and finally the top of the spray sheet itself. The curving. exterior water
surface just above the hydrofoil should be disregarded. It should be men-
tioned that the effects of friction on the mnside of the channel result in a
very gradual curvilinear flow, the surface of which 1s shghtly inclined to

the horizontal. Angles of attack were determined rebative to this andisturh -
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ed flov.. It was not possible, however, to make sufficiently precise mea-

surements of the effective angles of attack to permit C to be calculated.

Ly

Measurements of the distance d and submergence below the undisturbed
surface were, however, made and these are given in Fig. 10 for several

angles of attack. Also shown are the theoretical values for the indicated
angles, calculated for the geometry of the experiment. Data were taken

at two speeds, 12 ft./sec. and 18 ft./sec. The chord of the hydrofoil was
four inches.

It is apparent from Fig. 10 that the observed submergence is al-
ways greater than that calculated, and that tne discrepancy increases with
angle of attack. There is no perceptible difference in behavior with ve-
locity (or Froude number) although one may observe in Fig. 9 that there
is a substantial gravity effect on the spray sheet causing it to follow a
curved trajectory. The actual magnitude of the difference in the observed
and calculated value at 6° angle of attack amounts to about 0.1 chord or in
the case of the present experiment nearly 0.4 inches. This is toc large for
experimental error. In these spray sheet measurements the cavity was
vented to atmosphere. Nevertheless, there was still a hydrostatic gradient.

We are at somewhat of a loss for a quantitative explanation of the
lack of agreement between the theory and experiment insofar as the spray
sheet measurements go. The experiments do, however, follow the pre-
dicted trends, even exhibiting the negative submergence although to a
smaller magnitude. Gravity would have such an effect as it tends to pre-
vent the free surface from rising. At the same time, the obscrvations

suffer because the measurements were made in a rather narrow channel
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(s1x inches). The sidewail boundary layers in the channel at the site of

(9)

the hydrofoil amounted to about one-half inch in thickness and there
was also a small but undetermined curvature of the undisturbed free
surface. The slope of this surface at the point of hydrofoil immersion
was three degrees.  With this combination of circumstances, one should,
perhaps, not expect better agreement with a linear theory at zero cavita-
tion number.

In closing, it is worthwhile to mention that it is easy to extend
the present calculations to account for arbitrary hydrofoil shape. Furthe
more, it 1s not much harder to carry the problem through for non-zero

cavitation numbers provided one¢ of the simpler "wake' models i1s adopted

as the prescription for the flow.
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APPENDIX: CALCULATION PROCEDURES

A. Infinitely Long Bettom Wall

The first step in the calculation of the desired quantities C-L
a

(H-h)/Ch, 6/d, and Ch/d is to determine values of b aid ¢ for each
specified Ch!h. This entails solving by iteration the transcendental
equation given in.Eq. (4. 9). We should point out that once a value of
Chlh is prescribed, the values of b lie within a particular range and
no solution outside thét range is possible. The solid lines in Fig. A-1l
are curves of constant Ch /h in the b-c plane. Notice that as Ch/h
approaches unity, the range of b for which a solution exists becomes
very narrow. These curves may be used, along with additional values
given in Table 1, to obtain first approximations of b and c¢ for values
of Ch/h not tabulated.

Once a setof b's and c¢'s are established, for the infinitely
long bottom wall case, it is now easy to solve Eq. (4. 16a) or (4. 16b) for

J and then obtain ’ZL from Eq. (4.15). If J is calculated on a high
speed computer, Eq. &. I6a) is a convenient form to use as a computer
method for evaluating Ml(a®, k) is given in Ref. (8). On the other hand
Eq. (4. 16b) 1s a more suitable form to use when J 1s calculated on a
desk calculator since K and AO(\b.k) are tabulated in Ref. (7). The«
dashed lines in Fig. A-1 are lines of constant J in the b-c planc.

The submergence ratio (H—h)/Ch is calculated from Eqs (4. 17).

(4.22). (4.26b) and {4. 33). The exact part of the M integral as given

in Eq. (4. 33) is easily evaluated by the methods described in Ref. (8).




Since the integral part of M is always less than two percent of the total
M, (at least for the range of cases that we calculated) the numerical
integration nced not be done to a great degree of accuracy. When the
integral is divided into three appropriately chosen intervals it converges
very rapidly to the desired accuracy of a total of five significant figures
in M or at most three figures in the integral part.

The spray-sheet contraction, &/d requires the calculation of
the I integral as well as the M integral. The I integral as given in

Eq. (4. 25) is divided into two integrals Il and I,

where I ., the
2 i

more lengthy calculation, is independent of ¢ and hence independent of

C./hb.

B. Finite Bottom

In order to calcu'ate thelft slope for this case the parameter b’
must be evaluated from Eq. (4. 10) for each prescribed £ {(or B') and
any set of Ch/h’ b, and c¢ calculated as outlined above. We¢ chose to
do only one case where b = ¢ and hence Eq. (4. 10) could be solved
directly for b' rather than by iteration.

.

The lift slope, CL is now readily obtained from Eq. (3.5) in
a

a flct1)b'4c) .-
b T !
~a /{(b-1)}{b'-b) ,
A
At

_ V1
. -\ &
) J (I-t}{b'-t) t+c

which

and

where




and

. ! t dt
J' s ) V(O -tib'=t) b-t
3

J and J' canbe reduced to elliptic integrals with the following results:

1 - Zk:':[ﬂ (-%. k'”) - K(k")]

or in alternate form

h.-
T

“\/mﬁm%w' k ) —gre

and for J° we find
. _ 29 1 o, i ']
J = 2k {n(g, k) - Kk )|
or
1-A (8, k)
J =kk - -
V‘(kl_ k*z)(l— kZ)
where
i T, i
2 - - _
X b’ k 13
e
[} =1in \/;.4( .
and
[1- k¢
{1 “tn ¢ /- -
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Figure 1. Sketch showing a cavitating flat plate in a stream of finite
depth with the lower surface partly {ree and partly solid.
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Figare 2. Diagram of the physical z-plane showing boundary

conditions for the linearized flow,
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F.aure 4.

Detinition sketch of a cavitating flat plate in a stream of finite depth.
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Figure 9. Two photographs of the planing flat plate at an angle of attack

of about twenty degrees at a velocity of about 12 ft. per sec,
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