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I, SUMMARY

The research in liquid rocket motor combustion instability
at Princeton University consists of a number of closely interrelated
approaches to the problem. The following summary covers the
theoretical studies, the basic experimental investigations and the
rocket motor parametric studies in the order in which they appear
in this progress report, :

Further calculations based on the time-lag model of
longitudinal mode, nonlinear instability presented in Technical
Report No. 677 have been performed. These calculations are presented
in Section III-B and show that stability criteria vary with mean-
flow Mach number and mode number. A third model, ir addition to the
two previously presentede, has been developed (see Section III-C).
This model considers both the presence of shock waves in the longi-
tudinal mode and small time-lag or phase between pressure and energy
addition at the concentrated combustion zone. Periodic solutions
of finite amplitude are found only in operating regimes where the
steady-state is unstable so that the '"triggering" of an oscillation
by a finite disturbance is not possible when the phase is small.
This is consistent with the results of Technical Report No. 677,
where "triggering' was found to be most probable for a critical
phase range, and, based on the trend of numerical calculations, was
impossible in the limit of phase going to zero.

In fact, all of the results of the three models of longi-
tudinal mode nonlinear instability and the linear model are shown
to be perfectly consistent. The wave forms vary considerably
depending upon the various steady-state parameters, Singularly
important, in this respect, are the effects of above-resonant versus
below-resonant oscillations. (The off-resonant conditions are
results of the time-lag).

The case of nonlinear transverse instability is being

analyzed presently. An important part of this theoretical program



is the development of a nonlinear boundary condition at the nozzle
entrance. This must be obtained by an analysis of the unsteady
nozzle flow. This analysis has been carried out to second order

and is reported in Section III-D. The nonlinear nozzle analysis

is essentially an extension of the linear treatment of the unsteady
nozzle flow, the numerical results of which will soon be available.12

Pulsed-limits testing to determine fhe threshold level for
initiation of nonlinear transverse combustion instability continues
to provide important data on trends in stability for the parameters
involved. 1In Section IV-A LOX, alcohol rocket tests are reported
using unbaffled injector designs which further substantiate the
important role played by inter-spud spacing in reducing the tendency
toward nonlinear instability, especially in the space ergine range
of 150 psia chamber pressure. Thrust per element18 and spacing
concepts are viewed as being closely related.

Elimination of propellant injection in certain locations
along the injection circle were indicated to be effective stability-
wise: if 1) the propellant injection gap was sufficiently large
resulting in behavior similar to certain baffle effects, or 2)
where the gap occurred often, resulting in effects similar to those
experienced with spud orientation changes.1 Higher pressure (300
psia) operation in each case increased the incidence of linear in-
stability, The further increase of chamber pressures to 600 psia
and above produced higher mode oscillations, This was found to be
a very familiar stability pattern.

Testing with LOX, RP-1 indicated basically similar stability
behavior to that experienced with LOX, alcohol. However, higher
velocity LOX injection and lower velocity fuel injection tests with
the 1 x 12 injector have provided increases in the instability regimes
over the equal velocity injector design. Noticeable stability im-
provement has again been provided through use of the 6 x 2 injector
design. Positional and directional effects noticed in the pulsing

studies initiated relative mass and mixture ratio surveys of this




injector design. Marked changes in the deviations of relative mass
and mixture ratio as well as positional and directional effects
were shown to occur as the mixture ratio was altered.

Longitudinal stability testing on the square-motor which
has included changes in the propellant used, injector element
spacing, orifice diameters (and hence droplet size and relative
velocity), numbers of elements, and spray fan interaction have shown
certain important relationships as discussed in Section IV-B.

As injector orifice sizes have increased (with a decreased
number of injection elements) the incidence of instability has been
altered. Starting from a linearly stable design that was provided
by the 6 x 6 injector, then moving to a range in which small pulses
were required to trigger the instability (4 x 4 design), a distinct
linearly unstable regime was finally reached for the largest (.120")
diameter orifices. The 4 x 4 nonlinear instability regime was the largest.

RP-1 was also used with LOX in the later case showing
similar stability behavior as the alcohol,.

In this larger orifice injector case, pulsing has proven
to be of only limited effectiveness in extending the stability
regime.

Increasing the LOX orifice diameter while leaving the
RP-1 orifices untouched produces more rapid combustion with peak c*
reached at a shorter chamber length. Irstability tendencies were
increased via this change., Larger RP-1 orifice tests with the LOX
unchanged produced slower burning conditions and eleminated lonti-
tudinal mode instability for the chamber lengths tested (to 38% inches).

The study of the displacement effect using freon shower-
head injection into a "pseudo" rocket chamber (see Section IV-C) has
yielded the following data:

1. Tangential mode oscillations of less than 50 psi
peak-to-peak have resulted in important displacement effects.

2. Not only have large quantities of vapor been cyclically

displaced but stream breakup has also been observed.



3. Pressure and velocity measurements substantiate the
frequency and spinning mode character of the oscillations.

Another basic experiment probing the effects of oscillating
pressure and velocity conditions on droplet distributions (Section
IV-D) has indicated that:

1, The number of droplets present at a given axial and
radial location in the resonating chamber changes between steady-
state and oscillating conditions.

2. Relatively small amplitudes less than 20 psi peak-to-
peak are capable of noticeably disturbing the droplet distributions.

3. The photographic techniques evolved allow droplet
sizes down to 10‘/ﬁt diameter to be measured. This direct photo-
micrography approach was found necessary when the light scattering
technique was found incapable of supplying the required droplet
characteristics as reported in Technical Report No. 648.

Prediction of the characteristic shape of the lower length
limits of longitudinal combustion is found in Section V. This
represents one application of theoretical study of droplet burning
presented in Technical Report No. 671, together with further data
based on a model of unsteady burning in the droplet wake. These
predictions agree well with previous longitudinal experimental data
indicating trends in the stability limit. Used in conjunction with
the sensitive time-lag theory, this approach holds promise in allowing
instability regimes to be predicted from calcuiated droplet sizes.
Such correlation is being investigated,

The original time-lag theory of Crocco and Cheng assumed
that the mean-flow Mach number in the chamber was small and its
square was negligible. That assumption does not apply to present -day
rocket chambers of low contraction ratio design. Therefore, that
theory is being extended to include higher order Mach number effects.
Preliminary fesults for the corrected stability limits in the case

of concentrated combustion are presented in Section VI.



II. INTRODUCTION

This is the fourth in a series of yearly progress reports
on the continuing investigation under NASA Contract NASr-217
(formerly NASA Grant NsG-99-60) into the general problem of combustion
instability in liquid rocket motors. In these studies, the emphasis
has been placed on the nonlinear aspects, both theoretical and ex-
perimental. The research involves: theoretical investigations of
the unsteady combustion process and the mechanisms involved, rocket
thrust chamber and nozzle acoustic characteristics and the inter-
action between these two important parameters; basic experiments to
test the validity of proposed instability mechanisms and provide
vital data for use in the theoretical models; and controlled testing
of liquid rocket motors with parametric variations in order to
isolate and explore the importance of the controlling factors that
influence the incidence of nonlinear combustion instability.

In the study of nonlinear combustion instability (i.e.,
high frequency instability that requires an energy input for
initiation which may be internally or externally supplied) it is
important to remember that the linear mathematical approaches have
often proven extremely helpful in the general understanding of the
phenomena involved. In this report linear treatments will be used
as well as purely nonlinear theoretical approaches to explore the
nature of the instability mechanisms. A most important result of
the nonlinear analyses is that '"continuity" exists between linear
theory and nonlinear theory if the feedback mechanism is a continuous
function of the amplitude of the oscillation. This would be true
for combustion processes such as vaporization, diffusion and chemical
reaction, but would not apply to droplet shattering. These processes
are classified as nonlinear processes under the proper amplification
conditions.

In this research one of the prime efforts has been to

closely relate the theoretical investigations to the basic experiments



and rocket motor parametric studies. To emphasize this aspect of
equal importance, this report has been written with a somewhat dif-
ferent format than in the past, where the theoretical and basic
experimental studies were separately covered in the Appendices.

As is the case in any status report, a considerable amount
of the material covered is in the state of active investigation with
only tentative conclusions or observations possible. Every effort
has been made to include some mention of all the work in progress
so that the report may prove of maximum benefit to those readers
engrossed in similar research or confronted with development problems
involving combustion instability.

Since the previous yearly progress report (June 1, 1.963)

a number of technical reports have been distributed, which cover
certain aspects of the research in far greater detail than is possible
in this report. They include the following, listed chronologically:

"An Optical Method for Observing Breakup and Vaporization
of Liquid Jets," W, R, Seebaugh and D, H, Lee, Aeronautical
Engineering Report No., 647, June 1963,

"A Theoretical Study of Droplet Burning: Transients and
Periodic Solutions,'" W, C, Strahle, Aeronautical Engineering Report
No. 671, December 1963.

"A Theoretical Study of Nonlinear Combustion Instability:
Longitudinal Mode," W, A, Sirignano, Department of Aerospace and
Mechanical Sciences Report No. 677, March 1964,

"Evaluation of a Light Scattering Technique For Determining
the Spray Characteristics of Impinging Liquid Jets," H, R, Bredfeldt,
Department of Aerospace and Mechanical Sciences Report No. 648,

March 1964.

Current progress in each of these general subject areas

is presented in this report together with many other aspects of the

research in combustion instability.



In addition to the Princeton University technical reports,
the following articles have appeared or have been accepted for
publication during the past year.

"Analytical Investigation of Several Mechanisms of
Combustion Instability," W, C, Strahle and L.
Crocco, Bulletin of the Fifth Liquid Propulsion
Symposium, 13-15 November 1963, Chemical Propulsion
information Agency.

"A Shock Wave Model of Unstable Rocket Combustors,"
W, A. Sirignano and L. Crocco, AIAA Preprint No.
64-143 Solid Propellant Rocket Conference, Palo
Alto, California, January (accepted for AIAA
Journal publication expected this summer).

'"Velocity Effects in Transverse Mode Liquid Propel-
lant Rocket Combustion Instability," F, H, Reardon,
L. Crocco and D, T, Harrje (accepted for AIAA Journal
publication),

"Problems in Liquid Propellant Instability,'" D, T,
Harrje, Proceedings of the Fourth Meeting of the
Technical Panel on Solid Propellant Combustion
Instability, Applied Physics Laboratory TG 371-7,
April 1964,

"Periodic Solutions to a Convective Droplet Burning
Problem: The Stagnation Point," W, C, Strahle
(Accepted by the International Combustion Symposium
to be held in Great Britain, August 1964).

"Theoretical Studies on Liquid Propellant Rocket
Instability," L. Crocco, (Invited paper for the
International Combustion Symposium).

Additional background and history of the research on
combustion instability at Princeton University may be found in
References 1 through 5 and in previous technical reports which will
be referenced at appropriate points in the text. Background in-
formation on the specific topic of nonlinear combustion instability

may be found in References 1-3 and €.
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TICAL A = LON VERSE MODE

A. GENERAL

Theoretical studies of the nonlinear oscillations which com=
monly occur in rocket combustion chambers and exhaust nozzles have been
performed at Princeton over the past few years. The concern has been
with the 'high-frequency'” type of oscillations wherein energy is fed-
back to the oscillation by the combustion process and the nozzle acts
as a damping device. Shock wave dissipation, if present, provides an-
other means of damping the oscillation.

Both the longitudinal and transverse modes have been analyzed.
A shock wave model of the longitudinal mode with no time-lag effects
was considered and found to have application to premixed gas rockets.
Preliminary results were reported in Ref. 1, while final results are
presented in Ref. 6 and 7. A second model of the longitudinal mode
with time-lag effects but no shock waves has been investigated and
the results were presented in Ref. 6. Further results of this second
model are presented in Part B of this section. A third longitudinal-
mode model has been analyzed and is nresented in Part C of this sec-
tion. This model considers thc presence .{ shock waves and a small
time-lag effect. Analyses of the transverse mode in annular chamber -
were presented in Ref. 2 and 3. The analysis of transverse oscillatiors
with time-lag effects in a full circular chamber is presently being
performed. A portion of that work is presented in Part D of this sec-
tion.

Theoretical work on nonlinear combustion instability has also
been performed by Priem and Guentert8 and Chinitz, Burstein, and
Agostag’lo. In their approaches to the problem ,an initial disturbance
was applied and the resulting flow behavior was determined. That is,
it was determined (typically by numerical integration of the equations)
whether the disturbance grew or decayed with time. Princeton's work
has been different in that periodic solutions have been obtained, chief-
ly by analytical means.

In all three longituc.aal models which were investigated,

the assumptions of concentrated combustion zone at the injector end and
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of short nozzle were made. The important distinguishing factor of the
three models is the characteristic time of the combustion process as
compared tc the wave travel time in the chamber. The characteristic
combustion time in the first model is negligible compared to the wave
travel time while in the third model, the combustion time is small but
not negligible compared to the wave travel time. Clearly, one may con-
sider the first model as special case of the third in the limit as the
combustion time goes to zero. The small combustion time implies that
the phase between energy addition and pressure is small and goes to
zero as the combustion time goes to zero. The second model involves

a combustion time which is of the same order of magnitude as the wave
travel time. This means that the phase between energy addition and
pressure is of the order of the period of the oscillation.

Specifically, the characteristic combustion time in the sec-
ond model is introduced by means of the Crocco time-lag postulate,

The validity of this postulate has been experimentally demonstrated for
linear oscillations but, as of this time, not for nonlinear oscilla-
tions. The combustion time in the third model is introduced by means
of a convenient postulate which has no experimental support; the gas
velocity at the time t at the combustion zone is assumed to be given
as a power series in both the thermodynamic conditions at time t and
the thermodynamic conditions at the time t -7 . ¢ has a small value,
and may be either positive (lag) or negative (lead). This postulate is
made so that the effects of a small phase between energy addition and
pressure upon the oscillation could be determined. For the purpose of
determining these effects qualitatively, the exact functional form of
the combustion zone energy feedback relation is not important provided
that the phasing properties are contained in this relation. For this
reason, it is believed that the use of this relation is justified.

With the first model, solutions were found which consisted
of shock discontinuities followed by exponential decays in pressure and
gas velocity as shown in Figure III--1. Nonlinear oscillations were
only possible in the region of 'linearly' unstable operation with the
amplitude increasing with distance from the linear neutral stability



line. The amplitude went to zero at this neutral line implying that

the nonlinear and linear results were in agreement. The results of the
third model are qualitatively the same with respect to wave form, regions
of instability, amplitude vs. distance from neutral line, and continuity
between linear and nonlinear results.

With the second model, periodic solutions without shock waves
were obtained. These finite-amplitude solutions could be either in-
side or outside of the linearly-unstable region. Figure III-2 repre-
sents a three-dimensional plot of time-lag (7°) vs. interaction index
(n) vs. amplitude parameter (€ ) for periodic oscillations. The amp-
litude parameter is seen to be proportional to the square root of the
displacement from the neutral stability line in the ¥, n plane.

The periodic solutions without shock waves outside of the linearly un-
stable region (or in the linearly stable region) were found only at the
lower values of the interaction index, n (approximately n < 2.0).

Note that as n decreases the phase between energy addition and pres-
sure decreases, and goes to zero, as n goes to its minimum value on
the neutral stability line. This type of periodic solution was shown

to be unstable indicating the possibility of "triggering'" action for
lower values of the phase. That is, a periodic Jdisturbance with a great-
er amplitude parameter than some critical value € for given values of T
and n would grow in amplitude resulting in a fully-established oscil-
lation (presumably with shock waves) while a disturbance with smaller
than the critical magnitude would decay to zero amplitude. (For de-
tails, see Ref. 6). The periodic solutions without shock waves and in
the linearly-unstable region were found only at larger values of the
interaction index (approximately n >2.0). At these larger values of

n, the phase between energy addition and pressure was larger. These
were shown to be stable periodic solutions and their wave forms were
meaningful and could be calculated. The numerical results for the funda-
mental mode were presented in Ref. 6 while the results for the harmonics
are presented in Part B of this section.

The numerical calculations presented in Ref. 6 indicated that

the amplitude of the disturbance necessary to trigger an oscillation
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became infinite as phase went to zero. This meant "triggering" action
is impossible in that limit which agrees with the results of the third
model with small phase where finite amplitude oscillations were found
only in regions which were linearly unstable and never in linearly
stable regions.

Further agreement is obtained between the second and third
models in that the mean pressure level under oscillation is found to
be higher (lower) than the steady-state value if energy addition leads
(lags) the pressure. Finally, in both models, the frequency is higher
(lower)than the resonant value {f energy addition leads(lags) pressure.

In the analysis of the transverse oscillations presently being
undertaken, the approach is similar to that used by Maslen and Hoore11
in that a perturbation technique is employed and solutions without shock
waves are sought.* However, the present problem is considerably more
complicated in that the pressure of combustion and the effect of a
nozzle are considered here whereas Maslen and Moore considered the case
of no mean flow, no energy or mass addition, and a solid wall boundary
condition.

The Crocco time=-lag postulate is employed in order to repre-
sent the feedback of energy to the oscillation. 1In the initial attempt,
the assumption of concentrated combustion zone at the injector end is
being made as it was in the studies of the longitudinal oscillations.
The short nozzle assumption used in the longitudinal work has no useful
counterpart in the transverse case since, while it is reasonable to
think of a chamber length much longer than a nozzle length, the chamber
and nozzle diameters are of the same order of magnitude. For this rca-
son, quasi-steady results cannot provide a proper boundary condition
at the nozzle entrance and it is necessary to analyze the unsteady noz-
zle flow. Crocco12 has done this for the linear case. Following similar
lines, the work is being extended to the nonlinear case and that effort

i1s reported in Part D of this Section.

* Experimental evidence indicates that, typically, shock waves do
not occu> in the transverse mode in a full chamber,.



B. FURTHER CALCULATIONS BASED ON THE NONLINEAR LONGITUDINAL MODEL
WITH TIME-LAG EFFECTS

Calculations based on the second nonlinear longitudinal model
presented in Ref. 6 have been completed. This particular model consid-
ered the case of one-dimensional, unsteady flow in a combustion chamber.
The assumptions of a concentrated combustion zone at the injector end
and a short nozzle length were made. A phase between energy addition
and pressure oscillation was introduced by employment of the Crocco
time-lag postulate. In particular, periodic solutions without shock
waves were sought. Two types of solutions were found: stable periodic
solutions and unstable periodic solutions. The latter type indicates
the possibility of "triggering' an oscillation by the application of a
finite amplitude disturbance.

Only the numerical results for the fundamental mode with a
mean flow Mach number equal to .2 were presented in that report. The
results for other Mach numbers, .1 and .3, and for other modes, second
and third harmonics, are presented in this report. Figure III-3* shows
the results for the fundamental mode with Mach aumber gl s 2 Im
Figure III-4 and III-5, the results for the cases of the fundamental
mode with u, = .1, .3, respectively, are shown. In Figures III-6 and
I111-7, the results for the cases of the second and third harmonics, re-
spectively, with u = .2 are shown.

In the analysis of Ref. 6, the sclution was found in the form
of a perturbation series in an amplitude parameter € . The solution
was approximated to an accuracy of O ( é:3). To first order, the re-
sults of the nonlinear analysis were identical with the results of Crocco's
linear analysis. To this lowest order, the wave form consisted of a
single Fourier component with amplitude € . This component could be
either the fundamental or any of the overtones. The neutral stability

line for zero-amplitude oscillations was identical to that found by

* The calculations, although arithmetical, were quite tedious and
were performed with the aid of a 7090 computer. The results
were plotted on a cathode ray oscillioscope and photographs of
the screen were taken. These photographs are presented in the
figures.
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Crocco as shown in (a), (b), and (c) of Figures III-3 through III-7.
In (a), the frequency in characteristic coordinates* is plotted
versus the interaction index n along the neutral line. (b) shows a
plot of w?® vs., n where w is the frequency in time, space co-
ordinates and ¢ is the sensitive time-1lag. T vs. n 1is plotted in
(c).

It can be seen from (a) that there is a band of frequencies
possible rather than discrete values. This is due to the time-lag
which introduces another characteristic time besides the wave travel
time. The natural frequency for the particular mode occurs at the min-
imum value of n for neutral oscillation., Both above and below-
resonant frequencies are possible. The region inside the ''parabola-
l1ike" curve is the instability region while the outside of the curve
is the stability region. The figures show that the larger the Mach
number the wider the instability regions. (b) is identical in all
five figures indicating that the ratio of the time-lag to the period
of oscillation %%%; is independent of the mode of oscillacion and of

Mach number*r %’ vs. n for neutral oscillations is seen to be double-
valued from (c). The minimum value of n corresponds to a resonant
oscillation. The branch of the curve with high (H) values of & cor-
responds to below-resonant oscillations while the branch with low (L)
values of ‘@’ corresponds to above-resonant oscillations. The region
of instability is inside the 'parabola-like" curve. This region widens
as Mach number increases. The instability region moves to lower values
of ® as the mode of oscillation becomes higher in such a manner that

u,?f is unchanged.

There are two effects upon the wave form which appear to -

second order; the mean pressure level changes from the steady-state

* It was convenient to analyze the wave phenomenon by trans-
forming the equations of motion to a coordinate system formed
by the characteristics of the hyperbolic system.

** Actually, if Mach number squared effects are considered, there
is a slight dependence. See Section VI.

*** This implies a change in the mean thrust level from the steady-
state value dependent upon the particular wave form present at
the nozzle entrance. The significance of this change will
be determined by further analysis.
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value and a second harmonic is added with a phase with respect to the
first. ('"Second harmonic'" means the second Fourier component. If the
first Fourier component were the first overtone of the chamber, the
second harmonic would be the third overtone.) The amplitude of this
second harmonic for one of the Riemann invariants* is given by €L2A
with the phase given by 2 6. A vs n 1is plotted in (d) of Figures
III-3 through III-7 and © wvs. n is plotted in (e). e:zcr is the
change in the mean value of the Riemann invariant and Cr is plotted in
(f) of these figures. All three types of curves are seen to be double-
valued with an above-resonant branch (L) and a below-resonant branch
(H). '

A and Cr are seen to tend towards infinity as the resonant
point (miﬁifum value of n) is approached. The mean values of A and Cr
are higher for the higher modes. Note that in the above-resonant case
(L), the sign of A could be changed (i.e., made positive), if cor-
respondingly, the phase 2 © was translated by the value 7 . In this
way it would be easier to see that the effect of the addition of the
second harmonic is not very different for above and below-resonant cases.
As shown by (f), the mean pressure level is higher than steady-state for
the above~-resonant case and lower than steady-state for the below-resonant
case., There is no simple pattern in the effect of Mach number upon A
and © , however, the absolute value of Cr decreases as Mach number
increases.

The third order effect upon the wave form is that a third
harmonic (third Fourier component) is added with a phase with respect
to the first. The amplitude of this harmonic is €23B and the phase is
3A . B vs. n is plotted in (g) of Figures II1I-3 through III-7 and
D vs. n 1s plotted in (h).

(g) shows that B tends towards infinity as the resonant point

is approached. The mean value of the absolute magnitude of B is seen

* The Riemann invariants are certain combinations of fluw properties
which are constant along a characteristic. The speed of sound
perturbation at the injector end is directly proportional to the
Riemann invariant. See Ref. 6.

** This means higher in absolute value.

S e e e S .
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to be higher for the higher modes while A remains essentially the same
with changes in mode and Mach number. No simple pattern is seen in the
behavior of B wupon Mach number. Note that the amplitude factor B in
the above-resonant case (L) may have its sign changed (made positive) if,
correspondingly, A was translated by fﬁ3. After this change the

phase would be smaller over a wider range of n i{n both above and below-
resonant cases.

On the basis of the calculations above, one may calculate the
approximate value of ¢ and n where an oscillation of a given amplitude
occurs., For values of @ and n along the neutral line of (c), the amp-
litude is zero. The amplitude parameter € increases with the square
root of the normal displacement from the neutral line as schematically
shown in Figure III-2. Specifically, at a displacement of D€.2 from
the neutral line, the amplitude of the first Fourier component for neutral
finite-amplitude oscillation is € . D vs. n 1is plotted in (i) of
Figures III-3 through III-7. D may be positive, indicating outwatd* dis-
placement, or negative, indicating inward displacement. It was shown in
Ref. 6 that D > 0 corresponds to unstable periodic solutions and DL 0
implies stable periodic solutions. (i) shows that D < 0 occurs only at
n values greater than 2.0, According to the experimental results of
Ref. 6, n < 2 1is the range of physical interest so the theory predicts
that stable periodic solutions without shock waves are not likely to oc-
cur in practical situations. This conclusion agrees with experimental
findings since shocks are usually observed to be present in the wave
form of rockets unstable in the longitudinal mode. The fact that unstable
periodic solutions are found in the range of n-values of practical in-
terest indicates that 'triggering' action is possible there. This agrees
at least qualitatively with experimental findings. (See Section IV-B).
The values of D become more positive as the mode becomes higher implying
that the triggering of an overtone mode requires a lower amplitude dis-

turbance than the triggering a fundamental mode. The lowest Fourier ’

* "Outward displacement' means into the region of linear stability
while "inward displacement' means into the region of linear in-

stability.
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component of the disturbance must be identical to the mode being triggered,
however, so this does not imply an overtone is more likely to be triggered
than the fundamental. There is again no clear pattern in the relation-
ship between D and Mach number, indicating that extropolation from
results for one value of Mach number to another value could be gravely
in error. This points to the need of the work of Section VI, since the i
nonlinear parameters presented here depend upon %’ and n values along
the neutral !lines which in turn depend upon the Mach number. Because
of the sensitivity of these nonlinear parameters to Mach number, a more
accurate analysis of the Mach number effects would be very useful,

The calculation of the wave forms would only be meaningful
for stable periodic solutions which are seen to occur only outside of
the range of practical interest. However, in case propellants with
higher interaction indexes are developed or in order to compensate for
possible error in the prediction of the D = 0 point due to a; proxima-
tions in the theory, the wave forms have been calculated and the pre-
dictions for n = 4,0 are presented in Figure III-8. The pressure vs.
time wave forms were calculated for both injector and nozzle chamber
locations, for both the fundamental and second harmonic modes, and for
both above-resonant and below-resonant oscillations. The value of € is
.1 for the results of Figure III-8.

In (a) of that figure, we have above-resonant oscillation in
the fundamental mode at the nozzle entrance., Three approximations are
shown: P3 vs. T, which is a first order approximation, P4 vs. T2, the
second order approximation, and P6 vs. T4, the third order approximation.
The P's are the approximations to the pressure and the T's are the ap-
proximations to the time which appear by means of the characteristic
coordinate transformation. These T corrections are related to the
wave distortion and are larger than the P corrections. The second and
third order approximations are essentially identical implying that the
third order correction to the wave form is negligible. The important
nonlinear effects are the sharpening of the positive pressure peak and

the increase in the mean pressure level.

* The steady-staie pressure is 1.
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In Figure III-8 (b), the same case of above-resonant, funda-
mental mode is plotted, except that now the location is the injector-
end of the chamber. This wave form (b) is different from the wave form
at the nozzle~-end of the chamber (a2) only in that the amplitude is low
er due to the phase in reflection at the injector-end which does not oc-
cur at the nozzle-end. This similarity in wave form is expected due to
the nature of the wave propagation.

Figure III-8 (c) shows the case of fundamental-mode oscilla-
tion at the nozzle-end. It differs from (a) in that the oscillation is
now below-resonant causing a sharpening of the negative pressure peak
and a decrease in the mean pressure level, '

Figure 1II-8 (d) displays the results for the second-harmonic-
mode, above-resonant oscillation at the nozzle end. The comparison
with (a) shows that the positive peak is somewhat sharper and the mean
pressure is higher with the overcone than with the fundamental. In
the case of below-resonant oscillations, the negative peak would be
sharper and the mean pressure lower with the overtone than with the funda-
mental,

For both modes, the peaks tend to sharpen and the deviation

of the mean pressure from the steady-state value increases as n de-

creases.




C. A SHOCK WAVE MODEL OF UNSTABLE ROCKET COMBUSTORS WITH SMALL
TIME-LAG EFFECTS

The case of longitudinal oscillations with shock waves
in a rocket combustor is investigated in this section. The charac-
teristic time of the combustion process is assumed to be small com-
pared to the wave travel time. A time-lag or phase between
pressure and energy addition introduces this characteristic time of
the combustion process. The relation between this work and other
nonlinear work performed at Princeton is given in Section III A.

The combustion zone length is considered negligibly small
compared to the chamber length so that the limiting case of con-
centrated combustion at the injector-end is considered. The nature
of the combustion process determines the boundary condition on the
oscillation at this end. The perturbation in gas velocity is related
to the perturbations in pressure and temperature. Typically, an
increase in one or more of the thermodynamic variables causes an
increase in the velocity of the burned gas emittcd from the combustion
zone since the burning rate increases. Other assumptions are:

1. The flow is one-dimensional,

2. The chamber cross-sectional arca is constant,

3. The lergth of the convergent portion of the nozzle is
negligibly small compared to the chamber length so that
the limiting case of the short nozzle is considered.

4. A shock wave moves back and fcrth the length of the
chamber with a constant period, reflecting alternately
from the nozzle and the combustion ends. Here only
one shock wave is considered, so only the fundamental
mode is allowed.

5. Flow is homentropic outside of the combustion zone up
to and including second order in the wave amplitude.
This allows shock waves to occur but no entropy waves

are allowed.



6. The chamber gas is calorically perfect.

Under these assumptions, the steady-state flow properties
are constant throughout the chamber., All thermodynamic variables
are nondimensionalized with respect to their steady-state values.
The gas velocity is nondimensionalized with respect to the steady-
state speed of sound, space dimension with respect to chamber length
and tim. dimension with respect to chamber length divided by speed
of sound.

The coordinate system is taken in such a manner that x = O
at the nozzle entrance location and x = 1 at the combustion zone
location. Note that this means that the steady-state velocity is
negative in sign.

The pressure and temperature at the injector end may be
related to the speed of sound by means of the laws of thermodynamics
and an equation of state., Therefore, a relationship between the gas
velocity perturbation and the speed of sound perturbation may, in
principle, be found., Here, it is assumed that the time-lag effect
appears in such a manner that this relationship may be written as

follows:

Ut)-y = e [K,(alt)-a,)ﬂg(a. (t-?) '%)] +
% ¢
r 8 [ (a. (t)-q..) +K (a (t)-ab)(a (¢ -2“)-a.°)+ I{’ (act -?)-g)l]

+ higher order terms
where u 1is the gas velocity, a 1is the speed of sound, t is
the time, ¢ is the time-lag, and @w, &, &k, . k, , ky , and
ka are positive parameters which describe the combustion process.
Zero subscripts denote steady-state values. Note that the relation-
ship has been written in the form of a Taylor series where the third
and higher order terms are neglected.

With no loss of generality, we may consider k1 + k2 = ]

The time-lag is small and is considered ar a firs! order perturbation

quantity. This means that

al(t-T)-a(t)= [(a.(bz’)-a..)'(a(é)-a;)]



must be a second order perturbation quantity since it is the difference
between two first-order perturbation quantities whose arguments

differ by a first order perturbation quantity. Now, the relation-

s hip which provides the boundary condition at the chamber end may

be rewritten in the following manner:

uB-we - wlaw-a,)+r wk, [a(f-?‘)-a(t)]

uO
3
+ S(a. (t) -aa,) + higher order terms
(1)
The well known compatibility relations may be obtained

from the equations of unsteady one-dimensional motion for a fluid.

Under cur assumptions, the relations (accurate to second order) are:

.%r‘- do + du = O along Jx = (w+a) dt
'7‘-1_ doo. - du =0  alomg dx = (u-a)dt

Let primes imply perturbations so that
u=u +u' ; a=1+a'
0

Furthermore, let

v - 9
j?é- = :f%—--f(ub'rl) :S%F— s 1§ET.=::EF. {-(us-l) :;%—-

Then, these differential equations are rewritten as follows:
4 ’
L(L a.'+u.)-_—_ - (U-'--O-a-').;_ é_ﬁ_a.‘ +u!) (2a)
St Y- X \¥-I

5—( a - Ww = - (w -0 éi; d-w) .
St f-n ) = )??"x ¥-i (2b)
The left-hand sides of Equations (2a) and (2b) are of first order

while the right-hand sides are of second order, Consider uy and

a as the fir-t order approximations to u' and a' , respectively.

3

Furthermore, consider u, and a2 as second order corrections so

that uy + u, and a1 + a, are second order approximations to u

and a'. Then, Equation (2a) yields

f
st (15 i )20 oo
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and Equation (2b) yields

jé%’ (T'SSTTA% = uﬂl)" [0,
(3b)

S La ( J 2
e [t - = - (U -Qa — A -
SE \7 ..) . ') I ( r-1 oo “-) (4b)
The general solutions to Equations (3a) and (3b) are found
to be the following

-%.2,'-' + u. = F(t-— %Z) (5a)
- = G(t+ "%?) (5b)

where the functions F and G will be determined later from
conditions imposed upon the solution. These relations (Ja) and (5b)
are used to substitute into the inhomogeneous parts of Equations
(4a) and (4b).

The particular solutions to Equations (4a) and (4b) are
found to be the following

# L
das _ (31 X F(t- '*“..)_F.Lﬁ:_'.zi'.)_
'T?I *.% "( 4 ) 1+ v,

-@‘-_‘)(;;u (- A ) cf‘};)az

+u, (6a)
d+] ) AG (ts e Bg(p-*-,.m)
% XA -( ) (1-w)

-(;_:.)(J_w_._)cr (t»,.-!—)j e e dy

(6b)
where the subscript t indicates differentiation with respect to
time or, equivalently, in this case, differentiation with respect
to the argument of the function. Note that the homogeneous solutions
to (4a) and (4b) may be includei in F and G , respectively, with
an error of third order only in (6) which is negligible here. The
integrals may be assigned zero as a lower limit since any constant
of integration could be combined with F or G .

Equations (5) and (6) may be combined to yield the following
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relations:
. X
b Y-S - X (el \ XE (- wp)Fs(t-
o = Flt- =) + ( ¥ ) (l:-u..)

Gy [ Fowa

.z;_a..'_- U o= Gt ) _(.@'_) AG (e T5)Gytr Ty

(1-w)t

- 50 (=26 £+ L) jt-*‘ Fe)d&

It is well known that the function Y%T a+u Iis

(7b)

continuous to second-order accuracy through a shock discontinuity
travelling in the negative x-direction and the function ?%I a-u
is also continuous to second order across a shock moving in the
positive x-direction. (See Reference 12b)., If the second-order terms
in Equation (7a) are neglected, it is seen that the function F is
continuous through a shock moving towards the nozzle entrance to
at least first-order accuracy. The first-order approximation for
F may be substituted into the nonlinear terms of Equation (7a). If
F 1s continuous across thc shock, so is Ft' Furthermore, even
though G is discontinuous through this type of shock, its integral
is continuous. Therefore, the nonlinear terms in Equation (7a) are
continuous across this shock. Since %%% + u' 1is also continuous
to second-order accuracy, this means that F 1is continuous to
second-order accuracy across a shock moving in the negative x-direction,
By a similar argument, Equation (7b) would show that G is continuous
to second-order accuracy through a shock travelling in the positive
x-direction,

Multivaluedness of the solution occurs due to the presence
of the shock waves. This nonlinear effect is caused, for example,

by the intersection of some of the lines [t - T§; = constant]
o

) has

with a shock moving in the positive x-direction., F (t - 1+§
o

different values depending upon from which side the shock is ap-

proached. This is solely a nonlinear effect because the deviation
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of the shock path from a ([t - Tf; = constant] line is a nonlinear
o
effect, Of course, the same phenomenon occurs with G (t + X )

1-u,
near shock waves travelling in the negative x-direction. However,

once the shock path is known, the correct value for each x,t point
is easily discerned.

The short nozzle boundary condition is used to obtain a
relationship between the functions F and G . 7The Mach number
at the entrance of the nozzle (x = 0) 1is set ejqual to a constant
with time since the wave reflection is a quasi-steady phenomenon in
the short nozzle case. Therefore,

w (gt) = u, & (Gt)
(8)

Equations (7a) and (7b) are solved for u' and a' in terms of
F and G. Then, the results are substituted into Equation (8) to
yield the following nonlinear relation between F(t) and G(t):

Fle)-Gtor 3ox [m&, G, mfmm -z R mremag]

t
y vV [Flt)o(ﬂt)] -.1_31 v [.L_gn.':  (t) G5k~ Lrus G;(t)J'tFlUJ{] =
- [ ] (-] “" A (9)
where the definition % = - {%l uo has been made., (Note that ¥ is

a positive number.)

If the nonlinear terms in Equation (9) are neglected, we
have

(V)R @)+ (1) G-(t)=0
This means that the first order approximation to the relationship
between F and G is:

F(t)= 55 G(t)

If this relation is used to substitute for F(t) 1in the nonlinear

terms of Equation (9), the error would be of third order which is
negligible in this analysis. This permits the determination of F

as a nonlinear function of G ., The result follows:

Ft) = L= {G(t)«r 1,_([_,‘_.;_? i :_,&:] Gg“)th(t)JE} (10)

-



Now, Equation (10) is employed to substitute for F(t) in
Equation (7a) and (7b) with the results:

' L4 . ¥ AGH- iens )Gyt -
o s = EE G i)ty (1y)f AG0-RiGuogk)

i .

= % v q(t-'.:“'r. {_:__:_ j‘ "¢ G(E)JE
. A *te s

J’ '~u-<;cz)4r.}

-y

14V 1=l

E

(11a)

g2 w = G(t+'vf—u.)-_l{_1 XG{H+ ) Ge (t + T )
-1

(-w)t
t'i-é;.
_ 3-Y lrue i=v G (t+_5_)J (&
' I-U.. l+\’ ‘-u‘

(11b)
Another condition, on the function G appears from the
combustion zone boundary condition (1). a' and u' at the com-
bustion zone are given by setting x = 1 in Equations (11) and
solving the simultancous system. Noting that ? is a perturbation

quantity, we find the following first order approximation from this

procedure:
Gltr_ L )= 1ty 1-v Gt-_L)
1-uy 1+ I-wy ey (12)
It is readily seen from Equation (12) that if w >1, G (t + T%E
°
>G (¢t - —l—-). In this case, a first order analysis shows an

1+u
o
exponential growth of a small perturbation (unstable). If w =1,

then G (t + e )= G (t -

T-u, TIGO ) andlthe system is neuirally
< — -
stable. In the case, w< 1, G (t+ T-u, ) & G (t Tru, )

and a small perturbation decays exponentially (stable).
Wwith no loss of accuracy, Equation (12) is used to substitute

for G (t + T%: ) 1in the nonlinear terms which result wl:n Equations

(1) and (11) are combined. This operation yields the following:
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G(t+,_jz)= AG(t'Th)

4
S )G (4
+ de [(_:s*A:sTJ,(_‘AW] G (¢ &) e (-7

t- wm,
P A e G (4o j G(%)dE

lewu, I+u, t..-_-l;
+ v g-1 (x+A)" G -1)
4 l-wvV uu.
+wrk K+A [G' (¢-2- L) - G‘(t-_l_)]
-V wu° Hu. (13)

where the definitions have been made

= 1l+QV -V . = 1=V
A= XY | v 5 K 1+U

Now, we will seek periodic solutions for the flow properties,
The period of the oscillation for the fundamental mode is the time
required for a shock wave to travel once back and forth in the chamber.
The shock follows the path ABC shown in Figure 1II-9, The flow
properties in Region III are identical to those in Region I due to
periodicity. The period is the time during which the shock travels
the path ABC. This time is represented by T =T =T _ <+ T, ..

ABC AB BC
If V is the shock velocity, we have

' Tas ° Tas* Tac
J{ e [ Mgt J.'JHL“ Ve dt

The shock velocities to first order accuracy are given by the well

known relations (Reference 12b).

'\Ca =+l ral + L {Ef{ (Q€[ - ap )

V. =u,~1+u_-a_+L ¥+ a.'-a’)
e = Yo S S § ‘9-‘."(11 1 (15)
In this representation, conditions at the shock AB have been set

equal to conditions at the shock CD. The flow properties in (15)



are to be evaluated at the shock with the particular side of the
shock given by the Roman numeral subscript. (See Figure I1II-9).

If Equations (5), (14), and (15) are combined, we may solve
for T in an approximate manner. If T0 is the zero order approxi-

mation and To * T is the first order approximation, we obtain

1
(letting t = 0 at the point A of shock reflection in Figure I1II-9)

T = 3

T = L [K ltue 4 u_.]j"“‘-"mt)u-

- W, lewn,

©
= Yol K ! +
A [ it T Trugn G o)+ G (2~) (16)
Since the flow properties are T-periodic, so is
%—% - u' , and, therefore, as shown by Equation (l11b), G is
T-periodic to first order. On the contrary, however, the periodic

condition implies that to second order (as is shown by means of

Equation (11b))

G(t+T+,JT)= G(t+_2) +

- e t.o'T",-,l;.
s _L'-_[_ K ‘lr_tg_._“. Glt(t*T-LI. G(!)J{

e ‘l'él'.

Introducing no greater error to the analysis, it is consistent to

rewrite this as follows 2
l"§‘

G'(f‘ T)= G'(/) + %’_[ K ."i_'_:T! G'/(Io) J‘ GRIE (17)

where / replaces the forme rgument [t + x/(1 _ uo)]. Since
to second order accuracy* G (/+ To)z G (/ + T) + (To -T) X
C,g (P + T G \/+ T) - T1 G,o (/+ T), Equation (16) and (17)

yield

*For positive T, , this expansion fails very close to the end-
point O of the range 0O« P<T due to the shock discontinuity.
For negative T, , failure occurs near T for the same reason.

However, the approach is still correct since the relation gives
the asymptotic behavior everywhere in the range as ’1'1 —n 0,




3
T-u ¢

Glp+ty)=Gp+ L K ttue Goip [ 7 GRIUE
-'T: G’,(/’) (18

Setting A equal to the argument ([t - 1/(1 + uo)] in Equation
(13), that equation may be combined with (16) and (18) to yield

the following

0 (A-NG(p+ gl [U*Kv‘ + whe ] Gp p) { Gepr-

= [Cr(o)+e-('._z‘.‘:,)]} » fuipn G+

+ Zevfa [G(/.?)- G‘f’] (19)

Note that (A-1) appears in the first term multiplied by a first
order quantity. Since all th~ other terms in (19) are of second
order, (A-1) must be of firsc order. Therefore, A may be replaced
by unity and wV by Vv in the nonlinear terms as has already been
done in (19). This also means that G can only be determined to
first order accuracy from the relationship since the second order
correction now does not appear until third order. Furthermore,
since G 1is To-periodic to first order accuracy, the integrals
which appeared in the nonlinear terms canceled each other.

Since ‘¢ is small, the approximation* may be made by
means of a Taylor exp.nsion that

G(e-2)-G(p)=- 2 Gptp)
and this may be substituted into (19) to obtain the following result

]
| IF . s (20)

where certain definitions have been made

*Note that near one of the endpoints (0 or T, depending on the sign
of T ), this expansion is not correct for nonzero & due to the
discontinuity in G(p) ; however, the correct asymptotic behavior
as ¢ —> 0 1is given even near these points.
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r = 4 /\- |
T+ K + | ]
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l'+| (1- \rjg(nu)" [(ToKT.V + (‘.4“. :]

C = _L[G(o)+-G (,_i;:i)] + ?p
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(hu.)' i (l-u.)l

As explained in References 6 and 7, Equation (20) has a physically
reasonable solution only for C = 0 . This also provides a condition

on the solution which is used to determine the constant of integration.

46 _ _ r - \G

We now have

i/
with G(O)+C(-1%z)+2?P=
o

This has the solution

-\ -\
G’(f)" % [ % =L} e f—l]- l?ﬁ%i_b-f
|

[ Y l-u'
+€ L I+ [
which setting % =0 can be shown to be identical to that

(21)

References 6 and 7, in the case where no time-lag effect was considered.
In the limit as A — 0 (or, in other words, 5—00), (21) becomes
a linear relation indicating a sawtooth waveform.

Equations (5), (10), and (21) may be combined to give a
first order approximation to the wave form in Region I. 1If the
isentropic condition is used to relate the pressure perturbation to

the speed of sound perturbation, we obtain
X At

- AX AL
P-R* X—';:— {-'--—f:n?L & #IKETE (0 -T,'.}‘z (22a)

| re -'u




Similarly, Equations (5) and (21) may be combined to give the wave-
form in Region II if note is taken that to first order G (t + - )

l-u,
=G (t - lgu 9 ¥ lfu ). Again, using the isentropic relationship,
o
we obtain the first order apyroximation
-At
p-p < ¥ {bge [ o]t o
. #V § (22b)

‘*.e— I-h
The waveform consists of a shock discontinuity followed by an ex-

ponential decay ( ¢ is a small number so that [l - A ’(,D ¢ /r]
is pos:tive). As A ——0 , the waveform goes to a sawtooth, (21)
and (5) can be shown to imply that the pressure jump across the shock
is constant as the shock travels the length of the chamber. The
strength does change in reflection, however, and is greater for the
shock travelling in the negative x-direction than for the shock
travelling in the positive x-direction.

When ‘2' is positive, (1) shows that energy (or mass)
addition lags pressure whereas with 1? negative, energy addition
leads pressure,* (22) shows a decrease in the mean pressure from
the steady-state value when 2" is positive and an increase in the
mean pressure when ?f is negative. This means that when energy
addition leads (lags) pressure, the mean pressure is higher {lower)
than the steady-state value. This is in qualitative agreement with
the results of the second model of Reference 6 where a lead or lag
was introduced by means of the Crocco time-lag postulate but no
shock waves were present. Hcwever, in that case, the absence of
the shock caused the '"blowup'" of the solution as phase went to zero.
Note that the deviation of the mean pressure from the steady-state
value is of the order of 23b where ¢ is a perturbation quantity
of the order of the amplitude and Fb 0 {(V]. Since YV is a very
small number, this deviation is much smaller than the amplitude. In

Reference 6, it was found to be a second order quantity,

*A small, negative ¢ or a small time-lead has the same physical
effect as a time-lag with a value equal to the period of oscillation

minus a small number.




It is seen from (22) that if r/}\ were negative, ex-
pansion shocks would occur, From its definition r has the same
sign as [A-1] , so if A >0 and A<L1l (or W)
physically reasonable solution is found. This can be shown to be
true even if x\ were negative, by means of a topological investi-
gation of the solutions to (20) (See Reference 6). This means that
in the "linearly" stable region ¢ & 1 (and & small) there can
be no oscillation which precludes '"triggering' action as the phase
between energy addition and pressure asymptotically goes to zero,
This result is in agreement with one of the conclusions of Reference
6 where, based on the trend of the calculations, "triggering"
seemed impossible in the limit as phase went to zero,

The period of the oscillation may be determined from (16)

and (21) to be the following

i i**'ﬁl[(»u}‘ H“)‘ i'—r‘- ‘.‘,_:_-:"—-St_ }
el o] e ]t 2B o

The coefficient of 2 in (23) can be shown to be positive and quite

small in the range of interest. If ¢“ were zero, (23) would give
the nonlinear resonant frequency of the chamber with a mean flow
present, The time-lag causes a modification of the frequency as
shown by (23). 1In particular, if 2> 0, the frequency is below-
resonant; and, if ¢ (), above-resonant, This means that, if energy
addition leads (lags) pressure, the oscillation has an above (below)-
resonant frequency, which agrees with both the linear results of
Croccoa and the nonlinear results of Sirignano6. These frequency
modifications are extremely small, however.
Some mention should be made of the mean mass-burning rate

under oscillation., Since there is a deviation in the mean pressure

! and the mean velocity from their steady-state values, it indicates
that the mean burning rate also deviates from its steady-state value,

This is not possible for fixed-injection systems since the amount

§
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burned must equal the amount injected. It can be demonstrated,
however, that with the pressure (or density) deviation of the order
of T’p , the burning rate deviation is of the order of u, 2’¢ .
So, if u_ is small, the burning rate deviation from the injection
rate is negligible compared to the pressure deviation. Furthermore,
u, z’é is always a very small number. Therefore, while this
deviation produces a mathematical inconsistency, the numerical
errors are quite negligible.

In summary, it can be said that the results of this
analysis fit quite well into the "structure of understanding' t«
gether with the results of the other two models discussed in
Reference 6, Namely, the impossibility of 'triggering' action as
phase goes to zero is shown, the mean-pressure is shown to be higher
(lower) than the steady-state value and the frequency higher (lower)

than the resonant frequency if the energy addition leads (lags) the

pressure,
NOMENCLATURE
speed of sound
A parameter defined after Equation (13)
c parameter defined after Equation (20)
F,G homogeneous solutions to partial differential
Equations (2)
k parameter defined after Equation (13)
k1’k2’k3’k4 combustion parameters
P pressure
r parameter defined after Equation (20)
t time
T period of oscillation
u gas velocity
\' shock velocity
X longitudinal dimention

ratic of specific heats

¥




combustion parameter

parameter defined after Equation (20)
parameter defined after Equation (9)
dummy variable of integration
argument of function G

time-lag

parametcr defined after Equation (20)

€E QO ¥ meg > wn

combustion parameter

Subscripts:

o] zero order quantity

1,2 order of correction to solution

Superscript:
Primes: perturbation quantity




D. TRANSVERSE NOZZLE ADMITTANCE RELATIONS FOR FINITE-AMPLITUDE WAVES

Introduction

There are several fundamental differences between acoustical
oscillations in a closed cylindrical chamber and the oscillations that
may be present in the combustion chamber of a rocket engine. In the
latter case, the oscillations are superimposed on a mean flow created
by the combustion process. While in acoustics the amplitudes of the
oscillations are small, this may not be the case with the oscillations
that may occur in a combustion chamber. In addition, the classical
closed-end boundary condition used in the acoustic problem is now
replaced by a boundary condition imposed by the presence of a con-
verging-diverging nozzle. When the nozzle is in supercritical operation,
the flow down-stream of the nozzle's throat is supersonic and no finite
disturbance can travel in the upstream direction. This condition can
be expressed by requiring that the solutions for the flow field in the
nozzle be regular at its throat.* The regularity condition can be re-
placed by a complex relation between the pressure, entropy and velocity
perturbations. This relation is expected to hold in any location
along the converging portion of the nozzle. This relation for three-
dimensional perturbations has been termed the transverse admittance re-
lation. Evaluated at the nozzle entrance, it forms the proper boundary
condition for the oscillatory flow in the combustion chamber.

The problem of supercritical flow with oscillations in a
converging-diverging nozzle was first treated by Tsien wvho considered
the case in which the oscillation of the incoming flow is isothermal.

The solution was found for both very low and very high frequencies.

Crocco extended this study to include the nonisothermal case and

covered the entire frequency range. Both of these investigations were

limited to one-dimensional, or longitudinal, oscillations. In a later

* No continucus disturbance can travel upstream from the nozzle throat
unless the amplitude of the disturbance at the throat is infinite.
Shock waves are not considered in the present analysis.

— | — | ;
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work15 Crocco extends his one-dimensional analysis to the case of
transverse oscillations where he considers the behavior of three-dimen-
sional perturbations on the one-dimensional flow in a deLaval nozzle.

It 1s the purpose here to extend the above work which is limited
to small perturbations, to the case where the perturbations about the
one-dimensional mean flow have amplitudes of finite size. The trans-
verse admittance relation resulting from the presence of three-dimen-
sional perturbations about the one-dimensional steady mean flow will be
derived. This expression will provide an appropriate boundary condition
for the case when the flow oscillations in the combustion chamber have
amplitudes of finite size. The latter can result from either the growth
of the originally 'small" disturbances or the "introduction' of dis-
turbances of finite amplitudes. The admittance relations corresponding
to isentropic or irrotational oscillations can be obtained as special
cases of the general theory.

The work done in this paper 1is concerned with the flow in an
axi-symmetric nozzle. It could, however, be extended to the special
case of a two-dimensional nozzle. The latter case will not be treated
here. The admittance relation which will be derived could be used as
a boundary condition in the determination flow behavior in any pro-
pulsive device followed by a converging-diverging nozzle which is oper-
ating in the supercritical range.

Flow Equations

In this derivation, the flow in the converging part of an
axi-symmetric nozzle is assumed to be adiabatic inviscid with no body
forces and no chemical reaction. The fluid is assumed to be a perfect
gas with constant specific heats. The conservation equations in di-
mensionless form are then as follows:

Conservation of mass

;tf_+ V.(Zf).:o (2.1)

Conservation of momentum

5%‘-#2" V(fz)*“(V)z))ff = - —X-’/— vP (2.2)




Since the fluid is assumed to be inviscid and non- heat con-
ducting, the energy equation in its simplest form expresses the con-

stancy of entropy of a fluid particle after it enters the nozzle.

28 . !
% TgVs=0 23

-
where

»

S m CSP = ‘YAP-A/O* constant s
gives an expression for the nondimensional entropy. The equation of
state for a perfect gas was used in the derivation of the last equation.

In the equations above, the reference quantities were chosen
as the stagnation quantitives of the unperturbed gas entering the noz-
zle. The unperturbed flow in the nozzle is assumed to be isoenergetic,
isentropic and irrotational. Consequently, its stagnation properties
remain constant throughout the unperturbed flow and therefore are suit-
able reference quantities.

Hence we define: .

¢ p" ‘sz' " _1;::: v
iz-%‘_"" P g P p= peits (vt (2.5)

where * denotes a dimensional quantity, o stagnation values and
superposed bar unperturbed (steady) values. L* is a suitably defined
characteristic length and {s used in the non-dimensionalization of
quantities having the dimension of length.

Linearization of the Equations

In analyzing the flow behavior of a supercritical nozzle in
which the ampiitudes of the unsteady perturbations about the steady-
state mean flow are finite in size, it is convenient to assume that the

dependent variebles appearing in the problem can be written in the fol-

lowing form:
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(3.1)

Where € 1is some amplitude parameter and the variables written
above are respectively the non-dimensional velocity, pressure, density
and entropy.

The expressions appearing in (3.1) are substituted into equa-
tions (2.1) through (2.4) and the equations are separated according to '
different powers of € . The zero order equations describing the mean

flow conditions are:

V?‘+(VX§)X?-=——'=-VP (3.2)

|
- 7,&1 P'- lo\.fi- constant

These equations can be replaced by simpler ones, obtained from

(3.2) when the flow is irrotational:

S -~ = - -8
V-(Jo p==j>‘r ) £ .- -{2—1 3

¥

Using the definition of the non dimensional sonic velocity

(3.3)

o9

* ¥
¢ = go* = é J:} (3.4)

together with (3.4) we get from (3.3):

2

2 =
<5 o= X—18=fl" (3.5)
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which specifies the mean density variation.

When the nozzle is axi-symmetric the first of equations (3.3)

can be used to define a stream function:

"FE=Sx VY (3.6

where 1" 1is the nondimensional distance from the axis of symmetry and
Eag the unit vector in the tangential direction.
*

Under the present assumption of irrotationality of the unper-

turbed flow, a potential function can also be defined as

Z’ = V¢ (3.7)

The stream and potential functions introduced are nondimen-

sional.
In the following the unperturbed flow will be assumed to be

in the meridional plane.
The equations of order € and their solutions are identical

to those obtained by Crocco on his derivation of the transverse admit-

tance relation for the case of small amplitude perturbations. For the

sake of completeness, these equations are repeated here:
) — ) o
=
L (3.8a)

¢)
%tf-r V°(g—f“)+§
) — «)
ot * V(_g—’- _g.“’)*-(ng"’)Xg_ +J‘£‘ V(fﬁ*#"'#ﬁo(ma)

“
gV’

L V)

(3.10a)
) P‘.) )
s - y5 * ';‘ =0 (3.11a)

The equations of order E:z are similar to those found by Crocco ex-

cept for their inhomogeneous parts. They are written as follows:
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7
‘ - ® 0z , p¥a2
5%- 7% +_§,___-.1L. _;_{%)-\/_J{;) (3.11b)

A comparison between the systems of equations corresponding

to 0(€ ) and O(C‘) shows that their homogeneous parts are identical.
The solution of the second-order system of equations, along

lines paralleling the solution of the first-order system of equations

will be found. Before this is done an appropriate set of independent

coordinates will be chosen.

Choice of the Independent Variables

Abandoning the vectorial representation, it is useful to choose
the independent variables in a way appropriate to the introduction of
the boundary conditions at the nozzle walls. In the axi-symmetric case, following
Crocco, it is convenient to let the steady-state potential function ¢

replace the axial variable, and the steady-state stream function replace

the radial variable. Indicating by Js and Sn elementary (non-




dimensional) lengths in the direction of the unperturbed stream lines
and of their normals on the meridional plane, see Figure III-10, equations

(3.6) and (3.7) can then be written as follows:

ju 3 Fie Y .

The third independent variable, 6, 1indicates the variation
in the tangential direction.

Separation of the Varjables
In order to be able to solve equations (3.8b) through (3.11b)

the following assumptions are made:

(1) The unperturbed flow is one-dimensional and the cor-
responding variables describing it depend only on ’.

(i1) Assumption (1) aiso implies that the angle of obliquity
of the stream lines with respect to the axis of symmetry is sufficiently
small so that its cosine is practically 1 and the element of normal
c;n along the surface b = constant can be identified with dr.

Hence equation (4.1) can be integrated, providing

V"' f‘¢’ g (¢) —;:' (5.1)

(1i1) The solution will be restricted to the case where the
axial component of vorticity is zero. This assumption is necessary in
order tu achieve separation of variables In thi'fontinuity equation
This assumption is equivalent to saying that '”/ )(¢) and W ‘ ) (é),
defined in Equation (5.8), are equal to one another This assumption
will be further elaborated on other parts of this report.

Rewriting equations (3.8b) through (3.11b) in a (¢, IP, e )

coordinate system and separating the momentum equation (3.9b) into its

three components results in the following system of equations:
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+ ("“"))‘zzé' %} (5.6)
Equation of state:
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Note that the dependent variables appear in equations (5.2)

through (5.7) in the following particular grouping:
8) S @

A M RS &
Consequently it wi.l be more convenient to solve for these quantities
rather than the explicit unknowns.

The inhomogeneous parts of equations (5.2) through (5.7)
are composed of solutions of the first-order equations and are thus as-
sumed to be known. It is also importent to note that the homogeneous
parts of these equations are identical to the system of equations of
order €.

Equations (5.2) through (5.7) have two kinds of solutions
corresponding respectively to tangentially spinning and standing waves.
Since the second-order equations are linear and the standing or spinning
type solutions can be expressed in terms of combinations of exponentials,
it will be easier to solve the second-order equations once by assuming
that the dependence of the solutions on time and 6 has the following

general form: Z e_t(’wtomh! The final result is obtained by assigning
e 1)

m and n their corrcct values. These will be determined from the form
of the expressions appearing in the inhomogeneous parts of the second-
order equations.

Since the homogeneous system of the second-order equations
is separable but the inhomogeneous system is not, it becomes recessary
to assume that the unknowing appearing in the second-order equations
can be expanded in terms of the eigenfunctions which satisfy the homo-
geneous system (i.e., eLhVGJ;'y(sw‘a m ) is such an eigenfunction)
¢ equations, the boundary conditions at Uf & U{v and the con-
dition of periodicity of the solution in the © direction. The secon-

(1)

order solutions are thus assumed to have the following form:

(1) The various functions appearing in (5.8) may be complex functions
of their arguments.
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vhere w represents the nondimensional angular frequency, which relates

to the dimensional fiequency as follows:

*
— L *

and m and n take on a particular set of values.
It is also assumed that the known expressions appearing in

the inhomogeneous parts of Equations (5.2), (5.3), (5.6) and (5.7) could

be expanded in an eigenfunction expansion of the following general




form:

F @G, (t.4r)= F, (f) 2. istmen oy

X ,,."‘Ig‘ (SH‘ %)

(A)

where eihi’e and J-,,g (5,.)' m> are eigenfunctions of the
homogeneous system of equations. In order to !llustrate the manner in
which the above expansion is to be used, consider for example the ex-
pansion of the first term in the inhomogeneous part of equation (5.2)

for the case of a spinning wave:

_g( ). _u) “w ot o) ,o, ; , 2
PG ) Py o g

=g (¢)..L (Rmﬁn)_é_(n c«.zwtwo)) (5, :JE;_: )

Y

THLR O[5 A, T T (0 ZA AR

¢
where R(I%ﬁ)and -J%— (.¢) are assumed to be known from the solution of

the first order equation. The above expansion shows that m and n will

take on the following values:

m=n = 0; m=n= 2; m=n= -2
The constants and A can be obtained by expanding
"o 28 YT
the function (S*ﬂ) in two Dini-series one in terms of J (“ﬁ ),
"V,
and, the other, in cozme. of J (S, YW ).
2/ 32'—-—'
/ md

To achieve separation of the equations corresponding to O(C.z)
it is also necessary to assume that the terms appearing in the inhomo-

geneous part of equation (5.4) (\y- momentum) could be expanded as fol-

Gty ﬁy{f (S LT ,—-v) ®

lows:

RHGEYO=5p T “""’""a’i

§




It 1s also necessary to assume that the terms appearing in
the inhomogeneous part of equation (5.5) (@ - momentum) could be ex-

panded as follows:

. (Muto”\”)i c“

WG LY 8= Fp T im e £ Gy oy B

(C)

Expansions (B) and (C) could be obtained by integrating
F2(¢)Gm(t,v,9 ) and F3(8)G3(t,¥,6 ) with respect to 'P and 8

respectively and then expanding the integrated functions in a Dini-
series of the same form as expansion (A) on page 47, Differentiation
of the resulting series with respect to IP‘ and O results in ex-
pansions of the same form as (B) and (C). It is, of course, necessary
to assume that the integrated functions and their expansions are of
such nature that termby-term differentiation is allowable. The va-

lidity of the above statements is also important in proving that

V”::(¢):w;3’ (¢) . The latter is a necessary condition for

the separation of second-order equations. ™

It is convenient at this point to introduce the function 6‘"‘)3)

defined as follows
(2)

Substituticn of Equations (5.8) and (5.10) into Equations
(5.2) through (5.6), expanding the terms appearing in the inhomogeneous
parts of these equations in the manner described in the last paragraph
\ an e T ) «3)
and use of assumption iii (Le"zﬂs(¢).u‘“" (p) ) result in the fol-

lowing set of equations corresponding tc particular values of the sub-

scripts (™ 1),8 ).H‘

2
d
¢For brevity, the following notations will be used: ' = W ; "= %3' ,

*In the derivation of the following equations the dimensions were con-
veniently scaled so that wwall =1,
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to (l)‘ ) ‘2
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are defined in Appendlx A,
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It will be interesting at this oint to consider the
g P

expression for the second-order vorticity and examine more carcfully

the statements made in assumption iii VXg: Wx t+ VA’ <+ VX’ Vel
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From Equation (5.17) it can be seen that the requirement
‘\ N
V{‘u)n\"(ﬂ introduces the same restriction as in the first-order equa-

tions; i.e., the second-order vorticity compcnent along the streamlines

must be identically zero. Further implications of above restriction

will be discussed later on.

Reduction of the System

For convenience, the superscript (2) and subscripts (? ¥, g )
used in previous sections will be left out of the following derivation.

Substract equation (5.14) from (5.13) to get:

g‘(w-v)'+mu.r (w-v)=D-¢€ =0 (6.1)
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(Because D - C . See definition of these quantities in appendix A

and discussion on bottom of page 48 .

The general solution of (6.1) is

W-v = C £ (6.2)
o o

where

("")(¢ -"'Nw j (ﬁ) (6.3)

The constant C0 must be taken equal to zero in order that

V = W, which is a necessary condition for the separations of the continuity

equation,
From (5.15) and (5.16) we get:

S= wcom)(cb) {B{(ﬁﬁé’%‘) do'+ v}

c [P(cp)- & R<¢)J + TGP W
where T S(¢ 'O)

Integrate (5.12) to get:
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= G"E +K (6.5)
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where

J %.AIL T(g)d¢’

) é o
K= S(—}w‘ ) L i) /"*_f(;)) J¢+_I Bp)df (6.6)

The pressure is eliminated between (6.5) and (5.13) to get:

3 ﬁ'(@'\/)*' "‘“’(@'V)= vf +K-C= Tl

where

L=K-C

The solution of the above equation is:

o (¢ L(8) i~
¢-v=£" ] ,4..,(,,4¢J :&f%d%c} o eCf *M

* (6.7)
where
:c ) ¢ m
From (6. 4)
) ™ ‘A(l’) , v -
Py= Ciov ¥, )+ £ <¢>. ol i + Tp RW)- 6()

Using the last expression for P(¢) in equation (6.5) yields the fol-

lowing equation:

=T (f-THET)rX =N




where:

- o P
X-r-ci7 a0 e

and

— T

Neo (f-C £ )+ X

Combining (5.11) and (6.7) gives the following relation:

§ e Regtdd - Ll 8 E-wh e H s

-m & S:,.’ =0
B N ] TR 1)

Eliminating R between the above differential equations results in

the following second-order differential equation for Q :

8- ¢t _‘) ?' (——-. + V4 M“’)Ji}

+<7n2.r »uar(’/c (‘L')if_-ﬂ Z’)Q CQ mwN-,c *(4")

Defining
¥

g« dvry
3 I $."‘ (6.10)

and ucing the definitions of Q, N and M and the relations

-2 dr(") + miw £cn)-o (6.11)
8§ 3
and ¢ ' P ¢
oh7 [Tt 0 [Ted ()
(™) . (6.12)
R L D)




the inhomogeneous part of equation (6.9) becomes:

L™ % - tr =0 ot “ -
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Now equation (6.9) can be written in the following form

EL(E)e-E £ T(CF e TFV)eFe

(6.13)
where X(Q) represents the left-hand side of equation (6.9) and the

functions F(j) § =1, 2, 3, are expressed in terms of known functions.

F= 5l Sy

® . gt df vy 55 K befo-Tt
F gTZ"*%’"’” ac”m’t (6.14)
Tl (E‘.{I S:u,’ M)_m“’.z_iacngz(_zr)
c

Admittance Condition at an Entrance of an Axisymmetric Nozzle

The general solution of equation (6.9) is a combination of
the general solution of the homogeneous equation and the particular
solution of (6.13). 1f these solutions are known the general solution

can be written as follows:

-
) s) )
$:-C. & +ad "’@ +C‘z§l,*c.! Ph (7.1)
where §k and §“ are two independent solutions of the homogeneous
part of equation (6.9):

£($,)=0

C2 and C3 are arbitrary constants. Now note that above equation has

the following singular points:

= e~ e (-2—)Y" and § = @
g =90, g=c-= € throat (f*' ) 4

For supercritical nozzle with finite nozzle entrance only the singularity

at the throat (where ¢ = O ) is cf interest.
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essuming that all the singularities of the solution, 4 , ap-
pear in 5“ then the condition requiring the regularity of the solution
at the nozzle's throat can be expressed by requiring C, = 0. Consequently

3
the proper solutinn of (6.9) is:

b=c ®"+ < Ve 674 c, ®,
(7.2)

From (7.2) together (5.10), (6.7), (6.4), (6.5), and assumption
111, the following relations are obtained:

“n (0] J!‘” S
"I B v 5%

V-3 M = (325 e @) 1+ ¢ O,

P+ I-. U+ miw §u)_ K =-C nie d-¢ ,,,‘u@‘fé;)- Cp mi @,

n-) ¢ (m)
j‘{:(‘) = (o] +<r‘F + O (7.3)

1f these are considered to be a system of linear equations
for the determination of Cl,O’ and C2 with given values of U,
V=W, P, and S for a given ¢ , we see that only three of these
values can be arbitrarily prescribed. In other words, a relation
must exist between any such set of four values, This relation is

obtained from the relation of compatibility of the four linear

Equations ; i.e., from the vanishing of the following determinant;
3) w =
w-94& _5_4 3" i$. ©
P d ¢ T )

v-§" M @€~ (@) &,

P+ f U+ mio bm - Miw §m (f,"m’ufm) -n;th

S_ﬁam ¢./A££)__ J¢' o ﬁl"') O
) £IN(¢)

(7.4)
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Above relation holds for any value of ¢ . In particular,
(7.6) it holds at the nozzle's entrance where it provides the admittance
relation for the combustion chamber flow. For the second-order equations,
there are infinitely many admittance relations corresponding to differ-
ent values of the subscripts (n!j,’) appearing in the eigenfunction ex-
pansions used for their solution. The function Q“ which appears
in the inhomogeneous part of the admittance relation is the particular
soluticn of equation (6.13) which corresponds to F(3) (defined in equa-
tion (6.14)) and it is assumed to be known.

The transverse-admittance relation for the first-order equa-
tion can be obtained from the second-order admittance relation by putting
its inhomogeneous part equal to zero and letting m = 1.

The admittance relation simplifies in the isentropic case by
taking S = 0 identically. If the perturbed flow i