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HANDBOOK FOR PREDICTION OF AIR BLAST FOCUSSING 

ABSTRACT 

This handbook sets forth the procedures and techniques for gathering and - 

evaluating the meteorological data necessary for predicting the focus of air blast 

from surface or near surface explosions, and it describes simple devices to speed 

the calculations. In Appendix A, all the graphs necessary for the evaluation are 

gathered for easy reference. In Appendix B, 87 sets of vertical velocity gradients 

and the resulting sound ray paths are assembled for rapid determination of focal 

distance. These should cover most of the conditions to be expected throughout 

the continental United States. 
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I.  INTRODUCTION 

Blast waves are generated whenever explosives are detonated. They generally 

propagate "beyond the area under control, often cause complaints and, at times, 

claims for damages. This report; describes methods and techniques for evaluating 

conditions that may increase the intensity of the blast waves in specific areas.) 

The techniques can also be used to determine the validity of claims resulting 

when detonations occur accidentally or without regard to conditions. This report 

should be helpful to range control officers, demolition officers, safety officers, 

claims officers, and public relations officers, as well as to personnel engaged 

in experimental studies involving explosives. 

As the air blast formed by a detonation moves past a given position the pres- 

sure of the air at this position rises rapidly to a value above the ambient pres- 

sure, then decreases more slowly to a value below the ambient pressure, and fi- 

nally returns to the ambient value. The maximum excess pressure in the wave is 

referred to as the peak overpressure or simply the pressure of the airblast. The 

peak overpressure will be taken as the criterion of damage in this discussion. 

The blast wave attenuates very rapidly to a sound wave. The laws of sound 

propagation apply and the terms blast waves and sound waves will be used synony- 

mously in this report.  To determine the path of a ray of sound through the at- 

mosphere, the initial direction of the ray from the source and the manner in which 

the propagation velocity varies with altitude must be known .  if the velocity of 

sound is uniform throughout the air above the ground surface, the blast wave will 

move out uniformly in all directions and the sound rays will look like the spokes 

of a wheel, as shown in Figure 1.  If the velocity decreases from the surface up- 

ward, all sound rays will be turned upward away from the ground surface, as shown 

in Figure 2, and the intensity of the sound along the surface will decrease very 

rapidly. If the velocity increases with altitude the rays will be turned toward 

the ground, as shown in Figure 3, and the intensity at any point along the surface 

will be from 3 to 6 times as great as it would be at the same distance in a uni- 

1UX1Ü     VClU^l^j      1XCJ.UI 

*For a discussion of the theory of the propagation of sound waves through the 
atmosphere, see BRL Report No. Ill8 and references cited there. 



Combinations of decreasing and increasing velocities from the surface up to 

12 or 15 thousand feet can cause the wave to "be returned to the surface 5, 10, or 

15 miles away and the wave front may actually converge, as shown in Figure k. 

The convergence increases the intensity of the wave as much as 100 times over 

that of a wave traveling at uniform velocity. 

The velocity of sound in the atmosphere depends on the speed and direction 

of the wind, the air temperature, and the humidity. The velocity of sound will 

be increased in a downwind direction and decreased in an upwind direction. Con- 

sequently, the effect of the wind will depend on the component of wind in the di- 

rection under consideration.  Changes in velocity caused by fluctuations in rela- 

tive humidity are less than the experimental error in the determination of the 

wind effect, therefore, humidity, can be neglected. Thus, the paths of sound rays 

through the atmosphere can be calculated if the values of air temperature, wind 

speed, and wind direction at the ground surface and at frequent intervals of al- 

titude up to about 12,000 feet sure known. 

With these data, the responsible officer can determine the velocity gradients 

present in the atmosphere, whether or not a focus of the blast wave may occur, and 

the intensity of the blast at particular locations.  He can then decide when to 

detonate without damage and thus avoid justifiable complaints. The steps involved 

in the procedure are: 

1. Tabulate temperature, wind speed and wind direction for each elevation 

from surface up to about 12,000 feet. 

2. From a map of the area determine the directions from the location of the 

explosion to the various areas where annoyance or damage can occur. These are the 

azimuths of interest. 

3. Considering only one azimuth of interest at a time, calculate the angle 

between the wind direction and the azimuth at each elevation and the wind velocity 

component along the azimuth. 

k.    Adjust the velocity of sound for the temperature of the air at each 

elevation. 

5. Calculate the total change in velocity due to both temperature and wind 

for each elevation. 

6= Plot velocity versus altitude and determine vertical velocity gradients 

in the atmosphere from this graph. 



7. Obtain the multiplication factor for the conditions represented on the 

graph by comparing the graph with the various possible combinations of gradients. 

8. Compare the velocity gradients in the graph with the library of 87 cases 

to observe the location of the focus if one exists. 

9. Determine overpressure in the sensitive regions along the azimuth under 

cons ideration. 

10. Repeat Steps 3 through 9 for other azimuths. 

Section II tells how to secure the data required and describes techniques to 

speed the calculations.  Section III delineates the types of gradients to be ex- 

pected, the resulting ray paths and the resulting increase in intensity, i.e. mul- 

tiplication factor. Means of determining the distance to the focus is described 

in Section IV. 

The magnitude of airblast pressures that may cause damage and the type of 

damage to be expected is discussed in Section V. 

There are times when it is necessary to destroy ammunition even though the 

meteorological conditions are unfavorable.  In these instances airblast pressures 

may be reduced by burial of the explosive charge. The reduction of airblast pres- 

sures along the surface by burial of the explosive is described in Section VI. 

To help the officer evaluate claims. Section VII states "Forty Reasons Why 

Walls and Ceilings Crack", and gives references to pertinent publications. 

Appendices A and B provide a handy reference for the evaluation of the mete- 

orological data required in Steps 7 and 8. 

II.  DATA AND CALCULATIONS 

The necessary data—air temperature, wind speed and wind direction at various 

altitudes--can be supplied by any meteorological station having Rawinsonde equip- 

ment. Data should be taken approximately every 500 feet from the surface up to 

5000 feet. Above 5000 feet the intervals should be about 1000 feet. Since the 

meteorological conditions seldom remain constant for long periods, the data 

should be gathered within three hours before the detonation. For rapid calcula- 

tion, data can be assembled as shown in Figure 5. 



Azimuths of Interest and Wind Direction 

One or more sensitive areas where damage or annoyance may occur will lie 

within possible range of the blast waves from any given point of detonation. 

The direction to these areas are the azimuths of interest. If no appreciable 

wind is blowing either at the surface or aloft, the velocity gradient in the at- 

mosphere will be determined by the air temperature only and the effect on the ray 

paths will be the same in all directions, i.  e. a picture of the ray paths in one 

direction will be the same as that in any other direction. However, if an appre- 

ciable wind is blowing, the velocity of the sound wave is increased in a direc- 

tion downwind and decreased in a direction upwind. Across wind the change in ve- 

locity due to the wind will be negligible. Under such conditions a focus can ex- 

ist downwind while no focussing conditions may be found in directions upwind or 

across wind. The effect on the velocity gradient depends on the component of the 

wind velocity along the azimuth of interest. This statement means that the angle 

between the wind direction and the azimuth of interest must be noted at each al- 

titude where wind velocity is measured. The product of the cosine of this angle 

and the wind speed at that altitude is the component affecting the speed of the 

blast wave along the azimuth. If the angle is less than $0  degrees the direction 

of the wind component will be toward the sensitive area, i^e. the wind component 

will be positive. If the angle is between 90 degrees and l80 degrees the direc- 

tion of the wind component will be toward the source of the blast wave and the 

wind component will be negative. This calculation must be repeated for each 

altitude. 

When a focus is caused by winds, the focal area will be in a direction toward 

which the upper winds are blowing and will lie in a region bounded by rays at ap- 

proximately 30 degrees from the direction of the wind. 

Wind Board 

The wind component can be determined quickly and conveniently by the use of 

a wind board, as illustrated in Figure 6. The arm which rotates around the center 

of the board is graduated in knots on one half and in miles/hour on the other half. 

The vertical graduations on the board are spaced to read wind, component in feet per 

second. If the wind at a given altitude has been measured as 20 miles/hour in a 

direction 32 degrees from the azimuth of interest, the portion of the arm gradu- 

ated in miles/hour is set at the angle of 32 degrees as in Figure 6. The gradu- 

ation for 20 miles/hour intersects the vertical graduation for 25 feet/sec. on 

the board. This is the component of wind velocity in the direction of the az- 

imuth of interest. 
10 



The elements and dimensions for the construction of the wind board are shown 

in Figure 7« The arm can be made of plastic approximately l/U inch thick with 

graduations marked on the lower side to reduce parallax. A drawing of the board, 

using dimensions given in Figure 7, can be mounted on a plastic sheet l/8 inch 

thick and covered with thin plastic. A small bolt through the center of the arm 

and the center of the board will complete the assembly. 

Calculations 

Since the ray paths are determined only by velocity gradients in the atmos- 

phere, the absolute value of the velocity of sound is of minor importance.  The 

calculations can be greatly simplified by assuming a velocity V in still air at 

zero degrees Centigrade and then adding to this velocity the changes caused by the 
o 

difference between the ambient temperature and 0 C. and the change of velocity 

due to the wind component along the direction being considered.  The velocity of 

sound increases approximately 2 ft/sec for a rise in temperature of 1 C; there- 

fore the velocity at any altitude (a) is: 

V = V +2(T)+ wind component, 
a   o     a ' 

where: 

V = Velocity at any altitude "a" 
a 

O - 
V = Velocity at temperature 0 C 

T = Air temperature C at altitude "a". 

Since V is common to all velocity values the gradient can be determined by 
o 

plotting (2 T + wind component) versus altitude. This technique simplifies the 

calculations. 

The meteorological data supplied is tabulated in columns 1, 2, 5> ana  9 of 

the data sheet. The investigator may choose one or more directions to explore or 

he may choose to investigate the direction in which conditions will be the worst, 

that is, a direction parallel to the upper winds, and then the direction at right 

angles to the first direction.  Let us assume that the directions &,  b, and c have 

been chosen. The calculations proceed as follows: 
a»   «• 

1. At each altitude multiply the air temperature by 2 and record in Column 

Ik,  Figure 5. 

2. The wind direction as given by the meteorological stations will be the 

direction from which the wind is blowing and will be expressed in degrees from 

true North. But we want the direction to which the wind is blowing. We obtain it 

11 



by adding l80 degrees to the recorded value if that value is less than l80 degrees, 

or subtracting l80 degrees if the recorded value is between l80 degrees and 360 

ucgrees.  me value obtained is put in column 4. 

3. The angle between the direction to which the wind is blowing and the di- 

rection "a", the first azimuth of interest, is equal to the difference between 

each value in Column 4 and the value "a". These differences are recorded in 

Column 5. 

4. The component of the wind velocity in direction "a" can be read from the 

wind board described above or can be derived from the product of the wind speed 

canu.    ^iic    >VUQXUC    <j±.     uiic    cu.xg,-L.c:    x O-VJX UcU    -LLI   ' ■' > ' ' Jl"' I    y    IUI    ccx^ii   cj.cvauiuui        xnxo    UVJLU
- 

ponent is recorded in Column 10. 

5. The total change in acoustic velocity due to wind and air temperature is 

the sum of the values in Columns 10 and 14 at each elevation. This sum is tabu- 

lated in Column 15. 

6. The values in Column 15 are then plotted versus altitude and the gradients 

are measured and marked on the graph.  If the graph is composed of a great number 

of small segments it can be simplified bv approxlmat-in«3, several short segments 

with one average line. See Appendix B for examples of graphs. 

7. Repeat Steps 3 through 6 for directions b and c. 

III.  RAY PATHS FOR VARIOUS GRADIENTS 

The graphs resulting from the preceding calculations may exhibit a zero gra- 

dient, a positive gradient, a negative gradient, or a combination of two or more 

of these gradients. Each graph will have a characteristic pattern of ray-paths 

i ] t- i.t- r-m i i ii— 11     uy     one    Liuiuuxiict L/J.W11   ui    gxauxcaoö    xii    ouc   a. ULIUJo j-uicx c     oiavciöcu    uy     uilt; 

blast wave. The combinations of gradients appearing on the graph therefore de- 

termine the intensity at various distances from the source due to convergence or 

divergence of the wave front. These gradients are discussed in this section. 

Zero Gradient 

When the gradient is zero the velocity of the sound rays does not change. 

For this reason all the rays emanating from a source point will radiate outward 

like the spokes of a wheel as shown in Figure 1. The resulting pressure of a 

blast wave traveling along the ground surface has been measured under conditions 

of a zero gradient for various weights of explosive. A pressure versus distance 

12 



Chart is shown in Figure 8. When the velocity of sound changes with altitude the 

vertical gradients become either positive or negative. Pressures produced by ex- 

plosions at various distances when these other gradients exist in the atmosphere 

can be described as some multiple or fraction of the value shown in the pressure 

versus distance chart for zero gradient conditions. These multiples are called 

"multiplication factors" for particular combinations of gradients. 

Negative Gradient 

When the sound velocity decreases with altitude, all the rays are refracted 

upward. Except for a little scattered energy, none of the sound is audible at 

the ground surface beyond a short distance. Thus the multiplication factor for 

a negative gradient is zero. 

Positive Gradient 

When the sound velocity increases with altitude, all the rays are refracted 

toward the ground surface. A ray starting from the surface at any angle of de- 

parture with the horizontal follows the arc of a circle until it again meets the 

surface. The highest point of the path is the midpoint. The horizontal distance 

between the points of departure and arrival in the horizontal plane is called 

the range of the ray. 

A very common condition is one in which the positive gradient extends from 

the surface to altitude "a" with a negative gradient extending above the altitude 

"a". Ray paths for this condition are shown in Figure k.    The ray having an angle 

of departure that allows it to reach an altitude "a" and return to the ground 

surface will be the limiting ray. Rays with an angle of departure greater than 

that of the limiting ray will enter the region of the negative gradient and be 

refracted away from the surface, while rays with an angle of departure less than 

that of the limiting ray will rise to an altitude less than "a" and return to the 

surface at a horizontal distance less than that reached by the limiting ray. 

That is, the limiting ray has the maximum range under this particular condition. 

Also under this condition the intensity of the sound in the region between the 

source and the maximum range is greater than that under the conditions of a zero 

gradient. The increase in intensity will be greater under a strong gradient than 

under a weak gradient and will be greater close to the source. For practical 

purposes a single multiplying factor of 5 has been chosen for all gradients nor- 

mally experienced. Beyond the maximum range the multiplying factor is zero. 

However, if the sound is incident on a water surface, the energy is reflected 

13 



back into the atmosphere and the phenomena is repeated. Under these conditions 

there is no limiting ray and the multiplying factor remains 5. 

The maximum range depends on the magnitude of the positive gradient and the 

altitude to which it extends. Figure 9 gives the maximum range for various gra- 

dients to altitudes up to 5000 feet. 

When an atmospheric layer having a velocity gradient of zero is adjacent to 

the ground surface and is overlain by a layer in which the velocity gradient is 

positive, the ray paths will be similar to those depicted in Figure 10. Some of 

the rays will converge to a focus. This condition produces the weakest focus 

with which we are concerned. The multiplying factor for the region of the focus 

is 10. 

Combination of Two Positive Gradients 

Conditions sometimes exist when in each of the first two layers just above 

the surface there is a positive velocity gradient. When the upper gradient is 

weaker than the lower gradient, the resulting pattern of rays consists of two 

groups returning to the surface. The intensity of sound along the surface is in- 

creased under each bundle of rays. Figure 11 shows this pattern. The multiplying 

factor for each region is 5, the same as under a single positive gradient. How- 

ever, when the upper gradient is stronger than the lower gradient, the pattern of 

T>av T>at.hs has a definite focus as shown in Figure 12. The multiplying factor for 

the region of focus is 25. For the regions on either side of the focus the mul- 

tiplying factor is 5. 

Combination of a Negative Gradient and a Positive Gradient 

If a negative velocity gradient exists in the layer of atmosphere touching 

the ground surface and a positive gradient exists in the layer above, the sound 

rays will be deflected away from the ground surface while being propagated through 

the lower layer and be deflected in the opposite direction while propagating 

through the upper layer. If the second layer is sufficiently thick so that the 

positive gradient can increase the velocity of the sound until it is greater than 

the velocity at the surface, the sound wave will be refracted back to the ground 

surface and be converged to a focus as illustrated in Figure 13. Focussing under 

these conditions is the most severe; the multiplying factor for the region of 

focus is 100. 

The various combinations of gradients to be expected and the appropriate mul- 

tiplication factors have been summarized in Appendix A for easy reference. 

Ik 



IV.  LOCATION OF FOCUS 

Identification of the plot of velocity versus altitude made from the mete- 

orological data with one set of conditions described in the preceding section 

will show if a focus exists and also the multiplication factor. The ray paths 

for characteristic combinations of gradients have been calculated on the Elec- 

tronic Ray Tracer analogue computer. These calculations are discussed in the 

BRL Report No. 1118 and 87 cases are assembled in Appendix B of this handbook for 

convenient reference.  If a case can be found in which the gradients and the al- 

titude limiting the first layer are approximately the same as in the case under 

consideration, the distance from the source to the focus can be obtained from the 

picture of the ray paths. The overpressure due to the blast wave in the focus 

area will depend on the weight of explosive, the distance to the focus, and the 

multiplication factor for the combination of gradients. The pressure versus dis- 

tance chart (Figure 8) will give the overpressure along the surface for the par- 

ticular weight of explosive to be detonated. The product of the pressure at the 

focal distance and the multiplication factor will equal the overpressure in the 

focal area. 

If on the velocity versus altitude graph being considered, either the mag- 

nitude of the gradients or the altitude to which the first gradient extends is 

between values shown in the cases, appropriate interpolation will provide the 

distance to the focus. To aid in interpolation, graphs of the combinations of 

gradients and the distance to the focus for each case have been assembled in Fig- 

ures 14A to l4l . These graphs will avoid the necessity of thumbing ■cnrougn -one 

many pages of cases to make a double interpolation. Their use will be demonstrated 

by two examples. 

Example 1. From the surface to 1000 feet the gradient is -.010 ft/sec/ft. 

From 1000 feet to 5OOO feet the gradient is + .011+ ft/sec/ft. Above JOOO feet 

the gradient is negative. 

First observe the velocity versus altitude plot to see if the velocity in 

the second layer increases to a value greater than the value at the surface. If 

* Some of these graphs are based on the calculations by the BRL analogue computer 
but many of them are based on calculations at the Naval Weapons Laboratory, 
Dahlgren, Virginia, on the digital computer by Dr. H. Lugt in collaboration with 
Mr. Don Ammerman and V. Philipchuk. 
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It does not the sound waves will not return to the surface and a focus at the sur- 

face cannot exist. For this example, the sound velocity increases to a value 

greater than the sound velocity at the surface. This is readily determined from 

case numbers 81 and 82 of Appendix B. The corresponding ray paths indicate that 

a focus will exist between 52 and 50 kilofeet. A focal distance of 42000ft. is 

UUUBJ.ÜBU xx'uiu i igui'e XHLT. 

Example 2. From the surface to 5000 feet the gradient -SQ08 ft/sec/ft• 

From 5000 feet to 6500 feet the gradient is +.010 feet/sec/ft. Above 6500 feet 

the gradient Is negative. 

The velocity versus altitude plot indicates that a focus can exist at the 

surface. 

No graph exists for a 1st gradient of -.008 ft/sec/ft. Figures Ü4F and IkG 

provide focal distances for 1st gradients of -.005 ft/sec/ft, and -.010 ft/sec/ft 

with a 2nd gradient of +.010 ft/sec/ft« It is therefore necessary to determine 

the focal distance for a 1st gradient of -.005 to 5OOO feet with a 2nd gradient 

of +.010 ft/sec/ft and the focal distance for a 1st gradient of -.010 ft/sec/ft 

to 5000 feet with a 2nd gradient of +,010 ft/sec/ft and then interpolate between 

these for the focal distance when the 1st gradient is -.008 ft/sec/ft. 

For a 2nd gradient of +.010 ft/sec/ft read on Figure lUF the value of the 

focal distance midway between the 2000 and 4000 feet altitude lines. This value 

is 78,000 feet, i.e., the focal distance for the 1st gradient of -.005 to 5OOO 

feet and a 2nd gradient of +.010 is 78,000 feet.  Similarly on Figure IkG  for a 

2nd gradient of +.010 read the focal distance midway between the 2000 and 1+O00 

feet altitude lines. This value is 95,000 feet and is the focal distance for a 

1st gradient of -.010 ft/sec/ft extending to 5000 feet with a 2nd gradient of 

+.010. 

Summarizing the above: 

Dis-cance        interval 
(feet; (feet; 

Extending 
to 

1st Gradient Altitude 
(feet; 

2nd Gradient 
(ft/sec/ft; (ft/sec/ft; 

-.005 5000 +.010 

-.010 5000 +.010 

78.000 
15,000 

95,000 

The value of the 1st gradient of -.008 is at a point 5/5 of the interval be- 

tween -.005 and -.010 so that the focal distance for the value of the 1st gradi- 

ent of -.008 to 5000 feet and a 2nd gradient of +.010 will be 78,000 feet plus 

5/5 of 15,000 feet or 87,000 feet. 
l6 



Let us assume 1000 pounds of TNT is to be detonated. The overpressure due 

to the exploding of 1000 pounds at a distance of 87,000 feet with a zero velocity 

gradient in the atmosphere is given "by the pressure versus distance curve as 

.0007 psi. The multiplication  factor in the focal area for the combination of 

a negative gradient and a positive gradient is found in Section III to be 100, 

therefore the overpressure in the focal area will be 100 times .0007 psi, or .07 

psi. 

V.    DAMAGING AIR BLAST PRESSURES 

The damage caused by the overpressure of the blast wave depends on the type 

of construction, material, and dimensions. Glass panes of average size and thick- 

ness vary greatly in their ability to withstand blasts depending on how the panes 

are mounted. If the pane is cut to fit the frame perfectly and can be mounted 

without any strain in the glass, an overpressure of about 0.75 psi will generally 

be required to crack it. However, if the pane is forced into the frame so that 'it 

is under constant strain, a blast wave of 0.1 psi can cause the pane to crack. 

The cracking of plaster on a wall depends on the flexibility of the wall. 

A plastered surface attached to a masonry wall will withstand a much higher pres- 

sure than a surface supported by a wide wooden panel. In general a well-constructed 

plastered wall will stand higher overpressures than average window panes. 

An overpressure of .03 to .05 psi in a blast wave can cause a loose window 

sash to slap the window frame and produce a loud noise while no actual damage is 

being done. In constrast, the quiet settling of one corner of a house can cause 

damage to walls and windows which is often attributed to blast waves. Similarly 

the removal of supports in a wall to provide a wide opening and failure to rein- 

stall adequate supporting structure will cause damage to the wall above the open- 

ing. 

If the evaluation of the meteorological data and the magnitude of the charges 

to be detonated are such that the overpressure to be expected in the sensitive 

areas is 0.1 psi or greater, the firing program should be postponed. 

CAUTION 

When the sound waves are incident on a land surface where shrubs 

and trees are growing, the wave front will generally be destroyed and 

the reflected wave can be neglected. However, when the waves are in- 

cident on a water surface, the waves are reflected somewhat similar 

17 



to light reflected from a mirror. In this case the waves under a 

single positive gradient would not have a limited range since the 

reflected waves would be refracted hack to the surface and be reflec- 

ted repeatedly, thus being heard far beyond the maximum range dis- 

cussed above. When a focus occurs at a water surface the energy rises 

as though from a new source and will be focussed again at a point twice 

as far from the source as the first focus. The overpressure at the 

second focal distance should be calculated using the total distance 

to the second focus and the same multiplying factor used with the 

first focus. 

VI. REDUCTION OF AIR BIAST PRESSURES BY BURIAL OF EXPLOSIVES 

There are times when it is desirable to destroy ammunition in spite of un- 

favorable meteorological conditions. Airblast due to detonation of explosives 

can be greatly reduced by burial of the charge. The burial should be in uncon- 

solidated material which would attenuate any seismic vibrations generated by the 

explosion. However, in burying the charge, precaution must be taken to avoid 

placing it close to a layer of hard rock on which buildings may be resting, since 

vibrations generated by the explosion will be transmitted to the buildings and 

cause annoyance or even damage.  The unconsolidated soil should be sufficiently 

thick to permit burial of the charge deep enough to reduce the airblast to a safe 

value and still have sufficient soil below the charge to reduce ground vibrations 

to a safe level. Very large charges require greater separation from the rock 

layer than small charges, but a little experimentation in the area will establish 

safe limits of charge size for each situation. 

The reduction in the airblast by burial is shown in Figure 15. The graphs 

refer to any size charge. The horizontal distance from detonation to point of 

observation and the depth of burial is expressed in scale units of lambda (x). 

X  is the distance in feet numerically equal to the cube root of the explosive 

weight in pounds. The use of the curves will be illustrated in the following 

example: 

It is desired to dispose of 1000 pounds of explosive. A building is 1000 

feet from the point of detonation. Can the explosive be detonated in one charge? 

At what depth should it be buried? The cube root of the charge weight in pounds 

is 10. That is, the length of X  is 10 feet. The distance to the building is 

100X. The chart (Figure 15) tells us that the overpressure of the blast wave 

-, a 



from a surface explosion at a distance of 100X, is approximately 0.3 psi, which 

iijDv rip.mRfi>'p the hin 1 rHne,  However, if the exnlosive is buried at a deüth of IX 

(10 feet), the airblast pressure at a distance of 100X, will be 0.015 psi and the 

airblast from the detonation would cause no damage. 

VII.  INVESTIGATING DAMAGE CLAIMS 

With the increase in the number of facilities for experimental work involv- 

ing explosives, many young men with limited experience in structural damage are 

being asked to appraise damage claims. Engineering training in structural design 

or advice from a seasoned engineer will be invaluable, but the following four 

^afö'Mflnrtao     T.H 1 1     Via     e-»^     rftiaof     Vial T-\ 

1. The National Board of Fire Underwriters, 85 John Street, New York 38, 

New York, has prepared a pamphlet entitled "Blasting Claims--A Guide for 

Adjusters". 

2. The United States Department of Interior has issued Bureau of Mines 

Bulletin No. lj-^2, "Seismic Effects of Quarry Blasting", which gives a general 

discussion on the vibration of structures and resulting damage. 

3. The Department of Interior, Bureau of Mines Report of Investigation No. 

5968, "Review of Criteria for Estimating Damage to Residences from Blasting 

Vibrations" establishes damage criteria for ground transmitted vibrations. 

k.    The Architect's Small House Service Bureau of the U. S., Inc., Minneap- 

olis, Minnesota, has published a list of forty reasons why walls and ceilings 

crack.  These are reproduced below as copied from the Architect's Handbook. 

Frrr+.v  TPfl.Rnns   uhv  ual 1 s   ard   r*eiTing.<=;   i-i-s^lr   are - 

1. Building a house on fill. 

2. Failure to make the footings wide enough. 

3. Failure to carry the footings below the frost line. 

k.    Width of footings not made proportionate to the loads they carry. 

5. The posts in the basement not provided with separate footings. 

6. Failure to provide a base raised above the basement flood line for the 
settin0, of wooden "^osts. 

7. Not enough cement used in the concrete. 

8. Dirty sand or gravel used in the concrete. 
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9. Failure to protect "beams and sills from rotting through dampness. 

10. Setting floor joists one end on masonry and the other on wood. 

11. Wooden beams used to support masonry over openings. 

12. Mortar, plaster, or concrete work allowed to freeze before setting. 

15. Braces omitted in wooden walls. 

Ik. Sheathing omitted in wooden walls (Except in "backplastered" construction). 

15. Drainage water from roof not carried away from foundations. 

16. Floor joists too light. 

17. Floor Joists not bridged. 

18. Supporting poets too small. 

19. Cross beams too light. 

20. Subflooring omitted. 

21. Wooden walls not framed so as to equalize shrinkage. 

22. Poor materials used in plaster. 

23. Plaster applied too thinly. 

2k. Lath placed too close together. 

25. Lath run behind studs at corners. 

26. Metal reinforcement omitted in plaster at corners. 

27. Metal lath omitted on wide expenses of ceiling. 

28. Metal reinforcement omitted where wooden walls join masonry. 

29. Plaster applied directly on masonry at chimney stack. 

50. Plaster applied on lath that are too dry. 

31. Too much cement in the stucco. 

32. Stucco not kept wet until set. 

33» Subsoil drainage not carried away from walls. 

34. First coat of plaster not properly keyed to backing. 

35. Floor joists placed too far apart. 

36. Wood beams spanned too long between posts. 

20 



37. Failure to use double joists under unsupported partitions. 

38. Too few nails used. 

39. Rafters too light or too far apart. 

kO. Failure to erect trusses over wide wooden openings. 

Careful perusal of these references will provide explanations for most of 

the alleged structural damage that will be far more logical than attributing the 

damage to airblast from explosions. 

PERKINS,  JR.    ' 

A/ A^M*^\ 
if 

W.  JACKSON 
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FIG. I     RAY   PATHS   IN   AIR   WHEN   VERTICAL  VELOCITY 
GRADIENT   IS  ZERO. 

FIG. 2   RAY  PATHS  IN   AIR  WHEN  VERTICAL  VELOCITY 
GRADIENT   IS   NEGATIVE. 

22 



FIG. 3    RAY   PATHS   IN   AIR   WHEN   VERTICAL   VELOCITY 
GRADIENT   IS   POSITIVE. 

FIG. 4   RAY   PATHS   IN   AIR   WHEN   VERTICAL   VELOCITY 
GRADIENT  IS   NEGATIVE   IN   AIR   LAYER  CLOSE 
TO   SURFACE   AND   POSITIVE   iN  THE   LAYER 
IMMEDIATELY   ABOVE. 

23 
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FIG. 10    RAY  PATHS  WHEN   VERTICAL  VELOCITY  GRADIENT  IS 
ZERO  IN   THE   AiR   LAYER   CLOSE   TO  GROUND 
SURFACE   AND   POSITIVE   IN   THE   LAYER   IMMEDIATELY 
ABOVE. 

H6. ii    KAY   PAi HS   FOR   COMBINATION   OF   STRONG   AND  WEAr\ 
POSITIVE   VELOCITY  GRADIENTS   IN   THE   AIR   WHEN 
THE   STRONG  GRADIENT   IS   IN   LAYER   ADJACENT   TO 
THE   SURFACE. 
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FIG. 12    RAY   PATHS   FOR   COMBINATION   OF   STRONG   AND 
WEAK   POSITIVE   VELOCITY  GRADIENTS   IN   THE   AIR 
WHEN   THE   WEAK  GRADIENT   IS   ADJACENT   TO 
THE  SURFACE. 

FIG. 13   RAY  PATHS   IN   THE   AIR   WHEN   A   POSITIVE 
VELOCITY  GRADIENT   OVERLIES   A   NEGATIVE 
VELOCITY   GRADIENT. 
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FiG. I4Ä. FOCAL DISTANCE  WHEN   Ist VELOCITY   GRADIENT  IS ZERO   TO 
VARIOUS ALTITUDES   AND  FOR VARIOUS  2 nd GRADIENTS 
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FIG. i4B.  FOCAL DISTANCE   WHEN   I st VELOCITY GRADIENT  IS +.002 FT/SEC/FT 
TO VARIOUS ALTITUDES   AND  FOR VARIOUS  2nd GRADIENTS 
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FIG.  14 D.   FOCAL   DISTANCE   WHEN    18t VELOCITY  GRADIENT  IS+010 FT/SEC/FT 
TO  VARIOUS  ALTITUDES   AND   FOR VARIOUS 2nd GRADIENTS 
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FIG. I4E.    FOCAL   DISTANCE  WHEN   l»t   VELOCITY  GRADIENT  IS -.002 FT/SEC/FT 

TO   VARIOUS   ALTITUDES  AND FOR VARIOUS   2nd   GRADIENTS 
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FIG. 14 H   FOCAL   DISTANCE  WHEN    I«* VELOCITY GRADIENT IS -.020 FT/SEC/FT 
TO   VARIOUS   ALTITUDES    AND   FOR   VARIOUS   2 nd   GRADIENTS 
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FIG. 141.   FOCAL   DISTANCE   WHEN   I «t~ VELOCITY   GRADIENT   IS-.030 FT/SEC/FT 
TO  VARIOUS ALTITUDES   AND  FOR   VARIOUS   2nd    GRADIENTS 
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APPENDIX A 

EVALUATION AIDS 

Convenient references for quickly evaluating the meteorological conditions 

that determine the pattern of ray paths are: 

Is Categories of gradients and multiplying factorss 

2. Air Blast Pressure vs Distance Chart for a uniform atmosphere. 

3. Air Blast Pressure vs Distance for Various Depths of Burial of Explosives, 

k. Maximum Range of Air Blast for Single Positive Gradient. 

These evaluation aids are presented on the following pages. 

The meteorological conditions are generally determined "by a radiosonde 

flight at a single location. Gradients at other points between the point of det- 

onation and the focus will vary from the one determined. Furthermore successive 

flights at the same location will show some changes with time. However the gen- 

eral pattern of the gradients (Category) will not change for several hours unless 

a weather front is moving in. For this reason the multiplying factor given for 

each category is chosen to provide the maximum pressure to he expected under the 

given conditions. 

This provides a safety factor in protecting the public and preserving public 

relations. 
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COMBINATION  OF GRADIENTS MULTIPLICATION   FACTOR 

FOR WEglPN NQTEP 

SINGLE   NEGATIVE  GRADIENT 0 - FROM  ORIGIN TO LIMIT 
OF OBSERVATION 

POSITIVE GRADIENT NEAR 
SURFACE WITH NEGATIVE 
GRADIENT ABOVE. 

.^L. 

5 - ORIGIN TO LIMITING RANGE 

ZERO   GRADIENT   NEAR 
SURFACE WITH   POSITIVE 
GRADIENT  ABOVE. 

10- 

WEAK   POSITIVE   GRADIENT 
NEAR   SURFACE  WITH STRONG 
BAcirtwF    OBinirur    >an\ie 

25- FOCAL   AREA  ONLY 

Z 
NEGATIVE   GRADIENT  NEAR 
SURFACE   WITH   STRONG 
POSITIVE   GRADIENT ABOVE 

100 - FOCAL   AREA ONLY 

FIGURE   Al   - VARIOUS   TYPES   OF  VELOCITY   GRADIENTS 
TO  BE   EXPECTED   AND   THE INCREASE   IN  INTENSITY 

AT A  FOCUS    FOR   EACH   TYPE 
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APPENDIX B 

LIBRARY OF CASES 

The following pages present a set of vertical velocity gradients which should 

cover most of the conditions to "be expected throughout the United States. The 

velocity at each altitude was determined from the temperature and wind velocity. 

Sound Ray Paths are shown for each velocity versus altitude curve. These have 

been comnuted on the Snerrv-Rand Electronic Rav Plotter. The pattern of these 

paths shows whether or not a focus occurs and the distance to the focus if one 

does occur. 

Note; Altitudes are in feet in cases 1 to h  and 79 to 75« In all other cases 
the altitudes are stated in kilofeet. 
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