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ABSTRACT 

Information matrices are derived for estimates of the range parameters of 

moving targets as obtained by combining apriori information (if available) with 

reflected radar signals observed in the presence of additive white Gaussian noise. 

The inverse of the information matrix provides a lower bound on the covariance matrix 

of any unbiased parameter estimates.   This bound can be approached with a high 

signal-to-noise ratio and optimum data processing (matched filters). 

Arbitrary frequency modulation, amplitude modulation and target motion as 

well as various assumptions on processing the R-F phase are considered.   The 

multiple target case enables investigation of a signal's resolution ability as well as its 

accuracy potentials.   Results for a carrier frequency much greater than the effective 

signal bandwidth are obtained as a special case. 

A   main purpose of the report is the reduction of the original radar problem 

to a linear model which is equivalent in the sense of having the same information 

matrix.   These models provide valuable insight into the relative effects of multiple 

targets, choice of modulation, apriori information, and assumptions regarding R-F 

phase and bandwidth.   The linear equivalent model also leads to a valuable computational 

algorithm for investigations using digital or hybrid computers.   The various special 

cases of interest are obtained by simple modifications of the general case and thus the 

algorithm can provide a very versatile tool for evaluating and designing radar signals. 
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1.     INTRODUCTION 

We derive general formulae for the accuracies with which the range parameters 

of moving targets can be estimated from reflected radar signals observed in the presence 

of white noise.   The single target case has already been investigated by many authors. 

(See for example, Refs. 1 and 2.   Reference I contains an extensive bibliogranhy.)  In 

this sense, our work on the single target case is a rehash of the previous studies in a 

more general form.   However, our motivation is not to write general formulae, but 

rather to convey a simplified picture of a complex problem.   We pursue this goal by 

developing linear parameter estimation models which are equivalent to the original 

radar problem.   These simple models delineate the relative effects of amplitude and 

frequency modulations, assumptions on how the R-F phase is processed, and apriorl 

information.   They provide a convenient starting point for the design of optimum 

modulations.   Of equal if not greater importance, they suggest a simple computational 

procedure for evaluating performance and hence for conducting an experimental signal 

design. 

The formulae for the multiple target case enable investigation of the resolution 

ability of a radar signal by determining how well the parameters of several targets 

can be simultaneously estimated from observing the sum of the radar signals reflected 

from the various targets.   As in the single target case, the goal is an equivalent linear 

model which leads to both understanding and a convenient computational algorithm. 

Our analysis is a straightforward application of certain results of classical 

statistics; the Cramer-Rao inequality and linear regression theory.   We treat unknown 

parameters corresponding to signal amplitude and phase the same way as the unknown 

parameters of the target's motion. 

In Sec. 2 we review the necessary statistical theory and in Sec. 3, apply it to a 

general radar model.   In Sec. 4, the effects of unknown phase and amplitude parameters 

are discussed in terms of a matrix partitioning which removes these nuisance 

parameters from the problem.   Equivalent linear models for various single target cases 

are presented in Sec. 5 while the multiple target case is discussed in Sec. 6.   A general 

discussion is given in Sec. 7. 



2.      ERROR ANALYSIS FOR NONLINEAR PARAMETER ESTIMATION 

Consider the following problem.   We observe 

z(t) = y(t,r) + n(t) 0 ^t s T (2.1) 

where y(t, £) is a known function of time t and the parameter column vector |_. ^   is 

a fixed but unknown value of £.   Tj(t) is a zero mean, stationary, white Gaussian 
2 o 

stochastic process with two-sided noise power, a    .   Unbiased estimates of £   are to 

be made using the observations and whatever apriori information is available.   We 

are interested in the covariance matrix of the errors in the estimates. 

The following notational convention is used repeatedly.   If x(t,^) is some 

function of time t and an unknown parameter vector £, then 

B(x/jÖ ■ (2.2) 

Thus ?f(x, j£) is the column vector formed from the partial derivatives of x(t,^) with 

respect to ip,>4>2>''' > t^e elements of £.   The partial derivatives are evaluated at some 

chosen value of ^ denoted by $ . 

Consider first a discrete time version of Eq. (2. 1) wherein we make N 

observations 

z(n) = y(n, f )   + Tj(n) n = 1, • • •,N 



where T)(n) is some discrete time stochastic process.   Let 

F(z(l) z(N), C0) = FCz, t0) 

be the cumulative distribution function of the observations.   Let £ be any unbiased 
o * estimate of ^ , made from the z(n), n = 1, • • •, N.   Define  2 as the covariance matrix 

o   * 
of t   -£ ; that is 

2 -BC«;0-J)a0-J)'] 

where the prime denotes transpose.   If we define 

B =   C   B(log F/t) «TOog F/t) dF^. f) (2„ 3) 

then under sufficient regularity conditions, the Cramer-Rao or Information inequality 

states 

I  > B'1 (2.4) 

*«       -i 
where the matrix inequality implies  2 - B is a positive definite matrix.   References 3, 

4 and 5 are three among many which derive this result.   (In Refs. 4 and 5 see discussions 

on efficiency of estimation.)  When r)(n) is a zero mean, discrete, stationary white 
2 

Gaussian process with variance  a , Eq. (2.3) becomes 

N 

B = "5^ ^y/mVi). (2.5) 
a   n=l 

The corresponding result for the continuous time case of Eq. (2.1) is 

T 
B = -^ J s(y/i)s'(y/i)dt. (2.6) 

*   0 



Now consider an alternate approach to investigating the errors associated with 

nonlinear parameter estimation problems.   A Taylor series expansion of y(t, £) in 

terms of the elements of £ about £   gives, 

y(t. £) = y(t. £0) + 3(y/i)A£ + Remainder (2. 7) 

where 

Ai=i-i0- \ 

Assume we can make an estimate, £, from our observations and apriori. information 

such that £ - £ is small enough to make the remainder in Et}. (2. 7) negligible. Then 

the error analysis of our original nonlinear problem is equivalent to an error analysis 

of the linear parameter estimation model 

z(t) = 5 (y/f)A£ + Tj(t) (2.8) 

where t5(y/£) is a known function of time and At is to be estimated.   If maximum 

likelihood or, in this case, unbiased least squares estimates of A£ are made, the 

resulting error covariance matrix, 2i is given by the well-known result 

2 = B"1 (2.9) 

(For the discrete time case,  see discussions on linear regression and the linear 

hypothesis in Ref. 3 through 6.) 

The matrix B is called the information matrix* (or Fisher Information matrix, 

see Ref. 3).   If we define 

B(t) = 3(y/m (y/C) (210) 

as the information matrix for a single observation at time t, then Eqs. (2.6) or (2. 5) 

*  It is also called the normal matrix. 



shows that, for independent observation errors, the information matrices add.   Thus 

if we make two sets of observations with information matrices B   and B2, and if the two 

observation noise processes arc mutually independent, then the total information matrix 

B, is simply 

8 = 8^82. (2.11) 

Often knowledge of the value of £   is obtained from sources other than just the 

observations.   If we have such apricri- information, it can often be modeled as a set 

of values 

z    _,      = e0+T7      .    . (2.12) 
-v priori   *    -taprf-ort 

where TJ      J    . is a zero mean, Gaussian random vector with covariance matrix 
-a priori 

B     ^    j -   K V       J     .i is independent of the observation noise, the additive property 
aprtori        -a priori K 

of information makes 8 + 8       .    .the information matrix corresponding to both the 
a priori 

a priori information and the observations. 

Our results are not completely tied to a Gaussian assumption.   Using the 

Taylor expansion approach of Eq. (2. 7), the covariance matrix of Eq. (2. 9) is that 

obtained by least squares unbiased estimators (minimum variance linear estimators) 

for any "white" but non-Gaussian T?(t).   However, for simplicity, we continue to employ 

the Gaussian assumptions. 

Henceforth we call the matrix 2 defined by Eq. (2. 9) and Eq. (2.6) the covariance 

matrix of the estimate errors.   Our preceding discussions show this to be a valid 

statement provided 1) we use maximum likelihood (matched filter) estimation techniques 

and 2) the signal-to-noise ratio and amount of a priori information are large enough to 

give small errors in the estimates of the parameters.   If either condition is violated, 

our results are actually a bound on the obtainable accuracy. 



3.      SINGLE TARGET INFORMATION MATRIX 

The formulae of Sec. 2 are now applied to a general model for a single target. 

A radar transmits a modulated sine wave with carrier frequency w    and time duration 

T.    Let r(t) denote the range between the radar and a moving point reflector at time t. 

Let  ö(t) denote the time delay between transmission and receipt of the signal; to be 

explicit, a signal received at time t, was transmitted at time t-6(t).   r(t) and 6(t) are 

related by 

c6(t) = 2r(t m 
) (3.1) 

where c is the speed of light.   Assume the equations of motion of the reflector are 

known to within the values of the unknown parameters, Ö , • • •, fl   .   Let 6_ be the 

column vector 

0 = 

e 
i 

e. 

(3.2) 

The time delay at time t is written as ö(t,£).   We do not specialize our results to any 

specific form for 6(t,£).   However, a common model for accelerating targets is 

d3 2 ö(t,Ö)=01+02(t-T)+-J-(t-T) (3.3) 

where T is some chosen reference time.   For small accelerations, 0,6   and 0„ are 

approximately proportional to the target's range, range rate and range acceleration 

at time T. 

Let ex denote the amplitude and ß the phase of the reflected signal as received 

at the transmitter. Both ot and ß are considered unknown parameters. Let f denote 

the  p + 2 dimensional column vector containing the elements of 6_ and a and ß.   Let £ 



and thus 6 ,  a   and ß    denote the true but unknown values of these parameters. 

The carrier is modulated by both amplitude and frequency modulation.   Let 

v(t) denote the amplitude modulation and let u(t) denote the frequency modulation. 

Assume both quadrature components, z (t) k = 1, 2, of the received signal are 

observed in the presence of additive, broad band, zero mean Gaussian noise.   Then* 

zk(t) = yk(t.£0)-Mk(t)      k = l,2 O^t^T (3.4) 

where r) (t) and rj (t) are zero mean,  stationary, white, mutually independent, Gaussian 
2 

stochastic processes with two-sided noise power, a    and 

yk(t.i) =  av(t,0) cos[w(t,0)+ ß --^yÜ-]     k = 1,2. (3.5) 

The exact form of v(t,£) and w(t,£)  depends on the explicit problem.   If both phase and 

envelope characteristics of the observed signal are used to form the desired estimates. 

v(t,0) = v[t-6(t.0)] (3.6) 

rt-<5(t,0) 
w(t,0) =  \     l>c + u(T)]dT . (3.7) 

0 

In Sec. 5, the above and forms corresponding to other cases will be discussed. 

Equations (3. 4) and (3. 5) define a nonlinear parameter estimation model of the 

type discussed in Sec. 2.   Therefore,   2   , the covariance matrix of the errors made in 

estimating £   from observing z (t)   0 ^ t ^ T is given in the sense of Sec. 2 by 

*  The time interval for which y. (t, j^ ) is nonzero is really t(£ ) ^t ^T + Ö(T,£ ) 

where t^{0_ ) is the first time for which t-ö(t,£ ) is nonnegative.   However, for most 
problems of interest, an interval 0 ^t ^ T is a satisfactory model for analysis.   If not 
the necessary modifications are obvious. 



2   =(B   +B.. .    ,) 
i      I    H.a priori' 

-1 

V r T 
BJt)dt 

0 

Vt)S\i(t) + B2.1(t) 

(3. 8) 

(3. 9) 

(3.10) 

Bk.t(t)= -r^V^'V^ k = 1,2 (3.11) 

where Üiy./Z) denotes the column vector of partial derivatives of y. (t,|) with 

respect to the components of £, evaluated at £ = t .   B (t) is the information obtaine 

at time t from observing both quadrature components of the received signal while B 

is the total information obtained over the time interval   0 ^ t ^ T.   B^ .     . £, a pri ori 
is the aprio ri information.   Our final interest is in Z    but we often confine 

discussions to just B (t) as it is the basic quantity. 

If we partition f as 

a 

i = 

then 

5(yk/i) = 

8(yk/«) 

z(yk/ß) 

^(yk/ö) 

(3.12) 

(3.13) 

where  ?Hy /a) and Üiy./ß) are scalars while ^(y./£) is a p-dimensional column 

vector.    Here and in the rest of the report, we use dotted lines to indicate the partitioning 

8 

• 



of vectors and matrices (which is not always as done in Eqs.(3. 12) and (3.13).   Define 

nk = u)(t(6) + /3-(k-l)7r/2. (3.14) 

Then from Eq. (3. 5) 

%k/a) =   v(t,0) cos nk 

ZiyJß) «-av(t,0)8lnQ 

(3.15) 

(3.16) 

3(yk/0) =   «[«(v/e) cos V^- v(t,0)3(a;/ö)sin 0 ] .       (3.17) 

Combining Eqs. (3. 10) and (3. 11) with Eqs. (3. 15), (3.16) and (3. 17) gives after 

manipulation and cancellation 

B£(.)= — 
a- 

a' 

v2(t) 
0 

v2(t) 

^v(t)Btv/0) 
1 

v2m\u/6) 

2 

Wy/e)ti(y/Q}+v2{t)Wp/e)ti{u/6) 

(3.18) 

where Eq.(3. 18) is partitioned corresponding to Eq.(3. 12) with the lower right hand 

element a  p x p matrix.   We indicate only half of the off-diagonal terms as    B (t) is 

a symmetric matrix.   Equation (3. 18) is to be evaluated for ^ = £   (i.e., 

ot - a , £ = *M but for simplicity we do not include this or the dependence of v(t) on £ 

in our notation. 

In the following sections we work solely with the time delay <5(t,ö) and in 

particular,  j5(6/£).    If the corresponding range, r(t,£) is given instead, Eq.(3,l)must 

be used.   A useful formulae obtained from Eq.(3. 1) is 



1 

[c + r(t -(5(t.0),£) ]3(6/0) = 23(r/0) 

where 

Ht-6iui),e)=^\ 
t =t-(5(t,0) 

in 



4.  EFFECTS OF UNKNOWN PHASE AND AMPLITUDE ON TARGET PARAMETERS 

Our analysis includes the variances of estimates of the phase, ß and the 

amplitude oi.   These are sometimes of interest; for example, the variance of an 

estimate of oi is a measure of detection ability.   However,  for many accuracy studies 

a and ß are nuisance parameters and we are really interested in   Z   = B.   , the 

covariance matrix of the errors made in estimating the target parameters 0.   B    can 
♦ "      i 

be obtained by partitioning B   as 

and 

V 
B"   , 

I 

B 
12 

B 
22 

(4.1) 

v8;1 
S11! 

L.    i 

12 

.22 
(4.2) 

If the partitioning is done as indicated by the dotted lines in Eq. (3.18), 

22 -1 
2    -*e~-*e    ' (4.3) 

The formulae for inverting partitioned matrices give 

(^V'^-BVW2 
(4.4) 

Applying Eq, (4. 4) to Eq. (3.18) gives 

*Uavriori information is present,  we partition B+Bt .     . £     j^.apnori 

11 



r 

^ B0 = l   [s(v/£) 3 '(v/e) + v2(t) B(w/fl)8'("/£) ]dt 

1 

f 
T2 
v (t)dt 

[ G G'  +G   G' 
V    V U)     OJ 

(4.5) 

where 

G   =   l v(t)3(v/0)dt 

0 

(4.6) 

■■■J 
?;        \ v (t)B(w/0)dt 

0 

(4.7) 

The matrix, G G ' + G  G'   is nonneeative definite and measures the loss in 
V    V u)    UJ 0 

information about Ö that results from an unknown phase and amplitude.   As we shall 

see, this information loss is zero in some special cases. 

We do not use B    in our further development as consideration of the full B 

matrix leads to much simpler results and a better understanding of the problem. 

However, Eq. (4. 4) can be employed at any point B„ is of interest. 
V 

12 
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5.        SINGLE TARGET EQUIVALENT LINEAR MODELS 

We now discuss linear equivalent models for three cases of a single target: 

R-F Phase Used for all Parameters 

R-F Phase Used for Motion Parameters 

R-F Phase Not Used. 

These cases do not exhaust the range of possibilities but are sufficiently illustrative 

to indicate how other situations are handled.   The choice of which case to use naturally 

depends on the problem under investigation; in particular, the type of the equipment 

available and the nature of the ambiguity problem. 

In Sec. 2, we discussed the linearization of a nonlinear problem by truncation 

of a Taylor series expansion.   In this sense, we could form an equivalent linear model 

for our radar problem by using the partial derivatives of Eqs. (3.15), (3.16) and (3. 17). 

However, we follow a more productive course and hypothesize two sets of observations 

. i a    — a 

zf(t) = 2j(t)t0 + nf(t) (5.2) 

where TJ (t) and T] (t) are zero mean, stationary, white, mutually independent Gaussian 
2     o 

stochastic processes with two-sided noise power   o- . £    is the parameter vector to be 

estimated, and a (t) and <£f(t) are column vector functions of time.   We know from 

Sec. 2 (or Eqs. (3. 8) through (3. 11)) that the information obtained from observing z (t) 
a 

and z (t) at time t is, 

Bt(t) = Ba^(t) + Bf^(t) (5.3) 

where 

Bf.f(l)= T£f(t)£'f(t) 

13 



r 

Equations (5.1) and (5.2) are an equivalent linear model for a radar problem when the 

vector functions #,(0 and ^.(t) are chosen to make B (t) of Eq. (5.3) the same as the 

B (t) of the original radar problem. 

In a certain sense, we choose ^ (t) and ^(t) such that B     (t) represents the 

information obtained from the amplitude modulation while B     (t) represents the 

information obtained from the frequency modulation and the R-F phase.   As will be 

seen, this dichotomy is not precise as ^(t) is dependent on the amplitude modulation 

v(t) as well as the frequency modulation, u(t).   However for many situations, v(t) itself 

determines the energy content of the signal while it is the structure of "r"V(t) that 

determines the effectiveness of the amplitude modulation.   Admittedly, this point of view 

is not universally valid but in the author's opinion, it is of sufficient value to call 0 (t) 

and ^/(t) equivalent models for amplitude and frequency respectively. 

If any a priori information exists, the equivalent linear model of Eqs. (5.1) 

and (5.2) is supplemented by the additional observations (see Eq. (2.12) 

-a priori    -     -apriori (5.4) 

with Bfc .     .   the corresponding information.   For example, if   2n .    . ^, a priori K     —e r Bj a priori 
denotes the covariance matrix of an estimate of £ made from previous tracking of the 

target and if we partition as 

t = 

a 

ß 

(5.5) 

then' 

-1 
*   Note that B  '*       .     . does not exist.   In the same sense, !.„ *    . does not have £, apriori 6_, a priori 
to exist. 

14 



B 
j:,a priori 

0 

0 

"dj a priori 

J 
Previous tracking might also provide useful information on the target cross section 

which implies a priori information on the amplitude   a.   A priori information can also 

arise from other sources such as equipment which maintains a measure of the phase. 
2 

If a. .    . denotes the variance of these equipment errors and other phase 
P,CL priori 

uncertainties, then 

B 
_, a priori 

0 
I 

ß, a priori 

0 

0 

0 

(5,6) 

is the corresponding a priori information. 

The limiting case where the carrier frequency, w , is much larger than the 

effective signal bandwidth is of special interest.   This can be obtained by simply 

dropping the lower order terms in cu   that affect the information on 0_.    It is difficult 

to specify the range of carrier frequency to bandwidth for which this approximation is 

useful as, in general, the nature of the target's motion is also a contributing factor. 

However, the large to   approximation is very useful for a wide range of problems. 

The large w   case can also be obtained by appropriately modifying the definitions 

of v(t,0) and w(t,0). 

15 



To illustrate the equivalent linear model, we begin with the general case.    It 

is seen by inspection, that for 

^(0 = 0 

0 

B(v/0) 

^f(t) = «v(t) 

&(w/ö) 

the B (t) obtained from Eq. (5. 3) is equal to the B (t) of Eq. (3. 18). 

We now consider three special cases and obtain explicit formulae for 

8(w/fl) and S(v/Ö) . 

16 



R-F Phase Used For All Parameters 

For the case when the R-F phase is used for all parameters.the equations 

for v(t,£) and u{t,e) are given by Eq. (3,6) and (i. 7).   The resulting partial derivatives 

are 

ü(v/0) = -v(t) 3(6/0) 

3(w/0)s •Cwc + u(t)]5(ö/£) 

(5.7) 

(5.8) 

where 

v(t) = 
dv(t) 
dt 

ov The time functions of Eqs. (5. 7) and (5. 8) are actually evaluated at time t-ö(t,£ ) but 

evaluation at time t is satisfactory for most cases.   Therefore we simplify our notation 

by dropping the 9_    dependence.   Evaluation of Eq. (3. 18) for Eqs. (5. 7) and (5. 8) gives 

a vt)=- 
- G 

v2(t) 
2 

a 
0 

v2(t) 

1 

v2(t)Cwc + u(t)Mö/£) 

Mt)+v2(t)[w +u(t)]^ m/en'iö/B) 
I             c       J     "     -J 

(5.9) 

where the partitioning is done as in Eq. (5.5).   By inspection we see that 

17 
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v(t) 
fV 

0 
^(o = a (5. 10) 

(p_{(t) = av(t) (5.11) 

[wc + u(t)] 5(0/0) 

combine with Eq.(5.3) to give the same B (t) as that of Eq. (5. 9).   When the R-F phase 

is used for all parameters, apHcri information on the phase is essential and this is 

mni.ieled as in Eq. (5.6).   Thus our equivalent linear system consists of Eqs. (5. 1) and 

(5. 2) with the £^ (t) and £ (t) of Eqs. (5.10) and (5. 11), combined with the aprioH 

model of Eqs. (5.4) and (5,6). 
2 

If the phase  3  is known perfectly, i.e., cr ,       = 0, the row and column F M * y ß,a priori 
of Eq. (5. 9) corresponding to ß  are simply c neted.    If in addition we use the large 

u)    approximation, our equivalent linear mode; for estimating 6_ is simply 

Zf(t)=    ^(tK + T^t) 

(^ (t)= av(t)w Sf(ö/ö) 
M c       — 

(5.12) 

where 

£ =e 

18 



R-F Phase Used For Motion Parameters 

Consider the case 

o(t.0) =0, +(5    M    ) 
—        1        m    -m 

(5. 13) 

where 

er^'2)/t=T 
(5.14) 

and 0     is the   p-1 dimensional column vector containing all elements of Ö except   6  , 
—m — 1 

6 ,  is the time delay at time T and fi   (t,0    ) describes the change in (5(t,ö) with the 
1 y m    -m 6 

motion of the target.    Thus the elements of 0^     are the parameters of the target's 

motion.    For the accelerating target example of Eq. (3. 3), 

03(t-T) 

m    —m        z 1 

6 
—m 

In many situations,  lack of knowledge of phase ß  or more often the ambiguity problem 

prevent the effective use of the R-F phase in the determination of 6    although it can be 

used for the target motion parameters  0    .    For such cases we write 
—m 

v(t,0) =v(t-01-<5    (t.0   )) 
— 1     m    —m 

(5. 15) 

w(t,0) = w t-w ö  (i,e  ) + 
—        c       cm    —m 

r    1   m   -m7. .. 
\ ii(s)ds. 

0 
(5. 16) 

In Eq. (5. 16) the oo 6     term has been combined with the phase shift    ß   (sec Eq. (3. 5)) ; 

that is, ß + u) 0    is considered the unknown phase shift rather that just   ß.   This 

19 



change of variables is made for     convenience,  not necessity.    For example,  if 

Eq. (5. 13) is substituted into Eq. (5. 9) and the partitioning technique of Sec. 4 applied 

to the resulting FL, the same I    we obtain by the change of variables results as many 

terms cancel.   However,  if we keep only the highest order terms in u , the B 

obtained from Eq. (5. 9) becomes singular for ("Kt.fl.) of Eq. (5. 13).   The change of 

variables side tracks these unnecessary complications. 

If we partition 0 as 

6 = 

0 

e 
-m 

then from Eqs. (5. 15) and (5. 16) 

g(v/0)= -v(t) 

3(6   /e   ) 
m -m 

(5.17) 

3(w/0) = 

u(t) 

[w +u(t)]?(6  /e   ) 
c m —m 

(5.18) 

The resulting B (t) of Eq. (3. 18) is* 

*   A constant frequency modulation u(t) - k, is equivalent to a carrier frequency of 
w   + k with u(t) = 0.   This obvious physical deduction is not evident from Eq. (5. 19) 

but use of the matrix partitioning of Sec. 4 shows it to be true as various terms cancel, 

20 



(5.19) 

vt)=— --        a 

±/(t) o ^v(t)v(t) 

v (t)    -v(t)u(t) 

v2(t)+v2(t)u2(t) 

J 

« v m -m 

.{vltlw +u(t)]}3/(ö   /e   ) 
c m —m 

{v2(t)+v2(t)u(t)[a;c-Ki(t)]}?!/(6m/0m) 

{v2(t)+v2(t)[a; +u(t)]2} Uö/eWiö/e) 
c m —m       m -m 

where we have partitioned as 

o 

ß 

0. 

0 
—m 

By inspection we see that the corresponding forms of Eqs. (5. 1) and (5. 2) are 

2a(t) = a 

-v(t) 

0 

v(t) 

v(t) 3(6^/0   ) m —m 
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^(t) = av(t) u(t) 

[w +11(0]3(6   /e   ) 
c m —m 

L 

For the large w    approximation, 

^(t) = a 

_                  «_ 

^v(t) 

0 

v(t) 

0 
^_            ^^ 

(^    (t)   = O'V(t) 
-1 

0 

1 

u(t) 

w m  /e  ) . 
c      m —m 

As mentioned earlier,the large w case can also be derived directly by changing the 

definitions of v(t,£) and a;(t,0j. For example, the present case can also be obtained 

using 
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v(t,0) =v(t   -0  ) 

.t-o. 
w(t,ö)=wt-w  6   (t.o   )+\    u(s)di 

-        c cm    -m 
0 

and substituting the resulting B(v/0) and   5(a>/£) directly into Iiq.(3. 18).   Reference 2 

uses this approach. 

R-F Phase Not Used 

If the R-F phase is not used at all, the phase parameter   ß  is dropped from 

our model by removing the corresponding row and column of Eq. (3. 18).   Usmg 

v(t,0) --v[t-(5(t.0)] 

w(t ,9) =   ^ct +   \    u( 
t-o(t.0) 

T)dT 

0 

and partitioning as 

£ = 

Q 

we obtain 

Bt(t) 
Oi 

(r 

v2(t) 

a 
-^v(t)v(t)S'(6/0) 

[v2(t) + v2(t)u2(t)]?;((5/Ö)5,((5/0) 

(5.20) 
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i 

The corresponding linear model is 

v(t) 
fV 

jpit) = a 

v(t)S(6/ö) 

0 

(£f(t) = Q;v(t) 

u(t)s(6/e) 

24 



6.    MULTIPLE TARGETS 

In many applications, target resolution rather than single target accuracy is of 

prime interest.   Target resolution refers to the ability of the radar to determine 

(resolve) the properties of separate targets when it observes the sum of the reflections 

from each target.   One approach to this problem is the inspection of the ambiguity 

function.    However, a more precise technique is to simply extend the single target 

analysis to the multiple target case and thereby investigate the following question: 

Given a noise corrupted observation of the sum of the signals reflected from several 

targets, how well can the parameters of all the targets be estimated?*   (Reference 7 

uses this technique to investigate angular resolution.) 

For simplicity, we restrict our explicit equations to the case of just two targets. 

The general multiple target case is conceptually a trivial extension but the notational 

complications tend to obscure the basic ideas.   In the two-target case, there are 

2(p+2) unknown parameters which we denote by the column vector 

where 

zH--- 

i2 

oc 

-J 

0 
-J 

(6.1) 

j = 1.2 (6.2) 

and of course,  Ot , ß   and 0_ denote the amplitude, phase and range parameters of the 
.th J     J J 
j     target. 

*   Our single target results can be interpreted as the curvature of the ambiguity lanction 
at the true values of the parameters (see Ref. 2).   Thus the multiple target analysis can 
be considered the curvature of a higher dimensional ambiguity function. 
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For the two-target case.thetwo quadrature components corresponding to Eq. (3. 4) 

are given by 

.o. 
zk(t) = Yk(t,Z )+T]k(t) k= 1,2 

where 

Y
k<t,^) = yk(t'£l) + yk(t'£2) 

and y. (t,£) is given by Eq. (3. 5).    It follows that, partitioning as in Eq. (6. 1), 

ö(Yk/Z) = 

^Vip 

%k/i2) 

(6.3) 

where  i5(y./£.) is the column vector of partial derivatives of y.(t,£.) with respect to 
k    j k       j 

the elements of £..   Using Eq. (3. 11) and (3. 10) we have 

Bz(t)=—-   {3(Y1/zmY1/Z)+3(Y2/Z)3'(Y2/Z)}   . 

Substituting Eq. (6. 3) gives 

B 
^ 

B   (t) 
-1 

C(t) 

B   (t) 
-2 

(6.4) 

where partitioning is as in Eq. (6. 1), B   (t) and B   (t) are the information matrices which 

would arise if the targets were observed separately, and 
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C(t)=   -L^iy^my^) 
a k=l 

(6.5) 

Using Eq. (3. 13), 

C(t)=-^ 

^/o,)%,/«,) 

^y,/^)^/^^ 

3(yk/a2)s(yk/ö1) 

%k/a1)%k//52)      , 

I 

3(yk//31)s(yk//52) 

3(yk/j32)5(yk/01) 

%k/a1)^(yk/i2) 

3(yk//51)3/(yk/e2) 

%k/i1)^(yk/ö2) 

(6.6) 

where partitioning is as in Eq. (6. 2).   The necessary partial derivatives are given by 

Eq. (3. 15) through Eq. (3. 17) with the obvious subscript additions.   Define 

A(t) ^(t.ep - wM^ + ZJj - ß2 (6.7) 

For simplicity we do not indicate the dependence of A(t) onö.,Ö9, ß. and /9„      Also 

define 

v (t) =v(t.0.) 
J -J 

j = 1,2   . 

Substituting Eqs.  (3. 15), (3. 16),  (3. 17) into Eq. (6.6) then gives after reduction by 

use of trigonometric identities, 
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Thus the information matrix, B_(t) of Eq. (6. 4) is completely specified by Bqs.(6.8) and 

(3.18). 

As in the single target case, we have 

Z       Z       Z, apriori 
i 

^r. B   =   \    B (t)dt 
J 
0 

where T    is the covanance matrix of the errors in the unbiased estimate of Z .   In the 

multiple target case, the possible range differences spread out the time duration of 

observations and this is indicated by making the observation interval 0 to T   where T 

is simply chosen large enough to encompass the actual observation interval. 

One important property can be observed directly from Eq. (6. 4).    Define, with 

partitioning as in Eq. (6. J.) 

A = 

where with partitioning as in Eq. (6. 2) 

A   = 
j 

0 

Of 

OL  I 
j 

j=l,2 

where 1 is a p by p unit matrix.   Eq. (6. 4) can be written as 
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Bz(t) = A gz(t) A 

where B   (t) does not depend on the amplitude parameters   a   and a .y   Thus if there 

is no apriori information, 

VA -1 
T 

B /(t)dt 

-1 

which shows that the amplitude (cross section), a„v of the second target has no effect 

on the accuracy with which the parameters of the first target can be estimated and vice 

versa. *   (See also the angular resolution problem of Ref.   7.)   This property is a 

result of our assumption that observation noise is the only source of error.    In practice, 

uncertainties in waveform shape and imperfections in the data processing equipment 

will introduce other errors which, for large cross section targets, may not be negligible. 

Now let us consider an equivalent linear mode) for the two-target case.    It is 

convenient to resort to a vector formulation.   Assume the q -dimensional column vector 

z(t) is observed where 

',0 z(t)= «»'(Or + rHt) 0 ^t ^ T (6.9) 

where Z    is a q -dimensional column vector of unknown parameters, *(t) is a 

q   by q   matrix of known time functions and n(t) is a q   dimensional, zero mean white 

Gaussian noise process with 

E[r)(t)r]/(t-)]= (5(T)2 (6. 10) 

where in Eq.(6. 10), 6{T) is the Dirac delta function and not a time delay.    For the 

model of Eq. (6. 9) and (6. 10) we have, (for the corresponding discrete time case, see 

Ref. 6) 

*   Unless, of course, 0t.? is known to be zero. 
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vvw^ (6.11) 

B = c T 
Bz(t)dt 

0 

(6.12) 

Bz(t)   = *(t)2   * '(t) (6.13) 

The equivalent linear model for the single target, Eqs. (5. 1) and (5. 2), can be written 

in terms of this vector model as 

q^    2 

q2=   P + 2 

Z =   t 

ka'(t) 
♦'(t) = 

|^(t)    1 

a              \ 

z(t) = 
1 

zf(t) 

a 

i(t) -- 

r?f(t) 

I     0   j 

0      1 

(6.14) 

(6.15) 

(6. 16) 

(6.17) 
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For the two-target case, we define, b> analogy with rhc single target   asc of 

■ »v  \.   ,        ', 

V     it) = » 
^a.j j 

v.(t) 

a 
j 

0 

3(v/0 ) 

(6.18) 

2f,j(t)sYj (I) 

0 

S(w/0 ) 

(6.19) 

We further define 

ö'(t) 

£'    ,^       0 
a. 1 

2 f. Mt) 
0 

n 2'ajt) 

0 ^2(t) 

(6.20) 

H(t) 

! 0 

1) 1 

cosA(t) -sinA(t) 

sinA(t) cosA(t) 

(6.21) 
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Then by algebraic manipulation, it can be shown that B (t) of Eq. (6.4) can be written 

B (t) = -7- ö(t)E(t) 
L a 

I     0 

0     1 

~'(t)0'(t) (6.22) 

Comparison of Eq. (6. 22) with Eq.(6. 13) shows that two different linear equivalent 

models are of interest.    For both models we have 

q2 = 2(p + 2) 

Z = 

ii 

i2 

One possible linear equivalent model is then given by 

q,^ 

1 öl 
2 

0 y 
(6.23) 

and 

or 

*'(t) = H/(t)e'(t) 

*'(t) = 

2'      (t) cosA(t)     cp'      (t) + sinA(t) £'   ,,(t) 

2'f. ,"> sinA(t)     2'a 2(t) + cosA(t) ^ 2(t) 

(6.24) 

The second linear equivalent model is given by 
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q1   =4 

♦'(t)   = 0'(t) (6.25) 

and 

or 

-1 _1_ 
2 

(T 

0 

cosA(t) 

sinA(t) 

= -T- H(t) 

1     0 

0     1 
H'(t) 

0 cosA(t) 

1 -sinA(t) 

•sinA(t) 1 

cosA(t) 0 

sinA(t) 

cosA(t) 

0 

I 

(6.26) 

The equivalent linear model of Eq. (6. 23) and (6. 24) differs from the single target 

case due to the extra parameters and a more complicated expression for   $'(0.   The 

equivalent linear model of Eq. (6. 25) and (6. 26) employs four instead of two observations 

and has the following interesting property:   If    z'     of Eq. (6. 26) were   —— I, the model 
~" a 

would correspond to the case wherein the reflections of the two targets are observed 

separately.   Thus all the effects of the multiple target are contained in the cross 

correlation terms of Eq. (6. 26).   A disadvantage of the second model is that Z'    of 

Eq. (6.26) is a singular matrix; that is,  Z     does not exist. 

Since the multiple target model employs the same <p (t) and (ptit) used for the 
a ' 

single target case, the discussions in Sec.  5 on the various special cases need not be 

repeated.   The additional term, A(t), of Eq.  (6. 7) is easily found from the equations 

w(t,0) given in Sec.  5. 

In a multiple target environment, the question of how many targets are present 

is very important. For example.iftuo targets are assumed when actually there is only 

one, the estimates of the single target's parameters are degraded.   The variances of 
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the estimates of the amplitude parameters, a , measure how well the number of targets 

actually present can be decided.    (The corresponding discussion in Ref. 7 is more 

detailed.) 

The matrix partitioning t iscussed in Sec. 4 is both applicable and 

useful in the multiple target case.    For example, all the parameters of a second target 

might be considered nuisance parameters. 

In many single target problems, the actual values of the unknown parameters 

do not affect the information matrix.   However, for multiple targets the information 

matrix and hence the covariance matrix is strongly dependent on the relative values of 

the parameters of the different targets.   Thus in order to obtain a true picture of target 

resolution ability, it is necessary to investigate the effects of changes in target separation. 

(Reference 7 indicates the type of results which may be expected.) 
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7.      DISCUSSION 

We have used the information matrix as a basis for investigating the accuracy 

and resolution ability of a wide class of radar signals.   The inverse of this information 

matrix is a lower bound on the covariance matrix of the errors obtainable from any 

unbiased estimate of the unknown parameters.   In theory, this bound is approached as 

the signal-to-noise ratio increases if maximum likelihood parameter estimation 

procedures are used.   However, for very large signal-to-noise ratios, errors in 

factors such as waveform shape and data processing equipment  become as important 

as those due to observation noise.   Thus this bound is obtainable only for a limited 

range of signal-to-noise ratios.   We have not attempted to discuss methods of imple- 

menting the required estimation procedures as there are many possibilities and the 

choice of technique depends very much on the explicit problem being investigated. 

The inverse of the information   matrix  is usually of prime interest.   In some 

special cases an analytic matrix inversion Is practical (see for example Refs. 2 and 8) 

but there seems to be little hope for the general models we have considered.   Thus if 

explicit closed form expressions are desired, the problem of interest must be 

restricted further and a potentially very difficult analysis attempted.   The matrix 

partitioning technique of Sec. 4 may be helpful. 

In the single target case, the equivalent linear model is a convenient starting 

point for the design of modulations which are optimized with respect to estimate 

variances. *   A general design theory for such problems is discussed in Ref. 9 and some 

explicit results are given in Ref. 8.    The basic idea is the use of an extension of the 

calcrlus of variations called Pontryagin's Maximum Principle to determine the optimum 

modulation under various constraints such as the signal's peak amplitude, total energy 

and bandwidth. 

The equivalent linear model suggests a straightforward yet versatile approach 

to computer investigations.   This is potentially of great value because of the difficulties 

associated with closed form results.    In the single target case the computations needed 

to obtain the covariance matrix of the estimate errors are given by Eqs. (3. 8), (3. 9) and 

*   This is the problem which originally motivated our investigations. 
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(5. 3) combined with the appropriate equivalent linear model. ~ (t) and ~(t). One of 

several possible computational flow s is given in Fig. 1. For the multiple target case. 

a possible computational flow for the equivalent model of Eq . (6. 25) and (6 . 26), is 

indicated in Fig. 2. Either figure could be p ogra mmed in a traightforward ma nner 

on a general purpose digital computer although a hybrid computer which combines 

integration capabilities with the general purpose arithmetic operation is even more 

attractive. A versatile mechani zation suitable for a wide range of experimental signal 

designs is possible as changes in the e quivalent linear model are easy and do not 

affect the main computational flow. 

The multiple target analysis gives the e timate accuracy for a particular set of 

target separations. This means some range of parameter values must be investigated 

in order to obtain a true picture of resolution ability. The value of a convenient 

computational algorithm for such investigations is obvious. 

Insight into the basic effects of factors such as modulation, target separation and 

bandwidth is a valuable quantity . Although the best basis for such insight would be simple 

clo ed form expressions for the covariance matrix , the author has found the combina

tion of the information matrix and equivalent linear model to be very useful. It is hoped 

this is not an isolated phenomena. 
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