
Group Report 1964-32 

The Periodic Analysis 
of Sampled Data 

E. Korneold 

15 June 1964 

Lincoln Laboratory 
M A^ AC"HTi<\1 OLOCY 





167 

MASSACHUSETTS  INSTITUTE  OF   TECHNOLOGY 

LINCOLN   LABORATORY 

THE  PERIODIC ANALYSIS OF SAMPLED DATA 

E.  KORNGOLD 

Group 22 

f 

GROUP  REPORT  1964-32 

15 JUNE  1964 

LEXINGTON MASSACHUSETTS 



ABSTRACT 

This report is a brief survey of some currently used techniques of periodic 

analysis of sampled data.   Almost every periodic analysis of empirical data eventually 

relies on one of the following three techniques: 

1 .       Regression analysis on a trigonometric polynomial 

2. Periodogram analysis 

3. The estimation of power spectra. 

Each of these techniques is best applied under distinct modelling assumptions, and an 

attempt has been made to discuss their applicability and their range of validity under 

various circumstances. 

After a brief introduction in Chapter I, Chapter II proceeds to describe the models 

in use and the statistical properties of the estimates associated with them     The effects 

of sampling and some of their implications in practical situations are treated in Chapter III. 

Chapter IV relates several common question areas to the theory developed in the earlier 

portions of the report, and presents some illustrations of the power of the techniques 

discussed.    Finally, Chapter V gives the briefest outline of the general requirements of 

a comprehensive program in time series data analysis.   Numbers in square brackets 

refer to entries, in alphabetic order, in the appended bibliography. 

Accepted for the Air Force 
Franklin   C.   Hudson,    Deputy   Chief 
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I.        INTRODUCTION 

In the processing of empirical data, a frequency analysis is often required as a 

partial characterization of the process generating the data.   In particular, one hopes, 

on the basis of such an analysis, to draw some inference on the presence of periodicities 

in the underlying process.   Two approaches to frequency analysis (harmonic analysis and 

spectral estimation) are commonly taken, sometimes without full awareness of their 

implication and range of validity.   The sources of ambiguity are several: 

1. There may be a basic ignorance about the nature of the underlying 

phenomenon, in which case the choice of a suitable model becomes the 

main stumbling block.   Indeed, the following kinds of alternatives have 

to be considered, among others: 

- the phenomenon may be periodic, in which case all frequencies are 

multiples of a single base frequency; 

- the phenomenon may be aperiodic, in which case frequencies of 

interest may be either discrete or continuous; 

- the phenomenon may be thought of as a single unique occurrence, 

or it may be taken as one of many possible similar realizations. 

2. Each of these alternatives represents a different point of view and requires 

different techniques in the analysis of data and the interpretation of results. 

In particular, there is an apparent formal similarity between conventional 

techniques of Fourier Analysis and the estimation of power spectra, which 

leads to the temptation of using one for the other although they apply to 

distinctly different models and have essentially different statistical prop- 

erties.   This gives rise to modelling uncertainty and the attendant problems 

in interpretation of results. 

3. The current literature on the subject of frequency analysis of empirical 

time series draws its techniques and terminology from at least three fields: 

-Classical Statistical Theory,  [3,  11,  12,  16] 

-Purely mathematical disciplines such as approximation theory,  [1] 

representation theory,  [6] Fourier Analysis and related fields, 

[19, 25, 29] 



-The frequency analysis of linear systems in communications 

engineering, [14, 19, 29]. 

Here, unfamiliarity with one or another language is the stumbling block. 

This report has been written in an attempt to elucidate the significant relations 

governing the applicability and validity of the theory.   The subject to be covered is large 

and growing, so that our presentation is anything but complete.   Moreover, the theory 

requires some fairly advanced mathematical tools;  therefore the presentation is primarily 

discursive.   Every argument can however be rigorously demonstrated without alteration 

of content. 

We shall be considering primarily zero mean second order stationary stochastic 

processes, as there exists hardly any theory for evolutive* time series.   Almost all 

references dealing with the latter generally convert them to something resembling station- 

arity by means of some elementary statistical device. 

Chapter II describes the models which are most commonly employed in periodic 

analysis.   These are a cyclic periodic model, a cyclic aperiodic model and an oscillatory 

model.   The cyclic models are presented primarily because they offer a good background 

for the treatment of the more sophisticated oscillatory model.   Emphasis will be placed 

on the statistical properties of the various estimation techniques presented. 

Chapter III will treat several consequences of sampling and the implications which 

follow in practical applications. In particular the phenomena of folding and aliasing will 

be described. 

Chapter IV has a two fold purpose:  on the one hand several common question areas 

will be elucidated in the light of the foregoing theory;   on the other, several illustrations 

will be given of the power of the techniques described in the earlier chapters. 

Finally, Chapter V outlines briefly the necessary data processing and analysis 

areas which should be included in a comprehensive program of periodic analysis of 

empirical data. 

"An evolutive time series is one with a non zero time varying mean. 



II.       MODELS 

We shall examine three models which find most frequent application.   The first two 

are cyclic models;  they are the simpler of the three and have been studied extensively in 

the last forty years.   They are based on the assumption that the time series to analyze is 

the sum of a deterministic component and white noise.   The deterministic component is a 

finite sum of sine and cosine terms whose frequencies may or may not be multiples of a 

single base frequency.   The third model, known as oscillatory, is based on the assumption 

that the time series is a realization of a stochastic process possessing a continuous power 

spectrum.   A heuristic difference between cyclic and oscillatory models is that for cyclic 

processes, different realizations are expected to look alike except for small fluctuations, 

whereas two single realizations of an oscillatory process may look entirely different from 

each other.   Another way of stating this is to say that different realizations of a cyclic 

process agree in mean whereas different realizations of an oscillatory process agree in 

quadratic mean.   While the first two models rest mainly on the application of classical 

techniques, the third model has only been developed vigorously during the last fifteen years 

and is still the subject of current research. 

A fourth model is of great practical interest and deals with processes which are a 

mixture of cyclic and oscillatory processes;   it assumes a superposition of oscillatory and 

cyclic processes and a spectrum which need not be continuous.   Analysis of this kind of 

model is almost non-existent in the literature but it appears* that work is currently in 

progress on spectral estimates which converge to the derivative of the integrated spectrum 

where it exists, and to the magnitude of the jump where continuity fails.   This kind of model 

shall not be considered in this report. 

In general, a realization of a continuous process {x } will be represented as x(t).   A 

discrete process {x } will have a realization x .   In the present chapter, we shall not distin- 

guish between a realization of a discrete process and a sample of a realization of a continuous 

process;  both will be written as x .   For the present this is a minor distinction although we 

shall see later precisely under what conditions it becomes important. 

A.       First and Second Model:  Cyclic Structure 

We shall assume in this case that the time series x is generated by a process 

of the form: 

*Doctoral Dissertion in progress under E. Parzen. (Private communication by L. Gardner). 
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c   =    )     (a. cos X.t + b. sin X.t  ) + £ 
t     L       J        J      J       J t 

where*   0 lX < ft, a  and b  are real and £   is Gaussian, uncorrelated, with mean zero 
j 2        J J t 

and variance v .   There are two possibilities open at this point: 

(1) We can assume that the frequencies X. are all multiples of a base 

frequency known a priori. 

(2) We know neither the frequencies nor the amplitudes of the process 

and are trying to estimate both, and in particular, the frequency 

associated with the peak amplitude. 

The first possibility leads to a straightforward application of linear regression theory 

[ 16,Vol II, pp.  141-174] with trigonometric functions substituted for polynomials, and 

is equivalent to a least squares fit of an empirical function by a trigonometric polynomial 

[ 34, pp.  14-19] .   The second possibility leads to the calculations of the periodogram and 

is commonly referred to as "Harmonic Analysis" of empirical data. 

1. First Interpretation: Frequencies Known, Amplitudes Unknown 
[ 25, Ch I] 

In this case, the process is a superposition of white noise and a 

periodic deterministic component.   All frequencies are multiples of a base frequency 

and we can write 

^A iftv. ZTTV. 

x   =   cy   +    > (a     cos   L t+13     sin    •*-   t  ) + I   . 
t 0       Li V. P V. P t 

j=l J J 

* X. is restricted to be less than it because in the concrete situation of a sample of 
J 2K j X 

size T, we have X. - —••*-   and j cannot be allowed to exceed   -—- , (resulting in an 
J i ^ 

upper bound of TT for X) lest there be more than T coefficients to evaluate on the basis 

of a sample of size T. 



We assume  m = x - |    to be periodic with period p,   m   ,    = m ,   and further, that t      t     t K f ft      t+kp       t> 

the number of observations   T  is a multiple (large usually ) of the period p.   £   is white 

noise as previously described.    The v.,   j=l—»q are a subset of the sequence 1, 2... , p 

and are used to indicate that not every harmonic need be represented*.   What is wanted 

is an estimate of the coefficients av , /3„   .   Since £   is Gaussian, the least squares 
j       J t 

and/?,, 
j J 

estimate is the maximum likelihood estimate of a     and 3     and we find that v, v 

A 
o 

=   ?   1    Xt 
t=l 

V = I 1 xtcos 
J
        t=l 

27TV 
 j 

P 

B    =   —      )    x   sin    *—   t    ,   j = l-»q v.        T     Li     t p J M 
J t=l 

are the estimates of the Q^s and B's. 

Furthermore, the A     and B    are independent normal variables with 
v. v. „ 

J J 2a2 

means a     and B     respectively, and their variances are -=- ,which go to 0 as sample 
V) J 

size T—*<». 

Setting the squared amplitude at a given frequency to 

2 2 2 
R     = A     + B        , 

v v v 
j j J 

2 2 2 2 
it can be shown that R    is an estimate of the true squared amplitude  p     = a     + B 

v v v v 
j j j J 

with the properties 

* We have chosen the v. scheme of indexing the en's and B 's rather than letting j = 1—•p 

and allowing some a.'s and b.'s to be zero because the presence of the noise £   will insure 

that none of the estimated a>'s and B's will be zero, whereas we might know a priori that 

some of them are. 



r/02v       2        4a2 

C (V = pv + — 
j j 

Var R    - ~ 
J 

"2       2a2 " 

J 

2 
In other words, R     is a consistent asymptotically unbiased estimate* of the squared 

j 
amplitude of the v. th harmonic. 

It may be pointed out that very rarely is there enough information to 

assume, in applications, that the fundamental frequency is known.   The analysis of this 

model is thus primarily a theoretical exercise in regression analysis. 

2-       Second Interpretation:  Amplitude and Frequencies Unknown 

This model, as the previous one, is a finite parameter model of the 

form q 

x„ =   >   (a. cos w.t + /3. sin w.t   ) + £        ,    t = 1 —T    . 

j=l 

The constant term has been omitted as it can be estimated and removed.   Again, £   is 

white Gaussian noise;  the only restriction** on the to. is 
J 

0 < w. < 7T ; 

no longer are the CJ, harmonically related.   The problem this time is to extract the 

periods 27r/u>. from the sequence x . 

The technique of the periodogram proceeds as follows: 

*Unbiased A the mean value of the estimate equals the true value. 
Consistent A the estimate converges in probability to the true value.   Sufficient for 

consistency is that Var(estimate) — 0 as sample size -* <*>. 
Asymptotically A . . . as the sample size goes to °°. 
The symbol A is to be read as: "means by definition". 

**cf. footnote page 4. 



Calculate the periodogram 

*~<w)=: 

at all points 

Tv   '    2TTT 
x e 
t 

iwt 

t = 1 

— [A^)+B2(u)] 

u;^ = -=-   , v=  i-*--i,      (evenT), 

where 

T 

A(OJ) = =   )     x  cos wt 

t=l 

T 
2 V B(u>) = =/    x  sin wt 

t = l 

are the Fourier coefficients of the data relative to a trial frequency u>.   In short, x  is 

subjected to an ordinary Fourier Analysis as if the noise term £   were absent. 

Now, it is a characteristic property of the periodogram *T(OJ) that for 

large samples it is large whenever co is equal to one of the frequencies w. and that it is 

small whenever u> ? a>. [11, p. 92]*.   Thus, as one expects large peaks (for large samples) 

in 3>   (co) whenever w = o>.» it is natural to say: 

"Let us calculate $T(u;) at all frequencies of interest and single out 

the peaks in $  (u>)f inferring therefrom that a frequency component 

is predominantly present in the process x wherever a peak occurs 

in *T(w). " 

The question of the statistical significance of the peaks in the periodo- 

gram arises immediately.   Several tests of significance have been developed and are 

briefly described in [15].   Ideally, one should like to state that peaks occur if and only 

th 
*Heuristically, the periodogram is the square of the amplitude c   of the v    component; 

if we write the v    component as c   cos (a t + <p ).   It is known that when £   = 0 , 

TZXt      2 
t= 1 v 

so that c    is proportional to the contribution of the v    component to the total energy 

dissipated by the process (cf. Parseval's relation and completeness). 

7 



if a corresponding frequency is present in the signal;   this however is not so, as can 

be directly inferred from the degradation imposed by the noise term £ .   We shall 

mention only one test, due to Fisher, which is independent of sample size. 

To assess the significance of the largest peak in the periodogram 

compute the statistic* 

h (T+l) 

where u> is the frequency corresponding to the maximum amplitude of <i>   (w), where 
max _   . i 

Z7I"i 
T is odd and u>. = -=r •   The distribution of g can be explicitly calculated.   Details of 

usage are given in Ref. [11, pp. 91 ff].   Other tests are referred to in Ref.   [15]. 

The distribution of the values of the periodogram of a set of T random, 
2 n-2       9 

uncorrelated, normal (0, a ) numbers is ——X9 •   The expected value of the periodogram 

2                                    4 
is — , its variance is j .   The probability that the periodogram exceed k times its 

expected value is 

f 2 

P^(u>)>k-a 

TX     ' 2 7T 

r 2 

L47T x\>4) 

This is the basis of Shuster's original idea of using the periodogram to reject the hypo- 

thesis - whenever $   (u>) is large - that no periodic component is present in the data at 

frequency OJ.    An extensive exposition of periodogram analysis is given by Bartels in 

Ref. [ 15 ] and Stumpf in Ref    [25] 



B.       Third Model:  Oscillatory Processes 

In very few cases is it reasonable on a priori grounds to decide that a process 

is of the finite parameter type.   The previous section briefly described two such models: 

-a periodic model where all frequencies were an integral multiple of a base 

frequency, sampled over an interval containing several periods; 

-an aperiodic model where, while discrete, the spectral components were 

no longer harmonically related. 

We will now consider the following: 

-an aperiodic model with a continuous spectrum. 

The cornerstone of the development is the well known theorem which asserts that for a 

wide class of stochastic processes the autocorrelation function and the power spectral 

density are completely equivalent descriptions of the second order properties of the 

process. 

1.       Preliminaries:  In general, if f(u> ) is an estimate of f(co ), we shall 

use, as an evaluation criterion of f, the mean square error 

MSEf= Bias  f+Varf 

where 

Bias f = <f (f - f) 

Varf = (f (f-(ff) 

There are several other criteria developed in the literature  [15, 18, 31].   We shall not 

pursue these. 

We recall that 

f is unbiased if Bias f = 0 

f is asymptotically unbiased if Bias f — 0 as sample size T — «> 

f is called consistent if it is unbiased and Var(f) — 0 as T — °°. 

Sometimes, in the sequel, we shall write f (u> ) instead of f (cu).   This is done to stress 

the fact that we are concerned with pointwise estimates, i. e., we are estimating a 

single value, the value that f takes at co .   We are not evaluating a function.   The esti- 

mation of the function is done pointwise, one by one, in practical estimations.   In this 

chapter the emphasis is on statistical properties of estimates. 



We shall be concerned with zero mean second order stationary processes 

having continuous spectra and possessing no periodic components corresponding to spectral 

lines*.   Roughly speaking, a stochastic process is a collection of functions {x }.   Each 

function is a possible realization of the process and it's occurrence is thought to be 

governed by a probability law.   A zero mean process obeys the relation: 

fx = 0    for all t. 
^  t 

Stationarity implies that the probabilities governing the occurrence of certain values 

(1)     (2)     (3) (n) 
A. j     A. y     A. j      .        •       t    y     A. 

for any n, are independent of the time origin, and that these values are thus just as 

likely to occur at one or the other of the two time sequences 

V V '   *   *' ln 

t4+h, t2+h, .   .   ., tn+h, 

regardless of the shift h.   Second order stationarity means that all moments up to 

moments of second order are stationary.   In particular, 

£ xtxt+ 
= y(k) 

depends only on the lag k.   The function y(k) is the autocovariance function of the process. 
2 

It is sometimes normalized by dividing by y(0) = a   and the resulting function is the auto- 

correlation function.   A Gaussian process is completely specified by its first and second 

order properties.   Most of the theory is developed for Gaussian processes.   If the Gaussian 

assumption is dropped, results pertaining to expected values are not affected;  but results 

pertaining to the variability of estimates become approximations. 

*Processes with mixed spectra have been very scantily treated.   One reference is [30]; 
also, see footnote on page 3. 

11) 



There are two pairs of alternative ways of presenting results, corres- 

ponding to the real-complex presentation on the one hand, and the continuous-discrete 

cases on the other.   The first dichotomy is purely a matter of convenience in notation. 

The second corresponds to the distinction between Fourier series and Integrals (the 

Fourier series' coefficients are the Fourier transform of a periodic function).   We 

shall stay with the discrete case as this is the one most frequently encountered in 

practice. 

The basic theorem states that under rather general conditions insuring 

that the covariance function y(k) = Q X. X       = y(-k) goes to zero sufficiently rapidly as 

the lag goes to infinity, the second order zero mean stationary process {x } possesses 

a spectrum 

f(w) = 
2TT 

-ikw   ... 
e        y(k) 

k=-°° 

which is the Fourier transform of the autocovariance y(k), and the converse relation, 

y(k) =  \ elkwf(a;)da;)       k=0,+ 1.+2,.   .   . 

-7T 

also holds.   (This is the discrete version of the Wiener-Khintchin theorem [34, pp. 66 ff]). 

2.       An Algebraic Identity:   Given the discrete sample (at equidistant intervals) 

x., x , x„,  .        . , x ,  .   .   . , X-p 

the sample covariance at lag k is defined as 

•  T- |k 
1 

<PT(k) = < 
TL      Vt+|k| 

t = 1 

fork=0, + l,.   .   . ,+ (T-l)* 

for |k|>T 

Recall that the periodogram is given by 

*   (w) =  
Tv   '     2TTT 

x e 
t 

iwt 

t=l 

*Note that for large lags this formula for cp(k) yields a poor estimate of y(k). 

11 



The identity in question reads 

*T<") = 2?r 

T 
V        iwt 

t=l |k|<T 

- icjk 
(1) 

regardless of assumptions on x   [12, p. 52].   Thus $T(CJ) and  </?T(k) are a Fourier pair. 

Now, we have seen that for a zero mean, second order stationary process with covariance 

sequence 

7(k) = £ XX        I. 
t t+   k = r(-k) 

a spectral density exists as 

«»>-£>    r(k)e-k 
(2) 

k=-°° 

Two Fourier pairs —one for the sample, one for the process —are now in evidence, as 

shown in Table 1. 

Fourier Transform of Function 

Sample •T(w) «^k) 

Process f<«) y(k) 

Table  1   Two Fourier Pairs 

Note that the <p(k) provide an asymptotically unbiased estimate of the y(k) as follows: 

T-|k| T-|k| 
1 

£ivpn=£ XX       I. 
t t+ k 

t= 1 t= 1 

XX I, 
t  t+   k 

T-|k| 

41 y(k)= 1 
T y(k) 

t= 1 

12 



i.e., <£(k)— y(k);  the sample covariances converge in probability* to the process 

covariances.   Taking expected values on both sides of (1), we have 

4v->] -4s I *?>*-' •icok 

k <T 

hi   {^T
(k) 

|k|<T 

e 
-icok 

|k|<T 

Comparing with (2), we obtain 

Lim (f *_(OJ) = f (u>) 

y(k)-e 
•icjk 

Hence, for large samples, the periodogram appears to be a natural estimator of the 

power spectrum.   Surprisingly, this is not the case.   It has been found by experience 

that a harmonic analysis of white noise (flat spectrum) produces a highly spiked spectrum 

(cf. IV,B,4).   The reason for this is that for fixed u>, regardless of the character of the 

noise, 

Lim Var $T(w ) 
T 

= 2^ (»„). 

whereas, for all well behaved estimators the variance should go to zero as sample 

size T—°°.   It can in fact be shown that for Gaussian processes the ratio 2$   (w )/f (w ) 

has a chi-square distribution (as T—-°°) with 2 degrees of freedom.   This result stresses 

the futility of appraising the significance of peaks in "^—(OJ) even as T increases, when 

*     p 

than e goes to 0 as T goes to °° 

f_—• f A Lim  P { |f-f|>e} = 0   ;  i.e., the probability that iL, differs from f by more 
T—°° 

13 



the spectrum of the process has a continuous component [2, p. 4]. 

We shall turn next to the development of consistent estimates of the 

spectrum. 

3.       Consistent Estimates (1): Variance Reduction:  As an estimate of f(a> ), — —- —— — o 
the periodogram has a non-zero variance independent of sample size.   Bartlett conceived 

the idea (1948) of using a variance reducing scheme in which he computes his estimate 
T 

of the power spectrum as the average of — periodograms, each computed for a sub- 
m 2 

series of length m.   If the variance of the periodogram estimate of f (cu ) is cr   , the 
m    o 

variance of the new estimate may be expected to be of the order of — af, .   We note 

here that as more segments are collected, the variance is reduced.   In fact, we have 

a consistent estimate, for as T-*-°° and as m remains constant, var—-0.   This fact has 

been the starting point of renewed interest in the theory of spectral estimation.   We shall 

see later that a price is paid for the consistency in the guise of an asymptotic bias. 

It can be shown that Bartlett's periodogram averaging scheme is equiv- 

alent to a modification of the classical periodogram computation consisting in the intro- 

duction of weighting factors for the sample autocovariances.   Specifically, instead of 

calculating 

|k|<T 

as an estimate of f (u) ), one uses 

f
T<w

0>=2 h(k) ^k)e"lwk 

|k|<T 

where 

h(k)=V 
m 

for |k|<m 

0 for |k|>m 

In this manner, an entire family of spectral estimates has been introduced depending on 

the properties of the weighting function h(k). 

14 



4.       Consistent Estimates (2):  Smoothing Windows.     Although 4>   (CJ) is 

not pointwise consistent;   i.e. , for fixed w   does not converge in probability* to f(u>) as 

T— *>, it is known that [12, p. 58] 

K X2 c2 p r \       $^(0)) dco —- \       f(a))da) 
" X "T 

1 1 

which shows that the averaged spectrum over an interval can be consistently estimated. 

The left side may be modified slightly to read 
OC 

f(wQ) = l W(w) *T(w)dw     , 

with 

W(w)=H 
YX1 

0 
^ 

for X  < OJ < X„ 
1 2 

otherwise 

and is a consistent estimate of f(w ) when oo   is in the interval (X., X_).   It is, however, 
oo 12 

biased, since it estimates an averaged or smoothed value of f(a>) over a neighborhood 

of a;   on the co axis.   We can now ask:   Is there a way in which we can tamper with W(-) 

so as to maintain the consistency of the estimate and at the same time render W(-) 

dependent on sample size T in such a way as to reduce the bias as T— °° ? 

Heuristically, we started with W(-) as shown in Fig. la, 

X2-A, 

> 
1 

(a) 
X 

2 

•   U) 

Fig.    1.   Geometric interpretation of the periodogram as an estimate of f (a> ). 

*For definition, see footnote page 13. 
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and estimated the average of f (co) over the shaded interval in Fig.  1(b).   Can we suitably 

modify W(-) so that it depends on T in such a manner as to become increasingly peaked 

as T increases and assume the shape shown in Fig. 2, all the while satisfying the sub- 
oo 

sidiary condition / W  (co)dw= 1?   If this program can be carried out, the values of f(cj) 
-oo        1 

at and near co   will be given more and more weight relative to values of f (co) distant from 
WT(aj), T LARGE 

Fig. 2.  Smoothing windows sequence and their dependence on sample size. 

u>  , and we may expect, as sample size increases, to reduce the bias introduced by 

averaging. 

5.       Consistent Estimates (3):   Unified Treatment.     Writing the periodogram 

$   (co) as the Fourier transform of the sample autocovariances <p~(k) we have 

lk|<T 

In Section B. 3, we had considered estimates f   (co) of the form 

fT<") = 2TZ      hT(k) <Mk)e"ikCU 

|k|<T 

Let the Fourier transform of h (k) be represented by 

HT<">=42 ¥*>*"*" 
|k|<T 
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Then, the convolution theorem applied to f_ gives 

7T 

fTM = ~ Y,     hT<k> V^* "lkaJ = J HT (co - X) $T (X) dX      , 
|k|<T -7T 

which demonstrates the equivalence of the two approaches to consistent estimation 

of f (co).   lu,(k) is called a covariance averaging kernel (lag window), H  (co) is called 

spectral window.    Bartlett's scheme leads directly to a covariance averaging kernel. 

The use of smoothed spectra leads to spectral windows. 

6.       Statistical Properties of Consistent Estimates:    The notion of bandwidth 

plays an important role in the formulation of the statistical properties of spectral estimates 

of the type we have just considered.   The bandwidth B    of a spectral window W   (•) is 

defined as the base of a rectangle which has the same area and the same maximum height 

as the graph of W   (•) in Fig. 2 (or H-^*) in the previous section, where the notation H 

was adopted to highlight the fact that  h and H are a Fourier pair).   Formally, 

OO 

/   FUwJdw 
-CO 1 

BT = Max |H_(co) | 
CO 1 

where the dependence on sample size T has been indicated.    We would like B   -—0 as 

T — <x>, to improve the focusing power of H   (•) on the peak frequency co  .    It can be 

shown that mean square error and bandwidth are related as 

MSE = Bias2 + Var = B  2p + — 
T        TBT 

where p is some integer > 1 (cf.   [10] ).* 

The important point is to note the mutually antagonistic effects of bias 
1 

and variance.   Bandwidth should indeed go to zero as T—• °°.   But if B — 0 faster than — , 

the variance term will become very large indeed. 

* p is the order of the highest derivative of f(co) at coQ.   Hence, the smoother f(u>) at COQ, 

the larger is p. 
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The choice of a specific smoothing window or kernel averaging sequence 

in a practical situation will depend on how sharp an estimate of f (a) ) one desires;  with 

a broad bandwidth the variance of the estimate can be made small;  on the other hand, if 

a sharp estimate is needed (narrow bandwidth, small bias) the variance of the estimate 

increases.   We might further note that if the spectrum is relatively smooth (changes 

slowly) in the vicinity of co  , then its average value over an interval containing to   should 

differ but little from f(u> ), thus insuring a small bias [20]. 
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III.      LIMITATIONS INTRODUCED BY SAMPLING 

In the previous chapter we have concluded that a periodic regression model with 

known base frequency is of limited practical value, that classical periodogram analysis 

leads to spurious interpretations if a continuous component is present in the spectrum 

and that covariance averaging kernels (or smoothing windows) are of decided value in 

estimating spectra for processes which have a continuous spectrum.   The presentation 

was made in terms of discrete processes because this is usually the case encountered 

in practice;   but the statistical properties of estimates were stated in terms of their 

asymptotic behaviour.   Discrete time-series often arise from sampling continuous 

processes and even in the case of discrete processes it may be that not every available 

piece of data is retained in the analysis.   In the present chapter, we will briefly dwell 

on the effects of sampling, i.e., of retaining only a finite set of equi -distant sample 

values.   Nor will the asymptotic character of the results of the previous chapter be 

strictly exact as we are always dealing with a finite sample;  they serve principally as 

a guide in the choice of one estimation procedure over another. 

We shall be dealing here with a specific finite sampled sequence of values rather 

than with an ensemble of such sequences.   We shall see that the rejection of information 

inherent in sampling introduces ambiguities and limitations, but also, that in a profound 

sense practically all the information in the sample can be recovered. 

A.      What is Lost in Sampling (1), Uniqueness of Representation 

The following illustration shows clearly the ambiguities which are introduced 

if a function on a domain is sampled at a subset of the domain of definition.   In brief, 

we shall "reconstruct" a function from its sampled values in two different ways and see 

what happens to its expansion.    Let x(t) be defined on [0,T] by 

x(t) 
V 27T 

= a  +  /    (a, cos kcot+ /3. sinkcot), u>= — 
o    [_j       k Jc 1 

k=l 

and suppose we retain only values of x(t) at the discrete times t  = v, v- 1—T   . 
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I 3-PA- 2147 

v-1 V u+1 

(a)  ORIGINAL FUNCTION x(t) (b)  SAMPLED VALUES x. 

I I 

I I 
I I 

\ ' I 1 1 1— 
v-\ V     •   v+\ 

u-f/2      u+l/2 

H " h 
V~\ V u + 

(c) STEP FUNCTION INTERPOLATION x*(t) (d) POLYGONAL INTERPOLATION x (t) 

Fig. 3« Graphs of f(t) and its approximations. 
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Then 

x   = x(»>) ,   v = 1 —T   ,   x   = x 
v o       T 

We shall reconstruct the Fourier coefficients of x(t) on the basis of the sample in two 

different manners: 

1. By assuming that x is reconstructed as a step function (cf. Fig. 3c) 

1 1 
x*(t) = x    ioxv--<t<v + - 

v 2 2 

2. By assuming that x is reconstructed as a polygonal line connecting 

successive ordinates 

x"(t) = x  + (x   , . - x ) (t - v) for   v < t < v+ 1    , 

as shown in Fig. 3d. 

x(t) x*(t) x(t) 

a   = A 
o       o 

ak = Ak 

a* = A 
o       o 

a* = A, 
k       k m 

a   = A 
o        o 

*k = V 
.   kcJs 

smT 
kg; 

.2 

^k=Bk ^t=Bb 

ko; 
smT 

k       k \     kg; 
2 

sui 
ko^ 

\ = Bk' kg; 
2 

Table 2      Dependence of Fourier Coefficients on Interpolating Assumptions 
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The least squares estimates (a , a, » 8,) of (a  , a, » 8,) on the basis of the sample 
o      k     k o      k     k 

are given, as in (II, A, 1) by 
T 

A   -it   x 
o    TZy     v 

v=l 

T 

A. = - )    x   cos kw^ 
k    TL     v 

v=l 
T 

2 V T-l 

A straightforward computation yields the Fourier coefficients of x*(t) and x(t) in terms 

of the (A , A, , B,).   These are given in Table 2. o      k     k ° 
Let us recapitulate.   We have reconstructed a function from its sample in three 

different ways:   (1) as a trigonometric series; (2) as a step function;   (3) as a polygonal 

line, and we have calculated the Fourier coefficients of each reconstruction.   It is now 

evident that these depend on the assumed behaviour of the function between the sampled 

values. 

B.       What is Lost in Sampling (2): Folding. 

Suppose a set of discrete observations x   are obtained as a result of sampling 

x(t) at fixed intervals AT.   The frequency components of x(t) with frequency co > —— 
IT 

rad/sec. cannot be distinguished from those with frequency CJ in the range (0, T^r) on 

the sole basis of the sampled values. 

To see this, we consider first the case of a single sinusoid and show that 

cos (^r + e)t+«p]=cos[(^r -e)t-<p] 
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for all t = k(AT), i.e., for all integral multiples of the sampling period AT.   Indeed, 

( AT"
1
" 

e) kAT + * = k7r + (e kAT+ * 

xSf " e)   kAT - </>= k?r -  (ekAT+ ^) 

and the periodicity and symmetry of the cosine function with respect to k7r complete 

the proof. 
7T 

Figure 4 illustrates the symmetry about multiples of -r= and shows why this 

phenomenon is called folding. 

Fig.  k.    Folding illustrated. 

It is thus seen that two sinusoids having frequencies symmetrically placed with respect 

(k= 0, + 1, + 2,.   .   .) cannot be distinguished on the basis of values sampled at to AT 

kAT.   This has been called "aliasing" by J. W. Tukey in the sense that all frequencies 

differing from a given frequency w by multiples of —, {w+ —rz,}»are indistinguishable 

from a)    the so called principal alias of u>, which is that frequency among all {u>+ =I-^| 
AT 

which falls within the interval ( 0, -— 
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The argument just developed for single sinusoids applies equally well to any 

function x(t) which can be represented as a superposition of sinusoids. 

In general, the spectrum f*(u>) derived from a sample taken at rate 1/AT is 

given in terms of the true spectrum f(u;) by 

£*<«) = 2 <^A 
+ f 

27rk_ 
AT'^A 

k=0 

TT 
The folding frequency j-= = u>    is also known as Nyquist frequency.   A graphical 

illustration of aliasing is shown in Fig. 5. 

+-     w 

•w /AT WAT 

Fig. 5*  Illustration of aliasing. 

7T 7T 
If —— is the folding frequency of the sampling process, the frequencies in f (OJ) beyond -—=• 

are folded back and added to the original graph in Fig. 5b. A spike occurring at a; in f(u>) 

will appear in f*(ct>) at co   . , it's principal alias. 
SA. 

C.       What is Retained in Sampling:  The Sampling Theorem 

Admittedly, sampling discards information.   There is, however, one 

situation in which nothing is lost. 
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Suppose the function x(t) contains no frequency components above 

W cycles/second.   Then x(t) is completely determined by its values at a sequence 
1 

of points — apart. 
/    k    \ 

In particular, if the sampled values are (   2w~ ), k = 0, + 1, + 2, .   .   ., then 

x(t) can be uniquely reconstructed as 

k= -oo 

Thus a band limited function can be restored completely if it is sampled at the proper 

frequency.   Suppose now that x(t) is not band limited, i. e., there are frequency com- 
1 

ponents in its spectrum beyond W.   Then, what is lost by sampling at a rate of -rrrr- 
2W 

is precisely what has been described as aliasing,and frequencies beyond W are folded 

back into the interval (0, a>M).   If, however, x(t) is sampled at only a finite number of 

points, say for k=0, + 1, + 2,.   .   ., + n, then the reconstruction of x(t) as 

n 
_k_\   sin7T (2Wt - k) 
2W )      7T (2Wt - k) 

xi<c>=I x 

=-n 

is but one of infinitely many possible reconstructions agreeing with the data in the 

sampled interval.   Indeed, for any sequence y , k = + (n + 1); + (n + 2), .   .   . 

the function 

-(n+1)   oo 

X(t)=x(t)+y + y y 
sjji7r<2wt-k> X2W       V}    L        L      yk      7T (2Wt - k) 

k= -0° k=n+l 

agrees with x.(t) for k=0, + 1, + 2,.   .   ., + n, since ;r—j-———*- vanishes at all 
1 —       — — 7T  (2Wt - K) 

points of the form t= ^— .   Thus, values sampled at equidistant points within an interval 
2W 

do not determine values outside this interval.   In practice, however, [5] empirical 

functions are always band limited, nor are measurements ever so precise that an accurate 

reconstruction could be obtained, even with an infinite sequence of values.   In this sense, 

most of the information present in a continuous record can usually be extracted from a 

sample taken at sufficiently closely spaced ordinates. 

25 



D.      Implications of Sampling 

The practical implications of the ambiguities introduced by sampling are 

several.   A good deal depends on how we conceive the underlying process to behave 

between the sampled points.   If it is nonexistent there, we have an unlimited choice; 

but   this is rarely the case.   In general, then, aliasing has to be taken into account in 

the design of the data gathering procedure as well as in the evaluation of the results of 

the analysis. 

Since the sampled spectrum f*(w) is obtained from the unsampled spectrum 

f(w) by folding all frequencies about multiples of the folding frequency, and summing 

these contributions in the range ( 0, -r=-  J, we must insure, if we wish to estimate f(a>) 

in the range ( 0,-r=-   ), to have approximately f(u>) =0 for U>>-TTZ .   This can, in general, 

be done by filtering the data through a low pass filter before sampling.   G. M. Jenkins [14] 

has suggested that in any practical problem there are 3 frequencies worth considering: 

(1) the frequency <x>. which is essentially the frequency beyond which 

the recording instruments' frequency response function is negligible 

(e.g., 1-2% of its maximum value, and goes to 0 asymptotically); 

(2) the frequency co   beyond which there is barely any power dissipated 

by the process x(t) (~ 1 or 2% of the total); 

(3) a good a priori opinion of the largest frequency co~ of interest in the 

study of the process at hand. 

Frequency a>. has a transparent significance, as it limits the frequency content of the 

data.   The interplay of u   and co„ is somewhat more subtle.   A suitable procedure might 

be to base the sampling rate on the larger of OJ   and co„.   If OJ„ 
> w9, well and good; 

CL>„ = ir/AT, so that AT = 7r/u)„ and no frequencies beyond those of interest are read; 

moreover, there is negligible aliasing since most of the power in the process has been 

dissipated before u>9 (<uO-   If ^9 > w„, components of f beyond w„ could be folded 

relative to CJ? if u>„ were determining the sampling rate.   Thus we select a>9 to determine 

AT = 7T/OJ9, providing we know enough about the process to choose a>9 sensibly. 

One of the costs of choosing the sampling interval on the basis of a frequency 

higher than one is really interested in, is that sampling then takes place at a much higher 

rate than really necessary, giving rise in turn to larger quantities of data to process. 
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Another cost factor is related to the nearness of the frequency of interest to 

the folding frequency;  the closer to—— , the harder it is to estimate, in the sense that 

a larger sample is required (for a given reliability of estimation) than for a frequency 

nearer the origin of the frequency axis.   Intuitively, this can be seen in the following 

manner. 

Suppose the folding frequency is co^, (sampling interval AT = ) and a 

component of frequency co   = a;    - e (e small) is present in the signal.   The sampling 

interval corresponding to u\, is slightly smaller than the distance between successive 

zero crossings in sin co t, 
o 

3 - PA - 215 o 

Fig.   6.     Ill conditioning. 

and ordinates at the sampled points creep up extremely slowly to the peak amplitude as 

illustrated in Fig. 6.   Thus, a large sample may be needed to gain confidence in the 

estimate of amplitude*.   As a rule of thumb, it is usually considered unwise to estimate 

spectra at frequencies exceeding 20 or 30% of the folding frequency, as the reliability 

of estimates beyond this point becomes questionable.   There is a great deal of debate 

about the cutting off point, depending on specific situations [14, 28]. 

*The nature of the problem is one of ill conditioning.   The smaller e, the more difficult 
becomes the estimation.   An analogy might clarify matters further:   it is easy to locate 
the intercept of a straight line if its slope is large.   It becomes much more difficult to 
do so if its slope is very small. 
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IV      MISCELLANEOUS COMMENTS 

This chapter deals with several points which could not properly be placed in the 

logical sequence of the previous development but which are nevertheless illuminating 

and of sufficient practical interest to be included.   Some of these are direct consequences 

of the convolution theorem* as applied in (III,B, 5);  these will be taken up first.   The 

remainder of the chapter will present some useful procedures of interest in actual 

computations, and some examples illustrating the methods described earlier. 

A.       The Convolution Theorem and Some of its Consequences 

Let us recall that we represented the periodogram 

*>>=IFI   *rCk>e"iWk (1) 

|k|<T 

as the Fourier transform of the sample covariances, and that, to improve its usefulness 

as an estimator, we introduced covariance averaging kernels (lag windows) h   (k) and 

obtained 

Vw) = ^Z Vk)<yk)e~lcuk (2) 

|k|<T 

as an estimate of f(co).   Writing the Fourier transform of h  (k) as 

|k|<T 

(3) 

we noted that, by the convolution theorem applied to h  (k) and cpT(k) 

77 

lT= jHT(a>-X)<i>T<X)dX    . (4) 

•it 

*The convolution theorem states that if the following are Fourier pairs u(t)-—- U(CL>) 

v(t)—»V(w) 
then the following is also a Fourier pair: 

u(t) • v(t) —* \  U(w-X) V(X)dX. 
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We are now in a position to clarify: 

-the occurrence of negative values in periodogram estimates of the spectrum 

although the latter is strictly non-negative; 

-the necessity of removing D.C. components, deterministic components, or 

time dependent non-zero means from the data before estimating the spectrum; 

-the difference in appearance between plots of periodogram and smoothed periodo- 

gram respectively. 

1.       Negative Values of the Periodogram 

A comparison of equations (1) and (2) shows that the periodogram (1) can be 

expressed as (2) for a particular choice of covariance averaging kernel, namely 

hT(k) = 
1    for |k|<T 

0    for |k|>T 

(5) 

Figure 7 illustrates the continuous analog of (5) and its Fourier transform*, T  sin coT 
7T U)T 

A *(o 

Fig.  7*    A ubiquitous transform pair. 

*There are some analytical complexities introduced by the "sampled nature" of h  (k). 
We do not go into full detail, but the argument is not invalidated.    For complete details 
cf. Blackmann and Tukey [5]. 

30 



The main point to notice is that sampling per se is equivalent to the introduction of 

a smoothing window H  (w) which assumes negative values, so that the spectrum 

estimate (4) allows negative weights for the periodogram.   The conclusion is that 

3>   (co) assumes negative values with non-zero probability.    Large negative values of 

the periodogram may either be ignored (eg., if it is felt that the periodogram is well 

suited to the modelling assumptions) or they may be taken as an indication that other 

smoothing and estimation schemes should be attempted in order to ascertain the 

stability of the results. 

2. The Removal of D.C Components, Time Dependent Non-Zero Means, 

or Deterministic Components 

By considering the effect of a smoothing window, it becomes under- 

standable that D.C. components should be removed before processing.   Indeed, every 

covariance averaging kernel corresponds to a window with some equivalent bandwidth 

over which the said D.C. component is smeared and thus made to contribute to the 

contamination of low frequency components.   A similar argument may be made for 

deterministic components, periodic or otherwise, and non-zero means. 

Admittedly, in the case of periodogram calculations the bandwidth of 

the smoothing window can be made arbitrarily small by taking a large enough observa- 

tion interval (sample);  but in general, since it is desirable to use covariance averaging 

kernels to obtain consistent estimates, it is advisable to remove all but the purely 

oscillatory components of the data. 

3. Appearance of Periodogram and Smoothed Periodogram Plots 

The shape of the smoothing window corresponding to the covariance 

averaging kernel used, is indicative of the effect of smoothing as compared to the 

"unsmoothed" estimate of the spectrum.   If a spike appears in the unsmoothed spectrum 

estimate, the smoothed estimation procedure merely redistributes this spike over the 

entire axis with the smoothing window as envelope for the spectral components at 

discrete points.   Since the smoothing window is generally sharp in practice, this 

redistribution takes place mainly over a small neighborhood of the frequency at which 

the spectrum is estimated. 
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4.       The Effect of Non-Rational Frequencies 

In general, when the sample size T is given, spectral analysis con- 

sists in calculating the periodogram (smoothed or unsmoothed) at a discrete set of 

trial frequencies.   u).= ~r^ . j= l-*T/2, under the assumption that x(t) repeats itself 

exactly after T observations, apart from an additive error term (cf. model in II, A, 2). 

We will now describe the effect of the presence of a frequency component whose fre- 

quency does not coincide with any of the trial frequencies. 

Let a process be represented by a cyclical deterministic component, 

apart from additive noise £ 

xt = p cos [-— +  4>) + ^x 
3-PA-2I52 

where k is the multiple of — nearest to — A (cf. Fig. 8).       UL \ 

SZck-0 
2TT 

^<k+1) 

It can be shown that R, 

Fig.   8.     A non-rational frequency. 

the estimate of the process amplitude p     . (nonexistent!) 
*k+j'         ~r r" k+j 

depends asymptotically (as T —- °°) both on j and on e = X-k in the following manner* 

R 
k+j., 

sin7r (j - e) 
ir (j -e) 

so that the irrationality of X has the effect of smearing the corresponding frequency 

component over the entire spectrum.   The presence of "irrational" components helps 

further to explain why periodogram calculations should not be expected to yield zero 

*This result is obtained by considering the Fourier coefficients of cos (a t+ tp) on a base 
interval which is not an integral multiple of the period.   In the worst case, when e= 2 

4P? 

C V   j + k /-       2    (2 j+ 1)2 
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estimates for amplitudes, even in the absence of periodic components at the trial 

frequency (we recall that another source of non-zero values was the effect of the 

additive random noise treated in the model of Section II, A, 2). 

B.       Some Useful Procedures and Examples 

Several procedural details are offered here as examples of the kind of 

improvements which can be brought to a general program of power spectrum estimation 

conceived within the framework of the theory described in the earlier parts of this 

report.   Some concrete examples are provided to illustrate some of the developed concepts. 

1.       Direct Removal of Time Dependent Means 

In the processing of time series which are suspected of having a 

non-zero time dependent mean, a very simple scheme exists to remove this component 

from the sample covariances.   Instead of using the mean lagged product as an estimate 

of covariance, calculate instead 

«w-<fvt+k-<fvfit+k 
(1) 

where the averages are taken over a moving strip of data. 

Actually, this procedure assumes that the process x  is the sum of 

a deterministic component m  and a zero mean process y  having a spectrum: 

xt = mt + yt . 

Taking expected values of lagged products, we obtain 

rxx    ,      = f    (m+y    )(m     ,+y c [ t  t+kj     L  L\   t    3tJ \   t+k    yt + k 

= /rYmm    ,+my    ,+ym    ,+yy    .    ) c y   t    t+k        t't+k    't    t+k    't't+k/ 

= m m  , . + f t    t+k     <~ ytyt+k 
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Now formula (1) states that the sample autocovariance cp(k) of the zero mean process y 

can be taken as the average lagged product of the sample values reduced by the product 

of the sample means.   Thus the spectral analysis proceeds to be made on the portion of 

the signal for which the theory is applicable. 

2.       Calculation of Sample Covariances 

There has been some argument that the inconsistency of the periodogram 

as an estimate of the power spectrum is due to the instability of the sample covariances 

as estimates of the process covariances as the lag becomes large.   In practice, there are 

three candidates which have been used as sample covariances: 

T- Ik 

T (cl) f^OO-^   xtxt+|k| .o<k<T-i 
t =   1 

T-|k| 
(c2) %)(k)=^fkT2   Vt+lkl'0^^"1 

t= i 

T/2 

<c3>      A) = l2v«+w
0^4 

t=i 

as estimates of the process covariance y(k).    We can compare them briefly on the basis 

of their statistical properties: 

Bias:    cl has a bias equal to —, which goes to zero, as 

T -* oo, for every fixed k;   for finite samples however, the 

bias persists.   c2 is unbiased for any lag k and all sample 

sizes T. 

Positive Definiteness:    cl is positive definite, which is a 

desirable property for an estimator of a positive quantity. 

c2 is not positive definite. 
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Mean Square Frror:    As an estimate of y(k), cl has a 

smaller mean square error than c2 (cf. [20]). 

As far as c3 is concerned, its statistical properties have not been 

worked out.   However, as an estimate of y(k) it does not appear quite as good as cl and 

c2 since it uses only half of the data available.   But this in itself does not prove that it 

leads to poorer estimates of the power spectral density. 

3.       Examples 

The importance of the specific choice of technique is illustrated in 

Figs. 9,  10, and 11.   Figure 9 is a plot of the sample autocovariance of a set of data 

as calculated on the basis of formula c3 of Section IV, B, 1.   The important point to note 

is that two periodic components are clearly present in the autocovariance (ACV) function, 

one of relatively high frequency, and one of low frequency. 

Figures 10 and 11 are the results of estimating the power spectral 

density in two different ways.   The method used to obtain Fig.  10 depends on formula c2 

for the calculation of sample autocovariances;   furthermore, the Fourier transform of 
111 

the ACV function is smoothed with Hanning weights (-. -, -r). 

The method used to obtain Fig.  11 proceeds to calculate and plot the 

Fourier transform of the ACV function shown in Fig. 9. 

Note that to a hurried observer, the crispness of Fig.  11 would 

recommend itself in its clear identification of the frequency components one is led to 

expect on the basis of a glance at the ACV function shown in Fig. 9.   A more seasoned 

analyst, however, will recall that the unsmoothed periodogram has a larger mean square 

error than the smoothed periodogram, as an estimate of the spectral density. 

Admittedly, some crispness could be lent to the estimate of PSD shown 

in Fig.  10 by omitting the final smoothing with Hanning weights.   Similarly, smoothing 

with Hanning weights would reduce the sharpness of the peaks in Fig.  11. 

In conclusion, it must be said that there is at present no single optimal 

method of processing data when little is known apriori about either the process generating 

the data or the characteristics of the recording device.   In any case, it is desirable to 

have several spectral estimation procedures on hand to gain familiarity with new data. 
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4.       Illustration of Periodogram Inconsistency for White Noise 

The probability distributions of spectral peaks for white noise are 

briefly described in (II, A, 2).   In Section (II, B, 2) it was further mentioned that the 

periodogram is not a consistent estimate of the spectrum of a zero mean second order 

stationary process, and that as a consequence, the use of smoothed spectra came to 

be developed.   The following figures (Figs. 12,  13, and 14) illustrate the situation 

rather clearly. 

Figure 12 represents a sample of white noise;   Fig.  13 is a plot of 

its autocorrelation;   and, Fig.  14 is a plot of the estimated spectrum*.   The main 

effect is to observe that the spectrum is highly peaked — for white noise — even in the 

case of a smoothed periodogram, as shown here.   For a classical periodogram of 

white noise, the aspect of Fig.  14 would be more jagged still, whereas one should have 

expected a flat spectrum. 

*The spectrum shown here is a smoothed periodogram with a Hanning window.   A classical 
periodogram plot was not available at the time of writing. 
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Fig. 12. A sample of uncorrelated white noise. 
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Fig. 13-  Autocorrelation function of white noise. 
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Fig. Ik.    Estimated power spectral density of white 
noise (smoothed periodogram, Harming weights). 
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V.       BRIEF OUTLINE OF A PROGRAM OF TIME SERIES ANALYSIS 

The basic problem of time series analysis may be formulated as a question: 

"Given an empirical time series, by what process was it 
generated?" (P. Whittle). 

This is a familiar question, commonly encountered in classical statistical estimation, 

and usually it is interpreted as 

- selecting a hypothetical model for the process 

- setting up criteria to measure the degree of agreement between the postulated 

model and the observed sequence. 

Given two models to choose from, we can always decide, according to our established 

criteria, which is the more adequate.   But to choose a reasonable model a priori 

requires some wisdom.   In the present context (the analysis of radar data from 

re-entering vehicles), it would appear that a program of investigation might proceed 

as described below. 

First, let us note that for processes with a discrete spectrum (e. g. , for which 

the cyclic models of Section (II, A, 1 and II, A, 2) are applicable) the calculation of 

smoothed spectra mars only slightly the occurrence of a peak by redistributing a 

portion of the peak amplitude over the width of the smoothing window. *   Hence, in the 

case of cyclical processes, little is lost by using a smoothed periodogram instead of 

the periodogram, when the signal to noise ratio is not too small.   On the other hand, 

we are hardly ever faced with purely cyclic data and since the statistical properties of 

the periodogram are so poor when the process to be analyzed is oscillatory, we feel 

that the basic spectral estimation tool should be the smoothed periodogram. ** 

*In general, only equidistant ordinates are considered in the estimation of spectra.   If a 
harmonic term falls midway between two ordinates,   its amplitude will be reduced by a 

4 
factor of roughly—s— • 41 at these ordinates, in the case of classical periodogram 

calculations.   This may or may not be enough to render a peak non-significant looking 
depending on the signal to noise ratio. 

**Since the estimation will take place via covariance averaging kernels, several such 
kernels corresponding to several smoothing windows should be available as programmed 
options in any computer program for estimation of spectra. 

The choice of a smoothing window and/or bandwidth remains, and should be made to 
depend on the data collection scheme and the resolution and precision requirements 
pertinent to the situation under investigation. 
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Second, since the theory is applicable only to zero mean second order stationary 

processes, we propose to use the techniques of spectral estimation only on the residuals 

of the data, after removal of deterministic components and non-zero means. 

The following sequence of steps is envisaged. 

A. The Search for Regression 

As a first step, it is necessary to remove deterministic trends from the 

data.   Some elegant methods exist to test for the presence of polynomial trends adaptively 

on the degree of the polynomial (up to fixed preassigned maximum degree) against the 

hypothesis that the data represents pure white noise.   A similar adaptive technique can 

be developed for other families of regression functions if it should appear that polynomials 

are not adequate for some reason or other.   At any rate, the deterministic component is 

to be removed from the data, including a non-zero mean if it arises. 

B. The Search for Periodic Components 

It is clear that a periodogram analysis (smoothed or unsmoothed) will reveal 

the presence of deterministic cyclical components in the data.   Once these are identified, 

they can be removed from the data.   For identification of spurious components, see 

Section C. 

C. Spectral Analysis 

At this point, a spectral analysis can be made, using a variety of covariance 

averaging kernels, comparing the results critically among themselves and particularly 

against the results of step B to see whether the removal of a spurious cyclic component 

has not introduced an artificial periodicity in the data.   The introduction of artificial 

periodicities in the data through smoothing is far from being an academic possibility, 

as evidenced by a theorem due to Slutsky (1927) [11, p. 95] which effectively demon- 

strates how to construct a linear smoothing scheme which introduces an arbitrarily 

selected spurious frequency. 

D. Parameter Estimation 

If it is known a priori, say on physical grounds, that a phenomenon exhibits 

a spectrum of a given functional form f(w, 9    , 9  , .  .  ., 9 ) depending on several unknown 

parameters 9 , 9 , .  .  . , 9   these parameters may be estimated on the basis of the 

empirical time series. 

*cf. Reference 35. 
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It should be possible to develop a testing scheme whereby one can compare 

an empirical spectrum to an a priori power spectrum.   Such a technique has not been 

found in the literature to my knowledge. 

E.       Data Editing 

There is a preliminary step which must be taken before any estimation and 

analysis can be carried out, and that is the removal of spurious data and of debris which 

usually finds its way past any recording device.   Here, however, there are no general 

prescriptions as every case must be treated on its own demerits.    For an example of 

semi-automatic data editing for trajectory data the reader is referred to Lincoln Labora- 

tory Report PA-57 "A Trajectory Editing and Smoothing Program for FPS-16 Radars" 

(Unclassified) where some of the many possible vicissitudes of data editing are treated 

in detail. 
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