
■'3 1.' ip
1

wmM t » ♦

M-v. ^

9 I A> • »0 • ^

P. 'A0§
mk.

^ f

I#

irnmM - ^
•■/.sad

?:/#!^irUlUWr



This handbook has been prepared under ONR Contract No. 17^5-61-0479 

and repreaents the accumulation of several years of experience and effort in 

the Classification Field by the author and his graduate students. An attempt 

has been mace in this handbook to make available to the general publ.’.c the 

fruits of not only this research effort, but the research effort of the many 

statistic .ans who have made contributions in this general technical area. 

Although credit will be £iv«n in the form of references to many of the princi¬ 

pal contributors to the theory, it is recocnized that to cive each individual 

his proper recognition is not possible if one is to keep the handbook of 

practical use. ‘nie author apologizes in advance to individuals who are passed 

over in this recard as well as to those individuals whose techniques or theory 

has been included in the handbook with notational chances and perhaps even 

technical deficiencies in the brief dercriptions used. 
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GLOSSARY OF TERMS 

(notation Conventions) 

In classixicatlon theory, the problem of notation becomes acute if one 

is to consider more than one theory or technique, since in cencral there are 

several variables to c^st.n^uísh be tween as well os several populations* In 

fact, one has not only tbs sample observations from these populations to 

consider, Lui. one must also represent a set of individuals requiring classi¬ 

fication into these populations. In general, the general indices will be 

denoted by lower case letters while the ranee of the variable will be denoted 

by the corresponding upper case letter. Greek letters will eenerally denote 

parameter or population variables while Latin letters will denote sample 

estimates of -he parameters. 

Indices 

For variables, p or q. Tims xp , p •* 1,2, — ? 

For populations k or*. Thus n , t: - 1, 2, — K 
ic 

For individuals, n or m Tims n - 1,2, —, Hi. 

Uc therefore have the representations for observât .ons: 

00 
pn ■ volue pth variable for the nth individual of the 

kth population 

and 

pn " thc va1-ue o* the pth variable for the mth individual to be 

classified. 

# In this handbook, maximum likelihood estimates will generally be used. 
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M - the population mean of JL for population n, 
P v 11 

(k) 
œ p » an eatimate of the population mean of Xp for population nk 

The variance - covariance 

CT ^pq ■ for p - q the variance of for population 

for p * q the covariance between X and X for population n. 
M IV 

(ki 
Spq " the corresponding sample estimates 

The Inverse of the covariance matrix, general term 

the p,q term of the Inverse of the covariance matrix of population n. 

w 
S(k) ■ the p,q term of the Inverse of the co/ariancc matrix of estimates 

for population «k 

A vector quantity , X -, X Q) 

A matrix 
pq 

.(i) 
n 

.(D 
21 

,(1) 
1 PI 

sd) 
12 

.. !) \ 
!Q \ 

.(1) 

’ PQ / 



I II T R 0 D U C T Tn m 

Classification techniques deal with the r 
L e p‘ob1-® of assicninc one or more 

individuals to one of sev^r-i 
possible groups or populations on the bests of 

"** °f “e',Urei,Cn£° 0b*CrVed «>. moat conmon fo™, of clssstfic.. 

tl0n ,re re“rlCt,!d t0 £he Ca,C °£ ^ ^ croup, or populations s„f thus this 

handbook will „.phsalse this re.frleted esse. Ihc basis of the setu.l el.s.l- 

-atlon 1. set. of the .... observation. t„e on groups of Individual, (apples) 

-*ose population el... 1. I:nown fr0tt prcvlou5 experlence> 

For Illustration we will „„elder sn example whieh will be used to 

numerically demonstrate each of the technio.ues to be considered in the hand. 

book. nie Illustration deals with t’ie nroblAr- j < < 

probier, of admission of freshman appli¬ 

cants to an entineerinc curriculum of a coller* n 
olle^e. The measurements to be used 

in making the decision are* y _ _ , 
• _ a uathenatics orientation -est score (X,), 

on English orientation test score (¾) end a general .ptitude test score (X,) 

- .re required on the hasi. of these three mesures to classify th. ^ 

into population of students who txí 11 h* * y . 
who will be successful in their engineering stud-e. 

(Population n ) or the popul.tion of unsuccessful student. 

(Population ,2) . Available to us .re the set of those three mesures for 

• Croup or sample of successful student, anc a set of the same three measure. 

g oup or sample of students who have been previously edmitted but proved 

to be ueuccessful. The cLssifietion problem Is to evolve e decision rule 

1-ch will methematicclly use the three measures (¾. X2> Xj) and the pest 

experience to make the classification. 

This handbook has been prepared to assist individual, who are Interested 

»C ns Or the known claim action techniques and thus emphasis w'll 

b* Pli“d UPOn th‘ “ - <l«t.r«ininE the setu.l eU..«^ 

n,U *nd °n lt* SUb—1 - - —eneas of any technique depend. 

«Pon how well the underlying condition, of the setu.l problem fit the ..sump- 

f-on. mede i„ developing the cl..siflc.tIo„ tochnl<)ue> .ttenUon wlu >lio ^ 
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given to the assumptions involvec’ in each technique considered« Each technique 

is considered in a separate section and each section has Leen prepared so as to 

be independent of other technique sections. Therefore, statistical clerhs or 

computer progracaners can be given the task of applying an assigned technique 

without regard to techniques considered in earlier sections. 

The first chapter deals with n history of classification theory and also 

contains the more formal definition of the problem. In Chapter II, the genera' 

characteristics of a classification technique are considered along with different 

concepts found in statistical decision theory that may be used in evolving any 

of the techniques. Each technique that is to be considered is listed along with 

the underlying assumptions associated with the technique. This enumeration may 

be of assistance to an individual in selecting the appropriate technique to be 

used in his particular problem. In Chapter III, the data associated with the 

illustrative example (engineering college admission) which will be used in each 

technique Is given. 

Chapter IV consists of separate sections for each technique being considered, 

while Chapter V deals with the procedures that may be employed in the case of 

more than two populations. Chapter VI contains a bibliography for individuals 

interested in obtaining further background on any of the techniques considered 

in the handbook along with references covering more general problems of 

discrimination. 

Attention is directed to the Glossary of Terme or IJotational Conventions 

that is itanedUte following the Table of Contents. Although every attempt has 

been made to keep the mathematical level of this handbook of an elementary 

nature, it is necessary for the user of the handbook to have a minimum appreci¬ 

ation of matrix algebra and the elements of statistics. 
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CHAPTER I 

A BRIEF HISTORY OF CLASSIFICATIOil THEORY 

In Us nose ceneral fonv. the theory cloislfication deals with the problem 

of assi£nin£ one or more individuale to one of several possible groups of 

populations on the basis of a set of measurable characteristics observed on 

them. It can be considered as a spec al case of a stat stical decision problem. 

Given (K £ 2) populations and one or more individuals which are known to 

belong to one of the populations, the problem is to make decisions on the basis 

of a set of measurements on the individuals, as to which population each of them 

belongs. For example, in biometric investigations, one may want to assign a 

skull found in archeolo&ical excavations to some dynastU period on the basis 

of anthropometric measurements on it. A taxonomist nay want to classify a 

plant specimen into one of two species on the basis of measurements on its stems 

and leaves. Ilanufactured articles may be accepted or rejected on the basis of 

certain measurements made to determine whether or not they conform to specif! - 

cations. Personnel may be assigned to duties on the Las c of their scores in 

a battery of teste piven to each employee. Prospective students may be admitted 

to a college or not based on their scores in the entrance examination. These 

and many more are essentially problems in classification and in a somewhat more 

Reneral sense - problems in discrimination. 

Let us first ¿ive a statistical formulation of the classification problem. 

Each of the K different populations is assumed to be characterized by a 
k i. 

distribution function Fj.íXj,... ...., ©v ) or 

equivalently by a probability density function (p.d.f.) ^.(Xj.Xj,; 

k k k k 
..^ ) where Xp...^ ere random variables, ©j .are certain 

parameters ant 1c * 1,2,,.,,K. The form of Fj, or fj. is assumed to be known, 

but the parerneters themselves may or may not be known, but if unknown, they 

can always be estimated from K available samples, one each from the K populations. 
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Glven observations m* 1, 2 ...MonM individuals each of 

which is known "a priori" to belong to one and the same population, the problem 

la to devise a statistical method for classifying observations into the population 

to which they belong in the "best" possible manner. 

The first recorded attempt to solve the classification problem statistically 

was made by Karl Pearson in 1921, In a paper1^ in Biometrika by Miss M. L. Tildesley, 

Pearson Introduced a Coefficient of Racial Likeness to serve as a measure of the 

"distance" between and «2* Since then, this measure has been used by many 

anthropologists of the biometric school for purposes of classifying skeletal remains. 

The Coefficient of Racial Likeness (C.R.L.) is defined in terms of the sample means, 

the sample variances and the sample sizes of the various characters involved. 

Let X (1) . ,„(1) (D (2) (2) .(2) 
in - tt in pn ) n - 1, 2.Nl and X n„ - (X ^ ,...,X pn ) 

n ■ 1, 2,,,,^2 be the samples from populations rtj and then 

H1 N2 p (*(i) - X<2> )2 
C.R.L. - 1/P J!_L ' p P 

Ni + Mj p.-! 
PP 

where 
N, 

r(k) i(k> - 1/N. ¿ I'*' p - 1,2,...,?: k - 1, 2: 
P K n-1 Pn 

aiuJ 8pp 1® ®n estimate of the conanon variance of the pth character in the two 

populations and is given by 

(1.2) 
N 1 N, 

PP Ni + N« Í (x(A) - Xfl> ^2+ fx(2) - V (2) .2 
1 12 n-1 p > n-1 pn XP p ' ' pi 

It is clear from the definition of C.R.L. that the populations are assumed to have 

the same set of variances for all the characters, and the characters themselves 

are treated as uncorrelated. The coefficient itself may be used to measure the 

probability that the two samples are from one and the same population or in other 

words whether or not nj and n2 are the same. In this sense C.R.L, is used as a 

1) Tildesley, M. L., "A First Study *i the Burmese Skull," Biometrika. 
Vol. 13 (1921), pp. 176-262. 
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test divergence rather than as a measure of divergence between two populations. 

In this handbook, we shall not consider this coefficient, but it has been mentioned 

here since it plays an important historical role. 

It is really important to distinguish between a "test" of divergence and 

a "measure" of divergence. One of the early statisticians to draw a clear cut 

distinction between the two is P. C. MahalanobisX) of the Calcutta School of 

Statistics. He introduced the concept of a "measure" of divergence between two 

populations as early as in 1925 in a presidential address to the Anthropological 

Section of the Indian Science Congress. In 1920, in a theoretical paper presented 

to tne Indian Science Congress, Mahalanobis proposed the classical form of the 

generalized distance function D2. IJhen it was first proposed, the D2 statistic 

was meant to be a measure estimating the divergence or the "distance" between 

any two populations. By applying a "test" of divergence to two populations, we 

can conclude in a statistical sense whether or not the populations itj and «2 

are identical, Uhen the populations are distinct, we can use the measure of 

uivergencc to find the extent to which nl differs from x2 and, in fact, 

the form of the statistic gives insight into how the two populations actually 

diverge. 

The classical form of D2 involved only the population means, variances 

and covariances and provided a measure of divergence between two populations 

which have been accepted as distinct. The exact distribution of the classical 

form of D involving sample means and population variances and covari mees 

1) Mahalanobis, P. C., "On Tests and Measures of Group Divergence, 

Part I: Theoretical Frrmulac". Journal and Proceedings. Royal 

Asiatic Society of Bengal. Now feries, Vol. 26 (1930), pp. 541-503. 
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w*» first obtained by R. C# Bose in 1936, The student!sed form of involving 

only sample readings was first defined by Mahalanobis2) in a not* in the 

Proceedings of the National Institute of Sciences of India. Its distribution 

under very general conditions has been obtained by R. C. Bose and á. N. Roy 

in a series of papers in Sankhya. 

In 1936 R. A. Fisher initiated a new approach to the problem of discrimi¬ 

nation and classification with the introduction of linear discriminant function 

analysis. This approach led to a new method of deriving test criteria suitable 

to multiple variate situations. When two or more populations have been measured 

in several characteristics ,X2...,Xp) special interest attaches to certain 

linear functions of these measurements by which the populations may be best 

discriminated. Fisher and others have shown that a set of multiple measure¬ 

ments may be used to provide a discriminant function, linear in observation, 

having the property that, better than any other linear function, it will 

discriminate between any chosen normally distributed classes such as taxonomic 

species, the sexes and so on. The principle behind the choice of a "discrimi¬ 

nant function" is merely to reduce multivariate problems to univariate problems, 

and this process has been found extremely useful in multivariate analysis. The 

problem is reduced to that of a single variable by choosing a linear compound 

of the original variables and constructing a statistic suitable for the 

univariate consideration of this problem. In principle the discriminant function 

need not be linear but can cover any class of functions. In practice a linear 

function is nearly always chosen so as to avoid complex distribution problems. 

1) Bose, R. C., "On the Exact Distribution of D^-Statistic". Sankhva 
Vol. 2, (1936), pp. 143-154. 1 * 

2) Hahalanobis, P, C., "Ch the Generalized Distance in Statistics", 
Proceedings of the National Institute of Science of India. Vol.2 
(1936), pp. 49-55. 
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The first published application of discriminant function appears to be 

the work of Mildred Barnard on craniometry following the suggestion of 

21 
R. A. Fisher. In 1936, Fisher gave a further example in the use of multiple 

measurement, in a taxonomic problem and explained the theory underlying the 

construction of a linear discriminant function. In his paper 3) entitled 

The Statistical Utilization of Multiple Measurements", Fisher showed the 

relation between his work and that of Hotelling*0 and Mahalanobis. 

A classification technique that is closely related to that of Mahalanobis1 

D2 and Fisher's linear discriminant function is that obtained by the late 

Abraham Wald. In a paper ^ in the Annals of Mathematical Statistics (1944) 

Wald made an important contribution by introducing another approach to the 

classification problem. He considered the specific problem of classifying 

a single P-variate observation into one of two P-variate normal populations 

*1 and «2 . it being given that the observation belongs to ffl or to jy 

The classification problem is reduced to a problem in testing hypotheses; 

testing the hypothesis H^: that the observation belongs to against 

1) Barnard, M. M., "The Secular Variations of Skull Characters in Four 
Series of Egyptian Skulls", Annals of Eugenics. Vol. 6, (1935), pp.352-371. 

2) Fisher, R. A., "The Use of Miltlple Measurements in Taxonomic 
Problems", Annals of Eugenics. Vol. 7, (1936), pp. 179-188. 

3) Fisher, R. A., "The Statistical Utilization of Multiple Measurements" 
Annals of Eugenics. Vol. 8, (1936), pp. 376-386. 

4) Hotelling, Harold, "The Generalization of Students' Ratio", 
Mathematical Statistics. Vol. 2, (1931) pp. 360-378. 

Annals of 

5) Wald, A., "On a Statistical Problem Arising in the Classification of 
an Individual into One of Two Groups", Annals of Mathematical Statistics. 
Vol. 15, (1944), pp. 145-162. -—--’ 
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the alternative hypothesis H2: that the observation belongs to «2 . The 

Fundamental Leraaa due to Neyman and Pearson provides a classification ctatistic 

to classify the observation in rtj or n2 a manner that is ’'best", where the 

’'best" manner of classification corresponds to the most powerful test of 

against H2. In the first instance, the population parameters are assumed to be 

known, so that the classification statistic, depending only on these parameters, 

is exactly known. In general the parameters are, of course, not known but they 

are estimated from the two available samples, one each from »q and iq. 

The estimates of the parameters appearing in the classification statistic are 

obtained from the samples and are substituted in the statistic itself, obtaining 

another classification statistic depending on the sample values. In the case 

when iq and «2 have a common covariance matrix, Wald has derived an asymptotic 

distribution of the classification statistic and an approximate distribution 

of a modified form of the classification statistic. Much work has been done 

along similar lines by T. W. Anderson of Columbia University. In an article 

In EirefraKUlija l\ Anderson proposes a classification statistic that differs 

only slightly from that of Wald. 

1) Anderson, T. W., "Classification by Multivariate Analysis", 

Psychometrlka. Vol. 16, (1951), pp. 31-50. 
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CHAPTER II 

THE GENERAL CHARACTERISTICS OF A CLASSIFICATION TECHNIQUE 

As was mentioned earlier, the consideration of classification will be 

restricted to the two population problem. In considering the techniques or 

theories that have been developed to solve the two population classification 

problem, two approaches con be identified. The first approach is associated 

with the likelihood ratio concept found in statistics and is thus directed 

towards estimation of a "likelihood" that the individual came from each of 

the two populations. These likelihood estimates generally depend upon the 

observed measures on this individual as well as parameter estimates made from the 

available sample from each population. 

Formally one obtains the tv/o quantities fj (z) and f2 (z) where there 

are likelihood estimates and then the ratio 

1-(51 - f2 (5> 

IPF 
is computed. The classification rule is then simply 

"If L (¿) > X , classify the individual into «2 

and if L (z) < X * classify the individual into «j 

The techniques using this approach differ only in the means of making the 

estimates fk , 

The second approach to the classification problem involves the defining of a 

classification statistic (often evolved through some likelihood ratio concept) 

where the statistic depends upon the observations zj , z2 i — made on 

the individual to be classified and certain statistics computed from the two 

available samples. The classification rule thus depends on the value of this 

statistic obtained from the observations. Formally wc thus hove as a statistic 

C(t) a which is a numerical function of the observation ®w 

The classification rule is ther 

"If C (z) belongs to the interval I0, classify z into population «2» 

otherwise classify z into jTj" 
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The techniques using this approach differ only in the form of C(i') r'Mt is 

to be used. Methods are, of course, required for the estimation of the 

coefficients that appear in the classification statistic C (|). These methods 

make use of the numerical characteristics of the two sonples available from 

past experience. In many cases, the rule reduces to that of C (z) > X 

and thus Is parallel to the likelihood ratio cases. 

Since a classification rule involves the designation of either the constant X 

that appears in the likelihood ratio approach or the determination of the interval 

I0 that appears in the classification statistic approach, it is necessary to 

consider the several types of strategies or approaches that one may use in making 

such a designation. There are several atmogia* available, nearly all of 

which can be applied to any of the techniques that are considered in the Handbook. 

However, before considering these approaches, it is necessary to discuss the 

concept of operational effectiveness of any classification technique. It 

should be readily apparent that in making a two population classification 

decision there are two types of classification errors that may be made. One 

■ay classify an individual into population 2(*2) when he really belongs 

to population l (l^) or conversely one may classify an individual into nj 

when he really belongs Co x2 «The basic measures of the operational effect¬ 

iveness of any classification technique when applied to some particular 

problem arc: 

P (2/1) 

and 

the probability of classifying an individual into «2 

when he really belongs in 

P (1/2) - the probability of classifying an individual into 

when he really belongs in n . 
2 
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Since all methods for determination of the classification "coraUnt," / 

Iq* ^®Pend In some extent upon these two effectiveness measures, it is 

necessary to have available some procedure for estimation of these two 

probabilities. 

In certain cases the classification statistic approach, the conditional 

probability distribution of the statistic can be determined from theoretical 

considerations. In these cases, the estimation of the two effectiveness 

probabilities can be made by using this distribution function. However, In 

many cases the conditional probability distribution function is not known or 

is very difficult to estimât«;. In such cases, one can use the Method of Empirical 

Estimation to make the estimations. This method simply applies the classification 

rule to each individual of the two available samples and thus generates an 

emperical distribution of the ratio or statistic which can be used to estimate 

the two probabilities. 

To illustrate the procedure in a general way, let us denote by H(Z) either 

the likelihood ratio estimate R (2) or the classification statistic C(Z) 

depending on which concept is being used. Then if we let Z take on in turn 

the values , , — , X(l) and then v(2) - (2) (2> 
“N * 1 » * 2 , — V 

*e will generate two conditional frequency distributions for H, one for itj 

and one for *2 • If these conditional frequency distributions are made 

into cunsnulative distributions, histograms may then be plotted and estimates 

of the frequency function smoothed in perhaps by eye if necessary. Such a 

graphical approach is illustrated in Figures 1 and 2 below. In each classi¬ 

fication this emperical technique will be illustrated along with any theoretical 

approach if available. 

* If the sample sizes are large, recourse to a digital computer may be necessary. 

I- - 





- il - 
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Let us now consider the possible strategies that can be used in detennining 

the classification constant. 

«) Single Error Control 

In many situations the strategy that 1(. appropriate is that of controlling 

one of the error probabilities since this requirement dominates the clasai - 

fication problem. That is, we wish to use the constant that gives an effective¬ 

ness such that 

p(2/l) < <Xq (say) 

In this situation one needs to use that H0 in his classificatioi rule such that 

If (H / nx) dH 

H 

where f (H) is the conditional probability distribution of H(Z). In the 

empirical estimation method Hq is read directly off the curve developed as 

in Figure 1. See illustration on Figure 1. 

b) Minimum Average Cost 

If there are available estimates of the costs involved when either type 

classification error is made and also estimates of the a priori probability that 

an Individual belongs to each of the populations, one may elect to use the 

so-called Bayes decision procedure and seek the rule which minimises the 

average cost involved in making classifications. 

Let C(2/l) - Cost* of making error of classifying an individual into «2 

if he belongs in 

C (1/2 )• Cost* of making an error of classifying an individual as from 
«1 if he belongs to «2* 

- a priori probability that individual comes from nj . 

q2 - a priori probability that individual comes from . 

* This may be simply a factor and not necessarily actual dollar values. 
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Then for any rule we have the average cost as 

C - q! P(2/l) C(2/l) + q2 p(l/2) C(l/2) 

and the problem is to find the rule that minimizes this C. Since a rule 

determination can be reduced finally to the determination of the classification 

constant, the problem is to determine the constant so as to minimize C. In 

the ernperical estimation method, this determination can be made from the 

probability frequency curvet obtained as shown in Figures 1 and 2 through the 

use of some method of successive approximation. That is to select arbitrarily 

an H0, determine the corresponding C, and then successively change the selection 

of Hq until the minimum is essentially reached. 

c) Minlmax Principle 

As the name implies, this strategy seeks to use that rule which has a 

minimum for the maximum cost that may be realized in a classification. It 

is often used when a priori probabilities are not available. 

However, it is not applicable to the two population case and hence its 

con.»aeration will be delayed until the chapter on more than two populations. 

SUMMARY OF CLASSIFICATION TECHNIQUES 

Name Type of 
Variables 

A. Non-Parametrie Measured 

B. Categorical Mixed 

C. General Parametric Various 

D. Wald Measured 

E. Purdue Measured 

F. Anderson Measured 

G. Shaw Measured 

Distribution 
None 

None 

Known 

Norma1 

Normal 

Normal 

Normal 

Paremater 
None 

None 

None 

Equal Covariance 

None 

None 

Equal Means 
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CH AFTER I I I 

The Illustrative Exanyle 

In order to facilitate the description of the several standard methods 

of classification to be considered, a simplified example will be used. Thic 

example is restricted to the two population case and in fact is limited to the 

three variables xx - math orientation test score, ^ - English orientation 

test acore, and x3 - general aptitude test score. The illustration deals 

with the problem of admission of freshman applicants to an engineering 

curriculum in college with population «j being made up of those students 

-ho would he unsuccessful in their course work and population n2 oonsisting 

of the successful students. To evolve the classification rule, a sample of 

nineteen unsucceasful students Is available. Aleo available Is a sample of 

nineteen successful students. IWo Individuals are considered for classification, 

one from each population, and for checalng we know from which population the 

Individual really came. The following data suamarlaes the available Information 

to be used in the various classifications. 

A. Misclassification Cost Factors: 

C(l/2) - 2 C(2/l) - 1 

where C(l/2) is the cost associated with classifying an individual who is 

frcm population 2 into population i. That is, failing to admit a student 

who would do successful work. 

And, C(2/l) Is the sort associated with classifying an Individual who Is fron 

population 1 Into population 2. That Is, admitting a student who Is unsuccessful. 

B. A Priori Probabilities 

qj - .75 the probability of an applicant being from population 

q2 - .25 the probability of an applicant being from population n 
2 
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C. The Samples from Previous Experience 

Mathematics 
Sample from Population «i Orientation 
(Unsuccessful Students) Test Score 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

* 16 
17 
18 

Nj - 19 

X1 

22 
32 
53 
46 
38 
39 
21 
64 
59 
57 
64 
55 
35 
50 
35 
41 
30 
46 
40 

English 
Orientation 
Test Score 

x2 

35 
45 
48 
36 
54 
53 
24 
59 
45 
36 
60 
44 
46 
55 
48 
37 
26 
40 
53 

General Aptitude 
Test Score 

x3 

15 
1 

.10 
14 
13 
13 
16 
30 
19 
10 
19 
16 
16 
19 
20 
19 
11 
26 
18 
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Sample from Population «2 
(Successful Students) 

Mathematics 
Orientation 
Test Score 

English 
Orientation General Aptitude 
Test Score Test Score 

1 
2 
3 
U 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

N2 - 19 

29 
59 
62 
52 
61 
48 
55 
76 
36 
73 
73 
57 
36 
51 
61 
49 
57 
58 
46 

49 
48 
71 
35 
60 
50 
58 
65 
37 
77 
58 
48 
57 
63 
35 
61 
50 
53 
60 

13 
20 
29 
20 
29 
18 
31 
29 
21 
34 
23 
26 
11 
21 
20 
16 
19 
27 
39 

D. The Individuals (Applicants) To Be Classified 

- 34 - 36 *31 12 

Note: This was an unsuccessful student chosen at random from population n 

h : xl2 - 55 *22 - W *32 - 21 

Note: This was a successful student chosen at random from population n 
2 
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CHAPTER i y 

The Classification Techniques 

In the sections that follow, each illustrating one of the techniques 

of classification, the following basic steps will be considered: 

A) The selection of the variables to be used in the classification. 

In this step, not only will the selection of the original variables 

be considered, but also the transformations applicable to the 

variables if needed. 

B) The selection of the estimation procedure. 

This step depends upon the method being used either for the likelihood 

ratio or classification statistic in the technique and may Involve 

certain selections as to the form of these functions. 

C) Determination of the Classification Rule. 

This involves the determination of the classification constant 

as discussed in Chapter II. 

D) The Measurement of Operational Effectiveness. 

The empirical approach will always be considered and where 

applicable theoretical approaches will also be included. 

E) Application of the Classification Rule to the Unknown Observation. 

The method of application for practical use of the rule will be 

considered. Each section will contain first a brief general 

description of the technique along with the main references for 

the technique. The mechanics of applying the technique will then 

be considered in which the five basic steps outlined above are 

discussed in a general sense will be outlined. 
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The technique will then be illustrated using the college admission 

data given in Chapter III, The five basic steps will again be considered, 

but now as developed for the illustrative example. 

A. - Non Parametric Classification 

General Description: The non-parame trie classification procedure is limited 

to measured variables. If one associates with the dimensional sample space 

some metric or distance, say D(]C , xS» then a neighborhood can be defined 

about the observed point Z by specifying the number of sampled points from 

all samples that are required to be within the neighborhood, where the 

distance a sampled point is from Z is measured by D( £ , X). Within this 

neighborhood, a certain number of sampled points and a certain number 

of sampled points will lie. These numbers, divided by their respective 

sample totals, Nj and N2, yield estimates of f^iz) and f2(z) from which the 

classification decision is made. 

References; "Discriminatory Analysis; Non-parametric Discrimination: 
Consistency Properties" Evelyn Fix and J. L. Hodges, Jr., 
University of California Report No. 21-49-004, USAF School 
of Aviation Medicine, Randolph Field, Texas. February, 1951 

"Univariate Two-Population Distribution - Free Discrimination" 
David S. Stoller, JASA, Vol. 49, No. 268, pp. 770-777, Dec.,1954 
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This procedure is best indicated by a two dimensional graphical illustration, 

C - obs from 

A - obs from 

, ^(£>2.) Q - obs to be classified 

4 

¿y 

a 

h = 15 N, = 19 

M = 11 , = 7 , ng = 4 

f^Z) = ni/N1 = 7/l5 = .47 

?2(Z) = /N, = “ /19 = .21 

R(Z) = f2(Z) 21 
TJTzT = tí? ' -45 
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Procedure 

Step A. Selection of the Variables To Be Used: The Selection it restricted 

to measured variables, usually no transformation Is performed. 

Step B. The Selection of the Estimation Procedure for the Density 

Functions 

Bl,: Selection of the metric or distance D(x , x*) 

» iS must be such that 

D(x , X1) >0 

D(£ » iS ■ D(xl , X) 

1 1 Ü 11 
D(x , X ) + D(x , X )>D(x , X ) 

B2: Decision as to the number of points, M,to be included in 

neighborhood of Z. 

It is suggested that M be somewhat less than + N2 if 

2 

Nj and N2 are small ( < 30) while if 

Nj and N2 are large, M should be taken significantly less 

than N1 + N2 

. The problem is to get enough points in 
2 

the neighborhood so as to make the estimation of f1 (*) and 

f2 (z) sensitive. If M is too small or too large relative to 

+ N2 , the sensitivity of the estimate would be adversely 

affected. 

By Computation of D(Z, X) for all x 's from the samples from 

*1 and k2 
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B4 Pool D(Z , X) 's and order by Increasing value. Select out 

first M. From these «*8 

B5 Count the number of DU.xVs from population call this 

«iw.t the D(Z, x)'s from population n2, call this 

mmber rig. 

B6 Compute f^Z) - n^N! 

and f2(Z) ** n2/N2 

B7 Estimate of R(Z) - f2 0 / f1 (Z) 

C. The Determination of the Classification Rule: 

Ci: Determine the empirical estimation of the conditional distribution 

of R by evaluating R for each observation in the two samples. Each set 

of R's is then tabulated into a cumnulative frequency distribution. Usually 

a free hand smoothing of the frequency distribution is sufficient for 

estimating p(i/j). 

C2: Determination of A (the classification rule) according to the decision 

strategy to be used. 

C3: Statement of the Classification Rule; If 0/7) > Á . . 
In. *n n ., ,-,. (Z) ClaS5ify Z “ 

D. 
log to n2, if R(Z) < X eUssify z as belonging to 

Measure the operating effectiveness of the classification rule. 

Fr« the values of R obt.ined In Step C, and the application of the 

decision rule using X obtained above, complete the table 
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From Population 

To 

Population 
n12 

n22 

Total N 
1 N 

2 

From this table we make the estimates 

O P (2/1) * "2! / Nj 

11) p (1/2) -"J2 / n2 

E. The Application of the Classification Rule to the Observations 
Requiring Classification 

For each observation Z, follow the steps given ln B to obtain the 

estimate of R(Z ), Use the rule 

If R(Z) > À classify as «2 

Ulmi .atlon of Procedure 

Step A: Selection of Variable? To Be Used 

We will use from the Illustrative example: 

X} ■ Math placement grade 

X2 ■ English placement grade 

X3 ■ General aptitude test score 

Step B: The Selection of the Estimation Procedures 

B^: Selection of the metric or distance D(x, x ) 

We will use 

P 

D (x , X») • xp * xl 

p ■ 1 ^ P 

(Attention should perhaps be given to the introduction of weights w 
P 

such a metric.) 

in 
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B2: Decision as to number of points, M, to be Included In neighborhood 

of Z. 

We will use M • 15 since + 38 

To illustrate steps B-j to 

consider xj}’ - 22, - 35, 15 

B3: Computation of the 33 D's from the given point to all the points in the 

■»T • D<ï[l) . ? *) 22 - 22 : + 35 - 35 + 15 - 15 

>0) l2> - 0(1((1) , 2(1) } . I 32 . 22 ; +45.35| +7.15 

D<^-D(X J1).X(1) ) - I 53 - 221 + 40 - 35 +110 - 15 

28 

49 

Similarly through the remainder of the 19 observations for the sample of n 

and the 19 observations for the sample of n 

(1) ^ 
Obtaining the 38 distances. X, Is from the sample points, 

n,: 0, 28, 49, 26, 37, 37, 13, 81, 51, 41, 71, 43, 25, 52, 31, 25, 21, 38. 39 

•"j, 23, 55, 90. 35, 78, 54, 72. 88, 22, 107, 82, 61, 40, 63, 44, 54, 54, 66. 73 

84: Pool, order, and select the M - 15 smallest distances keeping track of 

population, obtaining 

"l! °. 28. 26, 37, 37, 13, 25, 31, 25, 21, 38, 39 

*2: 23, 35, 22 

B5: Determine and n2 by count of the results of step B 

n, 12 n2 - 3 

Compute f^x) • nl/NI - 12/19 - .6315 

f2(£) " n2/N2 " 3/19 " *1578 
«1 
1 f (X) 

_2_ 

V*) 

. .1578 

J>315 

B^ Compute 

.25 
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C: The Determination of the Classification Rule 

C^: Determine the empirical distribution of R(x) by evaluating 

R(x) for e^rh observation in the two samples. One must repeat 

Steps B3 through B7 for each of the 38 points obtaining 38 observed 

values of R, 19 from n^ and 19 from . 

These values are to be tabulated into two cumulative frequency 

distributions given in Table 1 below: 

R 

.25 

.36 

.50 

.61 

.67 

.80 

.88 

.96 
1.00 
1.14 
1.50 
2.00 
2.75 
4.00 
6.50 

Table 1 
Cumulative Qnplrlcal Frequency Distributions of R 

Cum p 

4 
3 
2 

3 
l 
1 
2 
1 

2 

1.00 
0.79 
0.63 
0.53 
0.53 
0.37 
0.32 
0.26 
0.16 
0.11 
0.11 
0.11 
0.11 
0.11 
0.00 

2 

1 
2 

1 

1 
4 
1 
2 
3 
2 

Cum p 

0.00 
0.11 
0.11 
0.16 
0.2Ó 
0.26 
0.26 
0,32 
0.32 
0.37 
0.58 
0.63 
0.74 
0.89 
1.00 

Total 19 19 

The cumulative frequencies are then plotted as a frequency distribution 

and smoothed into an estimate of the frequency curve. This is done by eye. 

See Figure 1 and 2. 

Cj : Determination of ^ according to the decision strategy to be used. 

Single Error Control 
a) Consider the requirement that p(2/l) ■ .25. That is that 

we do not want to have more than 25X of our Freshman class fall. 
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Flfur« li taptrlcal Istlaatloa of th« Di«trlbutlon of R glv»4 TT ^ 

I 

0 

t Í 

. I 

c: 

.1 ! 

K.* i , 
• '• 

•?l 

}•!*■ 

ijf 

i' 

i 

t.-i 

• ■ • • »'4- • >4 

3.00 
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Vlfuvt 2: ù^wrlcal la timt Ion of tte Distribution of B given TT 
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Then from Figure 1 

b) Minimum Expected Loas: 

Sine« C - 9l C(2/l) P(2/l) + q2 ¢(1/2) p (1/2) we have 

C - (.75) (1) p (2/1) + (.25) (2) p (1/2) 

- .75 p (2/1) + .50 p (1/2) 

Take a first value of À , say .90. Then using figures 

1 and 2, p (2/1) - .25 and p (1/2) - .28 and hence 

C - .75 (.25) + (.50)(.28) - .33 

Setting up the following computation table, we approach the 

minimizing ^ value numerically. 

X P(2/l) P(l/2) C 

90 .25 .28 .33 

1.00 .16 .32 28 

.75 37 .20 .38 

1.25 .11 .31 

1.10 135 .39 30 

And we select À - 1.00 as an approximation to the point of minimum 

expected cost. 

In '.he continuation of this illustration and in all further illustrations, 

we will use the strategy a) of controlling a single errer. 
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C3: St of the Classification Rule: 

If R (Z) > 0.90 classify Z as belonging to n?, 

If R (Z) < 0.90 classify Z as belonging to n^. 

D. Measurement of Operational Effectiveness. 

Using the rule of C3 and the data in Table 1 of Section C, we 

have that 5 observations from would have been classified 

as «2 » aiMl 5 observations of «2 would have beer called ttj's. 

Thus we have 

Prom Population 

5 

Population *2 5 

Total 19 19 

p (2/1) - 5/19 - .26 

p (1/2) - 5/19 - .25 
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2. Application of the CUa.ific.tlon Rule to the unKnown Oh.etvatloo. 

^ Si : 2i - 34, z2 . Zj . 12 

Ccrapute R(Zj) following Steps Bj to B7> 

B3: Compute 38 D's 

DifZ) - 22 - 34 + |35 - 36 j + 115 - 12 | . i6 

D2(Z) -132 - 34( + |45 - 36| + '17 .12 . 16 

Continuing thr^gh all 38 sa^le points obtaining the distribution, 

of D (zp 

15, 15, 30, 29 

44, 44, 56, 103 

I4: pool and Select the 15th Smallest D's 

nl : 14, 15, 15, 15, 16, 16, 21, 23, 23, 25, 29, 29 

«2 : 12, 19, 24 

*1 - 16. 16, 33, 14, 33. 23. 29, 71. 41, 25. 61. 33. 15. 41, 21. 

a2 : 19, 45, 80, 27. 66, 35, 62, 78, 12, 92, 72, 49. 24, 53, 36, 

Bs: Determine n1 and n2 

nl " 12 » rÏ2 ■ 3 

Bö: Compute fj (z) and f., (z) 

fl (Zi) » n1/Ni s 12/i9 » 63 

f2 CZp * n2/N2 - 3/19 - .10 

B7: Compute RiZj) 

R (z,) - £2 (Si) _ .15 , 

- ~ 

Apply Classification Rule 

Since R (¾) . .25 <0.90. Zj ., alaasifl^ (correctly) as a „ 
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ror Z2 > Z21 - .55. Z22 - 62, - 21 

Following the same steps used for , we have 

B3: Compute 38 D(Z2, x) 's 

(1) 
D(Z2 » X ) ■ - 22 - 55 : + 35 - 62' + 115 - 211 » 66 etc. obtaining 

*1 : 66, 54, 27, 42, 33, 33, 77, 21, 23, 39, 13, 23, 41, 14, 35, 41, 71, 36, 27 

*2 : *7, 19, 24, 31, 16, 22, 14, 32, 44, 46, 24, 21, 34, 5, 36, 12, 16, 18, 29 

P0°l and »elect 15 smallest 

nl : 13, 14, 21, 23, 23 

n2 : 5, 12, 14, 16, 16, 18, 19, 21, 22, 24 

Bj: Determine and 

nl ■ 5 , 1¾ - 10 

B6; Compute f^) and f2 (Z2) 

£1 (Z2) " ni^Nl " 5/19 " *263 

f2 (Z2) - n2/N2 . 10/19 - .526 

B7: Compute R(Z¿) 

r(Z2> " f2 (¾) .526 _ . - 2.00 

£1 (¾) .263 

Apply Classification Rule; 

Since R(Z2) - 2.00 > 0.90, is classified (correctly) as k2. 
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B. Catecorial Classification 

General Description: The cateCorlal claaalflcatlon procedure aaaumea that each 

variable to be uaed 1. either of a cateCortal type or haa been converted over to a 

cateporlcal type. For the observation (xlt Xj.Xj,) the product cateCorles are 

determined, say ( Sj. YK ■ • ■ ). Thus If the cateCorles for x^re. say. 

Black and ’.mite anl the cateCorles for Xj are Hlch, Iverace, and low, the possible 

product category classes for the observation (x1(x2) are 

(Black, High), (Black. Average) , (Black, Lev;) (White, High) .(White, Average) .(White, 

Low). For each of these product categorical classes, the number of observations 

from the sample from population nl and from the sample from population n2 are 

counted. These counts are used to estimate f2(x) and f^x) by using the ratio of 

the number observed in the class to the total number in the sample. One then 

associates with each categorical class the ratio R » f2 (xj/f^x) and thus the 

classification rule can be applied to each class. To classify an individual, all 

one needs to do then is to determine what class he belongs to and to observe which 

population the classification rule has associated with the class. 

References: William G. Cochran and Carl 2. Hopkins: "Some Problems in Multi- 
^¡5l®te cla8sification with Qualitative Data". Harvard University 
OMR Research Project, 1959. y 

Procedure 

—2 A: Selection of the Variables To Be Used: Variables are restricted to 

categorical type; if measured variables are to be used, they must first be converted 

to eetegorical. 

Al* Conversion to Categorical. The conversion can be done by simply dividing 

the range for the given variable up into a member of intervals and 

designating each interval as a category. For example, if only two 

categories are desired, one can simply use the mean of the pooled samples 

as a division point. Appropriate division points for more categories 

are given in the following table. 
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Table 2.1 

Division Pointa for Conversion of Measured Variables to Categorical 
N, N, 

X * mean of pooled samples » ? 
n*l 

s2 - ¿ (i{1) - î (1))2 ♦ ¿ (X^2) - X 

r i^1' + i2“ x(2) / 
a n Vi n / "i+ *¡ 

K1 tN2 

I < X - 0. Ö 

I - 0.6s < X < X ♦ 0.6 s 

X + 0.6S < X 

X < X - 

X - 1.2S < X < X - 

: - 0.4S < X < X + 

X + 0.ÍJS < X < X + 

X + 1.2S < X 

X < X - 

X - 1.J.S < X < X - 

X - 0.73 < X < X 

X < X < X *► 

X ♦ 0.73 < X < X ♦ 

X ♦ l.t| < X 
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A-,: Reduction in Number of Categories. 

Since the number of catecories used for any variables should be small, it may 

be necessary to reduce the ordinal number by cocbininc or croupinc cateCoric8. 

B. The Selection of the Estimation Procedure for the Density Functions 

Identification of each product categorical class. 

It is well to recognize that the available samples will be spread out over 

these classes and thus the difficulty associated with small or non-occurring fre¬ 

quency in classes must be faced at this step in the procedure. 

B?. Tabulation of the Samples by Product Classes 

Each population is kept separate, thus 

Product Categorical Class 

Population U (Y 8r Yk) 

*1 

*2 
ni (ai' 9v Yk) 
"2 (“i- aj. Yk> 

Estimation of the Density Function for Each Product Class. 

fi V W = ni (v V vk>/„ 
f2 (Y y*V = "2 (V V YkV N, 

Computation of the Likelihood Ratio R for Each Product Class 
f., (a., 9 , V, ) 

R ( a. , 6, . y. 1 - --. 1-L, fh, 

‘i’ y Yv. - 

Step C, The Determination of the Classification Rule 

Cl* Determine the empirical estimation of the conditional distribution« of R 

using the R's generated in Step B^ above. Each set of R's are tabulated 

into a cunznulative frequency distribution. Usually a free hand smoothing 

of the frequency graph is sufficient to produce a curve for estimating 

the smooth curve of p(i/j). 



-34- 

C2: Determination of the ^ (the classification constant) according to the 

decision strategy to be used. 

C3: Statement of the Classification Rule 

The rule is then given by: 

if R (Z) , classify Z as belonging to «2 ; if R (Z) < \ 

classify Z as belongint. to jtj. This rule can be applied to the 

R s of Step to determine for each product class the population 

assignment. 

D. Measurement of the Operational Effectiveness of the Classification Rule 

Since the rule given in Step C^ when applied to each product class (a , 9 , ) 
i j ® k 

assigns all Individuals of that classification into one or the other of the two 

populations, the frequencies of misclassification for the two samples can be 

read directly from the tabulations of B2. That is, if class (a , 9 , ) is 
i j k 

assigned by the rule to population *2, then the individuals making up the n.(a ,9 , ^ ) 
J ^ J k 

individuals in the class from the other population would have been erroneously 

classified. Me can thus complete the table. 

From Population 

*1_ 

10 : "n 
Population *. n 

2 21 

Total Nj 

From this tabic ue make the estimates 

P (2/1) - 

P (1/2) • ni?/H2 

”2 

nl2 

”22 
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B. The Application of the Classification Rule 

Por the Individual Z to be claa.lfled, tho.e variable, that were converted 

to categorical (step A,) or for which the number of categorie, ha. been reduced 

(Step a2) mu.t be flr.t conaldered. Then the product claaa for the Individual 

1. recognized and reference to the tabulation evolved In Step C3 determine, the 

classification. 

Illustration of Proc^tltirp 

Step A: Selection of Variables To Be Used. 

We will use from the Illustrative example 

Xj » Hath placement crade 

X2 " English Placement Grade 

X3 » General Aptitude Test Score 

A. Conversion to Catecorical: 

since all three variable, are meaaured, each must be converted to 

categorical. 'Je elect to uae simply two categories for each variable 

alnce the sample aire la .0 anall. The division point for each variable 

is then the pooled mean. 

We compute 

Y. 
(D 
In 

+ 
‘i2) 

__2n * 2n 

(2) 

in 

N. + N 
1 2 

N1 + N2 

r x(l) 
^ X3n + X 

He + N 
1 2 

327 + 1039 

8AWJ035 - A9<4 

33 

311 + 446 

38 

19.9 
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Ut u. denote the c.tecorles by Lp and Hp> p - 1, 2, 3. Thu, tf X < x 

heve an L; othervt.e an II cat«Eorv. Ihla conver.ion when applied to the data 

Civen In Chapter III yields the £oKowlnC results: 

Obs 

1 

2 

3 

A 

5 

6 

7 

3 

9 

10 

11 

12 

13 

1A 

15 

16 

17 

10 

19 

Population 1 

Obs 

1 

2 

3 

A 

5 

6 

7 

A u 

9 

10 

11 

12 

13 

14 

15 

16 

17 

10 

19 

L1 

»1 

Hi 

L1 

«1 

Hi 

L1 

»1 

Population 2 

L2 

»2 

L2 

»2 

h2 

«2 

h2 

l2 

h2 

Hi 

»1 

Ll 

»1 

«1 

Ll 

«1 

«2 

l2 

«2 
H2 

L2 

h2 

h2 

»2 

X 
_3 

L3 

H3 

h3 

h3 

»3 

«3 

»3 

»3 

H3 

L3 

»3 
h3 

L-» mJ 

L3 

»3 

/.2» Reduction of Number of Categories. 

Ihls step is not used In the illustration since all the variables 

required conversion 
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B. Selection of the Estimation Procedure for the Density Functions 

B! Identification of the Product Classes 

We have the followinß eight classes: 

L1L2L3 • L1L2H3 » L1H2L3 , H1L2L3 

L1H2H3 , HlL2H3 , H1H2L3 » H1H2H3 

B2 Tabulation of the Two Samples by Product Class 

Product Class 

LlL2L3 

ML2H3 

h1l2l3 

LiH2H3 

H2L2II3 

h1h2l3 

HiH2H3 

Population 1 
»I 

7 

2 

3 

4 

0 

0 

2 

1 

19 

B3 Estimation of the Density Functions for Each Product Class 

Product Class 

L1L2L3 

L1L2H3 

^1^2^3 

L1h2h3 

h1l2h3 

H1H2L3 

Population 1 

f! ■ 7/19 - .363 

*1 - 2/19 - .105 

fl - 3/19 - .150 

f! - 4/19 - .211 

fl - 0/19 - .000 

fl - 0/19 - .000 

f! - 2/19 - .105 

fl - 1/19 - .053 

Population 2 
n2 

1 

1 

3 

0 

1 

4 

1 

3 

19 

Population 2 

• 1/19 - .053 

- 1/19 - .053 

■ 3/19 - .150 

- 0/19 - .000 

■ 1/19 - .053 

- 4/19 - .211 

■ 1/19 - .053 

- 3/19 - .421 
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Computation of the Likelihood Ratio 

Product Class 

l1l2l3 

L1L2H3 

^1^2^3 

H1L2L3 

LÍH2H3 

H1L2H3 

HJH2H3 

R - f2/f1 

.053/.368 - .144 

.053/.105 - .505 

.158/.150 - 1.000 

.000/.211 - .000 

.053/.000 - 

.211/.000 - X» 

.053/.105 - .505 

.421/.053 *> 7.^4 

Step C: The Determination of the Classification Rule 

Ci Order product classes by R value, and cummulate fi and £2 

Product Class 

h1l2u3 

L1H2H3 

1^2^3 

HjH2L3 

L1L2H3 

L1L2L3 

^1^2^3 

7.94 

1.00 

.505 

.505 

. 144 

0 

h 

0.000 

0.000 

0.053 

0.158 

0.105 

0.105 

0.360 

0.211 

P (2/1) 
Cum fj 

0.00 

0.00 

0.05 

0.21 

0.32 

0.43 

O.79 

1.00 

_2 

0.211 

0.053 

0.421 

0.150 

0.05 J 

0.053 

0.053 

0.000 

P (1/2) 
Cum fy 

1.00 

0.79 

0.74 

0.32 

0.16 

0.11 

0.05 

0.00 
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e2 Use value» of p (2/1) and p (1/2) 0f Step to determine \ 

value for chosen strategy. 

To meet requirement that p (2/1) - .25 « see from the table Clven above 

that the four product classer HeL-lU, L,H H H H II av*A r u i 
12 3 n.n2M3’ and ^^2^3 shou^d t)® in n 

for the Classification rule. The other four product classes are In 2 

C3 Statement ' the Classification Rule: 

if Z to any of the classes , . L^Hj . and 

classify individual Into n2. Othervise, clarify individual 

into «J , 

D. Ueasurement of Operational Effectiveness 

Usine the rule of C3 anc the tabulation of B2, we have the result* 

To 
Population 

Total 

«1 
15 

19 

From Population 

«2 

1Ö 

19 

Thus P (2/1) » 4/19 » .211 

P (1/2) - 3/19 - .144 

E. The Application of the Classification Rule 

Consider Zi • 7,, - v, ■? » -1 • ¿11 - 34 , Z?1 - 36 , Z31 - 12 

Applying Step A1 to make categorical, v;e have 

¿1 : LlfL2,L3 

Referring to Classification Rule, h is classified as nl 

Consider Z2 : Z12 - 55, Z22 “ 62 , Z32 =21 

'one'correcíio^r'TMfM163*,5“^” ^ the this estimate is biased 
Us« of Tv^er fc”\this bias has been proposed by Bartlett: Bartlett, M S "The 
use of Transformations," Biometrics. Vol. 3, No. 1 (194?). * in 
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Applyinc Step A to make cotecorlcal, we have 

Z2 : H1,H2,H3 

Rcferrinc to Classification Rule, Z2 is classified as jc2. 

C. General Parametric Classification 

General Description: A General procedure that can be followed in classification 

is available if one knows the parametric form for the density functions fi (x) and 

*2 (2)» The procedure is based upon the density ratio approach to classification. 

The best estimate for the parameters occurrinc in ^ (x) and f2 (x) are computed 

from the two available samples and the rule then involves 

If R <¿) » f2 (z) 
^_ £ X » classify 2 into n-. 

(*) 

The classification is accomplished for any z by simply evaluating the density 

functions for z using the best estimates of the parameters. 

The multivariate normal density function is often used in the case of 

measured variables. 

Reference: T. U. Anderson: "An Introduction to Multivariate Statistical Analysis" 

Miley & Company, pp. 126-137. 
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Procedure 

Step A: Selection of the Variables To Be Used, 

The multivariate observation selected must be such that a joint 

density function can be exhibited. 

Step B: 

B1 

The Selection of the Estimation Procedure for the Density Function 

Selection of the Function To Be Used as the Density Function 

Methods for the selection of the density function either make use 

of previous experience as to the nature of the underlyinc multi¬ 

variate determination or a study of the moments of the available 

samples. 

Since the multivariate normal is so often encountered and, in fact, 

one often makes transformations on the original variables so as 

to achieve normally, we will restrict our consideration of estimation 

procedures to those associated with the multivariate normal distribution. 

The cebral form of the nulti-variate normal can be written as: 

/ P * I - T- - -pq. 
f (X1,X2 .x.-Xp) - K exp i E.g-I_u (Xr ' /' P ) ("q 

2 I V, f 
where 

K- 

1 

p/2 L j 1/2 
(2«) l V 

the population covariance 
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G” * cofactor of (A ) 
pq 

* p.q ^ term of 

In evaluating the multivariate normal density function« one may first per¬ 

form a transformation on the original set of variables to a set of independently 

distributed variables. The follc/ing procedure accomplishes such a transforma¬ 

tion. 

Let xr X2« , Xp, ..., Xp be the set of eriginal variables. 

First transform to deviations from the mean, obtaining 

t » X - u . 
P P P # 

Then the transformation equation oan be expressed as 

“l*1! 

1¾ « - (tj • ^) *i 

’ ’ ‘ ” P-1 

the common vector cross production notation. 
* • 

If P is large, say greater than four, the computations giver, by the system 

of equation above for samples of anj magnitude are such that they should be 

programmed for a digital computer. If P is less than or equal to four, the 

transformation c^n be expressed in terms of the moments of the sample and if 

used in this form, are more amenable to desk calculator computing. 
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These equations are 

2i = 

‘ rL2 Z1 

i 1 - r 12 

, ’S-S -<r” 'r" r -¾ ‘1? ui) , r , 
__ 2 • r13 Z1 

'£lHà 

1 - r 
13 

rn)? 
i * 2 
1 ’ r12 

Z4 = 
• 'li J V -12 ' "ir3ii • ri3 rlu> Í1 - rj) - (r23 . r 

(r24 - r12 rli,)] z3 - (1-¾ - 1-32 rw) Dj Z2 

where 

and 

- ru\T 1 - d3 zij • 

D3 = -F 13 • rl2 - r23 * 2r12r13r23 

V = (1 - r^2)2 (1 - r13Z - rluZ -^*2 ^ . 

- (1 - r^2) [(1 . r132) (r2U . ri2r14)3 + (1 . . 

+ 2(1-23 * r12r13> (r24 - r12r14) 

Hie steps that follow are those associated with the use of these Utter 

formulas. 

B2 Estimation of the means, standard delation and correlation 

coefficients for each population from the two available samples. 
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We prefer to use the maxircun likelihood estimates. 

Determination of the coefficients in the transformation equations 

using estimates of step 32. 

In applying the formula of step we will assume that each variate is 

first converted to a standarized variate by the transformation 

The formulae will then take these t's into the independent Z's. 

Determination of the individual densities for each X. 

A table of ordinates for the univariate normal distribution in terms 

of standard variates can be used to determine the quantities. 

■ 
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B5 Evaluation of the multivariate density function. 

We have the simple products 

fl (xl,x2»-*p) s fl (Z2(1)) ••• f1 (Zp(1)) 
and 

f2 (lllX2—V * f2 (Zl<2)) • f2 (h.M) "• f2 (Zp(2)) 

Computation of the Likelihood Ratio: 

Step C: The Determination of the Classification Rule. 

Determine the empirical estimation of the conditional distri¬ 

butions of R by using the R's generated through step 

above from each ob: rvation for each sample. These sets of 

R's are tabulated into a cumulative frequency distribution. 

Usually a free hand smoothing of the frequency graph is suf¬ 

ficient to produce a curve to be used in estimating values of 

P(i/j). 

Determination of the X'the classification constant) according 

to the decision strategy being used. 

Statement of the Classification Rule. 

The rule then is given by 

f (Z ,Z , —Z ) 

If R(£) = f^ (z\z 2°) > ^ * classify Z as belonging to 
112 p 

if R(£) < ^ classify ¿ as belonging to . 

Step D: Measurement of the Operational Effectiveness of the Classification 

Rule. 

Using the R values determined for each sample observation in step C^, 

the classification rule of step C^ can be applied yielding the totals in the 

following table. 



Fron Population 

To Population 

n2 ^l "22 

Total N1 N2 

From this table we make the estimates 

p(2/l) * "21 / Ni 

p(l/2) = ni2 / N2 

Step S: The Application of the Classification Rule to the Observations 

Raquiring Classification. 

The computation steps given in and are applied to each observa¬ 

tion yielding a likelihood ratio R to which the classification rule of 

is applied. 

Illustration of Procedure 

Step A: Selection of the variables to be Used. 

We will use from the illustrative example: 

» Math Placement Grade 

Xj s English Placement Grade 

= General Aptitude Test Score 

Step B. The Selection of the Estimation Procedure for the Density Function, 

B1 Selection of the Function to be Used. 

We will use the trivariate normal and will apply the second 

transformation approach using sample estimates of the population 

parameters. 
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B2 Estimation of Means Standard Deviation and CorreUtion Coefficents 

for Each Population from the Available Sample. 

omp^tatipr. cf S-tnple Summatiors 

L^Pulation 1 

r*x 

Zh2 

Zï 

Zx^ 

Zx2x3 

19 

82? 

m 

311 

39033 

39388 

5641 

38073 

14007 

14152 

Population ? 

19 

1039 

1035 

446 

59647 

58699 

11408 

57661 

25250 

25003 

Popula tier. 1 

- (1) 

*1 

l(1) 

, J£Z 
■ 

nr 
19 

43.53 . 

44.42 , 

12.64., 

9.99 . 

4.05 

Population ? 

7(2) , JOjî , 
1 19 

7 (2) _ 101»; 
^ " 19 ! 

7 (2) J¿46 
^ 19 

sii2) * -19 NT«??!“ 

s2(2) = -fe 

S3<?) = V1763 ' 

54.68 

54.47 

23.47 

= 12.20 

■ II.05 

* 7.03 
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12 

13 

(1) ► 

(1) 

r23 
(1) 

a + 0.557 

= ♦ 0.483 

+ 0.438 

12 
(2) * + 0.415 

(2) 
r13 Ä +0.528 

(2) 

r23 = + 0‘W 

EL Determination of the Coefficients in the Transformation Equations. 

Population 1 

h = V^53 t2 =±2^ t , V^37 
* q.99 • 3 4.05 

Z1 = t1 

t2 - 0.55? Zt 
¿2 0.831 

Z. = U - 
I ’ Oil Z2 " °»483 Z1 S * 0*203 Z2 * °.483 Z1 
__, ~ O.85O 

--H$r 0.690 

Population 2 

h s 
- 5^.^8 
12.20 

\ - 5^.^7 ‘ - 23.^7 
• ~ n f\e * = J 11.05 3 7.03 

zi = h 

Z2 = t2 . 0.415 Zx 

0.910 

0 = 

\J 0.721 - -2^ 

t3 - 0.287 Z2 - 0.528 Z1 

07799 L 



B 

B 

steps B^ 

Ste^ 

(2) 

(3) 

(4) 

(5) 

(5) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(Ifc) 

(15) 

(15) 

(17) 

(18) 
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Determination of the individual densities for each Z , 
P 

Evaluation of the multivariate density functions. 

The following computational fo™* accomplishes the requirements of 

and B-. 

Population 1 

Operation 

*1 

X3 

(1) - ^3.53 

(2) - 44.42 

(3) - 16.37 

(4) / 12.64 

(5) / 9.99 

(6) / 4.05 

(7) 

(8) - 0.557(7) 

(11) / 0.831 

(9) - 0.203 (12) - 0.483 (10) (13) 

(13) / 0.850 (14) 

fl (1°) (15) 

(16) 

f3 (14) (17) 

(15)(16)(17) (lg) 

Population 2 

Operation 
*i 

(1) - 5^.68 

(2) - 54.47 

(3) - 23.4? 

(4) / 12.20 

(5) / 11.05 

(8) / 7.03 

(7) 

(8) - 0.415(7) 

(11)/0.910 

(9) - 0.287 (12) - 0.528 (10) 

(13) / 0.799 

fj (10) 

f2 

fj (14) 

(15)(18)(17) 

Ste^> 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Compulation of the Likelihood Ratio R. 

R is the quotient of step 18 for Population 2 by Population 1. 

^The convention used is that (\r) means to use the value of steo ^ f(2) <«« 

WUeyTci!5 Table n’ Paee 315: HOe1, 
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The computation is illustrated for a typical observation: x-^ - y>, 

= 3 = 12. 

Step 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Population 1 

34 

36 

12 

-9.53 

-8.42 

-4.37 

-O.754 

-0.843 

-1.079 

-O.754 

-0.423 

-O.5O9 

-0.611 

-0.719 

0.3011 

0.3503 

0.3079 

0.0325 

Population 2 

34 

36 

12 

-20.68 

-18.47 

-11.47 

-I.695 

-I.67I 

-I.632 

-1.695 

-0.968 

-1.064 

-O.432 

-O.54I 

0.0941 

0.2275 

0.3448 

0.0074 

R<>. 36. 12) = M . 0.23 

Step C: The Determination of the Classification Rule. 

Determination of the empirical estimation of the conditional dis¬ 

tributions of R. 

Applying the computational form given above to the 38 observations in 

the two samples yields the following values of R. 



3 X 10 

Order the observed R's* and compute cumulative percentage frequency. 

•If a larger sample size were available,a frequency distribution would be more 
appropriate for this step. 



Table 2 

Cumulative Frequencies for R 

cum f. 

Population 2 

Ordered R cum f 

4192.712 

6 
3 X 10 

These values are plotted in Figure 1 and 2 and a smoothed cumulative 

curve fitted free hand to the distribution to yield an empirical estimate of 

p(2/l) and p(l/2). 



VLfUZW It ùpericAl Sctlmtlon of tbc DlatrituUon of R given 77^. 

P 

LOO 

.95 

.90 

•65 

•60 

.75 

.70 

.65 

•60 

.55 

.50 

•65 

•6o 

.35 

•30 

.85 

•80 

.15 

.10 

.05 

1. 

i 

I 

I 

I 

< 

I 

9 

t 

8 

• < 





C,: Determination of the value of X(the classification constant) using ■ 

decision strategy. 

Since we want to control classification so that p(2/l) ~ .25. we use 

Figure 1 and have 

>= R(p(2/l) = .25) = 1.50 

C^: Statement of the Classification Rule. 
classify 

If R(Z1, Z?. Z3) >1.50 / ¿as belonging to if R(Zr f I.50 

classify ¿ as belong to n^. 

Step D: Measurement of Operational Effectiveness. 

Table 1 in Step enables one to readily apply the classification rule 

to the 38 sample observation yielding the results 

From Population 

To 

Population 

Total 

Ik 

5 

19 

We obtainV 

I 

p(2/i) * 5/19 * .253 

p(l/2) = 5/19 = .316 

Step Et The Application of the Classification Rule to the Observations 

Requiring Classification. 

The computation form in step is applied to each observation. 



(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Since 

Since 

Population 1 

34 

36 

12 

-9.53 

-8.42 

-4.37 

-O.754 

-0.843 

-1.079 

-0.754 

-0.423 

-O.509 

-0.611 

-0.719 

O.3OII 

O.35O3 

O.3O79 

O.O325 

2 1 

12 21 

-20,68 +11.47 

-18.47 

-11.47 

- 1.695 

-I.67I 

-I.632 

-1.695 

-0.968 

-1.064 

-O.432 

-0.541 

0.0941 

0.2275 

0.3448 

0.0074 

+I7.58 

+ 4.63 

+ O.907 

+ I.76O 

+1.143 

+O.907 

+I.255 

+I.5IO 

+0.398 

+0.468 

C.2637 

O.I276 

0.3572 

0.0120 

2 

55 

62 

21 

+O.32 

+7.53 

-2.47 

+0.026 

+0.681 

-O.35I 

+0.026 

+0.670 

+O.736 

-0.576 

-0.721 

0.3988 

O.3034 

O.3079 

O.0373 

R(¿): ^^/0.032530,23 0.0373/0.0120 = 

8(^) <1.50, is classified as belonging to r^. 

R(2g) >1.50. is classified as belonging to 

D. The Wald Classification Statistic. 

General Description: 

The Wald Classification technique consists of using the multivariate 

normal assumption for the density function for each population. By making 
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the further aasumption that the two populations have the same covariance 

matrix» the likelihood ratio can be reduced to a simplified classification 

statistic. The statistic takes the form 

W(l) = J II SPq (ïq2-*q1}) ZP 

where is obtained from the pooled estimates of the covariance. 

The problem of determining the value of A to use in the formulation of 

the classification rule can be considered theoretically since the statistic 

is approximately normally distributed with known mean and standard devia¬ 

tion. 

"On the Statistical Problem Arising in the Classification of an 

Individual into ^Yie of Two Groups* ” Abraham Wald* Annals of Mathematics 

Statistics. Vol, XV, no. 2, June, 19^. 

Procedure 

Step As Selection of the Variables to be Used. 

The variables used must be measured and have a joint distribution that 

can be approximated by the normal distribution with equal covariance matrices 

for the two populations. If thi.'j latter condition is not met, one often per¬ 

forms a transformation upon the original variables in order to bring about 

a closer approximation by the normal assumption. 

Step B: The Selection of the Estimation Procedure. 

Since the classification statistic involves sample estimates of population 

parameters, we elect to use the corresponding maximum likelihood estimates as 

follows: 



+ N, 

Inversion of the Covariance Matrix. 

Estimation of the Coefficients of the Wald Statistic. 

In general we have 

J2) Jl) ^ 
(Xq - Xq 5 j ZP 



expanded 

_ (2) _ (1) UÍZ) _ r-U ,7 - 'i\ 12 _ (2) _ (1) v¿, U) 
LS (X1 -1! .1¾ )+3^(1, -Xj )]Z: 

+ r<î21Æ<2> 7(1\ ,22 ,- (2) -(1) ?i -(2) -(1) Ls - x1 ) + s 2 ) + s23 (x^ - X 

- (2) - (1) 

3 )]Z2 

r 31 - (?) - .o . (2) . (D 33 . (2) . (l) n 
+ CsJi (x1 - x1 ) f S32 - 3¾ )+ S33 (x3 - L3 )] 

Step C: The Determination of the Classification Rule. 

Empirical Estimation: 

C^: Determine the empirical distribution of W(¿) by evaluation W(¿) for 

each observation in the two samples. These sets of W's are tabu¬ 

lated into a cumulative frequency distribution. Usually a free - 

hand smoothing of the frequency graph is sufficient to produce a 

curve to be used in estimating values of p(i/j). 

C^î Determination of the X (the classification constant) according to 

the decision strategy being used. 

Cy. Statement of the Classification Rule: 

The rule is then given by 

If W(7) > X * classify £ as belonging to n2, if W(2.) < \ , 

classify ¿ as belonging to n^. 

Theoretical Estimation: 

The moments of W(Z) are: 

P 2 M ,- (2) _ (D _ (1) 
The means ^ " *q ^ *p 

if ¿ belongs to 

and 

P P 
- r—- ^ . u; . ^ ■ 5 5 s “' - ^ . (2) . (1). . (2) 

P 

if belongs to and following the assumption, for either or n. 



From these estimates of the probabilities of the two types of classi¬ 

fication error one can determine the classification rule that corresponds to 

his decision strategy. 

Step D: Measurement of the Operational Effectiveness of the Cla«slfication Ru 

Empirical Estimation 

Using the values of the classification statistic W(¿) that were generated 

in itep C1 for the sample observations, one can apply the classification rule 

of step to each observation and obtain the totals for the following table. 

From Population 

To n. 

Population tt2 

Total 

n 11 

^1 

N, 

n12 

N„ 
c 
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From this table we can make the estimates 

p(2/l) = n2l/N1 

p(l/2) = n. 12/N, 

Theoretical Estimation 

If one elects to use the approximate distribution of the statistic W(2.), 

we have the estimates of the probabilities of error from the integrals given 

in step C. 

Step Es The Application of the Classification Rule to the Observations Requir¬ 

ing Classification. 

The value of the statistic W(Z) as given in step is determined for 

the observation. Since the statistic is linear in £ this evaluation is 

straight forward. Using this value one uses the classification rule of step 
• ■ 

Cj to determine the appropriate classification for the individual. 

Illustration of the Procedure 

Step As Selection of uie Variables to be Used. 

We will use from the illustrative example 

x^ » Math Placement Grade 

= English Placement Grade 

Xj = General Aptitude Test Score 

Step Bt The Selection of the Estimation Procedure. 

B^s The Sample Moment Compulations 
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Summations 

Population 1 

Nx * 19 

IT = 827 

H Xj = 844 

Z. x3 = '311 

H X]2 = 39033 

Z. Xj2 = 39388 

Z x32 = 5641 

Z XjX, = 38073 

Z XjX3 = 1400? 

z = 14152 

Means 

Population 1 

X (1)= ^ = 
XI 19 
. (1) 
*2 
. (1) 

x3 

*44 
" 19 “ 

- lii 
19 

^3.53 

44.42 

16.37 

Population 2 

19 

1039 

1035 

446 

5964? 

58699 

11408 

5766I 

25250 

25OO3 

% 

Population 2 

- (2) 
X1 
- (2) 

- (2) 

x3 

= Í2Í2 
19 " 

= = 
19 

446 
19 

54.68 

54.47 

23.47 

Pooled Variances and Covariances 

S = (19)(67 ;98) , ( 19)i 53772) 

11 _LlZ_¢19)2 

19 + 19 

S = ¢^)(36036) + (19)(44055) 

22 - (19)^ (19)2 

I54.39 

19 + 19 
110.93 
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S . + (19)(17¾¾) 

33_(19)3 (H)? 

19 + 19 

s . + (19) (70199) 

1? (19)3 
19 + 19 

S , Ü2lism + ¢19)(163¾) 

3 _iüL_(19)2 

19 + 19 

S = 1.1?) + ¢19)(13997) 

; _Ü21Î_(19)2 

19 + 19 

B2: Inversion of the Covariance Matrix* 

Evaluation of Covariance Determinant 

39.19 

63.15 

35.03 

27.49 

15M9 63.15 35.O3 

63.15 110.93 27.49 

35.03 27.49 39.19 

383729 

Determination of Cofactor Matrix 

/ 3592 -I5I2 -2I5O \ 

i -I5I2 4823 -2032 

y -2I5O -2032 I3139 ^ 

where 3592 = (110.93)(39.19) - (27.49)(27.49) 

‘Since the rank of the matrix is three the inversion will be made usinv the 
definition. 
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Division of terns by covariance deteminant (.0093* -.00394 -.00560 

-.00394 .01257 -.OO530 

-.OO56O -.OO53O .03424 

Estimation of the Coefficient of the Wald Statistic. 

Computation of Mean Differences 

- (2) 
X1 
- (2) 

*2 
- (2) 

x3 

. (1) 

X1 
- (1) 

*2 

= +II.I5 

= +IO.05 

= + 7.10 

Determination of Coefficients 

b1 = .0093*(+11.15) - .00394(10.05) - ,00560(7.10) 

= +.0250 

b2 = -.00394(11.15) + .01257(10.05) - .00530(7.10) 

= +.0448 

b3 ■ -.00560(11.15) - .00530(10.05) + .03424(7.10) 

= .1274 

Thus 

W(£) = +.0250 Z1 + .0448 Z? + .1274 Z3 

Step C: The Determination of the Classification Rule. 

Empirical Estimation 

C^i Determination of the Empirical Distributions of V‘(Z). 

Evaluate W(Z) for each available sample observation. 

Thus 

= +.0250(25) +.0448(35) +.1274(15) = 4,029 

Repeating for the 38 observations yields the results. 
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Table; 3^(Z) For Sample Observations 

Population 1 Population 2 

Obs. 
1 
2 
3 
4 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

W(Z) 
4.029 
3.708 
4.7^9 
4.546 
5.025 
5.006 
3.^39 
8.065 
5.912 
4.312 
6.709 
5.385 
4.974 
6.135 
5.573 
5.103 
3.316 
6.254 
5.668 

Obs. 
1 
2 
3 
4 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

V(Z) 
4.576 
6.173 
8.425 
5.416 
7.908 
5.733 
7.923 
8.507 
5.233 
9.606 
7.354 
6,888 
4.855 
6.773 
5.641 
5.996 
6.086 
7.264 
8.807 

Generation of the Cumulative Frequency Distributions 
for W 

Interval 
3.00 - 3.49 
3.50 - 3.99 
4.00 - 4.49 
4.50 - 4.99 
5.00 - 5.49 
5.50 - 5.99 
6.00 - 6.99 
7.00 - 7.99 
8.00 - 8.99 

Population 1 
f 
1 
2 
2 
3 
4 
3 
3 
0 
1 

cum 
19 
18 
16 
14 
11 

7 
4 
1 
1 

cum p 
1.00 

.95 

.84 

.74 

.58 

.37 

.21 

.05 

.05 

Interval 
4.50 ~ 5.49 
5.50 - 6.49 
6.50 - 6.99 
7.00 - 7.49 
7.50 - 7.99 
8.00 - 8.49 
8.50- 8.99 
9.00 - 9.49 
9.50 - 9.99 

Population ? 
f cum f 
4 4 
5 
2 
2 
2 
1 
2 
0 
1 

9 
11 
13 
15 
16 
18 
19 
19 

cum p 
.21 
.47 
.58 
.68 
.79 
.84 
.95 
.95 

1.00 
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Flfup« 2: Bqwrlc&l Efttlaatlon of th« DlstrlbuUon of W glwn Tg. 

! 
I : 
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Those distributions are plotted as in Figure 1 and 2 and a smooth 

cumulative curve filled free hand to the distribution to yield an empiric*! 

estimation of p(2/l) and p(l/2), 

C2: Determination of fusing the decision strategy. 

Since we require a classification rule such that p(2/l) = .25, 

we use Figure 1 and have 

A * W(p(2/1) = .25) = 5.90 

Cy. Statement of the Classification Rule. 

If W(Z^; Z^, Z^) > 5.90 classify £ as belonging to 

if W(Zr Z,, Z-j) ^ 5.90 classify ¿ as belonging to n^. 

Theoretical Estimation 

C1î Determination of the Moments of W(Z) 

= .0250(43.53) + .0448(44.42) + .1274(16.37) 

* 5.H 
a2 = .0250(56.68) + .0448(54.47) + .1274(23.47) 

= 6.80 

(T2 = .0250(11.15) + .0U*8(10.05) + .127M7.10) 

* 1.¾ 
% 

Cy Determination of A using the decision strategy. 

Since we require a classification rule such that p(2/l) 

we have 
r* 00 

\/2Ï7 
-t^ /2 e ^ dt = O.25 

A-V-xV 
1.¾ 



Fron tho tabulation of areas under the normal curvo wo have 

i, 

I.63 
0.6? 

and \ *«6,02 (as compared to 5.90 determined from tho empirical 

distribution). 

Step D: Measuroment of Operational Effectivenoss. 

Using Table 1 of step and tho classification rule of C^, one can readily 

classify each of the sample observations and obtain the totals for the following 

table. 

To 

Population 

From Population 

n L 

Tt, 

Total 

14 

19 

13 

19 

We obtain 

p{2/l) = 5/19 = .24 

p(l/2) = 4/19 = .32 

If we utilized the theoretical distribution, we would have obtained 

uo 

p(2/D Van 

and 

-o /2 
e 'dt = 0,25 (as designed) 

">.0? - c>. 17 
1,28 

- yo 
1728 

p(l/2) = 
\/2n J 0 -t ^ dt = .27 

- gO 
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Stop E: The Application of the Classification Rule to the Observations 

Requiring Classification. 

Wo have 

W(Z) = .0250 Zl + .0448 Z2 + .1274 Z3 

For Z1 = 34, Z2 = 36, Z3 = 12 

W(£x) = .0250(34) + .0448(3^) + .1274(12) = 3.992 

Applying the Classification Rule. 

Since W(^) < 5.90» is classified as belonging to n^. 

For Sg: Z1 = 55, Zg = 62, Z3 = 21 

W(^) = .0250(55) + .0448(62) + .1274(21) = 6.828 

Since W(2g) > 5.90, ¿g is classified as belonging to n^. 

E. The Purdue Classification Statistic 

The Purdue University classification technique using the multivariate 

normal assumption for the density function of each population. Each popula¬ 

tion is considered to have its own covariance matrix and the likelihood ratio 

involved reduced to form the classification statistic. The statistic takes 

the form of a quadratic function of the Z's. 

P P 

p(i) = t J [<S(ir - S(2r>Vq - 2(S(lF ÎP<1)- S(2r S > Zq 

M _ (1) _ (1) pq _ (2) _ (2) 

+ <S(1) ^ Xq -S(2) Xp Xq )] 

The distribution of P(£) can be approximated by an incomplete Gamma 

distribution. Since this distribution has been tabulated, this fact could be 

used to estimate p(2/l) and p(l/2), however, the approach is beyond the 

scope of this handbook. 

Reference: "Multivariate Classification with Normal Alternatives," R. H. 
Shaw, Purdue University Thesis, Lafayette, Indiana, July, 1959. 
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Step Aî Soloction of the Variables to be Used. 

The variables to bo used must bo measured and have a joint distribution 

that can be approximated by the multivariate normal distribution. If this 

condition is not met, one often performs transformations upon the original 

variables in order to bring atout a closer approximation by the multivariate 

normal distribution function. 

Step B: The Selection of the Estimation Procedure. 

Since the classification statistic involves sample estimates of population 

parameters, we elect to use the corresponding maximum ’’ikelihood estimates in 

evaluating the statistic. 

B,: The sample moment computation 

: Inversion of the covariance matrix. 
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In general we have 

P(¿) = I T (S( ” - S(2r> ZP Zq 
q=i p=^ 

r—• _ (1) . (2) 

2 S k (S(1^Xp 'S(2^ Xp 5 zo 

_ ^ m _ (1) _ (1) ^ . (2) . (2) 

+ l L (S(ir XP Xq - S(2)W XP Xq 5 

For P = 3» this expands to the form 

P<*> = ^(l)1 - 3(2)1) Zl? + (3(1)2 - 3(2)2) *22 + (Sa)33 - S(2f > 2j 

+ 2 (3(1)2 - 5(2)2) 21Z2 + 2 (5(1)3 - 5(2)3)Z!Z3 + 2(S(1f3 - S(2f3)Z2 

- 3^5(01 h (1)- s(2f (saf ^(1). s(2f î,(2)) 

+ (5(1)13 ba) -3(2)13V2))]Z1 



(2) 1 tLW(1) A1 “ J ' T 'aa)' *2' ■ -B(2)' ' 

+ fs 33 V (1) . o 33 7 (2)\i . +15(1) ^ -S(2) X3 )JZ3 

♦ IS11)‘ 'ia)i- =e" * a, " V"z ■ -m ie?> 

* «oî’ ï,n,î - s0¡’ î,B,î) 

•f ? (s# X ^ s (2)7 ^2)v 13 “ (1) “ (1) _ 13 7 (2) * 2 <3(1) h \ s(2) X1 X2 ) + 2(S(1) Xx X3 - S(2)J X1 

+ 2(S/ X ^ S 7 ^2) 7 (2)\ 
2^(1) ^ ^3 - s(2) *2 *3 } 

Step C: The Determination of the Classification Rule. 

C^i Determine the empirical distribution of P(Z) by evaluating P(Z) 

for each observation in the two samples. These sets of P’s are 

tabulated into a cumulative frequency distribution. Usually a free - 

hand smoothing of the frequency graph is sufficient to produce a 

curve to be used in estimating values of p(i/j). 

7 M 
3 

Cgi Determination of the A (the classification constant) according to 

the decision strategy to be used. 

Cy. Statement of the Classification Rule. 

The rule is then given by 

'If P(Z) > A classify ï as belonging to n^, if P(¿) < A * 

classify Z as belonging to n^." 

Hep D: Measurement of the Operational Effectiveness of the Classification 

Rule. 

Using the values of the classification statistic P(Z) that were generated 

-n step C^ for the sample observations, one can apply the classification rule 
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of Cj to each observation and obtain the totals for tho following table. 

. 

From Population 

To n12 

Population n? 
^1 "22 

Total 

From this table we can make the estimates 

p(2/l) = n2l/N1 

p(l/2) = n12/N2 

Stop E: fhe Application of the Classification Rule to the Observations 

Requiring Classification. 

The value of the statistic P(Z) as given in step ft is determined for 

the observation. Using this value one applies the classification rule of 

to determine the appropriate classification for the individual. 

Illustration of the Procedure 

Stop A: Selection of the Variables to be Used. 

We will use from the illustrative example 

s Math Placement Grade 

X^ = English Placement Grade 

X3 = General Aptitude Test Score 

Step B: The Selection of the Estimation Procedure 

The sample moment aonpnkdtion. 



M
M
M
M
M
n
n
n
M
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Tho simple summitions 

Population 1 Population 2 

N1 - 19 

^ = 827 

Xg * 844 

X3 = 311 

x/- = 39033 

)0,2 =■ 39388 

Xj2 = 5^1 

^ = 38073 

X1X3 = 1900? 

XjXj = 19152 

N2 * 19 

¿Z X1 = 1039 

n Xj -1035 

H Xj = 998 

Z_ X12 = 59897 

Z_ t,2 = 58899 

Z_ X2 = 11908 

¿I X1X2 = 57861 

¿_ XjX^ = 25250 

¿2 x2x3 = 25003 

Estimation of Population Parameters 

Population 1 Population 2 

Xi(1) =■ Sfl = 93.53 

Xj^' * = 99.92 

S(1) = ^19 “ l5-37 

hi' ' ^ = 159*83 

^215 

S^11 * = 28.97 

sj1' - = 70.36 

S«1’ = ^Pl = 2U-75 



17.7^ 
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37.25 
„ (1) _ 6404 
23 ' 3$1 

Inversion* of the Covariance Matrices. 

Evaluation of the Covariance Determinant 

Population 1 

159.83 70.36 

70.36 99.82 

24.75 17.74 

Population 2 

1^8.95 55.9^ 

55.94 122.04 

^5.31 37.25 

Computation of the Cofactor Matrices 

Population 1 

-I599 

4018 

-IO94 

24.75 

I7.74 

28.97 

45.31 

37.25 

49.41 

where 2577 = (122.04)(49.41) - (37.25)(37.25). etc. 

Population 2 

/ 46.42 

I -10.76 

1 -34.46 

-1076 

5307 

-3014 

269117 

475I55 

*Since the order of the matrix is three the inversion is made by use of the 
definition. 



- 77 - 

Division of terms by covariance determinant 

Population 1 

S 11 
sa) 

. 21 
S(l) 

12 
(1) 

22 
(1) 

13 

’(1 '(l) 

°(1) 

S(l)3 

-.0059^ -.00454 

.01493 -.004C7 

-.00407 .04089 

12 
(2) .00977 

. 22 
'(2) 

-.0022^ 

.01117 

-.OO634 

By. Estimation of the Coefficients. 

Computation of matrix of differences, the coefficients of the 

quadratic terms. 

-.00454 \ /.00977 -.00226 -.00725\ 

-I-.00226 .01117 -.OO634 \ 

.04089/ ^.00725 -.OO634 .03167 j 

-.00407 

.00958 -.00594 

(S(ip - S(2^) « I .00594 .01493 

\-,OO454 -.00407 

r-.00C19 -.00368 

-.00369 .00376 

+.00271 .00227 

Computation of linear term coefficients 

bj = -2[ (.00958)(43.53) - (.00977)(5^.68) 

+ (-.00594)(44.42) - (-.00226)(54.47) 

+ (-.00454)(16.37) - (-.00725)(23.47)] = - 2(-.1621) 

similarly for b2 and b^. 



- 78 - 

Computation of the constant tern 

k = [(.00958)(43.53)2 - (.00977)(54.68)2] + . . . 

+ [(-.00407)(54.47)(23.47) - (-.00834)(45.31)(37.25)] 

= - 8.333 

Thus 

P(£) - - .00019 Z.2 + .00376 Z2 + .00922 Z02 j- 4 3 

- .00736 Z1 Z2 + .00542 Z1 z3 + .00454 Z2 z3 

4 ‘3242 Zl - .0038 Z2 - .5788 Z} - 8.333 

Step C: Determination of the Classification Rule. 

CV termination of the values of the classification statistic for the 

sample observation from and 

Thus 

p(i1U)) • -.00019(25)2 + .00376(35)2 + .00922(15)2 

-.00738(25)(35) + .00542(25)(15) + .00454(35)(15) 

+ .3242(25) - .0038(35) -.5288(15) - 8.333 = - 4.922 

Repeating for the 38 observations yields the results 
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Table P(Z) for Sample Observations 

Population 1 

Obs. P(£) 
1 -^.922 

2 -2.264 

3 -1.742 

4 -1.791 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

-0.733 

-0.921 

-6.579 

6.087 

0.324 

-0.980 

0.781 

-0.711 

-1.811 

0.522 

-0.«39 

-1.773 

-4.240 

0.888 

-0.109 

Population 2 

Obs. P(2) 
1 -1.739 

2 0.637 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

7.385 

0.016 

5.5*3 

-0.325 

6.195 

5.9*2 

-2.168 

11.268 

2.309 

2.755 

-0.269 

2.466 

1.398 

O.837 

0.277 

3.645 

10.970 

Generation of the Cumulative Frequency Distribution for P 
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Interval f 
-6.99 -8.00 1 
-5.99 -5.00 0 
-^.99 -4.00 
-3.99 -3.00 
-2.99 -2.00 1 
-1.99 -1.00 4 
-0.99 0.00 
■K).01 -1.00 4 
1.01 -2.00 0 
2.01 3.00 
3.31 4.00 0 
4.01 5.00 0 
5.01 6.00 0 
6.01 7.00 1 

Population 1 

cun f 

19 
18 
18 
16 
18 
15 
11 
5 
1 
1 
1 
1 
1 
1 

cun p 
1.00 
.95 
.95 
.84 
.84 

.79 

.58 

.26 

.05 

.05 

.05 

.05 

.05 

.05 

Population 2 

Interval f 
-2.99 -2.00 1 
-1.99 -1.00 1 
-0.99 0.'0 
+0.01 X.co 4 
1.01 2.00 1 
2.01 3.00 3 
3.01 4.00 1 
4.01 5.00 0 
5.01 6.00 2 
8.01 . 7.00 1 
7.01 8.00 1 
8.01 9.00 0 
9.01 1C.00 0 

10.01 11.00 1 
11.01 12.00 1 

cun f 
1 
2 
4 
8 

9 
12 
13 
13 
15 
18 
17 
17 
17 
18 

19 

cun p 

.05 

.11 

.21 

.42 

.47 

.63 

.68 

.88 

.79 

.84 

.89 

.89 

.89 

.95 
1.00 

These distributions are plotted in Figures 1 and 2 and a snooth cunulative 

curve fitted free hand to the distribution to yield an enpirical estimated 

p(2/l) and p (1/2). 

Cgi Determination of \ Using the Decision Strategy. 

Since we require a classification rule such that. p(2/l) = 0.25, 

we use Figure 1 and have 

A * P[p(2/1) = .25] = .40 



öl 

Figure 1: Knperlcnl Eatlnatlon of the Distribution of P given 
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Figure 2: Emperica! Estimation of the Distribution of P given 77^. 

» 
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Cy Statement cf the Classification Rule. 

If P(Z^, Z2, Zj) > .W classify ¿ as belonging to n?\ if 

P(Z^i Z2, Z^j) < .40 classify ¿ as belonging to n^. 

Step D: Measurement of Operational Effectiveness. 

Using Table 1 of step and the classification rule of step C^, 

one can readily classify each cf the sample observations and obtain the 

totals for the following table. 

From Population 

To 

Population 

6 

13 

Total 19 19 

We obtain 

p(2/l) = 4/19 = .21 

p(l/i!) = 6/19 = .32 

Step E: The Application of the Classification Rule to the Observations 

Requiring Classification. 

We have 

P(£) * -.00019 + .OO376 Z22 + .00922 Z32 

-.OO736 + .OO543 ZXZ3 + .00454 Z2Z3 

+ .3242 Zl - .0038 Z2 - .5788 - 8.333 

For l^t Zx * 34. Z2 = 36, Z3 = 12 
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^(¾) = -.00019(34)2 + .00376(36)2 + .00922(12)2 

-.00736(34)(36) + .00543(34)(12) + .00454(36)(12) 

+ .3242(34) - .0038(36) + .5788(12) - 8.333 

Ä -3.248 

Applying the Classification Rule 

Since P(^) < .40, is clc^sified as a 

For Jgi Zx * 55, Z2 = 62, Z3 = 21 

P(2g) * -.00019(55)2 + .00376(62)2 + .00922(21)2 

-.00736(55)(62) + .00543(55)(21) + .00454(62)(21) 

+ .3242(55) - .0038(62) + .5788(21) - 8.333 

PÍZç) = 2.126 

Applying the Classification Rule 

Since P(2g) > .40, Zg is classified as a n^. 

F. The Anderson Classification Statistic 

The Anderson classification technique makes use of the assumption of a 

multivariate normal distribution for each of the populations. However, no 

equal covariance matrix assumption is used. 

The classification statistic is taken to be in a general linear form. 

A(£) * a1Z1 + agZg +...+ apZp + b 

The coefficients are estimated from the two available samples in such a 

way that the probabilities of misclassifioation is a minimum .among all such 

linear forms. 

Since the statistic is linear in the Z's which are assumed to be 

normally distributed, the statistic itself will be normally distributed with 
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its moments oasil” determined. Thus, one can use a theoretical approach 

to the determination of the classification rule and the measurement of its 

operational effectiveness. 

Reference: "Classification into Two Multivariate Normal Distributions 
with Different Covariance Matrices," Anderson, T. W. and 
Bahodur, R. R., USAF School of Aviation Medicine, Report #10 
(1961). 

Step A: Selection of the Variables to be Used. 

The variables to be used must be measured and have a joint dis¬ 

tribution that can be approximated by the multivariate normal distribution. 

If this condition is not met, one often performs transformations upon the 

original variables in order to bring about a close approximation by the 

multivariate normal distribution function. 

Step B: The Selection of the Estimation Procedure. 

The Estimation of Population Parameters. 

Since the classification statistic involves sample estimates of 

population parameters, we elect to use the corresponding maximum 

likelihood estimates in evaluating the statistic. 

The sample moment computations 

N. 2 
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S ^ 
pq 

Bgî Estimation of r: 

The values of and b that are used involve a quantity 

that is the largest root of the following equation 

- 1 
(¾) Ä (SrJr)> A = (r sj1} + (1 - r) sj2)) 

- 1 

pq 
and 

pq pq 

(S^r2)) = (r2 S« + (1-r)2 S^2)) 

It should be noted that tho expression within the brackets, | j, 

are vectors whose expansion is best done numerically for each numerical 

case. This will be illustrated in the section showing a numerical appli 

cation of the method. The form of the equation s(r) = 0 will usually 

require numerical methods for determining the roots. 

(2) h 
. = (2) 7 (1) , Xpn 

r ' p S. 

1 (1) 

5. ‘ pn 

and 
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(2) . 
N. 

pq 

JL2 5 
n=l 

(2) (2) 
N„ 

V qn 
n~l 

N, 

By. EotLnation of Coefficionts a1> a2.ap . 

The coafficient ap, p - 1, 2, ..., p is obtained from the 

equation 

P 

where is the general term in the inverse of the weighted 

covariance matrix 

(spqr) * (r Sp^ + (1 - r) S(2)) 

and 

Hitlmation of b 

The constant b is given by the equation 

Stop C: The Determination of che Classification Rule. 

Empirical Estimation 

C^s Deteimine the empirical distribution of A(2) by evaluating A(£) 

for each observation in the two samples. These sets of A’s are 

tabulated into a cumulative frequency distribution. Usually a 

free-hand smoothing of the cumulative frequency graph is sufficient 
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to produce a curve to be used in estimating values of 

rah). 
C^i Determination of A (the classification constant) according to 

the decision strategy being used. 

Cy. Statement of the Classification Rule. 

The rule is then given by 

"If A(Z) > A classify £ as belonging to , if A(£) < X 

classify Z as belonging to n^. 

Theoretical Estimation 

Cy. Determination of the moments of A(Z). 

The conditional means are given by the equations 

+ b , gi/en £ belongs to 

+ b i given £ belongs to n0 

The conditional variances are given by the equations 

given Z belongs to 

given Z belongs to n? . 

C2: Determination of X the classification constant according to 

the decision strategy being used. 

We have the relationships for any given \ 

V (1) -t t . . S i1» 
A ^ p q pq 

(2) - t E . , 
(2) 

■a Fi p « K 



p(2/1) =vîè" dt 

These relationships can bo used to determine the 

the decision strategy. 

A that corresponds to 

Cy Statement of the Classification Rule. 

Step D: Measurement of the Operational Effectiveness of the Classification 

Rule. 

Empirical Estimation. 

Using the values of the classification statistic A(¿) that were 

generated in step C1 for the sample observations, one can apply the classi¬ 

fication rule of step C^ to each observation and obtain the totals for the 

following table. 

To 
n 

n 

1 

2 

From Population 

_ZL- 

nll n12 

"21 
Population 

n22 
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Fron this table we make the estimates 

p(2/l) = 

p(l/2) = 

Theoretical Estimation: 

From the normality approximation of the distribution of A(Z) we have 

r «o 

p(2/l) = -4r 
V2n 

J 
A - A 

7ÏT 
1 

-t2/2 

A 

p(i/2) = —èr 
V2n 

w 

e -t2/2 

- «o 

Step E: The Application of the Classification Rule to the Observations 

Requiring Classification. 

The value of the statistic A(Z) as given in step B2 and is deter¬ 

mined for the observation. Using this value, one applies the classification 

rule of C^ to determine the appropriate classification for the individual. 

Illustration of the Procedure 

Step A: Selection of the Variables to be Used. 

We will use from the illustrative example 

= Math Placement grade 

= English Placement grade 

= General Aptitude Test Score 



n
n
n
n
r
in

ri
n
n
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Step Bî Tho Selection of the Estimation Procedure. 

The simple moment computation. 

The sample summations 

Population 1 

Nx = 19 

A1 

*2 

, 2 

X3 

X1X3 

x2x3 

827 

8V* 

311 

39033 

39388 

$641 

38073 

14007 

14152 

Population 2 

N0 = 

Z! ij 

ZI Xj 

L 

Lh2 

£ h* 

IL 

r. 

Z- ’'i11) 

¿L 

Estimation of Population Parameters 

Population 1 

7 (D 

7 (1) 

7 (1) 
*3 

827 
19 

844 
19 

HI 
19 

’ll 
(1) . 

361 

s *0.53 

= 44.42 

3 16.37 

3 159.83 

7 (2) 

7 (2) 
*2 

7 (2) 
3 

’ll 
(2) 

1039 
19 

mi 
19 

446 
■»H ■ 1^11 

19 

53^72 

19 

1039 

1035 

446 

59647 

58699 

11408 

57661 

25250 

25003 

Population 2 

3 54.68 

3 5M7 

3 23.^7 

3 148.95 



- 92 - 

Estimation of r. 

We will solve the equation s(r) = 0 numerically by isolating the 

positivo root. 

Consider r = 0, to determine »(C) 

(1) Evaluate (S^1*) for given r 

(159.93 70.3^ 24.75 V\ 

(3 (ra0)) * Oj 70.3^ 99.82 17.74 

^24.75 17.74 28.97; 

/ 148.95 

+ 1 ! 55.94 

\ ^5.31 

55.94 45.31 

122.04 37.25 

37.25 ^9.41 

/148.95 55.94 

= 55.94 122.04 

y 45.31 37.25 

(2) Invert (Sw^) 

Determine 
148.95 55.94 45.3I 

55.94 122.04 37.25 

45.3I 37.25 ^9.41 

475I55 



- 93 - 

Determino matrix of cofactors 

-1076 ->446 ' 

5307 -301^ 

-3014 15049 

where 4642 = (122.04)(49.41) - (37.25)(37.25) 

5 (r) Í 

/ 

Divide cofactor matrix by 
W 

/.00977 

¢3(^^)-: -.00226 

i- .00725 

(3) Compute vector of moan differences 

i, ■ V” - V“ 
Í = II.I5, 10.05, 7.10 

-.00226 

.01117 

-.OO634 

where 

£ - 7 (2) 7 U) 

etc. 

5M* - 43.53 = 11.15 

(4) Compute the vector of sums of products (S^) ( $ ^ B )(say) 

/ .00977 -.00226 -.OO725 \ /11.15 \ /.03475 \ 

-.00226 .01117 -.OO634 ’ I IO.O5 j s .04205 I 

-.00725 -.OO634 .03167 ) l 7.10 y 22486 

(5) Evaluate (SM(r2)) * r? (Spq(1)) ♦ (1-r)2 

) 
/ 

For r^O 

(S (r ^ pq 

pq 

159.83 

70.36 

l, 24.75 

70.36 24.75 \ 

99.82 17.7^ 

I7.74 28.97 ) 

(148.95 55.94 

+ 1{ 55.94 122.04 

45.31 37.25 

( 149.95 55.94 45.31 \ 

\ 

55.94 122.04 37.25 ; 

45.3I 37.25 49.41J 

45.3I 

37.25 

49.41 
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(6) 
(r2) Compute the vectors of sums of products (fi) • (S^1* ;) = (¿) say 

(£)=(.03475, .04205, .22486) / 148-95 55.94 45.31 

55.94 122.04 37.25 

\ 
45.31 37.25 49.41 

= (-17.717, -15.452, -14.251) 

where 

-I7.7I7 = (.^3475)(148.95) + (.04205)(55.94) + (.22486)(45.31) 

(7) Multiply (£) (£) * s (r) 

.03475 

a (0) = (-17.717, -I5.452, -14.251) I .04205 1 = -4.47 

.22486 

Considering r=l, repeat steps (1) through (6) to obtain s(l) 

s(1) = +2.09 

Using linear interpolation to obtain estimate of r 

r at 0+ . = "4.47 - + 4o 
• (0) - 8 îi) -4.47 -2.09 

Repeat procedure for r == +.7, r = +.6, etc., until root is determined to 

desired accuracy. We have in illustration 

3 (.7) = +.46 

3 (.6) = +.15 

Since the root was not isolated, we use r = .5 obtaining 

¿.5) = -.17 

Thus by linear interpolation 

r * +*5 + .15^+ .17 = ,553 
We will use this value for r in continuing the illustration. 
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Compute (Sp^) = r(S(l)) + (1 - r) (S(2)) 

/ 159.83 70.36 

(r)' 
(SpqVr/) = 0.553) 70.36 

Invert (S^^1"^) 

(r) 
pq 

\ 24. 75 

99.82 

I7.74 

15^.97 63.91 

63.91 109.75 

33.94 26.46 

Cofactor matrix of 

I54.97 

63.9I 

33.94 

KM) 

Division of cofactors by 

63.91 

109.75 

26.46 

-1538 

4754 

-I93I 

24.75 

I7.74 

28.97 
/ 

'148.95 55.94 45.31' 

40.44? 55.94 122.04 37.25 

^45,31 37.2 5 49.41/ 

33.94 \ 

26.46 

38.11 

33.94 

26.46 

38.16 

372380 

<S(rF> 

B,: Solve for 
2 P 

-.00413 

.01277 

-.00518 

= .00935(11.15) -.00413(10.05) -.00546(7.10) 

= .0240 

^ * -.00413(11.15) 4-.01277(10.05) -.00518(7.10) 

= .0455 



-.00546(11.15) -.00518(10.05) +.03470(7.10) 

.1487 

V 

O 

Solve for b 

Evaluate 
~ Ki 

159.83 70.36 

(.0240, .0455, .IÜ87) ( 70.36 99.82 

24.75 17.74 

= (10.72, 8.87, 5.71) 

Compute (S^1^)]^, 
Pm 

(10.72)(.0240) + 8.87(.0455) + 5.71 (.1487) 

Compute V 

= I.5I 

/TTsT 

Evaluate 4 • S 

I.23 

(2) 
pq 

(.0240, .0455, .1487) 

! 148.95 

55.94 

45.31 

55.94 45.31 \ 

122.04 37.25 

(12.86, I2.43, IO.I3) 

Compute (S^^)] a 
KM 

37.25 49.41 / 

(12.86)(.0240) + (12.43)(.0455) + 10.13(.1487) * 2.38 

Compute {I (sj2) a 
pq 

y 2.3½ = 1.54 

f - (l) 
Compute ¿ X 

(10.72) (43.53) + (8.87)(44.42) + (5.71)(16.37) = 9.54 
- (?) 

Compute ' 

(10.72) (5^.¾) = (5.87) (5^.^7) + (5.71)(23.47) = 12.03 
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Evaluate b 

b 
1.5^ + 1.23 = IO65 

Thus 

A(Z) = .0240 Z1 + .0455 Z2 + .14*7 Z3 + IO65 

Step C; The Determination of the Classification Rule. 

Empirical Estimation 

C1! Determination of the values of the classification statistic for 

the sample observations from rt and n 

Thus: ¿I = (22, 35. 15) 

A(ií1)) = .0240(25) + .0455(35) + .1447(15) + 1055 

= 10^9.351 

The results of these computations are tabulated below: 

Population 1 Population 2 

Observation No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
15 
17 
18 
19 

A 
1069.351 
IO68.856 
IO69.943 
1069.824 
IO70.302 
1070.281 
1068.975 
1073.681 
1071.289 
1069.493 
IO72.O9I 
IO7O.7OI 
IO7O.3I2 
IO7I. 528 
1070.998 
1070.493 
IO68.539 
1071.790 
1071.048 

Observation No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

A 
IO69.859 
1071.574 
IO74.O3I 
1070.814 
1073.506 
1071.104 
IO73.569 
IO74.O94 
IO7O.67O 
1075.311 
1072.811 
1072.418 
IO7O.O93 
IO72.213 
IO7I.O3O 
1071.331 
1071.468 
1072.818 
IO74.633 

These data are tabulated into cumulative frequency distributions. 



- 98 - 

Population 1 

Interval 
1063.0 - 1068.5 
1068.5 - 1069.0 

69.0 - 69.5 
69.5 - 70.0 
70.0 - 70.5 
70.5 - 71.0 
71.0 - 71.5 
71.5 - 72.0 
72.0 - 72.5 
72.5 - 73.0 
73.0 - 73.5 
73.5 - 7^.0 
7^.0 - 74.5 
7^.5 - 75.0 

L 
0 
) 
2 
2 
. 

2 
2 
2 
1 
0 
0 
1 

0 

19 
19 
16 
14 
12 
8 
6 
4 
2 
1 
1 
1 
0 
0 

1.00 
1.00 
.84 
.7^ 
.63 
.½ 
.32 
.21 
.11 
.05 
.05 
.05 
.00 
.00 

Population 2 

Inlyrxal 
1069.5 - 1070.0 

70.0 - 70.5 
70.5 - 71.0 
71.0 - 71.5 
71.5 - 72.0 
72.0 - 72.5 
72.5 - 73.0 
73.0 - 73.5 
73.5 - 7^.0 
74.O - 74.5 
7^.5 - 75.0 
75.O - 75.5 
75.5 - 76.0 

1 
2 
■. 
1 
2 
2 
0 
2 
2 
1 
1 
0 

cum f 
1 
2 
4 
8 
9 

11 
13 
13 
15 
17 
13 
19 
19 

.21 

.42 

.47 

.58 

.68 

.68 

.79 

.89 

.95 
1.00 
1.00 

These distributions are plotted in Figures 1 and 2 and a smoothed cumulative 

curve fitted free hand to the distribution to yield an empirical estimation 

of p(2/l) and p(l/2). 

C2: Determination of A the classification constant, according 

to the decision strategy being used. 

Since we require a classification rule such that p(2/l) = 0.25, 

we use Figure 1 and have 

Ä = A[p(2/l) = O.25] = IO7I.5 
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Cy Statonont of tho Classification Rule. 

If A(¿) > 1071.5* classify Z as belonging to n?, if 

A(2) £ IO7I.5 classify 2. belonging to n^. 

Tbecrotical Eg-lmtion 

C^: Determination of the Moments of A(Z) 

H = al + *2 \<1) + a3 î,(1> + b 

* .0240(43.53) + .C455(44.42) + .1487(16.37) + IO65 

= IO7O.5 

*2 * al ^1(2) + ^ ^(2) + a3 X3(2) + b 

= .0240(54.68) + .0455(54.47) + .1487(16.37) + IO65 

= 1071.2 

a2S al bll 
(1) 

S22 
(1) i ~S 2-> a 3 (^) 

3 S33 2ala2b12 + 2a1a3S13 (1) + 2a2a3S23 (1) 

« (.0240)2(I59.83) + (.0455)2(99.82) + (.1487)2(28.97) 

+ 2(.0240)(.0455)(70.36) + 2(.0240)(.1487)(24.75) + 2( 0455)(.1487)(17.74) 

VA(1) * ^51 

\e> • hV1 * . 

= (.0240)2(148.95) + (.0455)2(122.04) + (.1487)(49.41) 

+ 2(.0240)(.0455)(55.94) + 2(.0240)(.1487)(45.31) + 2(.0455)(.1487)(37.25) 

= 2.36 

Cg: Determination of \ , the classification constant, according to 

the decision strategy being used. 

Since we require that p(2/l) = 0.25, we have 

■* & 
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Thus. 
X . 

- 0.67 
/1.51 

^ = (1.23)(0.67) + 1070.5 

= 1071.32 

= 0.82 + 1070.5 

if 

Cy Statement of the Classification Rule: 

feftóá’&g-n. usrsu V 
Step D: Measurement of Operational Effectiveness. 1 

ing Table 1 of step ^ (empirical) and the corresponding classification 

rule of step Cy one can readily classify each observation of the two soples 

and obtain the totals of the following tabic. 

From .Population 

To nl 

Population n2 

Total 

Thus p(2/l) 

and p(l/2) 

n. 
1 

15 

4 

19 

8 

11 

19 

^/19 = .21 

8/19 = .42 

Step E: The Application of the Classification Rule to the Observations 

Requiring Classification. 

We have 

A(£) = .0240 Z1 + .0455 Z2 + .107 + IO65 

F0r h: h = Z2 = 36. Z3 S 12 

^(¾) = • °240(34) + .0455(36) + .1487(12) + IO65 =: IO69.238 

Since A(^) < 1071.5, is classified as a n1 

For 2e = !1 = 55. Z2 = 52, Zj = 21 
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Aí^) = .0240(55) + .0455(52) + .1487(21) + IO65 = 1072.254 

Since A(2g) > 1071.5* 2g is classified as a n2. 

G. The Shaw Classification Statistic 

The Shaw classification technique consists of using the multivariate 

nomal assumption for the density function for each population. The 

vectors of means are assumed to be equal» with the differences between 

the covariance matrices of the two populations being available for yielding 

the classification rule. Simplication of the likelihood ratio under these 

assumptions yields the statistic in the form 

P P s© » r n (S(2f. S(1p z i. 
q=l p=l 

where SM in the p.q term in the inverse of the corresponding covariance 

matrix. Although the vector of means is assumed equal for the purpose 

of evolving the classification statistic, for computation of the covariance 

matrices, the individual population means as estimated from each sample are 

used. 

The statistic S can be approximated by a TC2 distribution thus 

enabling one to use this theoretical distribution to estimate the classi¬ 

fication constant as well as the operational effectiveness of the statistic, 

however, the procedure is too involved for demonstration in this handbook. 

We will restrict our consideration to the empirical estimation approach 

to these problems. 

Reference: Shaw, R. H., The Multivariate Classification Statistic with 
Two Specified Normal /alternatives, Research Report, RC-412, 
IBM Research Center (1951). 



- 104 - 

Procedure 

Step A: Selection of the Variables to be Used. 

The variables to be used must bo measured and have a joint distribution 

that can be approximated by the multivariate normal distribution. If this 

condition is not metí one often performs transformations upon the original 

variable in order to bring about a closer approximation. 

Stop B. The Selection of tho Estimation Procedure. 

Estimation of the Population Covariances. 

We chose to use tho maximum likelihood estirastes 

B2: Inversion of the Covariance Matrices. 

• • • 

By. Determination of the Classification Statistic. 

■ £ t ■ sa.ra> ‘p 
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Step C: Tho Determination of the Classification Rule. 

C^: Determine the empirical distribution of S(Z) by evaluating 

S(£) for each observation in the two samples. These sets of 

S(¿) 's are tabulated into a cumulative frequency distribution. 

Usually, a free-hand smoothing of the cumulative frequency graph 

is sufficient to produce a curve to be used in estimating values 

of p(i/j). 

C^î Determination of A tthe classification constant, according to 

the decision strategy being used. 

Cy Statement of tho Classification Rule. 

The rule is given as 
• a 

If S(¿) > A , classify Z as belonging to if S(¿) < A 
classify Z as belonging to rt^# 

Step D: Measurement of the Operational Effectiveness of the Classification 

Rule. 

Using the values of the classification statistic S(Z) that were 

generated in step C^ for the sample observations, one can apply the classi¬ 

fication rule of step Cj to each observation and obtain the totals for tho 

following tables. 

To 

I 

From Population 

n12 

Population n? ”21 

Total 

From this table we make the estimates 

p(2/l) = n21/»1 

p(l/2) = n^/Nj 
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Step E: The Application of the Classification Rulo to the Observations 

Requiring Classification. 

The value of the statistic S(Z) as given in step is determined 

for the observation. Using this value one applies the classification rule 

of stop C^ to determine the appropriate classification for the individual. 

Illustration of the Procedures 

Step A: Selection of the Variables to be Used. 

We will use from the illustrative example 

= Math Placement Test Score- 

= English Placement Test Score 

= General Aptitude Test Score 

Step B: The Selection of the Estimation Procedure. 

B^: Estimation of the Population Covariances. 

The Sample Summations 

Population 1 

h 

r, 

r, 

L. h2 

H x/ 
H 

El = 
El X2X3 = 

19 

B27 

844 

311 

39033 

393*8 

5641 

38073 

14007 

14152 

Population 2 

19 

IO39 

1035 

446 

59647 

58699 

11408 

5768I 

25250 

25003 
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Estimation of Population Covariances 

, (D , 
'll 

, (1) . 
'22 

>(1) = 
33 

3(1) = '12 

3(1) = 
13 

3(1) = >23 

= ^ 

360 
19 

19 

19 

19 

19 

= 159.83 

= 99.82 

= 28.97 

= 70.35 

= 24.75 

= I7.74 

(2) 
11 

(2) 
'22 

S (2) 

33 
, (2) 
'12 

, (2) 
*13 

'23 

Inversion of the Covariance Matrices* 

Evaluation of covariance determinants 

159.83 

70.35 

24.75 

148.95 

55.94 

45.31 

70.36 

99.82 

I7.74 

55.94 

122.04 

37.25 

34.75 

I7.74 

28.97 

45.31 

37.25 

49.41 

. 53772 
19 

44056 
* 19 

= 12231 
19 

- 20194 
19 

* 1H5Í 
' . 19 

13447 
19 

148.95 

122.04 

49.41 

55.94 

45.31 

37.25 

= 289II7 

= 475155 

♦Since the order of the matrices is 3* the definitions will be used in 
inverting the matrices. 
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Evaluation of Cofactors 

(c 'x)) 
pq 

-1599 

4018 

-1094 

where 2577 = (99.82)(28.97) - (17.74)(17.74) 

(C <2)) 
pq 

Division of Cofactors by determinant Í +.00958 

-.0059¾ 

-.0045¾ 

(s(2f) 

+.00977 

-.00226 

-.00725 

.IO76 

5307 

•3014 

-.00594 

+.01493 

-.00407 

-.00226 

+.01117 

-.OO634 

By Determination of the Classification Statistic. 

Evaluation of matrix 

.00019 .OO368 -.00271 

(s(2f - s(1f) = I .00368 -.0037^ -.00227 

-.00271 -.00227 -.00922 

Determination of the coefficients of the statistic 

S(Z) = +.00019 Zx2 .OO376 Z22 -.0 ?22 Z32 

+.0073^ ^2 -00^ Z1Z3 ,0454 Z2Z3 

Step C: The Determiaation of the Classification Rule. 
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C^s Determination of the values of the classification statistic for 

the sample observations from and rt?. 

Thus I1(1) = (22,35.15) 

s(i^) = .00019(22)2 -.00376(35)2 -.00922(15)2 

+.00736(í.¿)(35) -.00542(22)(15) -.00454(35)(15) 

= -5.093 

The results of these evaluations are tabulated below. 

Population 1 Population 2 

Observation No. S(£) 
1 -5.093 
2 0.0*3 
3 4.621 
4 0.I3I 
5 -3.010 
6 -2.494 
7 -4.297 
8 -11.259 
9 -0.698 

10 5.201 
11 0.410 
12 0.781 
13 -4.611 
14 -3.881 
15 -7.906 
16 -4.405 
17 -0.833 
18 -9.5O8 
19 -5.875 

Observation 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

It 
17 
18 
19 

No. S(£) 
-4.903 
-1.600 

-12.672 
-3.200 

-II.I33 
-3.054 

-14.860 
-6.688 
-6.789 

-I5.906 
-O.5O8 
-7.840 
-2.976 
-6.859 
-1.864 
-2.576 
-I.3I8 
-9.004 

-27.191 

The data are tabulated into cumulative frequency distributions. 

/ 
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PoruLition 1 

Interval 
-11.999 to -11.000 
-10.99$ to -10.000 
- 9.999 to - 9.000 
- 8.999 to - 8.000 
- 7.999 to - 7.000 
- $.999 to - 6.000 
- 5.999 to - 5.000 
- 4,999 to - 4.000 
- 3.999 to - 3.000 
- 2.999 to - 2.000 
- 1.999 to - 1.000 
- 0.999 to 0.000 
+ 0.001 to + 1.000 
+ 1.001 to + 2.000 
+ 2.001 to + 3.000 
+ 3.001 to + 4.000 
+ 4.001 to + 5.000 
+ 5.001 to + 5.000 

f 
1 
0 
1 
0 
1 
0 
2 
3 
2 
1 
0 
2 
4 
0 
0 
0 
1 
1 

cun f 
1 
1 
2 
2 
3 
3 
5 
8 

10 
11 
11 
13 
17 
17 
17 
17 
18 
19 

cun p 
.05 
.05 
.11 
.11 
.15 
.15 
.26 
.42 
.53 
.58 

.99 

.89 

.89 

.89 

.95 
1.00 

Popul-iticn 2 

Interval 
-27.2 

-15.999 to -I5.OOO 
-14.999 to -14.000 
-I3.999 to -I3.OOO 
-12.999 to -12.000 
-11.999 to -11.000 
-10.999 to -10.000 
- 9.999 to - 9.000 
- 8.999 to - 8.000 
- 7.999 to - 7.000 
- 6.999 to - 6.000 
- 5.999 to - 5.OOO 
- 4.999 to - 4.000 
- 3.999 to - 3.000 
- 2.999 to - 2.000 
- 1.999 to - 1.000 
- 0.999 to - 0.000 

f 
1 
1 
i 
0 
1 
1 
0 
1 
0 
1 
3 
0 
1 
2 
2 
3 
1 

cun f 
19 
18 
17 
16 
16 
15 
14 
14 
13 
13 
12 

9 
9 
8 
6 
4 
1 

cun p 
1.00 
.95 
.89 
.64 
.84 
.79 
.74 
.74 
.58 
.68 
.63 
,47 
.47 
.42 
.32 
.21 
.05 

These distributions aro plotted in Figure 1 and 2 and a smooth cumulative 

cuHM fitted free hand to the distribution to yield an empirical estimation 

of p(2/l) and p(l/2). 
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Figur« 2: Biperlcul E.UmUoo of th. Dl.trlbutlon of 8 glwn TT . 
2 

. 

1.00 



- 113 - 

C^i Determination of A Using the Decision Strategy. 

Since wc require a classification rule such that p(2/l) = 0.25, 

we use Figure 1 and have 

A = F[p(2/1) = .25] = 5.*0 

Cy Statement of the Classification Rule. 

If S(Z) < - 5.60, classify £ as belonging to ny if 

S(Z) > - 5.60, classify £ as belonging to 

Step D: Measurement of Operational Effectiveness. 

Using Table 1 of step C1 and the classification rule of step Cy one can 

readily classify each observation of the two samples and obtain the totals 

for the following table. 

To 

Population 

Thus p(2/l) - ^/19 = .21 

p(l/2) * 9/I9 = •**? 

Total 

From Population 

15 

4 

19 

9 

10 

19 

Step E: Application of the Classification Rule to the Observations 

Requiring Classification. 

We have 

S(£) = .00019 Z}2 -.OO376 Z?: -.00922 Z32 +.OO736 ZXZ2 

-.00542 z^.^ -.00454 z2z3 
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For ly Z1 = 34, Z2 = 3S, Z3 = 12 

5(^) = .00019(34)2 -.00376(36) ’* 922(12) 

+.00736(34)(36) -.00542(34)(12) -.00454(36)(12) 

= -1.145 

Since S(Z^) > -5.60 is classified as a 

For Z1 ~ 55, Z2 = 62’ Z3 Ä 21 

3(¾) = -5.018 

Since S(Z2) > -5.60t ^ is classified as a n2> 

Chapter V: The Multi-Population Probien 

In the previous chapters, classification techniques have been described 

that could be applied to the problem of classifying an individual into one 

of two populations. In ttris chapter we will briefly consider methods of 

handling the classification problem when more than two popuLaticns arc involved. 

An obvious approach to this multi-population problem is to follow either 

a sequential classification in which the populations are paired and then 

a decision made as to the classification to be made for each pair in turn. 
* # 

Thus, if there are four populations involved, say n^, r^, and the 

classification program would involve 

(1) The rt, or n, classification, say n (1) 
(2) The or classification, say 

(3) The or classification for the final decision. 

Or one could use the composite population approach creating, say in the 

four population situation, the composite populations n = TT, + n. 
(1) '1 ' '2 

and n(2) = rj + sequence would be 

(1) The or classification 

(2) The or n2 

or rr^ or 

classification depending on the outcome 
of (1) 
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In either of these approaches, the process of pair creates a decision 

difficulty since one must determine how the original pairings should be 

made. It is apparent that the final outcome may be sensitive to what 

pairing is decided upon. This problem is somewhat alleviated if there 

is a natural ordering of the populations so that adjacent populations can be 

paired. In other cases a random pairing procedure must be used. In 

either case one encounters difficulty in determining the appropriate 

decision strategy to be followed for the sequencial classification decisions 

since the probabilities of misclassificatien are not independent of the 

preceding decisions. Experience will assist a person in evolving a work¬ 

able solution for particular types of classification problems. 

If, however, one is using the minimum expected loss criteria and 

has available a priori probabilities for the populations then for a given 

£ one can associate an expected loss if the individual is classified 

into the Z. th population. Here 

K 

Cl * X ^ Pm (Z) C(£/m) 

At 
The classification technique involves the computation ^ 

's and classifying Z into the population with the smallest . 

This procedure is applicable to any classification technique that generates 

an estimation of p (Z) including nonparametric, categorical and the m 

general parametric technioucs discussed in the previous chapter. 

It should be recognized that the problem of clssification is 

essentially that of choosing regions R-^, Rp, ...» in the sample space 

such that if an observation falls in the region Rjç we classify the 

individual as belonging to population n^. If no priori probabilities 

can be assumed, the conditional expected loss is 
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K 

r(¿, R) = COc^') p| k/£,Rj 

Ú 
whoro C( X. /k) is the cost of classifying an individual into population 

R j is 

tho probability of making the classification given that the individual 

belongs to n£ for some classification rule R. If one elects to use 

the minimax criteria for selection of the R's, he must for each possible 

set of R's, 

(a) maximise r ( X , R) overall possible ÍL 's and 

(b) Choose R^» . . ., R^ so as to minimize this maximum 

expected loss. 

Although the general solution for this approach is not known, in the 

special case where all errors of misclassification are equally costly and 

there is no gain or loss when the observation is classified correctly, 

we have some guidance as to how to select tho R's from a theorem due 

to T# W. Anderson. 

"If ^(£) is the probability density of (k=l, 2, ..., k) and 

if the costs of misclassification of an observation are constant, the 

regions cf classification R^ R^, ...,^ that minimize the maximum 

expected loss (for observations from the given n^) are such that tho 

probability of correct classification are equal and, if £ is in R^ then 

p^ (¿) > (Z) where Y t . 

The constants determined so that the common probability of 

correct classification is maximized." 

’j£ if it really belongs to population and 
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