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ABSTRACT

A STUDY OF SPECIFIC METHODS OF

MEASURING LUNAR GRAVITY

The measuTement oi the gravity field of the moon from an orbiting
satellite is examined from the points of view of requirements for geodetic
and geophysical appiication, and physical phenomena and instrumentation to
meet these requirements.

It is shown that it is feasible to determine the gravity field by
measuring the gravity gradient. Mathematical relations useful for data
processing are stated. Examination of several principles for sensing
gravity gradient leads to the recommendation of the vibrating string gradio-
meter as the best implementation with size, accuracy, range,and versatility
being in its favor. In addition, the engineering status allows prototype
design to begin immediately.
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SECTION 1

INTRODUCTION

The purpose of this program is to study the feasibility of measuring
the gravity field of the moon from an orbiting satellite. The utility of such
data lies in their application to geodesy (determining the shape of the moon)
and to geophysics for a better understanding of the structure, density and
internal processes of the moon. In immediate application it offers additional
data for trajectory calculations for soft landing and manned exploration of

r7 the moon. The principles are also applicable to better definition of the earth
gravity field for precision navigation of missiles, and for scientific planetary
probes.

Direct methods for obtaining these data require landing a gravity
meter on the surface of the moon and a geodetic reference to relate points of
gravity observation. Without mobility the utility of even multiple meter
landings is severely limited, but the difficulties of putting a vehicle on the
moon's surface are too well known for further discussion of this as a technique.
At some future date this will be both desirable and necessary.

The indirect methods involve analysis of the trajectory of an orbit-
ing vehicle or the measurement of gravity gradient on board the vehicle.
Investigation of this latter forms the basis for this report. Theoretically the
measurement is sufficient to allow description of the gravity field, and the
environment of the measurement is a low-rnoise one suitable for the measure-
rn e nt.

Instrumental design analysis further indicates it is feasible to make
the necessary measurement. A vibrating-string gravity gradiometer is
presented, which conservative estimates indicate will allow anomaly deter-
mination to the 10 milligal level; if the instrument preserves the dynamic
range of its predecessor, the Arma vibrating string accelerometer, it will
allow anomaly mapping at the 0. 1 to 1 milligal level. Because this mapping
is global and fast it appears to offer an ideal solution to lunar gravity deter-
mination.
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SECTION 2

CONCLUSIONS AND RECOMMENDATIONS

2.1 Conclusions

Using gravity gradient measurements it is feasible to determine
the gravity field of the moon from an orbiting satellite. The level of per-
formance with which this can be accomplished provides the following informa-
tion:

a) sufficient data to permit definition of the shape of the planet

b) at least two orders of magnitude improvement in the
accuracy of current knowledge of the strength of the field

c) mapping of anomalous structure on the selenoid at the one
to ten milligal level

It has been assumed that the probable orbit will be about 100
miles above the lunar surface. In recent discussions there have been in-
dications that a forty mile orbit may be employed, in which case the anomaly
discrimination level will be further improved by more than tenfold. Apart
from generally improving with reduced orbital altitude, the system does not
constrain the orbit in any way, Indeed we note that the natural eccentricity
and precession of the orbit provides the global covering sample most useful
for evaluation.

The data processing problem, the computation of gravity field
from the gradient, is amenable to ordinary computer technology. Some
computational techniques are suggested to illustrate feasibility in the report.

As primary instrumentation the vibrating string gradiometer is
a more than satisfactory instrument for this purpose. A preliminary design
analysis and performance summary is presented; the performance is predi-
cated upon the Arma vibrating string accelerometer and the design is an
engineering extrapolation of the knowledge and experience gained from the
low range accelerometer now under test for RTD. A minimum sensitivity
(dynamic range) of one part in 105 or better is indicated, compatible with
the anomaly mapping goals.

As designed, the instrument also incorporates a low range
accelerometer capability which may be employed in calibration and for
ion-thrust engine, drag and solar radiation monitoring.
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Note that the instrument is readily calibrated in orbit with high

"precision. Biases in the instrument are automatically isolated in the data

reduction process, including time dependent drifts of the bias. The scale

factor is readily determined by several methods, the simplest being the use

of the gravity field of a nearby positionally controlled mass.

2.2 Recommendations

In accord with the above conclusions the following is recommended:

1 - Detailed design and fabrication of a vibrating string gradio-
meter should be carried out. The gradiometer should be fabricated for
satellite application. The test program initially should include zero-g air-

craft flight and recoverable flight testing in sounding rockets. Particular

attention should be given to the possibility of designing a proof mass suspen-

sion system which would allow fully sensitive operation of the gradiometer in
a one-g cross axis field. If this is achieved the gradiometer can be employed
on a horizontal platform to measure gravity anomalies of the earth from an
ai rcraft in level flight.

2 - A complete computational system should be worked out. In

particular numerical methods for calculating the anomaly field more directly
from gradient measurements than those indicated in this report should be
developed. These will be of use in satellite, airborne and ground based
gravity surveys.

3 - Further detailed study of the operational usage of the gradio-

meter and the system should be made. This can be done partly by simula-
tion to examine alternative methods.

4 - The gradiometer provides information on the gravity field in
different forms. For example, the curvature of the field is directly available.
It appears desirable to explore direct methods of interpreting these findings
as an alternative to the conventional anomaly maps. This entails deeper
investigation into the geophysical interpretation of the data.

5 - A study should be made of the gravity gradient technique as

a possible experiment, and as a working tool on a manned orbital research
laboratory. The presence of the human monitor allows a number of opera-

tions to be carried out semi-automatically, and data can be evaluated on the
spot. If the satellite is properly equipped the gradiorneter could even be
assembled in space and tension and proof mass variations could be tried.

3
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The use of the gradiometer to indicate the local vertical can
facilitate active attitude stabilization of the satellite laboratory. At the
sensitivity level of the proposed instrument, and with the aid of the accel-
erorneter function, short range non-radiating docking control functions can
be carried out. Drag measurements can also be made, and, of course, the
fundamental geophysical data that gravity offers can be obtained and inter-

preted.

4
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SECTION 3

TECHNICAL DISCUSSION

Introduction

This section contains the important analytical and design findings
of the study. They are presented in the following sequence:

a) The use of gravity data is first discussed. The magnitudes
of gravity anomalies on the earth and typical geophysical
phenomena are cited. The current status of knowledge of the
moon and other planetary bodies is then summarized. Sen-
sitivity requirements for gravity data to be useful are
determined.

b) Equations of the gravity field are derived; relations to
measurements by gradiometer are derived and methods are
presented for deriving anomaly maps from the observations.

c) Instrumentation techniques for measuring the gravity
gradient are reviewed, and a detailed analysis of a vibrating
string gradiometer with preliminary design data is shown.
Operational configurations for calibration and orientation
are discussed. These are related to the requirements.

3. 1 The Dependence of Geodesy, and Geophysics on Gravity Data

The gravity field of a planet is a unique function of the distribution of
mass in the planet; that is it depends upon the shape, density and position
of matter in the body. Through the process of hypothesizing density distri-
butions and mass transfer mechanisms and then testing the predicted gravity
field against the observed, the geophysicist is able to determine the most
probable internal processes of the planet.

The uniqueness of the gravity field has been fundamental in the devel-
opment of navigation techniques. The position of the local vertical projected
on to the celestial sphere, and the time of day, suffice to determine location
on the earth. To effect this, of course, the navigator must know the gravity

field everywhere; the standard representation of this is a map - a correla-
tion of geographic detail with coordinates on the celestial sphere. However,
in order to determine lineal distance between points on the map, one must
put the map not on the celestial sphere but on the real solid figure of the

5
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earth; the geodesy of the planet must be established. In determining the

shape of the planet gravity again plays an important role. Strong correspon-

dence between the geoid and the gravity equipotentials leads to a relatively

simple description. For the earth, mean sea level is the equipotential and

corresponds reasonably well to the ellipsoid now generally employed for the

shape of the earth.

Nevertheless, current maps are imprecise. As Heiskanen points

out in the Handbook of Geophysics the incompleteness of existing triangu-

lation surveys leads to many geodetic systems, depending upon where the

geodesist begins his survey. Since the continental masses are not now well

tied together, the survey can not be closed globally. The data are good

enough for ships but not as good as desired for highly precise navigation for,

say, missiles.

Accordingly, wide-ranging gravity data, extended over the oceans,

and into otherwise inaccessible regions has significant military and com-

merical value to the United States. Similar considerations apply to the moon.

In addition to its value for navigation, gravity data is of fundamental

interest to the geophysicist. Basic theories of planetary origin and struc-

ture can be tested by observing the gravity fields. Keys to local sub-

terranean geology of commercial importance are provided by gravity surveys.

In this program we are interested in both lunar geodesy and lunar

geophysics. The following section discusses two of the geophysical aspects
of the earth in more detail, as possible cues to the geophysics of the moon.

These are the concept of isostasy and the nature of anomalies.

3. 1. 1 The Concept of Isostasy

During the course of making precise measurements it was

noticed that the attraction of large masses such as mountains was less than

predicted by the law of gravitation. It was concluded that the density of
the mountains is less than that of the surrounding rock (this is still the

present day conviction).

This, in turn, led to the concept of isostasy in which the earth's

crust is considered to "float" on a liquid interior. The mountains, lowlands,
avud oceans are thought to exert the same pressure at depths not far (about

114 kilometers *) below sea level. These masses are said to be in "isostatic
equilibrium" and the depth at which the pressure is considered to be uniform
is called the "depth of isostatic compensation.

*There are other estimates of this level, The figure cited above is due to

Hayford. Heiskanen has proposed a level ranging from 30 to 40 kmn, varying

over the earth.
6
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There are several isostatic systems, differing in the way in
which it is assumed that mass compensation is achieved.

In one system it is assumed that mountains have low density
earth crust directly beneath them and that oceans have high density earth
crust directly beneath them in such a way that the higher the mountain the
lower the density of the earth's crust and the deeper the ocean the higher
the density of the earth's crust. If the earth's crust is assumed to be sub-
divided into columns floating upon the molten inner mass, then, according
to this assumption, all columns at the same latitude have the same total
mass. Consequently, the bases of all columns are at the same radial
distance from the center of the earth, resulting in a uniform depth of iso-
static compensation.

In another system it is assumed that the earth's crust is sub-
divided into columns as before; the columns now have unequal masses and
therefore float upon the molten inner mass at different depths of displace-
ment. Thus in this system, the depth of isostatic compensation is greatest
under mountains and least under oceans.

In still another system it is assumed that the strength of the
earth's crust is such as to prevent a floating system from being in complete
equilibrium. This will result in the large mass of a mountain being com-
pensated for in a region greater than its direct vertical projection. The
crust below sea level is assumed to behave somewhat like an elastic plate
floating upon a liquid and loaded locally by mountains, valleys, and oceans
a negative load.

3. 1.2 The Concept of Anomaly

If the earth were considered to be a perfect oblate spheroid
without nonhomogeneities, all equigraviational surfaces would be concentric
with the sea level datum. It would then be possible to calculate gravity
very simply everywhere. However, as has been noted, the measurements
of "g" have differed by varying amounts from the values calculated for an
idealized earth as described above. These differences are attributed to the
nonhomogeneous density distribution of the earth's crust and are called
anomalies. The concept of isostasy was created in order to explain these
anomalies, and the various isostatic systems described have been used one
at a time or in combination in order to minimize them.

When elevation, topographic and isostatic corrections have been
included in a particular theoretical determination of "g" on the earth's sur-
face, the residual anomalies, determined by comparison with actual measure-
ments, are relatively small. In the United States they are less than +50

7
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milligals (1 gal = 1 cm/secz) with few exceptions, the average determination

being much lower. This corresponds, roughly, to about *50 parts per

million of "g" demonstrating that the earth exhibits a high degree of isos-

tatic adjustment. In the few exceptions mentioned, the magnitudes of the

anomalies may be much higher, running as high as hundreds of milligals.

It has been demonstrated that some of these occur in regions of abnormal

-tectonic activity. Presumably, this would indicate a temporary deviation

frbm isostatic equilibrium.

Typical residual gravitational anomalies on earth are:

Complete Tidal Cycle 0. 2 to 0. 3 milligal
Small Faults or Ore Bodies - 0. 1 to 0. 5 milligal
Salt Domes or Buried Ridges - 1 to 2 milligals

Small Craters - Up to 15 milligals
Mountain Ranges, Ocean

Deeps, or Rift Valleys - Several Hundred milligals

Gravitational anomalies as determined from measurements
aboard an orbiting vehicle do not uniquely fix the shape of the terrain below,
since a mountain, for instance, and a subsurface high density mass can both
produce positive anomalies of the same magnitude. On earth, topological,

acoustical, magnetic, tectonic, and radiological data are used to minimize
the residuals. These have led to conclusions regarding crustal and sub-
crustal phenomena such as stress releases in the crust, tilted fault planes
(steps in the crust caused by shifting earth masses), and broken formations

(separations in the crust caused by converging fault planes). If it is true,
as has been conjectured, that the moon is a cold body, that is with a solid
interior, any evidence of crustal and subcrustal phenomena as we know them
on earth, will be useful in drawing conclusions regarding the origin of the

moon. Under these circumstances there would be no need for concern re-
garding the constancy of geodetic determinations over a period of years, since
the concept of isostasy would be inapplicable.

3. 1.3 Gravity Measurements on the Moon

This study is concerned with the feasibility of determining the
gravity field of the moon from an orbiting satellite. Before going onto the
satellite a few words about other methods is in order.

The simplest concept is to land a gravity meter on the surface
of the moon. This is technically feasible. However, the data would have
limited utility since it provides an isolated value of the field. If properly

8
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placed and if sufficiently sensitive it might yield some information on
tidal effects, and, from this, inferences can be made about rigidity of
the crust. An improvement would be afforded if several meters were
landed on the moon. But to use the data for geodesy a triangulation
net would have to be set up.

A more meaningful experiment employs a probe on a lunar
surface vehicle. This would permit data-taking over a wide area and through
an on-board navigator, a suitable triangulation or geodetic net can be es-
tablished. Currently, considering the rugged nature of the moon's topo-
graphy and our uncertainty with respect to its surface composition (dust?),
such a program appears out of the question. Someday it must be attempted.
A surface program will be necessary to provide the geological detail re-
quired for fuller understanding of the moon.

However, it appears quite feasible to place a satellite in orbit
around the moon and telemeter its data back to earth. Accordingly, the
central question is the feasibility of instrumenting it for the collection of
gravity data. Two general approaches may be followed. The first is ob-
servation of the trajectory and the determination of the planetary constants
by calculation of the accelerations that appear to act on the satellite.

Although feasible in principle, the data processing involves the
differentiation of data that are intrinsically noisy. Good observations of the
principal term of the gravity field, that is the major attraction term, can
be obtained in this way. However this is already fairly well known. It
appears highly dubious that anomalies can be effectively detected. The
other approach is that taken in the remainder of this report; the use of an
on-board gravity gradiometer to provide the gravity data. The motion of
the satellite provides an essentially gravity-free environment, and one free
of environmental noise to a very high degree. Additionally, because of its
nature a gradiometer is not affected by external forces on the satellite
(such as radiation pressure).

Now it is evident that a very sensitive accelerometer mounted
in the satellite would indicate the difference in gravity due to its separation
from the center of mass of the satellite. However, this point is not easily
found and is subject to change. Accordingly, the gradiometer technology
considered inthis report leans toward measurements that do not depend upon
knowledge of the c. g. As will be seen , this is quite feasible.

9
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3.2 Gravity Gradient Theory

We define gravity gradient as follows. We first find the vector
difference of the gravity forces on two nearby points in the gravity field.
Then we take the component of this vector along the line joining the two
points. Finally we consider the limiting process which results when the
separation between the points passes to zero. Mathematically we may
formalize the process by writing

(gg)= d r- 3.2-1
Id'-. Id

The result is a scalar function of five variables, the three variables
of position and two variables defining the direction along which the gradient
is taken.

In this section we shall start with the gravity potential function V and
set down the important relations between V, the vector gravity (g), and the
gravity gradient (gg).

The results will be presented in rectangular cartesian coordinates
and in spherical coordinates. Some simple potential functions will be
analyzed.

We then consider methods for recovering the potential function and the
gravity vector from the gradient, and conclude with an estimate of the
necessary sensitivity.

3.2. 1 Gravity Gradient as a Function of the Potential

It is shown in classical mechanics that the forces produced
by a gravitating body can be represented conveniently by means of operations
on a scalar point function of position called the potential of the field. If the
mass distribution is given, the potential of the field can be obtained by adding
the separate potentials of each elementary piece of mass algebraically, or
equivalently, by integrating over the volume. Potentials superimpose.
Further these potentials are conservative. By this is meant that the work
required to move a mass from one point to another in the field depends only
upon the initial and final positions and not upon the path taken between the two
points. For a unit mass this work is numerically equal to the change in
potential between the two points. If two points have the same potential no net
work is required to move from one point to the other. It is customary to take
the reference level of potential as zero at infinity.

10
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The potential of an elementary particle of mass m concen-
:i trated at a point is

V= -G 3.2-2
r

r is the distance from the mass
G is the universal gravitational constant, in units

appropriate for V, m, and r.

When m is in rams, r is in centimeters, V is in ergs, and
G then becomes 6.67 X 10" cm 3 /gm/sec2 . This number is not known

j very exactly, although the associated gravitational acceleration on the
earth is well defined,

We calculate the gravity force, j , by taking the negative
gradient of V. In traditional vector symbology

jL grad V 3.2-3

27 V

In this notationg is the force on a unit mass placed in the
gravity field. For the particle field of equation (3.2-2)

- 3.2-4

3.2-5

We shall designate uiuit vectors by the notation lq meaning
the unit vector associated with the q coordinate. Equation 3.2-5is just
Newton's equation for the forces of attraction between a unit mass and a, mass m,
inversely proportional to the square of their separation and directed toward
each other.

For more general potential functions we may explicitly express
as a function of the partial derivatives of V with respect to the coordinates

of the system of representation.

Sl11
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In rectangular cartesian coordinates we have:

1= + v+i J 3.2-6
S3.2-7• l - I,,j, ÷+I; 2

In polar spherical coordinates we have:

,3.Li.r 4 S r .6s~ 3.2-8

* 1r+Iola SO5 3.2-9

Note that the point of observation is not moving in space.
Thus the vector shown is not the vector which would be indicated by a
plumb bob on the earth. It is the gravity vector which would be experienced
by either a satellite, or a body attached to a non-rotating planet.

Following our definition of gravity gradient in the opening
sentences of this sectioa, we can evaluate it in terms of partial derivatives
of the poteittial function'and°the direction cosines of the sensitive axis.

In rectangular coordinates we write (gg) in matrix form:

S Cr ol.; i C 3.2-10
:(c, C2C) pt  _-:g~ .CI_•

(CV i C2 __2-1

ý2 V

Note that IV,% ; is a symmetric, square matrix. The
qua-&ities C , C2 and C3 are the direction cosines of the sensitive axis
on the X, Y, i axes respectively. Their squares add to unity.

C1
2  + C2

2  + C 1 3.2-12
3



DS 64-R531-35

Performing the indicated operations in rectangular coordinates

(c,)= c,• + cC, -
+ )X1 C a)IV3.2-13

1.CC2 .. L• +2C, C, "v3  + 23  C

In spherical coordinates we go directly to the extended statement:

+

(C 3.2-14

4.+ 2 CrC* I!Y +_+ ,.r • r- r c d Y, sin "

" C a •'V 2,c C€ #) V)IV •z

Before continuing we want to ncte some other relations. An invariant
of the potential field is the divergence of the gradient, which is identically

zero wherever there is no mass. This is Laplace's equation.

V~ = 0 3.2-15

In rectangular coordinates

2~2+ +" + z•v •

ýj 2 2. 3.2-16

In spherical coordinates 3.2. -17

If the potential is given everywhere on a closed surface

the potential function is uniquely determined. This follows from the
divergence theorem of vector calculus. (Dirichlet's problem).

If the normal derivative of the potential is given every-
where on a closed surface the potential function is uniquely determined.
(Neumann's problem).

13
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Note that equations (3.2-16, 4l7) holding in the mass-free

space, can be solved by classical methods to provide literal solutions
for V, and correspondingly for its gradient, the gravity field. Accordingly,

if such a solution is set down, and if the literal coefficients can be evaluated
from measurements of (gg) we have found a way to evaluate g outside of the
body. This method will be examined below.

Consider a gradiometer at sequential points on a trajectory,

the gradiometer holding a fixed attitude in X Y Z, that is, inertial space.
If the gradiometer is oriented along the X axis, C1 is unity and C? and C 3

are sero. Then

(gg) 3.2-18

If we should employ a fixed orthogonal triad then the gradio-

meters would measure A_ t and a check for

behavior would yield a sum of zero. Note That the reference orientation
is arbitrary. Therefore any inertially fixed triad would satisfy this con-
dition, regardless of the trajectory, or the coordinate system.

3.2.2 Analytic Determination of the Gravity Field

We ha-e earlier introduced spherical coordinates because

of the approximate spherical shape of planetary objects, and the equipotential
surfaces are approximately spherical. Accordingly we expect the principal
terms in an analytical description of the field to be particularly simple if
we use this coordinate system.

On this basis a literal general representation of the potential

field in the space outside the gravitating body can be obtained as the sum of
terms of the form

V17 = r 3.2-19

The quantities y) are functions of 9 and and n is an integer.

The spherical harmonics Yn can be written as

Yn. "nmM 0 ~m +2hnIbM SinrnM 3.2-20

I' m =o

14
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or, using complex variables

MW+"

= :P ~ f~e,, 3.2-21
mu -lv

Thus the potential field is given by

VC,-•e ;C 3.2-22

71=1 I. *=-C

The quantities .M are trigonometric functions of ( alone, and are
called associated Legendre functions. When m is zero they are called
Legendre, simple, or zonal harmonics. They are most conveniently
defined by introducing a new variable t.

t= Cos 9 3.2-23

P 2 dt 3.2-24

F3.Z-25

= - L= dt "÷~" 3.2-26

In the variable t these functions are polynomials, and
t ranges over the interval - _ .

Table I, taken from Heiskanen, lists some of the lower o)rder terms.
The special term is called the sectorial harmonic, and the remaining
terms for which m is neither zero nor n are called tesseral harmonics.

We shall use this description to find the gravity field.
Suppose we have determined ,the radialgravitygradient,
at several positions on an orbit.

15
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Differentiating our equation for V we find:

C" +2 C7?+ 1 3.Z2- 27

Thus for several values of r, we have values for .r We
number each data point to distinguish it. Then we compute the value of

r) " and e at each point for the values of n and m
we consider significant. We get a set of linear equations.

"3.2-28
0e 49e

400 *

In these equations the A are known, and the terms are known.
The Cn terms are not known. Accordingly, we can solve the equations
(invert the matrix) if we have a sufficient number of data points.
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Further, once we have found the Ca, j we can find the radial com-
ponent of the gravity vector by the relation

. V =(n +1) r .2 2 Cnrn. pnme im 3.2-29

The other two components are similarly available.

If we have more data than necessary, for the number of terms considered
significant, we can make use of the redundancy to provide a least squares
fit to the data.

By this means we can obtain a global description of the
potential function and the gravity vector everywhere outside the planet from
which we can get a reference surface or selenoid or geoid.

3.2.3 A Method for Mapping Anomalies

Potential functions, at least of gravity fields, are linear
field properties. This is a characteristic of space. Accordingly, if we
have a potential field we may partition it into several potential fields, since
the sum of potential fields is itself a potential.

This property is useful, for example, in handling the reduction
of the gradient data into gravity anomalies on a reference geoid. It has
appeared irnplicity in the data reduction process described above, where
we have taken a sum of functions (the spherical harmonics multiplied by
appropriate powers of the radius) to represent the total potential.

Each of the terms r"-0I . me ;m is a potential function in its own
right.

Assume that a satisfactory geoid has been found, for example,
by following the method of the previous section. For this discussion we
assume further that it accounts for the first few terms of the total potential.

If we compute the gravity gradient associated with this
reference potential and subtract it from the data, the residuals constitute
the anomalous gravity gradient data.

A characteristic of the series representation we have used
is that the fine (anomalous) structure of the field requires many terms in
the expansion to provide a satisfactory approximation. However, we do not
really want the analytic description for most of the interpretive work of
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anomaly identification. What is required is a map of the anomalous

behavior on the reference surface, in a local manner.

In the following paragraphs we will set down a theory.

We begin by returning to fixed rectangular coordinates

and the properties of the potential function in this system.

Let V be a scalar potential function. Then its partial

derivatives _?Z a 1 which are the components of the gravity
field vector are themselves potential functions. They satisfy Laplace's
equation. This is demonstrated readily by direct computation.

AaX "•2". 3.2-30

[,V~v 2 V] -[0j

2 3.2-31

We have used the commutative property of partial differ-
entiation to arrive at the result.

Now, suppose that we had measured the derivative of g.
in the x direction (the gravity gradient) on some plane on which x is constant.
That is, we know as a function of y and z everywhere on the plane.

We -can-now'use another relation of potential theory to find gx itself on some

other plane. The relation assumes we are concerned with two potential

functions U and W, in mass-free space. Then, on a closed surface S,

Think of W as the $x field. Then ýW13X is the

measured gravity gradient if part of the closed surface is the x plane. On
this plane we would like )/ýpt (the normal derivative of U) to be zero.
We accomplish this by an educated guess. We take U as the function

19
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*u

4, * () + + 3.2-33

U is now a function of 6 quantities C•,&) 3 and x, y, z.

At the point x = (X y =10 z = " in the volume above
the x = 0 plane, U is singular, and we must somehow exclude "it from the
space. surrounded by S& We do this by imagining a small sphere S' drawn
around this point and attach this surface to S; the whole surface over
which we integrate becomes S + S'.. The normal to S is in the negative x
direction, the normal to the sphere is into the sphere.

Since on the x plane x is zero, we have

W.1 d' 0 32-34

Over the small sphere, U is constant in value and

is zero. On the other hand, , over the sphere S' is essentially
equal to the constant value of W at the point (W, p, -- ) and5 3.2 d,'
is 4 V

Therefore, the final equation is

iW 6 )L Y 3.2-35

Now taking JX for W we have:

£Ftci~ + x d, f 2
- + r~b *J - 3.2-36

Note that if, by definition, we take the reference plane as
x : 0 the result becomes more compact.

2 2w j 3.2-37
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Practically, we do not know X x continuously over the
plane. At best we know it in term•s of samples; and a discrete numerical

integration process is taken to approximate the above operations.

This process is exactly that evaluated by Paterson in
Geophysics, August '61. In the article Paterson deals with the problem
of converting an airborne survey of gravity gradient onto the nearby earth
as gravity force, and proposes a numerical technique for making the
computations.

This appears to be a reasonable approach to mapping the
anomaly field. However further work is needed, since the expected satellite
observations will not be on a plane surface. It is suggested that equivalent
theory for a spherical coordinate system be developed along With appro-
priate numerical methods. As an alternative the spherical harmonic repre-
sentation can always be used.

3.2.4 An Estimate of Required Instrument Sensitivity

We now have a data reduction procedure from which we can
develop a reference potential surface (geoid) and an approach to locally
mapping the residual gravity field, the anomaly field, onto the geoid.

In order further to evaluate the instrumental problem, we
must develop some estimates of the necessary sensitiv'ity of the gradiometer.
We would like to relate this to the more familiar gravity anomaly observed
on the planetary surface. To do this we have employed a simple anomaly
model, consisting of a large central planetary mass M, and a small mass m
located near the surface of the planet. For an orbit at 100 miles above the
planet we have calculated the radial gravity gradient above the anomaly and
plotted this against the surface gravity anomaly, for various sites of the
anomaly below the surface.

For this model we have

V= - (GM + G m ) 3.2-38
R R-ro

M = planetary mass; for the earth around 1021
tons; see table II for other planets.
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m excess mass associated with the anomaly.
For visualization note that one cubic mile at

mean earth density weighs 1011 tons.

R = &ltitude of orbit above planet center.

ro =anomaly site above planetary center.

V potential along line joining the two masses,
beyond the surface.

h = R - ro; altitude of orbit above the anomaly.

ho= altitude of surface above the anomaly.

Radial gr GM Gm 3.2-39Radil gavity =gr 1 R11R-o)

R (R-r 0 )2-

=-GM 5+ m (R- j 3.240

Radial gravity gradient ggr 2 GM + ZGr 3.2-41

R3 (R-r 3

Z GM 1 l+m -R3] 3.2-42

In these equations if R is very closely the planetary radius
then GM/R 2 is the normal surface gravity and 2GM/R 3 is the normal
surface gravity gradient. Further m R 2 is then the fraction of

M

normal gravity due to the anomaly and m is the fraction of normal

gravity gradient due to the anomaly. This latter defines the necessary
effective sensitivity of the instrument. In the sense used here sensitivity
is more often called "dynamic range", the ratio of the least detectible
measurement to the measurement range. We define as the discrimination
level the value of gravity gradient corre qponding to S. Thus if the range of
measurement is 10-7 g/foot and S is 10 he discrimination level is 10- 1 2 g/foot.
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In accord with this philosophy we now can derive a
relation between the surface gravity anomaly and the corresponding

Schange in gravity gradient at altitude. At the surface, the ratio

4 anomalous to normal gravity is:

• - 3.2-43

I At altitude the ratio of anomalous to normal gradient is---

s 4 R)r 3 3. -44

3. -4

ý__ 3.2-45

On earth gr is I gravity ^= 106 milligals. For an

0

anomalous body or mass one mile below surface, producing a one milligal

gravity deviation at the surface and for a 100 mile altitude orbit S is
4 x 10-9.

S has been calculated for earth and lunar orbits, taking
lunar gravity as 160, 000 milligals, and lunar radius as 1000 miles. The

important results are tabulated below.

Earth Moon

gg - milligals ho = 1 mile 5 miles 1 mile 5 miles

1 4 x I0 "9 10 -7 x 10 "8 I , S x I0 "6

10 4 x 10-8 10, 6 6 x 10"1 1.5 x 10-5

100 4 x 10- 7  10-5 6 x 10-6 1.5 x 10.4

1000 4 x 10-6 10-4 6 x 10-5 1.5 x 10-3

Values of S

Table III
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It appears that for a system with a sensitivity S of 10-6 the
system would indicate lunar anomalies of one to 10 milligals at the surface,
arising from anomalous structure one to five miles below the nominal
planetary surface. At a level of 10-5 the surface anomalies would
correspond to 10 to 100 milligals. This latter is considered to be a rea-
sonable level to start the investigation of the lunar gravity field from an
orbiting satellite. The discrimination level for an S of 10-5, in a 10-7 g/foot
field is simply 10-1 2 g/foot, or 0.03 f (E "tvos units). There is no question
but that this is an extremely delicate measurement, and potentially vul-
nerable to a vast variety of normally hidden noises. For example the potential
field of a one kilogram mass of mean earth density material, at a distance
of one foot produces a gravity gradient 500 times as great as that we seek
to measure. A shifting of this mass by 0. 1 mm can result in a signal change
approximating the discrimination level. But this can be interpreted as a
constraint on laboratory design. For example the gradiometer could be
put on a boom so it is remote from the major mass. Then, mass motions
within the satellite will not affect the gradiometer output.

The instrument must also be protected from developing
thermal gradients along its length since this will result in a ion-symmetrical
configuration. If the end string lengths differ due to unequal expansion a
biased output will result. Such a disturbance must be kept belcaw the dis-
crimination level.

Periodic, automatic calibrations of the instrument will allow
for the compensation of temporal shifts in the instrument scale and bias.
These shifts are unavoidable in any delicate instrument over a long period
of time. It is reasonable to expect, however, that such shifts can be de-
tected to the discrimination level and compensated systematically.

It is also important to note that the discrimination level is
reduced by virtue of the repetitious data collection inherent in the orbiting
measuring system. Random noise will be averaged to a low level by
statistical techniques included in the data processing.

These problems of resolution, noise, thermal effects and
statistical data processing have already been solved for the Arma Vibrating
String Accelerometer.

Considering the foregoing, the dynamic range of the vibrating
string gradioineter can be set so that the discrimination level, correspond-
ing to lunar surface anomalies of 10 - 100 milligals will be achieved while
the maximum gradiometer output will be at the level of the normal lunar
gradient.
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3.2.5 Effects of the Sun and the Earth

Two possibly important planetary ambient sources should
be noted; those due to the earth and the sun. In computation of the lunar
field these can and should be subtracted from the gradient data before
processing.

The gradient field of the earth in the vicinity of the moon
is approximately 4 x 10- 13 g/foot and varies about 50%, from about
8x 10- 1 3 to 4 x 10" 1 3 .

The gradient field of the sun is approximately 2 x 10-15

g/foot in the vicinity of the moon. This appears ignorable because it is
two magnitudes less than the discrimination level we have been discussing.

Note that the attitude of the gradiometer relative to the
radius to the earth must be entered into the corrective computation. This
can be determined readily from the attitude of the sensor with respect to
the moon.

3.2.6 Summary

In this section we have presented the basic gravity gradient
theory and a method for converting gradient observations into gravity field.
An analysis of the anomaly field of a point anomaly iidicates that a system
sensitivity.of one part in 105 is desirable for anomaly mapping. It is
further noted that at this level account must be taken of the gradient field
of the earth. This is a simple computation.

3.3 Indications of a Gradiometer on a Rotating Platform

A useful physical picttvre of the gradient phenomenon is obtained if
one imagines two masses fastened together by an ideal, short, infinitely
slender rod and placed in the field of a gravitating body. If the rod is oriented
radially, the gravitational force on the inner mass is greater than that on
the outer and the rod is in tension by an amount equal to the radial gradient
of the gravity force field multiplied by the length of the rod. If the rod is
now held horizontally, the convergence of the acceleration forces toward
the center of the gravitating body results in a force along the rod tending
to bring the masses together, a compression. It is clear that this is a
measure of the curvature of the gravity field at the point. Numerically, for
the simple force field assumed, the compression is one half the tension.
As the rod is turned, it passes from tension to compression and back again
in one half turn.
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Now visualize the same experiment performed on an orbiting
satellite. To be specific, assume a circular orbit. If the rod - the
gradlometer - is held fixed in inertial space, its indications will be
independent of the orientation of the satellite, but will vary with time
kince the orientation of the rod with respect to the radius to the planet
varies cyclically in orbit. Thus, the rod will sample the gravity gradient
in various directions, as it did in the non-orbiting experiement described
above. If the gradiometer should be continuously controlled to lie along
the radius, then it will measure the radial gradient plus the square of the
orbital angular velocity in inertial space. Because of the simple orbital
geometry this angular term is exactly one half the gradient term and has
the sense of tension. A gradiometer in the orbital plane lying normal to
the radius would read zero (its compression is reduced by the equal
tension due to the angular velocity). A gradiometer perpendicular to the
orbital plane would read the usual compressive force due to gravity alone.
Accordingly with the addition of rate gyroscopes, the three components
of gravity gradient can be obtained separately. It can be shown that the
sum of the three quantities measured by a triad of gradiometers is twice
the square of the angular velocity of the gradiometers in inertial space.

If the gradiometer is on a rotating platform its indications are
composed of two parts; the:normal gravity gradient existing at the point
in space, in the direction of the sensing axis plus a component due to
angular velocity of the platform. If we follow the definition of gradient
employed earlier we find that the term due to angular velocity is Ws 2 where
JW5 is the magnitude of the component of angular velocity normal to the

sensing axis. We compute W. from the vector relation:

We = 1 x W
13.3-1

The sum of the squares of the three W. terms is equal to 2W 2 .
Accordingly, the sum of the 3 gradiometer outputs on a rotating platform
corresponds to:

_ 22

ggl"+ gg 2 + gg 3 = ZW- - VV. In mass-free space V V is zero.

If a gradiometer orthogonal triad is constrained so that one gradio-
meter tracks the geocentric radius and one tracks the local horizontal
along the trajectory then the angular velocity of the platform is determined
by the orbital parameters. For a simple central force field and a circular
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orbit the results are especially simple and useful for making system
estimates. Denoting indications by I we have:

2 (radial) 3.3-2

j
-rig -- 0 (along trajectory) 3.3-3

1 2 r (normal to 3.3-4
orbit plane)

f2

and -Im27r sW 3.3-5

The square of the orbital angular velocity is one half of the radial
gravity gradient.

3.4 Instrumnenlation for Gradiometry

Several instruments which may serve as gradiometers are described
below. Each instrument measures the difference between the forces
affecting two (or more) proof masses when these masses are separated
along the sensitive axis. The different proof masses are self evident in the
discussion of matched accelerometers, the vibrating string gradiometer
and the torsional gradiometer. For the accelerometer-on-a-boom and the
San Marco experiment the orbiting satellite itself is one of the proof masses.
The gas diffusion equipment is made up of innumerable proof masses whose

S relative motion may be analyzed statistically.

The gradiometer which appears most suitable for the above described
measurements, is an extension of equipment already developed at the Arma
Division. This is the Vibrating string accelerometer which has been used
so successfully in inertial guidance systems and which is also the basis for
ruggedized thrust instrumentation recently delivered to NASA-Lewis Research
Center. A low range accelerometer for ion propulsion measurements is now
under evaluation for RTD.
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3.4.1 Basic Theory of the Vibrating String Instrumentation

* Single String, Single Mass System

A string under tension will vibrate when excited. The fre-

quency of vibration is a function of the dimensions of the string, the
string density and the tension of the string. The frequency of vibration (f)
is directly proportional to the square root of the tension of the string (T)
and inversely proportional to the square root of the mass of the string (m)
and its length (L).

f = 1/2 3.4-1
mL

For a string supporting a mass M the tension on the string is equal to the
initial tension (TO), dut to the mass attraction of the gravitational field,
plus any other force acting on the sensitive mass.

T T + Ma 3.4-2

In this case TO is Mg and the inertial reaction force is Ma

Mounting
b--Frame

String

Proof Mass M

From this it can be seen that for any particular string and mass, the
frequency of vibration can be varied by changing the acceleration applied
to the sensitive mass. If we consider the acceleration as variable, the
frequency-tension relationship can be expressed as a TayIor Series ex-
pansion about zero acceleration,

S. K ro ÷M•)V,= F~), .• : ÷ (, -• ..

3.4-3
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When a, the applied acceleration, is zero, f = Ko which is called the
bias frequency. With applied acceleration, there is a linear change in
frequency plus other non-linear terms.

Double String, Single Mass Systems

The even order non-linear terms in the Taylor Series
expansion can be reduced in magnitude by using two strings along one
axis with the mass between them.

00, Mountij.

o _Frame

In this representation, the coefficients approach zero as t1- -- der of
the term approaches infinity and the series converges. If we express
the frequency of each string as a series, we have:

+FkK, , + KaKzl m+ W1'j 3+.. Fop- T=T, Mcx/. 2

3.4-4

Since the K terms are dominant, the frequency of one string will increase
while the other will decrease. Taking the difference of these two fre-
quencies we have:

3.4-5

If the two strings are closely matched, all the even terms in the difference
frequency equation become negligibly small and only the odd terms remain.
Since the series converges rapidly, the only non-linear term of any signi-
ficance is the K3 term but this can be compensated if a is known approxi-
mately. This method is useful in achieving a substantially linear device.
However, because the two strings are attached to a single mass, there
may be coupling between the strings when they are near the same frequency.
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The ameliorative is shown below.

Double String, Double Mass System

Two modifications are made on the double string, single

mass system to minimize the effect of coupling between the strings.

Two separate but equal sensing masses, joined with a relatively soft

spring, are used in place of the single mass.

This reduces the transmission of energy from one string to the other while

not ctusing any deterioration of the system. The second modification is the

substitution of flat tapes for the str~ings. These tapes are oriented to

vibrate in mutaully orthogonal planes and thus reduce the tendency to

vibrate sympathetically.

Cross Centering System

In order to reduce the effect of accelerations not directed

along the axis of the tapes, it becomes necessary to restr47in the masses.

This is accomplished by cross supports placed perpendicular to the
sensitive axis. The following diagram shows the basic Arma Vibrating
String Accelerometer.

Mount Flange

1 ', pr/;A'1 'Prod•

Electrical Considerations

Permanent magnets provide a means for laterally vibrating

the tapes at their natural frequencies. If a current is passed through the
tape in a magnetic field, a force is produced. This force-tends to move
the tape. If the current is reversed, the force is in the opposite direction
and the tape is moved in that direction.
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In this manner, the tapes can be vibrated. AC voltages are induced in
t e tapes by their motion in the magnetic fields. These voltages are
regenerated through stable high gain amplifiers and returned to the tapes
to provide the energy necessary to sustain oscillation. The tape is there-
fore part of a tank circuit which oscillates at its natural frequency.

:!• \\\\\ \\\\\ t rrne.i 41

The dynamics of the vibrating tapes in the magnetic fields provided by
the peirmanent magnets have properties which are completely analogous
to those of a parallel resonant electrical circuit. This feature permits
the design of an appropriately controlled feedback amplifier to maintain
a constant amplitude of oscillation.

Accelerometer Operation

The two proof masses are free to move along the sensitive
axis and are restrained in motion along the cross sensitive axes by the
suspension system. An acceleration along the axis of the end tapes causes
the masses to increase the tension of one tape and decrease the tension of
the other tape by approximately an equal amount. Since the frequency of
tape oscillation is proportional to the square root of tension, the instan-
taneous frequency difference of the tape oscillations is- a measure of the

acceleration.

Because of the square root relationship, the frequency
difference is only approximately proportional to acceleration. The small
effects introduced by higher order terms in an actual accelerometer can
be compensated.

Vibrating String Gradiometer

It is a simple step from the Vibra.ting String Accelerometer
to the Vibrating String Gradiometer. A third 'Vibrating tape is inserted
between the two proof masses and its tension variation will be a function
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of the difference in the forces affecting the two masses, in particular

the gravity gradient. A simple sketch of the gradiometer is shown

below.

L['- j4-- Lj-•I 14- L13 L= string length

M = proof mass

N_ Ap ppole magnets

a = applied acceleration

e = incremental acceleration
S@12 . + = L? x gravity gradient

Simplified sketch of Proposed Gradiometer

The gradiometer consists of two proof masses M held

together along the sensitive axis by a long metal tape (string) LZ and this
combination held to the frame by two short end strings Lfeand L 3 . Each
string is caused to vibrate by passing an alternating current through it
as it lies in a permanent magnetic field. The frequency of that current is
equal to the natural mechanical frequency of the string and is established
and maintained electrically through a feedback loop.

The natural frequency of the string is a function of its length,

mass and the tension to which it is subjected. When the unit is held parallel
to the local vertical, the lower proof mass is subjected to a greater gravi-

tational force than the upper proof mass. Hence, the lower end string
tension is reduced, the upper end string is increased,, while the center
string is increased by the difference, e, in the gravitational forces on the
two proof masses. This difference (gradient times length) is obtained by
processing the frequency data from the three strings. A brief mathematical

description of the relationship between the instrument parameters, the
differential (gradient) acceleration, e, and the ambient acceleration, a,
follows.
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_/ 3.4-6

where f = natural mechanical frequency

L = length between clamps

T = tension (force)

/0 = linear mass density (mass per unit length)

We will apply this to the two mass, three string systern
shown in the figure below. Slightly different accelerations are applied to
each proof mass. The tensions in each string, which were each To initially,
change in such a manner as to balance the externally applied forces without
changing the overall length of the system.

Therefore

Ti - M(a-e/2)+Tz 3.4-7

- M(a+e/2)+T3 3.4-8

L1+ L+L3"LT; ALi=O0 3.4-9

These changes in tension are the new values of tension less To. The changes
in length are directly related to the compliance, S, of the strings, the tension
change and the original length.

AL = S ATi Li 3.4-10

Then

T = 2Ma+ /ZiT3  3.4-11

A Li = Ma+Me/2 + T 3  3.4-12
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from equations (3.4-7 8) and

LlA Tl L2A T2 +L3 AT 3 = 0 3.4-13

from equation (3.4- 10)

Solving these last three equations for the string tension changes we find:

AT 1  _ .L2 Me -Ma 3.4-14

AT2 = Ll Me 3.4-15
LT

A T3 = -L 2  Me +Ma 3.4-16
ET

The primary quantity of interest is e, the gravity gradient multiplied by the
length of the second string, L2. Note that a is the measure of the accelera-
tion at the center of the instrument. If the instrument were on a satellite in
orbit, a would be the gravity gradient at orbitaltitude multiplied by the dis-
tance between the satellite center of mass and the instrument. The differ-
ence in end stiring tensions give the ambient acceleration while the tension of
the second string gives the gravity gradient.

The string frequencies are related to the instrument parameters and acceler-
ation environment through the following equations:

2 j Me- •7a M 3.4-17

2= -(7o*.- Me) 3.4-18

L±2M 3.4-19
R3-r 2

These assume that the end strings are of equal length and thato , the linear
mass density is the same for each string. Further, through the choice of
st ring material and configuration the percentage change in length is made
negligible compared to the percentage change in tension from tf cir respective
nominal values. Then the frequency depends only on the change in tension
and not on the associated change in length.

If the frequency of the middle string imi defined as f 0 , when e is zero, the
gravity gradient is given by:
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1) L'- rJ L 3.4-20

The ambient acceleration is given by:

3.4-21

In order to extract the gravity gradient from equation (3. 4-20) it is necessary
to know the nominal (bias) frequency fo corresponding to the initial tension To.
This frequency will be set when the instrument is manufactured and will be
monitored as part of the periodic calibration procedure. It is possible also
to monitor this value as an indication of instrument stability during its normal
operation.

For this data processing function consider the relation:

2 r 4L7r
0"- L ,3.4-21

This equation provides a measure of To, and can be used to test for off-
nominal behavior.

In summary, it has been shown that by appropriate combinations of the three
output frequencies, the gravity gradient and ambient acceleration can be
obtained simultaneously. In addition, a monitoring technique is available to
indicate whether or not the instrument is in need of re-calibration.

If the environment requires it, a thermal control may be added to the gradio-
meter. Also, with regard to operating conditions, if it is necessary to store
the data for future processing, it should be noted that the frequency modulated
nature of the output signals lend themselves readily to tape recording with-
out intermediate coding steps.
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3. 4.2 Accelerometers for Gradiom erry

A pair of high quality accelerometers, separated by
an accurately known distance and having their outputs in opposition, give the
measure of the gravity gradient over that distance (taking orientation relative
to the radius vector into account). It may be possible, from an orbiting
satellite, to obtain separations between the accelerometers of the order of
hundreds of feet.

Suppose a 100 foot separation. Then a 10- 5 g accel-
erometer could be used to measure 10-7g/foot of gravity gradient. The
accelerometer range is obviously shifted into a more desirable region. How-
ever, this does not improve the dynamic range, S, of the instrument, since
the threshold is generally proportional to the maximum reading for a given
instrument design and environment.

In addition the designer is now faced with the problem
of matching performance and stability of two instruments over their entire
operating range, in the face of different thermal environments. The separ-
at ion must be continuously measured to high accuracy, and the operational

,o problems of erecting and holding a long boom in different attitudes is un-
mwarrantedly difficult.

3.4.3 Gradiometer on a Boom

One can obtain the geometric measure required for the
field strength and gravitational acceleration determination without referring
to the gravitating body itself. Consider a gradiorneter which can be mounted
on an extendable boom so that measurements can be taken both inside that
satellite and possibly 100-300 feet away in the direction of the local vertical.
This yields the gradient of the gradient, a very small difference in output.
Nevertheless, it is theoretically possible to determine the gravity field
strength from these two measurements. The outputs are given by

A, I K G M 3.4-22

3 =3.4-23

The difference between these two outputs is

SK*3.4-Z4
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This may be approximated closely by

I 3.4-25

where K = Gradiometer scale factor

r Nominal distance to the center of the gravitational
field

&r = Boom length

Taking the sum of the two gradiometer outputs yields

KkAj 5**I I-- 3.4-26

5 Then eliminating r 1 from equations (3. 4-25 and 3. 4-26) and solving for/C
(i we get:

/6K •3.4-27

"All parameters are theoretically available. Note that it is
now possible to obtain r, explicitly from either 'of equations (3. 4-25 or
3.4-26) which means that the satellite orbit parameters can be obtained.

SThe trouble with this method is the fact that SA g is so small that small-errors in
A g give large errors in SA g and any errors in obtaining that latter value

are further magnified by the sensitivity factor 3 which is related to the
exponent of tA g.

A
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3.4.4 Torsional Gradiometer

An instrument which relies on the winding or unwind-
ing of a spring as compression or tension is applied along its length is
presently being developed by the Texas Instrument Corporation. In the
vertical orientation tension arises as the difference in gravitational attraction
of two similar proof masses mounted at either end of the spring. The con-
sequent angular rotation of one mass (a flat plate) relative to the other is the
measure of the gradient.

As in the case of any gradiometer, the general advan-
tages of this instrument is its insensitivity to externally applied acceleration,
since the acceleration acts equally on each proof mass. The uncertain future
of this instrument as evaluated by Texas Instrument arises from its early
state of development. Their problems include size, weight, fragility and
stability among others.

3.4, 5 San Marco System

The San Marco experiment concerns the observation
of the motion of an unsupported object within the confines of an orbiting body.
The motion of this object relative to the body is due to the fact that it is in a
different orbit from that of the body. The orbit of the latter can be defined
in terms of the motion of its center of gravity relative to the gravity field.
Since the test object is not located at the center of gravity its orbit differs
from that of the satellite. Thus, the object will move within the satellite, as
a free object in space until it strikes an obstruction within the satellite. By
observing the motion of the object or by observing the magnitude and direction
of restraints required to hold it fixed relative to the satellite, the gravity
gradient can be obtained.

Consider a test mass attached to a satellite in orbit in
a central force field. Let the test object be it some radial distance from
the satellite c. g. Since it is attached, its initial velocity components are
identical with those of the satellite (assume no rotation of the satellite about
its own c. g. ). It should be noted that if the mass were sited in the satellite
on the trajectory of the c. g. no restraint would be necessary since both would
then be on the same orbital path.

When the test object is released, and there is a radial
di splacement, the test object is not in the same orbit as the satellite and
will begin to move with respect to the satellite. It is this motion which is
the measure for the San Marco experiment and its interpretation is shown
in the following analysis. The analysis takes into account the effect of
releasing the test body with a non-zero velocity relative to the satellite.
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The equations of motion of the test object in a coordinate
system whose origin is at the satellite c. g., rotating at the angular velocity
w of the satellite are:

)n 7C-tJ- 7 3. 4-28a

j+2wi~+XýJ-IW 
2  ,ql

3. 4-28b

Here, the forces producing relative motion are those due to
the displacement from the c. g. multiplied by the gravity gradient at that
point. The horizontal gradient is one of compression due to the curvature
of the equipotential and the radial gradient is one of tension due to the
distance squared effect of gravitational force.

Assuming a circular orbit, we have two additional relations:

w = 0 3. 4-29a

g -w r 3. 4-29b

so that the equations of motion become

x - 2 wy = 0 3. 4-30a
)ni

"y + 2 wx = - 3 y w2  3. 4-30b

The first of these equations can be integrated using,
as initial conditions, x x• y = Yo , x = Uo, =,vo at time zero.

x - 2 wy = uo - 2 wyo 3.4-31

Solving for x and substituting in (3. 4-30b)
di

y+ w2 y =2 w (2 Wyo - uo) 3.4-32

This undamped second order system can be solved by
assuming the answer is in the form

y = A cos wt + B sin wt - ? uo/w + 4 yo 3. 4-33a

and solving for the coefficients in terms of the initial conditions.
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Substituting this result in the equation (3. 4-3 1) and inte-

grating gives the horizontal displacement versus time.

xw * t4 /W - 6y) Smn Wt +(V/W)(ict* Wt)
3. 4-33b

It should be noted that this last result is divergent when,

initially, there is either a vertical displacement or horizontal velocity.

For the test where only a vertical displacement exists at

time sero the resulting motion, relative to the satellite cg as the origin of

coordinates, is given by

x 6 yo -sinwt + wt 3. 4-34a

y - yo •I +3 (1 - cos wt)) 3. 4-34b

which is a spiraling motion in the x direction and eventually going beyond the

bounds of the physical area of the test.

A special experiment could be made such that

Uo = 2WYO 3.4-35

In this case, the divergent term in x would be zero and the motion of the
test object would be bounded. The resulting elliptic motion is given by

x -2 yo sin wt 3. 4-36a

y -yo cos wt 3. 4-36b

In either case, gravity gradient is determined from the angular

velocity of the test object about the satellite c. g.

Problems associated with the San Marco experiment include:

a) the problem of determining the center of gravity of
the satellite

b) the effects of the change in satellite cg due to movement
of men and/or expendables in the satellite.

c) the effects of solar pressure, micrometeorites, etc.
on the satellite which is one of the proof masses of
the experiment.
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3.4.6 Gas Diffusion Technique for the Determination of
Gravity Gradient

A column of gas, carried on board the orbiting
satellite will take on a density gradient related to the gravity gradient.
Theoretically, a measure of that density variation, probably by optical
means, will yield the desired data on the gravity gradient.

The force exerted by the gas is

3.4-37

where /a (density) and p (pressure) are related by
the equation of state for an ideal gas.

- 3.4-38

where R is the universal gas constant, M, the average

molecular mass and T is the absolute temperature of the gas. Then

R rv (1cf) 3.4-39
For the vertical direction, the force component is

S(/ojP)3.4-40

This is to be balanced against the force of gravity in the

same direction.

2' .o-(/49p) 3.4-41

This can be integrated (Peirce #31) to obtain the
variation of pressure as a function of altitude. The result is

RTS3. 4-42a

In exponential form we have

(MR/) , 3. 4-42b

Replacing the pressures by densities from the equation
of state one obtains

= 7-/K4•: 42
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Thus, by a careful determination of the variation in
density of a suitable gas constrained in a vertical column one can find the
variation of gravity along that column.

There exists a variety of technique, to measure the
density of the gas. In any case, the detection equipment to perform such
measurements are either relatively large or extremely delicate. Extreme
care must be taken to maintain temperature control everywhere in the gas
column. Temperature variation here constitutes the major source of "noise"
which may mask the gradient.

3.4.7 Summary of Gravity Gradient Instrumentation

The preceding discussion concerns several instruments
and systems from which the gravity gradient can be obtained in an orbiting
vehicle. Instruments include the Arma Vibrating String Gradiometer, a
matched pair of accelerometers, the gradiometer on a boom and the Texas
Instruments' Torsional Gradiometer. Systems yielding the gravity gradient
include the San Marco system and the Gas diffusion System.

The instrumentation recommended for gradiometry
measurements is the vibrating string gradiometer discussed in section 3. 4. 1
above. This recommendation is based on extensive development, manufactur-
ing and testing experience with the closely related vibrating string acceler -
ometer. Our experience leads to tbC conclusion that the three string gradio-
meter can be produced as a rugged, compact, highly sensitive device for the
measurement of gravity gradient in an orbiting satellite.

An error analysis of the gravity gradient system shows
that the vibrating string gradiorneter is suitable for the measurement of
gravitational anomalies in the order of ten milligals. A-g-rowth potential
exists which will substantially improve the data to be measured from an orbit-
ing vehicle.

3. 5 Systems Analysis

This section deals with the manner in which the gradiometer is
introduced into the lunar gravity environment and the interrelationships
among the instrument, its carrier and the environments which affects the
determination of the lunar gravity field.

Specifically, it is shown that relative and non-dimensional data
will be collected and that orbit parameters may be obtained from the instru-
ment in this environment. An example of a gravity measuring system is
given and an error analysis is described wherein the influences of the system
elements on the system accuracy are derived. An error budget gives the
results in quantitative form for central force systems.
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3. 5. 1 Relative Versus Absolute Gravitational Data

An important aspect of gravitational phenomena is the

point that mass is relative, and its magnitude depends on the value chosen
for the universal gravitation constant G. The second point is that gravity
gradient technology yields data which have the dimension of time and we

combine them with an independent geometric measurement to determine the

gravity field strength and related functions.

Consider the vilue of the universal gravitational constant

G which is the proportionality constant of Newton's Law of Mass Attraction

F = G M12M 3.5-1S~r2

It may be worth pointing out that centuries of investi-
gation have failed to yield a precise value of G (i. e. precision to within a
few parts per million). Instead, the current value of G is "adopted".
Assuming distance, r, can be measured to the precision required, the

adoption of a value of G forces the magnitude of mass to fit equation (3. 5-1).
In other words, the absolute magnitude of mass is not known any better than
the absolute value of G. The characteristics which can be found to a high
degree of precision are the ratios of masses and the functions of gravita-
tional field strength GM namely potential, attractive force and gradient.
The ability to determine data on the product GM results from the fact that
tests are made in the precisely determined dimensions of time and length.
Thus, two masses can be compared by "weighing" them in the same
(Earth's) gravitational field without knowing the magnitude of that field.
Nothing will be determined in absolute terms. Gravitational force is deter-
mined by noting the acceleration to which a falling test body is subjected.
This is independent of the mass of the test body as Gaiileo showed long ago.

One method for determining the ratio of the masses of
the Moon and the Earth has been the determination of the location of the
center of gravity of the Earth-Moon system which is in orbit around the Sun.
It is not the center of the Earth itself which follows an elliptic path about the
Sun but rather the center of gravity (barycenter) of the Earth-Moon system.
Both the Earth's center of gravity and the Moon's center of gravity revolve
about the barycenter once per month. From aqtronomical observations of
displacements of celestial bodies periodically, relative to the orbital motion
of the Earth, the barycenter is found to be at an average disLance of 2903
miles from the center of the Earth. The cg of the Moon is 81. 3 times
further from the barycenter. Hence the ratio of the masses is also 1:81. 3.
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The ratio of the masses can also be found from the con-
stants of precession and nutation of the Moon in the Earth's gravitational
field. H.S. Jones, in 1941, found the value of 1:81.27 ± 0.02. Then, the
accuracy to which the Moon's mass is known is equal to that to which the
Earth's mass is known. Similarly, one can determine the magnitude of
the "average" lunar gravitational acceleration.

Obviously, the best way to measure the Moon's gravi-
tational field is by use of gravimeters located at various points of the Moon's
surface, just as it is'done on Earth. However, this is not feasible at the
present time. The next best method would involve tests from a lunar orbit-
ing satellite.

The present state-of-the-art of satellite orbiting is
just about at the stage where a vehicle could be put into a reasonably precise
orbit around the Moon. Such an experimental station would greatly enhance
man's knowledge of the Moon's characteristics and it is a mission that should
be performed before landing a man on the Moon. Many experiments would
be conducted from an orbiting satellite including the determination of atmos-
phere content (to the extent to which it exists) radiation levels, magnetic and
gravitation fields. Complete three dimensional mapping would be undertaken
as well as absorption and reflection experiments to determine the nature of
the moon's surface.

It is possible to sense the strength of the gravitational
field from within an orbiting satellite with accelerometers sensing the
gradient of the field. These measurements correlated with other appropriate
measures will yield the gravitational field strength of the Moon without the
necessity for landing on it.

A problem with regard to the Moon's gravitational field
is its non-spherical shape, This causes the gravitational field to be a
function of angle as well as radius. The fact that the Moon shows approx-
imately the same face to the Earth throughout the month indicates that it is
subject to gravity gradient attitude stabilization. That is, where a satellite
has unequal moments of inertia, the gravity gradient effect will cause the
axis of least moment of inertia to be aligned toward the center of the gravi-
tating body, i. e. along the local vertical. It is possible to improve our
knowledge of the shape of the Moon by gravity field measurements. Jeffreys,
1937, has shown that the longest axis of the Moon is 3478. 43 Kin, the polar
diameter is 3'76. 25 Km and the equatorial diameter normal to the longest
axis is 3475. 55 Km. Equipotential surfaces will follow this contour. Note
that the Earth's ccoresponding dimensions are: long axis, in equatorial plane
12, 756. 94 Kmn; shorter axis in equatorial plane 12, 756. 62 Km; and the polar
diameter is 12,713.82 Km. Thus the departure from sphericity of the Earth's
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I,
gravitational field is normal to its equatorial plane. It does not have a

dumbell analog like the Moon. The Earth's analog is a toroid.

3.5.2 Effect of Orbit Eccentricity on Gradiometer Output

The eccentric, elliptic, satellite orbit is characterized
by a variable distance between the satellite and the center of the gravity field.
The locus of the satellite is

r = A/(1 + e cos Q) 3.5-2

where A = semi-latus rectum

0 = true anomaly

e = eccentricity

The maximum and minimum radial distances are apogee
and perigee (designation with respect to earth)

ra = A/(I - e) (0 = 1800) 3. 5-3a

rp = A/(l + e) (0 = 00) 3.5-3b

The radial gradiometer outputs vary, then, during
the orbit between the values

Aga K (1 - e) 3  3.5-4a

A3

Agp =K A• (1 + e) 3  3. 5-4b

where K is the scale factor.

Therefore, one can determine the eccentricity of the orbit from the cube
root of the ratio of maximum to minimum outputs.

3. 5-5

for small eccentricities
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This is a non-dimensional characteristic and can be
determined from gradiometer measurements alone. Where compensation
for eccentricity is required, this parameter can be readily determined.

3.5.3 Example of System for Determining Gravitational
Acceleration

The output of the, gradiometer is a function of gravi-
tational field strength and distance from the center of the gravity field in

" a forim whose dimension is the reciprocal of time squared. In order to
obtain gravitational acceleration, the dist',ce factor is introduced explicitly.
The system also includes a gimbal support system which aligns the sensitive
axis of the gradiometer to the local vertical.

Vert;ceI Eri-r r 40; ao.

For an approximately circular orbit the gradiometer
output is of the form

dg = Ko + Ki & cosZ 3.5-7r

Where Ko bias of instrument

K 1 = scale fact5r of instrument

= attitude of sensitive axis relative to
local vertical

Assuming that the orbiting satellite is controlled in
attitude to the local vertical, so that O< = 0 and assuming adequate calibra-
tion methods, the gravity field can be measured continually in orbit s a
function of position obtained from the navigation equipment.

Thus, a map of the gravitational field will be obtained,
inclutc.ng measures of anomalies in that field and the perturbations due to
other bodies in space.
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As a first order model, one may consider that the
satellite continually reproduces its path in inertial space. It is then
reasonable and easy to correlate data from successive circuits. This
correlation will improve the theoretical accuracy of the system in pro-
portion to the square root of the number of correlated independent data
points.

A more elaborate model such as suggested in section
(3. 2. 2) might involve a three dimensional description of the gravity field
in terms appropriate to the least squares estimation of coefficients in the
model. This would require more tracking data and would eliminate time as
an explicit parameter. This technique is similar to current techniques for
evaluating the earth's gravity field by observation of satellites.

In addition to the vertically oriented gradiometer, the
system may also include gradiometers aligned normal to the local vertical
in the orbit plane. The output then is

Ag, r <~+ '~~~~ 3. 5-8

This output indicates the orientation of the gravity equipotential, relative
to the local horizontal and the angle .0 from the orbit plane. For a homo-
geneous spherical body, the equipotentials would be concentric spheres and
everywhere coincident with the geocentric horizontal. For a homogeneous
oblate or prolate spheroid the equipotentials would be symmetric to the
gravitating body near its surface and gradually become spherical as distance
from the body increased. Where inhomogeneities in the figure or the mass
distribution occur, the equipotential will be most distorted near those
departures from symmetry, gradually disappearing as distance increases.
Thus, for a gradiometer maintained aligned to the geocentric horizontal,
in a satellite in orbit close to the surface of the body being investigated,
anomalies will be detected and measured for relative magnitude and extent,
in an otherwise noiseless configuration. By holding the gradiometer in the
nominally null position, its sensitivity to the change in curvature of the
equipotentials is very high. Note that the third gradiometer aligned normal
to the two mentioned above, will give the third dimension to the magnitude
and orientation measurement of the equipotential surfaces through which the
orbiting satellite passes. This system will yield sufficient data to test the
gravity models of the geophysicist.
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3.5.4 Error Analysis

The measurement of the gravity gradient by an instru-
ment whose attitude is maintained along the local vertical, while in a near
ci rcular orbit, is combined with position information to yield gravity
acceleration. The errors in such a system are determined from the deriv-
ation of the system equation 3. 5-7.

r(A - K0I)
C e3.5-9

K, coKs. C )i

3.5-10

r Ka )
The functional form in which these errors appear show

the weights of the component errors on the desired measure for the system
in which these elements are, assembled. The weights associated with the
errors are shown parenthetically in the following five relations.

r 3. 5-1Za

3. 5-12c

lilt 3. 5-lZd

3. 5-i12e

for small angles.
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Each error is assumed to be random, zero mean and
statistically independent. Thereiore, the statistical combination of the
five errors given in the above equation (3. 5-1Z) is a vector sum rather
than an algebraic one.

+_ Z 3. 5-1317ý
Thisisthe r.m.s. system error based on r.m.s. values

of the individual errors. An error budget can be established, for example,
by letting each error source contribute equal amounts to the system error.
Equations (3. 5-12) show that unit errors in the individual parameters weigh

A differently against the system. Thus the budgeted errors should be in-
versely proportional to these weights in order that the parameter errors have
the same effect on the system.

There are five sources of error noted in this analysis.
If the system error is dg and the contribution of each source is Dg, the
orthogonal relationship among the independent error sources means that

dg F5 4T g 3.5-14

As a basis for numerical evaluation let us assume that
dg should be determined to within 0. 0Zpercent of its true value (within 32
milligals on the Moon). Then, the error budgeted to each error source is

g = 9 x l0-5g.

Consider that the measuring system is in a nominally
circular orbit about 100 miles above the moon's surface. Then, the ex-
pected parameter values are

r = 1180 miles (100 miles altitude)

g = 136 gals (at altitude) = 8. 5 x 10-4 mi/sec 2

L = 0 (attitude controlled)

K1 = 1 (normalized)

Ko <K Ag (by design and calibration techniques)

Ag = KI g/r = 7. 2 x 10- 7 /sec 2
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Then, from the nominal values and budgeted levels the tolerable maximum
errors for the five error sources are:

•) r = 1180 x 9 10-5 0. 11 mile

)A g = 7.2 x 10-' x 9 x 05 = 6.5 x 10-11/secZ

1 Ko = 6.5 x 10"ll/secZ

Kl = 9 x 10-5

(4. 5 x I0-5 = 6. 7 x I0-3 radians = 0. 38 degrees

To summarize the results of the above error analysis,
the magnitudes of the tolerable errors indicate that:

1) The gradiometer should be so designed that the bias is
zero theoretically.

2) Alignment of gradiometer to within 1/30 of the local
vertical is required.

3) The accuracy requirement on the gradiometer is 1/10, 000
in this example.

It has been assumed that the gradiometer should be
designed for a linear output so as not to introduce non-linear error sources.
It should be noted that by taking data over many orbits and correlating the
results, the accuracy of the desired measurement will improve as the square
root of the number of repetitions.

3.6 Design of the VSG

In the following section we summarize the major choices and
relationships employed in the design of a Vibrating String Gradiometer, as
described in section 3.4. 1. Note that we have drawn heavily on past experience
with accelerometer designs for BSD, ASD, and NASA to assure the reason-
ableness of the selections. It is concluded that a VSG can be made to meet
the requirements of lunar anomaly mapping as determined earlier in this
report.
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3. 6. 1 String Characteristics

All strings are made of the same material, namely

q beryllium-copper. The density of this metal is 0. 3 lb/in3 .

The strings will have a minimum cross sectional area

consistent with fabrication and handling in order to attain the highest opera-

ting frequency. Experience indicates A 0. 005 x 0. 001 square inches is

reasonable.

The initial design for the end strings will be based on
Arma experience with the shortest string manufactured, again for high
nominal operating frequency and high scale factor for the gradiometer.
Li = L3 = 0. 375 inches.

Further, minimizing the end strings, minimizes the
overall instrument length.

The center string shall be as long as possible, to obtain
the greatest gradient information. Considering handling and assembly
problems L 2 is 12 inches.

The nominal operating frequencies of the three strings
* are approximately 3200 cps for the end strings and 100 cps for the center

string.

3. 6.2 Proof Mass Characteristics

The proof mass is made as large as possible withut
* overstressing the strings or the cross supports. This includes the

restriction that the maximum change in tension M (a + e) is small compared

to To in order to operate in the linear range of the tension versus length
* relation.

To achieve this To in the selected string is chosen as
10 grams force. This is the least To used in a VSA to date. Secondly the
proof is chosen as 1. 2 kilograms of mass. As an extreme of environment,
leading to conservative design, the tension change is evaluated for the

instrument situated 1000 feet from the zero-g ambient point, the center of
gravity of the satellite, at 1200 x 10-4 or 0. 1 gram force change. Thus the
choice of the mass is such that even under these extremes the stress is well
below the elastic limits of Be Cu and the change is small compared with the

nominal tension.
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For testing purposes in the lg environment, however,
a separable section of the proof mass will be used. This test mass is
about 6 gms. and will be unlocked from the caged proof mass for the test.

The matching requirements of the two proof masses in
the gradiometer is important in keeping the bias output of the instrument
well below the level of the nominal output. Theoretically the bias is zero.
However, in the presence of a proof mass differential dM the output of
the unit will be proportional to

Me + dM (a + e)

where a is the ambient acceleration. For an altitude of 100 miles above
the Moon, for example, e = 1.4 x 10-6 ft/sec2 for an instrument one foot
long and a 1. 4 x 10-6 ft/secZ for each foot radially from the cg of the
satellite orbiting the Moon. Assuming the gradiometer were 100 feet
radially away from the satellite cg it is necessary that

dM <<( Me
101 e

Thus, conservatively, for a perturbation of less than 0.01 percent dM should
be less than M x io06 or 0. 0012 grams. The masses can be calibrated by
"weighing" them on a test vibrating string since VSA experience has shown
that an acceleration (force) resolution of this order of magnitude is feasible.

3. 6. 3 Cross Coupling Restraints

With regard to cross coupling of energy between strings,
the structural support members will be designed with internal damping and
variable cross section so as to attenuate any energy which could be trans-
mitted from one end string to the other. Such cross coupling tends to reduce
the difference frequency of the two strings with the consequent output error.

Cross support tapes constrain the proof masses in the
two directions perpendicular to the sensitive axis of the instrument. Design
analysis shows that the stiffness of the proposed cross supports, in the axial
direction will be only one-three hundredth of the stiffness of the center
vibrating string, the latter being Ll/L 2 as stiff as the end strings. Thus
the cross supports do not interfere to any extent, with the sensitivity of the
instrument. In the directions normal to the sensitive axis these same cross
supports are Z5 x 103 times as stiff and will prevent change in the orientation
of the sensitive axis due to ambient cross-acceleration in the orbiting vehicle.
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3.6.4 Magnet Assemblies

The VSG requires a permanent magnet assembly with
each string. The end-string chosen is one whose length is equal to that of
an Arma VSA. The same magnet used in the VSA is appropriate for the

* VSG. Its length is approximately 80 percent of the string length.

For the center string, the magnet length will be only a
small portion of the string length. This is feasible since very little energy
is required to drive the high Q strings. The magnet assembly for the center
string may be made up of several sections placed along the string or one
magnet at the center. This choice will be optimized during the fiinal design.

3. 6. 5 Beachin2

The instrument is protected against the high g environ-
ments prior to being set in orbit by the use of automatic beaching (caging)
of the full proof mass at a point below the elastic limit of the sensitive
el ements.

3. 6. 6 Accuracy of the VSG

Geneýrally speaking the measured output of the VSG is a
sum of frequencies squared. It refers to a bias term Ko an acceleration e
(gradient times length) times a scale factor K1 and a residual R due to higher
order terms. Analytically it is of the form

f2 = Ko + KI e + R 3.6-1

By virtue of design and calibration techniques Ko and R
are negligible and the error associated with the determination of the true value
of e is due to the errors in measured f and calibration of KI

K e.•3.6-2

__ _ -3. 6-3
K,

The instrument error is the square root of the sum of
squares of these independent errors. Both 'f/f and aK1/K 1 are obtainable
in the order of 1o-5 or better. Then the resultant uncertainty is "Ih× 10-5 =

2.2 x 10-5. This can be reduced by longer counting periods.
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3.6.7 Temperature Sensitivity

The main effects due to an increase in temperature are
as follows:

a. The outside aluminum structure of the instrument
increases its length due to its thermal coefficient of expansion. This elong-
ation causes an increase in the tape tensions. Increased tape tensions cause
increased tape frequencies.

b. The inside beryllium copper structure increases
its length due to its thermal coefficient of expansion. This expansion
causes a decrease in the tape tensions. Decreased tape tensions cause de-
creased tape frequencies.

By arranging these effects to be self compensating,
it is possible to design the instrument to be relatively insensitive to
steady state temperature changes.

Through the device of temperature control, and through
the use of a drift model in the data processing computations these effects
can be further reduced to admit extended intervals between recalibration
operations.

3.6.8 Summary of Performance of the VSG

Threshold Output I0-13 g/ft

Resolution 1/100, 000 based on 1 minute counting;
Low noise.

Range 10-13 to 10-6 g/ft

Caging Level I0-4 g/ft

Accuracy (de/e) 2.2 x 10-5 as per para. 3.6. 6

Size Length 16 1/2", Diameter 4 I/Z"

Weight 20. 5 lbs
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3.6.9 Summary of Physical Design

4 In summary design studies and past experience with
similar devices show that the proposed VSG is feasible. It will be necessary
to extend some of the fabrication techniques, particularly those for matching
st rings and masses because of the low levels of acceleration and high
accuracy requirements.

Since temperature variation is a problem in any sensi-
tive instrument, it may be desirable to employ a thermostatically controlled
constant temperature environment.

The computational and data processing functions indicated
for the VSG output are but a small part of the computer requirements for the
geophysical interpretation of the data so collected. It is recommended that
the individual string frequencies be telemetered to an Earth-based station
and the data processed at a convenient computer facility, along with the
geophysical computations.

3. 7 Instrument Testing and Calibration

The vibrating string gradiometer has been designed to operate in
a very low ambient acceleration compared to the one g environment on the
ground. It is necessary, however, to test the unit prior to actual use in
orbit to give assurance that the instrument is in operating condition. Once
in orbit the equipment will operate as planned. Periodically during the
course of the satellite's lifetime, the VSG will be recalibrated automatically
for bias and scale factor. This will enhance the accuracy of the accumulated
data.

3.7. 1 Prelaunch Testing

It is considered appropriate to test the gradiometcr
prior to launch to the fullest extent possible even though the ground environ
ment is recognized to be far beyond the extreme limits of the instrument.
This is done primarily to check the functional operation of the instrument.

(Note: It is possible to manufacture the equipment in a
caged configuration and release the proof masses only
after the satellite is in orbit. All testing would then
be donc on the satellite.)
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The gradiometer can be operated on the ground in a
manner analogous to its operation in orbit by employing test masses.
These are attached to the strings but detached from the caged proof masses
during test. Design studies have indicated that test masses of about one-
two hundredth of the proof mass is practical. Then tests for bias, scale
factor linearity and cross acceleration effects may be carried out. The
gradiometer, in test condition, (proof masses caged, test masses released)
is mounted on a precision rotary head.

When the VSG is mounted normal to the local vertical,
the frequencies of the two end strings should be identical. The difference
in frequency of the two end strings is compared to that difference when the
unit is rotated 1800 about the local vertical, i. e. with the sensitive axis
still horizontal. One half the sum of these differences is the bias, since
the rotation takes account of the possible initial misalignment.

Scale factor and linearity in the acceleration measuring
mode are determined by testing the output of the instrument at several points
in the one g gravity field. Here, the gradiometer is rotated about the
horizontal normal to its sensitive axis. The sine of the angle from horizon-
tal in the portion of the gravity field being measured.

For calibrating the gradiometer function, the instru-
ment is placed on a horizontally rotating platform (centrifuge) and the output
determined as a function of angular velocity and position.

The effect of cross acceleration on the gradiometer
output is determined by noting the variation in output as the gradiom eter
is rotated about its sensitive axis while this axis is held horizontal. The
instrument's cross support system is the primary mechanism by which
cross acceleration effects are minimized.

3.7. 2 In-Orbit Calibration

The prelaunch tests assure that the instrument and its
associated elements are functionally operative. Since the actual proof
masses are not used in the one g environment, calibration is required in
orbit. There are several possible techniques which may be employed to
determine the bias and scale factors of the instrument.

In orbit, the test masses (which are secured to the
sensitive strings) are locked to the proof masses and the combination will
be uncaged. Assuming that the gradiometer is mounted in its own gimbal-
ing system so that its orientation can be modified automatically, the
gradiometer will be rotated about its own cg at various angular rates. The
change in output as a function of angular rate gives the scale.
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A The bias output would be determined in a manner
Al: analogous to that outlined for the prelaunch test. It is important to note

that the bias may also be isolated in geophysical data processing.

A second possible method for calibrating the gradio-
meter in orbit employs the effect of a known ma 9 s, on board the satellite,
on the gradiometer output. Consider a "calibration mass" suspended
along the sensitive axis of the gradiometer on the side opposite that of the
earth (i. e. gravitating body). The presence of this mass in close proximity
to the instrument should be sufficient to offset the effect of the earth's gravity.
The distance between the test mass and instrument when the output of the
latter is zero represents the scale factor (after the bias has been taken into
account). Further, by noting the outputs as a function of distance the input-

5 output function is determined.

"There is a monitoring technique which can be used
without any special constraints on the gradiometer and which is effective
all during the normal operating time of the instrument. This relates the
maximum and minimum outputs of the unit to the period of the satellite in
an eccentric orbit.

These outputs are

Ai at apogee 3.7-1

at perigee 3.7-Z

The time interval between successive perigee passages, which can be
measured inboard, is related to the orbit by

T=.2I1• Fa 1-1 3. 7-3

where a = semi-major axis = 1/ (r0  - 3.7-4

The relative distances a 3f,,. and r 3/lA. are thus related by

S'/3 - .,, , . 3.7.. 5

or
14 X3 3.7-6

This latter data can be extracted from the system and the equality checked
each orbit period.
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