
—

at
p

a
If)
Ml

1.

o
UJ

^ nical Documentary
& -t No. ESD-TDR-64-320

ESD RECORD COPY

SCIENTIFIC «M^ |u|LD)NG 12U

COPIES
COPY NR.

ESTI PROCESSED

• DDC TAB • PROJ OFFICER

D ACCESSION MASTER FILE

• -
•ATE

I L

ESTI CONTROL

CY NR_ CYS

MILITRAN

PROGRAMMING MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)

bj

-SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue

Mineola, L. I., New York

JUNE 1964

AD60I79^

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data is not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 22314. Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

Technical Documentary
Report No. ESD-TDR-64-320

MILITRAN

PROGRAMMING MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)

by

SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue

Mineola, L. I., New York

JUNE 1964

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data is not to be regarded by Implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 22314. Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

FOREWORD

This la one of three technical reports being

published 8lmultaneouaiy. The others are the MILITRAN

Operations Manual for IBM 7090-7094 (Technical Documentary

Report No. ESD-TDR-64-389) and the MILITRAN Reference

Manual (Technical Documentary Report No. ESD-TDR-64-390).

The three reports constitute a complete description and

instructions for using the MILITRAN language In computer

programming of simulation problems.

The MILITRAN 7090-7094 Processor, which Is used

to compile a problem written in MILITRAN source language

Into a machine language program, will be available to

prospective users. Pending final arrangements, requests

for information about the MILITRAN Processor should be

sent to the Office of Naval Research (Code 491),

This report was prepared by the Systems Research

Group, Inc., under Contract Nonr-2936(00), which was initiated

by the Naval Analysis Group, Office of Naval Research, and

has been Jointly supported by the Office of Naval Research

and the Electronic Systems Division, Air Force Systems Command

ABSTRACT

MILITRAN Is an algorithmic computer language

specifically oriented to the problems encountered in

simulation programming. In addition to providing over-

all flexibility in expressing complex procedures, the

language contains features which greatly simplify the

maintainence of status lists, handling of numeric and

non-numeri>J data, and sequencing of events in simulated

time.

This report is an introduction to the MILITRAN

language for prospective users.

REVIEW AND APPROVAL

This Technical Documentary Report has been

reviewed by the Electronic Systems Division, U. S. Air

Force Systems Command, and is approved for general distribu-

tion.

J. B. CURTIS
2nd x,t., USAF
PROJECT OFFICER

TABLE OP CONTENTS

Page

I. Introduction 1

II. General Language Characteristics 13

III. Basic MILITRAN Environment 23

1. Numeric Elements 24

2. Non-numeric Elements 36

3. NORMAL MODE Declaration 54

4. Vectors 57

5. COMMON Statement 6?

6. Object Elements used as

Dimensions and Subscripts 64

IV. Programming in MILITRAN: Arithmetic

and Logical Processing 69

1. Expressions 69

2. Arithmetic Statements 92

3. Logical Statements 94

V. Control Statements 97

1. 00 TO 97

2. PAUSE 98

3. STOP 99

4. IP 99

Page

5. UNLESS 101

6. DO 102

7. CONTINUE 110

VI, Lists and List Processing Statements 113

1. Lists 113

2. List Processing Statements 114

VII. Events 135

1. PERMANENT EVENT 136

2. CONTINGENT EVENT 137

3. NEXT EVENT 140

4. END 143

5. END CONTINGENT EVENTS 143

VIII. Procedures 14?

1. MILITRAN-Coded Procedures 146

2. Library Functions 148

3. Open Functions 149

IX, Input and Output Statements 151

1. Introduction 151

2. Input-Output Lists 152

3. FORMAT 159

4. READ 179

APPENDIX

INDEX

5. WRITE

6. READWRITE

7. BINARY READ

8. BINARY WRITE

9. END PILE RETURN

10. END RECORD RETURN

11. Tape Control Statements

Page

179

180

181

182

182

183

183

186

190

CHAPTER I

INTRODUCTION

MILITRAN is a general purpose, problem-oriented

language developed by Systems Research Group, Inc. under

the sponsorship of the Office of Naval Research and the

Air Force Systems Command (ESD). It enables the program-

mer to think in terms of the problem to be solved and

the method of solution, rather than in terms of the com-

puter which is used to solve the problem. It Is a sym-

bolic language, using familiar notations from algebra

and logic which are expressed by self-explanatory English

words. The class of problems towards which this language

is oriented is that encountered in military simulations.

The primary stimulus for MILITRAN has been two-

fold: (l) the Increasing importance of the simulation

approach in the analysis of military systems, and (2)

the long periods of time and high levels of effort re-

quired to produce an operating simulation program.

MILITRAN achieves improved coding efficiency

by providing a programming language - the "MILITRAN lan-

guage" - which is oriented to the special problems and

procedures of military simulation. Because of this spe-

olal orientation, simulation codes can usually be written

In the MILITRAN language more easily, more quickly, and

with less likelihood of error than by conventional pro-

gramming techniques. The ultimate communication with

the computer Is effected through the MILITRAN compiler,

a special program that translates source codes written

In the MILITRAN language Into a form directly understanda-

ble by the computer.

The MILITRAN process commences once the model

of the situation has been developed and communicated to

the MILITRAN programmer. The programmer then writes a

source code for the simulation In the MILITRAN language.

This source code Is fed Into a computer which has been

loaded with the MILITRAN compiler program. The process

of compilation Is then carried out, with the result that

the computer Itself generates an object program and ac-

cessory documentation for the particular simulation.

This object program Is written In machine assembly lan-

guage and constitutes the actual code for the simulation.

Hence, It represents an Independent entity and the simu-

lation proper may then be executed without any further

reference to the MILITRAN System.

The MILITRAN language Is a complete, Integrated

programming language providing a full repertoire of con-

trol, logical, arithmetic and I/O Instructions, together

with a range of apeolal features oriented towards meeting

the Internal structural demands of military simulation

programs. These special features consist of such Items

as object modes, list processing statements, event pro-

cessing procedures, special retrieval arrays, etc. which

have been designed to Increase the power of the language

while preserving full flexibility to cope with any specific

simulation model.

Most programming languages are designed for the

development of programs to handle various types of compu-

tational problems. Such problems have numbers or variables

taking on numerical values as their basic elements. The

basic relations between these elements are arithmetic re-

lations, and the processing is largely composed of arith-

metic operations. A military simulation, on the other

hand, has as its basic elements the particular objects

which act and are acted upon in the course of the simu-

lation. The relationships and interactions among these

objects form, in one sense, the key relations dealt with

in the simulation. The fundamental process of a simu-

lation is the step by step progress through simulated

time coupled with a determination of the events that have

taken place, an assessment (often stochastic) of the im-

pact of these events upon the participating objects, and

an updating procedure to Insure that future events and

occurrences are consistent with these continual changes

In the state of the simulated system.

The MILITRAN language has the ability to deal

directly and explicitly with these underlying features

of a simulation situation.

To provide some Insight as to how this Is a-

chieved, the role of certain MILITRAN language components

will be described briefly In this chapter. This Is of

course In the way of a preview, and a complete discussion

of each component Is deferred until the appropriate sub-

sequent chapter.

The basic elements In a simulation program are

Individual objects and object types. To create such en-

titles, MILITRAN provides the system mode declaration

OBJECT. The collection of all Individual objects so de-

clared may be viewed as a universe of "object values"

available to the particular source program. In the same

manner that numerical variables are needed In a computa-

tional problem, so In a simulation one needs variables

which can take on Individual objects as values. In

MILITRAN such variables are declared by the PROGRAM OBJECT

statement. Multi-dimensional program object arrays are

declared In a similar manner. The requirement often

exists to form various groupings of objects for purposes

of effooting a common processing or data assignment.

In MILITRAN, this requirement Is met by the CLASS decla-

ration.

Insofar as the above discussion bears on dec-

larations employed in MILITRAN for the creation of vari-

ous program entitles, It should be pointed out that

MILITRAN also provides for Introducing the entitles re-

quired In the normal computational aspects of a simula-

tion program. Thus, one can Introduce constants, varia-

bles, multi-dimensional arrays, multi-modal vectors and

vector arrays which can take on either real (i.e., float-

ing point), integer, or logical (i.e., Boolean) as well

as object values. To make the process of mode declaration

as painless and reliable as possible, a "NORMAL MODE"

statement is available. This statement enables the

MILITRAN programmer to establish his own automatic mode

assignment conventions for each portion of the source

code.

As discussed previously, a major segment of any

simulation program is concerned with maintaining an up-to-

date account of the status of the participating objects

and their interactions. In one sense, the progress of

the simulation may be viewed as essentially equivalent

to the dynamic changes In object and system status. In

virtually all simulations, this role of maintaining sta-

tus accounts Is accomplished through the device of lists.

Consequently, It Is exceedingly helpful to have facile

procedures for constructing lists, Inserting entry values,

manipulating these list entries, and retrieving any de-

sired Item of Information from a list. In MILITRAN this

facility Is provided In the list processing portion of

the language.

List entries may be created by means of PLACE

or PLACE ENTRY statements; modified by REPLACE or REPLACE

ENTRY statements; and located by the system functions

MINIMUM INDEX and RANDOM INDEX. Processing which would

normally require complex Iterative coding can be achieved

In single concise MILITRAN statements. For Instance,

the REMOVE and REPLACE statements can be used to search

and process entire lists. Updated values produced through

the use of REPLACE or REPLACE ENTRY statements may be

functions of the values being replaced.

It should be noted that In providing a list-

processing language MILITRAN does not prohibit the use

of normal data processing statements upon list elements.

In connection with this freedom, a RESET LENGTH state-

ment permits the programmer to override automatic up-

dating features at will.

The central dynamic feature of military simu-

lation Is the processing of simulated events occurring

either at regular Intervals or at critical juncture points

in time. A simulated event la characterized by its time

of occurrence, the participating objects, more detailed

information concerning the particular circumstances of

the event, together with a certain procedure for evalu-

ating the Impact of the event's occurrence and implement-

ing this effect. Thus, a simulated potential event con-

sists of characterizing data plus an associated processing

to be carried out when the event takes place. In MILITRAN,

this association of data and contingent processing is ac-

complished (as well as many other benefits) with the CON-

TINGENT EVENT and PERMANENT EVENT statements. The CON-

TINGENT EVENT statement defines an event type and associ-

ates with It a list whose entries have an indicated com-

ponent structure. The structure of event lists may be

freely arranged. Each entry In such a list corresponds

to a potential event occurrence and the first component

of any such entry plays the special role of representing

the critical time at which this potential event may take

place. In addition to defining this list, the CONTINGENT

EVENT statement delineates, for a special purpose, that

segment of program steps which Is enclosed by the CONTIN-

GENT EVENT statement and the first END statement to follow

It, This program segment constitutes the processing to

be carried out upon the "realization" of the particular

contingent event.

Each entry on a CONTINGENT EVENT list repre-

sents a potential event. The general nature of this po-

tential event corresponds to the particular CONTINGENT

EVENT with whloh It Is associated, while Its detailed

character Is described by the values of the components

of the list entry. In military simulations, one often

encounters events characterized by time of occurrence,

attacking object, target object, together with other de-

scriptive information. The MILITRAN language takes ad-

vantage of this common form by providing the system vari-

ables TIME, ATTACKER, TARGET, and INDEX. When a particu-

lar event is "realized", the list entry associated with

that event automatically has the values of its first

three components loaded Into TIME, ATTACKER, TARGET, re-

spectively. Similarly, the variable INDEX automatically

takes on the number giving the position of the "realizedM

entry in its list, (These conventions exist for conven-

8

lenoe and need to be used only as long as they are con-

venient for the problem at hand. They are In no way re-

strictive and the MILITRAN programmer, If he so wishes,

can Ignore them with Impunity.)

Having established the correspondence between

potential events and vector entries In CONTINGENT EVENT

lists, the meaning of event "realization" can now be de-

scribed more precisely. A simulation may be viewed as

the state of a system progressing through time In a pre-

dictable fashion until the occurrence of a critical event.

This critical event affects the dynamic state of the sys-

tem and so determines the course of things until the next

critical event takes place. The system thus proceeds pre-

dictably In the Intervals between the critical events

which determine the conditions of the systems predictabi-

lity. In particular, It Is clear that the occurrence of

one potential event will affect the set of future poten-

tial events. Thus, the simulation can be carried out by

finding the earliest potential event, performing the ap-

propriate revision of the dynamic state of the system and

the set of future potential events, then finding the next

earliest potential event, again performing the appropriate

revision, etc. In terms of the simulation program, the

set of future potential events Is comprised of all entries

on CONTINQENT EVENT lists whose time oomponent Is greater

than or equal to the simulated current time. The earli-

est future potential event will then be represented by

that list entry In this set which has the smallest time

value. This event Is the one which occurs next, I.e.,

It Is actually "realized". The revision of the system

state Induced by this event Is then accomplished by per-

forming the processing associated with that particular

CONTINGENT EVENT. Having processed this revision, the

program then searches the revised set of entries on all

CONTINGENT EVENT lists, finds that entry having the

smallest time exceeding current time, and then proceeds

to "realize" that list entry as an event. In this man-

ner, the simulation program determines the "course of

the battle."

There is a special MILITRAN instruction which

triggers this procedure - NEXT EVENT. Whenever this com-

mand is encountered, the MILITRAN program will find the

list entry to be realized, and will transfer control to

the associated CONTINGENT EVENT processing to effect that

realization.

Although much of the processing Involved in

simulation programs appears similar to that used in strict-

ly computational codes, significant differences of a gen-

eral nature occur. These differences must be considered

10

In designing a simulation language, and have been an In-

tegral factor In the development of MILITRAN.

Simulation data must often be referred to sev-

eral arguments. The range of an aircraft, for Instance,

Is a function of airoraft type, cruising altitude, and

cruising speed as well as fuel load. To accomodate for

the handling of such data, MILITRAN provides for retrieval

from arrays and vectors having any desired number of

arguments.

Real-world situations involve real-world names,

contractions of which to five or six characters are often

grotesque. MILITRAN permits identifiers of up to sixty

characters.

The association of data with various objects in

a simulation Imposes a vast bookkeeping task upon the pro-

grammer. The MILITRAN processor absorbs this effort almost

entirely by allowing a wide range of object-mode sub-

scripting.

The Iterative processes in a simulation program

often involve Incrementation and termination criteria

whloh cannot be expressed In the usual algorithmic lan-

guages. The MILITRAN DO-loop form allows modification of

termination and Incrementation criteria and even the index

11

itself within the Iteration. Further, exit from the loop

may be made at any point without loss of current values,

and indices are defined even after normal exits.

Allocation of storage at running-time permits

the use of a given program to evaluate many different

cases without recompiling.

The processor allows the use of mixed-mode expres-

sions whenever contextual meaning is clear. This has sev-

eral implications, among them the elimination of compila-

tion failures due to omission of unnecessary decimal points.

MILITRAN ignores blanks (except in Hollerith

fields) and permits comments at any point in a statement.

Although the language cannot force the programmer to docu-

ment his program, it does provide facile tools for self-

documentation.

Prom this brief sampling of the MILITRAN language,

it is hoped that one can glean some of the basic ideas

underlying its structure as well as some of the techniques

appropriate to its intended utilization. The remainder

of this document is concerned with detailed explanation

and illustration of the MILITRAN vocabulary, syntax, and

grammar.

12

CHAPTER II

QENERAL LANOUAQE CHARACTERISTICS

A NILITRAN source program Is a series of MILITRAN

statements which specify a sequence of operations to be

performed by a digital eomputer, Eaoh NILITRAN statement

may be viewed as a set of elements arranged In a prescribed

order which specifies one or more of the following charac-

teristics of the program:

1. STRUCTURE of the program or its

components;

2. PROCESSING to be performed within

the computer;

3. INPUT/OUTPUT, or exchange of data

between the computer and its ex-

ternal storage devices;

4. CONTROL of the sequence in which

various operations are to be per-

formed; and

5. COMPILER instructions, or speci-

fication of the manner in which

the translation from MILITRAN to

maohine language is to be per-

formed .

13

The elements which eomblne to form MILITRAN state-

ments are names, constants, punetuatlon marks, statement type

Identifiers, operators, and mnemonic delimiters. These ele-

ments are In turn made up of characters, which are the basic

units of any language.

Characters

The MILITRAN Basic Language Is expressed In terms

of the following oharaoter set:

ABCDEPOHIJKLMN0PQRSTUVW

XYZ 0123^56789.(),»+-*/

The character "blank" is normally not significant

In the language. Except where specifically noted In this

manual, blanks may be used in any part of a statement with-

out any effeot on the statement.

"Alphabetic characters" Include the letters A

through Z; "numeric characters" include the digits 0 through

9;"alphameric characters" include both alphabetic and numeric

characters. All others are "special characters."

Punctuation Marks

The only punctuation marks used in MILITRAN are

the following:

14

. Period

(Open Parentheses

) Close Parentheses

, Comma

... Ellipsis (Delimits comments)

Operators

The operators used In MILITRAN are the following:

- Substitution

+ Addition; plus

Subtraction; minus

• Multiplication

/ Division

.P, Exponentiation

,E. Comparison: Equal to

.0. Comparison: Greater than

•L, Comparison: Less than

,NE, Comparison: Not equal to

.OE, Comparison: Greater than or equal to

.LE. Comparison: Less than or equal to

.IS. Object identity

,IN. Object inclusion

,0ft. Logical disjunction

.N0T. Logical negation

.AND. Logioal conjunction

15

.EQV. Logical equivalence

.EX0R. Logical exclusive disjunction

Names

A name Is a string of one to sixty alphameric

characters, the first of which Is alphabetic.

Certain names have a pre-defined meaning In

MILITRAN and may be used only In reference to that meaning.

These names are:

ABS GST PRINTER

ATAN INDEX RAND0M

ATTACKER INTEOER RAND0M INDEX

CARDS LENGTH REAL

C0S L0G SIGN

EACH LST SIN

END C0MPILATI0N MAX SQRT

EPSIL0N MIN TAN

EXP MINIMUM INDEX TARGET

FALSE M0D TIME

F0RMAT NEXT EVENT TRUE

The words BY, BY ENTRY, C0NTAINS, F0R, FR0M, IN,

T0, and UNTIL are used within certain statements to define

the limits of various parts of those statements. Used In

this context, these words are not names, but mnemonic

16

delimiters. Use of these alphameric combinations as names

is permitted, as the distinction between name and delimiter

is always contextually clear.

All names used in a MILITRAN aource program are

either explicitly or implicitly aasigned a type. Some types

of names are assigned a mode. The type of a name indicates

the nature of its use in the program. The mode of a name

indicates the form of data referred to by the name.

Statement Types

The basio statement in MILITRAN involves substi-

tution of one data item for another within the computer.

The substitution statement has the form

a » b

where "a" is a subscripted or unsubscripted variable name and

Mb" is any expression whose value is suitable for storage in

II _ II a •

All statements which are not substitution state-

ments are designated by system words and/or symbols called

statement type identifiers. The following table lists all

statement types and their primary uses. The form and charac-

teristics of each statement is described in later sections.

17

Statement Type

BACKSPACE

BACKSPACE PILE

BINARY READ

BINARY WRITE

CLASS

C0MM0N

CONTINGENT EVENT

CONTINUE

D0

END

END COMPILATION

END C0NTINOENT EVENTS

END PILE

END PILE RETURN

END RECORD RETURN

EXECUTE

FORMAT

GO TO

IP

INTEGER

LIST

LOGICAL

NEXT EVENT

NEXT EVENT EXCEPT

Primary Function

INPUT/OUTPUT

INPUT/OUTPUT

INPUT/OUTPUT

INPUT/OUTPUT

STRUCTURE

STRUCTURE

STRUCTURE

CONTROL

CONTROL

CONTROL

COMPILER

CONTROL

INPUT/OUTPUT

CONTROL

CONTROL

CONTROL

INPUT/OUTPUT

CONTROL

CONTROL

STRUCTURE

STRUCTURE

STRUCTURE

CONTROL

CONTROL

18

Statement Type

N0RMAL M0&E

OBJECT

PAUSE

PERMANENT EVENT

PLACE

PLACE ENTRY

PROCEDURE

PROGRAM 0BJECT

READ

READWRITE

REAL

REM0VE

REM0VE ENTRY

REPLACE

REPLACE ENTRY

RESET LENGTH

RETURN

REWIND

ST0P

SUSPEND PAP LISTING

UNLESS

UNLOAD

VECT0R

WRITE

Primary Function

STRUCTURE

STRUCTURE

CONTROL

STRUCTURE

PROCESSING

PROCESSING

STRUCTURE

STRUCTURE

INPUT/OUTPUT

INPUT/OUTPUT

STRUCTURE

PROCESSING

PROCESSING

PROCESSING

PROCESSING

PROCESSING

CONTROL

INPUT/OUTPUT

CONTROL

COMPILER

CONTROL

INPUT/OUTPUT

STRUCTURE

INPUT/OUTPUT

19

The standard MILITRAN coding sheet is shown below.

MILITRAN COOING FORM

notification
I 1_
73

JOB
COOER.
DATE.

•0 P*6€ Of.

STATEMENT
LABEL

1 6 " '

MILITRAN STATEMENT

(19 IT 22 27 ^32 37 «2 47 B2 87 62 67 72

1 1 1 1 I 1 1 1 • • •

• i i i i i • I I i i

I 1 I i i i • 1 1 f I 1

_ ,, i I 1 1

 —_
""** —• -_

MILITRAN statements are written one to a line In

columns 13-72. If a statement Is too long for a line, it

may be oontlnued on one or more successive lines by placing

a numeric character in column 12. For the initial line of

a statement, column 12 must be blank.

Statement labels may be written in columns 1

through 11. A label is a group of alphameric characters,

not exoeedlng 11 in number, the first of which is alphabetic,

These labels permit the programmer to refer to statements

within the program. For example, the statement 00 TO AB 12

would result in a transfer of control to the MILITRAN state-

ment AB 12.

20

Comments to explain the program may be Included

In a MILITRAN source program. These comments are not proc-

essed by MILITRAN but are printed on the listings produced

when the source program is translated into the object pro-

gram.

Comments may be stated in either of the following

two ways.

1. If it is desired to insert a complete separate

line of comments, any non-blank, non-numeric character

should be written in the continuation column (column 12).

2. If it is desired to intersperse comments with-

in a line of coding, the comments must be enolosed in two

groups of 3 periods as in:

...THESE ARE COMMENTS...

If a comment occurs at the end of a statement, the terminat-

ing periods may be omitted.

NOTE: 1. Comments cannot appear in a FORMAT statement.

2. Care must be exercised to insure the inclusion

of the correct number of periods when a comment

either directly precedes or follows an arithme-

tic, relational, or logical operator which

itself has periods as part of its notation.

21

Columns 73-80 may be used for any desired identi-

fying information. Information contained in these columns

is not utilized by the MILITRAN processor except as Identification,

No MILITRAN statement may occupy more than ten

cards, exclusive of cards designated as comments by column

12.

Some examples of MILITRAN statements and their

effects are:

C = A * B The asterisk indicates multipli-

cation. Thus, the statement

means multiply A by B and set C

equal to the result.

D = C/A The slash indicates division.

This causes the computer to di-

vide the value of C by A. Using

the value of C obtained from the

previous example D = B.

22

CHAPTER III

BASIC MILITRAN ENVIRONMENT

The environment of a MILITRAN program Is made

up of those elements of information that will be manipulated

by the program. These elements are classified as either

numeric or non-numeric, MILITRAN provides several modes

of expression for these elements in order to facilitate

the creation and processing of various types of data.

This chapter will discuss the necessary conventions a pro-

grammer must follow in order to establish a program en-

vironment. The first section of the chapter will focus on

elements which are purely numerio in form while the second

seotion will deal with non-numeric elements and show how

they may be used when appropriate in conjunction with

numeric elements.

As data elements may be arranged in several ways

for the convenience of the programmer, the concepts of

constants, variables, arrays, vectors and lists will be

introduced as the discussion progresses. These terms

specify the manner in which data elements are organized in

the oomputer and apply to both numeric and non-numeric

elements.

23

1. Numeric? Element a

It 1B possible to write two types of numbers In

the MILITRAN language: Integer (or fixed point) numbers

and real (or floating point) numbers. An Integer number

Is an ordinary whole number. A real number Is a fraction

between 0.1 and 1.0 multiplied by a power of 10.

Integer Calculations

Calculations with Integer numbers are carried

out with whole numbers only; no decimal remainders are

retained or used In computations. For example:

Arithmetic Statement Result of Calculation

1-5/2 1-2 (Instead of 2.5,

since the .5 is

truncated)

1-5/2+7/2 1-5 (Intermediate
truncation causes

this to be computed

2+3 rather than

12/2.)

J - 5*2 J - 10

K - - 4 + 1 K--3

24

Real Calculations

Real calculations are carried out between two

decimal numbers to an accuracy of 8 decimal digits. Por

example:

Arithmetic Statement Result of Calculation

I - 5./2. I - 2.5 (2.5000000)

I - 5./2. + 7./2. I = 6.

J - 1.6 * .7 J - 1.12

K - -2.7 + 1.2 D - -1.5

Arithmetic Constants

A constant is an element of information whose

predetermined value remains fixed from one execution of

the program to the next. Any quantity which appears In

a MILITRAN statement in the form of a number is called

an arithmetic constant. Arithmetic constants may be ex-

pressed in either integer mode or real mode.

Any number written without a decimal point,

using the decimal digits 0 through 9 is an Integer con-

stant. It may consist of from 1 to 11 digits but Its

25

magnitude must not exceed 2^-1. A preceding + or - sign

is optional and an unsigned integer constant is assumed to

be positive.

Examples:

The following are valid Integer constants:

0

+9

186

-327

On the other hand, the following are invalid

integer constants:

-3*2 (contains a decimal point)

27. (contains a decimal point)

3^359738368 (exceeds the magnitude permitted)

9»738»368 (commas not permitted)

Any number written with a decimal point, using

the decimal digits 0 through 9,1s a real constant. It may

consist of from 1 to 9 significant digits. A preceding +

or - sign is optional and an unsigned real constant Is as-

sumed to be positive.

26

An Integer exponent preceded by an E may follow

a real or Integer constant. All constants with such an

exponent are considered real. The decimal exponent may

have a preceding + or - sign. An unsigned exponent Is

assumed to be positive. The field following the letter

E must not be blank; It may be zero.

The magnitude of a real constant must be between
38 _-*Q

10 and 10 JO or be zero.

Examples:

The following are valid real constants and are

exactly equivalent.

10300.

103E2

103E+02

IO.3E3

+.103E05

1030000.E-2

The following are not valid real constants:

10300E (field following E Is blank)

10300 (decimal point omitted)

I.03E+2.O (exponent Is not an Integer

constant)

27

Arithmetic Variables

A variable Is a symbolic representation of an

element of Information that may assume more than one value -

either each time the program Is executed or at different

stages within the program. As with constants, an arithmetic

variable may be real or Integer, depending on whether the

value It will assume Is to be real or Integer,

Since each variable Is associated with a name, a

discussion of the rules for naming variables Is appropriate

at this point. A variable name consists of from 1 to 60

nonblank alphameric characters, except the special characters,

+ - .)(»#/•» the first of which must be alphabetic. The

rules for naming variables allow for extensive selectivity.

In general It Is easier to follow the flow of a program If

meaningful symbols are used wherever possible. For example,

to compute distance It would be possible to use the statement

X - Y « Z

but It would be more meaningful to write

DIST - RATE * TIME

Examples:

The following are valid variable names:

28

MAXIMUM

ALPHA

PLANE

JET

A601

Z

The following are not valid variable names

6ABC (first character Is not alphabetic)

.BOMB (period not permitted - it Is a

special character)

An Integer variable may assume any value expres-

sible as an Integer constant In the MILITRAN processor. An

Integer variable Is declared as follows:

INTEGER SPEED

where SPEED may assume the value of an Integer constant

such as 1 or 20 at one point In the program execution and

622 at another point.

A real variable may assume any value expressible as

a real constant In the MILITRAN processor. A real variable

29

Is declared as follows:

REAL SPEED

where SPEED may assume the value of a real constant such as

1,2 at one point In the program execution and 622.0 at

another point,

NOTE: Both Integer and real variables may also be declared

by means of the NORMAL MODE statement. See section on

NORMAL MODE Declaration for description.

Arithmetic Arrays

To this point, we have discussed single elements

of Information; however, It Is often advantageous to be able

to group elements to refer to the group by one name and to

refer to each Individual quantity in the group in term of

its place In the group, A group of elements of information

is known as a table or an array and each element is dis-

tinguished from one another by subscription.

For example, assume the following is an array

named TYPE:

21

37

43

51

30

Suppose It is desired to refer to the second

quantity In the group; In ordinary mathematical notation

this would be TYPE2. In MILITRAN this would be :

TYPE(2)

The quantity "2" is called a subscript. Thus:

TYPE(2) has the value 37

TYPE(3) has the value 43

Similarly, ordinary mathematical notation might

use TYPE to represent any element of the set TYPE. In

MILITRAN, this might be written as TYPE(I) where I equals

1,2,3, or 4.

The array could be two dimensional; for example,

the array QUAN:

Column 1 Column 2 Column 3

Row 1 16 6 34

Row 2 22 15 46

Row 3 13 27 51

Row 4 64 96 88

Suppose it is desired to refer to the number in

Row 2, column 3; this would bet

QUAN(2,3)

31

"2" and "3" are subscripts. Thus :

QUAN(4,2) has the value 96

Similarly, ordinary mathematical notations might

use QUAN, , to represent any element of the set QUAN. In

MIUTRAN this might be written as QUAN(l,j) where I equals

1*2,3» or k and J equals 1,2, or 3.

MILITRAN allows a great deal of latitude in the

designation of arithmetic subscripts. The only form a

subscript may not have is that of a logical variable or

logical constant. (See section on Logical Elements .)

Some examples of subscripts are:

DIST

21

2.4

TIME

A + B

A/B

C*D

The names shown above may be real or Integer variables and

variables in a subscript may themselves be subscripted.

However, if a subscript of real mode is used it will be

truncated to an Integer value.

32

An arithmetic subscripted variable Is an Integer

or real variable, followed by parentheses which enclose the

subscripts. These subscripts are separated from each other

by commas and a oomma is not allowed after the last sub-

script. Arithmetic subscripted variables may have any num-

ber of subscripts.

Examples:

FIELD(2)

DAMAGE ACTION(5, SHIPTYPE)

MAX(J,K,L)

RANOE(TyPE,PUEL,ALT,SPEED,PAYLOAD)

The arithmetic array declaration statement de-

clares both the mode and dimensions of the array. This

statement does not generate any instructions in the object

program; rather, it provides the MILITRAN processor with

the information necessary to reserve locations in the com-

puter memory for storage of the various elements of the

array and also indicates if these elements will be REAL or

INTEGER variables.

The following statements declare both the mode

and dimensions of arrays:

33

REAL n1(l^#l2*...#lyc)#.«.#njB(ij*l2#««»#
1j)

INTEGER n1(i1,l2,...,ik),...,nm(l1,i2,...,ij)

where ni»n2'***'nm
are names and l«#lo»*«*#ij are arithmetic

dimensions whose value Is not less than 1. There Is no

limit to the number of dimensions permitted In an array.

A single array declaration statement may specify

any number of arrays; but If more than one array Is named,

the name of each subsequent array must be preceded by a

comma. Since the array declaration statement lists the

maximum dimensions of arrays, references to these arrays

at running time must never exceed the specified dimensions.

When dimensions are the names of arithmetic vari-

ables, the MILITRAN compiler will provide Instructions for

entering the numeric values of the dimensions at the time

of Initial loading of the program. In this way, a program

may perform calculations on arrays whose size Is not deter-

mined until the program Is executed. Although these

"symbolic dimensions" may be changed during the running

of the program, storage allotment will be determined by

the values originally loaded.

NOTE:

1. Symbolic dimensions may not be subscripted.

34

2. If "symbolic dimensions" are used In proce-

dures, they must be assigned to the COMMON

area, (See section on COMMON Statement .)

3. Symbolic dimensions may be declared only in

the array declaration statement. They must

not be deolared as variables in REAL or

INTEGER declarations,

MILITRAN arrays are stored sequentially in decreas-

ing memory addresses, the first subscript varying the most

rapidly.

Examples:

REAL FIELD(4,4,5)

This example Is a three dimensional array named

FIELD, for which the subscripts never exceed 4,4, and 5 and

for which 8° storage locations will be reserved.

INTEOER SPEED(PLANE, ALT, WEIGHT, DAMAGE)

The above Is a four dimensional array named SPEED.

The size of the array will be determined at program execution

time when the values for the symbolic dimensions - PLANE, ALT,

WEIOHT, DAMAGE - are entered.

35

2. Non-numerlo Elements

This section will dlsouss the non-numeric elements

wnich may also be part of the environment of a MILITRAN pro-

gram.

Hollerith Constants

As defined previously, a constant Is an element

of Information which does not change from one execution of

the program to the next. The Hollerith constant provides

a means of representing alphameric Information In the form

of a constant. It Is written using the form MnH", where n

Is an unsigned decimal Integer whose value Is less than 7,

followed by n Hollerith characters. The Hollerith charac-

ters are:

A through Z space

0 through 9 $

+ *

»

/

)

(

Any characters permitted by the computer configuration may

be used, even though not part of the character set required

by MILITRAN.

36

Examples:

The following are valid Hollerith constants

4HTIME

6HL - 2.

Note that blanks are considered alphameric char-

acters and must be Included as part of the count.

The following are Invalid Hollerith constants:

11H SIMULATION (exceeds the number of

permissible characters)

4H SHIP (number of characters specified

by the Integer does not corre-

spond to the number of charac-

ters In the constant)

-5H TIME (sign Is not permitted)

Logical Elements

Logical constants, logical variables and logical

arrays are elements which have or will assume a value of

TRUE or FALSE.

A value which appears In a MILITRAN statement In

the form of TRUE or FALSE Is called a logical constant.

37

A logical variable la specified by the declaration

LOGICAL which precedes the variable name. For example,

LOGICAL LIVE

declares LIVE to be a logical variable but It does not assm.e

a value until it is assigned the value TRUE or FALSE as in:

LIVE - TRUE

or

LIVE - FALSE

NOTE: As mentioned above, logical constants and logical

variables may not be used as subscripts.

Logical elements may also be grouped to form an

array. The array declaration statement

LOGICAL n1(l1,i2,...,ik),...Jnm(i1,i2,...tij)

declares n,,ru,...,ri to be names of arrays, whose elements

will assume a logical value, and i,,ip,...,i1 are arithmetic

dimensions whose value Is not less than 1. For example:

LOGICAL CHARACTERISTICS(4,3)

38

defines a two-dimensional logical array called CHARAC-

TERISTICS. The elements in this array may assume a value

of TRUE or FALSE.

Object Elements

The basic elements in a simulation program are

individual objects, object types, and object classes.

MILITRAN provides a means of specifying this type of non-

numeric data by the use of symbolic names. The declarations

PROGRAM OBJECT, OBJECT, and CLASS enable the programmer

to handle these non-numeric elements either as single

elements or as arrays.

The rules governing the naming of these object

identifiers are similar to those enumerated above for

arithmetic elements. A name may consist of from 1 to bO

alphameric characters (except special characters), the first

of which must be alphabetic. The name is preceded by a

declaration of OBJECT, PROGRAM OBJECT, or CLASS. As with

arithmetic variables, the following discussion will assume

that object elements may only have arithmetic subscripts.

However, we will subseauently show how Individual objects

themselves may be used to subscript REAL, INTEGER, LOGICAL,

and PROGRAM OBJECT elements.

39

OBJECT Is a declaration used to define names

as those of objects. The general form of this declaration

1st

OBJECT n1(l1),n2(l2),...,nm(lm)

where n^n^,...,!! are names and 1i«12*,"*1ra muat be

arithmetic expressions whose value Is not less than 1.

Each name must have a dimension because the dimension

specifies-the cardinality of the object element, I.e.,

how many objects are In the group. If the dimensions

are symbolic, the values would be supplied at load time.

Examples:

OBJECT PLANE (10)

This declaration generates one element named

PLANE and also specifies that PLANE Is a set or group of

10 planes. The programmer could subsequently refer to

any member of the group of 10 planes - I.e. PLANE(3)

PLANE(6) etc, because use of the declaration OBJECT

indicates to the MILITRAN processor that PLANE(3) and

PLANE(6) are members of the group named PLANE, The sub-

scripted name PLANE(5) Is an Identifier which specifies

the fifth PLANE, A reference to any member of the group

named PLANE causes the processor to produce the coding

required to generate and save the name of the particular

ho

member of the set.

OBJECT CARBINE(400), RIFLE(600)

In this example, the OBJECT declaration generates

two elements - the first Is named CARBINE and has a cardi-

nality of 400, the second Is named RIFLE and has a cardi-

nality of 600. As we can see, the declaration OBJECT Is

especially useful because It enables the programmer to spe-

cify a group of objects without reserving a location in the

computer memory for each object within the group. In other

words, the above example specifies a total of 1000 objects -

yet these objects occupy only a few words of computer memory.

OBJECT PLANE(NUMBER)

This Is an OBJECT declaration which has a symbolic

dimension. Therefore, the processor would provide the

necessary Instructions to load the value of NUMBER which

Indicates the cardinality of the object PLANE at program

execution time.

PROGRAM OBJECT Is a declaration which may be used

to specify a single variable or group of variables which

will assume the value of names. It Is declared as follows:

41

PROGRAM OBJECT n^n^n,

vhere n^r^n- are names. It also nay be used to declare

the mode and dimensions of an array or group of arrays

which will assume name values If the declaration Is stated

as follows:

PROORAM OBJECT n1(i1,t2,...,lk),...,H^(ll,i2#...tik)

where n1,n2,.,.inm are names and i1,i2»...*ik
are arithmetic

expressions.

Examples:

PROORAM OBJECT COMBAT WEAPON

This example specifies one variable which may assume the

value of any object Identifier In the object program.

The statement

COMBAT WEAPON - PLANE(5)

would assign to COMBAT WEAPON the value of the Identifier

PLANE(5).

PROGRAM OBJECT TANK(10)

This declaration means that TANK la a one dimensional array

for which the value of the subscript never exceeds 10. This

declaration therefore causes 10 storage locations to be re-

served for the elements of the array named TANK. These

h2

elements will be object Identifiers.

PROGRAM OBJECT OFFENSIVE WEAPON(5,4),DEFENSIVE WEAPON(6,5,4)

Two arrays are declared above; the first Is a two dimensional

array named OFFENSIVE WEAPON for which the subscripts never

exceed 5 and 4 and for which 20 storage locations will be

reserved, the second Is a three dimensional array called

DEFENSIVE WEAPON for which the subscripts never exceed 6,5

and 4 and for which 120 storage locations will be set aside.

The elements In both arrays will be object Identifiers.

NOTE: PROGRAM OBJECT differs from OBJECT in that it merely

reserves space in the computer memory for subsequent

storage of a variable or for the elements of an array;

OBJECT reserves space for storage of the name and its

dimension.

The CLASS declaration enables the programmer to

specify that certain properties of designated objects or the

objects themselves have common characteristics, and these

common characteristics form a set or group.

CLASS is declared as follows:

43

CLASS(C) CONTAINS ax*a2'' * "ara

where C Is a name and a.,a2,...,a are either names of objects

or classes, or names of objects or classes preceded by EACH*.

The names a.,aol.,,,a must be declared before they are used it m —_—

to form a class. The Implications of the presence or absence

of EACH* are discussed separately below.

The following declaration specifies the object

elements which will be used to form classes:

OBJECT FORD(lO), MERC(5), LINC(3), CHEV(lO), 0LDS(5),

CADDY(3), PLY(lO), D0D0E(5), CHRYS(3)

The following declarations show how classes may

be formed from previously defined objects or classes, which

are not preceded by EACH.

CLASS(ECONOMY) CONTAINS FORD, CHEV, PLY

CLASS(MODERATE) CONTAINS MERC, OLDS, DODOE

CLASS(PRESTIGE) CONTAINS LINC, CADDY, CHRYS

CLASS(PRICE) CONTAINS ECONOMY, MODERATE, PRESTIGE

All the object elements within the class and the

class name itself may be referenced. The following table

44

indicates the subscripts which may be used with the object

identifiers comprising the above class declarations.

CLASS NAME

ECONOMY(l)

ECONOMY(2)

EC0N0MY(3)

REPRESENTATIVE

P0RD(1)

CHEV(l)

PLY(l)

MEMBERS OF CLASS

PORD(l,2,...,10)

CHEV(l,2,...,10)

PLY(1,2,...,10)

MODERATE(l)

MODERATE(2)

MODERATE(3)

MERC(l)

OLDS(l)

DODOE(l)

MERC(1,2,...,5)

0LDS(1,2,...,5)

DODGE(l,2,...,5)

PRESTIQE(l)

PRESTIGE(2)

PRESTIOE(3)

LINC(l)

CADDY(l)

CHRYS(l)

LINC(l,2,3)

CADDY(1,2,3)

CHRYS(1,2,3)

PRICE(l)

PRICE(2)

PRICE(3)

PORD(l)

MERC(l)

LINC(l)

P0RD(1,2,...,10); CHEV(l,2,.

PLY(1,2,...,10)

MERC(1,2,...,5); OLDS(l,2,..

DODQE(l,2,...,5)

LINC(1,2,3); CADDY(1,2,3);

CHRYS(1,2,3)

.,10 ! ;

,5);

45

All Fords, Chevs, Plys are members of the class

ECONOMY. This class has 30 members because the OBJECT

declaration specified FORD(lO), CHEV(IO), PLY(lO). There-

fore, the maximum subscript which may be used with each of

the object elements specified as members of a class Is

equal to the dimension specified In the OBJECT declaration.

Class MODERATE has 15 members; class PRESTIGE has nine mem-

bers.

Slnoe class PRICE Is composed of ECONOMY, MODERATE,

and PRESTIGE all the cars which are members of these three

classes are members of the class PRICE. Therefore, class

PRICE has 5^ members.

The class name may also be subscripted. The maxi-

mum subscript for a class name Is determined by the format

of the CLASS declaration. In the above example, the members

of the class were not preceded by EACH*. This signifies to

the MILITRAN compiler that the separate members of the class

are identical in some sense to the other members which have

the same name...I.e.: PORD(l) Is identical to F0RD(9);

D0DGE(2) is identical to D0DGE(4). Because they are Identi-

cal, a single representative from each name may be used to

represent the entire group. MILITRAN selects the first one.

Therefore, the maximum subscript which may be used with

a class name is a number equal to the number of representa-

tives In the class. Since class Economy has 3 representatives

46

FORD(l), CHEV(l), and PLY(l) the maximum subscript that may

be used with ECONOMY is 3. For example:

ECONOMY(l) is equivalent to FORD(l) which in turn

also represents FORD(2,3,...,10).

ECONOMY(2) is equivalent to CHEV(l) which in turn

also represents CHEV(2,3,...,10).

ECONOMY(3) is equivalent to PLY(l) which in turn

also represents PLY(2,3,..,,10).

The subscripts and the meaning of the subscripted

class name for the classes MODERATE and PRESTIGE are deter-

mined in the same manner as for the ECONOMY,

»
The declaration for class PRICE stated that it

oontains ECONOMY, MODERATE, and PRESTIGE, This declaration

means that all members of the CLASS ECONOMY are Identical in

some sense and the same is true for all members of the CLASS

MODERATE and all members of the CLASS PRESTIGE. MILITRAN

seleots 3 representatives for this class. For example:

PRICE(l) is equivalent to FORD(l) which in turn

represents F0RD(2,3,...,10), CHEV(l,2,...,10), PLY(l,2,...,10)

47

PRICE(2) is equivalent to MERC(l) which In turn

represents MERC(2,3,...,5), 0LDS(l,2,...,5), PLY(l,2,...,5).

PRICE(3) Is equivalent to LZNC(l) which In turn

represents LINC(2,3), CADDY(l,2,3), CHRYS(l,2,3).

The name of a member of a class may be preceded

by the functional modifier EACH*. It Is used In a CLASS

declaration to specify that the members of a set of object

elements are not Identical and therefore cannot be repre-

sented by a single member of the group.

Examples:

OBJECT PORD(IO), MERC(5), LINC(3), CHEV(lO), 0LDS(5),

CADDY(3), PLY(IO), D0DGE(5), CHRYS(3)

CLASS(ECONOMY) CONTAINS EACH*FORD,EACH*CHEV,EACH*PLY

CLASS(MODERATE) CONTAINS EACH*MERC,EACH*OLDS,EACH*DODGE

CLASS(PRESTIGE) CONTAINS EACH*LINC,EACH*CADDY,EACH*CHRYS

CLASS(PRICE)CONTAINS EACH*ECONOMY,EACH*MODERATE,EACH»PRESTIGE

The following table indicates the subscripts which

may be used with the object identifiers in the above class

declarations.

*8

CLASS NAME
- •

ECONOMY(l)

ECONOMY(2)

ECONOMY(10)

ECONOMY(11)

ECONOMY(12)

ECONOMY(20)

ECONOMY(21)

EX0N0MY(30)

REPRESENTATIVE

PORD(l)

FORD(2)
•

FORD(10)

CHEV(l)

CHEV(2)
•
*

CHEV(lO)

PLY(l)

PLY(10)

MEMBERS OF CLASS

F0RD(1,2,

PLY(1,2,,

,10); CHEVd^

10)

,10):

MODERATE(l)

MODERATE^)

MODERATE(6)

MODERATE(ll)

MODERATE(15)

MERC(l)

MERC(5)

OLDS(l)

DODGE(l)

D0DGE(5)

MERC(1,2,...,5); OLDS(l,2,...,5);

D0DGE(l,2,...,5)

PRESTIGE(l)
*

PRESTIGE(3)

PRESTIGE(h)

PRESTIGE(7)

PRESTIGE(9)

LINC(l)

LINC(3)

CADDY(l)

CHRYS(l)

CHRYS(3)

LINC(1,2,3); CADDY(1,2,3);

CHRYS(1,2,3)

49

CLASS NAME REPRESENTATIVE

PRICE(l) P0RD(1)

PRICE(2)
•

P0RD(2)
•

•

PRICE(ll)
•

CHEV(l)
•

•

PRICE(20) CHEV(lO)

PRICE(21)
•

PLY(l)
•

•

PRICE(30) PLY(10)

PRICE(31)
t

MERC(l)
•

PRICE(35) MERC(5)

PRICE(36)
•

OLDS(l)
•

PRICE(40) 0LDS(5)

PRICE(lU)
•

DODGE(l)
•

•

PRICE(45) D0DGE(5)

PRICE(46)
•

LINC(l)
•

PRICE(49)
•

CADDY(l)
•

•

PRICE(52)
•

4

CHRYS(l)
•

PRICE(54)
t

CHRYS(3)

MEMBERS OP CLASS

F0RD(l,2,...,10); CHEV(l,2,...,10);

PLY(l,2,...,lO)

MERC(l,2,...,5); 0LDS(l,2,...,5);

D0D0E(1,2,...,5)

LINC(1,2,3); CADDY(1,2,3);

CHRYS(1,2,3)

50

The rules governing the subscripting of the mem-

bers of the class sre the same as stated for the previous

example.

However, sinee the members of the olass are pre-

ceded by EACH* this signifies to the compiler that the

separate members of the class are not identloal to other

members which have the same name...i.e., FORD(l) is not

identloal to P0RD(6); CADDY(l) is not identical to CADDY(3).

Since they are not identical, a single representative from

each name cannot represent the entire group. Therefore,

when the name of class members are preceded by EACH*, the

maximum subscript that may be used with the class name Is a

number equal to the sum of the maximum subscripts of the

members of the olass. For example: the maximum subscript

for the class ECONOMY is 30 because the maximum subscript

for FORD Is 10, for CHEV 10, for PLY 10.

The subscripts and the meaning of the subscripted

class name for the classes MODERATE, PRESTIGE and PRICE are

determined in the same manner as for the olass ECONOMY.

The next two examples show how a olass may be com-

posed of objeot elements, which may or may not be preceded

by EACH*.

51

OBJECT PORD(IO), MERC(5), LINC(3), CHEV(lO), OLDS(5),

CADDY(3), PLY(IO), DODOE(5), CHRYS(3)

CLASS(CAR) CONTAINS EACH»PORD, MERC, LINC, EACH»CHEV

OLDS, CADDY, EACH*PLY, DODOE, CHRYS

CLASS NAME

CAR(l)

CAR(2)

REPRESENTATIVE

PORD(l)

FORD(2)

CAR(10) PORD(IO)

CAR(11) MERC(l)

CAR(12) LINC(l)

CAR(13) CHEV(l)

CAR(14)
•

CHEV(2)
•

CAR(22) CHEV(IO)

CAR(23) OLDS(l)

CAR(24) CADDY(l)

CAR(25) PLY(l)

CAR(26)
•

PLY(2)
•

CAR(34) PLY(IO)

CAR(35) DODOE(l)

CAR(36) CHRYS(l)

MEMBERS OP CLASS

P0RD(1,2,...,10);MERC(1,2,...5);

LINC(1,2,3)

CHEV(l,2,..#J10)jOLDS(l,2,...,5);

CADDY(1,2,3)

PLY(1,2,...,10);D0D0E(1,2,...,5);

CHRYS(1,2,3)

52

OBJECT MERC (5), CADDY(3), DODGE(5), CHRYS(3)

CLASS(MODERATE) CONTAINS MERC, DODGE

CLASS(PRESTIOE) CONTAINS EACH*CADDY, EACH*CHRYS

CLASS(CAR) CONTAINS EACH*MODERATE, PRESTIOE

CLASS NAME REPRESENTATIVE

MODERATE(1) MERC(l)

MODERATE(2) DODGE (1)

PRESTIOE (1) CADDY(1)

PRESTIOE (2) CADDY(2)

PRESTIOE (3) CADDY(3)

PRESTIOE (A) CHRYS(l)

PRESTIOE (5) CHRYS(2)

PRESTIGE (6) CHRYS(3)

CAR(l) MERC(l)

CAR(2) DODGE(1)

CAR(3) CADDY (1)

MEMBERS OP CLASS

MERC(1,2,...,5);D0D0E(1,2,...,5)

CADDY(l,2,3)jCHRYS(l,2,3)

MERC(1,2,...,5);D0D0E(1,2,...,5)

CADDY(l,2,3)jCHRYS(l,2,3)

53

3. NORMAL MODE Declaration

In the discussion of the different elements

which may comprise a program environment, we have seen

that these elements may be described as having modes:

real, Integer, logical or program object. If the element

Is a variable, the mode may be specified In a REAL, INTEGER,

LOGICAL or PROGRAM OBJECT statement. Another method of

declaring the mode of variables Is through the use of the

NORMAL MODE declaration. This declaration allows the pro-

grammer to specify a convention by which names not explicitly

declared may be assigned modes. Although the NORMAL MODE

declaration is used to set the mode of variables instead

of the regular declarations of REAL, INTEGER etc., a

declaration of NORMAL MODE does not override a specific

declaration of mode.

NORMAL MODE is declared as follows:

NORMAL MODE m1(a1,a2,...,ak),m2(b1,b2,..,,br)

where m, and m„ are mode names (REAL, INTEGER etc.) and

al'a2''• **ak and ^I'^o* •••*lDr are 8ln8le alphabetic characters

The statement causes all names beginning with the letters

a,,ap,...,a. to be assigned the mode specified by m, and all

names beginning with the letters b1,b2,...,b to be assigned

54

the mode specified by nig. Any letters whloh have not been

apeelflcally associated with a mode name will be assigned

to REAL NODE.

Examples:

NORMAL MODE REAL(A,B,C,D,E,P,0,H,I,J,K),

INTEQER(L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z)

Names of variables beginning with the letters A

through K are assigned REAL MODE: names beginning with L

through Z are assigned INTEGER MODE.

NORMAL MODE REAL(A,B,C,D,E), INTEGER(F,Q,H,I,j)

LOGICAL(L,M,N,OtP),PROGRAM OBJECT(Q,R,S,T,U,V,W,X,Y.Z

Names beginning with A through E are assigned

REAL MODE: names beginning with P through J are assigned

INTEGER MODE; names beginning with L through P are assigned

LOGICAL MODE, and those beginning with Q through Z are as-

signed PROGRAM OBJECT MODE.

NORMAL MODE INTEGER(A,B,C,D), LOGICAL(EtF,G,H)

Names beginning with A through D are assigned

INTEGER MODE and those beginning with E through H are

55

assigned LOGICAL MODE. Since I through Z are not specifi-

cally associated with a mode, all names beginning with

these letters would be assigned to REAL MODE.

If the NORMAL MODE statement Is written as:

NORMAL MODE m1(a1,a2,...,ak),m2(b1,b2,...,br),m3

all the names beginning with letters not specifically

associated with m,, or nu would be assigned to the mode

specified by nu.

Examples:

NORMAL MODE REAL(A,B,C), INTEOER(DfE,P,O), PROGRAM OBJECT

Names beginning with A, B, and C are assigned

REAL MODE and those beginning with D through G are assigned

INTEGER MODE, Since PROGRAM OBJECT does not have any letters

specifically associated with it, all unspecified letters (H

through Z) are assigned PROGRAM OBJECT MODE.

If the statement is written as:

NORMAL MODE INTEGER

or

NORMAL MODE PROGRAM OBJECT

56

every letter would be assigned to the mode specified In the

NORMAL MODE statement,

Eaoh NORMAL MODE statement sets the mode for

names beginning with the specified letters until overrlden

by a subsequent NORMAL MODE statement. If an unspecified

variable Is declared (one which Is not preceded by a mode

description) before a NORMAL MODE statement Is given, the

MILITRAN compiler will assign the mode REAL to the unspeci-

fied element.

4. Vectors

The MILITRAN program environment may also be

comprised of elements of Information In the form of vectors,

a vector being a group of arrays.

The vector declaration Is written as:

VECTOR N((a1,a2,.».,a1)J d1,d2,...,d1)

where N Is the name of a vector; a.,a2,...,a, are the vector

components, each of which Is a name and all of which are

associated with name "N"; and d.,d2,...,d. are the dimensions

associated with each component.

Retrieval of any member of the vector may be

accomplished in the following manner:

57

1. by subscripting the name of the vector compo-

nent (array), In which case the number of subscripts Is

equal to the number of arguments In the dimension.

2. by subscripting the name of the vector, In

which ease the number of subscripts Is equal to the number

of arguments In the dimension + 1. The terminating sub-

script denotes the vector component. For example:

VECTOR Q((QR,QS,QT),4,5)

defines a vector "Q" comprised of three components, OR, OS,

QT, each of which Is a two dimensional array for which 20

storage locations will be reserved, resulting In a total

storage allocation of 60 for the vector. The assignment of

storage Is such that all of QR Is followed by all of QS,

which Is followed by all of QT.

Suppose It Is desired to retrieve the twentieth

element In the vector. If the name of the vector component

Is subscripted. It would be written as:

QR(^5)

If the name of the vector Itself Is subscripted, It would

be written as:

Q(4,5,D

58

(The third subscript "l" indicates the first component "QR".)

Similarly, Q(4,2,3) refers to the same element as QT(4,2).

Modes of Vectors

Both the vector name and the component names always

have a mode but there is no requirement that these modes be

the same or that they be compatible. The mode or modes of a

vector and its components may be declared in REAL, INTEGER,

PROGRAM OBJECT and LOGICAL declarations, or they may be as-

signed the NORMAL MODE. However, if the mode of the vector is

not compatible with the mode or modes of the components, the

compiler will always assume that the data involved is already

as of the same mode of the name that is used. The following

rules determine the mode that will be assigned to a vector and

its component arrays.

1. If both the name of the vector and its compo-

nents are each specifically declared in REAL, INTEGER, PROGRAM

OBJECT, or LOGICAL declarations, the vector and the components

of the vector are each assigned the mode specified by the

declaration.

Examples

REAL A

INTEGER B,C

PROGRAM OBJECT D

LOGICAL E

VECTOR A((B,C,D,E),2,3)

59

INTEGER A

REAL B,C,D,E

VECTOR A(B,C,D,E),2,3)

REAL A,B

INTEGER C,D

PROGRAM OBJECT E

VECTOR A((B,C,D,E),2,3)

In the above examples, the modes of the vector "A"

and Its components "B,C,D,E" are those so designated by the

mode declarations.

2. If the name of the vector Is not specifically

declared but the component names are each specifically

declared In REAL, INTEGER, PROGRAM OBJECT, or LOGICAL

declarations, the vector name Is assigned the NORMAL MODE

In effect at the appearance of the VECTOR statement, and

the component names are assigned the mode specifically de-

clared for each component.

Example:

INTEGER B,C

PROGRAM OBJECT D

LOGICAL E

VECTOR A((B,C,D,E),2,3)

60

The mode of veotor "A" is the NORMAL MODE in

effeet at the time the vector statement is encountered by

the compiler. The mode could be REAL, INTEGER, PROGRAM

OBJECT, or LOGICAL.

3. If the name of the vector is specifically

declared and the names of the components are not specifi-

cally deolared, the components are assigned the same mode

as declared for the vector name Itself.

Example:

REAL A

VECTOR A((B,C,D,E),2,3)

Components "B,C,D,E" are assigned the REAL mode

INTEGER A

PROGRAM OBJECT D,E

VECTOR A((B,C,D,E),2,3)

Components B,C are assigned INTEGER mode. D,E

are assigned PROGRAM OBJECT mode.

4. If both the name of the vector and the names

of its components are not specifically deolared, the vector

and its components are assigned the NORMAL mode In effect

at the appearance of the vector statement.

61

Example:

VECTOR A((B,C,D,E),2,3)

"A" and "B,C,D,E" are all assigned the NORMAL mode.

NOTE: In all of the above examples, the mode of the vector

and its components could have been declared after the

appearance of the VECTOR statement. A specific decla-

ration anywhere In the program overrides NORMAL MODE.

5. COMMON Statement

The COMMON statement provides the programmer with

the option of controlling the assignment of the locations

which will be occupied by variable data. The form of the

COMMON statement is:

COMMON n1,n2,...,n±

where each n Is the name of a variable, nonsubscripted array

name, nonsubscripted vector name, or nonsubscripted list

name.

Variable names which appear in a COMMON statement

are assigned to a separate portion of memory, enabling a

program and its subprograms to share storage locations. For

example, during execution of a MILITRAN program, while dif-

ferent variable data may be required at different times by

62

separately compiled portions of the program. It may not be

necessary for all such data to occupy distinct storage lo-

cations. The COMMON statement enables such variable data

to share storage locations, resulting In a large saving of

storage space.

The locations assigned to the variable names

appearing In COMMON statements are assigned In the sequence

In which the names appear In the statements, starting with

the first COMMON statement of the program.

Use of the COMMON statement also permits the data

stored In the COMMON area to be accessed by programs which

have been compiled separately. In this way, arguments which

are required for functions or subroutines may be transmitted

from one program to another. This may be accomplished by

having the corresponding variables occupy the same location

In the COMMON area, which in turn Is accomplished by having

them occupy corresponding positions in the COMMON statements

of the two programs.

For example, if a program has the following COMXON

statements:

COMMON A,B,C,D

COMMON SPEED, DIST, RATE

the variables will appear In the COMMON area in the following

sequence:

63

A

B

C

D

SPEED

DIST

RATE

If another program required only the use of vari-

ables B,cf SPEED, and RATE, dummy variables eould be named

In the COMMON statements of the second program In order to

force reservation of the necessary locations to cause the

same locations to be assigned to the corresponding variables.

NOTE: If an array, veotor, or list Is assigned to the COMMON

area, the name as It appears In the COMMON statement

Is nonsubscrlpted. The amount of space to be reserved

Is determined by the dimension that has been stated In

the array, vector, or list declaration.

6. Object Elements used as Dimensions and Subscripts

The discussion of the use of nonnumerlo elements as

dimensions and subscripts has been deferred In order to per-

mit a sequential explanation of the various types of decla-

rations. However, each of the srrsy end vector declsratlons

64

may be dimensioned or subscripted by an object element.

Objeot Elements used to Speelfy Dimensions

In order to specify the dimension of an array or

vector by using an object element, the object must be de-

clared in:

1, An OBJECT declaration, or

2. A CLASS declaration

The value of the dimension will be the cardinality of the

object.

Por example, if objeot elements are declared as

follows:

OBJECT PORD(lO), MERC(5), LINC(3)

the dimensions of an array could be specified as:

REAL SPEED (FORD, MERC, LINC)

SPEED is a three dimensional array for which 150

looatlons will be reserved because the value of each dimen-

sion is specified by the cardinality of the designated

objeot.

65

The next three examples use a CLASS name to

specify a dimension.

OBJECT FORD(IO), MERC(5), LINC(3), CHEV(lO), 0LDS(5),

CADDY(3), PLY(IO), DODOE(5), CHRYS(3)

CLASS ECONOMY CONTAINS FORD, CHEV, PLY

CLASS MODERATE CONTAINS EACH*MERC, EACH*OLDS, EACH*DODOE

CLASS PRESTIGE CONTAINS EACH»LINC, EACH»CADDY, CHRYS

REAL SPEED (ECONOMY)

Speed is now a one dimensional array for which 3

locations will be reserved.

REAL SPEED (MODERATE)

Speed is a one dimensional array for which 15

locations will be reserved.

REAL SPEED (PRESTIGE)

Speed is a one dimensional array for which 7

locations will be reserved.

66

Object El entente used as Subsorlpts

Subscripted OBJECT names, subscripted CLASS names,

and PROGRAM OBJECT names which may or may not be subscripted

may be used to subscript REAL, INTEGER, LOGICAL, and PROGRAM

OBJECT elements. For example, if certain elements are de-

clared as follows:

OBJECT PORD(IO), MERC(5), LINC(3), CHEV(lO), OLDS(5),

CADDY(3), PLY(IO), DODGE(5), CHRYS(3)

CLASS ECONOMY CONTAINS FORD, CHEV, PLY

CLASS MODERATE CONTAINS EACH»MERC, EACH»OLDS, EACH»DODGE

CLASS PRESTIGE CONTAINS EACH»LINC, EACH*CADDY, CHRYS

PROGRAM OBJECT THIS CAR, POOL CAR(3)

CLASS CAR CONTAINS EACH*ECONOMY, EACH*MODERATE, EACH»PRESTIGE

REAL COST (CAR)

INTEGER AGE (CAR)

the following are some of the object elements which might be

used as subsorlpts:

67

COST (FORD(3))

COST (MERC(4))

COST (CAR(IO))

COST (THIS CAR)

COST (POOL CAR(2))

which is COST (1)

whioh is COST (7)

which is COST (10)

whose value depends

upon that of "THIS CAR"

whose value depends

upon that of POOL CAR(2)

68

CHAPTER IV

PROQRAMMINQ IN MILITRAN:

ARITHMETIC AND LOGICAL PROCESSING

The preceding chapters discussed the elements

of Information which comprise a program environment

the data which are referenced by the program In order to

solve a problem and the Instructions to the compiler

which provide Information about the source program. This

chapter will explain some of the statements which cause

calculations to occur and decisions to be made.

1. Expressions

A MILITRAN expression Is a sequence of constants,

subscripted and non-subscripted variables separated by

operation symbolsf commas, and parentheses. The MILITRAN

language contains two kinds of expressions: arithmetic

and logical.

The simplest form of an arithmetic expression

Is a single quantity. This quantity may be an arithmetic

constant or an arithmetic variable - subscripted or non-

subscripted.

69

Examples:

3

7.4

MAX

TIME(2)

>

Compound arithmetic expresslone may be formed

by combining simple arithmetic expressions through the

use of arithmetic operators. These operators are:

ABS(x) absolute value of x

.P. exponentiation

» multiplication

/ division

+ addition

subtraction

If A and B are any arithmetic expression, then

these operators are defined In the following manner:

ABS(A) means the positive magnitude of A B
A.P.B means the value of A raised to the power B.(A)
A*B means the value of A multiplied by the value of B
A/B means the value of A divided by the value of B
A+B means the value of A plus the value of B
A-B means the value of A minus the value of B

70

For Example:

ABS(MINIMUM)

3.6 .P.I

RATE •(• TIME

DIST(I)/TIME(J)

ALPHA -I- BETA

ALPHA - BETA

In expressIons with three or more variables,

some means for describing the exact order In which the

operations are to be performed is necessary. For example,

the expression:

X + Y * Z

may be computed in two ways. One way is to add X and Y

and multiply the sum by Z. The other is to multiply Y

by Z and add X to the produot. Therefore In order to

clarify the order of operations, MILITRAN prescribes a

firm set of rules. The order of precedence is as follows:

ABS(x)

.P.

/

*

71

In the example, X + Y * Z, MILITRAN would

multiply Y by Z and add X to the produot.

The following examples Illustrate the ordering

of expressions:

2.P.3-4 gives 4 exponentiation Is per-

formed before addition

or subtraction.

2.P.3/2 gives 4 exponentiation is per-

formed before multi-

plication or addition.

3+7*2 gives 17 multiplication Is per-

formed before addition

or subtraction.

In the next example , if A has assumed a value

of - 2 the use of the operator ABS would cause MILITRAN

to evaluate A and plaoe Its new value In the expression

which would then be evaluated according to the rules

defined above.

4 + 6 * ABS(A) gives 16 the absolute value of

A Is 2 which Is then

multiplied by 6.

When 4 Is added to

the resulting pro-

duct, a value of 16

Is obtained.
72

When two or more operations are to be computed,

the ordering rules may considerably alter the result. For

example:

20/4*5 gives 25

If it were intended that the multiplication occur first,

the expression should be written as:

20/(4*5) gives 1

The above example illustrates the method used

to override the order of operations. Parentheses are

used to specify the order of operations in an expression

Examples:

2+4*3-6/2 gives 11 as a result,

whereas

((2 + 4) * 3 - 6) /2 gives 6,

The expression

A + B * CA> + E.P.F - Q

will be taken to mean

A + £* B + E
P -

73

Using parentheses, the expression could be

written,

(A + B) • C/D + E.P.P - 0

which would be taken to mean

(A + B) * § + E* -

Expressions with repeated exponentiation must

have clarifying parentheses. For example:

(2,P.2).P,3 gives 64

2.P.(2.P.3) gives 256

Arithmetic expressions may be of a single mode

or a combination of real and Integer modes. However, If

the elements comprising an expression are of mixed modes,

the appearance of a real variable or a real constant with a

fractional part causes the entire expression to be evalu-

ated In the real mode. For example:

3.2/2 gives 1.6

because the divisor 2 is first evaluated as a real number.

If a real constant or real variable is used as

a subscript or an argument of a dimension, the real quan-

tity will be truncated to an Integer value before use.

For example, If I assumes the value 7.4 and Is later used

74

as a subscript In an expression as In

A + B + B(I)

I would be truncated to 7 before the evaluation of the

expression.

Logical Expressions

A logical expression consists of certain se-

quences of logical constants, logical variables, arithmetic

expressions, and object elements separated by logical

operators or relational operators. A logical expression

always has the value TRUE or FALSE. The simplest form of

a logical expression Is a single quantity - a logical con-

stant or logical variable (subscripted or non-subscripted).

Examples:

TRUE

FALSE

PLANE(2) (where PLANE has been defined as

a LOGICAL array)

Compound logical expressions may be formed by

combining simple logical expressions through the use of

logical operators. Logical operators may operate only

on logical expressions. They are listed below In de-

creasing order of precedence:

75

.NOT. Negation

.AND, Conjunction

.EXOR. Exclusive disjunction

.OR. Disjunction

.EQV. Equivalence

The periods are part of the logical operator

notation and must be present.

If A and B are any logical expressions, then

the logical operators are defined in the following manner:

.NOT.A has the value TRUE only if A is

FALSE; it has the value FALSE

only if A is TRUE.

A.AND.B has the value TRUE only if both A

and B have the value TRUE; other-

wise It has the value FALSE.

A.OR.B has the value TRUE if either A

or B is TRUE; it has the value

FALSE only if both A and B are

FALSE.

A.EXOR.B has the value TRUE if either A is

TRUE and B is FALSE or A is FALSE

and B is TRUE; it has the value

FALSE only if both A and B are TRUE

or if both A and B are FALSE.

76

A.EQV.B has the value TRUE either If both

A and B have the value TRUE or If

both A and B have the value FALSE;

otherwise It has the value FALSE.

The logical operator .NOT. must be Immediately

followed by a logical expression. The other logical

operators must be preceded and followed by logical ex-

pressions to form compound logical expressions.

Examples:

.NOT.TRUE

.NOT.FALSE

TRUE.AND.FALSE

TRUE.OR.FALSE

PLANE1.0R.PLANE2

FALSE.EXOR.TRUE

TRUE.EXOR.TRUE

always has the value FALSE

always has the value TRUE

always has the value FALSE

always has the value TRUE

may have the value TRUE or FALSE

depending on the values of the

logical variables PLANE1 and PLANE2

always has the value TRUE

always has the value FALSE

SWITCH1.EX0R.SWITCH2 may have the value TRUE or FALSE

depending on the values of the

logical variables SWITCH1 and

SWITCH2

77

SWITCH1.EQV.SWITCH2 the logical variables SWITCH1

and SWITCH2 must have the same

value for the statement to be

TRUE

The above examples are logical expressions which

have only one logical operator. The following examples

Illustrate the use of several logical operators In compound

expressions and the use of parentheses for the purpose of

overriding the hierarchy of operations.

The logical expression:

.NOT . TRUE . AND . FALSE

has the value FALSE becsuse .NOT, operates only on the

logical constant, variable, or expression Immediately to

the right. However, If the expression Is written as

.NOT. (TRUE.AND.FALSE)

It would have a value of TRUE, because the expression

(TRUE.AND.FALSE) would be evaluated first.

In the next example:

(X.AND..NOT.Y) .OR. (.NOT.X.AND.Y)

the expression would have a value of TRUE If X is TRUE and

Y Is FALSE or If X la FALSE and Y Is TRUE. It could only

have a value of FALSE If both X and Y are TRUE If both

X and Y are FALSE.

78

Relational Expresslong

MILITRAN provides a further extension to the

set of logical operators In order to permit the formation

of compound logical expressions. This second group of

operators Is called relational operators. One set of re-

lational operators acts on arithmetic elements, the other

set acts on object elements.

An arithmetic relational expression consists of

two arithmetic expressions, separated by an arithmetic

relational operator. An arithmetic relational expression

always has the value TRUE or FALSE.

The arithmetic relational operators are:

.E. equal to

.NE. not equal to

,0. greater than

.GE. greater than or equal to

.L. less than

.LE. less than or equal to

The periods are part of the arithmetic relational

operator notation and must be present.

79

If A and B are any two arithmetic expressions,

then the arithmetic relational operators are defined as

follows:

A.E.B has the value TRUE only If the value of A is

equal to the value of B; otherwise It has the

value FALSE.

A.NE.B has the value TRUE only if the value of A is

not equal to the value of B; otherwise it has

the value FALSE.

A.O.B has the value TRUE only if the value of A is

greater than the value of B; otherwise it has

the value FALSE.

A.OE.B has the value TRUE only If the value of A is

greater than or equal to the value of B; other-

wise It has the value FALSE.

A.L.B has the value TRUE only If the value of A is

less than the value of B; otherwise It has the

value FALSE.

A.LE.B has the value TRUE only if the value of A is less

than or equal to the value of B; otherwise it

has the value FALSE.

The two arithmetic expressions In a relational

expression may be of the same mode or one may be real and

80

the other Integer. In the latter case, the Integer ex-

pression will be evaluated and the result converted to

a real number before It Is compared to the second ex-

pression. Por example. If A and B are Integer variables

and C and D are real variables In the relational expression

(A + B) .LE. (C/fc)

A would be added to B, C would be divided by D and the

sum of A + B would be converted to a floating point number

before It Is compared to the result of the division.

27 NOTE: Integer numbers greater than 2 -1 cannot be accu-

rately converted to floating point numbers. Therefore,

care should be exercised In the construction of relational

expressions of mixed modes.

Examples:

In the following examples, A and B are Integer

variables and C and D are real variables.

A.E.2 this expression has the value

TRUE only If the integer var-

« iable A is equal to 2.

D.NE.6.9 this expression has the value

TRUE only If the real varia-

ble D is not equal to 6.9

B.GE.(C+6.2)»(D/3) this expression has the value

81

TRUE only if the variable

B la greater or equal to

the value of the expression

(C+6,2)»(D/3.), In accord-

ance with the rule that the

appearance of any floating

point element causes the

entire expression to be

evaluated In the floating

point mode, the following

sequence of events would

occur before the comparison

Is effected.

1. the real variable C Is

added to the real constant

6.2.

2. the Integer constant 3

Is floated before It Is used

as the divisor In (D/3).

3. the two floating point

results are multiplied.

4. since the final product

Is a floating point number,

the Integer variable B is

converted to a real number

before the comparison is

effected.

82

An object relational expression consists of two

single object elements separated by an objeot relational

operator. An object relational expression always has the

value TRUE or FALSE.

Object relational operators may operate only on

object elements. The object relational operators are:

.IN. Inclusion

.IS. equivalence

The periods are part of the object relational

operator notation and must be present.

The general form of an object relational ex-

pression which uses the object relational operator .IN. is

A.IN.B

where A Is a single object element and Is declared as

follows:

1. In a PROGRAM OBJECT declaration. If the

PROGRAM OBJECT declaration refers to a

single variable, A Is not subscripted;

but If the declaration specifies an array,

then A must be subscripted.

83

2. In an OBJECT declaration A muat be sub-

orlpted because an OBJECT declaration

always specifies a group of elements.

3. In a CLASS declaration where A Is a

member or the name of a class, A must

be subscripted because It represents one

object within the class.

and B Is the name of a group of object elements, and

therefore Is never subscripted. B Is declared as follows:

1. In an OBJECT declaration

2. In a CLASS declaration where B is the

name of a class.

If A and B are any object elements and have been

declared In accordance with the rules stated above, then

A.IN.B Is TRUE:

1. if A is a subscripted object element

(e.g.MERC(4)) or a PROGRAM OBJECT that

takes on the value of the object element,

and B is the name of the object set of

which A is a member.

Example:

OBJECT MERC(10)

MERC(4).IN.MERC

has the value TRUE because MERC(4) Is a

subscripted object element that is a member

of the object set MERC.

84

2. If A 18 a subscripted object element (e.g.

MERC(4)) or a PROGRAM OBJECT that takes on

the value of the object element and B Is a

class which contains the object set (preceded

or not preceded by EACH*) of which A Is a

member.

Example:

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS MERC
or

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS EACH* MERC

MERC(4).IN.MODERATE

has the value TRUE because MERC(4) is a

subscripted object element that Is a member

of the class MODERATE.

3. If A Is a subscripted object element (e.g.

MERC(4)) or a PROGRAM OBJECT that takes on

the value of the object element and B Is a

class which contains a class (preceded or

not preceded by EACH*) which In turn contains

the object set of which A (preceded or not

preceded by EACH*) Is a member.

Example:

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS EACH*MERC

85

CLASS (PRICE) CONTAINS EACH# MODERATE
or

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS EACH*MERC

CLASS (PRICE) CONTAINS MODERATE
or

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS MERC

CLASS (PRICE) CONTAINS EACH* MODERATE
or

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS MERC

CLASS (PRICE) CONTAINS MODERATE

MERC {k) .IN.PRICE

has the value TRUE because MERC(4) Is a

subscripted object element that Is a

member of the class MODERATE which in

turn Is a member of the class PRICE.

4. If A Is a subscripted class element or

a PROGRAM OBJECT that takes on Its value,

A must be traced back to a subscripted

object element in order to determine whether

A.IN.B is TRUE as shown in the examples

given above.

Examples:

The OBJECT and CLASS declarations which are

used to illustrate the evaluation of .IN. expressions

86

In the following examples are Identical to the ones used

in the section on classes, In order to permit reference

to the table of subscripts.

OBJECT FORD(10),MERC(5),LINC(3),CHEV(lO)fOLDS(5),

CADDY(3),PLY(10),D0DQE(5),CHRYS(3)

CLASS(ECONOMY)CONTAINS FORD,CHEV,PLY

CLASS(MODERATE)CONTAINS MERC,OLDS,DODQE

CLASS(PRESTIQE)CONTAINS LINC,CADDY,CHRYS

CLASS(PRICE)CONTAINS ECONOMY,MODERATE,PRESTIOE

CHEV(2) .IN. CHEV

CHEV(IO) .IN. FORD

DODGE(2) .IN. FORD

PLY(10) .IN. ECONOMY

ECONOMY(3) .IN. PLY

OLDS(4) .IN. MODERATE

D0DQE(5) .IN. PRESTIOE

CADDY(3) .IN. PRICE

PRICE(2) .IN. MODERATE

PRICE(3) .IN. MODERATE

OLDS(4) .IN. PRICE

PRICE(l) .IN. PRESTIOE

PRESTIOE(l) .IN. PRICE

has the value TRUE

has the value FALSE

has the value FALSE

has the value TRUE

has the value TRUE

has the value TRUE

has the value FALSE

has the value TRUE

has the value TRUE

has the value FALSE

has the value TRUE

has the value FALSE

ha8 the value TRUE

(because PRESTIGE(l) is

equivalent to LINC(l))

87

EC0N0MY(3) .IN. CHEV has the value FALSE

Tracing EC0N0MY(3) back,Its representative Is

a subscripted objeot element, PLY(l). According to the

rules stated above, PLY(l). IN. CHEV Is FALSE.

PRICE(2) .IN. MERC has the value TRUE

Tracing PRICE(2) back It Is repre-

sented by MERC(l), and MERC(l) .IN. MERC Is TRUE.

MERC(3) .IN. MERC has the value TRUE

MERC(3) Is a subscripted object element which

Is a member of the object set MERC.

MODERATE^) .IN. PRICE has the value FALSE

Slnoe class MODERATE has three representatives,

MERC(i), OLDS(l), and DODOE(l), the maximum subscript

that may be used with MODERATE Is (3).

88

OBJECT PORD(lO),MERC(5),LINC(3),CHEV(10),OLDS(5),

CADDY(3),PLY(10),D0D0E(5),CHRYS(3)

CLASS(ECONOMY) CONTAINS EACH*FORD,EACH»CHEV,EACH*PLY

CLASS(MODERATE) CONTAINS EACH*MERC,EACH*OLDS,EACH»DODGE

CLASS(PRESTIGE) CONTAINS EACH»LINC,EACH#CADDY,EACH*CHRYS

CLASS(PRICE) CONTAINS EACH*ECONOMY,EACH»MODERATE,EACH»PRESTIGE

CHEV(7) .IN. ECONOMY

PLY(2) .IN. PRICE

OLDS(3) .IN. PRESTIGE

MODERATE(15).IN. DODGE

PRESTIGE(4) .IN. LINC

PRICE(36) .IN. OLDS

PRICE(49) .IN. FORD

PRICE (50) .IN. CHRYS

PRESTIGE(l) .IN. PRICE

has the value TRUE

has the value TRUE

has the value FALSE

has the value TRUE

has the value FALSE

has the value TRUE

has the value FALSE

has the value FALSE

has the value TRUE

because PRESTIGE(l)

is equivalent to LINC(l))

OBJECT F0RD(10),MERC(5),LINC(3),CHEV(10),0LDS(5),

CADDY(3),PLY(10),D0DGE(5),CHRYS(3)

CLASS (CAR) CONTAINS EACH*FORD,MERC,LINC,EACH*CHEV,

OLDS,CADDY,EACH»PLY,DODGE,CHRYS

has the value TRUE CADDY(3) .IN. CAR

OLDS(5) .IN. CAR

CAR(l6) .IN. CHEV

CAR(25) .IN. OLDS

CAR(34) .IN. DODGE

has the value TRUE

has the value TRUE

has the value FALSE

has the value FALSE

89

OBJECT MERC(5),CADDY(3),DODOE(5),CHRYS(3)

CLASS (MODERATE) CONTAINS MERC,DODOE

CLASS (PRESTIOE) CONTAINS EACH»CADDY,EACH*CHRYS

CLASS (CAR) CONTAINS EACH»MODERATE,PRESTIOE

MERC(4) .IN. MODERATE has the value TRUE

CHRYS(3) .IN. CAR has the value TRUE

PRESTIOE(2).IN. CHRYS has the value FALSE

PRESTIGE(6) .IN. CHRYS has the value TRUE

MODERATE(l) .IN. DODGE has the value FALSE

CAR(2) .IN. DODOE has the value TRUE

CAR(3) .IN. CHRYS has the value FALSE

The general form of an object relational ex-

pression which uses the object relational operator .IS.

Is:

A.IS.B

where A and B are Individual object elements and are

deolared as follows:

1. In a PROGRAM OBJECT declaration. If

the PROGRAM OBJECT declaration refers to a

single variable, the single variable (A or B)

Is not subscripted! but If the declaration

specifies an array, A and B must be subscripted.

90

2, In an OBJECT declaration A or B must

be subscripted.

3. In a CLASS declaration where A or B

are members of a class and therefore must

be subscripted.

If A and B are any object elements and have

been declared In accordance with the rules stated above,

.IS. Is defined as follows:

A.IS.B has the value TRUE

only If object ele-

ment A Is Identical

to object element B;

otherwise It has the

value FALSE

Examples:

OBJECT F0RD(10),MERC(5),LINC(3),CHEV(10),0LDS(5),

CADDY(3).PLY(lO),DODOE(5),CHRYS(3)

CLASS(ECONOMY)CONTAINS FORD,CHEV,PLY

CLASS(MODERATE) CONTAINS MERC,OLDS,DODGE

CLASS(PRESTIGE) CONTAINS LINC,CADDY,CHRYS

CLASS(PBICE) CONTAINS ECONOMY,MODERATE,PRESTIGE

FORD(l).IS. ECONOMY(l) has the value TRUE

91

PRICE(l) .IS, PORD(l) has the value TRUE

DODOE(4) .IS. M0DERATE(3) has the value FALSE

DODOE(l) .IS, MODERATE(3) has the value TRUE

LINC(l) .IS. PRICE(3) has the value TRUE

CHEV(l) .IS. PRICE(I) has the value FALSE

OBJECT MERC(5),CADDY(3),DODOE(5),CHRYS(3)

CLASS(MODERATE) CONTAINS MERC,DODOE

CLASS(PRESTIQE)CONTAINS EACH*CADDY,EACH»CHRYS

CLASS(CAR) CONTAINS EACH*MODERATE,PRESTIOE

DODQE(l) .IS, MODERATE(2) has the value TRUE

CHRYS(3) .IS. PRESTIOE(6) has the value TRUE

MERC(l) .IS. CAR(l) has the value TRUE

CADDY(3) .IS. CAR(3) . has the value FALSE

CAR(l) .IS. MERC(2) has the value FALSE

CAR(l) .IS. MERC(l) has the value TRUE

2. Arithmetic Statements

The arithmetic statement defines a numerical

calculation. Its general form is

A - B

where A is a real or integer variable, subscripted or not

subscripted, and B is an arithmetic expression. The

arithmetic statement has two functions. First, it causes

the computation of the expression to the right of the

equals symbol and second, it causes the value of the var-

iable to the left of the equals symbol to be replaced by

92

the result of the calculation.

In MILITRAN, the expression to the right of the

equals symbol Is converted, after It has been evaluated,

to the mode of the variable to the left of the equals

symbol with the following exception:

When the expression to the right of the equals

symbol Is a single subscripted variable which denotes a

member of a vector whose retrieval form Is that of the

vector rather than the component name, the expression Is

not converted to the mode of the variable to the left

of the equals symbol. The value Is stored without being

converted.

Examples:

In the following examples, A and B are Integer

variables, C and D are real variables, E Is the name of a

vector whose mode is real and whose component arrays are

also all of real mode.

A • B replace A with the current value of B.

A - C truncate C to an integer, convert it to an

integer constant and replace the value of A

with the value of C.

93

D - B convert B to a real number and replace D

with the value of B.

B - A*(c/2) the appearance of the real variable C

causes the A and 2 to be converted

to real numbers before the value of the

expression Is oomputed. The result Is then

oonverted to Integer mode and replaces the

previous value of B.

B - 3.V6.* after this arithmetic statement has been

executed, B will have a value of 0.

A - E(5,B) replace A with the current value of E(5,B).

Do not convert the value which is a real

number to an integer.

3. Logical Statements

The logical statement defines a logical calcula-

tion. Its form is:

A - B

were A is a logical variable, subscripted or not sub-

orlpted and B is a logical expression. The logical

statement computes the value of the logical expression

(either TRUE or FALSE) to the right of the equal symbol

94

and replaces the previous value of the logical variable to

the left of the equal symbol.

Examples:

A - TRUE store the logical constant TRUE In A

B - .NOT.C If C Is TRUE store the value FALSE

In B; If C Is FALSE store the value

TRUE In B.

L - X.AND.Y If both X and Y are TRUE, L will

assume the value TRUE; If either

or both X and Y are FALSE, then

L will assume the value FALSE.

L - .NOT.(X.AND.Y) both X and Y must be TRUE In

order for L to assume the value

FALSE.

P - (X.Q.Y).OR.B If the numerical value of X

Is greater than the numerical

value of Y or B Is TRUE, then

P assumes the value TRUE. P

assumes a value of FALSE only If

the numerical value of X Is less

than the value of Y, and B Is

FALSE.

95

H - (A.E.D).EXOR.(P.IN.Q) If the numerical value of A

ia equal to the numerical

value of D and P is not a

member of set 0, then H will

assume a value of TRUE; If the

numerical value of A Is not

equal to the numerical value

of D and P Is a member of

set Oj then H will also assume

a value of TRUE, Otherwise,

H assumes a value of FALSE,

96

CHAPTER V

CONTROL STATEMENTS

During the execution of a MILITRAN program, in-

structions are normally taken from sequentially ascending

locations. However, the execution of instructions does not

have to occur sequentially. It is possible through the use

of sequential operators or control statements to alter the

process of sequential execution and to cause the computer to

repeat, skip, or interrupt a sequence of MILITRAN statements,

In this way it is possible to modify the sequence in which

any statement or block of statements is executed. By pro-

viding a program with the ability to control its own course

of execution, these statements greatly increase the scope

of the system.

1. 00 TO

GO TO is used to unconditionally alter the normal

sequential execution of statements. It indicates the state-

ment that is to be executed next.

The form of a 00 TO statement is:

00 TO s

where s is the name of the next statement to be executed.

97

Examples:

00 TO ACT 1100

00 TO B702

00 TO NT7

Use of the 00 TO statement la shown in the

following coding example.

Statement Label

ACT 100

ACT 101

ACT 102

ACT 103

ACT 104

MILITRAN Statement

RATE • 7.0

TIME - 2.0

00 TO ACT 104

RATE - 5.0

DIST - RATE*TIME

When control reaches statement ACT 100, RATE

will be given the value 7.0. Then TIME will be given the

value 2.0. The next statement, 00 TO ACT 104 will cause

statement ACT 103 to be skipped and statement ACT 104 will

be executed next, giving DIST a value of 14.0.

2. PAUSE

The PAUSE statement causes the computer to come

98

to a temporary halt. If the start key is pressed, the

object program will resume execution with the next

MILITRAN statement. PAUSE Is written as:

PAUSE J

where J Is any unsigned octal Integer of 1 to ft digits,

and may be omitted. This number will be shown on the

computer console when the computer stops.

Examples:

PAUSE 1

PAUSE

STOP

The STOP statement causes the immediate termination

of the object program. After STOP a restart cannot occur.

The STOP statement should occur at the logical end of the

program rather than the physical end. More than one STOP

statement may be used in a program. The form of the STOP

statement is:

STOP

ft. IP Statement

The IP statement determines the statement to be

99

executed next dependent on the value of a logical ex-

pression. It Is written as follows:

E?(b), ST,Sp

where b Is a logical expression and S• and Sp are state-

ment labels. If the value of the logical expression (b) Is

TRUE, control will be transferred to the statement labelled

STJ If the value Is FALSE, control will be transferred to the

statement labelled S„. If the second label Is omitted, the

next program statement will be executed.

Examples:

IF(TIME.GE.HORIZON),ENDCYCLE,DC100

If the value of TIME is greater or equal to the

value of HORIZON, control will be transferred to the state-

ment labelled ENDCYCLE. If the logical expression Is false,

control will be transferred to statement DC100.

IF(TIME.GE.HORIZON),ENDCYCLE

T «= A/3.4

If the value of the logical expression Is TRUE,

control will be transferred to ENDCYCLE. Otherwise, the

next statement will be executed.

100

5. UNLESS Statement

The UNLESS Statement also determines the state-

ment to be executed next, dependent on the value of a logical

expression. It is written as follows:

UNLESS(b), Sp,ST

where b is a logical expression and Sp and ST are state-

ment labels. If the value of the logical expression (b)

is FALSE, control will be transferred to the statement

labelled S ; if the value Is TRUE, control will be trans-

ferred to the statement labelled S•. If the second label

is omitted, the next program statement will be executed.

Examples:

UNLESS(PAST REPORT+REPORT INTERVAL.LE.TIME),A100,A250

If the value of the logical expression is FALSE,

control will be transferred to statement A100; if the ex-

pression is TRUE, control will be transferred to statement

A250.

IF(TIME.OE.HORIZON),ENDCYCLE

UNLESS(REPORT INTERVAL.LE.TIME),RPER2000

ENDCYCLE

101

Control will be transferred to ENDCYCLE If

TIME la greater than or equal to HORIZON. If the first

statement is FALSE, the succeeding statement will be eval-

uated and if it TRUE, ENDCYCLE will be executed. If both

statements are FALSE, control will be transferred to the

statement labelled RPER2000.

6. DO Statement

The technique of repeating a section of a program,

with some type of modification between repetitions, is called

looping. The DO statement Is a powerful tool which permits

a significant reduction in the number of instructions required

to perform a given procedure and also greatly simplifies the

programming of loops. MILITRAN provides two forms of the DO

statement.

Form 1

DO(s) UNTIL b, n - e^eg

where s is a statement label, b Is a logical expression, n

is an arithmetic variable, either subscripted or non-sub-

scripted, e1,e2 are arithmetic expressions. When e« is

omitted it is assumed • 1. When e1 is omitted, both e« and

the equals sign must be omitted and e, and e« are assumed

m 1. When n is omitted, the statement ends with the Boolean

condition and looping continues until b.EQV.TRUE. The

102

logical expression b Is evaluated before each iteration.

Form 1 of the DO statement is a command to iterate

through the statement labelled s until the logical expression

b is TRUE. The first time, the statements are executed with

n equal to e,. For each succeeding iteration, n is increased

by e2. When the logical expression b assumes the value TRUE,

control passes to the statement following the last statement

in the range of the DO - the statement immediately following

the statement labelled s.

This form of the DO statement has three functions:

1. It establishes an index (n) which takes on

a new value for each iteration. This index

may be used as a subscript or in computations.

2. It causes looping through any desired

series of statements, as many times as

required.

3. It increases the index by any specified

increment for each separate iteration

through the series of statements in the

loop.

103

As an example, consider the following program:

Statement Label

ADD40

ADD50

Statement

REAL A(10),B(10)

DO(ADD50)UNTIL N1.G.10,N1«1,1

A(N1) » B(N1)*2

The first statement reserves space for two

one-dimensional arrays, A and B, The DO statement, statement

ADD40, Is a command to execute the following statements

up to and Including statement ADD50. The DO loop is equiva-

lent to execution of the statements

A(l) - B(l)*2

A(2) - B(2)*2

A(3) - B(3)»2

A(10) - B(10)#2

When the DO loop is entered (statement ADD40) Nl

Is set to 1, the logical expression Nl.0.10 la evaluated and

since It Is FALSE statement ADD50 la executed. Nl is Increased

by 1, the logical expression is evaluated again and the loop

will continue until Nl assumes a value of 11. The program

104

will then continue with the statement following statement

ADD50.

The following Is a comparison of statement ADD40

with the general form of the DO, and an introduction of some

of the terms used in discussing DO statements.

DO (s) UNTIL b, n - el» e2

DO (ADD50) UNTIL Nl.0.10, Nl - 1. 1

Range Terminating Index Initial Increment
Condition Value

Range:

Terminating
Condition:

Index:

The range is the series of statements to be

executed repeatedly. It starts with the DO

and includes all the statements following

the DO up to and including statement (s). In

the example the range consists of statements

ADD40 and ADD50.

The terminating condition is the logical

expression which controls the number of

iterations to be performed. When the

logical expression assumes a value of TRUE,

the DO is satisfied. In this case, as soon

as Nl assumes a value of 11, execution of the

range ceases.

The index is any arithmetic variable. The

105

Initial

Values

Increment:

Examples:

LBL

Index will change for each execution of the

range. In the example, the Index Nl la also

used aa a subscript, In another problem It

might be uaed in computations, or might not

be uaed in the range at all.

The initial value may be any arithmetic ex-

preaaion, and la the value assigned the index

for the firat execution of the range. In the

example, the initial value is 1 - an integer

constant. In another problem it might be a

real constant or a subscripted arithmetic

variable.

The increment (any arithmetic expression) is

the amount by which the value of the index

will be increased after each execution of

the range.

In the next example, the range of the DO loop

consists of one statement, the DO statement itself,

INTEGER A(100)

D0(LBL)UNTIL(A(I).E.6).0R.(I.0.100),I-1,1

The DO statement (LBL) is a command to cycle

106

through the array named "A" and obtain the first entry

equal to 6. The logical expression (I.Q.100) is necessary

in case array "A" does not contain an entry equal to 6.

In the following example, the terminating condition

is a logical expression which includes an object relational

expression.

PROGRAM OBJECT B(100)

LBL D0(LBL)UNTIL(B(I).IN.CAR).0R.(I.G.100),I-1J1

This DO statement will cycle through the array

names "B" and will obtain the first entry which is in the

class CAR.

Form 2

The second form of the DO statement operates on

object elements exclusively. It is written as

DO (s) FOR a.IN.b

where a is a statement label, a is a single variable which

has been declared in a PROGRAM OBJECT declaration and b is

either the name of a class as specified in a CLASS declara-

tion or the name of an object as specified in an OBJECT

declaration. Names a and b are never subscripted.

This form of the DO statement is a command to

iterate through the statement labelled s. The first time,

107

variable "a" Is set to the Identity of the first member of

"bM. Por succeeding Iterations, "aM assumes In turn the Iden-

tity of all members of "b". Iteration ends when all members

of MbM have been covered sequentially.

As an example, consider the following program:

Statement Label Statement

INTEGER AGE(CAR),I,J

PROGRAM OBJECT A

LX2 J =» 0

LX3 I - 0

LX4 D0(LX7) FOR A.IN.CAR

LX5 UNLESS(AQE(A).QE.5),LX7

LX6 I - I + 1

LX7 J - J + 1

This program counts both the total number of cars

and those cars which are 5 years or older.

1. The first statement reserves space for one

dimensional array "AGE", whose dimension Is

equal to the number of the members In class

CAR; and also declares I and J to be integer

variables.

2. The second statement declares "A" to be a

single variable which will assume the

Identity of an object.

108

3. LX2 sets the value of J to zero; LX3 seta the

value of I to zero.
4

4. LX4 la a command to execute the following state-

ment a up to and Including the statement named

LX7. When the DO loop la entered A la aet to

the Identity of the flrat member of claas CAR.

5. LX5 retrlevea the age of the flrat car and

comparea It to 5. If It la leas than 5, control

paaaea to the 8tatement LX7; If the age Is equal

to or greater than 5, control passes to LX6.

6. LX6 Increments the counter "I" by one;

LX7 lncrementa counter "J" by one.

7. After atatement LX7 haa been executed, control

la tranaferred to atatement LX4. The aecond

time through the loop, A la 8et to the Iden-

tity of the aecond member of cla33 CAR and

lta age la retrieved and evaluated. The loop-

ing continues until all members of the class

have been evaluated.

Restrictions on the use of DO atatementa

1. a DO loop may be contained within the range

of another DO loop. When thla altuatlon occura, all of the

109

statements In the range of the Inner DO must be within the

range of outer DO.

For example:

'•

DO

DO

DO

is a permitted configuration (the brackets indicate the range

of the DO18), but:

DO

DO

is not a permitted configuration. Transfers of control are

permitted both from inside the range of a DO loop to out-

side its range and from outside the range to inside.

2. the last statement in the range of a DO loop

cannot be a 00 TO statement, an IF statement which has two

labels or an UNLESS statement which has two labels. If it is

necessary to end a DO loop with any of these statements, the

CONTINUE statement must be uSed to terminate the range of the

DO loop.

110

7. CONTINUE

CONTINUE Is a dummy statement which does not

generate any instructions in the object program. It must

be used to terminate the range of a DO loop which would

otherwise end with a 00 TO statement or the forms IP or

UNLESS statements which have two labels. CONTINUE is also

used as the last statement of a DO loop when it is desired

conditionally to skip the several statements in the range

and proceed with the next iteration of the loop.

The form of the CONTINUE statement is:

CONTINUE

Example:

Statement Label Statement

REAL A(10),B(10)

ADD40 D0(ADD70)UNTIL N1.0.10,N1«1,1

ADD50 A(N1)«B(N1)*2

ADD60 00 TO ADD100

ADD70 CONTINUE

In the above example, if ADD60 were the last state-

ment in the range the sequence at ADD100 would have no way

to re-enter the loop. The CONTINUE statement at ADD70

111

provides such a re-entry point.

The next example shows how one statement In the

range may be conditionally skipped using a CONTINUE state-

ment.

Statement Label

LX2

LX3

LX4

LX5

LX6

LX7

LX8

Statement

INTEGER AGE(CAR),I,J

PROGRAM OBJECT A

J - 0

1 = 0

D0(LX8) FOR A.IN.CAR

J = J + 1

UNLESS(AGE(A).GE.5),LX8

I - I + 1

CONTINUE

Use of the CONTINUE statement is by no means

limited to defining the ranges of DO loops. Any point

in a program may be defined by means of a CONTINUE statement

112

CHAPTER VI

LISTS AND LIST PROCESSINQ STATEMENTS

The LIST declaration and Its associated list

processing statements have been provided to facilitate

the creation, maintenance, and processing of the various

elements in a simulation. Concise MILITRAN statements

eliminate the need for the complex iterative coding which

is normally required to maintain the current status of the

elements in a simulation.

1. LIST

A MILITRAN LIST is a one dimensional vector whose

components may be processed by a special group of system

routines - the list processing statements. The LIST state-

ment is written as

LIST n((c1,c2,...,cjL),d)

where n is the name of the LIST; c,,c2,...,c1 are the names

of the LIST components, all of which are associated with the

name "n", and d is the dimension associated with each com-

ponent.

113

The LIST statement only declares the dimension

of the LIST] the rules for declaring the modes of s list

and Its components are the same as those for declaring the

modes of a vector and Its components.

Example t

LIST SHIPS((DESTROYER,CRUISER,CARRIER),10)

This statement defines a LIST named SHIPS, which

has 3 components - DESTROYER, CRUISER, and CARRIER. Each

component has a dimension of 10 — resulting In 30 locations

reserved for the LIST SHIPS.

2. LIST PROCESSING STATEMENTS

The list processing statements are used to main-

tain the current status of the various elements In a simu-

lation.

LIST entries may be created by means of PLACE or

PLACE ENTRY statements; modified by REPLACE or REPLACE ENTRY

statements; destroyed by REMOVE or REMOVE ENTRY statements

and located by the system functions MINIMUM INDEX and RANDOM

INDEX. In addition, the elements In a LIST may also be oper-

111

ated on by the regular MILITRAN data processing statements.

Before discussing the list processing statements

In detail. It Is necessary to clarify the meaning of some of

the terms used in connection with these statements.

When a list processing statement or Its definition

refers to an entry, it is referring to corresponding elements

in each component of the LIST. For example, if a LIST is de-

clared as:

LIST A((B,C,D,E),4)

there are four components - B,C,D, and E, each of which con-

tains four elements. An entry in LIST A is a group of four

corresponding elements such as:

B(1),C(1),D(1),E(1) - 1st entry of LIST A

B(2),C(2),D(2),E(2) - 2nd entry of LIST A

B(3),C(3),D(3),E(3) - 3rd entry of LIST A

B(4),C(4),D(4),E(4) - 4th entry of LIST A

The list processing statements always operate on

entries. If a LIST haa only one component, then entry and

element are synonymous.

115

Every MZLITRAN LIST if associated with an integer

value whieh represents the length of the LIST. The length

of the LIST refera to the current number of entrlea In the

LIST.

It la Important to distinguish between the length

of the LIST and its dimension. The dimension refera to the

number of locations In computer storage which are reaerved

by the LIST declaration for the LIST entries. The dimension

remains constant throughout execution of the program. The

length of the LIST changes - it is automatically updated by

those list processing statements which create or destroy en-

tries. The Hat processing statements which modify existing

entries do not change the length of the LIST.

The compilation phase of NILITRAN sets the length

of any declared LISTS to zero. If all the entries In a LIST

are created by the list processing statements, the length of

the LIST will be created automatically. However, if a LIST

is created by reading data into it, the Initial length must

be set by the program as described below under RESET LENGTH.

As stated above, the Hat processing statements

only operate on entries. If It la necessary to modify or

retrieve an element within a single component of a multi-

116

oomponent LIST, the element may be subscripted In exactly

the same manner aa are elements In a vector.

In the explanation of the list processing state-

ments, the following notation will be used:

n - la the name of a LIST which la being interrogated

or in whioh data is being entered, modified, or

removed,

k - refers to an integer constant, integer variable,

or an arithmetic expression which after evaluation

will return an integer value. The value represents

the index of entry (the position of entry in the LIST)

for LIST n.

m - is the name of a LIST from which data la being re-

trieved.

J - is an Integer value, aa deacrlbed under k, which

represents the index of entry for LIST m.

e - is any expression which is going to be entered in a

component of a LIST or will modify an existing element

in a LIST. It must be compatible with the mode of the

oomponent aa it la defined in the mode declaration,

b - la any logical expression.

p - is any integer conatant, integer value, or arithmetic

expression which after evaluation will return an integer

value. The value representa the length of a LIST.

117

LENOTH

LENGTH(n)

where n Is the name of a LIST, returns the current number

(integer) of entries in LIST "n",

The LENOTH funotlon provides a convenient means

of determining when all the entries In a list have been

eliminated from the battle. For example,

A101 IP (LENGTH(OREEN ARMY).E.O), BlOO

A102 (continue with processing)

When the LENOTH of OREEN ARMY assumes a value of 0, all the

entries In OREEN ARMY have been eliminated and control is

transferred to statement BlOO, If all the entries have not

been eliminated, the program continues sequentially with

statement A102.

RESET LENGTH

RESET LENGTH (n) TO p

when n Is the name of a LIST and p Is an Integer constant,

Integer variable, or an arithmetic expression which after

evaluation will return an Integer value, unconditionally

113

sets the length of LIST n to the value represented by

P .

When the entries In s LIST are a function of In-

put, i.e., the date Is read directly Into a LIST, the RESET

LENGTH statement must be given before any processing Is

carried out on the LIST. For example, If a LIST is declared

as follows:

LIST A((B,C,D),3)

and an Input statement reads In 3 entries, the length of the

LIST should be set as follows:

RESET LENGTH(A) TO 3

If the dimension of the list Is a "symbolic dimen-

sion", such ast
»

LIST A((B,C,D),X)

the value of X would also have to appear In the Input. After

the value of X has been read In, the statement:

RESET LENOTH(A) TO X

would set the length of A to X.

119

PLACE

PLACE(e1,e2,...,e1) IN n

where e*, •*#•••«•« are any expressions and n Is the name

of a LIST, evaluates the expressions represented by each

e, enters the value of the corresponding e In each of the

components of LIST n, and then automatically updates the

length of LIST n.

el* e9'***'el mu8t be compatible with the com-

ponents of the LIST as they are defined In the LIST and

mode declarations both as to number and mode. For example.

If a LIST Is declared as follows:

LIST SHIPS (TYPE,SPEED,RANGE),4)

and the mode declarations statet

PROGRAM OBJECT SHIPS, TYPE

REAL SPEED, RANGE.

the modes of the expressions In the statement!

PLACE(SUBMARINE,SSPEED,SRANGE) IN SHIPS

120

must be declared as followst

PROGRAM OBJECT SUBMARINE

REAL SSPEED, SRANOE

If the list contained 4 entries before the PLACE

statement was encountered, the length of the list would be

updated to 5 after execution of the PLACE statement.

REMOVE ENTRY

REMOVE ENTRY n (k)

where n Is the name of a LIST and tc Is an Integer constant

or Integer variable which designates an entry In the LIST,

causes the entry represented by k to be removed from LIST

n and then automatically updates the length of LIST n.

For example, If LIST Z has three components -

A, B, and C — and the current length of LIST Z Is 6, the

statement

REMOVE ENTRY Z(x) (where X has assumed a value of *0

will cause the 4th entry to be removed from LIST Z, and the

length updated to 5.

NOTE: The LIST Is also compressed to remove the blank entry.

121

PLACE ENTRY

PLACE ENTRY m (j) IN n

causes the J entry In LIST m to be entered In LIST n.

The length of LIST n 1B automatically updated.

The modes and number of components In LIST n must

be compatible with the modes and number of components In

LIST m.
felt

NOTE: The J entry In LIST m Is not modified In any way

by the PLACE ENTRY statement.

REPLACE ENTRY

REPLACE ENTRY n (k) BY (e,, e«,...,e^)

where e,, e2,...,e. are any expressions and n Is the name

of a LIST, evaluates the expressions represented by each

e, enters the value of the corresponding e Into the k

position of the corresponding component of LIST n.

el* e2»«»«*ei mu8t De compatible with the com-

ponents of the LIST as they are defined In the LIST and

mode declarations both as to number and mode.

122

REPLACE ENTRY BY ENTRY

REPLACE ENTRY n (k) BY ENTRY m (j)

causea the Vc entry In LIST n to be replaced by the J

entry In LIST m.

If the names "n" and "m" are identical, (i.e.

refer to the same LIST), "m" may be omitted.

The modes and number of components in LIST n must

be compatible with the modes and number of components in

LIST m.

NOTE: The Jtn entry in LIST ra is not modified in any way

by the REPLACE ENTRY BY ENTRY statement.

Conditional Expressions in List Processing Statements

Each of the list processing statements described

below contains a logical expression or set of expressions

which determines whether or not the entries in the designated

LIST will be operated upon as specified by the particular

list processing statement, A conditional list processing

statement implies a Do-loop because the statement can operate

on more than one entry.

123

When the form:

is used, each b represents a logical expression that

refers to a corresponding component of the designated

LIST. Therefore, the number of expressions must not

exceed the number of components in the LIST.

For example, If a LIST has four components as

In:

LIST A ((B, C, D, E), 3)

the conditional list processing statement may contain

four logical expressions.

The (b,, b2,...,bi) form causes every entry In

the LIST to be examined.

An additional qualification may be Imposed on the

Index of entry. When the form:

is used, b refers to a condition which is being placed on

the entry index (the position of the entry in the LIST).

124

In this case. If a LIST contains n components, n+1

conditions are Imposed,

The (b1# bo'***'*!*
tox^ form Hmlt8 the entries

to be examined to those specified by the expression b •

When a conditional list processing statement Is

encountered during execution of the object program, only

those entries which satisfy the following conditions will

be processed:

1. The evaluation of each logical expression

must result in a value of TRUE In reference to Its corre-

sponding component,

2. and when a condition Is placed on the entry In-

dex (b form), this logical expression must also have a value
mm

of TRUE.

The symbol * Is used to denote the current value

of a component or the current; index.

For example, the logical expression:

(• . 0 . 3, * . a . 6)

would refer to a LIST with two or more components. Those

entries for which the first element exceeds 3, and the second

element exceeds 6 would be operated upon.

NOTE: Control always passes to the Instruction following the

125

conditional list processing statement, whether or not

any entries are processed.

The conditional list processing statements are:

REMOVE

REPLACE

REPLACE BY ENTRY

REMOVE

REMOVE (b1# b2,...,b1) PROM n

where b1, b2,...,b. are any logical expressions and n is

the name of a LIST, evaluates the expressions represented

by each b and removes all the entries in LIST n which cause

all of the expressions b,, b2J...,bi to be evaluated as TRUE.

bl* b2,**"t>i mu8t be compatible with the components

of the LIST as to number and mode.

The LIST is compressed to remove blank entries, and

the length of the LIST is automatically updated.

For example if a LIST is declared as:

LIST SHIPS (TYPEA, SPEED, RANGE), 40)

126

and the mode declarations state:

PROGRAM OBJECT SHIPS, TYPE

INTEGER SPEED, RANGE

CLASS(SUBMARINE)CONTAINS TYPEA, TYPEB, TYPEC

The statement:

REMOVE (*.IN SUBMARINE, *.G.20, *.G.1000) PROM SHIPS

would remove every entry in the LIST ships that was in

CLASS SUBMARINE whose speed is greater than 20 and whose

range is greater than 1000.

If the form:

REMOVE (b1,h2,...,b±, bx)

is used, b is the condition placed on the entry index.

In the example given above, if the REMOVE state-

ment had been written as follows:

REMOVE (*.IN.SUBMARINE, *.G.20, *.G.1000, *.LE.20)

127

the last conditional would restrict the removal to the

first 20 entries provided that the other conditions are

also met,

REPLACE

REPLACE (\>lt bg,...,!^) BY (e^ •%$•••»•<) IN n

where b1, b2J...,bi are any logical expressions, e^, e2,...,e.

are any expressions, and n is the name of a LIST, evaluates the

expressions represented by each b, and replaces all the entries

in LIST n, which cause all of the expressions b,, b«,...,b. to

be evaluated as TRUE, with the value of the corresponding e.

The form:

REPLACE^, b2,...,b±, bx) BY (e1# e2,...,e1) IN n

may also be used.

The modes and number of components in LIST n must

be compatible both with the modes and number of expressions

represented by each b and each e.

128

REPLACE BY ENTRY

REPLACE^, b2,...,bJL) BY ENTRY m (j) IN n

evaluates the logical expressions represented by each b, and

replaces all the entries In LIST n which cause all of the

expressions b,, b2,...,b. to be evaluated as TRUE, with the

Jth entry In LIST m.

The form:

REPLACE (bx, b2,...,b±, bx) BY ENTRY m (j) IN n

may also be used.

The modes and number of components in LIST n must

be compatible with both the number of expressions represented

by each b and with the modes and number of components in LIST m.

If the names "n" and "m" are identical, Bm" may be

omitted.

MINIMUM INDEX

MINIMUM INDEX (n(bx, bg,...,^), s)

or

129

MINIMUM INDEX (n(b1# bg, ...^b^ bx), a)

where n 1B the name of a LIST, each b la a logical ex-

pression, and a la a statement label, evaluates the ex-

pressions represented by each b and returns the lowest

Index In LIST n whoae entry causes all of the logical

expressions to be evaluated as TRUE, If no such entry

Is found, control la tranaferred to the atatement labelled

n_ n

MINIMUM INDEX la a function which may be used In

any expression anywhere In the program. The value returned

is an Integer value,

MINIMUM INDEX may be ahortened to INDEX without

loaa of meaning,

RANDOM INDEX

RANDOM INDEX (n(b1# h2,...,b±), a)

or

RANDOM INDEX (n(bx, b2,..,,b1#bx), a)

130

where n la the name of a LIST, each b Is a logical expres-

sion, and a la a statement label, evaluates the expressions

represented by each b and returns an Index In LIST n chosen

at random from all the Indices whose entries cause all of

the logical expressions to be evaluated as TRUE. If no

such entry is found, control Is transferred to the statement

labelled "s".

RANDOM INDEX Is a function which may be used In

any expression anywhere In the program. The value returned

la an Integer value.

LST

LST is used to Impose an additional qualifica-

tion on one of the components in an entry.

If LST precedes a logical expression In a

conditional list processing statement, only the entry

whose corresponding component Is the least of all the

components will be operated upon, provided that all logical

expressions assume a value of TRUE.

LST may be used with only one expression In

a conditional list processing statement.

For example:

(b1,b2,LST(b3),...,b1)

131

is valid.

(b1,LST(b2)1LST(b3),...,b1)

Is Invalid.

If two entries are found, the entry with the

least Index Is chosen.

If LST refers to bx as In

(b1,b2,b3,...,b1,LST(bx))

the minimum Index Is sought.

QST

GST is similar to LST except that the entry

whose corresponding component Is the greatest of all such

components will be operated on.

Additional Rules for Specifying the Formation of Logical

Expressions In Conditional List Processing Statements

Certain abbreviations and conventions may be

used In the logical expressions of a conditional list

processing statement.

1. If the logical expression Is a single

quantity - the logical constant TRUE -

the value of each of the elements In

the corresponding component Is not examined,

l.e: In the expression (b1,TRUE,b,) only

132

b, and b~ are evaluated,

2. Omitted expressions are assumed to be

TRUE - l.e: (b^bo) Is equivalent to

(b1,TRUE,b3).

3. An arithmetic expression which does not

have an arithmetic relational operator

Is assumed to be *.E.e (where e Is an

arithmetic expression) l.e:

5

Is equivalent to:

*.E.5

4. A PROGRAM OBJECT variable alone Is

equivalent to *.IS.e (where e Is a

PROQRAM OBJECT variable) l.e: If TANK

Is declared In a PROQRAM OBJECT declaration,

then:

TANK

Is equivalent to:

•.IS.TANK

5. An OBJECT or CLASS name alone Is

equivalent to *.IN.e (where e Is an

133

OBJECT or CLASS name).i.e. If TANK la

declared In an OBJECT declaration, then:

TANK

is equivalent to

*.IN.TANK

13*

CHAPTER VII

EVENTS

A military simulation program usually Involves

the processing of simulated events which occur either at

regular Intervals or at critical Junctures In time. The

event statements facilitate the processing of these simu-

lated occurrences by providing the programmer with the

means to associate the data related to a specific event

with the processing that must be effected each time the

event occurs.

The event statements are:

PERMANENT EVENT

CONTINGENT EVENT

END

END CONTINGENT EVENTS

NEXT EVENT

NEXT EVENT EXCEPT

PERMANENT EVENT and CONTINGENT EVENT define the

start of processing for a specific event and also declare

a list. The END statement defines the end of processing

for a specifio event. The processing associated with the

occurrence of a particular event is effected by the group

135

of MILITRAN processing statements enclosed between either

a PERMANENT EVENT statement or a CONTINGENT EVENT state-

ment and an END statement. Therefore, the "event" Itself

may be described as the "event" statement, followed by a

group of processing statements, followed by an END state-

ment. The remaining statements enumerated above are con-

trol statements.

1. PERMANENT EVENT

A "PERMANENT EVENT" Is one which occurs at re-

gular Intervals In time. The start of processing and the

data associated with a "PERMANENT EVENT" Is declared as

follows.

PERMANENT EVENT N((a1,a2,...,a1), d)

where N Is both name of the event and the name of the

list associated with the event; a.,a2,...,a. are the list

components, each of which Is the name of an array and all

of which are also associated with the name N, and d Is

the dimension associated with each component.

The entries In a list associated with a "PERMA-

NENT EVENT" may be retrieved In the same manner as are

entries In a vector. The rules for declaring the mode of

a PERMANENT EVENT list and Its components are also the

same as those for declaring the mode of a vector and Its

136

components, A PERMANENT EVENT does not require a list,

In which case N Is Just the name of the event and the

PERMANENT EVENT statement only defines the start of

processing for the event named N,

2. CONTINGENT EVENT

A "CONTINGENT EVENT" Is one which occurs at a

critical Juncture In time. In military simulations, the

potential event Is always associated with the time of

occurrence, and usually has an attacking object, a target

object, and other descriptive information associated with

it.

The start of processing and the data associated

with a "CONTINGENT EVENT" is declared as follows:

CONTINGENT EVENT N ((a^a2,. . . ^) ,d)

where N is both the name of the event and the name of

the list associated with the event; a.,ap»...«a. are the

list components, each of which Is the name of an array and

all of which are also associated with the name N, and d

Is the dimension associated with each component.

A "CONTINGENT EVENT" must have a list. How-

ever, this list may have, if desired, only one component.

The rules for declaring the mode of a CONTINGENT EVENT

are the same as those for declaring the mode of a vector

137

and Its components.

The first component (or the only component), a.,

always represents the critical time at which the potential

event may take place. This component must be of REAL mode.

The second component, a2, If present, may be

assigned the value of the attacking object, In which case,

a« must be of PROGRAM OBJECT mode.

The third component, a-, If present, may be

assigned the value of the target object, In which case,

a_ must be of PROGRAM OBJECT mode.

The remaining components, If present, may be

used for additional descriptive Information and may be

of any mode.

To facilitate the processing of a CONTINGENT

EVENT, the MILITRAN processor provides four variables.

These variables are automatically reserved by the pro-

cessor; they do not have to be declared. They are:

1. INDEX which Is of INTEGER mode.

2. TIME which Is of REAL mode.

3. ATTACKER which Is of PROGRAM OBJECT mode.

4. TARGET which Is of PROGRAM OBJECT mode.

138

Transfer of control to a CONTINGENT EVENT state-

ment Is accomplished by a selection process described

under "NEXT EVENT." This transfer of control Implies

that a specific entry In the contingent event list has

been selected for processing. The position of the entry

In the list Is automatically stored In the variable INDEX.

The corresponding list entry of the first component Is

automatically stored In the variable TIME. If a second

component has been declared In the list, the corresponding

value of this component Is stored In ATTACKER. Likewise,

If a third component has been declared, Its corresponding

value Is stored In TARGET.

These variable names - INDEX, TIME, ATTACKER,

TARGET - may be used to retrieve the entries In the list.

For example, If an event Is declared as:

CONTINGENT EVENT BLAST((MOMENT,LAUNCHER,RECEIVER),4)

and the second entry has been selected for processing,

the value of INDEX would be 2 and the values of TIME,

ATTACKER, TARGET would be automatically updated as though

the following statements had been written:

TIME - BLAST(INDEX,1)

ATTACKER - BLAST(INDEX,2)

TARGET = BLAST(INDEX,3)

139

3. NEXT EVENT

The NEXT EVENT statement Is a oontrol statement.

The various oontrol statements, discussed previously,

altered the process of sequential execution of the pro-

gram either unconditionally or conditionally by first

evaluating a logical expression and then transferring to

a statement out of the normal sequence, dependent on the

value of the logical expression. NEXT EVENT alters the

sequential execution of the object program but the method

used to determine the selection process for event pro-

cessing is based on a "time" value.

The form of the NEXT EVENT statement Is:

NEXT EVENT

The NEXT EVEN statement is used to start event

processing and to proceed from one event to the next. The

following rules determine the sequence for event processing:

1. When an object program contains both "Permanent Events"

and "Contingent Events" -

a. The first NEXT EVENT statement appearing

outside the bounds of an "event" which is

reached during the execution of the program,

will transfer control to the first "Permanent

Event" appearing In the source program. NEXT

140

EVENT statements appearing within the

bounds of a "Permanent Event", cause

control to be transferred to the next

permanent event as it appears in the source

program.

when the last "Permanent Event" has been

executed, control will be transferred to

the "Contingent Event" whose associated

list contains in its "a-, component (as

described above) the smallest value for

"time" equal to or greater than the variable

TIME. When the "Contingent Event" has been

selected, the position of the selected entry

is placed In INDEX and TIME is set to a1

(INDEX); ATTACKER to a2(INDEX); and TARGET

to a^ (INDEX).

If two or more events are found whose tine values

are equal, the event selected will be the first

one stated In the source program.

A NEXT EVENT statement appearing within

the bounds of a "Contingent Event" causes

control to be transferred to the first "Perma-

nent Event", which will cause a repeat of

the Fvent Cycle.

141

2. When the object program contains only "Contingent

Events", selection occurs as explained under lb above;

and a NEXT EVENT statement appearing within the bounds

of a "Contingent Event" causes control to be trans-

ferred to the next "Contingent Event".

Modifications of NEXT EVENT

The processing sequence for "events" may be

modified by the use of the following form:

NEXT EVENT(n1,n2,...,n1)

where each n is the name of an event, either "permanent"

or "contingent".

If n,,...,n. includes both permanent and "con-

tingent" events, control is transferred to the first n

appearing in the parentheses which is a "permanent" event.

If all n,,...,n. are "contingent" events, the event is

selected by means of the "time" value as in lb above.

This form limits the selection of events to include only

the events n.,n2,...,n..

NEXT EVENT EXCEPT (n^rig, ... ,11,) where each n is

the name of an event, either "permanent" or "contingent".

This form limits the selection of events to

exclude the events named n,,...,n.. If the event in

142

which the NEXT EVENT (n,,...,^) or NEXT EVENT EXCEPT

statement la excluded from consideration, selection oc-

curs as though the NEXT EVENT had occured outside the

bounds of any event.

4. END

END

defines the end of processing for a specific event.

When an END statement can be reached by the program logic,

It Is always Interpreted as an unmodified NEXT EVENT.

5. END CONTINQENT EVENTS

END CONTINGENT EVENTS (S)

where S Is a statement label, causes control to be trans-

ferred to S, However, an END CONTINQENT EVENTS statement

does not transfer control at the time It is encountered;

but acts as a modifier of all forms of the NEXT EVENT

statement only If a NEXT EVENT Is being processed which

would normally transfer control to a "Contingent Event";

and no "Contingent Event" has a list entry whose time

component is equal or greater than the current value of

TIME. If these conditions exist control will be trans-

ferred to the statement labelled S.

143

An END CONTINGENT EVENTS statement may be

placed anywhere In the source program and the location

represented by S may be changed during the running of

the object program by the use of several such statements,

144

CHAPTER VIII

PROCEDURES

Procedures are programs arranged to permit entry

from other programs. The use of procedures allows the

programmer to cause processing to occur at several points

in his program without repeatedly specifying each state-

ment necessary to effect that processing.

All MILITRAN procedures are compiled separately.

This feature allows previously written programs to be

used by a new program without recompiling.

Procedures may be "executed" in two ways: as

"subroutines" or as "functions". Subroutines are entered

by means of EXECUTE statements. Functions are entered

by means of expressions. For example, the statement

EXECUTE SINE(THETA,RESULT)

causes the subroutine "SINE" to be entered. When exe-

cution of "SINE" is completed, control is returned to the

statement following the EXECUTE statement. The statement

A = SIN(THETA) + COS(THETA)

causes functions "SIN" and "COS" to be entered during the

145

evaluation of the expression. Values returned from

each function are used in the expression in place of

the function names.

1. MILITRAN-Coded Procedures

Procedures may be coded in MILITRAN by using

two special statements. They are:

PROCEDURE

RETURN

Procedures may be entered from MILITRAN programs by

means of the statement

EXECUTE

The PROCEDURE statement is the entry point to

a procedure and defines it to be such, as well as de-

fining its name and arguments. EXECUTE causes control

to be transferred to the specified subroutine and RETURN

causes control to be transferred to the main program.

PROCEDURE

PROCEDURE n

or

PROCEDURE n(a1,a2,...,a)

where n is the name of the procedure and each a., if

146

present, Is a name denoting an argument of the procedure,

causes the source program named "n" to be compiled as a

relocatable subroutine.

The name of a procedure may have up to 60

characters, but the first six characters of a procedure

name must be unique among all other procedure names, A

subroutine Introduced by the PROCEDURE statement must be

a MILITRAN program and may contain any MILITRAN statements

except another PROCEDURE statement.

The arguments In a PROCEDURE statement are dummy

names which are replaced at the time of execution by the

actual arguments supplied In the EXECUTE statement(see below).

There must, therefore, be correspondence In number, mode,

and order, between the two sets of arguments. Furthermore,

when a dummy argument Is an array, vector, or list name,

the corresponding actual argument must also be an array,

vector, or list name,

EXECUTE

EXECUTE n(a1,a2,...,a.)

where n is the name of a procedure and each a., If

present, is any expression denoting an actual argument,

transfers control to the procedure named "nM and stores

the actual arguments in the dummy arguments of the procedure.

147

RETURN

RETURN a

causes control to be returned to the main program with

the value of the expression "aM In the accumulator. If

"a" Is not present, the accumulator contents are unspe-

cified.

There must be at least one RETURN statement In

every procedure, and there may be more than one If a pro-

cedure can terminate at more than one point.

If the procedure Is to be used as a "function",

the form "RETURN a" must be used.

2. Library Functions

Procedures which are likely to occur In many

programs have been pre-written and Included In the

MILITRAN library. All of these functions return values

In REAL mode and require arguments of REAL mode.

The following library functions are available:

1. LOO (v)

The natural logarithm of v Is returned.

2, SIN(v), COS(v), TAN(v)

These trigonometric functions return sln(v),

148

cos (v), and tan(v). The argument "v"

la assumed to be In radians.

3. ATAN (v1,v2)

The smallest positive angle (in radians)

whose tangent Is v./v2 Is returned. The

signs of v. and v« are considered separately

In order to select the proper quadrant.

4. SQRT(v)

The value >/ |VI la returned.

5. EXP(v)

The value ev Is returned, where e Is the

base of natural logarithms.

6. RANDOM

A pseudo-random number (x) Is returned in

REAL mode. 0 - x ^ 1.

3. Open Functions

Up to this point we have been considering "closed"

procedures, I.e., programs which may be entered repeatedly

with different arguments. The MILITRAN language also

provides several "open" functions. Open functions cause

coding sections to be Inserted In the program each time

they appear.

The following open functions are provided In

MILITRAN. All arguments (v) must be REAL or INTEGER In mode

149

1. MQD(v1(v2)

The value v, mod v2 is returned In the mode

of Vi. Arguments (v) must be of the same

mode.

2. INTEOER(v)

The value v Is returned In INTEGER mode.

Any fractional part of v Is truncated.

3. REAL(v)

The value v Is returned In REAL mode. If

v Is of Integer mode It may not exceed

22? - 1.

4. 31QN(v1,v2)

The value v1 Is returned In the mode of

v, and bearing the sign of v2.

5. MIN(v1,v2,...Jvn)

MAX(v1,v2,...,vn)

The minimum or maximum value among all

values VTJV2»...#V_ is returned in the

mode of v,. All arguments (v) must be

of the same mode.

6. EPSILON(v)

The value v + £ is returned in the mode of

v. The increments is the smallest incre-

ment of v which can be expressed within

the computer.

7. ABS(v)

The value | v | la returned in the mode of v.

150

CHAPTER DC

INPUT AND OUTPUT STATEMENTS

1, Introduction

The Input-output statements are used to control

the flow of data Into and out of the computer. The state-

ments are used to specify the kind and amount of data to

be transmitted, the tape units to be used for the reading

or writing of the data, and the format of the external

data representation.

The input-output statements are:

FORMAT

READ

WRITE

READWRITE

BINARY READ

BINARY WRITE

BACKSPACE

BACKSPACE PILE

END PILE

REWIND

UNLOAD

151

The READ, WRITE, and READWRITE statements cause

the transmission of BCD data between the tape units and

computer storage. The linkage between the internally

stored data and its external representation is accomplished

by specifying in the input or output statement the statement

label of a FORMAT statement. The FORMAT statement contains

a set of editing oodes which enable the translation of in-

ternal representation to external representation and vice

versa. BINARY READ and BINARY WRITE are used where work

tapes or other internal extensions are desired. The re-

maining input-output statements - - BACKSPACE, BACKSPACE

FILE, END FILE, REWIND, UNLOAD - - are magnetic tape control

statements,

2. Input-Output Lists

Five of the input-output statements call for

the transmission of data. They are READ, WRITE, READ-

WRITE, BINARY READ, and BINARY WRITE, and each of these

statements may have, as one of its components, a list of

variable names. Ihese variable names refer to the space

in the computer memory reserved for the storage of varia-

ble data. Therefore, the function of the input-output

list Is to provide the data transmission statement with

the information necessary to either store (for input) or

retrieve (for output) the data. When the input or output

152

command Is executed, the program references the list to

determine where the data Is to be stored or where It Is

to be obtained. The Input-output list Is ordered, and

Its order must be the same as the order In which the

data fields appear on tape(for Input) or will exist

(for output).

For example, If an Input tape contains data in

the following sequence:

10 72 63 5 12 474 322

and this tape Is read In by an Input statement whose as-

sociated list Is:

A,B,C,D, SPEED, RANGE, DIST

the data will be read In and stored In the location speci-

fied by the variable names, as though the following state-

ments had been written:

A - 10

B - 72

C - 63

D - 5

SPEED - 12

RANGE - 474

DIST - 322

153

Similarly, If this list Is used with an output

statement, the data will appear on the output medium In

the order specified by the list.

Integer and real quantities, and logical and

object elements may be specified by the same Input-output

list, but each Item In the list must be separated from the

succeeding Item by a comma.

Any number of quantities may appear In a single

list. However, If a record contains more quantities to

be transmitted than there are variable names In the list,

only the number of quantities specified In the list are

transmitted, and the remaining quantities are lost. Thus,

If a reoord contains three quantities and a list contains

two, the third quantity is lost. Conversely, if a list

contains more quantities than the record, succeeding

records will be read or written until all the items spec-

ified In the list have been transmitted.

The Items specified in a list may each take one

of several forms. The simplest Is a single variable name,

as In:

A, B, C, D, SPEED, RANGE, DIST

A list may also contain subscripted variable

names, If the subscripts have been previously defined,

154

as In:

A,B(6), C(3,4), D(A)

In the above example, A may be used as a subscript for

D because A itself appears earlier In the list and will

have assumed a value by the time the data represented by

D(A) is encountered.

When input-output of an array or vector is

desired, an Implied DO-loop either of Form 1 or Form 2

(nested to any depth) may be used for the Input-output list

The vector or array is specified as a subscripted variable

name. For example, the input-output list which might be

associated with a one dimensional array could be written

as follows:

((A(I))UNTIL I.0.10, 1-1,1)

The above input-output list would cause 10

items of data to be transmitted in the following sequence:

A(l) A(2) A(3) A(9) A(10)

When the list is encountered, the following

would occur:

1. I Is set to 1.

2. The logical expression I.0.10 Is evaluated,

and since it Is FALSE, the first item of

data - A(l) - is transmitted.

155

3. I la Incremented by 1, the logical expression

Is evaluated again and the transmission of

data - A(2) A(3) A(10) - continues

until I assumes a value of 11.

The next list might be used with a two dim-

ensional array which has 6 components.

(((A(I,J))UNTIL 1.0.3,I-1,1)UNTIL J.0.2,J»l,l)

The data associated with this list would be

transmitted as follows:

A(l,l) At2,l) A(3,l) A(l,2) A(2,2) A(3,2)

When the list Is encountered, execution occurs

as follows:

1. J Is set to 1

2. I is set. to 1

3. The logical expression - J.G.2 Is evaluated

and, since It Is FALSE, the expression 1.0.3 Is evaluated.

Since this too is FALSE, the first item of data - A(1,1) -

is transmittSd.

4. I is incremented by lj I.G.3 is again evalu-

ated, and the transmission of data continues until the

terminating condition Is reached when I assumes a value

of 4. At this point the first column of the array -

A(l,l) A(2,l) A(3,l) will have been transmitted.

156

5. J is Incremented by 1

6. I is set to one

7. J.0.2 Is evaluated and since It is still FALSE,

1.0.3 la evaluated. At this point, this expression is FALSE

and the second column of data is transmitted - A(1,2) A(2,2)

A(3»2). When the terminating condition for 1.0.3 has been

met, J is again incremented and now assumes a value of 3

which is the terminating condition for the expression J.G.2.

The loop is satisfied and the next sequential instruction

will be executed.

As mentioned above, an implied DO-loop of Form 2 may

be used in an input-output list. This form of an implied DO-

loop will transmit a value or series of values which are to be

associated with object elements. The general form of this

type of list is:

((A) FOR B.IN.C)

where A is a subscripted or nonsubscrlpted variable which has

been deolared in a REAL, INTEGER, PROGRAM OBJECT, or LOGICAL

declaration (or by means of the NORMAL MODE declaration); B

is a single variable which has been declared in a PROGRAM

OBJECT declaration; and C is either the name of a class as

specified in a CLASS declaration or the name of a group of

objects as specified in an OBJECT declaration.

157

This form of input-output list will cause trans-

mission of one item of data for each member of "C". When the

first item is transmitted, variable B is set to the identity

of the first member of C. For succeeding transmissions, "B"

assumes the Identity of all members of "C". Transmission of

data ceases when all members of "C" have been covered sequen-

tially.

As an example, consider the following Input-output

list:

((RANOE(AC)) FOR AC.IN.AIRCRAFT)

If AIRCRAFT had been declared an object element with a

cardinality of 10 as in:

OBJECT AIRCRAPT(IO)

and RANGE had been declared an integer array with a dimension

equal to the cardinality of AIRCRAFT as in:

INTEOESl RAN0E(AIRCRAFT)

the input-output list would provide the data transmission

statement with the location for the storage or retrieval of

the ten quantities which would be the ranges of each of the

ten aircraft.

As the above DO-type input-output list indicates,

the range of the implied DO list must be clearly defined by

158

means of parentheses. Both the data and the loop Itself

must be in parenthesis. The following example Illustrates

a more eomplleated list which utilizes Implied DO-loops.

A,C(2),((J,((E(j,l))l.0,2,1-1,1))F0R U.IN.V)

3. FORMAT

The manner In which data is represented in the

machine differs from the external representation of the

same information. As a result, it is necessary to specify

the type of editing to be performed on the information that

is being transmitted. This is accomplished by means of a

FORMAT statement which may be referenced by a READ, WRITE,

or READWRITE statement. The FORMAT statement is a nonexe-

cutable statement which specifies the type of conversion to

be performed upon each member of a list. The FORMAT state-

ment also Indicates where the data is located on the input

record or is to-be located on the output record.

The general form of the FORMAT statement is:

FORMAT (Format Specification)

where Format Specification refers to any of the following

editing codes:

I, E, F, 0, J, L, A, H, X

159

If more than one editing code appears In a FORMAT

specification, It must be separated from the preeedlng edit-

ing oode by a comma, with the exoeptlon of X and H type codes.

Conversion of Numeric Data

There are four editing codes which control the

conversion of numeric data

Internal
Representation

Editing
Codes

Integer Iw

Real Point Ew .d

Real Point Fw .d

Binary Number Ow

External
Representation

Decimal Integer

Floating Point - with Exponent

Fixed Point - without Exponent

Octal Integer

In the table above, w and d are unsigned Integer

constants; w represents the width of a given field and d

specifies the number of decimal places to the right of the

decimal point. If w Is greater than required to contain a

given number, the contents of the field are right Justified,

and the leftmost spaces are filled In with zeros (for data

being input) or blanks (for data being output).

I Conversion

Numbers under oontrol of an I type editing code

are Interpreted as decimal Integers. For example, typical

Input or output might be:

160

16

-97

2482

The numbers are right Justified In the specified field and

If the number to be converted has more digits than are spec-

ified the Format specification, the excess digits are dropped

from the left.

The following examples Illustrate how each of the

integers on the left would be written externally if a spec-

ification of 14 had been given: (b represents a blank)

Internal External

2462 2462

12 bbl2

-137 -137

-6841 6841

86321 6321

P Conversion

Numbers under control of an P type editing code

are interpreted as fixed point decimal numbers. Typical

input or output might be :

161

16.7

-21.2

174.3

-269.4

.3

-0.06

346.

The general editing code for an P type conversion

ia Fw. d, where w is the width of the entire field, includ-

ing a space for the decimal point and a space for the sign,

and d is the fractional portion. If insufficient spaces

are designated for the fractional portion, it is rounded;

zeros are filled in from the right if excessive spaces are

reserved. The integer portion Is handled in the same manner

as numbers converted by the I type conversion.

The following examples show how each of the numbers

on the left would be written externally if a specification of

P 6.2 had been given.

162

Internal

47.25

123.62

-123.62

4725.634

-.1

-6.

External

b47.25

123.62

123.62

725.63

b-0.10

b-6.00

E Conversion

Numbers under control of an E type editing code

are Interpreted as a decimal fraction to a power of 10.

The first significant digit appears to the right of the

decimal point. Typical input or output might be

0.1431E03

0.20E-02

0.671E02

The general editing code for an E type conversion

Is Ew„ d, where d Is the fractional portion and w is the

width of the entire field Including a space for the decimal

point, a space for the sign, and four spaces for the expo-

nent. As with the P type conversion, If Insufficient spaces

are designated for the fractional portion, It Is rounded;

zeros are filled In from the right If excessive spaces

are reserved.

163

The following examples show how each of the numbers

on the left would be written externally If a specification of

E 11.3 had been given.

Internal External

167. 0.l67Eb03

-43.1 -0.43lEb02

.006 0.600E-02

-.00000002 -0.200E-07

-34.0062 -0.340ED02

0 Conversion

Numbers under oontrol of the $ type editing oode

are interpreted as octal Integers. The eight digits used

are 0 through 7.

The C type editing code causes the numbers to be

right Justified in the specified field and will cause

excess digits to be dropped from the left if the number to

be converted has more digits than are designated by the

Format specification. Data to be converted by an 0 type

specification may be given variable names of any mode.

Conversion of nonnumerlc data

MILITRAN provides five specifications for the

processing of nonnumerlc data.

164

Editing
Codes Type of Data

Jw.d Object Elements

Lw Logical Elements

Aw Alphameric Data

wH Alphameric Data

wX Blank Field Speoificatio

J Specification

The J specification is used in conjunction with

the input-output of object elements. Typical input or

output might be

SHIP(25)

CAR (5*0

TANK(IOO)

PLANE

There are two forms of the J editing code - Jw

and Jw.d. The JW form causes a nonsubscripted name of an

objeot element to be right Justified in the specified

field, w represents the width of the entire field. If

insufficient spaces are designated, the field is truncated

from the left; blanks are filled in from the left if exces-

sive spaces are reserved.

165

For example. If a single object element existed

In the eomputer In the following form:

MILITARYINSTALLATION

and an output statement was written In conjunction with

the format specification

FORMAT J10

the following characters would be outputted:

STALLATION

Since Insufficient spaces had been allocated, the name of

the object element would be truncated from the left. The

statement

FORMAT J20

would permit the outputting of the entire name.

The Jw.d editing code permits the specification

of a subscript. In this case, w Is again the width of the

entire field but It must Include two spaces for parenthesis,

d represents the number of digits In the subscript. The

plaoement of data within the w and d fields Is handled In

the same manner as with the Jw form. Both fields are right

Justified and the field Is truncated from the left If

166

insufficient spaces are specified and blanks are filled in

from the left If extra spaces are reserved.

The following examples show how the object element

"B0MB(1752)W would be outputted according to the specification

given.

Specification Output

J10.4 BOMB(1752)

J8.3 0MB(752)

JU.5 B0MB(bl752)

J10.3 bBDMB(752)

L Specification

The L specification is available for the input-

output of the logical values, TRUE or FALSE. The format

of the L specification is Lw, where w is the width of the

entire field.

The effeot of Lw depends on whether it is used

with an input or output statement. If used with an input

statement, the field represented by w must begin with a T

or an P in order for the variable to assume a value of

TRUE or FALSE. For example, the specification L10 could

be used to input value TOMJONESJR. Since this value be-

gins with T, the variable designated in the list of the

167

Input statement would assume a value of TRUE. If the value

FREDJJONES had been Inputted, the variable would assume a

value of FALSE. Slnoe the w field Is truncated from the

left If Insufficient spaces are specified, an Incorrect

value may be transmitted.

For output, one character - either T or F is

transmitted. It Is right Justified and the remaining

spaces designated by w are filled In with blanks.

A Specification

The Aw specification Is one of the editing codes

used to process alphameric data. This specification causes

w BCD characters to be transmitted to or from a variable or

an array name. Since this Information can be referred to

by name, it can be processed or modified by the program.

The data is right Justified In the specified field.

When the Aw editing code Is used, six bit alpha-

meric character codes are used for internal representation.

A single variable may contain up to six alphameric charac-

ters.

For example, if a variable named Y is declared;

and the format specification

FORMAT (A6)

168

Is associated with a list In which the variable Y appears,

this format statement could be used to control the trans-

mission of alphameric data with 6 or less characters such

as:

REPORT

TIME

HOURS

B -

Alphameric information with more than six characters oan

be oontained in an array.

H Specification

The H specification is also used in conjunction

with alphameric information. Alphameric data associated

with the specification wH is generally used for header or

fixed alphameric fields and cannot be manipulated by the

program. The editing code wH must be followed by w alpha-

meric characters. Blanks appearing in the w characters

following the editing code wH are counted as characters.

Por example:

38HbTHISbISbANbEXAMPLEbOFbALPHAMERICbDATA

If the H editing oode is used with an input

statement, w characters are extracted from the input record

169

and replaoe the w charaoters Included with the format spec-

ification. On the other hand, if the H editing oode is used

with an output statement, the w characters following the

specification (or the characters which replaced them as a

result of input operations) are written as part of the out-

put record.

For example, if an output statement refers to the

following format specification:

P0RMAT(17HDAYAIGHTDR0UTINE)

the output would appear as:

DAY/NIGHT ROUTINE

However, if an input statement whose list is

"AIRCRAFT" is used to read the following information:

bPLANESbb25

and the input statement is associated with a format state-

ment such as:

FORMAT(7HB0MBERSI4)

a subsequent output command whose list is also "AIRCRAFT"

associated with the same format statement would produce the

following output:

bPLANESbb25

170

X Specification

The X specification Is used to enter blank charac-

ters In an output record or to skip characters In an Input

record. The editing code is wX where w is the number of

blank characters to be inserted or the number of characters

to be Ignored.

For example, if an Input reoord contains two 4

digit fields for integers and it is desired to read only

the second quantity, the first field oould be skipped by

using the statement

P0RMAT(4x4l)

In conjunction with the input statement. Or, the statement

FORMAT(3XF4.2) oould produoe the output bbb0.75.

Repetition of Editing Codes

If two or more successive elements in an input-

output list are to be edited in the same manner, and these

elements are contained in a single reoord, the editing code

to be repeated may be written only onoe if the editing code

is prefixed by an unsigned Integer oonstant to Indicate the

number of repetitions desired.

171

For example, If a single record contained three

successive Integer Items, eaoh of which contained 10 char-

acters, the format statement could be written as:

F0RMAT(3H0)

Instead of:

F0RMAT(I10, 110, 110)

NOTE: It Is not possible to repeat the wH or wX specifica-

tions by this method.

Repetition of Groups of Editing Codes

If two or more successive groups of elements In

an Input-output list are to be edited In the same manner,

and these elements are contained in a single record, the

group of editing codes to be repeated may be written only

once If the group is enclosed in parentheses and then pre-

fixed by an unsigned Integer constant to indicate the num-

ber of times repetition of the group Is desired.

For example, if a single record consists of seven

successive fields which appear in the following sequence:

1. fixed point decimal number

2. subscripted object element

3. fixed point decimal number

*f. subscripted object element

172

5. integer number

6. integer number

7. integer number

the format statement could be written as:

F0RMAT(2(F6.2, J11.3), 31*0

instead of:

F0RMAT(F6.2, J11.3, F6.2, Jii.3, i^, lb, 1*0

NOTE: An additional level of parentheses is not permitted.

The FORMAT Specification Scan

When an input-output statement is executed, control

switches back and forth between the input-output list and the

FORMAT specification. Scanning of the FORMAT statement occurs

from left to right. Successive items in the input-output list

are transmitted and edited by successive corresponding speci-

fications in the FORMAT statement until all items in the list

are transmitted and edited.

If the input-output list contains more items than

there are corresponding specifications in the FORMAT statement,

the scan is resumed beginning with the preceding left parenthe-

ses of the FORMAT statement.

173

For example, if an input-output statement has the

following list:

A, B, C, D, E, F, G, H

and it refers to the FORMAT statement:

FORMAT(16, J8.3, L4)

then the variables in the list will be converted as follows:

A 16

B J8.3
C L4

D 16

E J8.3
F L4

G 16

H J8.3

Multiple Record Format Specification

It is possible for one FORMAT statement to contain

editing instructions for more than one record. If a group

of editing codes is followed by a slash (/), the editing

codes following the slash are used to edit the next record.

A slash also permits the object program to ignore n records

on input or to transmit n blank records on output simply by

writing n + 1 consecutive slashes.

17^

For example, If the following FORMAT statement:

FORMAT(3F11.3, I7/2F10.4, 13)

Is used with an Input statement, each Input command could

cause the transmission of two records If the associated

Input-output list consists of seven variables. The first

three Items of the first record would be Interpreted as

fixed point decimal numbers and the fourth as an Integer.

The slash oauses the next record to be read, with the first

two Items Interpreted as fixed point decimals and the third

as an Integer. If there are Items on the Input record fol-

lowing those oonverted by codes 17 or 13, they would be ig-

nored.

If the same FORMAT statement Is used with an

output statement, each output command would cause the trans-

mission of two reoords. This would consequently result In

two lines of print, the slash Indicating the beginning of a

new line.

NOTE: If this statement Is used with an Input-output list

consisting of less than five variables, only one

record would be transmitted.

The statement:

FORMAT(3F11.3, I7/////2F 10.4, 13)

175

used with an Input statement, would cause six records to be

read. However, only the first and last would be processed;

the remaining four records would be Ignored.

If used with an output statement, four blank

records would be written between the first record which con-

tains data and the last. If the record were printed, four

lines would be skipped before the second line were printed.

Relationship between Input-Output List and Format Statement

As shown above, the Input-output list specifies

the location In computer storage that data Is to be placed

(for Input) or obtained (for output). Whereas, the FORMAT

statement In addition to its conversion function, specifies

where the data is located on the input record or where it

is to be placed on the output record.

For example, If It is desired to read the following

data:

12

475
-122

1

67.001

0.675
-124.012

under control of an Input-output list such as:

176

A, B, C, D, E, F, 0

which Is associated with FORMAT statement:

FORMAT(4l4, 3F9.3)

the fields of data must be right Justified in eaeh field

on the input record as follows:

bbl2 b*75 -122 bbbl bbb67.001 bbbO.675 b-124.012

I1* 14 14 14 F9.3 F9.3 F9.3

The variables in the input-output list would be

edited aooording to the conversion code specified, as follows

Variable Conversion Code Value Assumed

A 14 12

B 14 475

C 14 -122

D 14 1

E F9.3 67.001

F F9.3 0.675

Q F9.3 -124.012

Soale Factors

MILITRAN allows the application of a scale factor

to the E and F type conversion codes. The scale factor is

indicated by prefixing the editing code with a signed Integer

constant followed by the letter P. The aotlon of the scale

faotor is such that:

177

External Representation -

Internal Representation XlC?oale Pactor

The use of a scale factor with an F type editing
P

code causes the output values to be multiplied by 10 before

output.

For example:

FORMAT(1P3P11.3) might give

bbb-806.5^0bbbbb-0.686bbbbbb6.636

FORMAT(-1P3P11.3) would give

bbbbb-8.065bbbbb-0.OOfbbbbbbO.066

The use of a scale factor with an E type editing

code causes the mantissas of the output values to be multi-
P

piled by 10 and the exponents to be decreased by P. Thus:

FORMAT(1P3E11.3) would give

b-8.065Eb01b-6.860E-02bb6.636E-01

Once a value has been given for a scale factor

within a FORMAT statement, It will be applied to all values

edited by succeeding E and F type editing codes within the

same FORMAT statement. This la true for both single-record

178

and multiple-record FORMAT statements. To terminate the

effeot of a scale factor within a specific FORMAT state-

ment, a subsequent scale factor of 0 must be given. Scale

factors have no effeot on I type editing codes,

4, READ

The READ statement Is written as followsi

READ (t,s) List

where t designates an I/O unit, s Is the statement label

of a FORMAT statement, and List Is an Input-output list

of the quantities to be transmitted.

The READ statement causes the object program to

read BCD Information from I/O unit t Into the locations

specified by the List, under control of the FORMAT state-

ment specified by s. If t Is designated as CARDS, data

will be read on-line from the card reader.

Examples:

READ (4,A100) A, B, C, D, E

READ (INPUT, F0RMAT1) DISTANCE, SPEED

READ (CARDS, F0RMAT2) TIME

5. WRITE

The WRITE statement Is written as follows;

WRITE (t,s) List

179

where t designates an I/O unit, s Is the statement label

of a FORMAT statement, and List Is an Input-output list

of the quantities to be transmitted.

The WRITE statement causes the object program to

write BCD Information on unit t, from the locations specified

by the List, under control of the FORMAT statement specified

by s. If t is designated as CARDS, the Items in the list

will be punched on the on-line card punch. If t is designated

as PRINTER, the items in the list will be printed on the on-

line printer.

Examples:

WRITE (1,EDIT) ((A(I)) UNTIL I.O. 10, 1-1,1)

WRITE (OUTPUT, CONVERT) TARGET, RANGE (3A)

WRITE (CARDS, F0RMAT1) A, B, C, D

WRITE (PRINTER, F0RMAT2) A, B, C, D

6. READWRITE

The form of the READWRITE statement is:

READWRITE (t1# s^ tg, s2) List

where t1 and t2 designate I/O units, s1 and s2 are the state-
it

ment labels of FORMAT statements, and List is an input-output

list of the quantities to be transmitted.

180

Hie REAEWRITE statement causes the object program

to read BCD information from unit t, into the locations speci-

fied by the List under oontrol of the FORMAT statement speci-

fied by s* and then to immediately write the same information

on I/O unit tg under the oontrol of the FORMAT statement speci-

fied by So* t, may be designated as CARDS, t« nay be desig-

nated as CARDS or PRINTER,

Example:

READWRITE (IN,F0RM1,0UT,F0RM2)(J,((E(l,J))UNTIL 1.0.2,1=1,1))

READWRITE (CARDS,F0RM1,PRINTER,F0RM2)PRESSURE,D

7. BINARY READ

BINARY READ is written as follows:

BINARY READ (t) List

where t is an arithmetic expression designating a tape unit

and List is the input-output list of the quantities to be

transmitted.

The BINARY READ statement causes the object program

to read binary information from the tape unit specified by t

into the locations specified by List.

Examples:

BINARYREAD(4) VELOCITY

BINARYREAD(BIN) LONG, LAT

181

8. BINARY WRITE

The form of BINARY WRITE Is:

BINARY WRITE (t) List

where t Is an arithmetic expression designating a tape

unit and List Is the Input-output list of the quantities

to be transmitted.

The BINARY WRITE statement causes the object pro-

gram to write binary Information on the tape unit specified

by t from the locations specified by List.

Examples:

BINARY WRITE(B) VELOCITY

BINARY WRITE(BTAPE) LONG, LAT

9. END PILE RETURN

When an end-of-file Is encountered on an Input

tape, oontrol Is passed to the system monitor program. If

It Is desired to prevent this, the following statement may

be given:

END PILE RETURN (s)

where s Is the label of the statement to which oontrol Is

to be transferred.

182

10. END RECORD RETURN

If the end of a logical record Is encountered

before a BINARY READ has been completed (before all the

elements in a list have been transmitted), the following

statement:

END RECORD RETURN (s)

will cause control to be transferred to the statement

labelled s.

11. TAPE CONTROL STATEMENTS

The tape control statements are used to position

magnetic tapes. A component of each of the statements is

an arithmetic expression which designates the tape unit on

which the specified operation is to be performed. Usually,

this expression would take the form of an integer constant

or an integer variable. However, if floating point quanti-

ties are specified, the expression will be truncated to an

integer value before use.

BACKSPACE

BACKSPACE(t)

where t is an arithmetic expression, causes the object pro-

gram to position the tape mounted on tape unit t at the

183

beginning of the record last read or written. For BCD

tapes, the tape Is moved backward one physical reoord;

for binary tapes, It Is moved one logical reoord.

BACKSPACE FILE

BACKSPACE FILE (t)

where t Is an arithmetic expression, causes the object

program to move the tape mounted on tape unit t backward

until an end-of-flle reoord or the load point Is encoun-

tered.

END FILE

END FILE (t)

where t Is an arithmetic expression, causes the object

program to write an end-of-flle mark on the tape mounted

on tape unit t,

REWIND

REWIND (t)

where t Is an arithmetic expression, causes the object

program to rewind to the load point the tape mounted on

tape unit t.

184

UNLOAD

UNLOAD (t)

where t Is an arithmetic expression, causes the object

program to rewind and put the tape mounted on tape unit

t Into an automatic unload status.

185

APPENDIX

Environment Declarations

REAL n^(l^,l2,...,lk),...,nm(l^,l2,...,lj)

INTEGER n1(l1,l2,...,lk),...,nm(l1,l2,...,lJ)

LOGICAL n1(l1,l2t...,lk),...,nm(l1,l2,...,l .)

OBJECT n1(l1),n2(i2),...,nm(im)

PROGRAM OBJECT n^i^i^, . . .,lk), . ..^(l^ig, ...,lJ

CLASS (c) CONTAINS a1,a2,...,a

NORMAL MODE m^a^ag,... ,ak) ,1^ (b1#b2>.. .,br)

VECTOR N ((a1,a2,...Ja1)fd1,d2,...,d1)

COMMON n1,n2,...,n1

Arithmetic

A - B

Logical

A - B

Control Statements

GO TO 8

PAUSE J

186

STOP

IP (b) Bt,si,

UNLESS (b) af at

DO (a) UNTIL b, n - ex,e?

DO (a) POR a.IN.b

CONTINUE

Llat Processing Statements

LIST n((o1,C2#...#c1),d)

LENGTH (n)

RESET LENOTH (n) to p

PLACE (e1,e2,...,e1) IN n

REMOVE ENTRY n(k)

PLACE ENTRY m(j) IN n

REPLACE ENTRY n(k) BY (e^e^... ,e1)

REPLACE ENTRY n(k) BY ENTRY m(j)

REMOVE (b1,b2,...,b1) FROM n

REPLACE (b1.,b2,...,b1) BY (e^e^.. .,e±) IN n

REPLACE (b1,b2,...,b1) BY ENTRY m(j) IN n

MINIMUM INDEX (n(b1,bg,..,,b1),s)

RANDOM INDEX (n(b1#b2,...,b±),a)

RANDOM INDEX (nfb^bg,.. .,bj,bx) ,a)

LST

OST

187

Event Statement!

PERMANANT EVENT H((*i»*2»..,#»1),d)

CONTINGENT EVENT N((a1#a2,.. .,8^ ,d)

NEXT EVENT

NEXT EVENT (n^iig,.. m9n^)

NEXT EVENT EXCEPT (nx,n2,...,n1)

END

END CONTINOENT EVENTS (s)

Procedure Statements

PROCEDURE n

PROCEDURE n(a1,a2*...#an)

EXECUTE n

EXECUTE n (a^a^ .. ,,an)

RETURN

RETURN a

Input-Output Statements

FORMAT (Format Specification)

READ (t,s) List

WRITE (t,s) List

READWRITE (t^S^tg.Sg) List

BINARY READ (t) List

188

BINARY WRITE (t) List

END PILE RETURN (s)

END RECORD RETURN (s)

BACKSPACE (t)

BACKSPACE PILE (t)

END PILE (t)

REWIND (t)

UNLOAD (t)

189

INDEX

Abbreviations permitted in conditional list processing

statements 132, 133, 134

A Conversion 168, 169

ABS 71• 72, 150

Addition (+) 15, 71

.AND. 15, 76

Arguments

in COMMON storage 63

in library functions 148

In open functions 149

in procedures 146, 147

Arithmetic Arrays 30-35

Arithmetic Constants 25-27

Arithmetic Expressions 70-75

modes 74, 75, 80, 81

relational 79-82

Arithmetic Operators 15, 69-75

Arithmetic Statements 92-94

Arithmetic Subscripts

form 32, 33

Arithmetic Subscripted Variables

form 33

Arithmetic Variables

rules for naming 16, 17

Array Declarations

INTEGER 34, 35

LOGICAL 38, 39

PROGRAM OBJECT 41, 42, 43

REAL 34, 35

ATAN 149

ATTACKER I38, 139

190

BACKSPACE 183, 184

BACKSPACE PILE 184

BINARY READ l8l

BINARY WRITE 182

Card 8

READ 179

READWRITE l8l

WRITE 165, 180

CLASS 43-53
Coding Form 20

Comments 21

COMMON 62-64

Conditional List Processing Statements 123-134

Constants

Arithmetic 25-27

Integer 25, 26

Hollerith 22, 23

Logical 23, 24

Real 26, 27

CONTINGENT EVENT 137

CONTINGENT EVENT Components

ATTACKER 138

INDEX 138

TARGET 138

TIME 138

CONTINUE 111, 112

COS 148

Dimensions

of a CONTINGENT EVENT list 137

of an INTEGER array 34, 35

of a LIST 113, 114

of a LOGICAL array 38, 39

191

of an OBJECT 40, 65

of a PERMANENT EVENT LIST I36

of a PROGRAM OBJECT array 42

of a REAL array 34, 35

of a VECTOR 57

specified by object elements 65, 66

symbolic 35, 36

Division (/) 15, 71

DO Statement

Form 1

Increment 106

Index 105

Initial value 106

range 105

statement 102

terminating condition 91

Form 2

statement 107

restrictions 109, 110

.E. 15, 79, 80

EACH* 48-53
E Conversion 163, 164

Editing Codes

repetition 171, 172

repetition of groups 172, 173

END 143

END CONTINGENT EVENTS 143, 144

END FILE 184

END FILE RETURN 182

END RECORD RETURN I83

EPSILON 150

.EQV. 16, 76, 77

192

EXECUTE U7

.EXOR. 16, 76, 77

EXP 149

Exponent 27

Expressions

Arithmetic 70-75

modes 74, 75, 80

relational 79

Logloal 75-80

Object 83, 84

P Conversion 161-163

FORMAT 159, 160

Format Specification Soan 173

Functions

library 148, 149

open 149, 150

.0. 15, 79, 80

.GE, 15, 79, 80

GO TO 97, 98

GST 132

H Conversion 169, 170

Hollerith Constants 36, 37

I Conversion 160, 161

IF 99, 100

INDEX 141

Input - Output Lists 152-159

.IN. 15, 83-90

INTEGER

Array 36

Calculations 24

193

Constants 25, 26

Function 150

Variables 29

.IS. 15, 90, 91, 92

J Conversion 165-167

.L. 15, 79, 80

.LE. 15, 79, 80

L Conversion 167, 168

LENGTH 118

Library Functions 148, 149

List

CONTINGENT EVENT list 137, 138, 139

entries 116

Input - output 152-159

length of LIST 116

LIST declaration 113, 114

PERMANENT EVENT list 136, 137

LOG 148

LOGICAL

Arrays 38, 39

Constants 37, 38

Expressions 75-80

Operators 76-78

Statements 94-96

Variables 38

LST 131, 132

MAX 150

MIN 150

MINIMUM INDEX 129, 130

MOD 150

194

Modes

of arithmetic expressions 74, 75

of arithmetic relational expressions 80, 8l

of veotors 59-62

of veotors used in arithmetic statements 93

Modifications of NEXT EVENT 142, 143

Multiple Record Format Specification 174-176

Multiplication (*) 15, 71

.NE. 15, 79, 80

NEXT EVENT 140-142

NEXT EVENT EXCEPT 142-143

NORMAL MODE 54-57

.NOT. 15, 76-78

0 Conversion 164

Objects

OBJECT declaration 40

PROGRAM OBJECT 41-43

rules for naming 39

used as dimensions 64-66

used as subscripts 67-68

Open Function 149-150

Operators

Arithmetic 69-75

Logical 76-78

Object relational 79, 80

.OR. 15, 76-78

.P. 15, 69-74

PAUSE 98-99
PLACE 120-121

PLACE ENTRY 122

195

PERMANENT EVENT 135, 136

PRINTER

READWRITE l8l

WRITE 180

PROCEDURE 143, 144

PROGRAM OBJECT 41-43

RANDOM 149

RANDOM INDEX 130, 131

READ 179

READWRITE 180, l8l

REAL

Arrays 35

Calculations 25

Constants 26, 27

Function 150

Variables 29, 30

REMOVE 126-128

REMOVE ENTRY 121

REPLACE 128

REPLACE BY ENTRY 129

REPLACE ENTRY 122

REPLACE ENTRY BY ENTRY 123

RESET LENGTH 118, 119

RETURN 148

REWIND 184

Scale Factors 177-179

Sequence of EVENT Processing 140-142

SIGN 150

SIN 148

Statement Labels 20

STOP 99

SORT 149

196

Subsorlpte

form of arithmetic 32, 33

speolfled by object elements 67» 68

Subtraction (-) 15, 71

Symbolic Dimensions 34, 35

TAN 148

Tape Control Statements 183-185

TARGET 138, 139

TIME 138, 139

UNLOAD 185

UNLESS 101, 102

Variables

Arithmetic - rules for naming 16, 17

Integer 29

Logical 38

Program Object 41-43

Real 29, 30

Vectors

declaration 57-62

modes 59-62

retrieval forms 57-59

used In arithmetic statements 93

WRITE 179, 180

X Conversion 171

197

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security claaeittcatton of title body of ebetrect and indexing annotation mull be entered whan the ovaralt report ta rlaxsrticr.

1 ORIGINATING ACTIVITY (Corporate author)

Systems Research Group, Inc.
1501 Franklin Avenue
Mlneola, Long Island, N. Y.

2 a StPOKl SECURITY CHIVtiCH'ON

Unclassified
2b GROUP

3 REPORT TITLE

MILITRAN PROGRAMMING MANUAL

4 DESCRIPTIVE NOTES (Typa ol report and tncluetva daiaa)

Technical report
5 AUTHORfS; (Laat name. Ilretname, initial)

Systems Research Group, Inc

6 REPORT DATE

 June, 1964
7« TOTAL NO. OF PASES

197
76. NO OF REFS

8a. CONTRACT OR SRANT NO.

Nonr 2936(00)
b. PROJECT NO.

Navy NR 276-OOI
c AF ProJ. 2801,

d. Task 2R0101

9a ORIOINATOR'S REPORT NUMBER(S)

9b OTHER REPORT NOfSj (Any other numbart that mav be aesignad
thi. «p°">USAF Technlcai Documentary
Report No. ESD-TDR-64-320

10 AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from
the Defense Documentation Center (DDC)

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Office of Naval Research, Wash.D.C,
& Electronic Systems Division, Air
Force Systems Command, Bedford,Mass

13 ABSTRACT

MILITRAN is an algorithmic computer language specifically oriented to the
problems encountered in simulation programming. In addition/ to providing
overall flexibility in expressing complex procedures, the language contains
features which greatly simplify the maintainence of status lists, handling of
numeric and non-numeric data, and sequencing of events in simulated tim< .

DD FORM
JAN 84 1473 Unclassified

Security Classification

Unclassified
Security Classification

14
KEY WORDS

LINK A LINK 8 LINK C

Militran
Language
Simulation
Computers
Programming Languages
Data Processing Systems
Information Retrieval
Instruction Manuals
Compiler
Systems Analysis
War Gaming

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee. Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" Is included. Marking is to be in accord-
ance with appropriate security regulations.

26 GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authoKs) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal -.ithor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96 OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification,
such as:

using standard statements

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized. "

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing (or) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in
formation in the paragraph, represented as (TS). (SJ. (C). or (U)

There is no limitation on the length of the abstract How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

Unclassified

