20§
l

o

L1

T
L

-3
FILE COPY]

ESD TDR

nical Documentary

ESTI PROCESSED
=+t No. ESD-TDR-64-320

[] obc TaB [PROJ OFFICER

[0 ACCESSION MASTER FILE

ESD RECORD coPY O

RETURN TO i B
SCIENTIFIC & TECHNICAL {NFORMATION PIVISION
(ESTY), BUILDING 1211

ESTI CONTROL NR_LLL_'_‘-LZLJ 7
PIES
coPY NR.__‘,H OF ,4'('—/ £ cyY NR_/__ _ oF _L_ cvs

MILITRAN
PROGRAMMING MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)
by

—SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue
Mineola, L. 1., New York

JUNE 1964

ADEO 1796

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the sald drawings, specifications, or
other data 1s not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveylng any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto.

Reproduction in whole or in part 1s permitted
for any purpose of the Unlited States Government,

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va, 22314, Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC,

Technical Documentary
Report No. ESD-TDR-64-320

MILITRAN
PROGRAMMING MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)
by
SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue
Mineola, L. I., New York

JUNE 1964

When US Government drawlngs, specificatilons
or other data are used for any purpose other than a
definltely related government procurement operation,
the government thereby lncurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way suppllied the sald drawings, specifications, or
other data 1s not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented inventlon that
may in any way be related thereto.

Reproduction in whole or 1In part i1s permitted
for any purpose of the Unlted States Government.

DDC AVATILABILITY NOTICE

Qualified requesters may obtaln copies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 22314, Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

FOREWORD

This 1s one of three technical reports being
published simultaneously, The others are the MILITRAN

Operations Manual for IBM 7090-7094 (Technical Documentary

Report No. ESD-TDR-64-389) and the MILITRAN Reference

Manual (Technical Documentary Report No. ESD-TDR-64-390).
The three reports constitute a complete description and
instructions for using the MILITRAN language in computer

programming of simulation problems.

The MILITRAN 7090-7094 Processor, which 1is used
to compile a problem written in MILITRAN source language
into a machine language program, will be available to
prospective users. Pending final arrangements, requests
for information about the MILITRAN Processor should be
sent to the Office of Naval Research (Code 491),

This report was prepared by the Systems Research
Group, Inec., under Contract Nonr-2936(00), which was initiated
by the Naval Analysis Group, Office of Naval Research, and
has been Jointly supported by the Office of Naval Research

and the Electronic Systems Division, Air Force Systems Command.

ABSTRACT

MILITRAN is an algorithmic computer language
specifically oriented to the problems encountered in
simulation programming. In addition to providing over-
all flexibility in expressing complex procedures, the
language contains features which greatly simplify the
maintainence of status lists, handling of numeric and
non-numerisc data, and sequencing of events in simulated

time,

This report 1is an introduction to the MILITRAN

language for prospective users,

REVIEW AND APPROVAL

This Technical Documentary Report has been
reviewed by the Electronic Systema Division, U, S, Air

Force Systems Command, and is approved for general distribu-
tion.

& G

J. B. CURTIS
ond Lt., USAF
PROJECT OFFICER

1.

II.

I1I.

TABLE OF CONTENTS

Introduction

General Language Characteristics

Basic MILITRAN Environment

L
2.
3.
b,

5.
6.

Numeric Elements
Non-numerlc Elements
NORMAL MODE Declaration
Vectors

COMMON Statement

ObJect Elements used as

Dimensions and Subscripts

Programming in MILITRAN: Arithmetic

and Logical Processing

10
2,
3.

Control
1y
/.

3.
b,

Expressions
Arithmetlc Statements
Logical Statements

Statements
G0 TO
PAUSE
STOP
IF

Page

13

23

36
54
T

69
69
92
94

oF
g7
o8
99
Y9

VI,

V1I.

VIII,

IX.

5. UNLESS
6, DO
7. CONTINUE

Lists and List Processing Statements
l, Lists

2., List Processing Statements

1, PERMANENT EVENT

2, CONTINGENT EVENT

3. NEXT EVENT

4, END

5. END CONTINGENT EVENTS

Procedures
1, MILITRAN-Coded Procedures
2, Library Functions

3. Open Functions

Input and Output Statements
1, Introduction
2, Input-Output Lists
3. FORMAT
4, READ

Page
101
102
110

1X8
113
114

2)
136
137
140
143
143

145
146
148

149

APPENDIX

INDEX

WRITE

READWRITE

BINARY READ

BINARY WRITE

END FILE RETURN

END RECORD RETURN

Tape Control Statements

Page
179
180
181
182
182
183
183

186

CHAPTER I

INTRODUCTION

MILITRAN 1s a general purpose, problem-oriented
language developed by Systems Research Group, Inc. under
the sponsorship of the Office of Naval Research and the
Air Force Systems Command (ESD). It enables the program-
mer to think 1n terms of the problem to be solved and
the method of solutlon, rather than 1In terms of the com-
puter which 1s used to solve the problem. It is a sym-
bollc language, using famlliar notations from algebra
and loglic which are expressed by self-explanatory English
words. The class of problems towards which this language

is oriented 1s that encountered in military simulations.

The primary stimulus for MILITRAN has been two-
fold: (1) the increasing importance of the simulation
approach in the analysis of military systems, and (2)
the long perlods of time and hligh levels of effort re-

quired to produce an operating simulatlion program.

MILITRAN achleves Improved coding efficilency
by providing a programming language - the "MILITRAN lan-
guage" - which 18 oriented to the special problems and

procedures of military simulation. Because of thils spe-

cial orientation, simulation codes'can usually be written
in the MILITRAN language more easily, more quickly, and
with less likelihood of error than by conventional pro-
gramming techniques, The ultimate communication with

the computer is effected through the MILITRAN compiler,

a speclal program that translates source codes written

in the MILITRAN language into a form directly understanda-

ble by the computer,

The MILITRAN process commences once the model
of the situation has been developed and communicated to
the MILITRAN programmer, The programmer then writes a
source code for the simulation in the MILITRAN language.
This source code 18 fed into a computer which has been
loaded with the MILITRAN compiler program. The process
of compilation is then carried out, with the result that
the computer i1tself generates an obJject program and ac-
cessory documentation for the particular simulation.
This object program is written in machine assembly lan-
guage and constitutes the actual code for the simulation.
Hence, it represents an independent entity and the simu-
lation proper may then be executed without any further

reference to the MILITRAN System.

The MILITRAN language is a complete, integrated

programming language providing a full repertoire of con-

trol, logical, arithmetic and I/0 instructions, together
with a range of special features oriented towards meeting
the internal structural demands of military simulation
programs, These speclal features consist of such items

as object modes, 1list processing statements, event pro-
cessing procedures, special retrieval arrays, etc. which
have been designed to increase the power of the language
while preserving full flexibility to cope with any specific

simulation model,

Most programming languages are designed for the
development of programs to handle various types of compu-
tational problems, Such problems have numbers or variables
taking on numerical values as thelr baslic elements, The
basic relations between these elements are arithmetic re-
lations, and the processing is largely composed of arith-
metic operations, A military simulation, on the other
hand, has as 1ts basic elements the particular obJjects
which act and are acted upon in the course of the simu-
lation. The relationships and 1ntergctions among these
obJjects form, in one sense, the key relations dealt with
in the simulation, The fundamental process of a simu-
lation 18 the step by step progress through simulated
time coupled with a determination of the events that have

taken place, an assessment (often stochastic) of the im-

pact of these events upon the participating objects, and

an updating procedure to insure that future events and
occurrences are consistent with these continual changes

in the state of the simulated system,

The MILITRAN language has the ability to deal
directly and explicitly with these underlying features

of a simulation situation,

To provide some insight as to how this is a-

" chieved, the role of certain MILITRAN language components
will be described briefly in this chapter. This is of
course in the way of a preview, and a complete discussion
of each component 18 deferred until the appropriate sub-

sequent chapter.

The basic elements in a simulation program are
individual objects and obJject types. To create such en-
tities, MILITRAN provides the system mode declaration
OBJECT, The collection of all individual obJjects so de-
clared may be viewed as a universe of "object values"
avallable to the particular source program. In the same
manner that numerical variables are needed in a computa-
tional problem, 80 in a simulation one needs variables
which can take on individual objects as values., In
MILITRAN such variables are declared by the PROGRAM OBJECT

statement, Multi-dimensional program object arrays are

declared in a similar manner. The requirement often
exists to form various groupings of obJects for purposes
of effecting a common processing or data assignment.
In MILITRAN, this requirement 18 met by the CLASS decla-

ration,

Insofar as the above discussion bears on dec-
larations employed in MILITRAN for the creation of vari-
ous program entities, it should be pointed out that
MILITRAN also provides for introducing the entities re-
quired in the normal computational aspects of a simula-
tion program., Thus, one can introduce constants, varia-
bles, multi-dimensional arrays, multi-modal vectors and
vector arrays which can take on either real (i.,e., float-
ing point), integer, or logical (i.e., Boglean) as well
as object values, To make the process of mode declaration
as painless and reliable as possible, a "NORMAL MODE"
statement 1s available, This statement enables the
MILITRAN programmer to establish his own automatic mode

assignment conventions for each portion of the source

code,

As discussed previously, a major segment of any
simulation program is concerned with maintaining an up-to-
date account of the status of the participating objects

and their interactions, In one sense, the progress of

the simulation may be viewed as essentially equivalent

to the dynamic changes in object and system status, In
virtually all simulations, this role of maintaining sta-
tus accounts is accomplished through the device of lists,
Consequently, it is exceedingly helpful to have facile
procedures for constructing lists, inserting entry values,
manipulating these list entries, and retrieving any de-
sired item of information from a 1ist, In MILITRAN this
facility 1s provided in the list processing portion of
the language,

List entries may be created by means of PLACE
or PLACE ENTRY statements; modified by REPLACE or REPLACE
ENTRY statements; and located by the system functions
MINIMUM INDEX and RANDOM INDEX, Processing which would
normally require complex iterative coding can be achieved
in Bingle concise MILITRAN statements., For instance,
the REMOVE and REPLACE statements can be used to search
and process entire lists, Updated values produced through
the use of REPLACE or REPLACE ENTRY statements may be

functions of the values being replaced,

It should be noted that in providing a list-
processing language MILITRAN does not prohibit the use

of normal data processing statements upon list elements,

In connection with this freedom, a RESET LENGTH state-
ment permits the programmer to override automatic up-

dating features at will,

The central dynamic feature of military simu-
lation 18 the processing of simulated events occurring
either at regular intervals or at critical Juncture points
in time. A simulated event is characterized by its time
of occurrence, the participating obJects, more detailed
information concerning the particular circumstances of
the event, together with a certain procedure for evalu-
ating the impact of the event's occurrence and implement-
ing this effect, Thus, a simulated potential event con-
sists of characterizing data plus an associated processing
to be carried out when the event takes place, In MILITRAN,
this association of data and contingent processing 1s ac-
complished (as well as many other benefits) with the CCN-
TINGENT EVENT and PERMANENT EVENT statements, The CON-
TINGENT EVENT statement defines an event type and associ-
ates with it a 1ist whose entries have an indicated com-
ponent structure, The structure of event 1ists may be
freely arranged, Each entry in such a 1list corresponds
to a potential event occurrence and the first component
of any such entry plays the special role of representing

the critical time at which this potential event may take

place, In addifion to defining this 1list, the CONTINGENT
EVENT statement delineates, for a special purpose, that
segment of program steps which is enclosed by the CONTIN-
GENT EVENT statement and the first END statement to follow
it., This program segment constitutes the processing to

be carried out upon the "realization" of the particular

contingent event,

Each entry on a CONTINGENT EVENT 1i8t repre-
sents a potential event, The general nature of this po-
tential event corresponds tothe particular CONTINGENT
EVENT with which 1t 18 associated, while its detailed
character is described by the values of the components
of the list entry, In military simulations, one often
encounters events characterized by time of occurrence,
attacking obJect, target object, together with other de-
scriptive information, The MILITRAN language takes ad-
vantage of this common form by providing the system vari-
ables TIME, ATTACKER, TARGET, and INDEX, When a particu-
lar event is "realized", the 1ist entry associated with
that event automatically has the values of its first
three components loaded into TIME, ATTACKER, TARGET, re-
spectively, Similarly, the variable INDEX automatically
takes on the number giving the position of the "realized"

entry in its 1ist, (These conventions exist for conven-

ience and need to be used only as long as they are con-
venient for the problem at hand., They are in no way re-
strictive and the MILITRAN programmer, i1f he so wishes,
can ignore them with impunity.)

Having established the correspondence between
potential events and vector entries in CONTINGENT EVENT
118ts, the meaning of event '"realization" can now be de-
scribed more precisely. A simulation may be viewed as
the state of a system progressing through time in a pre-
dictable fashion until the occurrence of a critical event.
This critical event affects the dynamic state of the sys-
tem and 80 determines the course of things until the next
critical event takes place. The system thus proceeds pre-
dictably in the intervals between the critical events
which determine the conditions of the systems predictabi-
1lity., In particular, it is clear that the occurrence of
one potential event will affect the set of future poten-
tial events, Thus, the simulation can be carried out by
finding the earliest potential event, performing the ap-
propriate revision of the dynamic state of the system and
the set of future potential events, then finding the next
earlliest potential event, again performing the appropriate
revision, ete, In terms of the simulation program, the
gset of future potential events is comprised of all entries

on CONTINGENT EVENT lists whose time component 1is greater

than or equal to the simulated current time, The earli-
est future potential event will then be represented by
that 1ist entry in this set which has the smallest time
value, This event 18 the one which occurs next, 1.e.,
i1t 18 actually "realized". The revision of the system
state induced by this event is then accomplished by per-
forming the processing assoclated with that particular
CONTINGENT EVENT. Having processed this revision, the
program then searches the revised set of entrles on all
CONTINGENT EVENT 1ists, finds that entry having the
smallest time exceeding current time, and then proceeds
to "realize" that 1ist entry as an event., In this man-
ner, the simulation program determines the "course of

the battle."

There 18 a special MILITRAN instruction which
triggers this procedure - NEXT EVENT, Whenever this com-
mand 18 encountered, the MILITRAN program will find the
1ist entry to be realized, and will transfer control to
~the assoclated CONTINGENT EVENT processing to effect that

realization,

Although much of the processing involved in
simulation programs appears similar to that used in strict-
ly computational codes, significant differences of a gen-

eral nature occur, These cdifferences must be considered

10

in designing a simulation language, and have been an in-

tegral factor in the development of MILITRAN,

Simulation data must often be referred to sev-
eral arguments, The range of an aircraft, for instance,
is a function of aircraft type, cruising altitude, and
cruising speed as well as fuel load, To accomodate for
the handling of such data, MILITRAN provides for retrieval
from arrays and vectors having any desired number of

arguments,

Real-world situatiors involve real-world names,
contractions of which to five or six characters are often
grotesque, MILITRAN permits identifiers of up to sixty

characters,

The association of data with various objects in
a simulation imposes a vast bookkeeping task upon the pro-
grammer, The MILITRAN processor absorbs this effort almost
entirely by allowing a wide range of obJject-mode sub-

scripting,

The iterative processes in a simulation program
often involve incrementation and termination criteria
which cannot be expressed in the usual algorithmic lan-
guages, The MILITRAN DO-loop form allows modification of

termination and incrementation criteria and even the index

11

itself within the iteration, Further, exit from the loop

may be made at any point without loss of current values,

and indices are defined even after normal exits,

Allocation of storage at running-time permits
the use of a given program to evaluate many different

cases without recompiling,

The processor allows the use of mixed-mode expres-
sions whenever contextual meaning 1s clear, This has sev-
eral implications, among them the elimination of compila-

tion failures due to omission of unnecessary decimal polints.

MILITRAN ignores blanks (except in Hollerith
fields) and permits comments at any point in a statement,
Although the language cannot force the programmer to docu-
ment his program, it does provide facile tools for self-

documentation,

From this brief sampling of the MILITRAN language,
it 18 hoped that one can glean some of the basic ideas
underlying its structure as well as some of the techniques
appropriate to its intended utilization. The remainder
of this document 18 concerned with detailed explanation
and illustration of the MILITRAN vocabulary, syntax, and

grammar,

32

CHAPTER II

GENERAL LANGUAGE CHARACTERISTICS

A MILITRAN source program is a series of MILITRAN
statements which specify a sequence of operations to be
performed by a digital computer, Each MILITRAN statement
may be viewed as a set of elements arranged in a preseribed
order which specifies one or more of the following charac-

teristies of the program:

1. STRUCTURE of the program or 1its

components;

2. PROCESSING to be performed within

the computer;

3. INPUT/OUTPUT, or exchange of data
between the ecomputer and its ex-

ternal storage devices;

4, CONTROL of the sequence in which
various operations are to be per-

formed; and

5. COMPILER instructions, or speeci-

fication of the manner in which
the translation from MILITRAN to
machine language is to be per-

formed,

13

The elements which combine to form MILITRAN state-
ments are names, constants, punctuation marks, statement type
identifiers, operators, and mnemonic delimiters, These ele-~
ments are in turn made up of characters, which are the basiec

units of any language,

Characters

The MILITRAN Basic Language is expressed in terms

of the following character set:

ABCDEFGHIJKLMNZPQRSTUVW
XYZ 0123456789, (),=+-*/

The character "blank" is normally not significant
in the language, Except where specifically noted in this
manual, blanks may be used in any part of a statement with-

out any effect on the statement,

"Alphabetic characters” ineclude the letters A
through Z; "numeric characters" include the digits 0 through
9; "alphameric characters" include both alphabetic and numeric

characters, All others are "special characters."

Punctuation Marks

The only punctuation marks used in MILITRAN are
the following:

14

Ogerators

The operators used in MILITRAN are the following:

o

Period
Open Parentheses
Close Parentheses
Comma

Ellipsis (Delimits comments)

Substitution
Addition; plus

Subtraction; minus

Multiplication

Division

Exponentiation

Comparison: Equal to

Comparison: Greater than

Comparison: Less than

Comparison: Not equal to

Comparison: Greater than or equal to
Comparison: Less than or equal to

Object identity
ObJjeect inclusion
Logical disjunction
Logical negation

Logical conjunction

15

EQV. Logical equivalence
JEXgR, Logiocal exclusive disjunction

Names
A name is a string of one to sixty alphameric

characters, the first of which is alphabetic.

Certain names have a pre-defined meaning in
MILITRAN and may be used only in reference to that meaning.

These names are:

ABS GST PRINTER
ATAN INDEX RAND@ZM
ATTACKER INTEGER RAND@ZM INDEX
CARDS LENGTH REAL
Ccgs LgG SIGN
EACH LST SIN

END C@MPILATI@N MAX SQRT
EPSILEN MIN TAN

EXP MINIMUM INDEX TARGET
FALSE M@ZD TIME
F@RMAT NEXT EVENT TRUE

The words BY, BY ENTRY, C@NTAINS, FgR, FRgM, IN,
TZ, and UNTIL are used within certain statements to define
the 1limits of various parts of those statements, Used in

this context, these words are not names, but mnemonic

16

delimiters, Use of these alphameric combinations as names
is permitted, as the distinction between name and delimiter

is always contextually clear.

All names used in a MILITRAN source program are
either explicitly or implicitly assigned a type. Some types
of names are assigned a mode, The type of a name 1lndicates
the nature of 1ts use in the program, The mode of a name

indicates the form of data referred to by the name,

Statement Types

The baslc statement in MILITRAN 1nvolves substi-
tution of one data item for another within the computer,

The substitution statement has the form

a=>»

where "a" 1s a subscripted or unsubscripted varilable name and

"b" 1s any expression whose value 1s suiltable for storage in

lla".

All statements which are not substitution state-
ments are designated by system words and/or symbols called
statement type i1dentifiers. The followling table lists all
statement types and their primary uses, The form and charac-

teristics of each statement 18 described in later sections.

17

Statement Type

BACKSPACE
BACKSPACE FILE
BINARY READ
BINARY WRITE
CLASS

CAMMEN
CZNTINGENT EVENT
CZNTINUE

Dy

END

END C@MPILATION

END C@NTINGENT EVENTS

END FILE

END FILE RETURN
END RECZRD RETURN
EXECUTE

FP@RMAT

Gg T¢

IF

INTEGER

LIST

LZGICAL

NEXT EVENT

NEXT EVENT EXCEPT

18

Primary Function

INPUT/OUTPUT
INPUT/OUTPUT
INPUT/OUTPUT
INPUT/OUTPUT
STRUCTURE
STRUCTURE
STRUCTURE
CONTROL
CONTROL
CONTROL
COMPILER
CONTROL
INPUT/OUTPUT
CONTROL
CONTROL
CONTROL
INPUT/OUTPUT
CONTROL
CONTROL
STRUCTURE
STRUCTURE
STRUCTURE
CONTROL
CONTROL

Statement Type

NZRMAL M@DE
#BJECT

PAUSE
PERMANENT EVENT
PLACE

PLACE ENTRY
PRZCEDURE
PRZGRAM @BJECT
READ
READWRITE
REAL

REM@ZVE

REMZVE ENTRY
REPLACE
REPLACE ENTRY
RESET LENGTH
RETURN

REWIND

- STEP

SUSPEND FAP LISTING
UNLESS

UNLZAD

VECTZR

WRITE

19

Primary Punction

STRUCTURE
STRUCTURE
CONTROL
STRUCTURE
PROCESSING
PROCESSING
STRUCTURE
STRUCTURE
INPUT/OUTPUT
INPUT/OUTPUT
STRUCTURE
PROCESSING
PROCESSING
PROCESSING
PROCESSING
PROCESSING
CONTROL
INPUT/OUTPUT
CONTROL
COMPILER
CONTROL
INPUT/OUTPUT
STRUCTURE
INPUT/OUTPUT

The standard MILITRAN coding sheet 18 shown below,.

MILITRAN CODING FORM

tdentitication CODER
| W — DATE
73 60 PAGE . OF
STATEMENT
LABEL MILITRAN STATEMENT
17 ﬁ {! 32 37 42 47 46; 87 62 (34 lg’
i L 1 i i L i 1 i 1 1 1
i 1 1 I i i 1 i] o i Il
A 1 1 1 1 I 1 1 1 i 1 1
[1 i L A 1 [1 i i 1 I
e —— 1 1 1 i 1 1 1 1
\ n 1 L .
\

MILITRAN statements are written one to a line in
columns 13-72, If.a statement is too long for a line, it
may be continued on one or more successive lines by placing
a numeric character in column 12, For the initial line of

a statement, column 12 must be blank,

Statement labels may be written in columns 1
through 11, A label i8 a group of alphameric ©¢haracters,
not exceeding 11 in number, the first of which 1s alphabetic,
These labels permit the programmer to refer to statements
within the program, For example, the statement GO TO AB 12
would result in a transfer of control to the MILITRAN state-
ment AB 12,

20

Comments to explain the program may be included
in a MILITRAN source program, These comments are not proc-
essed by MILITRAN but are printed on the listings produced
when the source program is translated into the object pro-

gram,

Comments may be stated in either of the following

two ways,

1, If 1t 18 desired to insert a complete separate
line of comments, any non-blank, non-numeric¢ character

should be written in the continuation column (e¢olumn 12),

2, If 1t 1s desired to intersperse comments with-
in a line of coding, the comments must be enclosed in two

groups of 3 periods as in:
.+.THESE ARE COMMENTS,..

If a comment occurs at the end of a statement, the terminat-

ing periods may be omitted,
NOTE: 1, Comments cannot appear in a FORMAT statement.

2, Care must be exercised to insure the inclusion
of the correct number of periods when a comment
either directly precedes or follows an arithme-
tie, relational, or logical operator which

itself has periods as part of its notation.

21

Columns 73-80 may be used for any desired identi-
fying information. Information contained in these columns

1s not utllized by the MILITRAN processor except as identification.

No MILITRAN statement may occupy more than ten
cards, excluslve of cards designated as comments by column

12,

Some examples of MILITRAN statements and thelr

effects are:

C=A=x*23B The asterisk indlicates multipll-
catlon. Thus, the statement
means multiply A by B and set C

equal to the result,

B = g/A The slash indicates division,
This causes the computer to di-
vide the value of C by A. Using
the value of C obtained from the

previous example D = B,

22

CHAPTER III

BASIC MILITRAN ENVIRONMENT

The environment of a MILITRAN program is made
up of those elements of information that will be manipulated
by the program, These elements are classifled as either
numeric or non-numeric, MILITRAN provides several modes
of expression for these elements in order to facllitate
the creation and processing of various types of data,
This chapter will discuss the necessary conventions a pro-
grammer must follow in order to establish a program en-
vironment, The first section of the chapter will focus on
elements which are purely numeric in form while the second
section will deal with non-numeric elements and show how
they may be used when appropriate in conjunction with

numeric elements,

As data elements may be arranged in several ways
for the convenience of the programmer, the concepts of
constants, variables, arrays, vectors and lists will be
introduced as the discussion progresses, These terms
specify the manner in which data elements are organized in

the computer and apply to both numeric and non-numeric

elements,

23

1., Numeric Elements

It is possible to write two types of numbers in
the MILITRAN language: integer (or fixed point) numbers
and real (or floating point) numbers, An integer number
is an ordinary whole number, A real number 18 a fraction

between 0,1 and 1,0 multiplied by a power of 10,

Integer Calculations

Calculations with integer numbers are carried
out with whole numbers only; no decimal remainders are

retained or used in computations., For example:

Arithmetic Statement Result of Calculation

I =5/2 I

2 (instead of 2.5,
since the .5 is
truncated)

I=5/2+7/2 I = 5 (intermediate
truncation causes
this to be computed
2+3 rather than
12/2.)

J = 5#2 J =10

K= =4 +1 K= =3

24

Real Caleulations

Real calculations are carried out between two

decimal numbers to an accuracy of 8 decimal digits. For

example:
Arithmetic Statement Result of Calculation
I=25,/2. I=2,5 (2,5000000)
I = 50/20 + 70/2' I = 6.
J=1,6 4% .7 J =1,12
K= <2,7T + 1,2 D= -1.,5

Arithmetic Constants

A constant 1s an element of information whose
predetermined value remains fixed from one execution of
the program to the next, Any quantity which appears in
a MILITRAN statement in the form of a number 1is called
an arithmetic constant, Arithmetic constants may be ex-

pressed in either integer mode or real mode,

Any number written without a decimal point,
using the decimal digits O through 9 is an integer con-
stant., It may consist of from 1 to 11 digits but its

25

magnitude must not exceed 235-1. A preceding + or - sign
is optional and an unsigned integer constant is assumed to

be positive,

Examples:

The following are valid integer constants:

0]

+9
186

-327

On the other hand, the following are invalid

integer constants:

-3.2 (contains a decimal point)

27. (contains a decimal point)

34359738368 (exceeds the magnitude permitted)
9,738,368 (commas not permitted)

Any number written with a decimal point, using
the decimal digits O through 9,1is a real constant, It may
consist of from 1 to 9 significant digits, A preceding +
or - sign is optional and an unsigned real constant is as-

sumed to be positive,

26

An integer exponent preceded by an E may follow
2 real or integer constant, All constants with such an
exponent are considered real, The decimal exponent may
-have a preceding + or - sign. An unsigned exponent is
assumed to be positive, The field following the letter

E must not be blank; it may be zero,

The magnitude of a real constant must be between

1038 and 10738 op be zero.

Examples:
The following are valid real constants and are

exactly equivalent.

10300,
103E2
103E+02
10,3E3
+.103E05
1030000 ,BE-2

The following are not valid real constants:

10300E (field following E 18 blank)
10300 (decimal point omitted)
103E+2,0 (exponent is not an integer

constant)

27

Arithmetic Variables

A variable 1s a symboliec representation of an
element of information that may assume more than one value -
either each time the program is executed or at different
stages within the program, As with constants, an arithmetic
variable may be real or 1nteger, depending on whether the

value it will assume 18 to be real or integer,

Since each variable 1s assoclated with a name, a
discussion of the rules for naming variables is appropriate
at this point. A variable name consists of from 1 to 60
nonblank alphameric characters, except the special characters,
+ = ,)(#,/=, the first of which must be alphabetic., The
rules for naming variables allow for extensive selectivity.

In general it 1s easier to follow the flow of a program if
meaningful symbols are used wherever possible, For example,

to compute distance it would be possible to use the statement

X =Y+ 2
but it would be more meaningful to write

DIST = RATE # TIME

Examples:

The following are valid variable names:

28

MAXIMUM
ALPHA
PLANE

A601

The following are not valid variable names:

6ABC (first character 1s not alphabetic)
BOMB (period not permitted - it is a

special character)

An integer variable may assume any value expres-
sible as an integer constant in the MILITRAN processor. An

integer variable 1s declared as follows:
INTEGER SPEED

where SPEED may assume the value of an integer constant
such as 1 or 20 at one point in the program execution and

622 at another point,

A real variable may assume any value expressible as

a real constant in the MILITRAN processor, A real variable

29

18 declared as follows:
REAL SPEED

where SPEED may assume the value of a real constant such as
1,2 at one point in the program execution and 622,0 at

another point,

NOTE: Both integer and real variables may also be declared
by means of the NORMAL MODE statement, See section on
NORMAL MODE Declaration for description,

Arithmetic Arrays

To this point, we have discussed single elements
of information; however, it i1s often advanfageous to be able
to group elements to refer to the group by one name and to
refer to each individual quantity in the group in term of
its place in the group. A group of elements of information
18 known as a table or an array and each element 18 dis-

tingulished from one another by subscription.

For example, assume the following 18 an array

named TYPE:
21
37
43
51

30

Suppose it 1is desired to refer to the second
quantity in the group; in ordinary mathematical notation
this would be TYPEe. In MILITRAN this would be :

TYPE(2)
The quantity "2" 1s called a subscript. Thus:

TYPE(2) has the value 37
TYPE(3) has the value 43

Similarly, ordinary mathematical notation might
use TYPE to represent any element of the set TYPE, 1In
MILITRAN, this might be written as TYPE(I1) where I equals
1,2,3, or &4,

The array could be two dimensional; for example,

the array QUAN:

Column 1 Column 2 Column 3
Row 1 16 6 34
Row 2 22 15 46
Row 3 13 27 51
Row 4 64 96 88

Suppose 1t is desired to refer to the number in

Row 2, column 3; this would be:

QUAN(2,3)

31

"2" and "3" are subscripts., Thus:

QUAN(%4,2) has the value 96

Similarly, ordinary mathematical notations might
use QUAN1 J to represent any element of the set QUAN, In
»
MILITRAN this might be written as QUAN(I,J) where I equals

1,2,3, or 4 and J equals 1,2, or 3.

MILITRAN allows a great deal of latitude in the
designation of arithmetic subscripts. The only form a
subscript may not have is that of a logical variable or

logical constant, (See section on Logical Elements .)

Some examples of subscripts are:

DIST

21

2.4

TIME

A+ B

A/B

C»D
The names shown above may be real or integer variables and
variables in a subscript may themselves be subscripted,

However, if a subsoript of real mode is used 1t will be

truncated to an integer value,

32

An arithmetic subscripted variable is an integer
or real variable, followed by parentheses which enclose the
subscripts., These subscripts are separated from each other
by commas and a8 comma 1is not allowed after the last sub-
script. Arithmetic subscripted variables may have any num-

ber of subscripts.,

Examples:
FIELD(2)
DAMAGE ACTION(5, SHIPTYPE)
MAX(J,K,L)
RANGE(TYPE,FUEL,ALT,SPEED, PAYLOAD)

The arithmetic array declaration statement de-
clares both the mode and dimensions of the array., This
statement does not generate any instructions in the object
program; rather, it provides the MILITRAN processor with
the information necessary to reserve locations in the com-
puter memory for storage of the various elements of the
array and also indicates i1f these elements will be REAL or
INTEGER variables,

The following statements declare both the mode

and dimensions of arrays:

33

REAL nl(ilgia,...,1k),0..,%(11’12,000’1.1)
INTEGER nl(il,iagooogik)sooo.'nm(illial00091J)

where nl,ne,...,nm are names and 11,12,...,1J are arithmetic

dimensions whose value 18 not less than 1, There 18 no

1limit to the number of dimensions permitted in an array,

A single array declaration statement may specify
any number of arrays; but if more than one array 1is named,
the name of each subsequent array must be preceded by a
comma, Since the array declaration statement 1ists the
maximum dimensions of arrays, references to these arrays

at running time must never exceed the specified dimensions,

When dimensions are the names of arithmetic vari-
ables, the MILITRAN compiler will provide instructions for
entering the numeric values of the dimensions at the time
of initial loading of the program, In this way, a program
may perform calculations on arrays whose size 18 not deter-
mined until the program is executed, Although these
"symbolic dimensions" may be changed during the running
of the program, storage allotment will be determined by

the values originally loaded.

NOTE:

1, Symbolic dimensions may not be subscripted.

34

2, If "symbolie dimensions" are used in proce-
dures, they must be assigned to the COMMON
area, (See section on COMMON Statement .)

3., Symbolic dimensions may be declared only in
the array declaration statement. They must
not be declared as variables in REAL or

INTEGER declarations,

MILITRAN arrays are storel sequentially in decreas-
ing memory addresses, the first subscript varying the most

rapidly.
Examples:

REAL FIELD(4,4,5)

This example is a three dimensional array named
FIELD, for which the subscripts never exceed 4,4, and 5 and

for which 80 storage locations will be reserved.
INTEGER SPEED(PLANE, ALT, WEIGHT, DAMAGE)

The above 18 a four dimensional array named SPEED.,
The size of the array will be determined at program execution

time when the values for the symbolic dimensions - PLANE, ALT,
WEIGHT, DAMAGE - are entered.

35

j?. Non-numerio Elements

This sestion will diseuss the non-numeric elements

which may also be part of the environment of a MILITRAN pro-

gram,

Hollerith Constants

As defined previously, a constant is an element
of information which does not change from one execution of
the program to the next. The Hollerith constant provides
a means of representing alphamerie information in the form
of a constant, It is written using the form "nH", where n
is an unsigned decimal integer whose value is less than 7,

followed by n Hollerith characters, The Hollerith charac-

ters are:

A through 2 space
0 through 9 $

+ *

=]

. /

) =
(?
Any characters permitted by the computer configuration may

be used, even though not part of the character set required

by MILITRAN,

36

Examples:

The following are valid Hollerith constants:

LHTIME -
6HL = 2,

Note that blanks are considered alphameriec char-

acters and must be ;ncluded as part of the count,
The follbwing are invalid Hollerith constants:

11H SIMULATION (exceeds the number of
permissible characters)

BH SHIP (number of charasters specified
by the integer does not corre-
spond to the number of charac-
ters in the constant)

-5H TIME (sign 1s not permitted)

Logical Elements

Logical constants, logical variables and logical
arrays are elements which have or will assume a value of

TRUE or FALSE,

A value which appears in a MILITRAN statement in

the form of TRUE or FALSE is called a logiecal constant.

A logiocal variable is specified by the declaration
LOGICAL which precedes the variable name., For example,

LOGICAL LIVE

declares LIVE to be a logical variable but it does not assune

a value until it is assigned the value TRUE or FALSE as in:

LIVE = TRUE
or

LIVE = FALSE

NOTE: As mentioned above, logical constants and logical

variables may not be used as subscripts,

Logical elements may also be grouped to form an
array., The array declaration statement

LOGICAL n1(11:12: ooo:ik): ooo:nm(11)12.o) .’1.1)

declares NysNoseeesny to be names of arrays, whose elements
will assume a logical value, and 11,12,...,1J are arithmetic

dimensions whose value 18 not less than 1, For example:

LOGICAL CHARACTERISTICS(4,3)

38

defines a two-dimensional logical array called CHARAC-
TERISTICS. The elements in this array may assume a value

of TRUE or FALSE.

Object Elements

The basic elements 1In a simulation program are
individual objects, object types, and object classes.
MILITRAN provides a means of specifying this type of non-
numeric data by the use of symbolic names. The declarations
PRCGRAM OBJECT, OBJECT, and CLASS enable the programmer
to handle these non-numeric elements elther as single

elements or as arrays.

The rules governing the naming of these object
identifiers are similar tothose enumerated above for
arithmetic elements. A name may consist of from 1 to ©O
alphameric characters (except special characters), the first
of which must be alphabetic. The name 1s preceded by a
declaration of OBJECT, PROGRAM OBJECT, or CLASS. As with
arithmetic variables, the following discussion will assume
that object elements may only have arithmetic subscripts.
However, we wlll subsequently show how individual objects
themselves may be used to subscript REAL, INTEGER, LOGICAL,

and PROGRAM OBJECT elements.

OBJECT is a declaration used to define names

as those of objects, The general form of this declaration

iss
OBJECT nl(il),nz(iax...,nm(im)

where NysNnseee N ATE names and 11’12""’1m must be
arithmetic expressions whose value is not less than 1.
Each name must have a dimension because the dimension
specifles- the cardinality of the object element, 1i.e.,
how many obJjects are in the group, If the dimensions

are symbolic, the values would be supplied at load time.

Examples:
OBJECT PLANE (10)

This declaration generates one element named
PLANE and also specifies that PLANE 1s a set or group of
10 planes, The programmer could subsequently refer to
any member of the group of 10 planes - 1.,e, PLANE(3)
PLANE(6) etc., because use of the declaration OBJECT
indicates to the MILITRAN processor that PLANE(3) and
PLANE(6) are members of the group named PLANE, The sub-
scripted name PLANE(5) i1s an identifier which specifies
the fifth PLANE, A reference to any member of the group
named PLANE causes the processor to produce the coding

requlired to generate and save the name of the particular

40

member of the set,

OBJECT CARBINE(400), RIFLE(600)

In this example, the OBJECT declaration generates
two elements - the first 1s named CARBINE and has a cardi-
nality of 300, the second 18 named RIFLE and has a cardi-
nality of 600, As we can see, the declaration OBJECT is
especially useful because it enables the programmer to spe-
cify a group of objects without reserving a locatlon in the
computer memory for each obJject within the group. In other
words, the above example specifies a total of 1000 objects -

yet these obJects ocoupy only a few words of computer memory.

OBJECT PLANE(NUMBER)

This 18 an OBJECT declaration which has a symbolic
dimension. Therefore, the processor would provide the
necessary instructions to load the value of NUMBER which
indicates the cardinality of the object PLANE at program

execution time,

PROGRAM OBJECT 1s a declaration which may be used
to specify a single variable or group of variables which

will assume the value of names, It 18 declared as follows:

41

PROGRAM OBJECT nl’n2’n3

vhere nysNg,Nq &re names, It also may be used to declare
the mode and dimensions of an array or group of arrays
which will assume name values if the deolaration is stated

as follows:

PROGRAM OBJECT nl(ilgiag ooo,ik)) ooo;nm(illiao o0 Olik)
where NisNgseeesny are namba and 11'12""’ik are arithmetic

expressions,
Examples:

PROGRAM OBJECT COMBAT WEAPON

This example specifies one variable which may assume the

value of any object identifier in the object program.
The statement
COMBAT WEAPON = PLANE(S)

would assign to COMBAT WEAPON :the value of the identifier
PLANE(5).

PROGRAM OBJECT TANK(10)

This declaration means that TANK is a one dimensional array
for which the value of the subscript never exceeds 10, This
declaration therefore causes 10 storage locations to be re-

served for the elements of the array named TANK, These

b2

elements will be obJject identifiers,
PROGRAM OBJECT OFFENSIVE WEAPON(5,4),DEFENSIVE WEAPON(6,5,4)

T™Wo arrays are declared above; the first 1s a two dimensional
array named OFFENSIVE WEAPON for which the subscripts never
exceed 5 and 4 and for which 20 storage locations will be
reserved, the second is a three dimensional array called
DEFENSIVE WEAPON for which the subscripts never exceed 6,5
and 4 and for which 120 storage locations will be set aside,
The elements in both arrays will be obJject 1dentifilers,

NOTE: PROGRAM OBJECT differs from OBJECT in that 1t merely
reserves space in the computer memory for subsequent
storage of a varlable or for the elements of an array;
OBJECT reserves space for storage of the name and its

dimension,

The CLASS declaration enables the programmer to
specify that certain properties of designated obJjects or the
objects themselves have common characteristics, and these

common characterlistics form a set or group,

CLASS 18 declared as follows:

43

CLASS(C) CONTAINS 81585500058,

where C is a name and 8,,85,.00,8; are either names of objects
or classes, or names of objects or classes preceded by EACH=,
The names al,aa....,am must be declared before.they are used
to form a class, The implications of the presence or absence

of EACH# are discussed separately below,

The following declaration specifies the obJject

elements which will be used to form classes:
OBJECT FORD(10), MERC(5), LINC(3), CHEV(10), OLDS(5),
CADDY(3), PLY(10, DODGE(5), CHRYS(3)

The following declarations show how classes may
be formed from previously defined objects or classes, which

are not preceded by EACH,

CLASS(ECONOMY) CONTAINS FORD, CHEV, PLY
CLASS(MODERATE) CONTAINS MERC, OLDS, DODGE
CLASS(PRESTIGE) CONTAINS LINC, CADDY, CHRYS

CLASS(PRICE) CONTAINS ECONOMY, MODERATE, PRESTIGE

A1l the object elements within the class and the

class name itself may be referenced. The following table

Ly

indicates the subscripts which may be used with the object

identifiers comprising the above class declarations,

CLASS NAME REPRESENTATIVE
ECONOMY (1) FORD(1)
ECONOMY (2) CHEV(1)
ECONOMY (3) PLY(1)
MODERATE(1) MERC (1)
MODERATE(2) OLDS(1)
MODERATE(3) DODGE(1)
PRESTIGE(1) LINC(1)
PRESTIGE(2) CADDY(1)
PRESTIGE(3) CHRYS(1)
PRICE(1) FORD(1)
PRICE(2) MERC(1)
PRICE(3) LINC(1)

45

MEMBERS OF CLASS

FORD(1,2,...,10)
CHEV(I,Q’QQO’]-O)
iy 4 N ARG &« |

MERC(I,?, 000)5)
OLDB{1:2, vs0a5)
DODGE(1,2,¢4.,5)

LINC(1,2,3)
CADDY(1,2,3)
CHRYS(1,2,3)

FORD(1,2,...,10); CHEV(1,2,...,1C :
PURY020 5 5010)

MERC{1.,2, 44455)5 OLDB(1,2,:4.45)3
DODGE(1,2,...,5)

LINC(1,2,3); CADDY(1,2,3);
CHRYS(1,2,3)

All Fords, Chevs, Plys are members of the class
ECONOMY, This class has 30 members because the OBJECT
declaration specified FORD(10), CHEV(10), PLY(10). There-
fore, the maximum subscript which may be used with each of
the obJect elements specified as members of a class is
equal to the dimension specified in the OBJECT declaration,
Class MODERATE has 15 members; class PRESTIGE has nine mem-

bers,

Since class PRICE is composed of ECONOMY, MODERATE,
and PRESTIGE all the cars which are members of these three
classes are members of the class PRICE, Therefore, class

PRICE has 54 members,

The c¢lass name may also be subseripted, The maxi-
mum subscript for a class name is determined by the format
of the CLASS declaration, In the above example, the members
of the class were not preceded by EACH*, This signifies to
the MILITRAN compller that the separate members of the class
are ldentical in some sense to the other members which have
the same name,,.i.e.: FORD(1) 1s identical to FORD(9);
DODGE(2) is i1dentical to DODGE(4). Because they are identi-
cal, a single representative from each name may be used to
represent the entire group, MILITRAN selects the first one,
Therefore, the maximum subscript which may be used with

a class name is a number equal to the number of representa-

tives in the class, Since class Economy has 3 representatives -

46

FORD(1), CHEV(1), and PLY(1) the maximum subscript that may
be used with ECONOMY is 3, For example:

ECONOMY(1) is equivalent to FORD(1) which in turn
also represents FORD(2,3,...,10).

ECONOMY(2) is equivalent to CHEV(1) which in turn
also represents CHEV(2,3,...,10),

ECONOMY (3) is equivalent to PLY(1) which in turn
also represents PLY(2,3,,..,10),

The subscripts and the meaning of the subscripted
class name for the classes MODERATE and PRESTIGE are deter-

mined in the same manner as for the ECONOMY,

The declaration for class PRICE stated that it
contains ECONOMY, MODERATE, and PRESTIGE, This declaration
means that all members of the CLASS ECONOMY are identical in
some sense and the same is true for all members of the CLASS
MODERATE and all members of the CLASS PRESTIGE, MILITRAN

seleocts 3 representatives for this class, For example:

PRICE(1) i8 equivalent to FORD(1) which in turn
represents FORD(2,3,...,10), CHEV(1,2,...,10), PLY(1,2,...,10).

47

PRICE(2) is equivalent to MERC(1l) which in turn
represents MERC(2,3,...,5), OLDS(1,2,...,5), PLY(1,2,...,5).

PRICE(3) 1s equivalent to LINC(1) which in turn
represents LINC(2,3), CADDY(1,2,3), CHRYS(1,2,3).

_ The name of a member of a class may be preceded
by the functional modifier EACH#, It is used in a CLASS
declaration to specify that the members of a set of objJect
elements are not identical and therefore cannot be repre-

sented by a single membef of the group.
Examples:

OBJECT FORD(10), MERC(5), LINC(3), CHEV(10), oLDS(5),
CADDY(3), PLY(10), DODGE(5), CHRYS(3)

CLASS(ECONOMY) CONTAINS EACH#*FORD,EACH#CHEV,EACH#PLY
CLASS(MODERATE) CONTAINS EACH#MERC,EACH#OLDS,EACH#DODGE

CLASS (PRESTIGE) CONTAINS EACH#LINC,EACH#CADDY,EACH#CHRYS
CLASS(PRICE)CONTAINS EACH#*ECONOMY,EACH*MODERATE,EACH*PRESTIGE

The following table indicates the subscripts which
may be used with the object identifiers in the above class

declarations,

48

CLASS NAME

ECONOMY (1)
ECONOMY (2)

ECONOMY (10)
ECONOMY(11)
ECONOMY (12)

ECONOMY (20)
ECONOMY (21)

EXONOMY (30)

MODERATE(1)

MODERATE(5)
MODERATE(6)

MODERATE(11)

MODERATE(15)

PRESTIGE(1)

PRESTIGE(3)
PRESTIGE(%)

PRESTIGE(T)

PRESTIGE(S)

REPRESENTATIVE

MEMBERS OF CLASS

FORD(1)
Fogn(z)

FORD(10)
CHEV(1)
CH?V(Q)

cxév(lo)
PL¥(1)

PLY (10)

MEgc(l)

MERC (5)
0Lps(1)

DODGE(1)

DODGE(5)

LI?C(I)

LINC(3)
CA?DY(I)

cuéys(l)

CHRYS(3)

FORD(1,2,...,10); CHEV(1,2,,...,10):"
PLY(1,2,...,10)

MERC(]-,Q, (] 0.,5); OLDS(1’2’ L 0’5);
DODGE(1,2,.4.,5)

LINC(1,2,3); CADDY(1,2,3);
CHRYS(1,2,3)

¥

CLASS NAME

PRICE(1)
PRICE(2)

PRICE(11)

PRICE(20)
PRICE(21)

PRICE(30)
PRICE(31)

PRICE(35)
PRICE(36)
PRIéE(uo)
PRICE(41)
PRIéE(us)
PRICE(46)
PRI%E(ug)
PRIéE(52)

PRICE(SY)

REPRESENTATIVE

FORD(1)
Fogn(z)

caév(l)

CHEV(10)
PLY(1)

PL@(10)
ME30(1)

MERC (5)
OL?S(I)

OLDS(5)
DO?GE(I)

DODGE(5)

LI?C(I)

CADDY(1)

cm:ws(1)

CHRYS(3)

50

MEMBERS OF CLASS

PORD(1,2,44¢,10)3 CHEV(1,2,,..,,10);
PLY(1,2, v 00 10)

MERC(1,2; ¢46055) 5 OIDS(1,2,450s5);5
DODGE(1,2,...,5)

LINC(1,2,3); CADDY(1,2,3);
CHRYS(1,2,3)

The rules governing the subscripting of the mem-
bers of the class are the same as stated for the previous

example,

However, since the members of the class are pre-
ceded by EACH* this signifies to the compiler that the
separate members of the class are not identical to other
membera,whiéh have the same name...i.e,, FORD(1) 1s not
identical to FORD(6); CADDY(1) 1s not identical to CADDY(3).
Since they are not identical, a single representative from
each name cannot represent the entire group. Therefore,
when the name of class members are preceded by EACH*, the
maximum subscript that may be used with the class name is a
number equal to the sum of the maximum subscripts of the
members of the class. For example: the maximum subscript
for the class ECONOMY is 30 because the maximum subscript
for FORD is 10, for CHEV 10, for PLY 10.

The subscripts and the meaning of the subscripted
class.name for the classes MODERATE, PRESTIGE and PRICE are

determined in the same manner as for the oclass ECONOMY.

The next two examples show how a class may be com-
posed of object elements, which may or may not be preceded

by EACH*,

51

OBJECT PORD(10), MERC(5), LINC(3), CHEV(10), OLDS(5),

CADDY(3), PLY(10), DODGE(5), CHRYS(3)

CLASS(CAR) CONTAINS EACH*FORD, MERC, LINC, EACH*CHEV

OLDS, CADDY, EACH*PLY, DODGE, CHRYS

CLASS NAME REPRESENTATIVE MEMBERS OF CLASS
CAR(1) FORD(1) FORD(1,2,...,10);MERC(1,2,...5);
LINC(1,2,3)

CAR(2) FORD(2) CHEV(1,2,...,10);0LDS(1,2,...,5);
: : CADDY(1,2,3)

ChALE) BORGI0) PLY(1,2, ...,10);DODGE(1,2, .. .,5);

CAR(11) MERC(1) CHRYS(1,2,3)

CAR(12) LINC(1)

CAR(13) CHEV(1)

CAR(1%4) CHEV(2)

CAR(22) CHEV(10)

CAR(23) OLDS(1)

CAR(24) CADDY(1)

CAR(25) PLY(1)

CA§(26) P;Y(z)

CAR(34) PLY(10)

CAR(35) DODGE(1)

CAR(36) CHRYS(1)

52

OBJECT MERC(5), CADDY(3), DODGE(5), CHRYS(3)

CLASS (MODERATE) CONTAINS MERC, DODGE
CLASS (PRESTIGE) CONTAINS EACH*CADDY, EACH*CHRYS

CLASS (CAR) CONTAINS EACH*MODERATE, PRESTIGE

CLASS NAME

MODERATE (1)
MODERATE(2)

PRESTIGE(1)
PRESTIGE(2)
PRESTIGE(3)
PRESTIGE(4)
PRESTIGE(5)
PRESTIGE(6)

CAR(1)
CAR(2)
CAR(3)

REPRESENTATIVE

MERC (1)
DODGE(1)

CADDY (1)
CADDY (2)
CADDY(3)
CHRYS(1)
CHRYS (2)
CHRYS(3)

MERC (1)
DODGE(1)
CADDY (1)

53

MEMBERS OF CLASS

MERC(J-,Q,...;5);DONE(1,2,...,5)

CADDY(1,2,3);CHRYS(1,2,3)

MERC(1,2,...,5);DODAE(1,2,...,5)

CADDY(1,2,3);CHRYS(1,2,3)

3, NORMAL MODE Declaration

In the discussion of the different elements
which may comprise a program environment, we have seen
that these elements may be deécribed as having modes:
real, integer, logical or program object, If the element
is a variable, the mode may be specified in a REAL, INTEGER,
LOGICAL or PROGRAM OBJECT statement, Another method of
declaring the mode of variables is through the use of the
NORMAL MODE declaration, This declaration allows the pro-
grammer to specify a convention by which names not explicitly
declared may be agsigned modes, Although the NORMAL MODE
declaration is used to set the mode of variables instead
of the regular declarations of REAL, INTEGER etc., a
declaration of NORMAL MODE does not override a specific

declaration of mode,
NORMAL MODE is declared as follows:
NORMAL MODE my (87,855 00,8,),My(Dy,bp,...,b)

where m, and m, are mode names (REAL, INTEGER etc.) and

815805 0008y and bl’b2""’br are single alphabetic characters,

The statement causes all names beginning with the letters

8158500058 to be assigned the mode specified by my and all

names beginning with the letters bl’b2””’br to be assigned

54

the mode specified by m,. Any letters which have not been
specifically associated with a mode name will be assigned
to REAL MODE,

Examples:
NORMAL MODE REAL(A,B,C,D,E,P,G,H,I,J,K),

INTEGER(L,M,N,0,P,Q,R,S,T,U,V,¥,X,Y,Z)

Names of variables beginning with the letters A
through K are assigned REAL MODE: names beginning with L
through Z are assigned INTEGER MODE.

NORMAL MODE REAL(A,B,C,D,E), INTEGER(F,G,H,I,J)

LOGICAL(L,M,N,0,P), PROGRAM OBJECT(Q,R,S,T,U,V,W,X,Y,~

Names beginning with A through E are assigned
REAL MODE: names beginning with F through J are assigned
INTEGER MODE; names beginning with L through P are assigned
LOGICAL MODE, and those beginning with Q through Z are as-
signed PROGRAM OBJECT MODE,

NORMAL MODE INTEGER(A,B,C,D), LOGICAL(E,F,G,H)

Names beginning with A through D are assigned
INTEGER MODE and those beginning with E through H are

55

assigned LOGICAL MODE, Since I through Z are not specifil-
cally associated with a mode, all names beginning with
these letters would be assigned to REAL MODE.

If the NORMAL MODE statement 18 written as:
NORMAL MODE ml(al,aa....,ak),ma(bl,ba,...,br),mB

all the names beginning with letters not specifically
associated with mys Or my would be assigned to the mode
specified by m3.

Examples:

NORMAL MODE REAL(A,B,C), INTEGER(D,E,F,G), PROGRAM OBJECT

Names beginning with A, B, and C are assigned
REAL MODE and those beginning with D through G are assigned
INTEGER MODE, Since PROGRAM OBJECT does not have any letters
specifically associated with it, all unspecified letters (H
through Z) are assigned PROGRAM OBJECT MODE,

‘If the statement 1s written as:

NORMAL MODE INTEGER

or
NORMAL MODE PROGRAM OBJECT

56

every letter would be assigned to the mode specified in the
NORMAL MODE statement.

Each NORMAL MODE statement sets the mode for
names beginning with the specified letters until overriden
by a subsequent NORMAL MODE statement, If an unspecified
variable is declared (one which is not preceded by a mode
description) before a NORMAL MODE statement is given, the
MILITRAN compiler will assign the mode REAL to the unspeci-

fied element.

4, Vectors

The MILITRAN program environment may also be
comprised of elements of information in the form of vectors,

a vector being a group of arrays.
The vector declaration is written as:
VECTOR N((al,ag,...,ai), dl’d2"”’d1)

where N i8 the name of a vector; al,az,...,a are the vector

ot
components, each of which 18 a name and all of which are
associated with name "N"; and dy,d5,...,d, are the dimensions

associated with each component.

Retrieval of any member of the vector may be

accomplished in the following manner:

o7

1, by subscripting the name of the vector compo-
nent (array), in which case the number of subscripts 1is

equal to the number of arguments in the dimension,

2. by subscripting the name of the vector, in
which case the number of subscripts is equal to the number
of arguments in the dimension + 1. The terminating sub-

script denotes the vector component. For example:

VECTOR Q((QR,QS,QT),%,5)

defines a vector "Q" comprised of three components, QR, QS,
QT, each of which 18 a two dimensional array for which 20
storage locations will be reserved, resulting in a total
storage allocation of 60 for the vector., The assignment of
storage 1s such that all of QR 1s followed by all of QS,
"which is followed by all of QT.

Suppose it 18 desired to retrieve the twentieth
element in the vector. If the name of the vector component

is subscripted, it would be written as:

QRr(4,5)

If the name of the vector itself 1is subscripted, it would

be written as:

Q(4,5,1)

58

(The third subscript "1" indicates the first component "QR".)

Similarly, Q(4,2,3) refers to the same element as QT(4,2).

Modes of Vectors

Beth the vector name and the component names always
have a mode but there is no requlrement that these modes be
the same or that they be compatible. The mode or modes of a
vector and 1ts components may be declared in REAL, INTEGER,
PROGRAM OBJECT and LOGICAL declarations, or they may be as-
signed the NORMAL MODE. Hcwever, if the mode of the vector is
not compatible with the mode or modes of the components, the
compller will always assume that the data involved 1s already
as of the same mode of the name that 1s used. The following
rules determine the mode that wlill be assigned to a vector and

its component arrays.

1, If both the name of the vector and its compo-
nents are each specifically declared in REAL, INTEGER, PROGRAM
OBJECT, or LOGICAL declarations, the vector and the components
of the vector are each assigned the mode specified by the

declaration.

Examples:
REAL A
INTEGER B,C
PROGRAM OBJECT D
LOGICAL E

VECTOR A(G(B,8,0,8].,2,3)

g

INTEGER A
REAL B,C,D,E
VECTOR ~(B,C,D,E),2,3)

REAL A,B

INTEGER C,D

PROGRAM OBJECT E
VECTOR A(B,C,D,E),2,3)

In the above examples, the modes of the vector "A"

and its components "B,C,D,E" are those so designated by the

mode declarations,

2. If the name of the vector is not specifically
declared but the component names are each specifically
declared in REAL, INTEGER, PROGRAM OBJECT, or LOGICAL
declarations, the vector name i8 assigned the NORMAL MODE
in effect at the appearance of the VECTOR statement, and
the component names are assigned the mode specifically de-

clared for each component,

Example:
INTEGER B,C
PROGRAM OBJECT D
LOGICAL E
VECTOR A((B,C,D,E),2,3)

60

The mode of vector "A" 1s the NORMAL MODE in
effect at the tiﬁé the vector statement is encountered by
the compiler, The mode could be REAL, INTEGER, PROGRAM
OBJECT, or LOGICAL,

3., If the name of the vector is specifically
declared and the names of the components are not specifi-
cally declared, the components are assigned the same mode

as declared for the vector name itself.

Example:
REAL A
VECTOR A((B,C,D,E),2,3)

Components "B,C,D,E" are assigned the REAL mode

INTEGER A
PROGRAM OBJECT D, E
VECTOR A((B,C,D,E),2,3)

Components B,C are assigned INTEGER mode. D,E
are assigned PROGRAM OBJECT mode,

k, If both the name of the vector and the names
of 1its components are not specifically declared, the vector
and its components are assigned the NORMAL mode in effect

at the appearance of the vector statement,

61

Example:

VECTOR A((B,C,D,E),2,3)

"A" and "B,C,D,E" are all assigned the NORMAL mode.

NOTE: 1In all of the above examples, the mode of the vector
and its components could have been declared after the
appearance of the VECTOR statement., A specific decla-

ration anywhere in the program overrides NORMAL MODE.

5. COMMON Statement

The COMMON statement provides the programmer with
the option of controlling the assignment of the locations
whiech will be occupied by variable data., The form of the

COMMON statement is:

COMMON Ny,N55...,0

where each n is the name of a varlable, nonsubscripted array
name, nonsubscripted vector name, or nonsubscripted list

name,

Variable names which appear in a COMMON statement
are assigned to a separate portion of memory, enabling a
program and 1ts subprograms to share storage locations, For
example, during execution of a MILITRAN program, while dif-
ferent varilable data may be required at different times by

62

separately compiled portions of the program, it may not be
necessary for all such data to occupy distinct storage lo-
cations, The COMMON statement enables such variable data

to share storage locations, resulting in a large saving of

storage space,

The locations assigned to the variable names
appearing in COMMON statements are assigned in the sequence
in which the names appear in the statements, starting with

the first COMMON statement of the program,.

Use of the COMMON statement also permits the data
stored in the COMMON area to be accessed by programs which
have been complled séparately. In this way, arguments which
are required for functions or subroutines may be transmitted
from one program to another, This may be accomplished by
having the corresponding variables occupy the same location
in the COMMON area, which in turn 1s accomplished by having
them occupy correspondirg positions in the COMMON statements

of the two programs,

For example, if a program has the following COMMYON
statements:
COMMON A,B,C,D
COMMON SPEED, DIST, RATE

the variables will appear in the COMMON area in the following

sequence:

63

o a w »

SPEED
DIST
RATE

If another program required only the use of vari-
ables B,C, SPEED, and RATE, dummy variables could be named
in the COMMON statements of the second program in order to
force reservation of the necessary locations to cause the

same locations to be assigned to the corresponding variables.

NOTE: If an array, vector,_or 1list 1s assigned to the COMMON
area, the name as it appears in the COMMON statement
is nonsubscripted, The amount of space to be reserved
is determined by the dimension that has been stated in

the array, vector, or 1list declaration,

6. Object Flements used as Dimensions and Subscripts

The discussion of the use of nonnumeric elements as
dimensions and subscripts has been deferred in order to per-
mit a sequential explanation of the various types of decla-

rations, However, each of the array and vector declarations

64

may be dimensioned or subscripted by an object element,

Object Elements used to Specify Dimensions

In order to specify the dimension of an array or
vector by using an object element, the object must be de-
¢lared in:

1, An OBJECT declaration, or

2. A CLASS declaration

The value of the dimension will be the cardinality of the
object.

For example, if obJject elements are declared as

follows:

OBJECT_FORD(IO), MERC(5), LINC(3)

the dimensions of an array could be specified as:

REAL SPEED (FORD, MERC, LINC)

SPEED is a three dimensional array for which 150
locations will be reserved because the value of each dimen-
sion 1s specified by the cardinality of the designated
object,.-

65

The next three examples use a CLASS name to

specify a dimension,

OBJECT FPORD(10), MERC(5), LINC(3), CHEV(10), OLDS(5),
CADDY(3), PLY(10), DODGE(5), CHRYS(3)

CLASS ECONOMY CONTAINS FORD, CHEV, PLY
CLASS MODERATE CONTAINS EACH*MERC, EACH*OLDS, EACH*DODGE
CLASS PRESTIGE CONTAINS EACH®*LINC, EACH*CADDY, CHRYS

REAL SPEED (ECONOMY)

Speed 18 now a one dimensional array for which 3

locations will be reserved,

REAL SPEED (MODERATE)

Speed is a one dimensional array for which 15

locations will be reserved,

REAL SPEED (PRESTIGE)

Speed 18 a one dimensional array for which 7

locations will be reserved,

66

Object Elements used as Subscripts

Subsoripted OBJECT names, subscripted CLASS names,
and PROGRAM OBJECT names which may or may not be subscripted
may be used to subsoript REAL, INTEGER, LOGICAL, and PROGRAM
OBJECT elements, For example, if certain elements are de-

clared as follows:

OBJECT FORD(10), MERC(5), LINC(3), CHEV(10), OLDS(5),
CADDY(3), PLY(10), DODGE(5), CHRYS(3)

CLASS ECONOMY CONTAINS FORD, CHEV, PLY
CLASS MODERATE CONTAINS EACH*MERC, EACH*OLDS, EACH*DODGE

CLASS PRESTIGE CONTAINS EACH*LINC, EACH*CADDY, CHRYS

PROGRAM OBJECT THIS CAR, POOL CAR(3)

CLASS CAR CONTAINS EACH*ECONOMY, EACH*MODERATE, EACH*PRESTIGE
REAL COST (CAR)

INTEGER AGE (CAR)

the following are some of the object elements which might be

used as subscripts:

67

coST (FORD(3))
coST (MERC(%))
cosT (CAR(10))
cOST (THIS CAR)

COST (POOL CAR(2))

which 1s COST (1)
which is €oST (7)
which is COST (10)
whose value depends
upon that of "THIS CAR"
whoﬁe value depends

upon that of POOL CAR(2)

CHAPTER IV

PROGRAMMING IN MILITRAN:

ARITHMETIC AND LOGICAL PROCESSING

The preceding chapters discussed the elements
of information which comprise a program environment —
the data whicy are referenced by the program in order to
solve a problem and the instructions to the compiler
which provide information about the source program. This
chapter will explain some of the statements which cause

calculations to occur and decisions to be made.

l. Expressions

A MILITRAN expression 1s a sequence of constants,
subscripted and non-subscripted variables separated by
operation symbols, commas, and parentheses. The MILITRAN

language contains two kinds of expressions: arithmetic

and loglcal,

The simplest form of an arithmetic expression
is a single quantity. This quantity may be an arithmetic
constant or an arithmetic variable - subscripted or non-

subseripted,

69

Examples:

3
7.4
MAX

TIME(2)

Compound arithmetic expressions may be formed

by combining simple arithmetic expressions through the

use of arithmetic operators, These operators are:

ABS(x)
.

»

/

+

absolute value of x
exponentiation
multiplication
division

addition

subtraction

If A and B are any arithmetic expression, then

these operators

ABS(A)
A.P.B
A»B
A/B
A+B
A-B

means
means
means
means
means
means

are

the
the
the
the
the
the

defined in the following manner:

positive magnitude of A B
value of A raised to the power B,.(A")
value of A multiplied by the value of B
value of A divided by the value of B
value of A plus the value of B

value of A minus the value of B

70

For Example:
ABS(MINIMUM)
3.6 .,P,I
RATE + TIME
DIST(I)/TIME(J)

ALPHA + BETA
ALPHA - BETA

In expressions with three or more variables,
some means for describing the exact order in which the
operations are to be performed is necessary. For example,

the expresaion:

X+Y¥+2

may be computed in two ways, One way is to add X and Y
and multiply the sum by Z. The other is to multiply Y
by Z'and add X to the product, Therefore in order to
clarify the order of operations, MILITRAN prescribes a

firm set of rules. The order of precedence is as follows:

ABS(x)
B
/

*

Tl

In the example, X + Y # Z, MILITRAN would
multiply Y by 2 and add X to the produoct,

The following examples illustrate the ordering
of expreaaionﬁ:
2.P.3-4 gives 4 exponentiation is per-
formed before addition

or subtraction.

2.,P,3/2 gives &4 exponentiation is per-
formed before multi-

plication or addition,

3+T »R gives 17 multiplication is per-
formed before addition

or subtraction,

In the next example, 4if A has assumed a value
of - 2 the use of the operatq? ABS would cause MILITRAN
to evaluate A and place its new value in the expression
which would then be evaluated according to the rules
defined above,

4 + 6 » ABS(A) @gives 16 the absolute value of
A 18 2 which 1s then
multiplied by 6,
When 4 18 added to
the resulting pro-
duct, a value of 16

18 obtained,
T2

When two or more operations are to be computed,
the ordering rules may considerably alter the result., For

example:

20/4+5 gives 25

If 1t were intended that the multiplication occur first,

the expression should be written as:
20/(4#5) gives 1

The above example 1llustrates the method used
to override the order of operations. Parentheses are

used to specify the order of operations in an expression.

Examples:
2 +4 %3 -6/2 gives 11 as a result,

whereas

((2 +4) =3 -6) /2 gives 6,

The expression

A+B'CN+E.P.F-G

will be taken to mean

A+ % +« B 4+ EF - @a

73

Using parentheses, the expression could be
written,
(A +B) «C/D+EPF-0

which would be taken to mean

(A + B) + %- +E -a

Expressions with repeated exponentiation must
have clarifying parentheses, For example:

(2. F.2) 0.3 gives 64

2.P, (2.P.3) gives 256

Arithmetic expressions may be of a single mode
or a combination of real and integer modes., However, 1if
the elements comprising an expression are of mixed modes,
the appearance of a real variable of a real constant with a
fractional part causes the entire expression to be evalu-
ated in the real mode, For example:

3.2/2 gives 1.6

because the divisor 2 is first evaluated as a real number,

If a real constant or real variable 18 used as
a subscript or an argument of a dimension, the real quan-
tity will be truncated to an integer value before use,

For example, if I assumes the value 7.4 and is later used

T4

as a subscript in an expression as in
A + B + B(I)
I would be truncated to 7 before the evaluation of the

expression,

Logical Expressions

A logical expression consists of certain se-
quences of logical constants, logical variables, arithmetic
expressions, and object -elements separated by logical
operators or relational operators, A logical expression
always has the value TRUE or FALSE, The simplest form of
a logical expression is a single quantity - a logical con-

stant or logical variable (subscripted or non-subscripted).

Examples:
TRUE
FALSE
PLANE(2) (where PLANE has been defined as
a LOGICAL array)

Compound logical expressions may be formed by
combining simple logical expressions through the use of
logical operators. Logical operators may operate only
on logical expressions., They are listed below in de-

creasing order of precedence:

75

. NOT, Negation

+«AND, Conjunction
+EXOR, Exclusive disJjunstion
+OR, Dis junetion
+EQV, Equivalence

The periods are part of the logical operator

notation and must be present,

If A and B are any logical expressions, then

the logical operators are defined in the following manner:

.NOT,A has the value TRUE only if A is
FALSE; 1t has the value FALSE
only if A 1is TRUE,

A ,AND,B has the value TRUE only 1if both A
and B have the value TRUE; other-
wise 1t has the value FALSE,

A.OR.B has the value TRUE 1f either A
or B 18 TRUE; it has the value
FALSE only 1if both A and B are
FALSE,

A .EXOR,B has the value TRUE if either A is
TRUE and B is FALSE or A is FALSE
and B is TRUE; it has the value
FALSE only 1if both A and B are TRUE

or if both A and B are FALSE,

76

A ,EQV.B has the value TRUE either if both
A and B have the value TRUE or if
both A and B have the value FALSE;
otherwise it has the value FALSE,

The logiocal operator .NOT, must be immediately
followed by a logical expression., The other logical
operators must be preceded and followed by logical ex-

pressions to form compound logical expressions,

Examples:

+NOT ,TRUE always has the value FALSE

+NOT ., FALSE always has the value TRUE

TRUE,AND ,FALSE always has the value FALSE

TRUE,OR,FALSE . always has the value TRUE

PLANE1l,OR,PLANE2 may have the value TRUE or FALSE
depending on the values of the
logical variables PLANEl1 and PLANEZ2,

FALSE,EXOR,TRUE always has the value TRUE

TRUE,EXOR,TRUE always has the value PFALSE

SWITCH1 ,EXOR,SWITCH2 may have the value TRUE or FALSE
depending on the values of the

logical variables SWITCH1 and
SWITCH?2

{4

SWITCH1 ,EQV,.SWITCH2 the logical variables SWITCH1
and SWITCH2 must have the same
value for the statement to be

TRUE

The above examples are logical expressions which
have only one logical operator. The following examples
illustrate the use of several logical operators in compound
expressions and the use of parentheses for the purpose of

overriding the hierarchy of operations.

The logical expression:
.NOT , TRUE ., AND , FALSE
has the value FALSE because ,NOT, operates only on the
logical constant, variable, or expression immediately to
the right, However, if the expression is written as
.NOT, (TRUE,AND,FALSE)
it would have a value of TRUE, because the expression

(TRUE.AND,FALSE) would be evaluated first.

In the next example:
(X.AND, .NOT.Y) .OR, (.NOT.X.AND,Y)
the expression would have a value of TRUE if X is TRUE and
Y is FALSE or if X is FALSE and Y 18 TRUE, It could only

have a value of FALSE if both X and Y are TRUE 1if both
X and. Y are FALSE,

78

Relational Expressions

MILITRAN provides a further extension to the
set of logical operators in order to permit the formation
of compound logical expressions, This second group of
operators is called relational operators, One set of re-

lational operators acts on arithmetic elements, the other

set acts on object elements,

An arithmetic relational expression consists of
two arithmetic expressions, separated by an arithmetic
relational operator., An arithmetic relational expression

always has the value TRUE or FALSE,

The arithmetic relational operators are:

E. equal to

.NE, not equal to

Q. greater than

.CGE, greater than or equal to
- less than

+LE, less than or equal to

The periods are part of the arithmetic relational

operator notation and must be present,

79

If A and B are any two arithmetic expressions,

then the arithmetic relational operators are defined as

follows:

AE.B

A.NE.B

A.G.B

A.GE.B

A.LE.B

has the value TRUE only 4f the value of A 1s
equalﬁto the value of B; otherwise it has the
value FALSE,

has the value TRUE only 1f the value of A is
not equal to the value of B; otherwlse it has
the value FALSE.

has the value TRUE only if the value of A is
greater than the value of B; otherwise 1t has
the value FALSE,

has the value TRUE only 1f the value of A is
greater than or equal to the value of B; other-
wise 1t has the value FALSE,

has the value TRUE only 1f the value of A is
less than the value of B; otherwise i1t has the
value FALSE,

has the value TRUE only if the value of A is less
than or equal to the value of B; otherwise it

has the value FALSE,

The two arithmetic expressions in a relational

expression may be of the same mode or one may be real and

80

the other integer, In the latter case, the integer ex-

pression will be evaluated and the result converted to

a real number before 1t is compared to the second ex-

pression, For example, if A and B are integer varilables

and C and D are real variables in the relational expression
(A + B) .LE. (C/D)

A would be added to B, C would be divided by D and the

sum of A + B would be converted to a floating point number

before 1t 18 compared to the result of the division.

NOTE: Integer numbers greater than 227-1 cannot be accu-
rately converted to floating point numbers, Therefore,
care should be exercised in the constructlion of relational

expressions of mixed modes,

Examples:
In the following examples, A and B are integer
varlables and C and D are real variables,
A.E.,2 this expression has the value
TRUE only if the integer var-

. i1able A 1s equal to 2,

D.NE.6.9 this expression has the value
TRUE only 1f the real varia-

ble D 18 not equal to 6.9

B.GE,.(C+6.2)#(D/3) this expression has the value

82

TRUE only if the variable

B is greater or equal to
the value of the expression
(c+6.2)#(D/3.). 1In accord-
ance with the rule that the
appearance of any floating
point element causes the
entire expression to be
evaluated in the floating
point mode, the following
sequence of events would
occur before the comparison
is effected.

1., the real variable C 1is
added to the real constant
6.2,

2., the integer constant 3
is floated before it is used
as the divisor in (D/3).

3. the two floating point
results are multiplied.

4, since the final product
i8 a floating point number,
the integer variable B 1is
converted to a real number
before the comparison is

effected.

An object relational expression consists of two
single object elements separated by an object relational
operator, An object relational expression always has the

value TRUE or FALSE,

ObJject relational operators may operate only on
object elements, The object relational operators are:

o TN’ inclusion

s, equivalence

The periods are part of the object relational

operator notation and must be present.

The general form of an object relational ex-
pression which uses the object relational operator ,IN. is
A,IN,B
where A 18 a single object element and 1s declared as
follows:
1. 4in a PROGRAM OBJECT declaration, If the
PROGRAM OBJECT declaration refers to a
single variable, A 18 not subscripted;
but 1f the declaration specifies an array,

then A must be subscripted.

83

in an OBJECT declaration A must be sub-
cripted because an OBJECT declaration
always specifies a group of elements,

in a CLASS declaration where A is a
member or the name of a class. A must
be subscripted because it represents one

objJect within the class,

and B 18 the name of a group of object elements, and

therefore 18 never subscripted. B 18 declared as follows:

1,
2,

in an OBJECT declaration
in a CLASS declaration where B is the

name of a clasas,

If A and B are any object elements and have been

declared in accordance with the rules stated above, then

A.,IN.B 18 TRUE:

1,

if A 18 a subscripted object element
(e.g.MERC(4)) or a PROGRAM OBJECT that
takes on the value of the object element,
and B 18 the name of the object set of

which A i1s a member,

Example:

OBJECT MERC(10)

MERC(4) ,IN.MERC

has the value TRUE because MERC(4) 1s a
subscripted object element that is a member

of the object set MERC,

84

i1f A is a subscripted object element (e.g.
MERC(4)) or a PROGRAM OBJECT that takes on
the value of the object element and B 1s a
class which contains the object set (preceded
or not preceded by EACH#) of which A 18 a

member,

Example:

OBJECT MERC(10)

CLASS (MODERATE) CONTAINS MERC
OBJECTo;ERC(IO)

CLASS (MODERATE) CONTAINS EACHs MERC
MERC(4) ,IN ,MODERATE

has the value TRUE because MERC(4) 1s a
subscripted object element that is a member
of the class MODERATE,

if A 18 a subscripted object element (e.g,
MERC(4)) or a PROGRAM OBJECT that takes on
the value of the obJect element and B is a
class which contains a class (preceded or
not preceded by EACH#) which in turn contains
the obJect set of which A (preceded or not

preceded by EACHs#) is a member.

Example:

OBJECT MERC(10)
CLASS (MODERATE) CONTAINS EACH#MERC

85

I

CLASS (PRICE) CONTAINS EACH# MODERATE
OBJECT M%ﬁc(lo)

CLASS (MODERATE) CONTAINS EACH#MERC
CLASS (PRICE) CONTAINS MODERATE
OBJECT Mg§0(10)

CLASS (MODERATE) CONTAINS MERC

CLASS (PRICE) CONTAINS EACH» MODERATE
OBJECT M§§C(10)

CLASS (MODERATE) CONTAINS MERC

CLASS (PRICE) CONTAINS MODERATE

MERC (4) .IN,PRICE

has the value TRUE because MERC(4) is a
subscripted object element that 18 a
member of the class MODERATE which in

turn 18 a member of the class PRICE,

4, 4f A is a subscripted class element or
a PROGRAM OBJECT that takes on its value,
A must be traced back to a subscripted
object element in order to determine whether
A,IN,B 18 TRUE as shown 1in the examples

given above,

Examples:
The OBJECT and CLASS declarations which are

used to i1llustrate the evaluation of ,IN, expressions

86

in the following examples are identical to the ones used
in the section on classes, in order to permit reference

to the table of subscripts.

OBJECT FORD(10),MERC(5),LINC(3),CHEV(10),0LDS(5),
CADDY(3),PLY(10),DODGE(5),CHRYS(3)

CLASS (ECONOMY) CONTAINS FORD,CHEV,PLY

CLASS(MODERATE)CONTAINS MERC,OLDS,DODGE

CLASS(PRESTIGE)CONTAINS LINC,CADDY,CHRYS

CLASS(PRICE)CONTAINS ECONOMY ,MODERATE,PRESTIGE

CHEV(2) .IN, CHEV has the value TRUE
CHEV(10) .IN., FORD has the value FALSE
DODGE(2) .IN. FORD has the value FALSE
PLY(10) .IN, ECONOMY has the value TRUE
ECONOMY(3) .IN, PLY has the value TRUE
OLDS(4) ,IN, MODERATE has the value TRUE
DODGE(5) .IN, PRESTIGE has the value FALSE
CADDY(3) .IN., PRICE has the value TRUE
PRICE(2) .,IN., MODERATE has the value TRUE
PRICE(3) .IN, MODERATE has the value FALSE
oLDS(4) ,IN. PRICE has the value TRUE
PRICE(1) .IN. PRESTIGE has the value FALSE
PRESTIGE(1) .IN, PRICE has the value TRUE

(because PRESTIGE(1l) is

equivalent to LINC(1))

ECONOMY(3) .IN, CHEV has the value FALSE

Tracing ECONOMY(3) back, its representative is
a subscripted object element, PLY(1l). According to the

rules stated above, PLY(1), IN, CHEV i1s FALSE,
PRICE(2) ,IN. MERC has the value TRUE

Tracing PRICE(2) back it is repre-
sented by MERC(1), and MERC(1) ,IN, MERC is TRUE,

MERC(3) .IN, MERC has the value TRUE

MERC(3) i1s a subscripted object element which
is a member of the object set MERC,

MODERATE(4) ,IN, PRICE has the value FALSE

Since class MODERATE has three representatives,
MERC(1), OLDS(1), and DODGE(1), the maximum subscript
that may be used with MODERATE is (3).

88

OBJECT FORD(10),MERC(5),LINC(3),CHEV(10),0LDS(5),
CADDY(3),PLY(10),DODGE(5),CHRYS(3)

CLASS(ECONOMY) CONTAINS EACH»FORD,EACH#CHEV,EACH#PLY

CLASS(MODERATE) CONTAINS EACH*ﬁERC,EACH*OLDS,EACH*DODGE

CLASS (PRESTIGE) CONTAINS EACH#LINC,EACH*CADDY,EACH*CHRYS

CLASS(PRICE) CONTAINS EACH*»ECONOMY ,EACH*MODERATE,EACH#PRESTIGE

CHEV(7) .IN., ECONOMY has the value TRUE
PLY(2) .IN, PRICE has the value TRUE
OLDS(3) .IN, PRESTIGE has the value FALSE
MODERATE(15) .IN, DODGE has the value TRUE
PRESTIGE(4) .IN, LINC has the value FALSE
PRICE(36) .IN, OLDS has the value TRUE
PRICE(49) .IN, FORD has the value FALSE
PRICE (50) .IN, CHRYS has the value FALSE
PRESTIGE(1) .IN, PRICE has the value TRUE

because PRESTIGE(1)
18 equivalent to LINC(1l))

OBJECT FORD(10),MERC(5),LINC(3),CHEV(10),0LDS(5),
CADDY(3),PLY(10),DODGE(S) ,CHRYS(3)

CLASS (CAR) CONTAINS EACH*FORD,MERC,LINC,EACH*CHEV,
OLDS,CADDY, EACH*PLY ,DODGE, CHRYS

CADDY(3) .IN. CAR has the value TRUE
oLDS(5) .IN., CAR has the value TRUE
CAR(16) .IN, CHEV has the value TRUE
CAR(25) .IN, OLDS has the value FALSE
CAR(34) .IN, DODGE has the value FALSE

89

OBJECT MERC(5),CADDY(3),DODGE(5),CHRYS(3)

CLASS (MODERATE) CONTAINS MERC,DODGE

CLASS (PRESTIGE) CONTAINS EACH*CADbY,EACHoCHRYS
CLASS (CAR) CONTAINS EACH#MODERATE,PRESTIGE

MERC(4) .IN, MODERATE has the value TRUE
CHRYS(3) .IN, CAR has the value TRUE
PRESTIGE(2).IN, CHRYS has the value FALSE
PRESTIGE(6) .IN, CHRYS has the value TRUE
MODERATE(1) .IN, DODGE has the value FALSE
CAR(2) .IN. DODGE has the value TRUE
CAR(3) .IN, CHRYS has the value FALSE

The general form of an object relational ex-
pression which uses the object relational operator .IS.
is:
A,IS.B
where A and B are individual object elements and are
declared as follows:
1, 1in a PROGRAM OBJECT declaration., 1If

the PROGRAM OBJECT declaration refers to a

single variable, the single variable (A or B)

is not subscripted; but if the declaration

specifies an array, A and B must be subscripted.

90

2. 1in an OBJECT declaration A or B must
be subscripted,

3. 1in a CLASS declaration where A or B
are members of a class and therefore must

be subscripted.

If A and B are any object elements and have
been declared in accordance with the rules stated above,

«IS, 18 defined as follows:

A,IS.B has the value TRUE
only 1f obJject ele-
ment A 18 1dentical
to object element B;
otherwise 1t has the
value FALSE

Examples:
OBJECT FORD(10) ,MERC(5),LINC(3),CHEV(10),0LDS(5),
CADDY(3),PLY(10) ,DODGE(5),CHRYS(3)

CLASS(ECONOMY)CONTAINS FORD,CHEV,PLY
CLASS(MODERATE) CONTAINS MERC,OLDS,DODGE
CLASS(PRESTIGE) CONTAINS LINC,CADDY,CHRYS
CLASS(PRICE) CONTAINS ECONOMY,MODERATE,PRESTIGE

FORD(1).IS, ECONOMY(1) has the value TRUE

91

PRICE(1) .IS, FORD(1)
DODGE(4) ,IS, MODERATE(3)
DODGE(1) .IS, MODERATE(3)
LINC(1) ,IS. PRICE(3)
CHEV(1) ,IS, PRICE(1)

the
the
the
the
the

OBJECT MERC(5),CADDY(3),DODGE(5),CHRYS(3)

CLASS(MODERATE) CONTAINS MERC,DODGE

value
value
value
value

value

CLASS(PRESTIGE)CONTAINS EACH#CADDY,EACH»CHRYS

CLASS(CAR) CONTAINS EACH+MODERATE,PRESTIGE

DODGE(1) .IS, MODERATE(2)
CHRYS(3) .IS. PRESTIGE(6)
MERC(1) .IS. CAR(1)
CADDY(3) .IS. CAR(3)
CAR(1) .IS. MERC(2)
CAR(1) .IS. MERC(1)

2. Arithmetic Statements

has
has
has
has
has

has

the
the
the
the
the
the

value
value
value
value
value

value

TRUE
FALSE
TRUE
TRUE
FALSE

TRUE
TRUE
TRUE
FALSE
FALSE
TRUE

The arithmetic statement defines a numerical

calculation,

A =B

Its general form is

where A 18 a real or integer variadble, subscripted or not

subscripted, and B 1s an arithmetic expression,

arithmetic statement has two functions,

The

First, 1t causes

the computation of the expression to the right of the

equals symbol and second, it causes the value of the var-

lable to the left of the equals symbol to be replaced by

the result of the calculation,

In MILITRAN, the expression to the right of the
equals symbol 1s converted, after it has been evaluated,
to the mode of the variable to the left of the equals

symbol with the following exception:

When the expression to the right of the equals
symbol 1s a single subscripted variable which denotes a
member of a vector whose retrieval form i1s that of the
vector rather than the component name, the expression 1is
not converted to the mode of the variable to the left
of the equals symbol. The value is stored without being

converted.

Examples:

In the following examples, A and B are integer
variables, C and D are real variables, E is the name of a
vector whose mode 18 real and whose component arrays are

also all of real mode.

A =3B replace A with the current value of B.
A=C truncate C to an integer, convert it to an
integer constant and replace the value of A

with the value of C.

93

D=3B convert B to a real number and replace D

with the value of B,

B = .A#(C/2) the appearance of the real variable C
" causes the A and‘2 to be converted
to real numbers before the value of the
expression is computed, The result is then
converted to integer mode and replaces the

previous value of B,

B=3,4/6.4 after this arithmetic statement has been

executed, B will have a value of O,

A = E(5,B) replace A with the current value of E(5,B).
Do not convert the value which is a real

number to an integer.

3, Logical Statements

The logical statement defines a logical calcula-

tion, 1Its rbrm is:

A =3B
were A is a logical variable, subscripted or not sub-
cripted and B 18 a logical expression, The logical
statement computes the value of the logical expression

(either TRUE or FALSE) to the right of the equal symbol

oL

and replaces the previous value of the logical variable to

the left of the equal symbol.

Examples:

A = TRUE store the logical constant TRUE in A

B = ,NOT.C if C is TRUE store the value FALSE
in B; 1f C 18 FALSE store the value
TRUE in B,

L = X,AND,Y if both X and Y are TRUE, L will

assume the value TRUE; if either
or both X and Y are FALSE, then
L will assume the value FALSE,

L = ,NOT.(X.AND.Y) both X and Y must be TRUE in
order for L to assume the value

FALSE,

P = {(X.0.Y).0RB if the numerical value of X

is greater than the numerical
value of Y or B i8 TRUE, then

P assumes the value TRUE, P
assumes a value of FALSE only 1if
the numerical value of X is less
than the value of Y, and B is
FALSE.

95

H = (A.E.D).EXOR,(P,IN.G)

if the numerical value of A

is equal to the numerical
value of D and P 48 not a
member of set G, then H will
assume a value of TRUE; if the
numerical value of A is not
equal to the numerical value
of D and P is a member of

set G, then H will also assume
4 value of TRUE, Otherwise,

H assumes a value of FALSE,

96

CHAPTER V

CONTROL STATEMENTS

During the execution of a MILITRAN program, in-
structions are normally taken from sequentially ascending
locations, However, the execution of instructions does not
have to occur sequentially, It 18 possible through the use
of sequential operators or control statements to alter the
process of sequential execution and to cause the computer to
repeat, skip, or interrupt a sequence of MILITRAN statements.
In this way it 1s possible to modify the sequence in which
any statement or block of statements is executed, By pro-
viding a program with the abllity to control 1ts own course
of execution, these statements greatly increase the scope

of the system.,

1, GO TO

G0 TO 18 used to unconditionally alter the normal
sequential execution of statements. It indicates the state-

ment that 1s to be executed next.
The form of a GO TO statement 1s:
GO TO s

where 8 18 the name of the next statement to be executed.

9t

Examples:

GO0 TO ACT 1100
GO0 TO B7O2
GO TO NT7

Use of the G0 TO statement is shown 4in the

following coding example.

Statement Label MILITRAN Statement
ACT 100 RATE = 7.0
ACT 101 TIME = 2.0
ACT 102 GO TO ACT 104
ACT 103 RATE = 5.0
ACT 104 DIST = RATE*TIME

When control reaches statement ACT 100, RATE
will be given the value 7.0, Then TIME will be given the
value 2.0, The next statement, GO TO ACT 104 will cause
statement ACT 103 to be skipped and statement ACT 104 will
be executed next, giving DIST a.value of 14.0.

2, PAUSE

The PAUSE statement causes the computer to come

98

to a temporary halt, If the start key is pressed, the
object program will resume execution with the next

MILITRAN statement, PAUSE 1is written as:
PAUSE J

where j 18 any unsigned octal integer of 1 to 4 digits,
and may be omitted, This number will be shown on the

computer console when the computer stops,
Examples:

PAUSE 1
PAUSE

The STOP statement causes the immedlate termination
of the obJject program, After STOP a restart cannot occur,
The STOP statement should occur at the logical end of the
program rather than the physical end, More than one STOP
statement may be used in a program, The form of the STOP

statement is:
STOP

L, JF Statement

The IF statement determines the statement to be

99

executed next dependent on the value of a logical ex-

pression, It is written as follows:

IF(b), Sy.Sp

where b 18 a logical expression and ST and SF are state-

ment labels. If the value of the logical expression (b) 1is
TRUE, control will be transferred to the statement labelled
ST; i1f the value 1is FALSE, control will be transferred to the

statement labelled S If the second label 1is omitted, the

Fo
next program statement will be executed,

Examples:
IF(TIME.GE,HORIZON),ENDCYCLE,DC100

If the value of TIME 1s greater or equal to the
value of HORIZON, control will be transferred to the state-
ment labelled ENDCYCLE, If the logical expression 1s false,
control will be transferred to statement DC100,

IF(TIME,GE,HORIZON) ,ENDCYCLE
T = A/3.4

If the value of the logical expression 1s TRUE,
control will be transferred to ENDCYCLE, Otherwise, the

next statement will be executed.,

100

5. UNLESS Statement

The UNLESS Statement also determines the state-
ment to be executed next, dependent on the value of a logical

expression. It 1s written as follows:
UNLESS(Db), SF’ST

where b 18 a logical expression and S_ and S.r are state-

F
ment labels. If the value of the logical expression (b)
is FALSE, control will be transferred to the statement
labelled SF; if the value 18 TRUE, control will be trans-
ferred to the statement labelled ST' If the second label

is omitted, the next program statement will be executed.
Examples:
UNLESS(PAST REPORT+REPORT INTERVAL,LE.TIME),A100,A250

If the value of the logical expression 1s FALSE,
control will be transferred to statement AlOO; if the ex-
pression is TRUE, control will be transferred to statement

A250,

IF(TIME.GE.HORIZON),ENDCYCLE
UNLESS (REPORT INTERVAL,LE,TIME),RPER2000

ENDCYCLE

101

Control will be transferred to ENDCYCLE i{f
TIME is greater than or equal to HORIZON, If the first
statement 18 FALSE, the succeeding statement will be eval-
uated and if it TRUE, ENDCYCLE will be executed., If both
statements are FALSE, control will be transferred to the

statement labelled RPER2000.

6. DO Statement

The technique of repeating a section of a program,
with some type of modification between repetitions, is called
looping. The DO statement is a powerful tool which permits
a significant reduction in the number of instructions required
to perform a given procedure and also greatly simplifies the

pProgramming of loops. MiLITRAN provides two forms of the DO

statement.

Form 1

DO(s) UNTIL b, n = 1,85

where 8 18 a statement 1abe1; b 1s a logical expression, n
is an arithmetic variable, either subscripted or non-sub-
scripted, e,.e, are arithmetic expressions, When ey is
omitted it is assumed = 1, When ey is omitted, both e, and
the equals sign must be omitted and él and e, are assumed

= 1, When n 18 omitted, the statement ends with the Boolean
condition and looping continues until b, EQV,TRUE, The

102

logical expression b is evaluated before each iteration,

Form 1 of the DO statement is a command to iterate
through the statement labelled s until the logical expression
b is TRUE, The first time, the statements are executed with
n equal to €. For each succeeding iteration, n 18 increased
by es. When the logical expression b assumes the value TRUE,
control passes to the statement following the last statement
in the range of the DO - the statement immediately following

the statement labelled s.

This form of the DO statement has three functions:

1, It establishes an index (n) which takes on
a new value for each iteration. This index

may be used as a subscript or in computations.

2. It causes looping through any desired
series of statements, as many times as

required,

3. It increases the index by any specified
increment for each separate iteration
through the series of statements in the

loop.

103

As an example, consider the following program:

Statement Label Statement

REAL A(10),B(10)
ADDLO DO(ADDS0O)UNTIL N1.G.10,N1=1,1
~ ADD50 A(N1) = B(N1)=2

The first statement reserves space for two
one-dimensional arrays, A and B, The DO statement, statement
ADD40, is a command to execute the following statements
up to and including statement ADD50, The DO loop 18 equiva-

lent to exetution of the statements

A(1) = B(1)#2
A(2) = B(2)x2
A(3) = B(3)*2

A(10) = B(10)«2

When the DO loop is entered (statement ADD40) N1
is8 set to 1, the logical expression N1,3,10 is evaluated and
since it is FALSE statement ADD50 is executed, N1 is increased
by 1, the logical expression is evaluated again and the loop

will continue until N1 assumes a value of 11, The program

104

will then continue with the statement following statement

ADD50,

The following is a comparison of statement ADDA4O
with the general form of the DO, and an introduction of some

of the terms used in discussing DO statements,

DO (s) UNTIL b, n= e, e,
DO (ADD50) UNTIL N1,G,10, N1l = 1, 1
Range Terminating Index Initial Increment
Condition Value
Range: The range is the series of statements to be

executed repeatedly, It starts with the DO
and includes all the statements following
the DO up to and including statement (s). 1In
the example the range consists of statements
ADD4O and ADDSO,
Terminating The terminating condition is the logical
Condition:
expression which controls the number of
iterations to be performed. When the
logical expression assumes a value of TRUE,
the DO 1s satisfied. 1In this case, as soon
as N1 assumes a value of 11, execution of the

range ceases,

Index: The index 1s any arithmetic variable., The

105

1ndex‘w111 change for each execution of the
range, In the example, the index N1 is also
used as a subsoript, in another problem it
might be used in computations, or might not
be used in the range at all,

Initial The initial value may be any arithmetic ex-

Value: pression, and 18 the value assigned the index
for the first execution of the range, In the
example, the initial value is 1 - an integer
constant; In another problem it might be a
real constant or a subscripted arithmetic

variable,

Increment: The increment (any arithmetic expression) is
the amount by which the value of the index

will be increased after each execution of

the range,
Examples:
' In the next example, the range of the DO loop
consists of one statement, the DO statement 1itself,
INTEGER A(100)
LBL DO(LBL)UNTIL(A(I).E.6).0R, (1.G,100),I=1,1

The DO statement (LBL) 1s a command to cycle

106

through the array named "A" and obtain the first entry
equal to 6, The loglcal expression (I.G,100) 1is necessary

in case array "A" does not contain an entry equal to 6.

In the following example, the terminating condition
is a logical expression which includes an obJect relational

expression,
PROGRAM OBJECT B(100)

LBL DO(LBL)UNTIL(B(I).IN.CAR),OR.(I.G.100),I=1,1
This DO statement will cycle through the array

names "B" and will obtain the first entry which 1s in the
class CAR, ‘

Form 2
The second form of the DO statement operates on
object elements excluslvely. It 13 written as
DO (s) FOR a.IN.b

where 8 1is 5 statement label, a 1s a single variable which

has been declared in a PROGRAM OBJECT declaration and b 1s

elther the name of a class as 8specifiled in a CLASS declara-
tion or the name of an obJect as specified in an OBJECT

declaration. Names a and b are never subscripted.

This form of the DO statement 18 a command to

iterate through the statement labelled s. The first time,

107

variable "a” 1s set to the identity of the first member of
"p", For succeeding iterations, "a" assumes in turn the iden-
tity of all members of "b", Iteration ends when all members

of "b" have been covered sequentially,
As an example, consider the following program:

Statement Label Statement

INTEGER AGE(CAR),I,J
PROGRAM OBJECT A

LX2 J =0

LX3 I =0

LX4 DO(LX7) FOR A,IN,CAR
LX5 UNLESS(AGE(A) .GE.5),LXT
LX6 I=1I+1

LX7 J=J+ 1

This program counts both the total number of cars

and those cars which are 5 years or older,

1, The first statement reserves space for one
dimensional array "AGE", whose dimension is
equal to the number of the members in class
CAR; and also declares I and J to be integer

variables,

2. The second statement declares "A" to be a
single variable which will assume the

identity of an object.

108

LX2 setsthe value of J to Zero; LX3 sets the

value of I to zero,

LX4 is a command to execute the following state-
mentp up to and including the statement named
LX7. When the DO loop 1s entered A 13 set to
the 1identity of the first member of class CAR.

compares 1t to 5, If 1t is less than 5, control
passes to the statement LX7; if the age 1s equal

to or greater than 5, control passes to LX6.

After statement LX7 has been executed, control
1s transferred to statement LX4. The second

time through the loop, A 1s set to the iden-

its age 13 retrieved and evaluated. The loop-

ing continues untii all members of the class

4,

5. LX5 retrieves the age of the firat car and

6. LX6 increments the counter "I" by one;
LX7 increments counter "J" by one.

A
tity of the second member of class CAR and
have been evaluated.

Restrictions on the use of DO statements
1-

a DO loop may be contained within the range

of another DO loop. When this situation occurs, all of the

109

statements in the range of the inner DO must be within the

range of outer DO,

For example:

DO
DO

DO

1s a permitted configuration (the brackets indicate the range
of the DO's), but:

DO

DO

is mota permitted configuration, Transfers of control are
permitted both from inside the range of a DO loop to out-

side 1ts range and from outside the range to inside.

2. the last statement in the range of a DO loop
cannot be a GO TO statement, an IF statement which has two
labels or an UNLESS statement which has two labels. If it 1is
necessary to end a DO loop with any of these statements, the
CONTINUE statement must be used to terminate the range of the
DO loop.

110

T CONTINUE

CONTINUE is a dummy statement which does not
generate any instructions in the obJject program, It must
be used to terminate the range of a DO loop which would
otherwise end with a GO TO statement or the forms IF or
UNLESS statements which have two labels, CONTINUE is also
ugsed as the last statement of a DO loop when 1t is desired
conditionally to skip the several statements in the range

and proceed with the next iteration of the loop,

The form of thé CONTINUE statement 1s:

CONTINUE
Example:
Statement Label Statement
REAL A(10),B(10)

ADD4O DO (ADD70)UNTIL N1,G,.10,N1=1,1
ADD50 A(N1)=B(N1l)*2
ADD60 G0 TO ADD10OO
ADDTO CONTINUE

In the above example, if ADD60 were the last state-
ment in the range the sequence at ADD100 would have no way
to re-enter the loop, The CONTINUE statement at ADD70

111

provides such a re-entry point,

The next example shows how one statement in the
range may be conditionally skipped using a CONTINUE state-

ment .,

Statement Label Statement

INTEGER AGE(CAR),I,J
PROGRAM OBJECT A

LX2 | J =

LX3 I1=0

LX4 Do(LX8) FOR A,IN.CAR
LX5 J=J+1

LX6 UNLESS (AGE(A) .GE,5),LX8
LX7 I=1I+1

LXS CONTINUE

Use of the CONTINUE statement is by no means
limited to defining the ranges of DO loops, Any point

in a program may be defined by means of a CONTINUE statement.

112

CHAPTER VI

LISTS AND LIST PROCESSING STATEMENTS

The LIST declaration and its assoclated 1list
processing statements have been provided to facilitate
the oreation, maintenance, and processing of the various
elements in a simulation, Concise MILITRAN statements
eliminate the need for the complex iterative coding which
is normally required to maintain the current status of the

elements in a simulation,

l, LIST

A MILITRAN LIST is a one dimensional vector whose
components may be processed by a special group of system
routines - the list processing statements, The LIST state-

ment is written as

LIST n((clycas oo -:ci)td)

where n is the name of the LIST; G1s8pseee,Cy aTE the names

of the LIST components, all of which are associated with the
name "n", and d is the dimension associated with each com-

ponent,

113

The LIST statement only declares the dimension
of the LIST; the rules for deslaring the modes of a list
and its ecomponents are the same as those for declaring the

modes of a vecstor and its components.

Example
LIST SHIPS((DESTROYER,CRUISER,CARRIER),10)

This statement defines a LIST named SHIPS, which
has 3 components - DESTROYER, CRUISER, and CARRIER, Each
component has a dimension of 10 -- resulting in 30 locations
reserved for the LIST SHIPS#

2, LIST PROCESSING STATEMENTS

The 1list processing statements are used to main-
tain the current status of the various elements in a simu-
lation, '

LIST entries may be created by means of PLACE or
PLACE ENTRY statements; modified by REPLACE or REPLACE ENTRY
statements; destroyed by REMOVE or REMOVE ENTRY statements
and located by the system functions MINIMUM INDEX and RANDOM
INDEx; In addition, the elements in a LIST may also be oper-

114

ated on by the regular MILITRAN data processing statements,
Before discussing the 1list processing statements
in detail, it is necessary to clarify the meaning of some of
the terms used in connection with these statements,
When a 1ist processing statement or its definition
refers to an entry, it is referring to corresponding elements

in each component of the LIST, For example, i1f a LIST is de-

clared as:

LIST A((B,C,D,E),4)

there are four components -.B,C,D, and E, each of which con-

tains four elements., An entry in LIST A 1s a group of four

corresponding elements such as:

B(1),¢(1),D(1),E(1) - 1st entry of LIST A
B(2),c(2),D(2),E(2) - 2nd entry of LIST A
B(3),c(3),D(3),E(3) - 3rd entry of LIST A
B(4),c(4),D(4),E(4) - "4th entry of LIST A

The 118t processing statements always operate on
entries, If a LIST has only one component, then entry and

element are synonymous,

115

Every MILITRAN LIST is associated with an integer
value which represents the length of the LIST. The length
of the LIST refers to the surrent number of entries in the
LIST,

It is important to distinguish between the length
of the LIST and its dimension, The dimension refers to the
number of locations in computer storage which are reserved
by the LIST declaration for the LIST entries, The dimension
remains constant throughout execution of the program, The
length of the LIST changes - it is automatically updated by
those 1list processing statements which create or destroy en-
tries. The 1ist processing statements which modify existing
entries do not change the length of the LIST.

The compilation phase of MILITRAN sets the length
of any declared LISTS to-zero, If all the entries in a LIST
are created by the 1list processing statements, the length of
the LIST will_be created automatically., However, if a LIST
is created by reading data into it, the initial length must
be set by the program as described below under RESET LENGTH.

As stated above, the list processing statements
only operate on entries, If it is necessary to modify or

retrieve an element within a single component of a multi-

116

component LIST, thq element may be subscripted in exactly

the same manner as are elements in a vestor,

In the explanation of the list processing state-
ments, the following notation will be used:

n - 1s the name of a LIST which is being interrogated
or in which data 1is being entered, modified, or
removed,

k - refers to an integer constant, integer variable,
or an arithmetic expression which after evaluation
will return an integer value, The value represents
the index of entry (the position of entry in the LIST)
for LIST n,

m <« is the name of a LIST from which data 1s being re-
trieved, .

J - 4s an integer value, as described under k, which
represents the index of entry for LIST m,

e - 18 any expression which is going to be entered in a
component of a LIST or will modify an existing element
in a LIST, It must be compatible with the mode of the
component as 1t 1s defined in the mode declaration,

b - 1is any logical expression,

P - 4is any 1nteggr constant, integer value, or arithmetic
expression which after evaluation will return an integer

value, The value represents the length of a LIST.

117

LENGTH
LENGTH(n)

where n is the name of a LIST, returns the current number
(integer) of entries in LIST "n",

The LENGTH function provides a convenient means
of determining when all the entries in a list have been
eliminated from the battle, For example,

Al101 IF (LENGTH(GREEN ARMY),E,0), Bl10O
Al02 (continue with processing)

When the LENGTH of GREEN ARMY assumes a value of O, all the
entries in GREEN ARMY have been eliminated and control 1is
transferred to statement B100, If all the entries have not
been eliminated, the program continues sequentially with
statement Al02,

RESET LENGTH

RESET LENGTH(n) TO p

when n is the name of a LIST and p is an integer constant,
integer variadble, or an arithmetic expression which after

evaluation will return an integer value, unconditionally

118

sets the length of LIST "n" to the value represented by
"p".

When the entries in a LIST are a function of in-
put, i.,e., the data i1s read directly into a LIST, the RESET
LENGTH statement must be given before any processing is
carried out on the LIST, For example, 1f a LIST is declared

as follows:

LIST A((B,C,D),3)

and an input statement reads in 3 entries, the length of the
LIST should be set as follows:

RESET LENGTH(A) TO 3

If the dimension of the list is a "symbolic dimen-

sion”", such as:
LIST A((B,c,D),X)

the value of X would also have to appear in the input, After

the value of X has been read in, the statement:
RESET LENGTH(A) TO X

would set the length of A to X,

119

PLACE(el,ez,...,ei) IN n

where ey, eé,...,e1 are any expressions and n is the name

of a LIST, evaluates the expressions represented by each

e, enters the value of the corresponding e in each of the
components of LIST n, and then automatically updates the

length of LIST n,

€15 Cnseces®y must be compatible with the com-

ponents of the LIST as they are defined in the LIST and
mode declarations both as to number and mode, For example,
if a LIST is declared as follows:

LIST SHIPS (TYPE,SPEED,RANGE),4)

and the mode declarations state:

PROGRAM OBJECT SHIPS, TYPE
REAL SPEED, RANGE.

the modes of the expressions in the statement:

PLACE (SUBMARINE, SSPEED, SRANGE) IN SHIPS

120

must be declared as follows:

PROGRAM OBJECT SUBMARINE
REAL SSPEED, SRANGE

If the 1ist contained U4 entries before the PLACE
statement was encountered, the length of the list would be

updated to 5 after execution of the PLACE statement,

REMOVE ENTRY

REMOVE ENTRY n (k)

where n is the name of a LIST and k 18 an integer constant
or integer variable which designates an entry in the LIST,
causes the entry represented by k to be removed from LIST
n and then automatically updates the length of LIST n,

For example, if LIST Z has three components -

A, B, and C -- and the current length of LIST Z is 6, the

statement

REMOVE ENTRY Z(X) (wvhere X has assumed a value of %)
will cause the 4th entry to be removed from LIST Z, and the
length updated to 5,

NOTE: The LIST is also compressed to remove the blank entry.

121

PLACE ENTRY

PLACE ENTRY m (J) IN n
causes the Jth entry in LIST m to be entered in LIST n,
The length of LIST n is automatically updated,

The modes and number of components in LIST n must
be compatible with the modeq and number of components in
LIST m,

NOTE: The Jth entry in LIST m is not modified in any way
by the PLACE ENTRY statement,

REPLACE ENTRY

REPLACE ENTRY n (k) BY (ey, €,,...,ey)

where €15 €ps...,84 are any expressions and n is the name

of & LIST, evaluates the expressions represented by each
e, enters the value of the corresponding e into the kth
position of the corresponding component of LIST n,

€15 €preces®y must be compatible with the com-

ponents of the LIST as they are defined in the LIST and

mode declarations both as to number and mode,

122

REPLACE ENTRY BY ENTRY

REPLACE ENTRY n (k) BY ENTRY m (J)

causes the kth éntry in LIST n to be replaced by the Jth
entry in LIST m, -

If the names "n" and "m" are identical, (i.e.
refer to the same LIST), "m" may be omitted.

The modes and number of components in LIST n must
be compatible with the modes and number of components in
LIST m,

NOTE: The J*P entry in LIST m is not modified in any way
by the REPLACE ENTRY BY ENTRY statement,

Conditional Expressions in List Processing Statements

Each of the list processing statements described
below contains a logical expfession or set of expressions
which determines whether or not the entries in the designated
LIST will be operated upon as specified by the particular
list processiné statement, A conditional 1list processing
statement implies a Do-loop because the statement can operate

on more than one entry,

123

When the form:
(bll b2)0003b1)

is used, each b represents a logical expression that
refers to a corresponding component of the designated
LIST. Therefore, the number of expressions must not

exceed the number of components in the LIST,

For eiample, if a LIST has four components as

LIST A ((B, ¢, D, E), 3)

the conditional l1list processing statement may contain
four logical expressions,

The (bl, b2....,b1) form causes every entry in

the LIST to be examined,
An additional qualification may be imposed on the

index of entry, When the forms;

(bll balooojbil bx)

is used, bx refers to a condition which is being placed on

the entry index (the position of the entry in the LIST),

124

In this case, if a LIST contains n components, n+l

conditions are imposed,

The (bl, Bosesesdys bx) form limits the entries
to be examined to those specified by the expression bx'

When & conditional list processing statement is
encountered during execution of the obJject program, only
those entries which satisfy the toilowing conditions will
be processed:

1, The evaluation of each logical expression
must result in a value of TRUE in reference to 1ts corre-
sponding component,

2., and when a condition 18 placed on the entry in-
dex (bx form), this logical expression must also have a value
of TRUE,

The symbol * is used to denote the current value
of a component or the currerss index,

For example, the logical expression:
(*0003'*0006)
would refer to a LIST with two or more components, Those

entries for which the first element exceeds 3, and the second

element exceeds 6 would be operated upon,

NOTE: Control always passes to the instruction following the

125

conditional list processing statement, whether or not
any entries are processed,

The conditional 1list processing statements are:

REMOVE
REPLACE
REPLACE BY ENTRY

REMOVE

REMOVE (bl’ b2’ooo,b1) FROM n

where bl’ b2,...,b1 are any logical expressions and n 1is

the name of a LIST, evaluates the expressions represented
by each b and removes all the entries in LIST n which cause

all of the expressions bl' b2,...,b1 to be evaluated as TRUE,
bl’ b2,...,b1 must be compatible with the components

of the LIST as to number and mode,

The LIST 1s compressed to remove blank entries, and
the length of the LIST is automatically updated,

For example if a LIST 1s declared as:

LIST SHIPS (TYPEA, SPEED, RANGE), 40)

126

and the mode declarations state:

PROGRAM OBJECT SHIPS, TYPE

INTEGER SPEED, RANGE

CLASS (SUBMARINE)CONTAINS TYPEA, TYPEB, TYPEC
The statement:

REMOVE (*,IN SUBMARINE, *.G.20, *,G.1000) FROM SHIPS
would remove every entry in the LIST ships that was in
CLASS SUBMARINE whose speed is greater than 20 and whose
range 1is greater than 1000,

If the form:
REMOVE (bl’be""’bi’ bx)

1s used, bx is the condition placed on the entry index,

In the example given above, if the REMOVE state-

ment had been written as follows:

REMOVE (*,IN,SUBMARINE, *.G.20, *.G.1000, *,LE.20)

j Lodrg

the last conditionalcwould restrict the removal to the
first 20 entries provided that the other conditions are

also met,

REPLACE

REPLACE (by, bysees,b,) BY (e), €5,0005e,) IN n

where bl’ be,...,b1 are any loglecal expressions, €15 €psreces®y

are any expressions, and n is the name of a LIST, evaluates the
expressions represented by each b, and replaces all the entries

in LIST n, which cause all of the expressions by, b,,...,b; to

be evaluated as TRUE, with the value oftthe corresponding e,

The form:
REPLACE(bl, bpseaesby, bx) BY (el, e2,...,ei) INn

may also be used,
The modes and number of components in LIST n must
be compatible both with the modes and number of expressions

represented by each b and each e,

128

REPLACE BY ENTRY

REPLACE(bl, b2,...,bi) BY ENTRY m (J) IN n

evaluates the logical expressions represented by each b, and
replaces all the entries in LIST n which cause all of the

expressions bl’ b2,...,b1 to be evaluated as TRUE, with the

th

| entry in LIST m,

The form:

REPLACE (bl, boseeesbys bx) BY ENTRY m (J) IN n

may also be used,

The modes and number of components in LIST n must
be compatible with both the number of expressions represented
by each b and with the modes and number of components in LIST m.

If the names "n" and "m" are identical, "m" may be

omitted,

MINIMUM INDEX

MINIMUM INDEX (n(b,, b,,...,b;), 8)

or

129

MINIMUM INDEX (n(bl, b2,...,b1, bx)’ s)

where n is the name of a LIST, each b 18 a logical ex-
pression, and s is a statement label, evaluates the ex-
pressions represented by each b and returns the lowest
index in LIST n whose entry causes all of the loglcal

expressions to be evaluated as TRUE, If no such entry

is found, control 1s transferred to the statement labelled

g N

8,

MINIMUM INDEX 1s a function which may be used in
any expression anywhere in the program, The value returned
is an integer value,

MINIMUM INDEX may be shortened to INDEX without

loss of meaning,

RANDOM INDEX

RANDOM INDEX (n(bl, b2,...,b1), s)

or

RANDOM INDEX (n(bl, bposesesbysd), s)

130

where n 18 the name of a LIST, each b 18 a logical expres-
sion, and 8 18 a statement label, evaluates the expressions
represented by each b and returns an index in LIST n chosen
at random from all the indices whose entries cause all of
the logical expressions to be evaluated as TRUE. If no
such entry'}s found, control is transferred to the statement

labelled "s".

RANDOM INDEX is a function which may be used in
any expression anywhere in the program. The value returned

is an integer value.
LST

LST i8 used to impose an additional qualifica-

tion on one of the components in an entry.

If LST precedes a logical expression in a

conditional list processing statement, only the entry

whose corresponding component 1s the least of all the
components will be operated upon, provided that all logical

expressions assume a value of TRUE,

LST may be used with only one expression in

a conditional 1list processing statement.
For example:

(by,b5,LST(bg), ... ,by)

L3

is valid.
(by,LST(by), LST(b3), . . ., by)

is invalid.

If two entries are found, the entry with the

least index 1is chosen,
If LST refers to bx as in
(bl,b2,b3,...,bi,LST(bx))

the minimum index is sought.

GST

GST is similar to LST except that the entry
whose corresponding component 1is the greatest of all such

components will be operated on.

Additional Rules for Specifying the Formation of Logical

Expressions in Conditional List Processing Statements

Certain abbreviations and conventions may be
used in the logical expressions of a conditional 1list

processing statement.

h If the logical expression is a single
quantity - the logical constant TRUE -
the value of each of the elements in
the corresponding component is not examined,

1.e: in the expression (bl,TRUE,b) only

132

bl and b3 are evaluated,

Omitted expressions are assumed to be
TRUE - {i.e: (bl,,b3) 1s equivalent to
(b, , TRUE, bg).

An arithmetic expression which does not
have an arithmetic relational operator
18 assumed to be * E.e (where e 18 an
arithmetic expression) 1i.e:

5

is equivalent to:

'DE.S

A PROGRAM OBJECT variable alone is
equivalent to ¥*.IS.,e (where e 1s a
PROGRAM OBJECT variable) 1.,e: if TANK
is declared 1in a PROGRAM OBJECT declaration,
then:

TANK

1s equivalent to:

*,1S,TANK

An OBJECT or CLASS name alone is

equivalent to *.IN.e (where e 18 an

2% s

OBJECT or CLASS name).i.e. 1if TANK is
declared in an OBJECT declaration, then:

TANK
18 equivalent to

* . IN.TANK

134

CHAPTER VII

EVENTS

A military simulation program usually involves
the processing of simulated events which occur elther at
regular intervals or at critical Junctures in time. The
event statements facilitate the processing of these simu-
lated occurrences by providing the programmer with the
means to assoclate the data related to a specific event
with the processing that must be effected each time the

event occurs,

The event statements are:
PERMANENT EVENT
CONTINGENT EVENT
END
END CONTINGENT EVENTS
NEXT EVENT
NEXT EVENT EXCEPT

PERMANENT EVENT and CONTINGENT EVENT define the
start of processing for a specific event and also declare
a 1list, The END statement defines the end of processing
for a specific event, The processing associated with the

occurrence of a particular event i1s effected by the group

135

of MILITRAN processing statements enclosed between either
a PERMANENT EVENT statement or a CONTINGENT EVENT state-
ment and an END statement. Therefore, the "event" itself
may be deacribeﬁ as the "event" statement, followed by a
group of processing statements, followed by an END state-
ment. The remaining statements enumerated above are con-

trol statements,

1., PERMANENT EVENT

A "PERMANENT EVENT" is one which occurs at re-
gular intervals in time. The start of processing and the
data associated with a "PERMANEN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>