ESD TDR 64-339|{

FILE COPY

ESTI PROCESSED

g

tn :chnical Documentary
)

[0 opc TaB [] PROJ OFFICER
*port No. ESD-TDR-64-389

[J ACCESSION MASTER FILE

[
DATE iy 77
CY NR / OF / Ers
MILITRAN
OPERATIONS MANUAL

FOR
IBM 7090-7094
ESD RECORD COPY

RETURN TO
SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI), BUILDING 1211

COPY NR. 0)3 COPIES

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. c.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)
by
SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue
Mineola, [,. I., New York

JUNE 1964

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data is not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto.

Reproduction in whole or in part 1s permitted
for any purpose of the United States Government,

DDC AVAILABILITY NOTICE

Qualified requesters may obtain coples of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 22314, Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

Technical Documentary
Report No. ESD-TDR-64-369

MILITRAN
OPERATIONS MANUAL
FOR

IBM 7090-7094

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)
by
SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue
Mineola, L. I., New York

JUNE 1964

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data is not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may 1in any way be related thereto.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

DDC AVAILABILITY NOTICE

Qualified requesters may obtaln copies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 22314, Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

FOREWORD

This 18 one of three technical reports being
published simultaneously, The others are the MILITRAN

Programming Manual (Technical Documentary Report No,

ESD-TDR-64-320) and the MILITRAN Reference Manual

(Technical Documentary Report No, ESD-TDR-64-390)., The
three reports constitute a complete description and in-
structions for using the MILITRAN language in computer

programming of simulation problems,

The MILITRAN 7090-709% Processor, which is used
to compile a problem written in MILITRAN source language
into a machine language program, will be available to pro-
spective users, Pending final arrangements, requests for
information about the MILITRAN Processor should be sent to

the Office of Naval Research (Code 491).

This report was prepared by the Systems Research
Group, Inc., under Contract Nonr-2936(00), which was initi-
ated by the Naval Analysis Group, Office of Naval Research,
‘ and has been jointly supported by the Office of Naval
Research and the Electronic Systems Division, Air Force

Systems Command,

ABSTRACT

MILITRAN 18 an algorithmic computer language
specifically oriented to the problems encountered in
simulation programming. In addition to providing over-
all flexibility in expressing complex procedures, the
language contains features which greatly simplify the
maintainence of status lists, handling of numeric and
non-numeric data, and sequencing of events 1in simulated

time,.

This report describes the features and operating
procedures of the 7090-94 MILITRAN Processor.

REVIEW AND APPROVAL

This Technical Documentary Report has been
reviewed by the Electronic Systems Division, U, S. Alr

Force Systems Command, and is approved for general distribu-

B o

J. B, CURTIS
ond Lt , USAF
PROJECT OFFICER

TABLE OF CONTENTS

INTRODUCTION

THE 7090 MILITRAN PROCESSOR
PROCESSOR ENVIRONMENT
PROCESSOR OUTPUT
PROCESSOR STRUCTURE

PROGRAMMING THE 7090 IN MILITRAN
PREPARATION OF DECKS FOR COMPILATION
PREPARATION OF DECKS FOR ASSEMBLY
PREPARATION OF DECKS FOR EXECUTION
EXAMPLES OF TYPICAL MILITRAN DECKS
CHAIN JOBS
USE OF NON-MILITRAN CODING
MACHINE DEPENDENCE

OPERATING THE 7090 MILITRAN PROCESSOR
GENERAL OPERATING PROCEDURES
ERROR PROCEDURES

Appendix 1: MILITRAN OBJECT-TIME LIBRARY
Appendix 2: DECLARATION TABLES
Appendix 3: FUNCTIONS OF PROCESSOR PASSES

Appendix 4: MILITRAN PROCESSOR OPERATING SUMMARY

47

57

65

INTRODUCTION

This manual describes features of the 7090
MILITRAN Processor and provides instructions for its
use, General knowledge of both MILITRAN and the IBM

7090 are assumed on the part of the reader,

The manual is divided into three major sections,
The first of these provides an overall view of the processor
and its operation, Two subsequent sections cover details
of processor operation which apply to the programmer and

machine operator respectively,

Full information necessary for compilation,
assembly and execution of programs written in the MILITRAN

language is contained herein,

THE 7090 MILITRAN PROCESSOR

The 7090 MILITRAN Processor permits the use of
MILITRAN Basic Language in programming algorithms for the
IBM T7090/7094, The processor translates programs written
in MILITRAN into FAP, the 7090/7094 assembly language,

This section of the MILITRAN Operations Manual
describes the machine environment required by the processor,
the output obtainable from the processor, and the general

structure of the processor,

PROCESSOR ENVIRONMENT

The processor has been designed to operate within
the framework of procedures commonly in use at scientific
installations using the 7090, Hardware and software require-

ments of the processor are specified in this subsection,

Hardware Requirements

The basic hardware requirement for the processor

is an IBM 7090 c¢r 7094 having the following on-line equipment:

1, Two IBM 7607 Data Channels
2, Ten IBM 726 Magnetic Tape Units
3, One IBM 716 Line Printer

Tape units are distributed equally between the channels,
and the printer is attached to channel A,

Although the hardware configuration described
above is commonly available, the basic design of the
processor would permit modifications reducing hardware
requirements to an IBM 7090 with seven tape units, An
attendant loss in speed and convenience would, of course,

acocrue from such modification.

Programs compiled by the processor permit the

use of an on-line card reader and punch where available,

Software Requirements

The processor operates as a normal "chain-job"
under the FORTRAN Monitor System, MILITRAN compilations
may be included in ordinary monitor runs without conflict,

Use of other monitor sub-systems is not impaired,

Use of tapes by the compiler is in accordance with
standard IBM tape assignments, Input/output routines used
by compiled programs incorporate a unit assignment table
which is easily adjusted to the requirements of a particular
installation,

Programs compiled by the processor make use
of a library of subroutines called the MILITRAN ObJject-
Time Library, Since one or more of these programs may
be required to run a given program, it is anticipated that
installations using MILITRAN frequently will wish to add
the MILITRAN ObJject-Time Library to thelr monitor tapes,
Such inclusion requires only that duplication of entry

names be eliminated from the combined libraries,

The dependence of the processor upon the monitor
system 18 limited to the use of a few monitor locations
and the BSS Loader, Installations using a modified monitor

system will in most cases find no need to alter the processor.

Tape Assignments

Tapes used by the processor are tabulated

acocording to function below, The shorter designations

in parentheses will be used throughout this manual,

Unit

Al
A2
A3
AL
A5

Bl
B2
B3
B4
B5

Function (Short Name)

FORTRAN Monitor System (System Tape)

Symbolic Input Tape (Input Tape)

Listing Output Tape (Listing Tape)

MILITRAN Processor Tape (Chain Tape)

MILITRAN Intermediate Tape 1 (Scratch Tape 1)

MILITRAN Intermediate Tape 2 (Scratch Tape 2)
Dump Program Intermediate Tape (Dump Tape)
MILITRAN Intermediate Tape 3 (Scratch Tape 3)
Punched Output Tape (Punch Tape)

MILITRAN Compiled Output Tape (FAP Tape)

Tapes B2 and BY4 are not used by the processor but

have been reserved because of their functions within the

monitor system, The availability of B2 facilitates dumping

in the event of a malfunction, and use of BS rather than B4

for compiled output enables the programmer to compile and

assemble MILITRAN source programs in a single monitor run,

PROCESSOR OQUTPUT

The many references to "compilation" and "com-
piled output” in this manual necessitate an early defini-
tion of the processor output., This subsection describes
the items produced during the compllation process, Except
where specifically stated otherwise, the order in which

items are described is the order in which they are produced,

Source Program Listing

The source program being complled is copied onto
the Listing Tape in an expanded format, This expanded format
separates the statement label, continuation column, the
statement, and source card identification flelds for increased
readabllity, Each line of the source program listing is
numbered in order to provide a reference for possible dlag-

nostics,

Errors discovered during the initial processing of
a statement are noted by diagnostic comments. immediately below
the offending statement, The statement itself 1s listed also,

blanks and comments having been removed,

Alphabetic Symbol Table

A list of all names used in the source program is
produced in alphabetical order on the Listing Tape, Each
name 18 accompanied by the numeric "internal symbol" which

is used to denote that name 1in the compilled FAP program,

Diagnostics

Source program statements and overall structure
are checked at numerous points in the processor, In order
to provide the programmer with as much diagnostic informa-~
tion as possible within a single run of the processor,
processing is continued to completion regardless of the
number of errors found, Erroneous statements are either

wholly or partially ignored during compilation,

Although continuation of processing tends to re-
duce the number of runs required to check out a program,
the omission of erroneous statements may result in "false"
diagnostics, Each diagnostic comment should therefore be

interpreted with this possibility in mind,

If errors have been discovered during generation
of the Source Program Listing, a warning flag to that effect
i1s written on the Listing Tape immediately following the
Alphabetic Symbol Table,

Errors discovered during intermediate processing
are noted on the Listing Tape following the Alphabetic
Symbol Table, Where relevant, the line number of the first
card of the erroneous statement is given., Simllarly, errors
discovered during generation of the compiled FAP program are
listed immediately following the FAP Program Listing,

System Symbol List

A 1ist of all names used in the source program
which have a pre-defined meaning to the processor is written
on the Listing Tape in order of their numeric "internal
symbols," Certain symb&ls,'such as "RANDOM" and "MINIMUM
INDEX," may appear in this list beéause of their implicit
use in the source program, even though they do not appear

explicitly.

Numeriec Symbol Table

A list of all source program names whioch do not
have a pre-defined meaning to the processor 1s written on
the Listing Tape in order of their numeric "internal symbols."
Each symbol is described as to type, mode, storage area, and
dependence upon symbolic dimensions, Dummy variables used as
procedure arguments are 8o noted, External names are also

given for reference,

External Procedure List

External procedures which are used by the source
program are listed in numeric order, Procedures which appear
in the MILITRAN ObJject-Time Library'are not l1isted. External
procedure names exceeding six charascters in length are trun-

cated to six characters,

Symbolic Dimension List

All symbolic dimensions whose values are to be
specified at running time are listed in the order in which
they must be pyesented to the program. Since storage
assignment 18 accomplished at the beginning of main pro-
grams only, this 1ist does not appear in compilation of

procedures.

Cards specifying symbolic dimension values are
prepared directly from this 1list, Each symbolic dimension

value requires one input card,

An initializing value for the system random num-
ber generator is constructed from two input values which

are treated by the processor as symbollc dimenslon.

FAP Program Listing

FAP card images comprising the compiled source
program are written on the FAP Tape. Each program 1s pre-
ceded by an end-of-file mark, and an end-of-flle follows
the last program written on the FAP Tape durlng a glven run

of the processor,

FAP card images written on the FAP Tape are also
copled onto the Listing Tape. The appearance of the state-
ment "SUSPEND FAP LISTING" anywhere in the source program
will cause this listing to be deleted.

10

Printer Comments

When compilation of a source program is initilated

by the processor, the legend
"BEGIN MILITRAN COMPILATION"

1s printed on-line. At the'conolgsion of each compilation,

the comment
"xx ERRORS IN ABOVE COMPILATION"

appears, The letters "xx" are replaced by the letters "NO"
or the number of diagnostic comments 1ssued durlng process-

ing,

At the conclusion of a processor run, the number
of "BEGIN" comments will equal the number of file marks on
the FAP tape., The number of "ERROR" comments will equal the

number of programs actually compiled,

Pagination

Output on the Listing Tape 18 separately paginated

for each program compiled.

11

PROCESSOR STRUCTURE

The T090 MILITRAN Processor operates as a four-
- 1ink chain Jjob, chain 1links being stored on the Chain Tépe.
Processing proceeds in four phases or "passes," Appendix
3 provides a general desoription of the functions of each

pass,

Passes and chain links do not correspond exactly.
Passes I and II are in the core simultaneously; Pass III

constitutes one link; Pass IV involves two 1links.

12

PROGRAMMING THE 7090 IN MILITRAN

This section deals with aspects of processor
operation of interest primarily to the programmer, The
mechanics of deck preparation for compiling, assembling,
and executing MILITRAN programs on the 7090 are described.
Programming considerations which apply to the 7090 version
of MILITRAN are discussed.

The subsections which follow assume that the
reader 18 familiar with the rudiments of operation under
the Fortran Monitor System, Complete information on this
system from a programming viewpolnt 1is available in IBM

Publication Number C28-6054-2: Reference Manual, 709/7090

FORTRAN Programming System,

PREPARATION OF DECKS FOR COMPILATION

Deck configurations for translation of MILITRAN
source programs into FAP are described in this subsection,
The basic deck 1s described plctorially under "Prototype

Deck." Details of deck components follow,

13

Prototype Deck

[END COMPILATION

/_
Lost source program

/_

[nru source program

P s
[sun dech

il .
[Ilumotlut te operator

1.D. (Identiticetion) N

Identification and Instructions

Requirements for the *I.D. card are determined
by the accounting routine in use at the machine installa-

tion,

Instructions to the machine operator might in-
clude a request to mount the MILITRAN Processor Tape and
required intermediate tapes; instructions for 1isting
and/or punching of output data off-line; and programmer

comments regarding the nature of the run,

The monitor control card "# PAUSE" is usually

included to permit required tape handling by the operator,

14

In general, all identification and instruction
requirements are determined by operating procedures in

effect at each‘installation.

Start Deck

The "Start Deck" initiates operation of the
processor, A standard Start Deck 1s provided with the
MILiTRAN system and consists of four cards: the monitor
control card "* XEQ"; a two-card binary program which re-
winds the Chain Tape and Listing Tape and initiates

processor operation; and the monitor eontrol card "#* DATA,"

The binary program which initiates processing
does so through execution of the instruction sequence "CALL
CHAIN (1,t)." Any program which logically concludes with
this sequence may be used in the_Start Deck if desired,

The integer "t" should be set to the logical unit designa-
tion of tape unit A4,

Source Programs

Any number of source programs may be processed
during a single processor run, provided that the capacity
of the FAP tape 18 not exceeded, Each source program must be
terminated by an END COMPILATION statement, Statements which
are erroneously placed between the last END COMPILATION card

15

and the end of the deck will be 1isted, but are not compiled

as a source program,

A three-character prefix for serialization of
FAP output and binary cards 1is ocopied exact}y from columns
T73-75 of the END COMPILATION card for each program compiled,
Thus, if source program cards are serialized in card columns
73-80, FAP and binary cards will bear identical codes in
columns 73-75.

16

PREPARATION OF DECKS FOR ASSEMBLY

Two methods are available for assembly of
MILITRAN compiled programs, Card images from the FAP
Tape may be punched off-line and assembled as any other
FAP programs, or assembly may be performed directly
from the FAP Tape, Both methods are discussed in this

subsection.

Assembly from Cards

Programs written on the FAP Tape contain all
information required by the FAP assembler, Only the
monitor control card "#* FAP" need be provided for each
program to be assembled, A typlcal assembly deck is

shown pictorially below,

/

[Ln! progrom
I,i FAP N\
Pl <
i Y
First progrom
i ')
[rar N -- -+

*1.0. | W

17

When requesting off-line punching from the
FAP Tape, the number of files to be punched should be
one greater than the number of programs, since a file

mark precedes the first program,

Assembly from Tape

Assembly of programs directly from the FAP
Tape 18 possible through the use of the update features
of the FAP assembler, Complete programming information
regarding the update facility is available in IBM
Publication Number C28-6235: Reference Manual, IBM 709/7090

Programming Systems: FORTRAN Assembly Program [FAPl :

The following sequence of monitor control cards
and FPAP pseudo-instructions will cause assembly of one pro-

gram from a properly positioned FAP Tape:

0 00 11 717 B
1 718 516 213 0
* FAP

UPDATE |t

END aaa99990

The integer "t" must be the logical unit designation of the
FAP Tape, and the prefix "aaa" must correspond to that copied

from the END COMPILATION c¢ard of the MILITRAN source program,

18

Proper tape positioning requires that programs be assembled
in the order éompiled, or that the programmer familiarize

himself with the FAP update feature,

Assuming that the FAP Tape is mounted on logical
unit 10 and 1is rewound, the following deck would assemble

the first two programs on the tape:

[END L9999
Luron: 10 \
« FAP ‘w
END uuﬂoc\
UPDATE 10
[o FAP [W w
*1.0. N

On occasion, it may be desired to assemble only
certain programs from the FAP Tape. The following sequence

will cause assembly of a particular program from logical

unit 10:

19

0 0| O 1} % T 7 8
1 71 8 5| 6 2|3 0
* FAP

UPDATE 10

SKIPTO aaa00010

END aaag999g0

Again, the prefix "aaa" must be unique and correspond to
the serialization prefix of the program to be assembled,
Proper tape positioning requires that assemblies be per-

formed in order of calculation,

It 18 recommended that programmers using the
7090 MILITRAN Processor study the use of the update facili-
ty in the FAP manual, Considerable flexibility in handling

compiler output will result,

20

PREPARATION OF DECKS FOR EXECUTION

Deck configurations for execution of MILITRAN
programs are similar to all others used with the FORTRAN
Monitor System. A typical configuration is shown pic-

torially below, and discussion of deck components follows:

Prototype Deck

i <
rhm dote
S
[{sy:bollc dimensions
an N
= -
/
[Subreutines
l{lu progrom
[q X€qQ W

% 1.0. w

@l

Monitor Control Cards

The three cqntrol cards *I.D., *XEQ, and *DATA
are required for every run. Additional comment cards may

appear after the *I.D, card if desired.

Main Program, Subroutines, and Library

Although the positions of the various binary
decks relative to each other are not significant, all bina-
ry decks must immediately preceed the *DATA card. One and
only one of these decks must be a main program. All others

must be subroutines.

A detailed summary of the MILITRAN Object-Time
Library will be found in Appendix 1, If this library is
included on the installation's System Tape, binary decks
for required library subroutines need.not be included in
the deck configuration. Otherwise, each library subroutine

used by the program must be present.

Where computer storage 1s not at a premium, the
entire MILITRAN Object-Time Library may be included in the
deck. This eliminates the need for determining the specific
subroutines required by the program. Inclusion of the en-

tire library uses approximately 4200 core locations.

22

Symbollc Dimensions

Cards bearing symbolic dimension values must
appear in exactly the same order as the Symbolic Dimension
List produced during compilation, Each card must contain
a decimal integer, the integer being right-Juétified in
card columns 1-5, Card columns 6-80 are ignored by the

program,

Input Data

Input data format is determined entirely by the
MILITRAN programmer, The first card of input data must
immediately follow the last s&mbolic dimension card, or
the *DATA card if no symbolic dimensions are requiréd.

23

EXAMPLES OF TYPICAL MILITRAN DECKS

The éxamples of deck configurations given in
this subsection are intended as guides to the programmer
in arranging MILITRAN programs for compilation, assembly,
and execution, In all cases it 1s assumed that desired

processing is to be accomplished in a single monitor run,

Compile One Program

The example below 1llustrates a deck to compille
a single program, FAP output will be serialized with the
prefix "SRG".

[m COMPILATION SRGI234
= 7
I/Sllﬂ dech

el
[0 Instructions

* 1.D. \

24

Compile and Assemble Two Programs

The example below illustrates a deck configu-
ration to compile and assemble two programs, END COMPI-
LATION cards are not serialized, and FAP cards will there-

fore have blanks in card columns T3-75.

ENO

\

-

l UPDATE 10
: l'u FAP \
[:no oooooﬁ
[[upoare 10 N
[rar N
[:no[co;r.uunou N w
/ /
Is.«u source progrem
[no comerarion N
[/
[/

/

[a Instructions

¥ 10)

25

Compile Three Programs, Assemble Two

The example below illustrates a deck configu-
ration to compile three programs and assemble the first
and last of these, Card serialization is obviously

necessary in this instance,

[END
[’sxlpro
r UPDATE 10
ITF»
[:no
[SKIPTO
[umn 10
4 Fap

[ilo.

[cno COMPILATION ccc

s

[s.uoo progrem
[tno COMPILATION
A
l Seurce pregrom
[:no COMPILATION

/
[Seurce progrem
/

[Stert dech

P

[# Instructions

#1.0.

26

Compile, Assemble, and Execute

The example below illustrates a deck configu-
ration to compile, assemble, and execute a main program
and two subroutines, The END COMPILATION cards are not
aerialized} the entire library has been included; and no

symbolic dimensions have been used.

[Library {binary)
[euo 99990

rwon: 10
an
[£ND
furon: 10
[n FAP
[:uo

. Wvone 0
P FAP

| » xea

[ﬁ.o.

I:no COMPILATION

4
[Subroutine 2

r:uo COMPILATION

Y A
[Subreutine |

[eno COMPILATION

I~

l Melin program

—
[Stert dech

—

l # instructions

#1.0.

27

CHAIN JOBS -

The CHAIN feature of the standard monitor system
may be used to permit execution of programs whose storage
requirements exceed the size of the computer, Decks for
execution of CHAIN Jobs are set-up in MILITRAN in the same
manner as in FORTRAN, The sequencing statement "CALL CHAIN
(R,T)" used in FORTRAN is replaced in MILITRAN by "EXECUTE
CHAIN (R,T)".

Certain characteristics of MILITRAN programs dlc-

tate the following considerations with respect to chaining:

1, Symbolic dimensions, if used, should
appear in COMMON,

2, Only one main program should contailn
symbolic dimension references or the
system function "RANDOM", This main

program should be entered only once,

3. Use of arithmetic expressions as di-

mensions should be avoided,

As program structure is readily arranged to comply with
the above rules, no limitation upon chaining procedures

1s implied,

28

USE OF NON-MILITRAN CODING

Under some oiroumstanoéa, the programmer may
wish to incorporate non-MILITRAN coding sections in a
MILITRAN program, or use MILITRAN to generate portions of
non-MILITRAN programs, Information contained in this sub-
section will facilitate "hybrid" programming where desired,

Insertion of FAP Coding in MILITRAN Programs

The output of the 7090 MILITRAN Processor 1s a
FAP program embodying the algorithm originally expressed
in MILITRAN, Alterations to this program may be made in
FAP provided that the coding sequences of the original

program are understood,

Variable names in the compiled program have the
form "(n)," where "n" is the internal symbol assigned by
the processor. Correspondence between internal and external
names is found in both the Alphabetic and Numeric Symbol
Tables produced during compilation, Temporary storage lo-

cations are denoted by ".,Tx, - n", wheren 2 1 and 1 < x < 4,

29

Access to data in arrays, vectors, and lists
is accomplished by means of indirect addressing through
"declaration tables," The structure of these tables 1is
summarized in Appendix 2, 'Relative positions of data are
carried in Index Register 2, Index registers are saved
where possible within a given source statement, but are

not generally carried from one source statement to another,

Subroutine Calling Sequences
The source statement
EXECUTE SUBR(A,B,C,D)

in a MILITRAN program will produce a FAP sequence of the

form
TSX $SUBR, 4
BRN (a)
BRN (v)
BRN (e¢)
BRN (a)

where (a,b,c,d) are the internal symbol numbers corre-

sponding to (A,B,C,D).

30

FAP coded subroutines compatible with the above
calling sequence may be executed by MILITRAN programs,
Where all arguments are single arithmetic variables,
FORTRAN II and MILITRAN subroutines may also be used to-
gether, It should be remembered, however, that integer
values stored by FORTRAN II programs wili appear to be
262,144 times their actual value when interpreted by
MILITRAN programs, This factor of 2° is due to the
fact that FORTRAN II does not utilize the full word length
in manlipulating integer quantitiles,

31

MACHINE DEPENDENCE

The MILITRAN Basic Language is generally inde-
pendent of hardware characteristics, Some features em-
bodied in the processor are, however, pecullar to the
7090/7094, and some prdgramming techniques may limit

machine independence,

Machine Oriented Features

The statement "SUSPEND FAP LISTING" and seri-
alization prefix specification on the "END COMPILATION"
card are features of the 7090 MILITRAN Processor., They
should not be considered as elements of the MILITRAN

Basic Language,

Input/output statements such as' "UNLOAD" are
meaningful only when tape drives permit such operations

to be executed by the computer program,

Auxiliary listings produced during compilation

are features of the processor alone,

Programming Techniques

Use of non-MILITRAN coding will obviously limit

the case with which a program can be implemented on another

32

computer, This limitation is therefore incurred with
the specific knowledge of the programmer,

A mofe subtle form of machine dependence arises
as the programmer gains experience with the processor and
the language, It is only natural that certain cause-and-
effect relationships will be noted between MILITRAN Source
Programs and the FAP programs produced from them, When
the programmer takes advantage of his familiarity with the
processor in coding MILITRAN programs, loss of machine

independence may result,

All possible techniques of source language coding
cannot be anficipated in the design of a processor, and
even grotesque distortions of a language may at some time
be employed to advantage, Considerable effort has been
devoted to keeping the }anguage and the processor free of
unnecessary restrictions, Where machine independence 1is
of secondary importance, the programmer 1s free to break

rules,

33

OPERATING THE 7090 MILITRAN PROCESSOR

This section deals with aspects of processor
operation of interest primarily to the machine operator.
Tape requirements, overall processing sequence, and error

procedures are discussed,

GENERAL OPERATING PROCEDURES

In general, the processor operates as any other
monitor Jjob., Specific operating characteristics are dis-

cussed in this subsection.

Tape Set-up

The processor requires mounting of the MILITRAN
Processor Tape on A4, and scratch tapes on AS and BS, The

Processor Tape should be file protected,

All required rewinding of tapes is performed by
the processor, In addition, A4 will unload at the end of
a processor run, Since other monitor functions may use
A4, this feature provides additional protection for the
processor and convenience in tape handling for the machine

operator,

34

If the end-of-tape mark is passed while writing
A3, and end-of-file is written and A3 unloads, The processor
halts after printing a request for a new A3, Processing

resumes when START is pressed,

Keys, Sense Switches, Sense Lights

No sense switches are read by the processor at
any time, Sense lights are used only to indicate the
current processing phase, Sense light 1 is on during
Pass I; sense light 2 during Pass II; etc,

All keys must be clear during normal operation
of the processor, Keys are used to specify checkout and

error procedures only,

Printer Comments

Printer comments are used to indicate the progress
of processing, to request a new A3, and to indicate errors
in reading the MILITRAN Processor Tape, The comments are

self-explanatory.

Processing Sequenée

The overall sequence of processor operation is

as follows:

An initialization program
(Start Deck) is loaded into core

and exeocuted.

Passes I & II are loaded from AL

and processing begins,

Intermediate tapes Bl, B3, and
A5 are rewound. An end-of-file

is written on B5, The comment

"BEGIN MILITRAN COMPILATION" 1is

printed on-line.

Source statements are read from
A2 until an "END COMPILATION"
statement 1s encountered. If an
end-of -file appears before "END
COMPILATION", the processor re-
winds BS, unloads A4, and returns

control to the monitor.

If no end-of-file 1s encountered,
processing proceeds through Pass

ITI and Pass III 1s loaded from Al,

When Pass III is complete, Pass IV

is loaded and A4 rewinds,

35

36

Pass 1V ends by printing a state-
ment on-line which contains the
number of errors discovered dur-

ing processing.

If no errors have been discovered
by Pass IV, control returns to
step 2, Otherwise, the Pass 1V
Diagnostic Processor 18 loaded

from A4 and executed.

A4 1s rewound, and control returns

to step 2.

37

ERROR PROCEDURES

This subsestion describes procedures to be

followed in the event of malfunctions,

Data Channel Traps

The processor uses buffered input/output
operations during all passes, As a result, attempts to
use normal monitor functions in dumping or Jettisoning a
run may be frustrated by enabled traps, If non-MILITRAN
error procedures are attempted, press RESET in order to

clear existing trap signals before starting the computer,

End-of -Tape Marks

The processor will not permit writing beyond
the end-of -tape mark on any tape. If the end of any tape
except A3 is encountered, the computer stops at octal lo-
cation 00025, Procesélng cannot be continued., Press

RESET and jettison the run,

Redundancy

The processor will attempt to read or write a
record ten times before declaring a tape error, In the
event of a tape error, the computer stops at octal loca-
tion 00024, Processing cannot be continued., Press

RESET and Jettison the run,

38

Malfunction

Maohine érrors Oor unusual source program errors
may cause the processor to stop or loop, When such a
condition occurs, the following standard procedure should

be followed:
1. Switoch computer to MANUAL.

2. Put keys S,1,2,31 and 35 DOWN.

3. Copy the instruction counter into

keys 3 thru 17.
4, Press ENTER INSTRUCTION,
5. Switeh ecomputer to QUTOMATIC.
6. Press START.

7. When writing has begun on A3,

clear the keys.

The above procedure will cause the contents of
the computer memory to be dumped onto A3 and control re-

turned to Pass I,

39

APPENDIX 1

MILITRAN OBJECT-TIME LIBRARY

The MILITRAN Object-Time Library consists of
binary subroutine decks which perform standard process-
ing functions during execution of MILITRAN programs,
The library is divided into three sections as follows:

ML1l: Arithmetlic Functions
ML2: Input/Output
ML3: System Procedures

Library decks are identifled by four-character
codes in columns 73-76 of the binary cards, The two tables
included in this appendix summarize the characteristics of
each deck with respect to MILITRAN source codes,

The LIBRARY CONTENTS table lists for each llbrary
deck its 1dentification code, core storage requirements
(decimal), entry-point names, other library decks used, and
source program characteristics which require its inclusion

at running time,

The LIBRARY USAGE table lists various source pro-
gram characteristics and the library routines required at

running time in order to implement those characteristics,

4o

LIBRARY CONTENTS

ACTIN

NI
[Tl WQHM
de WNHM
*suotsuawlp oproquis Jo ICEA aHM
a8n J0 ‘WOANVY ‘ALTYMAVAY “IIIUM aeIn NHM 16 021N
ASTH
LSTIN
SCIN
‘sauljnoa Laeaqil a8yjo £q paIsq d2In (HSD) 921 g2TW
ASTIN WQHY
LT WNHY("
‘gsuolsuawip o9j1oquis Jo dSTIN aHd
esn J0 ‘WOANYY ‘FILIUMAVIY ‘QVIY g2 NHY Gh VeIW
*Xapul Aa3u?@ ayj uo Uo}3Tpuod
LST Jd0 JSH © 20e1d j0u s30p
YOTUM XIANI WOANYH a0 ‘WOANVH auou NVH(€4 LTIN
(v)Lds auou LOS(Gh HUIW
V)NVL NVL
V)S00 S0D
V)NIS suou NIS 121 PTIN
(9°V)NVLY auou NVILV(69 JTTH
(v)po1 auou poTI(Ly dTIN
(v)dx= suou axa(L dtIn
*IVEY 87 d ‘UIDIINI
d0 ‘IyEY ST ¥V 24a9ym ‘d°d°vy auou €axa(21t OUIN
*HIDAINI
8T g ‘IVIY 8T V 8asym ‘g°d°v auou 2dx3a(9¢€ a1
*YIDAINI
Yyjoq aae g pue V adaym ‘g°d°y auou 1ax3d((019 VUIK
80138Td9308ARYD paainbay gaweN paainbay Uo0T3ed1JI3uspl
wedBodd 294n0g s8)}9ad J49y30 Lajuy 88rvJa04sS b LETq|

41

(dng
Yadz
MSTA
X€01
axd
*gaujgnoa Lawvaqil 43yj3o £q pasf d2INW g01 99¢t NeIW
d1Id JOVdSAOovd deIN sgJ(8 WS'TIW
FOVdSNove d2Tn sgu(62 TSTW
avoINN d2INn INN(8 ASIN
ANIM3Y d2TH Imu(8 £2TN
714 aNdF d2In LA (8 H2IW
LT
d2TH ¥
aviad XYvyNId NSTW aay 66 LA
NI
BSIN
d2T yTmM(
ZLIUM XYVYNIL NN gum(GS J2TH
. ASTINH
*sduijnoa ALaeaqil aayjzo £q pasf d2Tn (HdS) €8t d2TIW
ASTIH
‘sauijnoa Aaeaqil 42yjo £q pasf d2IN (HOS) 96 acIn
80387493 08dRYD paainbay saweN paatnbay uot3ed1JI3uspl
wedadoad so4anog 8309Q J13Y30 Lajug ad3ea04s b LT |

b2

HHOd

: HA0d

SCIN oay
*sautynod Laeaqil aayzo £q pasn dSTN -1ct. | ch LSTN
*gsaujqnoa Aavaqll 43yzo £q pasn auou (3x3a) 6 SCSIN
*gaugqnoa Laeaqil aayjzo £q pasn auou (no1) %e HSTINW
*gaulqnoa Laeaqil a9yzo £q pasn auou (sd1) 1 BSIN

OHL

004

JHL

HOH

NAACH

NNYH

asd

Jice-

d3M

ysdg

SCIN SHM

HSIN Say
*sautanoa Laeaqil aayjzo £q pasn 02N SOI 16 d2SINW

89]38Td9398aeYD paainbay sawBN paainbay uo13893JT3uUsLpI
weadoad 29anos 8193 13430 Lajuyg 28eva03S b TX-Ta

43

ILST 40 ISH ou Y3im JOVIdIH

*LST 40 ISD ou U3IM FAOWIH
*xapui £Lajua uo

Uof3TPuUod ISH U3TM XIANI WOANVH
*Xapuj £Lajus uo

uoT3TpuoOd JSH U3ITM XAANI WAWINIK auou 2d1(”’ 61 HETH
.xooca.hpucw uo
uog3Tpuod IST U3im XIANI WOANVH
*xapuj £Lajus uo
uoT3Ipuod IST UITM XHANI WAWINIKW
*LST 40 ISD ou Y3iMm XIANI WAWINIKW auou 1d7(7€ aem
q>omM .
INIAT INIONILNOO 1263011 AIN c9 Ot TN
d0OlS auou doLs(91 gETH
®3H
, oy
* XHINF m>@zmm JAOWIY ‘XYINI FOVIdIH cdd
FOVIdEY ‘XUINT HOVId ‘FOVId suou 134 So1 VETIW
quom~
ANTL
SSTIH qu
*saurjnoa Laevaqil 48yjzo £q pasf dSTH (HOI 61H1 ACTH
SCTIN
DeIH OLM
*sautgnoa Laeaqil 43yjo £q pasn dZIn HIM LS NeIn
807381d93098aRYD paagnbay sauweN paagnbay | uog3BvOTITIUSPI
wedBodd acdnog 8)1080 J13yj30 Lajuyg a3ra03sS b BT

Ly

*9aanj3eaJ 3utuleyd Jo asq auou NIVHO(cl WETNW
EAT
cA]
‘suotsusuwWip 9jroquis Jo as SCIN TAT 61 TETN
erdo
*SASSVIO 40 ‘SIOALE0 ‘SINIAF 1040
‘SISIT ‘SHOLOIA ‘SAVHYY JO a8() suou 0S1d LL1 AETH
*quauodwod uo
Uog3Tpuod IS1 40 ISD Y3jim JOVIdHH 6471(
°quauodwod uo
UoT3Tpuod IST 40 ISD Y3TM HAOWIH auou 8d1(9l LETN
*quauoduwiod uo uo}3Ipuocd N Ld1
LST J0 ISD UITM XEANI WOANVH LTIN 9d1 18 HETW
LST 40 ISD ou Y3IM XIANI WOANVYH LTIN Gd1(G9 DETW
‘quauodwod uo uo}3Fpuod 4d1
IST J0 ISD U3 TM XIANI WAWINIKW suou €d1 Sh JETIN
80]38749308aRBYD paainbay soweN paagnbay uoT3eOTJI3uUapIl
weJdB0dd 99anog 83090 J3U30 £Lajuy 938vJ013S Lo

45

Features below, wl ML3

librar)M

=
8]
O
=
97]
)
(&
<
el
o]
Q
=)
L
1

Arrays, vectors, lists, events

Symbolic dimenslions XIXIXIX[X|X|X
CONTINGENT EVENT, NEXT EVENT, | XX
STOP X

A. P, B, where A and B are b

where A 1s REAL and

where B 1s REAL

EXP(A)

LOG(A)

ATAN(A,B)

SIN(A), COS(A), or TAN(A)

SQRT(A)

RANDOM

READ

WRITE

Eo T e T S
TR e T B T -

Fa T

READWRITE

BINARY READ X

s
>

BINARY WRITE X

>
s

END FILE

REWIND

UNLOAD

BACKSPACE

T e T T e Eo T B S T B B S B
s s Eo T IR IS > I R e T]
P T B B NS PSS

T B T - o

BACKSPACE FILE %

PLACE

PLACE ENTRY

REMOVE ENTRY

ES T B oS

REPLACE ENTRY X

46

Features below, when -

require library de

ML3

e
"

2]
'))

|

MINIMUM INDEX

with

no GST or LST

with

GST referring

with

LST referring

with

GST referring

with

LST referring

RANDOM INDEX

with

no GST or LST

with

GST referring

with

LST referrrin;

with

GST referring

with

LST referring

REMOVE

with

no GST or LST

with

GST referring

with

LST referring

with

GST referring

with

LST referring

REPLACE

with

no GST or LST

with

GST referring

with

LST referring

Eo T e T B T B T BT [s T B S - e

with

GST referring

with

LST referring

47

APPENDIX 2

DECLARATION TABLES

All objects, classes, arrays, vectors, and
lists are fully described in the object program by
means of reference tables, These tables are described

in detall on succeeding pages,

48

Obgecta

P23 17,18 20,21 35
L | L
b-m Last word of obJect name |

b-1 First word of object name

b 3 d (o} a

Base address b is the location corresponding to
the internal symbol of the obJect name. The name of the
object 18 stored in BCD code, six characters to the word.
The last word of the name is filled with blanks on the
right if less than six characters long. Decrement d is
the number of characters in the object name, excluding

blanks,

If the object was declared with a symbolic
dimension, addpess a is the location of the symbolic
n "

dimension value, The actual value replaces "a" after

dimension values are read,

If the object was declared with a numeric di-

mension, a is the value of that dimension,

k9

Classes
P 2.3 17.18 20 21 35
b-n Pn dn (o} 8,
b-n+l Pha1 dn-1 0 2n-1
b-2 P2 d2 o P
b 0 n 0 c

Base address b corresponds to the internal symbol
of the e¢lass name, The number of words in the table, ex-
cluding the base address, is n, The cardinality, ¢, is
initially zero if any member of the class involves symbolie
dimensions, After symbolie dimensions have been read, ¢ is

set to the proper cardinality,

Table words in location b-1 through b-n specify
the members of the class, Decrements d1 through dn are
codes designating objects which belong to the class, each
object being designated by the base address of 1ts decla-

ration table in core, Addresses a, through a, are the

50

respective contributions of obJjects d, through d,, to the
total cardinality of the class., Prafix Py 18 zero if
object d, 1s included eollectively (no EACH*) in the

class; Py is four if object d1 is included individually
(EACH*),

51

Arrays
P 2,3 17 .18 20,21 35
b-n P d, 0 a
b-n=-1 Prisl dnql 0 an.1
b-2 Py dof O a,
b-1 Py d, 0 a,
b 0 n t aq

Base address b corresponds to the internal symbol
of the array name., Entries in locations b-1 through b-n
specify the n dimensions of the array. Address a, is the
BES address of the array itself. The location specified by

a, 1s also reserved, and is called the "zero position.”

Arrays are stored in decreasing storage locations
from a, the first subseript varying most rapidly. Access
to arrays is accomplished indirectly by means of the tag t
which 18 either 2 or is set to 2 by the storage allocation

processing.

52

If the 133 dimension 1s numeric, Py is zero,
d1 1s zero, and a, is the dimension value, If the 139
dimension 1s ﬁumeric, py is b, d, is zero, and a, 18 the
location of the dimension value, The dimension value 1it-

self replaces a, during storage allocation,

If the 11 aimension is an object or class name
which does not involve symbolic dimensions, Py is zero,
d, 1s the base address of the object or class in storage,
and a, is the cardinality of the obJject or class, If the
obJth or class is dependent upon symbolic dimensions, Py
is 4 and a; 1s éero. The cardinality of the class or object

as determined by its symbolic dimension values replaces a8y

during storage allocation,

53

Vectors

B S 17,18 20 21 35

B} mEE component

th
b-(m-2)(n+1)-1 (m'l)— component

b-n-2 Second component
b-1 First component
b b m|] ¢ : a4

Each of the m components has n dimensions and
1ts declaration table is identical to that for an array.
Only one "zero position" is reserved for the entire vector,
and that position is at a,. Tag t is either.2 or 1s set

to 2 during storage allocation,

Vectors are stored in decreasing storage loca-

tions from a,. The first component has its "zero position”

at a_; the second component shares 1ts "zero position" with

o;
the last position of the first component; etec.

54

Base address b corresponds to the internal
symbol of the vector name, The base addresses of array
tables for components correspond to the internal symbol

of the component names,

Lists and Permanent Events with Lists

P 2,3 17.18 20,21 . 35
) L 1
b-3m
Vector table
b
b+1 Y Y 0 2.1

The "vector table" 1is identical to that for a
vector having m components of one dimension each. The
address a_, at location b + 1 1s the current length of

the 1list. This length is originally zero,

Base address b corresponds to the internal

symbol of the 1list name,

55

56

Contingent Events with Lists

P23 17,18 20,21 35
b-3m
Vector table
b
b+1 4 0 0 - Ba
b+2 0 0 0 B

Location b + 2 specifies the address (8-2) of
the first instruction in the event processing sequence,

Other locations in the table are as described under Lists,

o

APPENDIX 3

FUNCTIONS OF PROCESSOR PASSES

Functions of each pass are described below,
Passes are executed sequentially for each program com-
piled, Initiation and termination of the operation of

the processor occurs in Pass I,
Pass I

* All reading of the Input Tape is performed by
Pass I. Statements are numbered and copied onto the Listing
Tape as they are read, Buffered input/output operations
permit these functions to occur concurrently with internal

processing.,

Each statement is subjected to a general scan
which eliminates blanks and comments., FORMAT and END COM-
PILATION statements are identified immediately and processed
separately, Diagnostics issued during preliminary scanning
are followed by a liatihg of the scanned statement up to

the point at which the error is discovered,

After preliminary scanning, statement types are

identified and statements are reduced to an internal code for

58

processing, All names are assigned unique numeric identi-
fiers which will become the basis fof internal storage of
their declared characteristics, Mnemonic delimiters such
as UNTIL, FOR, and BY are identified,

Final processing in Pass I i1s determined by the
type of statement., Symbolic dimensions are identified and
declared, Statement labels are declared., FORMAT state-

ments are compressed and translated into final form,

Declarative statements are written on Scratch
Tape 23 executablé statements are written on Scratch Tape
; certain "hybrid" statements are written either wholly
or partially on both tapes, Names and their internal nu-

meric counterparts are written on Scratch Tape 1.

When the END COMPILATION statement has been
processed, the Alphabetic Symbol Table is written on the
Listing Tape and Pass I processing ends, Ends-of-file are

written on all scratch tapes and Scratch Tape 2 is rewound,
Pass II

Declarative statements are read from Seratch
Tape 2 and processed, Explicit declarative information is

recorded in the symbol table for later reference, Names

59

declared as vectors, lists, or events are assigned the
NORMAL MODE if specific mode declarations are not en-
countered, FORMAT statements are sorted onto Scratch
Tape 3; expressions involving symbolic dimensions onto

Scratch Tape 1, Diagnostics are issued as required,

When all declarations have been processed, the
symbol table is scanned and adjusted to provide full in-
formation regarding each explicitly declared symbol,

Diagnostics are issued without source llne references,

Ends-of -file are written on Scratch Tapes 1 and
3; Scratch Tapes 2 and 3 are rewound; Scratch Tape 1 1is
backspaced to the beginning of the second file,

Pass III

All executable statements on Scratch Tapes 1 and
3 are processed by Pass III, Each symbol whose mode has
not explicitly been defined is assigned the NORMAL MODE,
Functions are identified, The internal code in which the
statement 1s expressed i1s modified to facilitate further

processing,

Statements are examined by type, and complex
statements are rewritten in terms of more basic operations,

Diagnostics are 1ssued as required, Rewritten statements

60

are checked for validity of internal code symbols and
copied onto Seratch Tape 2,

The executable program written on Scratch Tape 2
retaiﬂs the basic syntax of the MILITRAN source program,
However, certain statement types not found in the external
language have been introduced, and many external statement
types have disappeared, Some temporary storage allocation
has been determined; some auxiliary labels have been intro-
duced, Constants retain the apparent mode specified by the
presence or absence of a decimal point in their external

form,

When all executable statements have been processed,
the System Symbol List 1s generated, External names are re-
trieved from the first file of Scratch Tape 1 and the Numeric
Symbol Table is written, Names of procedures, objects, and
symbolic dimensions are retained for later reference; all
others are discarded, The External Procedure List and
Symbolic Dimension List are written, Scratch Tapes 1 and

2 are revwound,
Pass IV

Pass IV processing consists entirely in generating
a FAP program on the FAP tape, Programs generated have the

following canonical form:

3a,

3b,

5.

61

A "LBL" pseudo-instruction causing
binary cards to be serilalized with
columns 73-75 of the END COMPILATION

card,

A "COUNT" pseudo-instruction whose
address field is seven times the
number of cards in the source pro-

gram,

A page title card and an initial
transfer instruction., (Main programs

only.)

An "ENTRY" pseudo-instruction and a

page title card., (Procedures only,)

Pseudo-operations defining non-
standard operation codes used in

compliled MILITRAN programs,

Common storage allocatlon for use

by MILITRAN ObJject-Time Library

"routines,

Common storage allocation for vari-
ables in the source program, 1f

required,

9.

10,

11,

12,

13,

14,

€2

A one-word constant which provides
a link between local and common

OBJECT tables,

Tables defining OBJECTS in local
storage, if required,

System constant locations, if re-

quired,

Local storage allocation or common
storage values fbr TIME, ATTACKER,
TARGET, and INDEX if required,

Local storage allocation and common
storage values for all variables 1n

the program as required,

FORMATS specified in the source

program,

FORMATS generated by the processor
for listing of symbolic dimensions,
(Items 13 thru 21 apply to main

programs only,)

A FORMAT for reading of symbolic

dimensions,

15,

16,

17,

18,

19,

20,

@l

22,

Symbol-defining pseudo-operations
for use in reading and writing

symbolic dimensions,

Instructions which initialize the
floating-point trap routine and

common storage tables,

Instructions which read and list

symbolic dimensions,

Calculation of dimension values

which are arithmetic expressions,

Storage of dimension values in
reference tables for arrays, vectors,

1ists, and objects,

Adjustment of tables for classes

whose members have symbolic dimensions,

Allocation of storage for arrays,
vectors, and lists whose storage
requirements depend upon symbolic

dimension values,

Processing specified by executable

statements in the source program,

63

23, Exit sequence to monitor for main
programs, to calling program for

procedures,

24, Instructions establishing communi-
cation between a procedure and its

calling sequence. (Procedures only,)

25, Allocation of temporary storage

locations,

26, "END" ecard,

Diagnostics issued during Pass IV processing are
stored on Scratch Tape 1 until generation of the FAP pro-
gram 1s complete, They are then retrieved and expanded

onto the listing tape,

All scratch tapes are rewound at the end of
Pass IV and.control is returned to Pass I for processing

of the next source program,

65

APPENDIX 4

MILITRAN PROCESSOR OPERATING SUMMARY

Tapes
MILITRAN Compiler Tape on A4, file protected,
Scratch tapes on A5 and B5,

Printer Comments

BEGIN MILITRAN COMPILATION

NO ERRORS IN ABOVE COMPILATION
xx ERRORS IN ABOVE COMPILATION
END OF TAPE A3

BAD Ab

Error Stops

Location 00024: Redundancy. Can not be ignored, Kill Jjob,
Location 00025: End of tape, Can not be ignored, Kill Jjob,

Unexpected Stops

1, 8Switch to manual,

2., Place Txx xxx 000021 in keys, where.
xxxxx is location counter,

3. Press "ENTER INSTRUCTION"
4, Switch to automatic
5. Press "START"

6., Clear keys after 10 seconds,

FORTRAN Monitor Operations

Before attempting standard monitor procedures such as

dumps or skipping to next Jjob, always press RESET,

66

INDEX

alphabetic symbol table 6
arrays 51-52
assembly from cards 16-17

assembly from tape 17-19
BSS Loader y

card punch 3

card reader 3

chain jobs 27

Chain Tape 5

classes 49-50

COMMON 27

compiled output 6-10

compiled FAP program 6, 7, 9, 10

contingent events 56

data channels 2

data channel traps 37
diagnostics 6, 7, 10
Dump Tape 5

END COMPILATION 14-15, 17, 31
end-of -tape mark 34 '
examples of typical decks 12, 13, 16, 18, 20, 23-26

execution of compiled programs 20-22

external procedure list 8

FAP e, LT

FAP coding inserted in MILITRAN programs
FAP program listing 9o

FAP Tape 5, 9, 10, 17

FORTRAN Monitor System 3-4, 12

hardware requirements 2-3

Input data 22

input/output routines 3

Input Tape 5

instructions to operator 13-14'
integer conversion - FORTRAN to MILITRAN

internal symbols for names 6, 8
keys 34

line printer 2
1inks 11

Listing Tape 5-9
lists 55

machine errors 38

main program 21

67

28

30

MILITRAN Object-Time Library 4, 21, 39-46

MINIMUM INDEX 8

monitor control cards 13, 14, 16, 21

numeric symbol table 8

objects 48

operating summary 65

pagination 10

Pass I 57-58

Pass II 58-59

Pass III 59-60

Pass IV 60-64

passes 11

permanent events 55
printer comments 10, 34
processor 2-11, 34-36
Punch Tape 5

RANDOM 8, 27
random number initializer 9

redundancy errors 37

Scratch Tapes 5

‘sense lights 34

sense switches 34
serialization 15

software requirements 3-4

gsource program 6

68

source program listing

start deck 14
subroutines 21, 29
SUSPEND FAP LISTING

symbolic dimensions

6

9, 31
22

symbolic dimension 1list 9

system symbol list

System Tape 5

tape set-up 33
tape units 2, 8, 5

UNLOAD 31

vectors 53-54

8

Unclassified ‘ .
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security ciessilication of title, body of ebetrect and indexing annotetion muet be entered when the overall report te classilied)

1. ORIGINATIN G ACTIVITY (Corporate suthot) . 2¢. REPORT SECURITY C LASSIFICATION
Systems Research Group, Inc. . Unclassifed
1501 Franklin Ave. 26. arouP
Mineola, Long Island, N, Y,

3. REPORT TITLE

MILITRAN OPERATIONS MANUAL FOR IBM 7090-9%4

4. DESCRIPTIVE NOTES (Type of report and Incluaive detes)
Technical report

S. AUTHORC(S) (Lest name. firet neme, initial)

Systems Research Group, Inc.

6. REPORY DATE 7e. YOTAL NO. OF PAGES 756. NO. OF REFS
June 1964 69
Be. CONTRACY OR GRANT NO. $0. ORIGINATOR'S REPORT NUM..“S)

Nonr 2936(00)
b PROJECT NO.

Navy NR 276-001

e. b, HER REPORT NO(S) (Any other numbers the! may be assigned
AP ProJ. 2801, Bls'pe USAF Technical Documentary
¢ Task 280101 Report No. ESD-TDR-64-389

10. AVAILABILITY/LIMITATION NOTICES
Qualified requesters may obtain copies of this report from
the Lefense Documentation Center (DDC)

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY '
Off41r=> of Naval Research, Wash, D,C.

: Electronic Systems Division, Alr
orce Systems Command, Bedford, Mass.

13. ABSTRACT,

MILITRAN isan algorithmic computer language specifically oriented to the
problems encountered in simulation programming. In addition to providing
overall flexibility in expressing complex procedures, the language contains
features which greatly simplify the maintainence of status lists, handling
of numeric and non-numeric data, and sequencing of events.in simulated time.

This report describes the features and operating procedures of the 7090-94
MILITRAN Processor.

DD .mo%. 1473 _ Unclassifieg

Security Classification

Unclassiried A

Security Classification

KEY WORDS

LINK A
ROL &

LINK B
ROLE

LiNK C
ROLE

wY wY wT

ey

Militran

Langusge

Simulation

Computers

Programming Languages
Data Processing Systems
Information Retrieval
Instruction Manuals
Compiler

Systems fnalysis

War Gaming

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the nama and addrees
of the contrector, eubcontractor, grantes, Department of De-
fense activity or other organization (corporate author) lesuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
ali security ciassification of the report. Indicate whether
‘'Restricted Data’ is inciuded. Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading le specified in DoD Di-
ractive 5200, 10 and Armed Forces Industrial Manual. Enter
the group numbar. Also, when applicable, show that optional
markings hsve been used for Group 3 and Group 4 as author-
{zed.

3. REPORT TITLE: Enter the compiete report titie in all
capital letters. Titles in ali cases should be unciassified.
If a meaningful titie cannot be selected without classifice-
tion, show title classification in ali capitais in parenthesis
immediately following the titie.

4. "DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when & specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter iast name, first name, middle initial.
{f military, show rank and branch of service. The name of
the principal author is an absoiute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date sppears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, l.o., enter the
number of pages containing information,

76, NUMBER OF REFERENCES Entar the total number of
raferences cited in tha report.

8s. CONTRACT OR GRANT NUMBER: If eppropriata, anter
the spplicable number of the contract or grent under which
the report was written,

8b, &, & 8d. PROJECT NUMBER: Entar the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a2. ORIGINATOR'’S REPORT NUMBER(S): Enter tha offl-
cial report number by which the document will be identified
and controlied by the originating activity, This numbar muet
be unique to this report.

95, OTHER REPORT NUMBER(S): If the report has been
asaigned any other report numbers (either by the originator

or by the sponsor), aiso enter this number(e).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than thoee

imposed by security ciassification, using stendard statements
such ae!

(1) ‘'Qualified requestera may obtain coples of this
report from DDC.*?

(2) ‘Foreign announcement and dissemination of this
report by DDC is not authorized.”’

(3) “U. S. Government agencies may obtain coples of
this report directly from DDC. Other qualified DDC
users shall request through

”»”

(4) ‘’U. S. military agencies may obtain copies of this
report directly from DDC, Other qualified users
shail requeat through

”n

(5) ‘*All distribution of this report is controiied Qual-

ified DDC users ahall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate thie fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for sdditional explane-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or | aboratory sponsoring (pay~
ing for) the research and development. Includa address.

13. ABSTRACT: Enter‘an abstract giving a briaf and fectual
summsry of the document indicative of the report, avan though
it may also appear sisewhera in tha body of tha tachnical ra-
port. If additional space is required, a continustion sheet shall
be attsched.

It is highly desirsbla that tha abstract of classiflad raports
ba unclaseified. Esch paragraph of tha sbetract shall and with
an indication of tha militsry sacurlty classificstion of tha in.
formation in tha psragraph, reprasantad as (T3), (8). (C), er (U).

There is no lUmitation on tha langth of tha abstract. How-
evar, the suggssted length is from 150 to 225 words.

14. KEY WORDS: Koy words ara tachnically masningful tarme
or short phrases that cheractariza a report and may be usad as
index entries for cataloging the report. Key words must ba
selected so that no security classificetion ls raquired. Ildanti-
fiers, such as equipment mode! designation, trada name, military
project code namae, ?oogrlphlc location, may be usad as kay
words but will be followad by an indication of technical con-
text. The assignment of links, rules, and weights is optionsl.

Unclassified
Security Classification

