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REMOVING ARCS FROM A NETWORK

I. Introduction

This paper is concerned with a sensitivity analysis

on a maximum flow network.

The network is defined by a set of arcs and a set of

points called nodes. Each arc joins two nodes and has asso-

ciated with it a positive capacity which represents the naximum

amount of flow that may pass over it. One of the rodes is desi.gn-

ated as the source and another as the sink.

From these nodes, arcs, and capacities, the maximum

amount of flow that may pass from source to sink may be cal-

culated. ( I ) The question arises as to what happens to the

network if a number of arcs are to be removed. Specifically,

given a maximum flow network from which n arcs are to be

removed, which r, arcs, if removed, would reduce the maximum

flow from source to sink the most and what would be the resulting

maximum flow? This paper presents an algorithn for solving

such a problem for a certain class of networks.

The algorithm would be helpful in determining how

sen3itive a transportation ,ystem might be to having some >f

its roads closed down for repairs or tied up by traffic accidents.

It might also shed light on the problem of adding arcs which

is of interest in deciding where to build new roads.

1) pp. 17-22
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hI'e central idea in the sol,,ing of maximum flow network

£ roblezns is summarized in the max-flow min-cut theorem.

First, it is necessary to define a cut set and its value.

Definition: Consider a network consi-ting of nodc which

include a source and a sink, and capacitated arcs which join

two nc-dea. Let A and B be a partition of the nodes such that

the source is in A and the sink is in B . Then the set of arcs

which join a node in A to a node in B is called a cut set and

is denoted [A, B I. Furthermore, the value of this cut set,

V[ A, B j, is equal to the sum of the capacities of its arcs.

A property of any cut set, [A, B I is that any path from

source to sink must use at least one ol its arcs. This is true

since the source is in A , the sink in B , and hence any path

connecting the two must contain an -rc joining a node of A to

a node of B . Thus, it is apparent that the maximum flow

cannot cxceed the minimum value of all ri:t sets. The mnax-

flow mia-cut theorem states that the maximum flow actually

equals the minimum cut.

Ifl. The Topological Dual

The topological dual of a network, when defined, is

another network in which the --rcs, instead of having capacities,

have le:igths. Furthermore, there is a one-to-one correspondence

between the cuts of the original network and the routes through

the dual, and the problem of finding th.e nwinimum cut may be

reduced to one of finding a shortest route.
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Let the original maximum flow network be called the

primal. To the primal add two artificial arcs, one exter ding

from the source to minus infinity and the other from the sink

to plus infinity. The resulting network will be referred to as

the modified primal. The dual is defined if and only if the

modified primal is planar, a planar network being one that can

be drawn on a plane such that no two arcs intersect except at

a node.

When defined, the dual is constructed in the following

manner:

1. Place a node in each mesh of the modified primal.

Lei the source be the node in the mesh above the

modified primal and the sink be the node in the

mesh below it.

2. For each arc in the primal construct an arc that

intersects it and joins the nodes in the meshes on

either side of it.

3. Assign each arc of the dual a length equal to the

capacity of the primal arc it intersects.

An example of a network and its duai is shown in Figure

1. Figure 2 shows an example of a network where the modified

primal is not planar and hence the dual is not defined. Let a

route through the dual be any path from its source to its sink.

Jt follows that there is a one-to-one correspondence between thP

cuts of the primal and the routes of the dual.
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THEOREM: Given a network such that the modified

primal is planar, consider any route through the dual. T-he

axcs -ai the primal which inter sect this roate form a cut whose

value is equal to the length of the route. Conversely. for each

cut of the prim~al there is a route through the dual whose length

is equal to the value of that cait, and ouch that the cut forms the

set of arcs in the primal th.t intersect this route.

PROOF: Consider any route throligh the dual. Let

A be the set of all nodes that lie to the left off this route and

B the set of all no-des to the right of it. From the construction

of the dual it follows that the source is in A and the ink in B.

It follows that any arc connecting a node of A to a node of B

is connecting nodes which lie on opposite sides of this; route and

must therefore intersect it. Furthermore, any arc which inter-

sects this route connects nodes on opposite sides of it and must

therefore be connecting a node of A to a node of B . Hence

the cut set [A, B j is the set of arcs which inte.-sect this route.

Since the capacity of any arc of [(A, B ) is equal to the len~~ch

of the arc in the dual it intersects and conversely, it follows

that the value of the cut [A, B ) is equal to the toatal tength

of this route. Now consider any cut set [A, B I -The set of arcs

in the dual which intersect it forms a route. Also, all the nodes

in A lHe to the left of this route and all the nodes of B to the

right of it. Hence the value of cut ( A. B]) is equal to the length

of this route.

It follows from the above theorem that finding the value
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II
oi the nlnimum cut of the primal is equivalent to fiding the

length of the minimum route through the dual.

IV. The Algorithm

Since the maximu.m flo throtigh a network is equai to

the minimum cut which in turn is equal to the shortest route

through the dual, it follows that the problem of finding the

u arcs .vhich when removed from a network will reduce its

capicity the most is equivalent to finding thofe n arcs of the dual

which when assigned zero length will make the minimum route

as short as possible.

It is the latter problem that the algorithm of this section

solves. Throu- aout the rea! of this report all nodes and arcs

refer to the dual network unless specified otherwise.

Let an i-arc oath to node a be any path from the

source to node a with the lengths of i or fewer of its arcs

reduced to zero. Also, let L (to be determined later) bea,i1

the length of the shortest i-arc path to node a . The alecrithr.-n

essentially assigns to each node, a, n - 1 labels, D_ o, D I'''."
at1

Da, n such th=tinitiaily it is known that D > L a, i The

labels are then reduced in such a way as to prescrve this initial

property until all Da. i = L a,. At this point the n -1±1

label at the sink is the length of the desired patha.

Letting S be the E-urce and S the sink , the algorithm

is:

1. For i= 0, 1,..., n, set DS, =0 and D =c

for a # S . Set k = 0.
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2. Let li,,bl he the length of arc (a,b) . Check

each arc (a, b) and:

a. If D > Db, + I(ab) 8et

b, k'D a, k = b, k -ab)

b. If Db. k > D + I(ab) aet

Db, k = Da, k +(a, b)

c. If k> 1 and Da, k > Dbk- Iet

Da,k = Dbk.-1

d. If k> 1 and Db, k > D k- .Set

b, k =a, k-.

If none of the above hold, make no changem.

3. Repeat 2 until no more changes can be made.

Then if k < n, increase k by I and go back to

2. Ur k = o , terminate as Dg n is the length

of the desired routle

The desired path itself may thme be found by the following

procedure:

1. Set k = , = a(l), and i1() = n.

2. Find a node a(k+1) such that either

Da(k+l), i(k+1) = Da(k), i(k) - I(a(k),a(k+l))

and i(k+l) = i(k) or

Da(k+ 1), i(k+ 1) =a(k), i(k)

and i(k+l) = i(k) - I

3. If a(k+l) S. increase k by I and go back to

Z, Otherwise terminate. S = a(k+), 0 . Ia(l)

is the desired path. The arcs whose lengtas are



to be reduced to zero are those arcs, (a(k), a(k+1))

such that i(k) i(k+l) . The arcs to be removed

from the primal network are the arcs which inter-

sect these arcs of the dual.

V. Justifica tion of the Algorithm

The procedure for justifying the algorithm of the last

section will be to show first thai for all a and all i, D . > La i - a, i

always and D a. = La, i when the algorithm terminates. Then,

in the following section, a relationship betwee.i the L willa, i

be established to help verify the process of tracing out the desired

path.

LEMMA 1: D .> L ali E and all i.a,i- a,i

PROOF: Assume that at one poizt of the algorithm

D a>L aall a and all i. Suppose that the i + l s t labelDa,- > La,i

at node a is to be changed to Da, i . Then there is a node b

such that either:

1. 15 = b + 1l a, b)or
a,i i

a, i D b, i- 1

In the first case any i-arc path to node b of length L. i

plus arc (a,b) is an i-arc path of length less thar. or equal

to 1a . In the second case any (i- 1) -arc path to nrde b

of length Lb, i- i plus arc (a, b) with length reduced to zero is

an i-arc path to node a of length less than or equal to 5 . .

Thus the relationship Da, i > L all a and all i still holds.~- a,i

Initially DS, = 0 = LS, and D = co > L for a A S .

It follows from induction that Da, i > La, i all a and all i always.
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T 'LIR~ SA 'I- - ~ - ..Jax ILX~r d.; tAmi~r a inle number 01 iterations,

D a,0= L a,0all a and remains at that value for all subsequent

iterations.

PROOF: Let S,a,...,a ak a be a shortest route from,

S to a .After one examination of the arcs,

al 0 l(S,a 1 )

After 2 iterations,

After k+l iterations,
k-.l

Da, 0 I S a)+ la,~ a i 1 l) + l(a kPa) L a ,0

1=1

Ofcors Da, 0 ailreanaC a, 0 for all subsequent iterations

since the D a,0are non-increasing and D.. > L a0by lemma

1. Thus the lemma holds for any particular node. Let k(a)

be the number of iterations required in order that D a, 0 L a, 0

After mnax k(a) iterations D = L all aa a, 0 a, 0

LEMMA 3: Suppose S, al... .a k is a shortest i-arc

path from S to a k * If arc (a kl' ak has length zero in. this

path, then

i.L .=L

Otherwise

2. L a.i=L a_ +Iaj
&ki ali+ ala)

PROOF: Suppoie arc (k1, ak) has its length reduced

to zero in this path. Then S, a 1 V .- 'k- is an (i-l)-arc path

to a k-I of length L a'i and L '-1 l< L a k*i

- 10-



Furthermore, any (i- l)-arc path of length L and

arc (ak- 1' ak) with length zero forms an i-arc ath to ak

of length L ak " s i-I and the first equality holds. If arc

(ak-l,ak) does not have its length reduced to zero, then

Sal,...,aki is an i-arc pathto ak I of length

L .- l(ak-ak) and L > L , + l(ak-lak) Also,
a ksI ( kk a ,sI- a -sI klk

any i-arc path to akl of length Lak-lVi and arc (ak-lsak)

is an i-arc path of length LAi + l(ak- l'ak) and the second

equality holds.

LEMMA4: Suppose Sal,..., ak is the shortest i-arc

path from S to a, . Let (am , am+) be the last arc in this

path to have its length reduceed to zero. Then,

k-I

L =L . + l(a a l
a k , I am * A - j

PROOF:

L a -L ai = la,-.) j = m+l,...,k-I
j- i j, "

L -L =0
m+I ,i- 0

from lemma 3. Sumrnring these equations gives

k-1

iL + l- 1a a3 +i)a k' I a m p i- 1, ,"+l
j=m+l

THEOREM 5: The algorithm terminates after a :finite
number of iterations with D. L , all a and all..

a, i a,

"li"



PROOF: Suppose that after a finite number of iterations

Da, i = L a'd a and all i< M. Let S,al,...,ak

be an (M+i)-arc path of length Lak # M+l and let (am, am+i)

be the last arc in this path to have its length reduced to zero.

The after one additional iteration,

Da +lM4I < LaI M

and after k-m additonal iterations,

k-I

Dak M c <L a M+ 7 l(aj, a l La
k ,M+l- M L m

j =m+ I

and the theorem holds for any particular Da, M+I * Let k(a)

be the number of iterations required in order that D ' L
a, M+I a, M+I"

Then a-fter m" k(a) iterations D = L aU a . Since
a a, M-1 a M+l

D = La, 0 after a finite number of iterations, it follows from

incd..ction that D . = L . all a and all i after a finite number
a, i a, i

of ,terations and the algorithm terminates.

Of coursc any route from source to sink with n or fewer

cf its arcs reduced to zero is an n-arc path to . Thus,

when t.e algorithm terminates, DS, n Lg, n is the length of

the desired route. It now remains to justify the procedure for

tracing out the desired path. This will be done by showing that the

steps of this procedure can be carried out, that the procedure is

finite, and finally that the path found is the desired route.

LEMMA 6: Let La(k), i(k! be the length of the shortest

i(k)-arc path to node a(k) . Then there is a node a(k+l) such

that either:
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l*a I'kl),i(k+1) La(k),i(k) - I (a(k+ 1), a(k))

where i(k+l1) i(k) or

2.La(k+ 1), i(k-.-1) = a (k), i (k)

where i(k+.) =i(k) - 1

(i. e. Step ?- of the procedure for finding the desired route can

be carried out. )

PROOF: Let S,a 1 . ... ,a ,a(k) be an i(k)-arc path to

node a(k) of length L (k), i(k) * By lemmna 3, either

j.- L L ora(k), i(k) a i(k)-l1)

.La (k) i(k) La i(k) + l(a M ,a(k))

Letting a M= a(k+1) gives the desired relationship.

LEMMA 7: The procedure for tracing the desired path is

finite. (i.e. There exists m such that a(m) = S .

PROOF: Either

1.La(k+ 1), i(k+l1) = L a(k), i(k) - 1 (a(k+ 1), a(k))

Wilich implies

or

2. i(k+ 1) = i(k) - 1

Suppose the process were z..ot finite. Then there is an M such

that k > M implies either:

L (k), i(k) < 0 or i(k) < 0

which is impossible. Thus the process is finite.

THEOREM 8: Let a(l), .. .,a(m) be the set of nodes

fouind by the tracing procedure. Then S =a(mn). .. a(1) =3
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is the shortest possible route if n or fewer arcs have their lengths

reduced to zero.

PROOF: Suppose a(m),..., a(k) is an i(k)-arc path

to a(k) of length La(k) 0 i ( k ) * Either

1. 1..k = La~) + lI .k), a(k- l))
.a(k-1),i(k-1) La(k)i(k)

where i(k-1) = ;(k) or

2. L (k- 1), i(k- 1) = La(k), i(k)

where- i(k-1) = i(k) + I .

In either case a(m), ... , a(k- 1) is an i(k- 1)-arc path to a(k- 1)

of length La(t- 1), i(k- 1) * Since a(m) = S is a path of zero

length and hence an i(m-arc path of length La(m). i(m) to

a(m), it follows from induction that a(m),..., a(1) is an n-arc

path to a(l) = .9 of length La(l),i(I) = L9, n '

This comnpletes the justification of the algorithm for finding

the desired route itself. The arcs in this route whose lengths are

to be reduced to zero are, of course, those arcs, (a(k), a(k+l))

where i(k) A i(k4 1) . The n or less arcs of the original network,

which when remo-ved will reduce its capacity the most, are those

which intersect these arcs of the dual.
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LIST OF SYMBOLS

(a,b) Arc joining a and b

l(a, b) Length of the arc joining a and b

D i4-1!st label of node a
a, i

La, i Length of the shortest path from the source

to node a if - or fewer arcs have lengths

reduced to zero.

[A, B I The cut set which consists of arc. joining nodes

in A to nodes in B

V[A, B] Value of cut set [AB]
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