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REMOVING ARCS FROM A NETWORK

I. Introducticn

This paper ie concerned with a sensitivity analysis
on 2 maximum flow network.

The network is defined by a set of arcs and a set of
points called nodes. Each arc joins two nodes and has agso-
ciated with it a positive capacity which represeants the maximum
amount of flow that may pass over it. One of the nodes is design-
ated as the source and another as the sink.

From these nodes, arcs, and capacities, the maximum
amount of flow that may pass from source to sink may be cal-
culated. (1) The question arises as to what happens to the
network if a number of arcs are tc be removed. Specifically,
given a maximum flow network from which n arcs are to be
removed, which n arcs, if removed, would reduce the maximum
flow from source to sink the most and what would be the resulting
maximum flow? Thie paper presents an algorithm for solving
such a problem for a certain class of networks.

The algorithm would be helpful in determining how
sen3itive a transportation .ystem might be to having some of
its roads closed down for repairs or tied up by traffic accidents.
It might also shed light on the problem of adding arcs which

is of interest in deciding where to build new roads.

1) pp. 17-22
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The central idea in the solving of maximum flow retwork
problems is summarized in the max-flow min-cut theorem.
First, it is necessary to define a cut set and its valua.

Definition: Consider a network consisting of node: which
include a source and a sink, and capacitated arcs which join
two nrdes. Let A and B be a partition of the nodes such that
the source is in A and the sink is in B . Then the set of arcs
which join a ncde in A to a pode in B 1is called a cut set and
is denoted [A,B]. Furthermore, the value of this cut set,

VI A,B], is equal to the sum of the capacities of its arcs.

A property of any cut set, [A,B]. is that any path from
source to sink must use at least one or its arcs. This is true
since the source is in A , the sink in B, and hence any path
connecting the two must contain an arc joining a node of A to
a node of B . Thus, it is apparent that the maximum flow
cannot exceed the mirimum value of all cut sets. The max-
flo¥ miz-cut theorem states that the maximum {low actually
equals the minimusm cut.

IiI, The Topological Dual

The topological dual of a network, when defined, is

another network in which the urcs, instead of having capacities,

have leaagths. Furthermore, there is a one-to-one correspondence
betwee:n the cuts of the original network and the rcoutes through

the dual, and the problem vui finding the rainimum cut may be
reduced to one of finding a shortest route.
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Let the original maximum flow network be called the
primal. To tke primal add two artificial arcs, one externding
from the source to minus infinity and the other from the sink
to plus infinity. The resulting network will be referred to as
the modified primal. The dual is defined if and only if the
modified primal is planar, a planar network being one that can
be drawn on a plane such that no two arcs interssct except at
a node.

When defined, the dual is constructed in the following
manner:

1. Place a node in each mesh of the modified primal.

Lei the source be the node in the mesh above the
modified primal and the sink be the node in the
mesh below it.

2. For each arc in the primal construct an arc that
intersects it and joins the nodes in the meshes on
either side of it.

3. Assign each arc of the duzl a length equal tu the
capacity of the primal arc it intersects.

An example of a network and its duai is shown in Figure

1. Figure 2 shows an example of a network where the modified
primal is not planar and hence :he dual is not defined. Leta
route through the dual be any path from its source to its sink.

]t follows that there is a one-to-one correspondernce between the

cuts of the primal and the routes of the dual.

-3-
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a

arc of primal with capacity a
— — artificigl arc
--R~  are of dual with fength b

FIG. 1 A NETWORK AND ITS DUAL




a

arc of primal with capacity a
— — artificial arc

FIG.2 A NETWORK WHERE THE MODIFIED PRIMAL S
NOT PLANAR AND HENCE THE DUAL IS HOT

DEFINED. NOTE, HOWEVER, THAT THE PRIMAL
IS PLANAR.




THEORﬁM: Given a network such that thes modified

primal is planar, consider any route through the dual. The
arcs i the primal which intersect this route form a cut whose
value is equal to the length of the route. Cecenversely, for each
cut of the priral there is a rcute through the dual whose length
is equal to the value of that cat, and such that the cut forms the
set of arcs in the primal thzt intersect this route.

PROOF: Consider any route through the dval. Let

A be the set of all nodes that lie tc the left of this route and

B the set of 2l nodes te the right of it. From ihe construction
of the dual it follows that the source is in A and the sink in B.
It follows that any arc cornecting a2 node of A to a node of B

is connecting aodes which lie on opposite sides of this route and
must therefore intersect it. Furthermore, aay arc which inter-
sects this route connects nodes on opposite sides of it and must
therefore be connecting a node of A toa node of B . Hence
the cut set [A,B] is the set of arcs which intersect this route.
Since the capacity of any arc of [A,B] is equal to the lengch

of the arc in the dual ir intersects and conversely, it follows
that the value of the cut [A,B] is equal to the total tength

of this route. Now consider any cut set [A,B] . The set of arcs
in the dual whick intergect it forms a2 route. Also, 21l the nodes
in A lie to the left of this route and all the nodes of B to the
right of it. Hence the value of cut [A,B] is equal to the lexgth
of this route.

It follows from the above theorem that finding the value

-b-
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of the minimum cut of the primal is eguivalent to finding the

length of the minimam route through the dual.

IV. The Algerithm

Since the maximum flow throuagh a nefwork is egnai to
the minimum cut which in turn is equal *o the shortest route
through the dual, it follows that the problem of finding the
1 arcs «hich whes removed from a petwork will radnce its
capacity the most is equivalent to finding those n arcs of the deal
which when assigned zero length will make the minimrum route
as short as possible.

It is the latter problem that the aigorithm of this section
sclves. Throun: aout the rest of this report all nodes and arcs
refer to the dual network unless specified otherwise.

Let an i-arc path to node a be any path from the
source to rode a with the lengths of i or fiewer of its arcs
reduced to zero. Also, let La,i {to be determined later) be
the iength of the shortest i-arc path tc node a . The algerithm

essentialiy assigns to each ncde, a3, n - 1 labels, D D

2,072, 1”"" "

D such that initiaily it is kpown that D_ . > L_ .. The
a,n 2,i — a,i
labels are thern reduced in such a way 25 to prescrve this initial

. - - st
property until all Da i ° La ;e At this point the n + 1l—
[ b 4

label at the sink is the length of the desired pata.

Letting S be the s-urce ané 5 the sink, the algorithm




2. Let l{a,b) be the length of arc {&,b} . Check
each arc {a, b} and:

a. If Da k>D ’ + I{a,b) aet

. b,k

1 1Y
b. If Dy >D,  +Ifa,b} set

D, i = D, i ¥ 1z, b)

b, k k

c. If k_>_1a.nd Da,}:.}Db,k-l set

D k= Dy k1

d. If kZAand Db,k>Da,k-k sat

D =D
a

b,k

If none of the above held, make no changes.

1
'K“'l‘t

3. Repeat 2 until no more changes can be made,
Then if k < n, increase k by 1 and go back to
2. ¥ k=sn, terminate as DS, n is the iength
of the desired rouie.
The desired path itself may then ke found by the following
procadure:

1. Set k=1, 3 =a{l), and i{l) = a.

2. Find a node a{k+l} such that either
Datxs1, i(k+ 13 = Pafi), ifk) = (alklalk+l))
and i{k+l) = i{k) or
Datk+1), ixe1) © Pagk). itk)
and ilk+1) = i{k) - 1

3, If a(k+1l} £ 8. increase k by 1 and go back to

2. Otherwise terminate. S = a{k+1}j,...,a(l) =3

is the desired path. The arcs whoae lengths are

-l




to be reduced to zero are those arcs, {a(k), a(k+i))
such that i(k) # i(k+1) . The arcs to be removed
from the primal network are the arcs which inter-

sect these arcs of the dual.

V. Justifica tion of the Algorithm

The procedure for justifying the algorithm of the last

section will be to show first that for all a and all i, Da i > La i
» - ’

always and D? - La i when the algorithm terminates. Then,
7 b3

§F »

in the following section, a relationghip betweea the L_ ., will

be established to help verify the process of tracing out the desired

path.

LEMMA 1: D . >L . alli a and all i.
I 3,1*— a,l

PROOF; Assume that at one poiat of the algorithm

D, >L_.all a andall i. Suppose that the i+ 1% label

at node a is to be changed to T)a ; - Then there is a node b

such that either:

- Y,
1. Ba,i-Db,i" l’a, b) or

2. b =D

a,i b,i-1

In the first case any i-arc path to node b of length L‘h\
plus arc {a,b) is an i-arc path of length less thar or zqua!
to ﬁa.i . In the second case any (i-1)-arc path tc nede b

of length L‘b, io1 plus arc (a,b) with length reduced to zero is

an i-arc path to node a of length less than or equal to D

a,i

Thus the relationship Da . > L i ail a and all i still holds.

s 1 — a,

Initially DS,i =0 = Ls'iand Da,i = > La'1 for a #S.

It follows from induction that Da {2 La i all a and all i always.

~

-~




LEMMA 2: Afier a finite number of iterations,

a. 0° L 0 all a and remains at that value for all subsequent
iterations.
FPROOF: Let S,al, creray,a be a shortest route from
S to a . After one examination of the arcs,
Dal’ < l(S,al)
After 2 iterations,
Da <1(Sa +l(a,a

2' ==
After k+l iterations,

2)
k-1

Da, < l(S,al) + z l(ai, ai+1) + l(ak,a) = La,O

i=1

Of course Da c will remain at La 0 for ali subsequent iterations
] 1 4

since tne Da,O are non-increasing and D 03 La o by lemma

1. Thus the lemmsza holds for any particular node. Let k(a)

be the number of iterations required in order that Da 0= La 0°*
b4 ?

max

After k(a) iterations Da. 0= L all a.

a,0

LEMMA 3: Suppose S,al, ...,a, is a shortest i-arc

k
path from S to 2, - If arc (ak-l' a.k} has length zera in this
path, then

i. L. .=1L

a,i ak»l' i-1
Otherwise

L .= L 1( PR )
&k’ i al, 1’ i al\ 1’7k
PROQF: Suppode arc (a'k-l’ a.k) has its length reduced
to zero in this path. Then S,al, ceendy 4 is an {i-l)-arc path

<L s .

to a, , of length I..a i and La’k-l'i'l‘ a.i

kl

-10-




Furthermorse, any (i-l)-arc path of length L and

dk- 1 i-1
arc (a'k-l’ ak) with length zero forms an i-arc ath to a,

of length La io1 and the first equality holds. If arc
k-17"7
(ak_l,ak) does not have its length reduced to zero, then

S,al, ceen2y is an i-arc pathto a of length

k-1

Lak,i - l(ak-l’ak) and L'ak,i > La'k..l’i + l(ak_l.a.k) . Also,

any i-arc path to a4 of length L iand arc (ak-l’a'k)

k-1
. * Py o1
i8 an i-arc path of iength La'p-l’i + l(ak-l’ak) and the second
equality holds.

LEMMA 4: Suppose S, CIURERIE is the shortest i-arc
path from S to a, . Let (am, am“) be the last arc in this

path to have its length reducec to zero. Then,

k-1
Lakti = Lam.i-l * z 1(aJ.aj+l)
j=m+l
PROOF:
- = ' a. j = . & 0 -
La-.::i La.'i 1“aj' j+l) J m+13 » k 1
J*1i J
L . - L L. =0
am+l’1 am’ i-1

from lemma 3. Sumirirg these equations gives
k-1

+ T Ha.,a.
)

i~ Ta_,i-1 s
j=m+l

+l)

THEOREM 5. The zigorithm terminates after a finite

number of iterations with Da . = La ., all a andall {.

s 1 s 3




PROOYF: Suppose that after a finite number of iterations

D .=4L . al a andall i< M. Let S,a,,...,a
a,i A, i - 1 k

and let {a_,a
m

be an (M+i)-arc path of length L )

a, , M+l m+il

k
be the last arc in thig path to have its length reduced to zero.

The after one additional iteration,

D L

<
am+1,M+l - am,M

and after k-m additional iterations,

k-1
D < L + T 1{a.,a.,,) =L .
ak,M+1- am,M .L j' T+l a.k,M+l
j=m+l
and the theorem holds for any particular D, M+l Let k(a)
be the number of iterations required in crder that D =L

a, M+1 a, M+1°

a, M+1 = La,M+l all a. Since

= La. 0 after a finite number of iterations, it follows from
2

Then zfter a kia) iterations D
D:.,. 0
ind..ction that Da i = La. i all a and all i after a finite number
? ?

of ‘terations and the algorithm terrninates.

Of coursc any route from source to sink with n or fewer
cf its arcs reduced to zero is an n-arc path to 5. Thus,
when the algorithm terminates, DS, n” LS, o 18 the length of
the desired route. It now remains to justify the procedure for

tracing out the desired path. This will be done by showing that the

steps of this procedure can be carried out, that the procedure is

iinite, and finally that the path fiound is the desired route.

LEMMA 6: Let L be the length of tne shortest

a(k}, ifk}
i(k)-arc path to node a{k) . Then there is a ncde a{k+l) such

that either:
-12~




=1, -
atke1), ifke1) T Tagi), i) - Hatkelalkd)
where ilk+1} = i(k}) or
2 Loke1), itk+1) * Yaq), i(x)
where i(k+.} =i(k) - 1
(i.e. Step 2 of the procedure for finding the desired route can

be carried out.)

PROOF: Let S,al. e ,am,a(k) be an i(k)-arc path to

\ 1 ;
node a(k) of length La,(k),i(k) . By lemma 3, either

 Lim, i T L

Z.

a_, (i(k)-1) °F
Lotk itk) = Fa i)t Hap,,atk)
Letting a_ = a{k+1) gives the desired relationship.
LEMMA 7: The procedure for tracing the desired path is
finite. (i.e. There exists m such that a(m) =S .)
PROOF: Either

1. - l{a(k+1), a(k})

=L ..
Lotk+1), i(k+1) = Ta(k), ifk)
which implies

min

Loen), ie+1) S Lagr),itk) ~ a,b 1{a, b)

or

2. ilk+l) =i(k) - 1
Suppose the process were 1ot finite. Then there is an M such
that k > M implies either:

La(k),i(k) <0 or i(k)<O

which is impossible. Thus the process is finite.

THEORE-\JI 8: Let a(l),...,a{m) be the set of nodes

found by the tracing procedure. Then S = a(m),...,a(l) =35

-13-




1s the shortesi possible route if n or fewer arcs have their lengths
reduced to zero.
PROOF: Supvose a{m), ..., a(k) is an i(k)-arc path

to ai{k) of length La Either

{k), i{k) ~

1. Halk), a(k-1})

Lage-1),ik-1) = Paw), it *
where i{k-1) = i(k)} or
2 Bak-1,i(k-1) T Fage), itk)

where i(k-1) = i(k) + 1.

In either case a{m),...,a(k-1) is an i{k-1l)-arc path to a(k-1)
of length La(k- 1), i(k-1) ° Since a{m) =S is a path of zero
length and hence an i{m,-arc path of length La(m), i(m) to
af{m}, it follows from induction that a{(m),...,a{l) is an n-arc
path to a(l) = § of length La(l), iy = L§,n .

This comnpletes the justification of the algorithm for finding
the desired route itself. The arcs in this route whose lengths are
to be reduced to zero are, cof course, those arcs, {a(k),a(k+1))
where i(k) £ i(k+1) . The n or less arcs of the original network,

which when removed will reduce ite capacity the most, are those

which intersect these arcs of the dual.

-14-~




[A.,B]

ViA,B]

LIST OF SYMBOLS

Arc joining a and b

Length of the arc joining a and b

i+12' 1abel of node a

Length cf the shortest path from the source
tonode a if i or fewer arcs have lengths
reduced to zero.

The cut set which consists of arc~ joining noces
in A to nodes in B

Value of cut set [A,B]
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