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ABSTRACT

The objective of this study has been to obtain and evaluate strategies
to be used in certain general search situations. These strategies minimize
the expected cost of search and resulting decisions and are sequential in the
sense that a decision at any time is dependent upon what has been observed
up to that time.

The first situation studied leads to the formulation of a minimum
expected cost sequential hypothesis test. The target is either present in
the region of interest with a priori probability P , or nct with probability
1-P . Knowing the value of P, at fixed intervals of time the searcher
must either make a terminal decision (i, e. decide that the target is present,
or not present) or make a measurement of a random variable that has a
probability density function which depends upon whether or not the target is
present. A cost structure is given which assigns costs to wrong terminal
decisions, as well as a cott (which di:pends upon whether or not the target
is present) for the taking of a measurement. The sequential strategy and
resultant minimum cost are derived by solving a functional equation of the
dynamic programming type, The relation betweer this strategy and the
Wald sequential probability ratio test is discussed. The minimum cost of
the strategy is compared with the cost of an often used non-sequential strat-
egy as well as a class of sub-optimal sequential strategies that involve
threshold observations. '

The second part of this study involves a situation in which it is
assumed that the target arrives at some random time (the '"raid-recognition
problem). A cost structure is given which assigns a cost to deciding the
target has arrived when in fact it hasn'(, and also assigns a cost proportional
to the Lime between arrival of the target and the decision that it has arrived,
Again observations of a random variable related to the presence of the target
. are available us an alternative to making such a decision. The sequential
strategy and resulting minimum cost are again obtained by means of a functional
equation. An additional result is the formulation of a Syi1tem Operating Charac-
. teristic that is used for this randomly arriving target model in a way similar
to the use of the Receiver Operating Characteristic for the hypothesis test
model,

Thesis Supervisor: Ronald A, Howard
Title: Associate Professor of Electrical Engineering and
Associate Professor of Industrial Management
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CHAPTER 1

INTRODUCTION

Much wori has been done in the past 20 years on analytical
approaches t» problems dealing with search and detection. The purpose
of the present work is to extend some of thetse problems and to treat

them from the point of view of Statistical Decision Theory.

In particular, the often separately stated problems in 'search”
and ''detection' will be considered as part of an overall operation, which

must consequently be optimized as a whole.

Most people have found themselves in the pcsition of having
to look for something. The process of looking for and (possibly) finding
the object is, in the sense of what will be treated in this pap=r, that
person's solution tv a search and detection problem. Whether that
soiution is a "good" one or not depends upon the criterion of goodness
that the person has decided upon. Hopefuily, if the person has a degree
of consistency which we would like to require of decision makers, he
could describe his scheme of operation to a confedar~te, and be confi-
dent that the subsequant results would be the same as if he himself
carried out the process, In this age of automated dec. jion making,
the ccnfederate is very often a computer, and the descrivtion of the

scheme the appropriate program.

One objezt of this paper is to cons.der a clags of decision
problems that might be calied "sequential seaich and detection' problems,
and us:ing a particular utility structure associated with these problems

arrive at a description of the 'optimal' way of making these decisions:

-1-



optimal in the sense of minimizing the overall cost of the search process.

In addition we are interested in examiring some non-optimal decision
schemes, some existing and some proposed, that do not minimize cost,
but which are perhaps easily implemented, or have intuitive appeal, or

both.

bl SOP3

Before proceeding further, it is convenient to define the terms
"'search' and '"detection’”. As nouns (and adjectives) they have uften
appeared in the literature as synonyms, but for the purposes of this paper

there will be a clear distinction made between them.

Detection involves the gathering of inforination pertaining tc
the object being sought (the target), the pifting out what is useful informa-

tion and the relaying of this in some efficient form to a decision maker.

Search describes the decisions made on the basis of the
detection information received. In particular, a ''search strategy’ will
be that set of rules that associates decisions with every conceivable

result of the detection process.

When a collar button falls to the floor, the detection device
of the eye picks up the information that there is a strong glint of light
under the WQM. and & lces strong one under the bed. The search phase
is the decision to bend down and reach under the bureau, and if unsuc-
cessful, to then reach under the bed. To continue the homely example, the
search also included the decision to bend down in the first place, rather
than shrugging the shoulders and taking a new button.
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The problems of search are decision problems. Where should
one look, for how long, with what equipment? The answers to these
questions involve decisions, and in that any old answer is not acceptable
we recognize the fact that there are costs involved in doing the wrong
things: making the wrong decisions. In addition we often must use detec-
tion devices that give information imperfectly, perhaps describable
statistically. Thus statistical decision theory is the most likely can-

didate to be the tool with which to attack search and detection problems.

1.1 Some definitions

The definitions offered below are solely for use in the
context of this work, and the author makes no claims for their universal

appeal or application.

Target

The target is an object that is of primary interest to the
decision maker (sometimes called the "searcher"). At the starting
point of the search process, the location of the target is uncertain.
The general object of the search process is to increase the searcher's
knowledge of the location of the target. In general, the target may
or may not change its location during the search. It will be assumed,
for the purposes of this work, that only one target is involved at any
time. This assumption, although often unrealistic, helps to point to

good procedures even in the cases where it does not hold.

Field (F)
The field is the area within which the entire search process

takes place: the region of interest of the search.



Cell (Ai)

n most searches, the field is broken down into many smaller

non-overlipping aress, Ai » called cells. In general a cell is, in size
and shape, the resolution element of the sensing device being used---
the smallest space that could contain two targets without allowing the
detection device to determine whether or not there are one or more
targets present. In the discussion that follows, i=1,2,..., M, where

M is the number of cells in the field. The cell A represents the

0]
location "nowhere in the field",

State of Nature (Si)

The state of nature is a description of the actual location

of the target. The abbreviation Si stands for the state of nature:
{the target is present in cell Ai} . The abbreviation S, stands for
the state of nature: {the target is not present anywhere in F}.

A Priori Target Location Probability Vector (P)

This vector summarizes the degree of uncertainty concerning
the target location at the start of the search, where Pi ie the a priori
probability that Si is the state of nature. The author does not wish to
embroil himself in arguments concerning the existence of this P vector
To the unconvinced reader two suggestions are offered: he can consider
the placemeat of the target to be determiined by some appropriate randor
experiment (e. g- dice throwing), the outcomes of which can be associate
with the Pi"'l i or he can replace the word 'probability" by "plausabilit
throughout the remainder of this work, with the assurance (for example

see Jeffreys (23)) that the mathematical development will be identical).

-4 .



Detection Process

The detection process is that process by which informsztion
(concerning the presence or absence of the target in one, some or
all of the cells) is obtained by means of observation or measurements
of various physical phenomena relared to these cells; such a5 reflected
energy, radiated energy, etc. The apparatus used for these measurements

is called the ''detection device", oz the 'receiver'.

Noise

Noise is the collection of those factors (random or other-
wise) that make the detection device produce target-like signals when

the target is in fact absent.

Decision (D, or W)

A decision (Di) is a commitment by the searcher to take
actionn associated with the bieliei that the target is in cell Ai . Or
it may be the commitment to wait (W) for more information from

the detection device. The decisions Di are called "terminal decisions".

Search Strategy

A search strategy is a set of rules which assigns decisions
to all possible outcomes of the detection process.
Right Decision

A right decision occurs when Dj is made and Sj is the

state of nature, written {njlsj} .

Wrong Decision

A wrong decision occurs when D, is made anu Si(i'#j) is

the state of nature, written {Djlsi}, (i#5) .

55u



Detection

A detection is one of the right decisions {Dj!Sj} with j#0 .

False Alarm

A asg S, o ad ®

A false alarm is one of the wrong decisions {Djlsi} with

i=0 .

The Symbol N

1o, ’ . .
;" in a2 mathematical express®-

Throughout this study a colon
represents the phrase "make decision'. Thus the statement

M x> x* D,

is read
1

"if x is greater than x*, make decision Dl !

Events of Probability Zero

When dealing with a continuous random variable x with praa
bility density function (abbreviated p.d.f.) f(x) , it shall be assumed fo
simplicity of notation that the p.d.f. is such that for any x*

prob. {xsx*} = prob. {x < x*} =1 - prob. {x=x*}

i.e. prob.{x = x®} =0 for all x*.



CHAPTER II

BACKGROUND

2.1 General

Published work on the subject cf search and detection seems
to fall into three separate groups, with, as a rule, little or no discussion
of the relation among them. Koopman (26) has categorized these groups
as dealing with 1) Kinematics, 2) Distribution of Search Effort, 3) Target

Detection.

Problems concerning “kinematics ' have to do primarily with
the relative motionz between searcher and target. Detection is assumed
perfect, once an interception occurs, and the problems are directed
rowards establishing optimal pursuit and evasion strategies, prediction
of target course, etc. The results, which are rather complete and
cover a wide range of models, are to be found primarily in Koopman
(26, 27), as well as Gluss (14, 15), Danskin (11), Isbell (22), Banta (1)
and others. These kinematic considerations are outside the scope of
the present work, inasmuch as the problems of imperfect detection and

possible false alarms and decisions are not involved.

The results of previous work in both Distribution of Search
Effort and Target Detection set the groundwork for the present paper,
and the following two sections develop what has been done in these

areas.

-7-



2.2 Distribution of Search Effort

Most of the work published under the general topic of "sear
theory“ has been involved with Koopmans' second category: distribut
of search effort. These problems in general assume that the availabi
detection devices are ones that will not yield target-like information ;
the target is not present and will detect only some fraction of the tin-

the target is present. This fraction is called the detection probabilit.

Thus the search strategy becomes straightforward. Whe .
target-like information is received from Ai , the target must be the.

so decide Di .

The problem thus becomes not what to do when target-like

information is received, but what to do until it is received.

The solutions are in the form of search strategies, involv.
the distribution of the available "magnitude" of search effort that sk«
be placed upon the cells. It is assumed that relations between the
amount of search effort used in observing a cell, and quality of detec
tion in thai cell (as reflected in detection probability) are known quant
tively. The distribution of effort is selected to nptirnize some entire
measure of the search, such as maximizing the probability of
detecting the target for a given search effort. Another criterion {(whis
proves to yield identical strategies for most xnodels) would be to mini

the average search effort needed to eventually detect the target.

p The most general solutions to this problem have been obtai,
when the field repregents a continuum (the cells becoming differential

areas), by Koopmman (32, 33) and de Geunin (22). Other cases, involvy



(5, 6, 10, 13, 30, 35, 36, 37) with sclutionc all approaching Koopman's in

? so called "diecrete' or finite sized cell cases, have been treated by others

the limit as cell sizes decrease. However, all these approaches, as pointed

»+ ° out above, neglect the possibility of, and hence the cost of false alarms due
~ to nvise.
i
2.3 Target Detection -~ STSD and Hypothesis Testihg

What is known as the Statistical Theory of Signal Detection (STSD)
has beenr developed in the past decadz, primarily by Middleton (33, 34).

Helstrom (19) and o.hers havé extended this theory.

Hypothesis testing is used as a framework upon which to develop

receive.s that take into consideration the presence of noise in each cell,
The theory is quite elegant, and much of it is concerned with problems

- of devising measures (or statistics) of received waveforms, allowing for
the possibility of noise and target signals of all statistical varieties.
However, the theory tends to not differentiate between search and detec-
tion. It also has tended to ignore the potential of the use of sequential
rules involving costs of wrong decisions. In order to make some of these
points clear, as well as to lay th; ground for a more general extension

of the theory, let us consider the basic ideas involved in the STSD.

Consider the field to consist of only one cell, Al . Thus,

there ars two possible states of nature:
SO = target is not present.
S1 = target is present.

’ It is assumed that the target is stationary. That is, only one of these

states describes the target position for the entire duration of the search.

The target cannot move, or evade the searcher. (This, of course, limits
the generality of the model, and the eventual lifting of this condition is

one of the aims of this study.)

-9-
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Now, upon observing the cell with the detection device, the
searcher can make one of two decisions , which by the assumptions

of STSD are equivalent to taking one of two actions:

DO = take action appropriate to target being absent.

D1 =~ take action appropriate to target being present.

Let uc represent the observation by x (possibly a vector).

If the observer knows from experience that the sensing
device operates in such a way that if a target is present (Sl) the
reading would be Xy but if the target is not present (So) . the

reading would be x_ , then the decision is sraight forward:

0

when x =X, ¢t D

x=x1 : D

(Note that a reading of x #x, or x, is impossible.)

o 1
A more realistic measurement. however, is subject to

random fluctuations due to many incomprehensible or unpredictabl~
effectsincluding those in the processing equipment, as well as target
characteristics, errors of observation, etc. The outcome of the
observation, x , under the two possible hypotheses, is thus a random
variable, and is at best describable by known probability density
functions, If these probability density functions are compietely
described and involve no unknown parameters then the hypotheses
are called "nimplc ", This more realistic example, then, is the
testing of two 2imple hypotheses, where the outcome x will have
a known probability density functi::n Py (x) under hypothesis S0 )

-
.

1

and P (x) under hypothesis S




The observer must be able to decide upon either D0 or D1
for wny possible observed value of x . The resulting decision rule
divides the range of x into two exhaustive regions xo and X1 , with

the result:

if xEXO s D

if x€X1 ¢ D

0
1-
Because of the probabilistic nature of the observation, it
is now pussible for the observer to make a mistake: to say one
hypothesis is correct w!en in fact the other is actually true. A
way to describe the possibility of a wrong decision is to associate
with any decision rule such as (2.1) above two error probabilities.

These are defined as follows:

If the true state of nature is described by S0 , then the

- frobability of making decision D1 {a mistake) is defined as a ,

or "error of the first kind''. Written in the usual probabilistic

notation, a = prob. {D1 ISO } . Correspondingly, the probability

of making D0 when the true state of nature is in fact described

by S, is defined by P or "error of the second kind". Thet is,

B = prob. {DOIS1 } . Inthe usual statistical sense, 5, is said

to be the "null hypothesis". Our choice, in this detection model,

of Sb being "target absent' is completely a matter of convenience,

In the detection model that we are describing, it is now
a conceptual advantage to speak of a detection probability p d and
a false alarm probability Py - These are a matter of definition,

and it is convenient here to relate them to a and p. Thus,

it

T . I
pd = p~°b' (DI'SI )

P = prob, {D1 ]So }

1 - prob, {DOIS1 J=1-p

a

it

ull—’
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(note that these probabilities are strictly conditional upon the state

of nature, and that conclusics reached by consideration of these
nurrbers alone must in themselves be conditional. This will be

discussed in the next section. )

In terms of the knowr p.d.fs Py {x) and Py (x) we see

that @ and $ are given by .

a =pf=5. Py (x) dx

X,

-~
(«-.a . -

p=1-ps={ p mrax.
X

As an example, let us imagine that in the cell of interest,
P, {x) = /% 0,0)
P (x) = £ {x; p, o)

where
2

N 2 2 rrz
r X 34 |
then a possible decizion rule would be to select & constynt x* such

that (see Figure 2,1)
for x S x* o
x> x¥* : D1 .
Here X, =[-%, x*] and X, = [ x*, 0 ] . The error probabilities

would be then given by

-12-



Figure 2.1 Example




s Py (x) and threshold setting x#*




*
c:l-erf(%_—)

g = erf@‘-::_;h).

For constant p and o, a and f are related to the parameter x*

so that as x¥* increases, a decreases and P increases. This is
shown in the curves in Figure 2.2, which are for o =1 . Curves such
28 these, that relate a to P (or P4 to pf) for a particular device
are called ROC or Receiver Operating Characteristic curves. Figur:c
2.2 shows the ROC of Pc‘. v. 8. pf with p as a parameter, It is
sometimes convenient to draw the ROC as a plot of p q Vs B with
pf as a parameter, where W ig in general some measure of the diffev-

between the p.d.f.s Pg (x) and P, {x).

At this point we have not yet determ:ined what the observer
is actually trying to do. He might have some vague ideas about achies~
a "reasonable'’ detection probability while keeping the false alarm prob.
bility "low’. A quantification of this concept is the subject matter of
the next section. ' However, at this point, we can agree upon some as-
pect of goodness, so that we can immediately compare certain sensing
devices.

Suppose two devices are available to use 1n searching a cell.
Device A has Py = 1-=.8, Pe=0 = .01 , while device B has
Py = l-p=.8, Pg=o = .02 . Clearly, device A is beter than device
B by whatever reascnable criterion is used. This concept is formalize.

in the following way.

Let us consider two search devices d1 s dz with error

probabilities (cl ) ﬂl) and (az , pz) respectively. Then d1 is

-14-



Figure 2.2 Receiver Operating Characteristic (ROC)
for cevice illustrated in Figure 2.1
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said to be preferable to, or better than, dz if a, = e, and pl = ﬂz .

Thus, if all possible devices are represented ona p q V-8 P ROC

curve, any given device is better than those that are "below and to
the right". while it is worse than those that are ''above ard to the
left". However, if a, = e, and ﬂl = ﬁz then d1 and d2 are
said to be non-comparable, arid more must be known before a

comparison may be made between the two.

Looking at the ROC in Figure 2.2, we see that for a given
value of p, as x* is varied from minus infinity to infinity, a while
continuum of pessible devices is described, all of these devices heing
non-comparable in the sense given above. For a given p we cannot
yet decide which among them is best. However, if we compare the
curves for ¥ and By (;a.‘2 > p..l) we see that for any point (representing
a device) on the B, curve, we can find "above and to the left" of it
some point on the B, curve. Thus, an increase in p is always
desirable in the system as illustrated in Figure 2.2, as long as x¥

is fru‘to be set.

In the statistical literature, a is called the ''size" of a
particular test or experiment, and for a given value of a the largest

atteinable value of 1-p = p, is called the "power ",

2.4 Decision Criteria

In the last section, we have seen that a detection device
combined with a decision rule may be operationally described by
the associated error probabilities a and P . Let us call & combination

of a detection device and a decision rule a "syltem".

-16-



In order to evaluate a system, or equivalently, to be able

to compare two or more systems, there must exist some measure

of the effectiveness of the entire system (including the specific decision
rule used). The observer must be searching for the target with some
idea as to not only what actions will be taken, but the costs associated
with them, if he detects (or thinks he detects), or does not detect the

target.

The object is now to determine which decision rule is "best"
in some way. For example, in the system illustrated in Figure 2.1

what value of threshold x* should be used?

Since it is reasonable to assume that the search system
will be used over and over again for some length of time, systems
may be compared in terms of their overall, long-term average

performance,

For each state of nature, the cost of making decision D0
or D1 will be different. In general, it is possible to list the costs

of all possible state---decision situations in a matrix C:

where Cij is the cost of making decision Di when in fact S‘j is
true. (For this to be a reasonable matrix COO < C01 H C11 < Clo :
the cost of making a correct decision is smaller than the cost of

making a wrong decision. )

-17-



One more important concept must now be introduced before

we can discuss optimization of decision rules. We have noted that

the error propabilities a and f are conditional upon either the
state of nature SO or S1 being true. In order to obtain an over-

all probability of making an error, and moecre important, to obtain

the average cost of a particular decision rule, it is necessary to

state the a priori probabilities of So and S1 being true. In parti-
cular let P = prob. (Sl) , 1-P = prob. (So) be the a priori probabiliti.
P then is the (perhaps subjective) probability that the target is in the

cell.

In the discussion that follows we shall consider, as in the
example in the previous section, the result of the search in a cell
to be some observable x . The decision rule then consists of des-
cribing two exhaustive and mutually exclusive regions of the x-space

xo and x1 » such that, as before

if x ¢x°

xfxl : Dl .

Again, p.d.f.s of x under the hypothesis S0 and S1 are

assumed to be known, and are given as Py (x) and P (x) respectively

O

2.4.1 Bayss Criterion

A rule that selects a strategy so that the expected cost per
decision using that strategy i# a minimum, compared to any nther

rule, is called a "Bayu" decision rule*, For a particular decisicn

*The naming of this criterion for the Reverend Bayes is somewhat
puzzling, but the term is too familiar in the literature to change it
here.
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rule represented by regions X_  and Xl , the expected cost per decision

0
cost is seen to be given by

C = {s;}[C,,{D,I8y} + € D, IS)}] + {s;}[c,,{D |5} + C;, {Dy IS ]I

(2. 3)
where for convenience we let {E} = prob. {E} , (E is any event).

Using expressions from equation (2.2) we have

C = (1-P) {COO S'po {x)dx + CIO 5p0 (x)dx} + P{C11 ‘gpl (x) dx +

XO Xl Xl

+Cy, Spl (x)dx}  (2.4)

Xo

This expression is indeed the expected cost. In the first
bracket in equation (2.4) the first term represents the cost of making
the right decision, times the probability that this decision will be made,
both conditioned on S, being the state of nature. To this is added the

0
cost of making the wrong decision times the probability of making it,

again conditioned upon So . This sum is then multiplied by the proba-
bility that SO will be the state of nature. The second tern. is a

similar expectation given S, is true, times the probability that S

1 1

will be true.

The optimum Bayes decision rule is one¢ that selects regions

Xo and X1 such that the expression C in equation (2.4) is a minimum.

it can be shown (see, for example reference (19) ) that the optimum

Bayes decision rule is the one that assigns Xo and X, such that

1
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P, {x) Ci0-C
if 1( )zll',P ClO_COO then xe€X, : D
Po 01°%11
(2.5)
p, {x) ¢, ,-C
if 1 Sl"P 10 00 then xe€X, : D_. .
Pg (x) P COI'CII 0 o
P, (x)
The quantity L (x) = P is known as the likelihood ratioc.
0

In most cases of interest L (x) will be monotonic in x , so

that the decisicon rule {2.5) may be re-written

if x=2x% Dl

x » x¥ D0

where x% ‘g called the "threshold", or "bia.s", and is the solution tc
the equation

1-2 ©10 %00
P Cu<ni

L (x*) = (2.6)

Note that since

[- ]
Py = S‘pl () dx
x%
(2.7)
®0
P, = SPO (x} dx
x

egquation (2. 6) may be written

d(p.) C,.-C
( d _1-P ~10"~00 (2. 8)

d(pg ECREY

x=x¥*
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Using equation (2. 8) and ihe ROC it is quite easy to obtain the

threshold, and opecating point (equation 2.7) for any given device. Since
the ROC is just a plot of pd V8. P simply find the point at which the

slope i8 equal to

C

107700
s ]

01 11

1.p [ ©
P | C

This is illustrated in Figure 2. 3.

The average minimum cost, using the Bayes solution then

becomes

Crnin = 1P Cyq # Pe(C1g-Cog) } + PACH; +74(Cyy-Cyy) ) (2:9)

2.4.2 Numerical Example ~ The Shepherd and the Wolf

To illustrate the above development, and to provide an example
for comparison of STSD with what is to follow, we shall now discuss a
hypothetical search situation., An intentional attempt bas been made to
avoid a military example, but the reader may car- *o interpret the
target, detection device and searcher in the exam, . : in whatever way
he wishes.

The nroverbial Boy who Cried Wolf comes rushing to a shepherd
with the news that there is a wolf hiding near the pasture, waiiing for
the shephsrd to go to town, The shepherd knows from past experience
that the boy hit probability P of telling che r+~uth,

In order to avoid the long walk tc the pasture, the shepherd
has installed & microphone there, which records the pasture noises

HZI -




d

operating point

Bayes operating point

Neyman-Pearson operating point

P

Figure 2.3 Use of the ROC to obtain Bayes, minimax
and Neyman-Pearson operating points
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(integrated over ten minutes) and registers the intensity on a patented
“Baa-meter". It is known that if a wolf is present in the pasture, the

measurement x of the meter will have the p.d.f.
Py (x} = £ (x; 1,1)

while if there is no wolf present, the measurement x will have the

p.d.f.
Py (X) = £ fx; 0,1) .

Once the shepherd observes a measurement, he must decide
whether to go out to the pasture and hunt the wolf, or go tc town as

planned. The costs of making the wrong decision are as tollows:

If the shepherd goes to town he makes a $ 50 sale. However,
if the wolf is indeed p. zseat, a sheep worth $100 is eaten, making a

net cost of %50,

If the shepherd gnes to the pasture and the wolf is present,
he kills it and collect a $100 hounty. But whetlier or not the wolf is
there he loses the chance to m."k: the $50 sale in town. Thus the

cost matrix is

-50 50
(c,.]=
K 50 -50
Since this cost matrix may be additively normalized, we could also

write the equivalent matrix (in units of $100):

0 1
= -.5
[yl 1 0

where the matrix term is the loss due explicitly to decision errors.

w23~



By utilizing this information and substituting into equation

(2. 6) the shepherd finds that his optimil threshold is the solution to

1 1-P
*) = axn(x¥® - =) = ——m
L (x*) = exp(x Z) P
1 1-P
* = - 2oF
x 3 + In B

If the boy has a 'P=%: cf being right, then if the Baa-meter reads

x> % , the shepherd goes to the pasture, and he goes to town if

x<1

3 The resulting detection and false-ilarm probabililies are

1
Py = erf(—i) = .69

i
pf..l - erf (E-)-.3l

and the average cost to the shepherd is - $19 (a profit of $ 19).

2.4.3 Qther Criteria: Minimax and Neyman-Pearson

It sometimes happens that the decision maker thinks he
cannot estimate the prior probabilities 1-P and P of the two
states of nature 80 and Sl » or that he cannot supply a cost
matrix (Cﬁ’ + or both. We shall quickly mention here methods
that have been used to overcome these difficulties. However, it is
to be kept in mind that all of these methods lead to accepting some
operating point {or the system, and from the discussion in the previous
section we see that this point, corresponding to a Bayes solution,

implies some specific relations about costs and prior probabilities.

When the prior probability P is assumed to be unknown
the "minimax" criterion « alls for operating such that no matter what

P is, the maximum possible loss i8 minimized. This argument is

-24-
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usually justified by considering "nature', or the target, to ts in a two-

zero-sumx game against the searcher, so that it tries to pick the worst
possible P . A very good treatment of this approach is presented in
Blackwell and Girschick (7). Because of the game characteristics, the
solution may be found by finding the maximum of the minimum cost to
the searcher obtained by using a Bayes' Rule as if the P was known,
and then operating as if the P producing this maximum cost was in
fact the real prior probability. The proper operating point may be
obtained by noting that maximizing equation (2.9) with respect to P

yields the expression
Cop (1-PP + C1gPe = Cpy {1-Pg} + €1 Py

which is a straight line in the P4-Pg plane. The intersection of this

line with the ROC gives the minimax operating point (see Figure 2. 3).

When the searcher is unwilling to supply both the prior
probabilities and 2 cost matrix, then the Neyman-Pearson criterion
is often used. The searcher selects some arbitrary value of false
alarm probability, pf* » which must never be exceeded. The aolution
is to maximize P4 such that P 3 pf* . For most simple cases, when
the ROC is monotonic as in Figure 2.1, this is achieved by cperating
such that P, = pf* » and the threshold x* the solution to

©

Spo (x) dx = p*

x%k

Other criteria are mentioned in the literature and include

minimizing Pg for a fixed p d (a sort of inverse Neyman-Pearson

25«



. 1
procedure); assuming that (301--(210 , Coo--(:11 , and P-z (the

“tdeal Observer "), and so on.,

In most of the work of this paper it shall be assumed that
prior probabilities are available, and that specific cost models are
applicable, so that the criteria mentioned above will not be useful
except for possible comparative purposes It is important to note,
however, that it can be shown that all of the above criteria produce
a thresheld decision rule. That is, the rules all require the calcu-
iation of a likelikood ratio, and comparison of it to some fixed

value.

2.5 Sequential Hypothesis Testing - The sprt

The decision structures in the previous sections were
all derived on the basis that the observable could be a vector
X = (xl,xz, ce ,xn) » 80 that the threshold x* could be 2 n-1

dimensijonal figure in n-space represented by the solution to

Pl (E_‘) Pl (xr 'x;. ) -:x;)

= . = A
po(!.‘) Po(xf.xz....,xn)
C,.-C
where A is some fixed value, such as 1-Pf_ 10 00 as in
P \Co1-Cy

section (2.4). The components of x may be n values of some
measurement taken at successive times, The analysis in the

previous sections holds providing that n is fixed in advance,

When the cost of taking each measurement is considered

however, it may bs desirable not to fix in advax‘zce the number of

measurements to be taken, but to allow for the number to be determined
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on the basis of what has been observed up to that time. This is called
a sequential test, and the related theory has been developed primarily
by Wald (47, 48). In the consideration of search problems, the theory
has been specifically applied to the sequential testing of hypothesis,

these usually being the two aleternatives S. and '51 . Again it is

0
assumed that the target is stationary throughout the search.

The Wald sequential probability ratio test (sprt) involves
niot only the two possitle decisions (Do and Dl) considered before,
but also includes a third possible decision W : wait fcr at least one

more observation.

On the basis of observing x) for the first measurement,
the likelihood Ll (xl) =Py (xl)/po (xl) is computed and compared to

two quantities A and B (A > B) . The decision rule is

if Ll(xl) >A: D1

L, (x;,) <B : D (2.10)

BSLI(XI)SA: w .

The DQ and D1 decisions are the terminal decisions, and they
stop the process with a definite commitment of some sort of action.
If the W decision is made, then a new measurement is taken, and
a new likelihood ratio is computed. If the process has gone on for
k observations, then the likelihood to be used in the next comparison
is

L Gy e i) = :1 ::‘l':z' .. .,xk:

(VR R MR SN
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with the decision rule the same as in (2. 19}, but with Ll replaced
by L

k .
The crux of the probicm is calculating the values of A

and B so that a given criterion is satisfied.

With the exception of Blackwell and Girshick (7), the
accepted procedure has been io use a criterion based upon conditional
error probabilities (a and §) only. That is, A and B are selected
so that when S, is the state of nature the probability of reaching

0

terminal decision D, s pf s while if S1 » the probability of ter-

1
~ainating with decisicin 1')0 is l-p g Obtaining these required values

of prob. {D1 1"80 } . and prob. {D0 |S,} under the sprt is in genera?
a very difficult problem. Wald has shown, however, that the relatione

between A and B and Py and P, arve governed by the inequalities
C (2.1.

In order to understand the test better, let us examine the

case where the observations are independent. Then we can write

k
Pi‘xl'xziﬁ‘Olﬁ)a . Pi(xj)! 1=0i1 .
j=1

If we take logarithms of the likelihood function as well ag the boundaric:

k
zk = fn Lk(xl.xz....,xk) =sz
j=1

-28-
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a=InA
b=In3B
where
25 = In [P:l (xj)/Po (xj)] {2.12)

Then the decision rule (2.10) becomes

. S .
1£Zk a.D1

where Zk is the sum of k identically distributed random variables
zj . The density function of zj is go(-) or g, (-) as the state of

nature is SO or S) , where gi(z) dz = pi(x) dx and x and z are

related as in (2.12).

Thus we can view the process as a raxdom walk of a gi(') -
distributed random variable, with absorbing barriers at a and b. A

further discussion of this problem is taken up in appendix A .

It can be shown that for a large class of p.d.f.s. on z the

process will eventually terminate. That is

prob.{b< Z <a; for all k=n}--0 as n—o ,

k

The advantages of using the sprt is in the proven result
(see references (47, 48) ) that the average sample number (ASN)
needed to obtain a4 given set of a and P error probabilities (i.e.

a given Py and pf) is always less than the fixed sample length (say N)
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r.équired to achieve the same error probabilities, no matter what the
state of nature. (Since the number of samples in the sprt is a random
variable, however, it is to be noted that it will occasionally be greater

than N.)

It can be shown that if the zj are in some sense small in
comparison with the distance (a-b), the inequality signs in (2.11)
may be replaced by equalities. With this approximation it is also
possible to derive expressions for the ASN under both states of

nature (see Wald (47) for the derivation) :

ASNO = [a' - (1 -pf) (a'b)] /Eo (z)

T

ASNI = [3 e (1 'Pd)(a'b)] /El (z)
where

)
Ek(z) = Sln[ P, (x)/po (x)] pk(x)dx ; k=0,1 (2.1
- 00
is the pxpected value of the random variable z under Sk . When
l:o (s) or El (s) are zero, tnese equations may be replaced by ones

involving the variances.

2.5.1 Numserical Example

We return to the shepherd of section 2.4.2, who has now
decided to apply the sprt, and has arbitrarily declared that the test
must have Py .69 and Py S .31 . The random variable z of
equation (2.12) becomes

~30-
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z=dn[ L(x)] =x—-1-

2
so that
(z) = £ _{z; -=, 1)
B 2 = IntE "2
(2) = £ (25 =, 1)
gz =itz 20

In addition, the assumption is made that the inequalities of

. 69 ) B=~'—3—l and thus

equation (2. 11) are equalities, so that A =7 . 69

a=.8,b=-.8.

| .
The resulting test is to compare z = x -3 with a and

b, so that
if -.3<x<£1.3 :take another measurement
x> 1.3 :goto the pasture
x<-.3 : gototown.

. _ 1 1
If another measurement is taken, then zl-w,z-x1 "3 +x2-— )
is comparedtc .8 and -.8, and so oun.

Since Eo (z) = --;- and E1 (z) = -;— the approximate formulae
(2.13) give '

ASN) = -[.8-.69(1.6)]2=.6

ASN

= [8-.3101.6)2=.6

These results are puzzlirg to the shepherd, as he sees that
the average number of times he will have to take measurements is less
than one ! However he notices that the standard deviation of the random

variable y is 1 and since (a-b) = 1.6, the requirement that z be

-31-



small cémpired to (a-b) is not fulfilled, 2o he does not expect equatior

(2.13) to hoid. The exact solution, as shown in Appendix A, is unavail:

What should he do now? In fact, the choice of arbitrary Py
Py was really forced upon the shepherd by the constraints cf the sprt.
Being a practical person, he still really desires to minimize his costs.
Do the measuremerts cost him anything? After all, if they don't, he
would be satisfied with measuring all night and eventually (because of
the central limit theorem) he would be certain about the state of nature

Apparently, a new model and solution must be used.

2.6 Need for extenzion of the models

In section 2.2 it was pointed out that the defect of previous
approaches to what has been conventionally called the "search" proble:-
has been in the neglect of the possibility that the detection and senaing
devices used could produce spurious signals, and hence false alarms.
These theories, however, were certainly thorough in the applications

of cost and utility models, as well as prior probabilities.

The non-sequential work in STSD includes false alarms,
a cost structure, and cognizance of pzicr information, but this is
limited to the simple hypothesis test. As we have seen, this contains
only a rudimentary element of cearch, in that the decisions are res-
tricted to terminal cnas after a single obsesvation, There is no

structure, for example, that allows one to stop and decide D. or

0
Dl on the basis of no observatioss at all.

On the other hand, with the introduction of sprt the cost

structure and prior informaticn are lost, the decision :raker is left




with the task of assigning ervors of the first and second kind, an1i there
is no consistent way tc take into account the experimental cost. In
addition, the sprt must be analysed in terms of the inequality (2.11),
which becomes an eguality only under conditions that are equivalent

to 1"equiring that P, «], l-pd <1 . Although this condition might
seemirable, we have seen in the numerical example above that

minimum cost solutions do not particularly satisfy it.

Although some pioneer work by Blackwell and Girshick (7)
has been done some time ago in an attempt to v "Raves ' structure
on sequential hypothesis testing. the applications were r.ot geared
towards the problems of detection. The fnllowing chapters will
consider a minimum cost analysis of sequential detection, under
some conditions that are perhaps more reason.ble than those proposed
before, The technique of ar™vysis, that of using dynamic programming,
will then lead to the consideration of yet another problem, one that

couid not otherwise be attacked by the sprt type of approach.

Before going on to such analysis, it is of interest to mention
here some woik that has been published in recent years on the subject
of sequential detection theory. To repeat the point made above, none
of this work takes into account the overall . .st of operation, and thus
the results are interpreied in terms of a and  errors as well as

expected test langths.

In many realistic search problems, the target characteristics
are not exactly known, and sc some of the parameters in Py (x) are
themselves randoin variables. The searcher not only must decide

npon the presence or absence of such a target, but an estimate of the

unknown parametfers is also required. Such estimation proble.ns




{scinetimes referred tc as "classifcztion"), extremely difficult to

analyse in a sequential manner, have been trzated by Se:in {41) and
Turnex {44).

Scrme work has been done in an effort to obtain exact solu-
tions to the random walk of the sprt as discussed in section (2, 5) whe:.
the p.d.£f.s involved are peculiar to those found in practical getection
devices. Reed (39) derives some theoretical results, and Marcum
and Swerling (31), for example, produce Monte-Carlo simulations

for practical cases.

Some arbitrary 'many threshold' decision rules have beea
analysed. An example is the rule presented by Kennedy (24) which
starts a seguential test only after an initial signal exceeds some
fixed thr<shold, this latter threshold set to limit the number of times

the sequential test is applied.

Bussgang (8, 9) and Middleton (34), among othexrs, nave
tresatod sequential detection under the most general noise and signal
 statistics. Helstrom (20) and Preston (38) have compared the sprt

to the fixed length test for practical examples of search radars.

The particularly interesting problem of sequentially testing
a continuous qignsl (the expariments are not donc at discrete times)
has been treated by Selin {41). In this work he also indicates the
optimal sequent.al test whien the noise is ¢orrelated in time, Gray
(17) hae also contributad'te this problem.
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CHAPTER III

STATIONARY TARGET

This chapter describes a more general problem than ti.ose present:z
earlier, in that it provides a combination of the Distributicn of Effort and
STSD appioaches. The mode of attack and the mathematical technique in-
volved reflect the sequential nature of the solution as well as the minimum
expected cost aspects of decision theory. The use of stochastic dynamic
programming in this regard has been generally indicated by Bellman et al
(4), as well as Blackwell and Girschick (7). Goode (16) has applied the

principles involved, but with a model not particularly suited to search.

The strategy developed in this chapter will turn out to be a
modified form of the sprt, with the coat factors and prior probabilities
appearing as intrinsic parameters. In addition, the resultant minimum
cost arises as a natural consequence of the calculations. This makes
it possible to compare, in an efficient way, the cost of the optima) strategy
with costs of certain non-optimal strategies that will be considzred for

practical reasons.

3.1 Problem Statement

1. The target is either present (Sl) or not present (So) in the
cell of interest, with prior probabiiities P and 1-P res-
pectively, and remains so for the entire search (the tarygat

: n s [[2
i8 'stationary ).

2, If thie cell is observed, the result is a random variable x

which has p.d.f. Py (x) or P, (x) as the state of naturc
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is So or S1 . Observations take place at unit time intervali

3. After e¢very observation (including the zeroth) the searcher

makes one of the following decisions:

Do = Decide target is not present

- W = Wait for another observation.

/’ D, = Decide target is present

4. The decisions Iva and D, are terminal decizions, and

1
end the process. The costs to the searcher making decision

Di given Sj is true are Cij (i,j=0,1), with C11 = (_';00 =0

5. The decision W continues the process at least onne more tiwn:
unit, The cost of this delay depends upon the state of nature,
and is Wi if Si is trne (i =0,1) .

6. The objective of the searcher is to minimize the expected
cost of a search. The strategy (that is, the rule for making
decisions given a sequence of observations) that achieves

this minimum expected cost is the ‘optimal” strategy.

The fact that the cost of experimentation depends upon the state of natur
is what makes this model perticularly applicable to search problems.
For example, consider the case of active sonar search against & sub-
marine that is suspected of being in a missile-firing position. Cl~arly.
the searcher would like to make a decision as soon as possible if the
submarine {5 indesd pressnt, whereas if the indications are that the
submarine is not present, the searcher could afford to spend more

time making sure. Thus in many search situations we should expect

~ > .
to hava Vll WO

*This as3umption is the equivalent of zero-normalizing the tost for
any given P, and is made to simplify the algebra.
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We shall now write a functional equation from which the optimal

strategy car be obtained, the equation being a straight-forward application

of Bellman's Principle of Optimality (3).

Let C{P) be the minimurn cost of search obtained by following
the optimal strategy, where P is the a priori probability that the target
is present. This minimum cost will be the smaller of the costs resulting

from the three possible decisions that can be made at that time:

If the decisions are Do or D1 , the ccsts are due to terminal

wrong gecisions: PC01 and (I-P)Cw respectively.
If the decision is W , the cost is PW1 + (1-P) Wo plus the
cost of continuing from then on, having observed some value of x .
bability of observing a value between x and x+dx{ip Pp,(x) d:‘;ﬂl =B) po-(x)
Having observed the value x , however, the probability now of the

target being present is

{xlsl} {s} P, (x)P
8 I} = T8 Y, 7 IxI8, T (55) 5,0 ¥ 5, (T )

The equation for C(P) may thus be written

(l-P)Glo : Dl

C(P) » min{ PC,, ! D, e
Py %
NN 2] el

-
pwl+(1.P)w°+5[Ppl(x)+(l-P)po(x)] c

- 00

For notational convenience let us define the miniinum cost

of terminal decision to be T (P)

-37-
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PCoy + Dy

and the unconditional p.d.f. of receiving a value x to be g(x)
g(x) = Pp, {x) + (1-P)p, (x)

so that equation (3.1) may be re-written

T (P)
P) = mi 3.2)
C(P) = min Lo pl(X)P (3. 2)
PW1+(1-P) W0+ S gix)C —m-— dx .
- Q0
3.2 Arbitrary Truncation of the Search

In order to find a way to solve equation (3. 2) we shall
consider the following arbitrary truncation of the search: At the
start of the process, the searcher is told that he has only n available
possible observations (or equivalently, time units) left. If the decision
W is made, at the next decision there will be only n-1 pcssible obser-
vations left, and so on. Ilf n=0 , then one cf the terminal decisions

must be made.

If we define Cn(P) to be the minimum cost of search given
that there are n available observations remaining before a terminal

decision must be made, we may write the equivalent of equation (3.2) as



AR s o>

T (P) : D or D

0 1
C (P) = min (3.3)
" .00 p, ()P
PW1+(1-P)WO+S‘g (x) Cn—l —E(—;J— dx : W
=)

The boundary condition on this equation is given when

n=0 , for then a terminal decision is required and so
- - >Pk -
(1-P) C10 (1-P) C10 P=zP* : D

CO {(P) = T(P) = min

H]

x® .
PC01 PCOI P=<pP* ; DO

(3.4)

where

C1o

C10 * COl

P* =

It is of interest to go through the calculation of C1 (P) in
some detail, since the behavior of the terms affords an insight to

the decision structure of the solution, and to the form of the minimum

cost as a function of P .
In order to calculate C1 (P) we must first evaluate
P, (x) P
Co 2o | This latter expression is the minimum cost given

th'at one observation x has been taken and that a terminal decision

must be made. From equation (3.4), we find, after some manipulation,
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U-PIRgCo P 1p P
= =5 ¢
p, (x) P g (x) Polx) ~ P 1-P 1
“l 5™ |7 pp, ic (x)
Py ™ %01 ™ _1p Px
\ g (x) po(x)_ P 1-P*x ° 70
(3.5)
- *
If we let l-i;r-’ %; = MP) , and recall that Py {x) 2o Ix) =7

the likelihood ratio, we see that the rule presented by equation (3.5)

is identical with equation (2.5). (We see now that this corresponds

to the solution for the truncated search, and given that an obse. ration
was taken: two restrictions that are not contained in the general
problem statement.) In particular, by letting x* again be the solution

to
L(x* = A(P)

and putting the results of equation (3.5) into equation (3.3) (with n=l),
‘we obtain
| T(P)
Cl (P) = min
x* ]
?V‘HI-P)'O‘fSPCNpl(x;dx'bS'(l-P)po(x)Cmdx .
-0 x%* (2. 6)

The relation between this search and the one described
in section 2.4 can now be further explored. I we let 'W] = WO =0,

=Ci, = 0) and neglect the posaibility

(and recall that we have let: Co

0




costs and strategies are quite different.

The decision structure presented by equation (3.6) may

be easily visualized by drawing a sketch of the terms in the right

of a terminal decision before taking any observations (the T (P) term)
then equation (3. 6) is identical to equation (2.9). If we include these

factors however, as required by the general problem, the minimum

hand side, as in Figure 3.1. T{(P) < seen to be two straight lines

meeting at P=P* . Let us define C (P) to be the hottom of the right

hand side of equation (3.3). Then L (P), the lower part of equation

(3. 6) can be seen to have the properties as shown in Figure 3.1.
Gl (0) = WO

G, (1) = W,

The interception cf T (P) and Gl (P) occurs at two
points (if at all), these two points bzing at P = 7 and P=x= ¢
<6

1

From the figure we can see that T (P) < C‘n1 (P) in the

two regions OSP<'71 and 6 <P=l, so that

1
((1-p)c10 6,<P=l : D,
C1 (P) = PC01 OSF'..<..'}'l : DO
x* 0
wa*'(l’P)wo"PCo; Py (x) dxﬂl—P)Clo S‘po (x) dx 71_<.P561 HE" 4
- ] x*
(3.7)
where 61 is the solution to
(1-51)010 = C.'i1 (61) (3.8)
4] -
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P
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Figure 3.1 The construction of C(P)
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"and Y1 is the solution to
o (1-9;)Cyq =Gy (7)) - (3.9

. Since x* is a function of P, and the integrals in G1 ()
are usually not expressable in closed form, the solutions of equations

(3.7) and (3. 8) must be obtained numerically.

3.3 C(P) as the Lirnit of the Truncated Search

Now that C1 (P) has been obtained, we can proceed to
iteratively solve equation (3. 3) by letéing n=2,3,... and so on.
liese iterations will also prcduce the decision regions bounded by
the interception of T (P) with G-Z (P}, G3 (P),... at points 72’ 62 H
Y3 63 ; etc.

In particular, we may re-write equation (3. 3)

- ~}° =<:
(1-P)C . 6_=P=l

C (P)={ PC 0<pP=x<vy
n 01 o P, (x) P
PW1+(1-P) Wo'}'S‘g (x) Cn‘-l __S—GC-)-— dx 'ynS.P.EGn
-w

with the boundary condition

(1-P) Clﬂo P*=<p=<l

CO (P) =
%
PCOI O=<P=<P
where
<
16

PXz=§ =% = ———m——

0 0 C10 + COl
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If we postulate that in the limit as n—® Cn (P) approaches
some function of P independent of n , then by letting n==% in both
sides of equation (3.3), we see that this function is defined by equation
(3.2) to be C{P). Thus, if in fact this limit exists, C(P) can be

L calculated to whatever degree of accuracy that is desired by successive

iterations of equation (2. 3).

, What is more important, from the point of view of the strategy

g that ‘s associated with C(P), is the fact that if C(P) can be obtained
to any dsgree desired, then the points v = r}_i_lge v, and $ = nl_l_“n&> Gn
defining the decision regions can also be obtained as closely as desired.

It remains, then, to prove that successive iterations of

e

equation (3. 3) will produce a Cn (P) that will converge to some C(P),
and that the decision points ¥ and ¢ dc exist as limits of T, and

6n ,» and in a non-degenerate way (that is, v> 0, § <1).

3.3.1 Convergence Proofs for Cn (P) , 7, and Gn

We consider the defining equation of Cr {(P)

C_(P) =min [T(P),G_(P)]  0=P=l

where
T(P) = min[(1-P) Ci0° pCOI]
w© ' Py (x)P
G, P} = Pw, 4+ (P, + fac | = o,

L

and the points 7y and 6:1 are defined by
n C:01 = Gn(‘yn)
-4 = $
{1 n) C10 Gn( n) ’

-44 .




The costs C 1’ C

0’ W, and Wo are all non-negative, and g(:)

e 1

and pl(-) are p.d.f.s.

Theorem A; Cn(P) 20 forall n=0

Proof

5. Finally Cn-i-

(This theorem provides a lower bound for the iteration

process.)

1. Since C C., =0, then T(P) =0,

10’ 7ol

2. C0 (P) = T(P}) by definition so that C0 (P) =0,

3. I Cp (P) =0 for all P, then any average of Cn (P) over

P is =20,

4, Gn+1 (P) is the sum of PW1 +(1-P) Wo plus an average

. > >
of Cn( ), all =0, so that Gn+1 (P)=0.

1= min [T'(P) ) Gn+l (P)] =0 by (1) and (4),

and the induction is complete starting with the result of (2).

. <
Theorem B: Cn+l (P) < Cn (P)

Proof

(This theorem, coupled with Theorem A, establishes the
absolute convergence of Cn (P) to some limit function

(defined as C(P) ).)

. Co (P) = T(P) by definition,
2. C, (®P) = min [T(P)] = min [C0 (P) , G, (P)] = Co (») ,

Q - .
3. Suppose Cn.H(P) Cn(P) =<0 for some n .,

-45.
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- Py () P °° P, (x)
* Caga®) - Gy )= ftC, | fax - fatac | A
- Q0

-0

o py ()P P ()P
=‘§é(x) Cn+1 -ET;T—' - Cn ~ETET~ d:

-0
by (3) and the fact that glx) =0 forall x. So we
conclude that Gn+2 (P) = Gn+1 (P),

5. Finally, Cn+2(P) = min [T(P), G =min [T(P), G

n+2] 1 (Bl
Cn+1 (P) by (4), and the induction is complete starting with (z,

. -3
Theorem C: a) ‘Yn+l = ‘Yn

—
b) t‘311'!-1 - 5n

(This theorem, in conjunction with Theorem D, establishes

the convergence of the decision points 7, and 6n to their

respective limits ¥ and 6§ .)

Proof

(The proof is given for part b), the proof of a) being essentially

_d the same)

1. Gn “n'fl) = Gn+l (6n4-1) by (4) of theorem B,
2. CIO(I-anH) = C'n+l (Gn“) by definition,

3. Gn (P) < (1-P) CIO for P < 6n by the defining equation _
4. To prove by contradiction, we suppose 6n > 6

n+l .
5. By (3), (2) and (1) we have the contradiction

G {8y <=8 1)C 1y =G (6 ) = G (6 ).

-46.-
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Theorem D: If Wl >0, W.”> 0 then

Proof

Note:

0
=TI >
a) 'yn 0

b) Gn.<..A<1 for all n

where I and A are explicit functions of the cost terms.

(This theorem shows that the decision regions described by

the decision points LN and 6n are bounded by terms greater
than 0 and less than 1 respectively, and so that for sufficiently
large or small P a terminal decision will always be appropriate.

Since the theorem holds for all n, it holds for y= lim 4

n-+v 'n
and § = lim § )
n—~-w n
g P, (x)P
= - ———— > -
1. Gn(P) PW1+(1 P)W0+Sg(x)Cn_1 s dx PW1+(1 P)Wo,

- Q0

2. Since & is the solution of {1-6 )C,. =G (6 ) we have
n n n n

10
- = 1.
(1 én)Cm = 6nwl + {1 Gn) WO so that

oW
n CIO-WO+W1 '

3. Since A<1 for Wl >0, b) is proven ,

s

4., 7, is the golution of 'ynCOI = Gn('yn) s0

> -
7n001 - Yn,wl +a yn)WO

WO
Yy = = |
n C01+W0-W1
5. Since L'>0 for W,>0, a)is proven

0
When W1 =0 or WO = 0 the decision regions are semi-degenerate,

i.e. A=1 or I' 20 . This is discussed in appendix B.
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Theorem E: Cn (P) >0 for at least some P
(This theorem is immediately proven by noting that
Cn {(y=rI C01 >0 for all n. The result provides
the non-degeneracy of Cn (P) , and in particular the

non-degeneracy of C(P) .)

3.4 Implementation of the Optimal Search

Before going on to a specific example of the calculation of
C(P) and the associated strategy, it is instructive to consider the

implementation of the resulting strategy. We assume, then, that

C(P), v and & have been obtained. The search process proceeds

as follows.

1. If 0<P<y or 6<P=l, make the appropriate terminal

decision. The search is cver, and the expected cost is T (P) .

2. f y=P=x{, then take an observation x, . Calculate the
a posteriori probability that the target is present:
Px)P P x)P

Compere this new probability with ¥ and § . This is the equivalent

of comparing the likelihood ratio L (xl) =P, (xl)/p0 (xl) with the
1-P Y 1-P &

values -';- Toy and 5 '1-—5 with the result
1-P v

if L(x1)< P T-7 D0
1-P ¢

L(xl)> P 13 'Dl

- AN R L I . . GO S ST VL. 0 N0, T W ¥ ™. ¢ YT



3. If L(xl) lies in the W region, take another ol servation X,
and compare

Py ("1) P, (xz)

L(xl,xz) =

: po<x1)p0(xz)
: ) 1-P v 1-P 6
' with the values B Ty and B 17 and so on.

We see, then, that we have generated a Wald sprt equivalent
to the one described by equation {2.10), but with the decision points

A and B given by

1-P 6
A= P 1-6
_1-P v

B = P l-v

The advantages of the search just derived over the sprt are apparent
in three important respects. First, the values of ¥ and 6‘, and thus
the decision thresholds, depend by definition upon the various cost
factors and a priori probabilities involved in the search. The previous
method of assigning arbitrary a and P errors to determine A and
B can be now examined for consistency, if not completely replaced.
Second, if it is at all necessary to truncate the search, the decision

, points described by T and én are the result of a straightforward

; and well defined optimization process, whereas the truncation of Wald-

type tests in the literature are rather arbitrary.

The third advantage of the approach just developed is
the important fact that not only is ths strategy calculated, but C(P),
the minimum cost obtained by using that strategy, is a natural by-
product. Thus, if we wish to compare two different systems, it is

only necessary to compare their respective C(P)'s, and choose

-49.
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the one which hae the higher C(P) at the P of interest. This

point will be the subject of scme later sections, in which certain

near-optimal strategies are considered and compared.

3.5 Examples and Sample Calculations

With the assurance of section (3. 3) that the process will
converge, it is extremely easy to successively iterate equation (3. 3)
to any desired degree of accuracy. In particular, by referring to
the proof of theorem B, we see that if Cn {P) is at most € away
from Cn_1 (P), thexl Gn+l (P) will be within € of Gn(P) ; forcing
a like bound in the 1 ™ imum difference between Cn+1 (P) and Cn (¥) .
Thus, as in the work that follows, we may select some € and stop

the iteration when mlgx {Cn(P) -C 1 (P)} <e€.

Another h.elpful camputational technique is available.
This involves approaching the limit C(P) from below rather than
from above by starting out with C0 (P) =0 rather than C0 (P) =T(P)
as before. That this process also converges, and to the same C(P),
is easily shown by simple modifications to the proofs of theorems A
and B. This "convergence from below' suffers in not having any

intuitive basis for the index of the convergence, but has the advantage

of converging more rapidly than the standard way for very low-minimun

cost systems. It also serves to check the accuracy of whatever numeri¢

approximations might be made in the calculations, by reachiﬁg C(P)
independently.

3.5.1 Known Signal in Geussian Noise

For general illustrative purposas, we shall consider the

simple example of the search for a target having known characteristics

-50-
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in the presence of additive noise having known (statistical) properties.

In pavticular, let the known target signal be s(t} , 0=t=<T , with

S= g‘Tsz (t) at
.0
the signal energy. We assume the noise is CGaussian in magnitude
with auto-covariance Ezr- 6(f) ., where qu- is the known noise gnergy
density. It can then be shown (Helstrom (19), for example) that if

a statistic x is taken to be proportional to the cross-correlation of

s (t) with the received signal v (t). i.e.

T
x = w I—\Iz_é S s.(t)v(t)dt
. 0 .

then x is sufficient and has the p.d.f.s. under S0 and S, of

Py (%) = £ (x; 0,1)
(3.11)
P, (x) = fN(x; M 1) ,

and _
P, (x) 2
= .
L (x) By ) = exp (kx - 5-)
where
' 28
B = N

{ The literature contains many analyses based upon this
model of signal and noise characteristics. It has the advantage of

being a good approximation to many realistic situations. In addition,
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the “strength" of a signsl, relative to noise may be represented
the single variable u, the familiar signal-to-uoise ratio. As w
have seen in the disacussion of the ROC in Chapter II, an increas:
Rk (all other system variables remaining cohstant) is always des.

but i is often fixed for any given detection device and target.

The convergence of Cn(P) to C(P) from above an’ *
01 =&
Wo = W1 =1 and p=1 . Table 3.1 shows the convergence of

is illustrated in Figure 3.2, with the parameter values C

and 6n for the same parameter values. Figurec 3.3 shows ({7

for various other values of Wo ’ W1 and W .

The calculations were performed on an IBM 7090 at th.
M. I. T. Computation Center, and consisted of simple iterations .
squation (3. 3). For the examples in Figure 3.2 and 3.3, the P-
was represented by points at intervals of .01, and C .1+
linearly interpolated between them. The integration was done nu:

P) was

rically by simple trapesodial addition to an error of roughly .1%.
The value of € used was .001, and as can be seen from the figur
the convergence is quite rapid. A flow chart of the computer pro
involved appears in appendix C.

3.5.2 Numerical Example

The shepherd of the previous examples now realizes th.
his experimentation (observati yn of readings on the baa-meter) dc
cost something. In fact, becauss of the rural location, electricit:
is very expunsive, and he estimates that the meter operating cost

is $10 for every ten-minute integration period (a fixed time unit

1
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Iteration CO(P} = T(P} G\O{P) =0

Number
n i sn Y, 6n
0 . 500 . 5@0 - -
1 . 389 . 606 . 100 . 900
2 . 373 . 621 .183 . 814
3 . 369 . 627 . 250 .. 744
4 . 366 . 629 . 304 . 689
5 . 365 . 62% .339 . 655
6 . 354 . 639
7 . 361 . 632
8 . 364 . 631
9 . 365 . 630

TABLE 3.1

Convergence of Y and 6n s B =1 W'O =W

Co1 = Cpo = 1

1

—
-

1,
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Figure 3.3 Example «f C(P)
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required by the meter for each observation). Using the reduced cost

matrix of section (2. 4. 2) (in anits of § 100)

C..l = -.5
[c;1 -
he notes that C01 = C10 =1, and the meter operating cost assigns

WO = wl = .1 . Figure 3.2 and Table 3.1 give the strategy:

l. If P> .63, don't take any measurements at all, and go

directly to the pasture

2. If F<.37, don't take any measurements at all, and go
directly to town
3. .37 =P =.63, take . measurement x; « Then
1-
comparea 'Lb:l) = exp (xi-. 5) with the value —PE X =

1-y
1-P_5__1-P
P T-¢- » (189

4. I exp[xl-.Sl is outside the range (%’(.59) ) l;—l-: (1.85)),

1-P
T (o 59) ’ and

take the appropriate termiral decision. If exp [x1 -.5] is
within that range, take another observation x, , and
compare exp [(a:1 -. 5)+(x2-. 5)] with that range, and

80 on.

Thus, if P = % » the optimal decision rule requires at least one
observation, and offers an expected loss (in dollars) due to wrong
deciaion of 39 (from Figure 3.2), or a total loss of ~-50+39=-11 ,

By using the STSD decision rule as in section (2.4.2), the cost was
-19 , to which we must add 10 , the cost of the required experiment

for a total of -9 . The optimal sequential rule thus saved $ 2 .
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The saving becormnes even more substantial as P approaches
0 or 1, and is $10 (the cost of the needless experiment required by STSD)
for the certainty prior information conditions P =0 or 1. This is shown

in Figure 3. 4.

If the cost of experimentation were much smaller (say $1
per observation, so that Wo = W] = ,01), then the advantage of using
the optimal sequential search becomes even more pronounced, as is

also seen in Figure 3.4

3.6 Fixed Threshold Sequential Search

Now we shall consider some practical limitations to the
applicability of the optimal search just derived. We have assumed
that the result of any observation is the measurement of socme continuous
random variable, the value observed being called x . In order to
implement the search, it is necessary to be able to calcuiate L (x)
in order to obtain the posteriori probability needed for comparison

to ¥ and 6.

Many physical detection systems, however, are limited
in their capability to measure x as a continuous variable. Others
have very limited mathematical capability (whether space-cost limited
computers, or time-ability limited humans) and the storage and cal-

culation of continuous likelihood functions are beyond them.

A particular form of limitation typical of many systems in
use today will be discussed in this section, with the object of provi-
Ging a means of comparing the best results available with these limited

systems to the results obtained in the previous sections.

-57-



R

0

e A
L 4 i

Figure 3.4

2 _a Il 2 IR 2 —d
v v L g La T v 1

.5 1.0 P

A
-y

Savings in cost over STSD by using
optimal sequential strategy

-58.-



R VR

an A

|
|

The limitation involved will be the required use of a fixed

threshold for every observation, with the output of the observation
being simply 'over threshold" vr "under threshold'. An example

that illustrates this is the use of an active sonar that every cycle
displays either a "blip" or not. Inside the sonar unit there is a dis-
crimination device that can only tell whether or not the received
signal statistic is over or under some pre-set threshold, and a blip

is displayed or not as a consequence. The observer then must make
decisions on the basis of observing a series of binary variables rather

than a series of continuous ones.

It is convenient here to let 'indication' mean the exceeding
of the fixed threshold by a signal. This word must be used with some
care, in that an indication alone does not imply any decision concerning
the presence or absence of the target. An indication is just a way of
reporting the output of a particular (threshold) detection device.

Decisions are to be made on the basis of (perhaps) many indications.

The problem facing us now is essentially identical to
that stated in section (3.1), with the substitution of a binary random
variable y for the continucus x , with probability mass functions
ho (y) and h1 (y) replacing to Py (x) and pl(x) . If we let y take

the values 0 or 1, we have

1-f y=0
h, (y) =

f y=1

l-d y=0
h, {y) =

d y=1
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where f and d are the 'false indication' and '"detection” probabilitie«

defined by

[+ o]
f=£(x¥) = 5% (x) dx
x %

(3.12)
[ <]

d = d(x*)= Spl (x) dx
x %
where x* is the threshold that is assumed to be fixed throughout the
length of the search. (Note that these equations are identical to
eguations (2.7) for Ps and Pq We use 'f' and "d" for notational
ease, and to remind us that they now refer to “indications" in the

analysis of this more general decision structure.)

For a given fixed setting of x*, let us define Fn (P) to
be the mirimurn expected cost obtained by using the optimal truncated
fixed threshold strategy. Then by using arguments identical to those

leading up to equation (3.10) we may write

/
(1-P) c]O 6n951
r_(P) =\ PC OsP=y | (3.13)
. Pd
PW +1-PIW H{Pa+(i-PM] F_ | [m ] *
+[P(1-d)+(1-P)(1-1)] Fn-l [p(] -dp)(:(-li)}))(l -f)] ‘Ynﬁ

where we have made use of the fact that
prob. {y=1} = Pd + (1-P)f

prob. {y=0} = P(1-d}+(1-P)1-1)

-60-
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Pd
prob. {s, ly=1} = Pa+ (1-P)

C g

L P(1-d)
prob. {8, 1y=0} = gy ENT g

!

It is important to .repeat the fact that although there is a fixed
detection threshold x* that leads to indications, there still remain the
important points ’Yn and Gn ‘which define the decision regions. These

points are referred to as decisicn thresholds.

In the limit as n—% , if we can show that Fn (P) converges,

lim =
we may call ot Fn (P) = F(P).

That Fn (P) converges, along with Bn and 'Yn , may be
shown exactly as in theorems A, B, C and D of section 3. 3.1 with the
minor changes in notation necessary to allow for the discrete character

of y.

The F(P) and associated strategy that is calculated are still
conditioned upon the threshold x*, in that both d and f are functions
of x*, For a final overall cost minimization, we may select, for
every P, that x* which minimizes F(P) . Calling this overall

ceptimum F_ . (P) we see that
min
Foin(P) = 0 [F(P)] (3.14)

Quantization of the continuous target information into a binary
variable is sure to produce a loss in the information sense, but
in the cost context of the present problems we can readily compute

the loss in more meaningful cost terms.



Successive iterations of equation (3.13) are again straight-

forward, and computer calculations are greatly speeded by the

absence of an integral. Figure 3.5 shows a typical convergence to
F(P) for a particular setting of x* . Figure 3.6 shows the application
of equation {3.14). To avoid confusion in drawing, only some selected
curves for F(P) are shown, but in gener;l Fmin(P) is the lower
envelope of all F(P) curves. It is also convenient (and illustrative)
to label the F (P} curves by the d corrssponding tc their "x® throug!.
equation (3.12). The values of the paramsaters have been selected to
provide comparison with the C{P) of Figure 3.2, which is shown in
dotted lines. The optimal threshold setting (and equivalent d) that
results from this example is ploti~d as a function of P in Figure 3.7,
Note that for P outside some range there is no optimal threshold
setting, as the decision rule in those cases calls for a terminal

decision with no observation taken.

The implementation of the search is identical to that
described by section 3.4, where L (x) i# repiaced by L (y}

.l—-? yso
L(y) =

y=1 .,

3.6.1 Numerical Example

On occasion, the shepherd of our previous examplés has to
use a less versatile meter, one that contains a built-in threshold (that
may be set at the start of the search). The signal and noise statistics

are still characterized by the p.d.f.s.
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Figure 3.5 Convergence of Fn(P) to F(P)
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Figure 3.6 Calculation of F .. (P)
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Figure 3.7 Optimal x* as a function of P
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Py {x) = fN (x; 0,1)

Py (x) = fN(x: 1,1)

a0 that, upon setting a threshold x¥, the false indication and detection
probabilities will be
f=1 - erf(x¥

d=1 - erf(x*-1) .

01=C10=1 W,

examples, the shepherd uses Figures 3.6 aad 3.7 to obtain the fellowin~

With the cost values C = Wl = .1 of the earlier

decision rule:

1. ¥ P>.61, donlt take any measurements at all, and go directi

to the pasture.

2. If P<.39, don't take any measurements at all, and go directt

to tcwn.

3. f .39 SP =< .61, sei the threshold as indicated in Figure 3.7,
then take a measurement of y .

1-d v {1-P)

4. If y=0 (x<x*%) then compare —= with the values At
P 1.P 1- (L-y) P
64(1-P)/P , and 7= B) L ) 56 (1-P)/P . If yo 1 (xx¥)

(1-8) P
then compare d/f with these values. If the likelihoods fall

outside these limits. make the appropriate terminal decision.

If within them, take another measurement, and so on.

I, as before, P =-;— we see that at least onie measurement must be taken.
From Figure 3.7 we find that the threzhold is set such that d = .68,
f=.3. ¥ y=1 is observed, since L{l) = .68/.3 =2.27 is greater

than 1,56, a D, decision is required. If y=0 is observed, aince
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L(0) = . 32/, 7 = .46 is less than .64, a D, decision is required. This

‘ 0
strategy (for P = 1/2) is idential to the STSD strategy, and so we would
expect the search cost at this P to be the same as the STSD cost, which
it is, However, at other values of P , the advantage of the sequential

threshold strategy becomes apparent.

Illustrations of the difference in cosgts using the three strategies
mentivned 50 far in this chapter are shown in Figure 3.8. The curves
show the percent increase in cost (over the minimum cost attainable by
the optimum sequential search) due to using either the non-sequential
STSD straie gy, or the sequential fixed threshold strategy. As shown by
the figures, the importance of using a sequential search is considerable

when the experimental cost decreases.

3.7 Adaptive Threshold Sequential Search

The previous section considered the threshold x* tc be fixed
throughout the search. This limitation is often attributable to a lack of
the time needed to adjust the threshold (if necessary) inbetween possible
observation periods. In some systems, however, although the detection
device iz by nature a threshold indicator, it is possible to vary the
threshold inbetween observationa., A practical example is the use of
a radar FPI scope by an experiencgd operator. The operator usually
keeps tlie gain of the scope low (to avoid "snow') until a possible blip
shows up at some point. The operator can then increzse the gain on the
next sweep because he will be concentrating on a smaller region of the
scope, (i.e. the neighborhood of the possible blip) and so is not as

effected by the increased noice,
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This process of controlling the threshold is often referred to
as the "alerting effect’ and shows up in our model of seguential search
in the following way. I.et the decision structure be such that the searcher
is required to take two observations, and that he must make a terminal
decision after the second observation, both limited to threshold obser-

vations. If he determines the first threshold x* on the basis of STSD,

1
ke has (with C00 = CI11 = 0)
C
1-P 10
L(x#) = ~5 | =
1 P C01

The resultant first observation can either be y=1 or y =0 (indication,
or no indication). Now suppose y =1 is observed. Then the posterior

“target present” probability P' is

, PPy
P' = prob. {S, ly=1} = B, v (1P,

He would now want to set the second threshold so that

f € P . c P
TR L T
01 Py o1 Pq

Since in practical systems Py < Py + We see that L(‘xg) < L(x’l") . With
the usual monatonic likelihood function, this implies that xg < xl* , 80

tha second threshold has been lowered. Because this lowering of the
threshold between first and second observations yields a corresponding
tendancy towards deciding the target is present, the expression "a,lerting "
is descriptive. The "alert” is due (o the reception of y = l(x1 > x’lk) .

If y=0 (x1 < x’l") were received, there would be &n equivalent "dulling"

effect by an increase in the second threshold.
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This sort of adaptive threshold adjustment may be carried

over into the framework of the previous problems, and calculations can
be made to compare the resulting mirimum cost with the solutions of
the fixed threzhold and continuous variable searches of the previous
sections. In order to show this, let us define Kn (F) tc be the minimurr
cost attained.by using an optimal truncated adaptive threshold strategy.

Then we may write

T{P)
Kn (P) = min

mi *
x}'n I.,n (P, x*)

where

4
L (P.x#) = FW + (1-P)¥ + [Pd + (1-PM]K_ (m....._._ )

o

Pd+{l-P){

P (1-d)
P{i-Q)+(1-P)(1-.

+[PQ-a)+(1-PI-D]K_, (

The dependence of Ln(P, x* on x* is a consequence of 4 = d(x¥),
f=1(x%) as defined in.equations (3.12).

Again, calculation of Kn(P) is straightforward, but rather
. lengthy due to having to explore the x* variation at each stage of the
iteration, rather than just at the limit as in the previous section. The
approach of Kn(P) to the limit function K(P) as n—% is assured by
simple modifications to the proofs givena in section 3.3.1. The resulting
minimum cost function and strategy is aghin similar to those derived

before.

Although calculations of K(P) have not been carried out, it

is possible to prove the intuitive inequality
CIP) <K(P)sF_ ., (P) forall 0 <P =<]
min

the proof is not instructive, and is omitted here.
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CHAPTER IV

TARGET ARRIVAL AT A RANDOM TIME

4.1 Towards a More Realistic Model of Certain Searches

All the previous work in this paper has been carried out with the
condition that the states of nature describing the systemn were fixed throue
out the search. This was a basic part of the model first described in
Chapter II, and it is only on this basig that any of the hypothesis tests,
sequential or otherwise, could be applied. In the analysis of sequential
search strategies, this condition of staticnarity of the target can be seen
to be a very limiting one, in that the duration of the search is a random
variable. Thus '‘throughout the search' means all that time for which
the probability of the search duration is non-zero. This time range is
often infinite. The use of a hypothesis test must therefore be carefully
considered, and should be used only when the only alternatives to the
states of nature are either SO and Sl , and when only one of these

states will definitely hold for the entire search.

Many practical problems which have been analysed from
the point of view of hypothesis testing are much more reasonably
approached by a new model which will be treated in this chapter.

This model allows the target to arrive in the cell at some time t

(a random variable), after the start of the search and then remnain
there for the rest of the zearch. The decision rules should then be
tased upon the probabili.y that the target has arrived yet, rather than

whether or not it is present at all,
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This sort of model is certainly applicable in many military

detection models, and the term ''raid recognition" has often been used
to describe the general problem statement. When searching for a
submarine in a particular area, for example, we ~arely have the luxury
to assume that it will either be there or not for the rest of the search
(i. .. time of interest). In particular, when the decision DO = "Target
not present’' is made, the search equipment would not be turned off.

In fact, in problems of this type the decisions become limited to two
decisions: D1 or W . Let us continue the submarine search example
to develop typical actions and cost factors.

Suppose decision D1 {t) is the order to send ASW aircrait
at time T to the region representing the cell covered by the detection
device. If the submarine has not yet arrived, then the aircraft must
return to base, some resultant cost of false decision has been incurrec.
and the search continues. If the submarine has arrived at some time
(before the Dl

t and T the more difficult an eventual interception, and thus there is

decision was made) then the longer the delay between

an increase in what we might call the interception cost when tie D1 ()
decision is made. The search is then considered to be terminated.
One obvious objective is to make decisions so that the expected cost

of the search id minimized. This chapter will consider such a model,
and the optimal search that evolve¢s from it.

We shall also spend some effort in the development of a
simple way of comparing some specific non-optimal rules that are
being practiced or proposed, by use of a concept similar to the ROC
described in Chapter II.
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4.2

General Problem Statement

. The target arrives in the cell of interest at time t

(t=0,1,...) with known probability p (t).

. If the cell is observed at time T , the result is a random

variable x which has p.d.{. Py {(x}) if t> ¢ and Py {x)

ift<n.

At every time T (7=0,1,...) the searcher makes one of the
following decisions
D(71}) : Decide the target has arrived

L2

W(r) : Wait for another observation .

. The decision D(T) may or may not be a terminal decision:

If D(t) is pickedand t> 7 , then a false decision cost

F 1is incurred, the knowledge that t > T is gained, and

the search continues.

If D(1) is picked and t = T , then the search is terminated

with a cost of ¢(t, 7).

The objective is to minimize the expect cost of the search.
The strategy achieving this minimum cost is called the

"optimal'' strate gy.

Although we shall not solve the general problem as stated above, it is

helpful to keep it in mind when solving it subject to reasonable assump-

tions. Again, as in the previous work, we shall restrict Py (x) and

P, (x) such that L (x) = P, (x)/p0 (x) is monotonic non-decreasing in

x , to ease the notation.

4.3

golution.

Linear Terminal Cost, and Geometrical Arrival Time

Two assumptions will now be made in order to obtain a

These also have the advantage of reasonably representing

some real search situations.
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First, we shall assume that the terminal cost is proportiona
to the time '"late", i.e. ¢(t,T) = {T-t)W . This form of the function
is not necessary for a solution, but offers a minimum of algebraic

difficulties that might otherwise cloud the development.

Second, and more restrictive, we shall assume that the targ:

axrival time distribution is
p)=Aa(1-2)t t=0,1,... (4. 1°

This geometric distribution has the advantage in describing the arrival
as being conceptually "random" by the fact that it provides a constant

probability of arrival per unit time (X) , given that it hasn't yet arrivwr
This property also provides a simple representation for a state variab:
by summing up the total information about the state of nature (i.e. wh:.

or not the target has arrived). This is outlined as follows.

If we let P(r) be the probability that the target has arrived
at or before time ¥ , then by equation (4.1)

T+l (4. 2)

T
Pir) ’Z"‘" =1 -(1-2)
t=0

Furthermore, we can show that
Pir4l) 2 (L-A)P(7)+ A
so that (without sny other information) to describe P(7+1), ai. that

is needed is P(71) .

In addition, suppose that a value of x(1) is observed at
time 7 . Then

prob. (x(t), T+1)

P(r4l{x(r)) = prob. x (1)

~T4~
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To calculate prob. (x{(r), T41) , we note that this could happen in two
ways: the target could have arrived at time 7 or before, in which
case p, (x) is the p.d.f. of x(T), or the target could have arrived

at time T+l , so that Py (x) is the p.d.f. Thus

[Pr)p, (x) # [1-P(7)] X py{x)]
P(r)p, (=) + 1-P (7)) p, (x)

P(r+llxir)) = (4. 3)
and we see that given some observation x, the posterior probability
of the target arriving at or before time t41 is still dependent only
upon P(71), and not T explicitly. It is this basic Markov property
that allows us to proceed now in a way similar to the approach in
Chapter III (where, we recall, the Markov property of the successive

likelihood ratios led to the dynamic program approach).

The assumption leading to equation (4.1) also enables us
to characterize the start of the search, since P(0) = A . What is
more important, we note that according to statement (4) of the problem
definition, when the false decision {D('r)jt>'r} is made, knowledge
that t > r is automatically gained. This fact and equation (4.1) lead
to Plrél|t>r) =X,

We are now prepared to write a functioral cquation for the
minimum search cost. Let us define V(P(r)) as the minimum s=arch
cost obtained using the optimal search strategy at time r where P(r)
is the present value of the probability that the target has arrived previous
to or at time 7 . There are two decision choices. One is D(r) :
decide target has arrived, with resultant probability being wrong of
1-P(r), and subsequent cost of F plus what the continued search

will cost from then on. The other is W(r) : wait for more information x ,
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in which case the 'late' cost is incurred only if the target has arrived
(probability P(7) ), and the search continues with the proper posteriori

probability given by equation (4. 3). The minimum cost is then given by

(1-P}F+V())) : D
V{P) = min
e Pp, (x)4+(1-P)p, (x)]A
L PW+:S;)[P P, (x)+(1 «P)po (x)]Vv 5 o+ "p)po = W
(4. 4)

The T has ncw been purposely left out as an argument of P and
the decisions, since this equation holds for all 7 and only P(T) =&«
is needed to express the right-hand side. In what follows T will be

left out except when necessary tv avoid ambiguity.

One result is immaediately apparent. By letting P=0 we

have
V(0} = min [F + V(X), V(A)] = V(A) for F>0.

This telis us that the cost of search, if we know the target has not
arrived, is the sanie as if we waited one time unit and started agzin.
This is because there can be no "late’ cost W il the target has not

yoi arrited.

In order to develop a feeling for the solution to equation
(4.4), and to obtain an upper bound upon V(P), the next section
shall ccnsider the degenerate case getting no information from the

observations.
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4.4 Optimal S8earch With No Information

Suppose that Po (x) = P {(x) . Then, as can be shown by equatior
(4. 3), an observation of x does not affect the posterior evaluationof P .
in this case the observation x is irrelevent, and th: searcher gains no
information. The searcher may still develop an optimal strategy, which
now consists simply of either waiting one time unit, or deciding the targe:

has arrived. Egquation (4. 4) becomes

((1 PHF + V(X)) : D
V(P) = min (4.5)
WP+ V[P+(1-P)A] : W
As noted before, V{0) = V(L) , and we can also easily see that
V(l)=0.

From the form of equation (4.5) it is postulated that the

structure of the strategy will be
if Pzy : D
P=y : W
where v is a decision point to be determined as part of the soluiion.

That this is indeed the form of the strategy, and that it is
not degenera‘e (that is, 0 < y< 1}, may be shown by the following
proof by contradiction. (The discussion that follows car also be
shown to be valid for the more general equation (4.4). Since it is the
form of the proof that is of interest, it is carried out in thizs less

complicated case.)
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Let us define

D(P) = (1-PRF 4+ V{A})
G(P)= WP + V[P+ (1-P)A}

A sketch of these functione is shown in Figure 4.1. D({F) is a straight
line with D(0) = F + V(A) =F + V(0), D(1) =0 . G{P} has an unknown
functional dependence on P through V[P 4 (1-P)A] . bhut 1t is continuoun-
by the continuity of V(P) . The boundary values are known and are

G(0) = V(x) = V{0), G(1) =W+ V(1) =W . Since F>0 and W>0,
then G{1) > D(1) and G(0) < D{0) so that G(P) and D{P) must

intersect at at least one point.

Suppose G(P) were such that G(P) and D(P) intersect
at more than one point (in Figure 4.1 this is illustrated by the dotted
line), say ¥', ¥ and ¥'"'. Let us select a point P' such that

7'<P'<‘Y"

Y'<P ¢ (1-P)A <" (4. 6)

where [yY', ¥"'] ica D regionand [y", 7'"'] isa W region.
Then by squation (4. 5)

VIPY 2 (1-P'UF + V(M) )< WP'+ V[P' 4 (1-PY2] (4.7)
and

VIP'+ (1-PYA) =W(P'+ (1-P)A) ¢ V[P'+ (1-.P)A + (1-PHH{1-2)A] <
< (1-P"YI-AY[F+ V(A .
{4.8)
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Combining equations (4. 7) and (4. 8)

(1-P'HF + V(1)) < wP'+ (1-PY 1) [F + V{r)]

which reduces to

If we select another point P" so that
_YM< P"< 7"9
y"<P"+ (1. PYA<1 (4.10y

we can show in a similar manner that

n A(F+ V(L))
P< W

which, with equation (4.9) implies that P'" < p' » But, aince equations
(4. 6) and (4. 10) require P'< y"<P", the contradiction is proven.

We have just:showr then that G(P) and D(P) intersect at
ons point, and defining this Point as P = vy, we re-write equation (4. 5)

(1-P)(F+ v(r)) P2y

V(P) = (4.11)
WP+V[P+(1-P)X] Py

As a first step in the solution of this equation, let P = Y.
Then since v+ (1-9)X > we have V(y) = (L-9NF4V (D) ) = Wy +
+ VI (1-Mr) =wy+ (1-901-ANF+V(X) ) from which we get

¥+ vm-f{-y- ¥ (4.12)
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so that equation (4.11) becomes

w
(I-P)-I—J.-,; x Pzv
viP) = (4.13)
WP+ VI[P+(1-Pjar] Psy

The next step is to find ¥ interms of W, Fand A . Once
this is obtained, the optimal strategy is defined. (Determination of the
functional form of V(P) for P =< vy will then r~ly upon iterations of
(4. 13) in a manner to be described later.)

To determine ¥, let us assume that y has been obtained
and is such that
A <yvy

1 -2 <qy

1 - (1) <y
1-(1-2)" 2=y (4. 14)

where n is the smallest integexj such that equation (4. 14) holds.
By n-1 successive applications of equation (4. 13) we get
VA =wa + V[l - (1-2)%)

= WA ¢ W( - (1-1)") ¢+ V[l - (1-1)3]

= wita-1) - 32 0 - 0™l e v g

all (n-1) staps being the result of W-decisions. Finally, since the

nth must be a D-decision:

V(i) = W[(n-1) - -‘-,—% (1 --0)"h + u-x)“-l%;y-

>R
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Using the value of V(i) from pyustion (4.12) we may solve for ¥ in

terms of n
n
ya1.20220 (4.15)
A(W+n)

By use of equation (4.14) we find that n is the amallest integer such
that

Q) =—2>

F (4. 16)
142 (W+ n)

Once n is found, < is then obtained from equation (4.15).

We have just proved that the form of the strategy consists
of waiting for a fixed amount of time (number of time units) n-l ;.ther
choosing a D-decision. In the event that the search has just started,

( or that a' D-decision has just been made but the target has not yst
arrived, so that the search must be resumed with P = 0), this fixad
amount of time is given by equation (4. 16), from which ¥ can be

determined.

If the search starts out so that P # A, then by successive
applications of equation (4. 13) we can show in a calculation similar
to that above that the time until a D-decision , n(P) , is g var by
the smallest n(P) that satisfies

n(P)-i

(1-P)(1-2) s1.-y. (4.17)

In order to compute V(P) we again simnply apply equation
(4.13), [n(P)-1] times with decision W, and the n(P)‘h time witn
a D-decision. This gives the following form of the minimum cost,
where n = n(P)
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1- -1 -1
V(P) = W(n-1) - S5 (1 - (1A )]+ (1-P)(-a) T 2 Y
/ - I’
(4. 13)
When the mean arrival time gets very large (so that A « 1),
an interesting approximation holds. Sin¢e n gets large, 'we may

consider equation (4.16) to be an equality, and as A—0 we find

. K "
1+xﬁl+m=(yay“e1+nx+E£L9x;+bu
w o 2

so that -

‘ > 28

n{n+l) = W

A .
. < A 2F : " T

or, since n 1s very large, n = '\‘ W With this approximation

equation {4.15) becomes

Fa ., ,w/__ZF_&
o~ W W

Fr, . [2F)

I Vo

and so V(0) = V(A) = \/g—i—lv-! from equation (4.12). Thus, if the

search always starts with P =0 or P = A, this expression gives

the minimum expected search cost.

4,1.1 Numerical ¥xample of the Non-Informative Search

In this section we shall treat a simple example of the search
analysed in the previous section. The solution is in itself interesting
and is also useful in order to compare the result with an informative

search to be tieated later.
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It is known that an uniriendly trawler will arrive in a certair
region of the ocean in order to cut some trans-oceanic cables. The
defense of this region is carried out by a unit that can dispatch high
speed aircraft to the region which are able to identify and deter the
trawler. If, when the aircraft are sent out, the trawler is not present,
they note this fact, return to base and a flight cost of $ 10,000 is incu-
However, for every half-hour (unit time) period after il arrives-that.th
trawler is unchallenged in the rsgicn, it does $ 1,000 worth of damar:,
It is assumed that the time that the trawler will arrive at the region i..
a geometrically distributed random variable with a mean of 5 hours
{10 unit time periods), so that A = .l. In units of $10,000, F = 1
and W=.1.

Using equation (4.16)
9" =<(2+.1n)"}

we find that the smallest n the* satisfies this expressionis n =11 .
Thus the optimal strategy, given that the trawler is not present at the
start of the search, is to wait (n-1) time units (5 hours) before sending

out the aircraft, and repeat this procedure, until the trawler is found.
A calculation of vy is made with equation (4.15)

1 - ‘-9!11

2.1 =.673

Y=l -

and the expected cost at the beginning of the search is

u X ¥ _o_.673 . _
VIO) = VQA) = 7= 3 - F=igz =11 =1.06 .
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If P is the probability that the trawler is in the region at
the start of the zearch, then n(P) and V(P) may be calculated by mean
of equations (4. 17) and (4. 18) with the value of ¥ =.673 . A plot of V(P

is shown in Figure 4.2. Note that V (P} consists of the lower envelope
of 11 straight lines. These represent the cost of search if the strategy
. is to wait (n-1) units of time before sending the aircraft, where
n=1,2,...,11 . The n for the minimum cost at any P is thus n(P) .

For example, for P 29, n=1 and equation (4.18) gives

V(P) = TZI; V{ (1-P) = 2.06(1-P)

4.5 Previous Work Relating to the Non-Informative Search

Before considering the informative search model it should be
noted that the non-informative problem has been considered in the litera-
ture, but not within the framework of search. Barlow et.al (2) discuss
this problrin as an example of a "checking" procedure, and consider its
applications particularly to problems of checking equipment that is subjeci
to random failure. Thus the D-decision is the decision to check the part
to see if it has failed yet, with some appropriate nuisance cost if it hasn't,
while the W-decision is the decision to wait one more time unit. They do
not attempt to treat the extension of the problem to the possibility of obser:
ving some noisy signal associated with the failing part (a temperature

reading, for example). The problem is defined in terms of continuous

v

times, so that n is replaced by t , and equation (4. 14) and equations

. derived from it become equalities.

What is an interesting commment on their work, however, is the
fact that although they assume a general form of the arrival distribution,
they never prove the form of the optimal solution. What is done, in effect,
is to assurne that the optimal checking procedure will be to wait some time

t1 , then check, if no failure is seen, wait some time t. , check, etc.

2
They go on to show that for the exponential failure time density function
(the equivalent of out geometric mass function) these t:i are equal.

The assumption of the (now proven correct) fixed checking time form
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of solution enables them to immediately write a cost eéxpression in te . me

of the checking time t , which can be minimized by differentiation.

The dynamic programming approach adopted in section 4.2
thus has the advantage of providing the form of the optimal etrategy,
as well as its parameters. In addition, as will be seen below, we
are now in a position to simply extend the structure to allow for
observations of a random variable relating to the state of nature
(whether or not it concerns a target arriving, or a piece of failing

equipment).

4,6 Optimal Search With Information

We are now ready to attack the problem involving observations
of a randorn variable x with every W decision First we note that the
proof in section 4.4 concerning the form of the non-informative search
inay be carried over conceptually to the more general case represented
by equation (4.4), so we state without formal proof that equation (4. 4)

may be written

D(P) D(P) P2y
V{(P) = min

n

(4.19)
H(P) \H(®P) Psvy

where

DP) = (1-PF+ V(A))

Pp1 (%) + (1-P) Py (x) A

o
H(P)=pw+S[PP,(x)*(1‘P)po(‘)lV Pp, (x)+(1-P) g, (x) >

«®
We are now faced with a functional equation similar to that treated in
Chapter III. Unfortunately, however, there is no etficient way to

intuitively truncate the search, as was done in that case. In spite

-87-



of this lack of intuitive truncation, it is of course still possible to

solve equation (4.19) by such an iterative procedure. In fact, a standard
technique for solving such functional equations, and many transcendenta!
equations, is simply the method of successive approximations used in
the previous section. If convergence properties can be shown, then

any such method is valid, despite the non~physical character of

intermediate solutions.

For this reason, we shall re-write equation (4.19) with V
as a funetion of an iteration index n (that has no particular connection

to any physical index of the search). Doing this yields

D (P)=(1-PYF+V_ (X))
n n-l (4. 20)
Vn(P) = min
' o0 Ppl (x)+(l'P)p(\'
H_(P) = melp Py (x}H1-P)py{x)] V_ Pp, OHI-P) ;,

-0

All that is need2d now is the selection of the boundary condition v (P),
and assurance that successive iterations will converge the process

to V(P) as n—o ., If we let Vo (P) =0 for all P, then
Vl (P) zmin [(1-P)F , PW] 20 = VO (P .

With the fact that we have found some Vn (P) = Vn“1 (P) , a proof
very similar to that leading to theocrem B of section 3.3.1 allows us
to show that in fact all Vn (P) = Vn_‘1 (P) , so that the process will
approach V(P) from below. To complete the convergence, we need
to show that V(P) is bounded from above. This can be shown by
noting that

V(A) s (1-XNF + V(A))
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sothat V(o) = F -1-;‘—)& and therefore

(4.21)

> Hy

V(P) = (1-P)(F + V(1)) s%‘-‘-’ F=

Again, as in Chapter III, it is easy to show that LA

the solution of
D (v)=H_ (r)

converges to some limit v as n—® .

An example of this iteration process is shown in Figure 4. 3,
where we have selected the values of the parameters to compare to
the results of section 4.4.1, The P, (¥) and Py (x) are normal dis-
tributions with unit variance and mean of 0 and g respectively,

where p is the signal to noise ratio.

These calculations were calculated on an IBM 7090. As can
be seen from the figure, the convergence is much slower than that for
the problems of Chapter III. However, the computations are still

essentially additions, with an appropriate approximation for the integral.

The general solution of the search for a randomly arriving
target, with observations of an appropriate signal, has thus been
obtained, with the minimum cost attainable and optimal strategy
comprising the solution. As pointed out in a previous section, this
model applicable to a randomly arriving target may also be applied

to such problems as a randomly failing piece of equipment.
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Figure 4.3 ¢




V (P) to V(P) with information




z’
|

4.6.1 Numerical Example of Informative Sequential Search

The defense unit of section 4. 4.1 has decided to install a
sonar apparatus to aid in the search against the trawler. The results
of integrating sonar signals for the half~hour unit time is a random
variable x that has p.d.f. Pq (x) if the trawler has not yet arrived,
or p, (x) if the trawler has arrived, where Py (x) = fN (x; 0,1),

P, (x) = fN (x; 1,1). As indica‘ed in section 3.5.1, this is the case
when detecting a known signal . additive Gaussian noise, with a

signal-to-noise ratio w=1.

From Figure 4.3 we note that ¥ = .78 . This is higher
than the value of . 673 , and indicates that the availability of informatiou
will let the searcher be less quick to reapond. We alzo note that
V{0) = V(1) =¥ .58, which is a saving of close to 50% compared to
the non-informative search. :I‘}xe strategy that gives these results

follows.

Suppose P =X = .1 to start the search. Since ! vy =.78,
an obse-vation is recuired ai the firs{ time interval. Suppose a value

x, is the result of this observation.

1
The posteriori probability P(xl) that the target hus arrived

is now given by equation (4. 3)

(-10p, (e) 4 G 19 py (k) (1) exp(x,-3) + .09

('I)Pl (x1)+ (~9)P0(x1) i ]

Plx)) = 1
.. exp(xl "'2") + -9

Comparing this with v, we see that i

2xp (x1 - -12-) >27.8
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or

x, 2.54m27.825.9

then the aircraft should he sent out. If not, another observation xz
should be made; the a posteriori probability P(x} , xz) should be

calculated and compared to v, etc.

4.6.2 A Comment on The Solution

Aws is shown by the examrple in Figure 4. 3, although con-
vergence of Vn (1) to V(P) is guaranteed, the speed with which
the process converges is rather alow. In fact, as A gets very smali,
caasing the cost of search to increase, the convergence is even slower.
This unfortunate practical difficulty i{s at present unresolved. One

possible approack iz suggeste} here.

We decided in section 4.6 to start the itexation with VO (P) =
which consequently assures convergence frum below. It is equally
possible to stax’ the iteration at eome appropriate large value, which
will again assutre convergence, but then from above. Cne such value
would be the right hand eide of the condition given in equation (4. 21),
i.e. VO (P) = ; . However, a lower starting point is available by
noting that the minimum cost o the informative search is less than
or équal to the minimum cost of the non-informative rearch, for all
values of P . This lower starting valve of Vo (P) could considerably
decrease the number of {terations needed to provide a given degree of

accuracy.

Other techniques for establishing a reasonable first guess
of V(P), and letting this equal Vo (P) , would be a valasble. -~
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' aid in the computation. In general, however, convergence proofs might

be difficult for arbitrary starting functions Vo (P) .

4.7 Implementation of the Strategy and Comments On the Geometric
Arrival Assumption

In Chapter II we showed that the use of the optimal search
strategy resulted in essentially a Wald sprt, where the decision boundaries
were determined by cost considerations rather than by error probabilities,
A similar analysis of the implementation of the strategy developed in
section 4.6 is of interest, in that it points out a basic limitation to the

treatment ~f the problem.

From the form of the decision structure presented in equation
(4.138), we see that P, the probability that the target has arrived up to
some time, i8 constantly compared to some decision threshold 4 . When
a D-decision occurs, P automatically returns to 0 if the target has aot
yet arrived. With a series of W-decisions, however, a series of obser-
vations XXy oo has been made, and the posterior probability of the
target having arrived can be derived.

Specifically, let us consider the search to start with a

W-decizionat T =1, and that n successive observations of

X1Xpr o0y X are made. We shall also consider a completely general
arrival time distribution f(t), t=1,2,... (we define f(0) = 0) . Using
the statement of conditional probability, where x = (xl, Xos v oo xn) ,

" we define

P_ & prob, {t =n|x) = X2 fx |t=n} prob. {t=n}
n = prob. {x}
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The unconditional probability of recciving some vector x is

n n n
prob. {5} = £(1) igl P, (xi Y+ £(2) Py (xl) igZ Py (Xi) 4£(3) Py (xl) Py (xz) i53 P,

n-1
Jf(n)<n po(x)>pl(x )+zf(ﬂ n po(x)/

j=nt

n

n "j-1 n
=£(1) iEI Py (Xi) +>‘:f(j) <i1=11 Py (ﬂ)) k=; P1 fx,) +$‘f(J) (II P,

j=2 3-n+l

(4. 22)
Similarly, we may calculate

n N j-1 \/ n
prob. {x]t=n} . prob. {t=n} = £(l1) igl P, (xi)"‘zf(j) nl Py (x)\krl Py (x,
j=2
(4.23)

The condition for a D-decision, given that x lus been observed, is

that F’n 2 v . Using the above exprescions this condition becomes

n il n = n
£(1) 1, p, (x.) +2f h)( 1 Pp () (kgjp, (xk)> = 3-1,7 Zf (3 ( z, p, (xi)> .
j=2 j

j=ntl
n
Dividing by igl Py (x{) givos the condition

n n f (x) - ol
Em) I —"T Zm) a jL(xi)) = me (4. 24)
jal j=n¢l
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where L(xi) is the likelihood ratio for each observed X, .

We note now an interesting relation between this search and
the one developed in Chapter III, and described in section 3 4. J¥f we

assume that f(t) is such that

f(1) =P
£(j) =0 j< @
flo}=1 - P

(that is, the target either arrives at t=1 with probability P, or it

never arrives so that f{(®) = 1-P), then the condition (4.24) becomes
n v 1-
R Uk v -

which is precisely the condition needed in the sprt to reach a D1

decision. We see then that we have not only « sprt, but one with

no lower decision peoint, which implies that W, = (0 (see the proof

0
of theorern D and the definition of X'). We have shown then that a
certain class of the problems described by equation (3.2), namely

those for which W

0= 0 , are imbedded in the general solution uf

equation (4. 4}.

Returning to the problem at hand, in the general case
represented by equation (4, 24), we can no longer describe the test
that develops as a simple random-walk. In fact the equation repre-
sents a very complicated process. Not only ie the ilf_lij (xi) texrn
weighted by the £(j), this weighting is successively compared to

a term which gets smaller as n increases. Since the simple
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random -walk with constant abacrbing barriers has aot been fully solved

(sea Appendix A), there is no reason to believe that chis non-Markcvizn
{(bezause Pn is more than jusz 2 function of ZPn ”1) prcces: with non-
constant barrier would be any easier. Thus a strictly Wald-type approas:
depending as it does upon the statistics of such a process, would not sees

too profitable.

I we let f(t) =A(1 -A)t-l (t=1,2,...), however, an interestia.

result is shown. Equation (4. 24) becomes

S -1 g v s 1 n
(1-ayYT I = ot Y At SRS B
Zk(l M7 E L) 21 Zk(l x) o= {1-2)

j=1 j=nt+l

and by defining A(xi) = L(xi)/(l-l) we get

n
n

II X
Z =5 B0 =T
j=1

which has the advantage of being a test that compares a variable

n
n
z %) B At
jml

to a gonstant decision threshold.

In addition, the. sequance Zn describes a Markoy process in

only depends upon zn (as well as A(x , of course). 1o

that le n*l"

show this we note that

Zn+1 = znA‘xn-H) + A“xnﬂ)

which can be verified by direct substitution into the definition of Zn .
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The geometric distribuiion of arrival times thus imparts

a Markov character to the decision process. And indeed, it is just
this character that has allowed us to approach the problem from the
dynaimic programming point of view, By allowing the argument of V
to be P (and similarly the argument of C in Chapter III), we have
been assuming that P is completely descriptive of the searcher's
state of knowledge about the eystem, and that the history of events
that lead to P are unimportant. Conversely, since for the general
arrival time distribution it cannot be shown that equation (4. 24) re-
presents a Markov process, we cannot write a general equation
similar to equation (4.4) as P alone is not sufficient to represent

a "'state" of the process.

4.8 Fixed Threshold Sequential Search

As a prelude to the next sections, we shall consider here
the optimal search with the use of threshold onbservations defined in
section 3.6. Again we shall consider the comparison of x to some
fixed threshold x* which remains constant throughout the search.

Defining, as before

o0
f=f(x* = S‘po (x) dx

x

o
d= d(x*) = (‘pl (x) dx
o
2k
we may write an equztion similar to equation (4.4), with R(P) hexc
representing the minimum expected cost obtained by usiag the optimal
fixed threshold sequential strategy, and the observations consist of

y = 1 (x2x*) and y = 0 (x=<x¥) .
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(1-P}{F + R(1) )

R‘(P) = min \

PW + [Pa + (1-P){] R(P;:id‘:»(1(;1-,1)’:;t ) '
/

| P(l-d) + (1-P)(1-H)2A
+ [P(1-d) + (1-P)}1 'f)]R( Pa+ (1-P)(L-1)

(4. 25)
As in the previous sections we shall compute R(P) = #f:a R [§ 2]

using the equation

A_(P) A_(P) Pzy
R_(P) = min = (4. 26)
B_(P) B_{P) P=y
where
A (P =Q-PUF+R_ (1))
: Pd+ (1-P)fA
;n(r) =PW+ [Pd+ (1-P)f] R a ( Pd+ (1..P)f‘)
Pd+ (1-P)}(1-f) 2
‘ +[P(1-4) + (1-P)1-9)] Rn~1( Pd+ (1-P)(1-1) )
and

l.o(P)lO .

Again, we note that R(P) is a function of x* through d
and f, and so tiie final optimisation takes place for each P {(and, in
particular, for P = A ) such that

R_..(P) =min [R(P)]
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An example of such a calculation is shown in Figures 4.4, 4.5,

and 4.6 with values of W, F, A and p similar to those used in previous
examples for the no observation case, and for the continuous x case,
Figure 4.4 shows the convergence of Rn(P) to R(P) for a particular

x value. Figure 4.5 is a plot of R{A) as a function of x* (and thus

a function of d), and Figure 4.6 is a plot of Rmin (P) as a functionof P .

4.8.1 Numerical Example of Fixed Threshold Sequential Search

We return to the search for the trawler of the previous example,
and assume that the sonar device has a built-in threshold which must be
set permanently before the search starts. Given the same cost para-
meters as before, we see from Figure 4.5 that if the search starts with
P = A the threshold x* must be set to equal x% = .88 so that d = .55,
f=.19. Using this value of the threshold we see from Figure 4.6 that
v=.75 and V(A) =.67, whicl is a higher cost than the search with
observation of continuous x, but a lower cost than obtained in the non-
informative search. These othsr two costs are also illustrated by the

other lines in Figure 4.6.

The fixed threshold strategy that results is as follows. Suppose
that the search starts with P=A . Since A = .1<y=.75, an observa-
tion Y should be taken. The two possible output results, are Yy 0

(x =< x* and ¥, = 1 (x 2 x*) , which produce the a posteriori probabilities,

(1 -d) + (. 1)(.9)(1-£)

(DI-a+(on =13 yy =0
P =

(1)d+ (1)(.9)£ ) _

(1 a+ (91 =.32 y; =1t
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Since both' these values are less than 7 = .75, another measureme
should be taken. Now the a posteriori probability depends upon the
sequence y, , Yy and is

(. 15)(1-d) + {, 1}(.85}(1-1)

CIia + (85 - P (y :y,) = 10,05
(.15)d + (. 1)(.85)f _ .
(-15)d + (. 85)f = .40 (y;»yp) = (0,1
P
(.32)(1-d) + (- 1){.68}(1-f) _ _ ,
[T e 28 lypyk= (Lo,
!
(.32)d + (. 1){.68)f _ o
K(.32)d+(.68)f = 6l (v, ¥,) = (1, 3

which are all ¢till less than .75 . However, we se¢ that the observ.
with ¥, = 1 (i.e. {(0,1) and (1,1) ) have a higher P . We would e~
that in these cases a ¥q = 1 observation would result in P> .75,

in fact this is so. Thus the sequsntial strategy develops sequences «

observations which lead eventuaily to the decision to send the aircra

4.9 Analysis of Some Non-Seguential and Non-Optimal Decisio
RAules: Practical Considerations

Although the threshold search process of the previous sect
involves a simpler equation than the orie where continuous x is mea
the implementation still require - calculation of a weighted sum of lis
lihood ratios and comparison with a threshold, just as in the earlier
sections. For this reason, the required decision making demands a

sophisticated arithmetic capability, a condition often lacking in pract

situations.




A study of some non-sequential (and therefore non-optirnal)

decision ruies that have the adrantage of being simple to use are now
considered using the model of a randomly arriving target derived in
this chapter. In particular. we would like to evaluate some of the
“classical" rules under ths vondition that, although they were designed

for hypothesis testing, they ara applied to the randomly arriving target.

The non-sequeitial STSD rules of section (2. 4) are of particular
interest. Suppose that they are used in repeated situations, so that at
or D, is made, but that the prohabi-

1 0
lity P of "target present' is always the same at each situation. We

every time interval decision D

consider the search to continue until the correct decision {Dl [Sl}
is made, at which time it terminates. If we wish to consider this
within the structure of the randomly arriving target model, we see

that it is the equivalent of assuming the rule:
for any x if xin* : D

xin‘ : v

or, in words, take action on the first measurement that exceeds some

fixed threshold x* . Let us investigate how x* is obtained.

With STSD, C(P) , the cost per decision is minimized, to
get x*, where '

C(P) = (1-P)C, f + PCy, (1-d) (4.27)

(from equation (2. 4), with flp! ) dlpcl » Con =C 1 = 0).

00 1
The cost structure of the randomly arriving target, however,
requires a minimizaticn of the cost of the entire seaxch V(P) . The

cost of search, given that the target arrives at time. t and using the
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above strategy, consists of two terms. The first is the cost of false
decisions that occur until t, an average of { per unit time. The
second term is due to the expected time T needed to make the correct

N.decision after the target arrives, which is

[+ o]

- -1 -

7 =Zd(1-d)7r =-§- .
T=U0

The total cost V(t} given arrival time t is thus

V(t) =fFt + —g—- T

and the average total cost V is

o
V:ZV(t)p(t) =fFt + %‘ C T
t=0
where p(t) is the arrival time distribution. By saying that P is the

same for each observation we have assumed that p(t) = P(l-P)t , 80

that t =-1-%I—-> and
~ - 1-P .. W . .
V(P)=V= fF(-—--p )+ " _‘d. . (4. 28)

We have seen before that the operating point when the cost
is expressed by equation (4. 27) is defined by the point on the ROC

where

d(d) _1-P Clo
ai ~ P G,

By minimizing the cost assumed in equation (4.28). however,

we have for an operating point

dd)__:d& 1-P F

(
T B oW (4. 29)
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If we observe that F and W are the exact analogues of the costs C
and COI respectively (that is CIO =F = cost of {DISO} , and C

10
01=w=

cost of {wlsl} ) we see that the operating point expressed by equation
(4. 29) required a smaller value of d{d)/df on the ROC, and so operation

at 2 higher d and f. See, for example, Figure 2.2.

What is most interesting, however, is that for the randomly
arriving carget, the two variables of detection that enter into the cost
of sezxch are the probability per unit time (or "rate ") of making false
alarms and the expected time until detection after the target arrives.
For tke simple decision rule analysed above, the false alarm rate was
simply equal to the false indication probability i, since only one indi-
cation was required for a D-decision. Similarly, T, the average time
until detection after the target arrives is simply related to d since T,
the titne until detection after the target arrives is geometrically diotri-
buted with parameter d, and hence 7 = (‘-li- ). In general, dowevery .-,
we see that for the model of the randomly arriving target we can charac-
torise the search system (detection device plus a decision rule) by
means of a couple (¢.‘;) , where ¢ is now defined as the false alarm
rate. We recall that a falee alarm is the decision to dacide the target

has arrived when in fact it has not.

This characterisation of a system by (4, ;) will be shown to
be entirely analagous to the characterisation of a detection device by
tho (pf, P d’ couple defining the ROC, as in Chapter II.

4,10 The System Operating Characteristic ({80C)

Just as in ST8D the receiver operating characteristic (ROC)
was a useful concept in comparing and evaluating detection devices,

(see section 2. 3) a claim is now made for the use of 2 similar concept
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for the comparison and evaluation of certain search systems. By search

system we mean a detection device used in conjunction with a decision
rule. Although the ROC can be used to compare search systems, it can
do so only if they conform to the same set of decision rules, which in

turn lead to some equivalent Ps and Pyq

The System Operating Chara t vistic (SOC) that is proposed
here is simply a plot of T v.s. ¢ for any search system. By ¢ we
now mea. that fraction of time that the system produces the wrong
decision {D|SO} , and by T we mean simply the expected time to

reach the decision {DISI} after the arrival of the target. For the

randomly arriving target model the SOC may be used for both qualitative

and quantitative comparison of different systems, just as the ROC was

used to compare detection devices for the stationary target model.

For example of the qualitative aspects, let us consider two

systems S1 and S2 with operating points ('-r-1 ) ¢1) and (?2 s <PZ) .

If T < T and ¢1 < ¢Z , .then Sl 2

direction of preierence on the SOC is "down and to the left!. In order

is preferable to S, , and so the
to obtain a SOC it is of course necessary to give the decision rule as
well as the characteristics of the detection device. The SOC's in
Figure 4.7 are the equivalent of the ROC's given in Figure 2.2, i.e.
for the detection of a known signal in additive Gaussian noise, (with
p the signal to noise ratio), and the decision rule: if x = x%* : J.‘)1 )
if x =x*: DO at every observation. Note that an increase in p is

still a universal improvement.

Once the SCC is given, the optimal operating point for any
decision criteriorn (not only the "Bayes") may be obtained. As shown

in the previous section, the cost of search may be written in general as

V=¢Ft+Wr (4. 30)
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Figure 4.7 System Operati
and device illu:




racteristic (SOC) for STSD rule
in Figure 2.1




dr _FEt
dr .

with t the mean arrival time of the target.

If the Neyman-Pearson criterion is usel, some arbitrary
maximum allowable false alarm rate ¢ = ¢* is ixed, and the ..~
operating point determined by the SOC at the poi. t ¢ = ¢% , The
use of the SOC for this criterion is very well illi strated by the
following example. Suppose that the decision rule is to make decision
I} only when there are indications {(x = x*) at k successive times,

and the detection device is for the familiar known target in additive

Gaussian noise.

From standard recurrent event theory one can show that

k
) (_L Py P,
- k
l-pf
k
7o ta
- k
where again
o
P = S“’o (x) dx
x*
e
Py = [Py (x)
x*
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For any fixed k and x* there results a value of ¢ and T , and by
letting x* vary from minus infinitv to infinity we produce the SOC for
the k-in-a -row system. These SOC's are shown in Figure 4. 8 for
k=1 {the STSD case), k=2, k=3 with p=1. As can be seen,
the value of k to be used depends upon where in the T - ¢ piane

the operating point is located,

For the Neyman-Pearson criterion, it is often useful to
present ROC as a plot of Py.V.8 p for the given desired pg‘ .
Similarly we may draw the SOC for the above example, for a given
¢%, as aplotof v v.s. p, or , more convenient, as a plot of
1/T v.8. p. Figure 4.9 shows such a plot fcr 2 fixed ¢* = 1078,
(This value of critical false alarm rate seeme to be a popular one
for radar search systems.) We note that as p becomes large Tk
(which is reasonable since it still requires k measurements before

a D-decision can be made) and the k = 1 rule is best. However,

as p becomes small, it becomes advantageous to use the 2-in-a-row

rule, then the 3-in-a-row rule, and so on.

%
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CHAPTER V

CONCL USION

5.1 Summary of Results

The objective of this study has been to obtain a set of decision
rules for use in certain general search situations. These rules, called
optimal sequential search strategies, are "optimal'' in that their use
insures that the total cost of search is as small as posaible. They are
"sequential "in the sense that at any point in the search, the decision rules

are affected by what has been observed up to that point.

The principle technique employed has been the representation
of the search process in terms of a stochastic dynamic program. This
method not only provides the form of the optimal strategy. it also produces
as a natural consequence the minimum cost attained by using such a strategy.
This allows an immediate quantitative comparison of the results with any

non-optimal strategy for which the cost is available.

The models that were trzated involved the use of detection devices
that are imperfect, in the sense that a target that is present might go unde-
tected, or a 'detection' might occur when the target is in fact not present.
The latter error is referred to as 2 false alarm, and its consideration is
what distinguishes the present work from most of the published literature

in search theory.

5.1.1  Optimal Sequential Search for a Stationary Target

In this model, discussed in Chapter III, the target is considered
to be, for all time, present in the region of search with probability P ,

or not present with probability (1-P) . Knowing the value of P , at fixed
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intervals of time the searcher must either make a terminal decision or

make 2 measurement of & random variable. The distribution function of
this random variable depends upon whether or not the taxget is actually
present. The two terminal decisions involve taking action corresponding
to the conclusion that the target is present, or that the target is absent.
The search is then ended, and a cost is incurred if the conclusion reached
is wrong. If a measurement is taken, a cost (which depends upon whether
or not the target is present) is incurred. The measured random variable,
however, also depends upon whether or not the target is present, so

iaformation about the target's presence is gained from every measurement
g g y

Tte optimal strategy (which decisions to make on the basis of
a knowledge of P at the start, plus possible subsequent measurements)
and minimum cost were then obtained by the solution of a functional
equation. This functional equation may be solved numericaily by a
method of successive approximations whick is equivalent to treating
the equation as a dynamic program. The state variable of this program
is the probability that the target is present, which is adjusted by Bayes'

Rule after every observation.

Proof of the convergence of such a program, and the general
form of the strategy that arises werc developed and examples calculated
for interesting cases. In particular, it was shown that the optimal se-
quential strategy is similar ¢G the Wald sequential probability ratio test
(sprt). The sprt, however, involves the a and P errors of classical
statistics and may be only approximately derived, while the new result
offers the minimum cost directly, and provides a solution to any desired
degree of accuracy. In addition, if the search must be truncated (stopped

after some given length of time) the dynamic programming solution still
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offers, by definition, the minimum cost search, whereas sprt truncation
solutions often are quite arbitrary. The results were also compared
with the minimurm cost non-sequential decision rule that is a part of

the Statistical Theory of Signal Detection.

Th2 method of solution also facilitates the evaluation of certain
non-optimal decision rules. In particular, we have analysed the situation
where observation of a continuous random variable is restricted to noting
whether or not it exceeds a fixed threshold. The extra cost due to this

quantization of the observation was then obtained.

The method developed here for treating this problem is in fact
applicable to any hypothesis testing situation, where the cost of experi-
mentation depends upon the state of nature, and the a priori hypothesis

probability and the terminal decision error costs are known.

5.1.2 Optimal Sequential Search for a Target Arriving at a

Random Time ’

Chapter IV treated a search situation that is often referred
to as the "raid recbgnition" problem. At the start of the search, the
target is present in the region of interest with an a priori probability
P. :At successive constant time intervals thereafter, if the target is
not yet present, it has probability A of arriving. Once the target
arrives in the region, it remains for the rest of the search. At every
time interval, the searcher must either decide to take action commen-
surate with the conclusion that the target has arrived, or make an
observation of a random variable which has a distribution that depends
upon whether or nc the target has in fact arrived. If it is concluded

that the target has arrived, and it hasn't, the searcher is 5o informed
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and a false alarm cost is incurred. After the target has arrived, a cost

is incurred that is proprotional to the length of time it takes to conclude

that it has arrived.

The optimal sequential strategy and resulting minimum cost
were again obtained from the solution of a functional equation of the
dynamic programming type. The state variable of the program is the
probability that the target has already arrived. This is adjustad by
Bayes' Rule after every observation, or set to zero if a "tug.et has

arrived' conclusion is made and the target has in fact not yet arrived.

Comparison between _he optimal sequential strategy and some
non-optimal strategies was made, and the difference between them

discussed.

A side resuit of the snlution has been the development of what
is called a System Operating Characteristic. This is simply a plot of
time until detection (given the target has arrived) against false alarm
rate for any search system (search strategy plus detection device).

Its use is analogous in the nndonﬂy arriving target seazch to the use
of the Receiver Operating Characteristic in the hypothesis test search,
in that it allows both a quslitative and quantitive compariscn of various
detection devices and decision rules.

It has aleo been noted that the solution is valid for a larger
class of problems than simply those of search. For example, the
method developed here may be used to derive optimal checkiny stra-
tegies for machinery subject to random failure while some pertinent

output parameter & ramdom variable) is being monitored.
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5.1.3 Comments on the Solutions---Need for Furthes Analysis

The major results of this study have been the formulation.of the
scarch models in a way that takes into account their intrinsic sequential
qualities. Due to the dynamic program form of the resulting equations,
analytic solutions {except for the non-informative random target arrival
time search) are not attainable. An additional analytical difficulty has
been the existence of the (reasonable) assumption that the observed
random variables are normally distributed. Although the solutions
can be obtained numerically for any set of parameters, it would be
interesting to obtain at least approximate solutions for certain limiting
cases. There are two of these in particular that the author has

attempted, with (to date) little results.

The first concerns the limiting behavior of C(P) , the
minimum cost of sequential search for the stationary target. In
many practical cases, P is very close to zero, while the false
alarm cost is very much greater than the missed target cost
(Cyo>Cy,) -
does the strategy vary?

How does C(P) vary with p in this limit, and how

The second problem has to do with the very slow convergence
of the calculation of V(P), the minimum cost for the randomly arriving
target scarch, when A , the probability of arrival per unit time, Le-
comes small. If it were possible to start the iteiation at come reason-
able guess for V(P), the convergence would become that much quicker.
The problem of interest, then, is to obtain soine reasonable approximation
for V{(P) as a functionof u as A—0 . In particular, an approximation
for V(0) = V(A) would be useful.
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Ir general, any results that can produce an analytic expression

for V(P) and C(P), or the decision regions (v,6) and (0,7) defining

the strategies, for any (non-degenerate) limiting case, would be worthwhile.

5.2 Suggested Areas of Further Research

The subject of sequential estimation as an element of search was
quickly mentioned and dropped in Chapter II. This very difficult topic is
related to the problem of parameterization of Markov processes, one
that has been recentiy attacked by Kramer (28). Using his resuits, it
might be possible to analyse the following sort of problem. A stationary
target is being searched for as in Chapter III. The signal-to-noise ratio
i is uncertain, however, and is in fact a random variable with (say) a
known p.d.f. g(uw) . If a decision is made that the target is present,
then an estimate of p must accompany this decision. An appropriate
cost of wrong estimation is assumed. What is the best sequential strategy
including a rule for estimating p ? This problem cculd be set up ina
dynamic programmiing fashion if the posteriori p.d.f. on @, given an
observation x , has the same functional form as g(u) . However, this
rarely is the case, and approximate techniques {such as those developed
by Kramer) are needed. It is interesting to note that some approximate
sequential eatimation techniques, based upon fiducial probability arguments,
have bsen derived for this sort of problem (see Turner (44) ).

Although the Randomly Arriving Target model was created to
represent a more realistic type of search, it too has a basically weak
assumption---that after arriving the targ: »-emains in the region for

the rest of the search. In fact, in many realistic search situations the
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target 18 continuously appearing and dissapearing, often "at random"’.

Kimball (25) and others have formulated models reflecting this effect,
but there has been no analysis taking into consideration false alarms.
A related problem hat been studied by Drake (12), with the emphasis
on the information-theoretical aspects of the "noisy' observations of
such an appearing-disappearing model. A decision-theory approach

to this sort of 2ituation wculd prove fruitful in such fields as snbmarine

search, detection of epidemics, etc.

A final suggestion for further work concerns what is probably
the most well known of results in search theory, Koopman's (26)
solution for the distribution of search effort over a continuous field.
Here, the target location is represented by a p.d.f. (on a line, say),
and the searcher mustallocate.a fixed quantity of search effort along
the line such that the overall probability of detection of the tar~et ia
a maximum. The detection probability at any point x is assumed to
be an increasing function of the search effort placed between x and
x + dx . Suppose now that there is in addition a false alarm probability
at every x that i1s independent of the target behavior, but a function of
the search effort at x . With an appropriate cost structure, what
should the distribution of search effort be? The author has pointed
out in an earlier paper (37) that the no-false-alarm solution to the
discrete-cell search approaches Koopman's solution in the limit.
It would be interesting to see the relation between the results in the

present work and a solution to the problem above.
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APPENDICES

A. Random Walk With Absorbin& Barriers

We mention here some results concerning the one-dirmensional
random walk with absorbing barriers. In section 2.5 we noted the relation
.

between the sprt and this problem. Specifically, if we let z, be the

logarithm of the likelihood ratio L (xi) , and

then the test comparing Zk to the boundaries a anc b is such a random
walk, . . A solution to this problem should consist of (at least) the proba-
bility that ?he walk ends with absorption at each of the boundaries a and b,
and the expected length of time (number of samples) needed to do so, under

each state of nature SO and S1 .

Wald (47) has shown the following resuits that lead to a partial
solution. Let the z, all have the same p.d. f. 8, (z) under the state of
nature Sh(hzo, 1} . We define Eh (€) to be the expected value of random
variable § under Sh . Then if ¢h (t) = Eh tetz) is the moment-generating
function of gh(-) , and Eh (2) #0 and g, (z) >0 for some z >0 and some
2 <0, then there exists a t = th such that

¢h (th) =1 {A.1}

and the following fundamental identity may be proven

E, {e zn[cbh ]} =1 (A. 2)

n

where r. (3 random variable) is the length of time until absorption.

-120-



Now let us define
= ) =
I, (b,a) = prob {zn b}
- II = . = .
1 h(b, a) = prob {zn a} (A. 3)

where Zn is the value of Z at termination, and we have taken
advantage of the fact that the process terminates with probability

one.

We czn now use (A.1) and our knowledge of g, (z) to

calciulate t. . By letting t =t

h in (A.2) we also obtain

h

£, (e Zoy -y (A.4)

Now let us suppose that when the walk terminates, it does
8o at exactly Zn = a or Zn =b (i.e. we neglect any excess of Zn
over these bouudaries). Then we may write (A. 4) with the aid of
(£.3) as

bth ath
Hh bb,a)e T+ [1 - Hh(b,a)]e =1

or, solving for ILh(b, a)
(a-b)t -bt
€ h _ e
IIh(b,a) = PR (A.5)
e h -1

Using the same appruximation we may also write

Eh(Zn) = bﬂh(b,a) 4afl - Hh(b, a)]
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and we may easily show that

Eh (Zn)

-E-;-(-;;— (A. 6)

Eh {n) =
Identifying 110 (b,a) with l-pf and Hl (b,a) with l-pd leads
directly to equations (2.13).

The above formulae hold, unfortunately, only for the
restriction used above---that the walk ends only with a jump exactly
onto the boundary. When (a-b) is very large compared to the values
of Z; then we see that this assumption is reasonable. However
in the general case considered in Chapter III we cannot guarantee
this because we cannot tell beforehand the values that these boundaries

will assume.

Perhaps a more direct way of deriving the Hh(b, a) is to
use a Chapman-Kolmogorov squation to describe the walk in going

frum one step to the next. Thus

nh(b. a) = .Y:h(l) ds 4 S‘:h(s) nh(b-z. a-z)dz
-0 D
The solution for this equation is not, in general known. A most
exhaustive and interesting study of such problems has been recesntly
undertaken by J. H. B. Kemperman in The Passage Problem for a
Stationary Markov Chain, University of Chicago Press (1961).

B. Decision Regions Far C(P) When Wo or Wl Are Zero

Theorem D has been proven for the case where the experi-
mental costs Wo and Wl are non-zero. We demonstrate here the

proof for the condition Wo =0 or Wl =0,
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. Let us take W_ =0, W1>0. Then by step 2 of

0
theorem D we still have bn = A<1 .

® p, (x)P
. Gn(P) = Pwl + Sg(x) Cn-—l —g—(;T— dx =

-cooo P; (x)P
EPWI + Xg (x) Cn-l '—é-(;)*— dx
-

for any y > - ., v

. {2) above becomes a strict inequality if Sg (x)dx> 0.

Liet us assume this is so. -0

. Let y be the solution to

P, (y)P
Py (NP +py (yNI-F) ~ °a-1

so that y = y (P, 6n-1)

. Let 'yn=P in (2) above. By(4) and the fact that

an(P) = 'ynCOI , we get

@
‘YnCOI > A’Inwl + “"”n’cm gpo(*)“
Y(Ynlén_l)

. Since 611-1 = A by theorem D, (5) becomes

Q0

Cio ) Polx) dx

¥ > Yh’nyr A)
n 20

P
Cor - Wy #Cpp ) pylx)ax
y (¥, 4)
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7. We postulate that Ty >I''>20. Then

o =y(L'a)> (= 4)

and (6) becomes

@
Y(r ', A)
Yy~ P
Cgy =Wy *Cyp ) Pl &

y(X', A)
8. By letting the right-hand side of (7) be equal to I'', we
note that I'' =0 is a solution, and we have proved that

4 =
n-l-?coyn y>0.

If the assumption made in (3) does not hold then the proof is invalid,
and in fact vy =0 . A similar proof is followed for the condition

> =
Wo 0, Wl 0.

C. Flow Chart of Computer Program

We present in Figure C. 1 the flow chart of the computer
program that iteratively calculates C(P) by use of equation (3. 3).
The programs used to evaluate other quantities in this work are

similar in structure and so are not shown.

The x-axis (where x is the observed random variable)
extends from -4 to +12 and is represented by 161 points .1 apart.
The P-axis goes from 0 to 1 and is represented by 101 points .01

apart. It is assumed that fN(x; 0,1) =0 for x< -4 and x> 4.
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CO is the initial value for the iteration and is read in for each

calculation. To evaluate C(P) when (.0l)n <P < (.01)(n+l) , where

n=0,1,...,99, the linear approximation
C(P) = C[(.01)n] (n+1-100P) = C[(.01)(n+1)] (n-100 P)

is used, which is exact when C(P) = T (P} .

The integral
© p1 (x) P
~S’g(x) Coal Tm—
- 00
is approximated by the sum

12
‘”Z"C ﬁﬁf)
‘ 8P Pno1| T

X, =-4
i

which produces for

o0 (- -]
(o ax = () (x)ax
- 80 - Q0

the value .9994.
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Compute fo (x)

t

Read in data

“} wo) Wl'col’ Clo, CO, E

!

Compute fL(x} , n=1, P=0

T P=P+ .01

n = nt+l
P=0
Compute T(P), g(x)
y
Compute Gn (P), COIP . Clo(l-P)

E= mlgx [c:m(P)-c;n_1 (P)]

E<e€ No

n C,, (P}
— 10 - |
= - P) =
JCn(P) =G (P) Cn(P) Cm(l P) Cn( ) COIP
I ]
Print Cn(P) , V‘En VY,
Compute ]

Yes

S vm——

-———

FIGURE C.1

Flow Chart for Computation of C(P)
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