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ABSTRACT

The objective of this study has been to obtain and evaluate strategies
to be used in certain general search situatioiis. These strategies minimize
the expected cost of search and resulting decisions and are sequential in the
sense that a decision at any time is dependent upon what has been observed
up to that time.

The first situation studied leads to the formulation of a minimum
expected cost sequential hypothesis test. The target is either present in
the region of interest with a priori probability P , or not with probability
1 -P . Knowing the value of P , at fixed intervals of time the searcher
must either make a terminal decision (i. e. decide that the target is present,
or not present) or make a measurement of a random variable that has a
probability density function which depends upon whether or not the +arget is
present. A cost structure is given which assigns costs to wrong terminal
decisions, as well as a coat (which depends upon whether or not the target
is present) for the taking of a measu,.ement. The sequential strategy and
resultant minimum cost are derived by solving a functional equation of the
dynamic programming type. The relation beotweern this strategy and the
Wald sequential probability ratio test is discussed. The minimum cost of
the strategy is compared with the cost of an often used non-sequential strat-
egy as well as a class of sub-optimal sequential strategies that involve
threshold observations.

The second part of this study involves a situation in which it is
assumed that the target arrives at some random time (the "raid-recognition"
problem). A cost structure is given which assigns a cost to deciding the
target has arrived when in fact it hasn't, and also assigns a cost proportional
to the Lime between arrival of the target and the decision that it has arrived,
Again observations of a random variable related to the presence of the target
are available as an alternative to making such a decision. The sequential
strategy and resulting minimum cost are again obtained by means of a functional
equation. An additional result is the formulation of a Syitem Operating Charac-
teristic that is used for this randomly arriving target model in a way similar
to the use of the Receiver Operating Characteristic for the hypothesis test
model.

Thesis Supervisor: Ronald A. Howard
Title: Associate Professor of Electrical Engineering and

Associate Professor of Industrial Management
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CHAPTER I

INTRODUCTION

Much wo i has been done in the past 20 years on analytical

approaches tn problems dealing with search and detection. The purpose

of the present work is to extend some of thetie problems and to treat

them from the point of view of Statistical Decision Theory.

In particular, the often separately stated problems in "search"

and "detection" will be considered as part of an overall operation, which

must consequently be optimized as a whole.

Most people have found themselves in the pcsition of having

to look for something. The process of looking for and (possibly) finding

the object is, in the sense of what will be treated in this paper, that

person's solution to a search and detection problem. Whether that

solution is a "good" one or not depends upon the criterion of goodness

that the person has decided upon. Hopefully, if the person has a degree

of consistency which we would like to require of deuision makers, he

could describe his scheme of operation to a confeder.te, and be confi--

dent that the subsequent results would be the sarne as if he himself

carried out the process. In this age of automated deck lion making,

the confederate is very often a computer, and the descr4 ption of the

scheme the appropriate program.

One object of this paper is to cons:der a clasoi of decision

problems that might be called "sequential sealch and detection" problems,

and using a particular utility structure associated with these problems

arrive at a description of the "optimal" way of making these iecisions:
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optimal in the sense of minimizing the overall cost of the search process.

In addition we are interested in examin.ing some non-optimal decision

schemes, some existing and some proposed, that do not minimize cost,

but which are perhaps easily implemented, or have intuitive appeal, 'or

both.

Before proceeding further, it is convenient to define the terms

"search" and "detection". As nouns (and adjectives) they have uften

appeared in the literature as synonyms, but for the purposes of this paper

there will be a clear distinction made between them.

Detection involves the gathering of informnation pertaining to

the object being sought (the target), the oifting out what is useful informa-

tion and the relaying of this in some efficient form to a decision maker.

Search describes the decisions made on the basis of the

detection information receiver;. In particular, a "search strategy"' will

be that set of rules that associates decisions with every conceivable

result of the detection process.

When a collar button f&lsx to the floor, the detection device

of the eyo pkek up fte ioWrmntion that there is a strong glint of light

under the bq&e#aa &W a la*e Wtrong one under the bed. The search phase

is the decision to beod dow" and reach under the bureau, and if unsuc-

cessful, to then reach under thO bed. To continue the homely example, the

search als included the decision to bend down in the first place, rather

than shrugging the shouLders and taking a new button.

-2-
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The problems of search are decision problems. Where should

one look, for how long, with what equipment? The answers to these

questions involve decisions, and in that any old answer is not acceptable

we recognize the fact that there are costs involved in doing the wrong

things: making the wrong decisions. In addition we often must use detec-

tion devices that give information imperfectly, perhaps describable

statistically. Thus statistical decision theory is the most likely can-

didate to be the tool with which to attack search and detection problems.

1.1 Some definitions

The definitions offered below are solely for use in the

context of this work, and the author makes no claims for their universal

appeal or application.

Target

The target is an object that is of primary interest to the

decision maker (sometimes called the "searcher"). At the starting

point of the search process, the location of the target is uncertain.

The general object of the search process is to increase the searcher's

knowledge of tho- location of the target. In general, the target may

or may not change its location during the search. It will be assumed,

for the purposes of this work, that only one target is involved at any

time. This assumption, although often unrealistic, helps to point to

good procedures even in the cases where it does not hold.

Field (F)

The field is the area within which the entire search process

takes place: the region of interest of the search.

-3-



Cell (A.)

•n mast searches, the field is broken down into many smaller
non-overlapping areas, A, , called cells. In general a cell is, in size1

and shape, the resolution element of the sensing device being used---
the smallest space that could contain two targets without allowing the
detection device to determine whether or not there are one or more
targets present. In the discussion that follows, i=l, 2, ... , M , where

M is the number of cells in the field. The cell A0 represents the
location "nowhere in the field".

State of Nature (S.)

The state of nature is a description of the actual location
of the target. The abbreviation S. stands for the state of nature:1

{the target is present in cell A.). The abbreviation S stands for
the state of nature: {the target is not present anywhere in F).

A Priori Target Location Probability Vector (P)

This vector sumznarizes the degree of uncertainty concerning
the target location at the start of the search, where P. is the a priori1

probability that S. is the state of nature. The author does not wish to
embroil himself in argjuents concerning the existence of this P vectox
To the unconvinced reader two suggestions are offered: he can consider

the placement of the target to be determined by some appropriate randor
experinwrt (e. I. dice throwing), the outcomes of which can be associat"
with the P l. I ; or he can replace the word "probability" by "plausabilit
throughout the remainder of this work, with the assurance (for example
see Jeffreys (23)) that the mathematical development will be identical).

-4-
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Detection Process

The detection process is that process by which information

(concerning the presence or abserce of the target in one, some or

all of the cells) is obtained by means of observation or measurements

of various physical phenomena related to these cells; such as reflected

energy, radiated energy, etc. The apparatus used for these measurements

is called the detection device ", or the "receiver".

Noise

Noise is the collection of those factors (random or other-

wise) that make the detection device produce target-like signals when

the target is in fact absent.

Decision (D. or W)

A decision (D.) is a commitment by the searcher to take

action associated with the belief that the target is in cell A. . Or
1

it may be the commitment to wait (W) for more information from
the detection device. The decisions D. are called "terminal decisions .

1

Search Strategy

A search strategy is a. set of rules which assigns decisions

to all podsible outcomes of the detection process.

Right Decision

A right decision occurs when D. is made and S. is thea a
state of nature, written {DIs,)J

Wrong Decision

A wrong decision occurs when D, is made anu S. (i~j) isa i
the state of nature, written {D, I Si, (i~j)



Detection

A detection is one of the right decisions {DjlS ) with j00.

False Alarm

A false alarm is one of the wrong decisions {D.j I S) with

i=O .

The Symbol ":"

Throughout this study a colon ":'Y in a mathematical express'

represents the phrase "make decision". Thus the statement

"if x>x* : D

is read

"if x is greater than x* , make decision D.

Events of Probability Zero

When dealing with a continuous random variable x with pro j

bility density function (abbreviated p. d, f. ) f (x) , it shall be assuaned fo

simplicity of notation that the p. d. f. is such that for any x*

prob. (xSc*) = prob. (x 4 x*) = 1 - prob. {xex*)

i.e. prob.{x x*) .0 for all x*.
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CHAPTER II

BACKGROUND

2. 1 General

Published work on the subject of search and detection seems

to fall into three separate groups, with, as a rule, little or no discussion

of the relation among them. Koopman (26) has categorized these groups

as dealing with 1) Kinematics, 2) Distribution of Search Effort, 3) Target

Detection.

Problems concerning '!kinematics " have to do primarily with

the relative motions between searcher and target. Detection is assumed

perfect, once an interception occurs, and the problems are directed

towards establishing optimal pursuit and evasion strategies, prediction

of target course, etc. The results, which are rather complete and

cover a wide range of models, are to be found primarily in Koopman

(26, 27), as well as Gluss (14, 15), Danskin (11), Isbell (22), Banta (1)

and others. These kinematic considerations are outside the scope of

the present work, inasmuch as the problems of imperfect detection and

possible false alarms and decisions are not involved.

The results of previous work in both Distribution of Search

Effort and Target Detection set the groundwork for the present paper,

and the following two sections develop what has been done in these

areas.
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2. 2 Distribution of Search Effort

Most of the work published under the general topic of "seaz

theory" has beeri involved with Koopmans' second category: distribut

of search effort. These problems in general assume that the availabi

detection devices are ones that will not yield target-like information

the target is not present and will detect only some fraction of the tin,

the target is present. This fraction is called the detection probabilit

Thus the search strategy becomes straightforward. Whe

target-like information is received from A. , the target must be the..

so decide D.
1

The problem thus becomes not what to do when target-likse

information is received, but what to do until it is received.

The solutions are in the form of search strategies, involY .,

the distribution of the available "magnitude" of search effort that sY-.

be placed upon the cells. It is assumed that relations between the

amount of sesrch effort used in observing a cell, and quality" of detec

tion in that cell (as reflected in detection probability) are known quant

tively. The distribution of effort is selected to optimize some entire

measure of the search, such as maximizing the probability of

detecting the target for a given search effort. Another criterion (whit

proves to yield identical strategies for rmost models) would be to mini

the average search effort needed to eventually detect the target.

The most general solutions to this problem have been obtaiA

when the field represents a continuum (the cells becoming differential

areas), by Koopnan (32, 33) and de Geunin (22). Other cases, involv

-8-.



so called 'discrete" or finite sized cell cases, have been treated by others

S(5, 6, 10, 13, 30, 35, 36, 37) with solutions all approaching Koopman's in

the limit as cell sizes decrease. However, all these approaches, as pointed

out above, neglect the possibility of, and hence the cost of false alarms due

to noise.

2.3 Target Detection - STSD and Hypothesis Testing

What is known as the Statistical Theory of Signal Detection (STSD)

has been developed in the past decad2, primarily by Middleton (33, 34).

Helstrom (19) and oLhers have extended this theory.

Hypothesis testing is used as a framework upon which to develop

receive.s that take into consideration the presence of noise in each cell.

The theory is quite elegant, and much of it ib concerned with problems

of devising measures (or statistics) of received waveforms, allowing for

the possibility of noise and target signals of all statistical varieties.

However, the theory tends to not differentiate between search and detec-

tion. It also has tended to ignore the potential of the use of sequential

rules involving costs of wrong decisions. In order to make some of these

points clear, as well as to lay the ground for a more general extension

of the theory, let us consider the basic ideas involved in the STSD.

Consider the field to consist of only one cell, A1 . Thus,

there are two possible states of nature:

S0 = target is not present.

SI = target is present.

It is assumed that the target is stationary. That is, only one of these

states describes the target position for the entire duration of the search.

The target cannot move, or evade the searcher. (This, of course, limits

the generality of the model, and the eventual lifting of this condition is

one of the aims of this study.)
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Now, upon observing the cell with the detection device, the

searcher can make one of two deiisiona , which by the assumptions

of STSD are equivalent to taking one of two actions:

D - take action appropriate to target being absent.
0

D - take action appropriate to target being present.

Let uo represent the observation by x (possibly a vector).

If the observer knows from experience that the sensing

device operates in such a way that if a target is present (SI) the

reading would be x, but if the target is riot present (S0 ) , the

reading would be x. , then the decision is sraight forward:

when x =x 0 : D0

X =1 X D1•

(Note that a reading of x * x0 or x is impossible.)

A more realistic measurement, however, is subject to

random fluctuations due to many incomprehensible or unpredictabl!

effectsincluding those in the processing equipment, as well as target

characteristics, errors of observation, etc. The outcome of the

observation, x, under the two possible hypotheses, is thus a random

variable, and is at best describable by known probability density

functions. If these probability density functions are completely

described and involve no unknown parameters then the hypotheses

are called "simple ". This more realistic example, then, is the

testing of two simple hypotheses, where the outcome x will have

a known probability density functi-n p0 (x) under hypothesis S,

and p1 (x) under hypothesis S .

10-
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forThe observer must be able to decide upon either D or D1

for i.y possible observed value of x . The resulting decision rule

divides the range of x into two exhaustive regions X0 and X, With

the result:

if x EX0 : D 
(

if x eX1 : D

Because of the probabilistic nature of the observation, it

is now possible for the observer to make a mistake: to say one

hypothesis is correct w'an in fact the other is actually true. A

way to describe the possibility of a wrong decision is to associate

with any decision rule such as (2, 1) above two error probabilities.

These are defined as follows:

If the true state of nature is described by So , then the

Frobability of making decision D La mistake) is defined as ai

or "error of the first kind". Written in the usual probabilistic

notation, a = prob. { D1 IS 0 } . Correspondingly, the probability

of making D0 when the true state of nature is in fact described

by SI is defined by 1 or Ierror of the second kind". Thzt is,

A= prob. {D 0 IS, ) . In the usual statistical sense, S is said

to be the "null hypothesis ", Our choice, in this detection model,

of S8 being "target absent 1 is completely a matter of convenience.

In the detectiona model that we are describing, it is now

a conceptual advantage to speak of a detection probability Pd and

a false alarm probability P,, These are a matter oi definition,

and it is convenient here to velato them to a and j , Thus,

Pd Ppob, .D 1 I s I - prob, {D 0 I 1 -

p prob, {1D, IS ) =

-11-



(note that these probabilities are strictly conditional upon the state

of nature, and that conclusio-ns reached by consideration of these

num.bers alone must in themselves be conditional. This will be

discussed in the next section.)

In terms of the known p. d. fs p0 (x) and p1 (x) we see

that a and 3 are given by

a 5f *: o (x dxld
X 1

= Pd = Y P, (x) dx.

Xo

As an example, let us imagine that in the cell of interest,

PO (x) = N (x; 0, ()
Pi (X) = fSN (x; p, •

where

Zz

then a possible decision rule would be to select a constaut x* such

that (see Figure 2, 1)

for x.Sx* : D

x > x : D1.'

Here -X , x*] and X [ x*, 0 0 * The error probabilities

would be then given by

-12-



Figure L.1 Exampic



x* x

I•, p (x) and threshold setting x*



a 1 - er

= er % )

For constant ip and T , a and 3 are related to the parameter x*

so that as x* incre-maes, a decreases and P increases. This is

shown in the curves in Figure 2. 2, which are for a = 1 . Curves such

as these, that relate a to P (or pd to Pf) for a particular device

are called ROC or Receiver Operating Characteristic curves. Figur:z

2.Z shows the ROC of pe. v.a. pf with 1L as a parameter. It is

sometimes convenient to draw the ROC as a plot of pd v. s. I& , with

pf as a parameter, where IL is in general some ,measure of the differ-

between the p. d. f. s p0 (x) and p, (x).

At this point we have not yet deterrvined what the observer

is actually trying to do. He might have some vague ideas about achierv'

a "reasonable" detection probability while keeping the false alarm prob.

bility 'low". A quantification of this concept is tha subject matter of

the nevt section. However, at this point, we. can -gree upon some as-

pect of sood0s$, so that we can immediately compare certain sensing

devices.

Bmappose two devices are available to use m searching a cell.

Device A has P 4  I - a . 8 , pf = a = . 01 , while device B has

Pd a 1-- - . 8 , pi a -- .OZ . Clearly, device A is beter than device

B by whatever reasonable criterion is used. This concept is formalize(

in the following way.

Let us consider two search devices d1 , d2 with error

probabilities (a , and (a 2 , 2 ) respectively. Then dl is

-14-
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said to be preferable to, or better than, d2 if al a and P, -5 "

Thus, if all possible devices are represented on a Pd v. s. pf ROC

curve, any given device is better than those that are Ibelow and to

the right", while it is worse than those that are "above and to the

left". However, if a1 S---. and P 1 2 then dI and d2 are

said to be non-comparable, and more must be known before a

comparison may be made between the two.

Looking at the ROC in Figure Z. 2, we see that for a given

value of ip, as x* is varied from minus infinity to infinity, a whble

continuum of possible devices is described, all of these devices being

non-comparable in the sense given above. For a given p we cannot

yet decide which among them is best. However, if we compare the

curves for p, and 1A. (IL2 > I.1) we see that for any point (representing

a device) on the IL1 curve, we can find "above and to the left" of it

some point on the I& curve. Thus, an increase in I is always

desirable in the system as illustrated in Figure Z. 2, as long as x*

is free to be set.

In the statistical literature, a is called the "size" of a

particular test or experiment, and for a given value of a the largest

attainable value of I-p - Pd is called the "power ".

3.4 Decision Criteria

In the last section, we have seen that a detection device

combined with a decision rule may be operationally described by

the associated error probabilities a and A . Let us call a combination

of a detection device and a decision rule a "system".

-16-



In order to evaluate a system, or equivalently, to be able

to compare two or more systems, there must exist some measure

of the effectiveness of the entire system (including the specific decision

rule used). The observer must be searching for the target with some

idea as to not only what actions will be taken, but the costs associated

with them, if he detects (or thinks he detects), or does not detect the

target.

The object is now to determine which decision rule is "best"

in some way. For example, in the system illustrated in Figure 2. 1

what value of threshold x* should be used?

Since it is reasonable to assume that the search system

will be used over and over again for some length of time, systems

may be compared in terms of their overall, long-term average

performance.

For each state of nature, the cost of making decision D0

or DI will be different. In general, it is possible to list the costs

of all possible state--- decision situations in a matrix C:

= CO00 CO01

C 10I CI11

where Cij is the cost of making decision Di when in fact S. is

true. (For this to be a reasonable matrix C0 0 < C0 1 ; C1 1 < C 1 0

the cost of making a correct decision is smaller than the cost of

making a wrong decision.)

-17-



One more important concept must now be introduced before

we can discuss optimization of decision rules. We have noted that

the error prooabilities a and P are conditional upon either the

state of nature S or S being true. In order to obtain an over-

all probability of making an error, and more important, to obtain

the average cost of a particular decision rule, it is necessary to

state the a priori probabilities of S and SI being true. In parti-

cular let P = prob. (SI) , I-P = prob. (SO) be the a priori probabiliti.

P then is the (perhaps subjective) probability that the target is in the

cell.

In the discussion that follows we shall consider, as in the

example in the previous section, the result of the search in a cell

to be some observable x . The decision rule then consists of des-

cribing two exhaustive and mutually exclusive regions of the x-space

X0 and X , such that, as before

if x CX0 : DO

x X1 ': D.

Again, p.d.f. a of x under the hypothesis S and S1 are

assumed to be known, and are given as p0 (x) and p1 (x) respectively

2.4. 1 Bayes Criterion

A rule that selects a strategy so that the expected cost per

decision using that strategy is a minimmn, compared to any other

rule, is called a "Bayes" decision rule*. For a particular decision

*The naming of this criterion for the Reverend Bayes is somewhat
puzzling, but the term is too familiar in the literature to change it
here.
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rule represented by regions X0 and X1, the expected cost per decision

cost is seen to be given by

c= {S0 )[C 0 0 {D 0 IS0} 4 C10 {D1 S0 }] + {S)}[CII{DI SI) + G0 1 {D 0oSIJ

(2.3)

where for convenience we let {E} a prob. {fE , (E is any event).

Using expressions from equation (2. 2) we have

C=(1-P) {Coo SP0(x) dx+ C 10 YPo(x) dx) + P{CII ýPi (x) dx+

X0 X1 X1

+ C0 1 SPI (x) dx} (P, 4)

x0

This expression is indeed the expected cost. In the first

bracket in equation (Z. 4) the first term represents the cost of making

the right decision, times the probability that this decision will be made,

both conditioned on S being the state of nature. To this is added the

cost of making the wrong decision times the probability of making it,

again conditioned upon S . This sum is then multiplied by the proba-

bility that S will be the state of nature. The second tern, is a

similar expectation given SI is true, times the probability that S1

will be true.

The optimum Bayes decision rule is one that selects regions

X0 and X such that the expression C in equation (Z. 4) is a minimum.

It can be shown (see, for example reference (19) ) that the optimum

Bayes decision rule is the one that assigns X0 and XI such that
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1iW I-P C10- 00
if ýP- C 0 1x- C1 1  th n xe I 1

(2.5)

if W I-- 0-C0 then x CX :D

p0ýO(x) P COI-l10 0

The quantity L (x) = 1 is known as the likelihood ratio.

In most cases of interest L (x) will be m-onotonic in x , so

that the decisioa rule (2. 5) may be re -written

if x 21-x* D1

x :,.. x * D

where x* -*a called the "~threshold", or "4bias"1, and is the solution tc

the equation

p C01 _C11

Note that since

p d= fP,(x) dx

(2.7)

dp) f =C- -C0 0((2.8)

x=x*
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Using equation (2. 8) and Lhe ROC it is quite easy to obtain the

threshold, and opeA.'ating point (equation 2. 7) for any given device. Since

the ROC is just a plot of pd v. s. pf, simply find the point at which th.e

slope is equal to

1-P G10-C 00
P ( C01- C 11

This is illustrated in Figure 2. 3.

The average minimum cost, using the Bayes solution then

becomes

C mi. = (l-P){ C0 0 + pf(C1 0 -Co0 )} + P{GC01 + pd(C 1-C01)) (2. 9)

Z. 4.2 Numerical Example - The Shepherd and the Wolf

To illustrate the above development, and to provide an example

for comparison of STSD with what is to follow, we shall now discuss a

hypothetical search situation. An intentional attempt has been made to

avoid a military example, but the reader may car. *o interpret the

target, detection device and searcher in the exam:, , in whatever w.y

he wishes.

The ,iroverbial Boy who Cried Wolf comes ruishing to a shepherd

with the news that there is a wolf hiding near the pasture, waiLing fur
4

the shephsrd to go to town, The shepherd knows from past experience

that the boy has probability P of telling che P-ath,

In order to avoid the long walk to the pasture, the uhepherd

has installed a microphone there, which records the pasture nolmes

41.
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(integrated over ten minutes) and registers the intensity on a patented

"• "Baa-meter". It is known that if a vwolf is present in the pasture, the

measurement x of the meter will have the p. d. f.

P (x) = N (x; 1, 1)

while if there is no wolf present, the measurement x will have the
p.d~f.

Po(X) =fN(x; 0,1)

Once the shepherd observes a measurement, he must decide

whether to go out to the pasture and hunt the wolf, or go to town as

planned. The costs of making the wrong decision are as iollows:

If the shepherd goes to town he makes a $ 50 sale. However,

if the wolf is indeed p aseat, a sheep worth $ 100 is eaten, making a

net cost of !$ 50.

If the shepherd goes to the pasture and the wolf is present,

he kills it and collect a $ 100 hDunty. But whether or not the wolf is

there he loses the chance to r,-k,! the $ 50 sale ih town. Thus the

cost matrix is

[50 so]

cc1 Lj I s -50J

Since this cost matrix may be additively normalized, we could also

write the equivalent matrix (in units of $ 100):

where the matrix term is the loss due explicitly to decision errors.
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By utilizing this information and substituting into equation

(Z. 6) the shepherd finds that his optimil threshold is the solution to

1 1-PL (x,) =exp (x,-)-

x= + In -!!i

S1
If the boy has a P=- of being right, then if the Baa-meter reads

12
xi> , the shepherd goes to the pasture, and he goes to town if

1
x < i The resulting detection and false-Alarm probabilities are

Pd = I erf(1 = 69d

i
Pf = 1 - er () = .31

and the average cost to the shepherd is - $ 19 (a profit of $ 19).

2.4.3 Other Criteria: Minimax and Neyman-Pearson

It sometimes happens that the decision maker thinks he

cannot estimate the prior probabilities 1-P and P of the two

states of nature 0 and S1 , or that he cannot supply a cost

matrix (Cij) ., or both. We shall quickly mention here methods

that have been used to overcome these difficulties. However, it is

to be kept in mind that all of these methods lead to accepting some

operating point for the system, and from the discussion in the previous

section we see that thi3 point, corresponding to a Bayes solution,

implies some specific relations about costs and prior probabilities.

When the prior probability P is assumed to be unknown

the 'Iminimax" criterion k lls for operating such that no matter what

P is, the maximum possible loss is minimized. This argument is
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I
usually justified by considering "nature", or the target, to Lse in a two-

zero-suimgame against the searcher, so that it tries to pick the worst

possible P . A very good treatment of teis approach is presented in

Blackwell and Girschick (7). Because of the game characteristics, the

solution may be found by finding the maximum of the minimum cost to

the searcher obtained by using a Bayes' Rule as if the P was known,

and then operating as if the P producing this maximum cost was in

fact the real prior probability. The proper operating point may be

obtained by noting that maximizing equation (2. 9) with respect to P

yields the expression

C00 (1Gp ) + C 1 0 Pf= ̀Co (G-Pd) + Cll Pd

which is a straight line in the pd-pf plane. The intersection of this

line with the ROC gives the minimax operating point (see Figure 2. 3).

When the searcher is unwilling to supply both the prior

prbbabilities and a cost matrix, then the Neyman-Pearson criterion

is often used. The searcher selects t~ome arbitrary value of false

alarm probability, pf*, which must never be exceeded, The solution

is to maximize Pd such that p1 < pf* . Fir most simple cases, when

the ROC is monotonic as in Figure 2. 1, this is achieved by operating

such that pf = p *, and the threshold x* the solution to
Go

YPo (x)d = pf*

Other criteria are mentioned in the literature and include

minimizing pf for a fixed pd (a sort of inverse Neyman-Pearson
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procedure); assuming that C.0 =C 1 C0 0 =C 1 1 , and P- 2 (the

AIdeal Observer'), and so on.

In most of the work of this paper it shall be assumed that

prior probabilities are available, and that specific cost models are

applic4ble, so that the criteria mentioned above will not be useful

except for possible comparative purposes It is important to note,

however, that it can be shown that all of the above criteria produce

a threshold decision rule. That is, the rules all require the calcu-

lation of a likelihood ratio, and comparison of it to some fixed

value.

Z. 5 Sequential Hypothesis Testing - The sprt

The decision structures in the previous sections were

all derived on the basis that the observable could be a vector

1= (xl~x,#...j,x ) , so that the threshold x* could be a n-I

dimensional figure in n-space represented by the solution to

P( Pl(xrx!D...,X*)

P( P0 (xrx ." x*)

where A is some fixed value such as L-/ (I C 10-C 0 as in

section (2.4). The components of x may be n values of some

measurement taken at successive times. The analysis in the

previous sections holds providing that n is fixed in advance.

When the cost of taking each measurement is considered

however, it may be desirable not to fix in advance the number of

measurements to be taken, but to allow for the number to be determined
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on the basis of what has been observed up to that time. This is called

a: sequential test, and the related theory has been developed primarily

by Wald (47, 48). In the consideration of search problems, the theory

has been specifically applied to the sequential testing of hypothesis,

these usually being the two aleternatives S and S1 . Again it is

assumed that the target is stationary throughout the search.

The Wald sequential probability ratio test (sprt) involves

not only the two possible decisions (D and DI) considered before,

but also includes a third possible decision W : wait for at least one

more observation.

On the basis of observing x 1 for the first measuremeut,

the likelihood LI (x 1 ) = p1 (xI)/p 0 (xl) is computed and compared to

two quantities A and B (A > B) . The decision rule is

if L 1 (x 1) >A: D 1

L 1 (xl) < B :: (Z. 10)

B -SLl(x 1) -- A : W•

The D0 and D decisions are the terminal decisions, and they

stop the process with a definite commitment of some sort of action.

If the W decision is made, then a new measurement is taken, and

a new likelihood ratio is computed. If the process has gone on for

k observations, then the likelihood to be used in the next comparison

is

Pl (X'x x " P"x k)

Lk(1'" xk) =P0 (xI Ix 2 .'' Xk)
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with the decision rule the same as in (2. in), but with L 1 replaced

by Lk.

The crux of the probrsm is calculating the values of A

and B so that a given criteriov is sal•isfied.

With the exception of Blackwell and Girshick (7), the

accepted procedure has been to use a criterion based upon conditional

error probabilities (a and P) only. That is, A and B are selected

so that when S is the state of nature the probability of reaching

terminal decision D1 *s pf , while if S, the probability of ter-

a.xinating with decisica D0 is 1 -pd * Obtaining these required values

of prob. {DlS 0 J , and prob. {D 0 Is,) under the sprt is in general

a very difficult problem. Wald has shown, however, that the relatione

between A and B and pd and pf are governed by the inequalities

A Pd

Pf (2.1.

In order to understand the test better, let us examine the

case vhero the observations are independent. Then we can write

k
Pi x*1 ,xZ" Xk) 1 pt (xJ), i = 0,1

jul

If we take logrithms of the likelihood function as well as tT2•e boundariof

k

zk in Lk (xl3, 3 . *...' xk = = z .

j=l
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a =An A

b =In B

where

z.j = In [P1 (xj)/PO (x.)] (2.12)

Then the decision rule (2. 10) becomes

if Zk >a : D1

Z k<b : D0

b-5Z k---a : W

where Zk is the sum of k identically distributed random variables

z. . The density function of z. is go(.) or g, (') as the state of

nature is S0 or S1 , -where gi (z) dz = pi (x) dx and x and z are

related as in (2. 12).

Thus we can view the process as a random walk of a gi (") H

distributed random variable, with absorbing barriers at a and b . A

further discossion of this problem is taken up in appendix A .

It can be shown that for a large class of p. d. f. s. on z the

process will eventually terminate, That is

prob.{b< Z k<a ; for all k:5n)-O as n--co

The advantages of using the sprt is in the proven result

(see references (47, 48) ) that the average sample number (ASN)

needed to obtain a g 4ven set of a and P error probabilities (i.e.

a given Pd and pf) is always less than the fixed sample length (say N)

-29-
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required to achieve t.he same error probabilities, no matter what the

state of nature. (Since the number of samples in the sprt is a random

variable, however, it is to be noted that it will occasionally be greater

than N.)

It can be shown that if the z. are in some sense small in

comparison with the distance (a-b) , the inequality signs in (2. 11)

may be replaced by equalities. With this approximation it is also

possible to derive expressions for the ASN under both states of

nature (see Wald (47) for the derivation) :

ASN 0 = (a - (1 -p,) (a-b)] /EO (z)

(A. A~

ASN 1 = [a - (l-pd)(a-b)] /E (a)

where
Go

Ek(s) = Sn[dpl(x)/po(x)]pk(x)dx; k=O,l (2. i-'

-00

is the #xpected value of the random variable z under Sk. When

(C 0s) or E (s) are sero, these equations may be replaced by ones

involving the variances.

3.5. 1 Nusmerical Ezample

We retuwn to the shepherd of section 2.4. 2, who has now

decided to apply the sprt, and has arbitrarily declared that the test

must have pd L.69 and p-A .31 . The random variable z of

equation (2. 12) becomes
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1

z=ln[L(x)] x-~

so that

1
g0(Z) =N N(Z; -,I

.3I aditon th assuptio i-, maetateieuaiiso

equation (2. 11) are equalities, so that A =.--9 , B =-' and thus
.31.9

a =.8, b = -. 8.
1

The resulting test is to compare z = x - with a and
b , so that

if -. 3 < x < 1. 3 : take another measurement

x> 1.3 : go to the pasture

x< -. 3 : go to town .
1

If another measurement is taken, then z +z =x +

is compared tc .8 and -. 8 , and so on.

1 1
Since E0 (z) - and E1 (z) = the approximate formulae

(2.13) give

ASN0  -(.8 - .69(1.6)] 2 = .6

ASN = [.8 - .31(1.6)] 2 = .6

These results are puzzlirg to the shepherd, as he sees that

the average number of times he will have to take measurements is less

than one I However he notices that the standard deviation of the random

variable y is 1 and since (a-b) = 1. 6 , the requirement that z be

-31 -
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small comlmred to (a-b) is not fulfilled, eo he does not expect equatioy

(Z. 13) to hold. The exact solution, as shown in Appendix A, is unavaili

What should he do now? In fact, the choice of arbitrary pd

p was really forced upon the shepherd by the constrairits of the spirt.

Being a practical person, he still really desires to minimize his costs.

Do the measurements cost him anything? After all, if they don't, he

would be satisfied with measuring all night and eventually (because of

the central limit theorem) he would be certain about the state of nature

Apparently, a new model and solution must be used.

z. 6 Need for extension of the models

In section 2. 2 it was pointed out that the defect of previous

approaches to what has beer, conventionally called the "search" problei-

has been in the neglect of the possibility that the detection and senaing

devices used could produce spurious signals, and hence false alarms.

These theories, however, were certainly thorough in the applications

of cost and utility models, as well as prior probabilities.

The non-sequential work in STSD includes false alarms,

a cost structure, and cognizance of p.icr information, but this is

limited to the simple hypothesis test. As we have seen, this contains

only a rudimentary element of search, in that the decisions are res-

tricted to terminal ones after a single observaticia, There is no

Ptructure, for example, that allows one to stop and decide D or

D on the basis of no observations at all.

On the other hand, with the introduction of sprt the cost

structure and prior information are lost, the decision .,naker is left
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with the task of assigning errors of the first and second kind, anJ there

is no consistent way 1o take into account the experimental cost. In

addition, the sprt must be analysed in terms of the inequality (2. 11),

which becomes an equality only under conditions that are equivalent

to requiring that pf << 1 , -Pd << 1 . Although this condition might

seem dreirable, we have seen in the numerical example above that

minimum cost solutions do not particularly satisfy it.

Although some pioneer work by Blackwell and Girshick (7)

has been done some time ago in an attempt to : ''"%aves itructure

on sequential hypothesis testing, tMe applications were r,,ot geared

towards the problems of detection. The fnllowing chapters will

consider a minimum cost analysis of sequential. detection, under

some conditions that are perhaps more reasona.ble than those proposed

before, The technique of ar.,y'sis, that of using dynamic programming,

will then lead to the consideration of yet another problem, one that

Lou 1d not otherwise be attacked by the sprt type of approach.

Before going on to such analysis, it is of interest to mention

here some woik that has been published in recent years on the subject

of sequential detection theory. To repeat the point mnade above, none

of this work takes into account the overall . 'st of operation, and thus

the results are interpreted in terms of a and P errors as well as

expected test lengths.

In many realistic search problems, the target characteristics

are not exactly known, and so some of the parameters in p1 (x) are

themselves random variables. The searcher not only must decile

tipon the presence or absence of .uch a target, but an estimate of tý'e

unknown paramneers is also required. Such estimation proble.nt.ý



(somnetimes referred tc as "classii cation'), extremely difficult to

analyse in a sequentiaJ rmanner, have been treated by Selin (41) amd

Turner (44).

Some work has been done in an effort to obtain exact solu-

tions to the random walk of the sprt as discussed in section (Z. 5) wher.

the p.d.f. s involved are peculiar to those found in practical Qetectiort

devices. Reed (39) derives some theoretical results, and Marcumn

and Swerling (31), for example, produce Monte-Carlo simulations

for practical cases.

Some arbitrary "nnaay threshold" decision rules have been

analysed. An example is the rule presented by Kennedy (24) which

starts 4 sequential test only after an initial signal exceeds some

fixed thrjshold, this latter threshold set to limit the number of times

the sequential test is applied.

Bussgang (8, 9) and Middloton (34), among other:;, have

treated sequential detecti on under the most general noise and signal

statistics. Helstrom (20) and Preston (38) have compared the sprt

to the fixed length test for practical examples of search radars.

The particularly interesting problem of sequentially testing

a continuoum q4ial (the experiments are not done at discrete times)

has been treated by Bolin (41). In this work he also indicates the

optimal seqaent:al test when the noise is correlated in time. Gray

(17) has also contributi.d'to this problem.
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CHAPTER III

STATIONARY TARGET

This chapter describes a more general problem than t'Lose presents

earlier, in that it provides a combination of the Distribution of Effort and

STSD apploaches. The mode of attack and the mathematical technique in-

volved reflect the sequential nature of the solution as well as the minimum

expected cost aspects of decision theory. The use of stochastic dynamic

programming in this regard has been generally indicated by Bellman et al

(4), as well as Blackwell and Girschick (7). Goode (16) has applied the

principles involved, but with a model not particularly suited to search.

The strategy developed in this chapter will turn out to be a

modified form of the sprt, with the coat factors and prior probabilities

appearing as intrinsic parameters. In addition, the resultant minimum

cost arises as a natural consequence of the calculations. This makes

it possible to compare, in an efficient way, the cost of the optima) stzategy

with costs of certain non-optimal strategies that will be considered for

practical reasons.

3.1 Problem Statement

1. The target is either present (S 1) or not present (S0 ) in the

cell of interest, with prior probabilities P and I-P res-

pectively, and remains so for the entire search (the target

is "stationary",).

2. If the cell is observed, the result is a random variable x

which has p. d. f. p0 (x) or p1 (x) as the state of nature
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is S or S1 Observations take place at unit time interval,

3. After every observation (including the zeroth) the searcher

makes one of the following decisions:

"D = Decide target is present

D = Decide target is not present

W = Wait for another observation.

4. The decisions D0 and D1 are terminal decisions, and

end the process. The costs to the searcher making decision

D. given S. is true are Cij(i,j=0,l) , with CII = C 0Z

5. The decision W continues the process at least one more ti,:-

unit, The cost of this delay depends upon the state of nature,

and is W. if S. is tt1ue (i =0, 1) .
1 1

6. The objective of the searcher is to minimize the expected

cost of a search. The strategy (that is, the rule for making

decisions given a sequence of observations) that achievei

this minimum expecte-I cost is the "optimal" strategy.

The fact that the cost of experimentation depends upon the state of natur

is what make,# this model particularly applicable to search problems.

For example, consider the case of active sonar search against a sub-

marine that is suspected of being in a missile-firing position. Clearly.

the searcher woald like to make a decision as soon as possible if the

submarine to indeed present, whereas if the indications are that the

submarine is not present, the searcher could afford to spend more

time making sure, Thus in many search situations we should expect

to have W 1 > W0 .

*This as3umption is the equivalent of zero -normalizing the c:ost for
any given P , and is made to simplify the algebra.
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We shall now write a functional equation from which the optimal

strategy car be obtained, the equation being a straight-forward application

of Bellman's Principle of Optimality (3).

Let C (P) be the minimum cost of search obtained by following

the optimal strategy, where P is the a priori probability that the target

is present. This minimum cost will be the smaller of the costs resulting

from the three possible decisions that can be made at that time:

if the decisions are D0 or D, the ccsts are due to terminal

wrong decisions: PC01 and (1-P)C 10 respectively.

If the decision is W, the cost is PW 1 + (1-P) W0 plus the

cost of continuing from then on, having observed some value of x

bability .ojI~k~qrxing a v41ue be~ti~en.-. arid, x+dxc 4 Pp1 (x) d*+Q-Th P 0.( Ox).

Having observed the value x, however, the probability now of the

target being present is

{XfSl) {S} p 1 (x) P

{s 1 xIx {xIS I {Sl) + {xISO) {SO) P, (x)P + PO (x)(l-P)

The equation for C (P) nmay thus be written

(I-P) C1 0 : I

C(P)nin PC 1 D

[PW +(1-P)Wo+SEP pi(x)+(1 -P)PO(X)] C P W --

For notational convenience let us define the minimnum cost

of terminal decision to be T (P)

-37-
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0(1-P) C 10 D D1

T (P) =min 1

and the unconditional p. d. f. of receiving a value x to be g (x)

g (x) = P p (x) + (1 -P) po (x)

so that equation (3. 1) may be re-written

T (P)
C (P) = min [(x)P (3.2)

PW +(I-P)Wo+ ) g (x) (X - J dx

-00

3. 2 Arbitrary Truncation of the Search

In order to find a way to solve equation (3. 2) we shall

consider the following arbitrary truncation of the search: At the

start of the process, the searcher is told that he has only n available

possible observations (or equivalently, time units) left. If the decision

W is made, at the next decision there will be only n-l possible obser-

vations left, and so on. U n-O , then one cf the terminal decisions

must be made,

IU we define C (P) to be the minimum cost of search givenn

that there are n available observations remaining before a terminal

decision must be made, we may write the equivalent of equation (3. 2) as
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T(P) :D or D1

C (P) =min (3.3)I(x)P
PW 1I+(l-P)W0 +jg(x) Cn-i g(x) Jdx : W

-00

The boundary condition on this equation is given when

n=0 , for then a terminal decision is required and so

(I P) 10 G -) CO Pýý10

C 0 (P) = T(P) = min{

PC 01 PC01 P5£P* :D0

(3.4)

where

P* =
C10 + C01

It is of interest to go through the calculation of C1 (P) in

some detail, since the behavior of the terms affords an insight to

the decision structure of the solution, and to the form of the minimum

cost as a function of P .

In order to calculate C1 (P) we must first evaluate

CO •[ J . This latter expression is the minimum cost given

that one observation x has been taken and that a terminal decision

must be made. From equation (3.4), we find, after some manipulation,
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I (1 -P) PO(x) C1 o Pl (D
g(x) p1(x) - P l-P* 1

Pp1 (x)C0  PO X ipp

(3.5)
; I -P P*

If we let A( F ) , and recall that p1 (x)/po(x) =

the likelihood ratio, we see that the rule presented by equation (3.5)

is identicalwith equation (Z. 5). (We see now that this corresponds

to the solution for the truncated search, and given that an obse .,ation

was taken: two restrictions that are not contained in the general

problem statement.) In particular, by letting x* again be the solution

to

L (x*) A(P)

and putting the results of equation (3.5) into equation (3. 3) (with n-l),

"we obtain

TI I (P)

C1 F min X s
I~21 (-P) W 0 +$PC 0 OlP 1 (x) dx +S(I-F) p 0 (x) C1 0

-m x*(3.6)

The relation between this search and the one described

in section 2.4 can now be further explored. If we let W = ý0 = 0

(and recall that we have let: C0 0 = C 1 = 0) and neglect the poseibility
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of a terminal decision before taking any observations (the T (P) term)

j then equation (3.6) is identical to equation (2.9). If we include these

factors however, as required by the general problem, the minimum

costs and strategies are quite different.

The decision structure presented by equation (3.6) may

be easily visualized by drawing a sketch of the terms in the right

hand side, as in Figure 3. 1. T(P) seen to be two str~ight lines

meeting at P=P* . Let us define (- tP) to be the bottom. of the right

hand side of equation (3. 3). Then t.-1 (P), the lower part of equation

(3.6) can be seen to have the properties as shown in Figure 3. 1.

G1 (0) = Wo

G 1 (1) = W1

The interception of T (P) and G1 (P) occurs at two

points, (if at all), these two points b.-ing at P = y and P 6

(yl-.61).

From the figure we can see that T (P) < GI(P) in the

two regions 0SP<y1 and 61<P:51 , so that

(I -P) C0 61:SP--l :D

C (P) PC 00:SP-----y 1 DO
goPW I+(I -P)W 0o+PCo• 0 pI (x) dx+(l -P)C 10 N "P(x) dx -y1-::9P•s61 W

(3. 7)

where 61 is the solution to

(1-61) C1 0  a 01 (61) (3.8)
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//• T(P)

cost G(P)

P

Do region W region -OIL-DD 1 regiorml

Figure 3. 1 The construction of C (P)
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and Y1 is the solution to

(-31) C 10 ` G(1) ."d (3.9)

Since x* is a function of P , and the integrals in G1 (.1

are usually not expressable in cl.osed form, the solutions of equations

(3. 7) and (3. 8) must be obtained numerically.

3.3 C (P) as the Limit of the Truncated Search

Now that C1 (P) has been obtained, we can proceed to

iteratively solve equation (3. 3) by letting n = 2, 3, . . . and so on.

These iterations will also produce the decision regions bounded by

the interception of T (P) with C2 (P), G3 (P), ... at points y, 6;

Y3, 63 ; etc.

In particular, we may re-write equation (3. 3)

(1 -P) c 1 0  6 n-P :l

C n(P)= PC 0 1  0 P--•n [Y\06 Pip (x) P
P W1 +(l -P) W0 +Y (x) Cn.I g (X) dx 7na--P-6n

with the boundary condition

(I -P) C 10 P*:S]p __I-

C0 (P) =

P C0 1  0 •P5:P*

where

P* 6I

0* = YO 1 = C O1 + Co1
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If we postulate that in the limit as n--Oo C (P) approaches

some function of P independent of n, then by letting n-w in both

sides of equation (3, 3), we see that this function is defined by equation

(3.2) to be C (P) . Thus, if in fact this limit exists, C (P) can be

calculated to whatever degree of accuracy that is desired by successive

iterations of equation (2. 3).

What is more important, from the point of view of the strategy

that ;s associated with C (P) , is the fact that if C (P) can be obtained

to any degree desired, then the points 7 = li- n and 6 = lim 6
n n nO0 n

defining the decision regions can also be obtained as closely as desired.

It remains, then, to prove that successive iterations of

equation (3.3) will produce a C (P) that will converge to some C (P)n

and that the decision points y and 6 do exist as limits of Yn and

6 , and in a non-degenerate way (that is, t > 0 , 6 < 1).
n

3. 3. Convergence Proofs for C (P) , Yn and 6n n n

We consider the defin'ng equation of C (P)

Ch(P) = rain [T (P),, 0n(P)] 0 :•:p-

where

T (P) a min (( -P) C1 0 , PCOil
P ~,,a Fa +(P)wo S PI (x) P

n ) 1 + Y8 g xn- g(x) adx

and th. points Y,, and 6n are defined by

'Y C0 =Gn ('vn)

(1-6n )C 1 0 = G (6 n)
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The costs C0 1 , C 10 , W1 and W0 are all non-negative, and g(.)

and p 1 (.) are p.d.f.s.

Theorem A: C (P) -- 0 for all n:--
n

(This theorem provides a lower bound for the iteration

process.)

Proof

1. Since C1 0 1 01 ý:O then T(P) >0

2. C0 (P) = T (P) by definition so that C (P) a: 0,

3. If Cn (P) - 0 for all P, then any average of Cn (P) over

P is -->0,

4. Gn+1 (P) is the sum of P Wi + (I -P) W0 plus an average

of Cn(') ,all -- 0 , so that Gn+I (P) 2tO0

5. Finally C n+ = min [T (P) , Gn+I (P)] - 0 by (1) and (4),

and the induction is complete starting with the result of (2).

Theorem B: Cn+1 (P) -- Cn (P)

(This theorem, coupled with Theorem A, establishes the

absolute convergence of C (P) to some limit function

(defined as C (P) ).)

Proof

1. C0 (P) = T (P) by definition,

2. C 1 (P) = min [T (P)] = min [C 0 (P) , G(1 (P)J -< C0 (P)

3. Suppose CV+1(P) - Cn (P) - 0 for some n
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® •Fpp(x(x)
4 G+z(P) - G+1 (P) g (x) Cn+ 1 [-l -- dx .x)

-00 
-00

-® n+ (x)' Cn C[%- g(x)
-0

'by (3) and the fact that g(x) W 0 for all x. So we

conclude that Gn+2 (P) 5 G n+l (P),

5. Finally, C (P) = min [T (P) , Gn+2 ] < min [T (P) , G+I (P.s

Cn+1 (P) by (4), and the induction is complete starting with (Z,

Theorem C: a) 7 n+] - n̂

b) 6 n+ 6n

(This theorem, in conjunction with Theorem D, establishes
the convergence of the decision points 7 and 6 to their

11 n
respective limits 7 and 6 .)

Proof

(The proof is given for part b), the proof of a) being essentially

the same)

1. G n(6n,1) 2 Gn+1 (6n+1) by (4) of theorem B,

2. C 10 ((-6n+d) = Gn+I (6n+I) by definition.

3,. Gn(P) < (I-P)C1 0 for P < 6n by the defining equation

4. To prove by contradiction, we suppose 6 > 6n+1
n nl

5 By (3), (2) and (1) we have the contradiction

6n+l) ( (l-n+l) CO = G+I (6n+i) Gn(6n+I)
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Theorem D: If W >0, W0 > 0 then

a) -y >0

b) 6 A < 1 for alln
n

where r" and A are explicit functions of the cost terms.

(This theorem shows that the decision regions described by

the decision points - and 6 are bounded by terms -greaterri n

than 0 and less than 1 respectively, and so that for sufficiently

large or small P a terminal decision will always be appropiiate.

Since the theorem holds for all n , it holds for -y =nlim 'n

and 6 = lim 6 ,)
n-1,Q0 n

Proof

1. G n(P) = PWI+(l -P)W 0 +g X)Cn) C E1 x) Jdx -- PW 1 +(1-P)W'0 '

-00

2. Since 6 is the solution of (1-6 )C = G (6n) we have

(1-6n) C 106 W + (l-6n) W0 so that

n 10 n n0

n -- CI0-W0+W1

3. Since A< 1 for W1 > 0 , b) is proven.

4. Yn is the solution of ynC0l = Gn(Tn) so

'•nC00l -'nWl + ( o

W0
_ 'C 01 + W 0 - W 1

5. Since r'> 0 for W"0 > 0 a) is proven.

Note: When W1 = 0 or W= 0 the decision regions are semi-degenerate,

i.e. A 5 1 or r a 0 . This is discussed in appendix B.

-47-



Theorem E: C (P) > 0 for at least some Pn

(This theorem is immediately proven by noting that
C n(.) = C 01 > 0 for all n . The result provides

the non-degeneracy of Cn (P) , and in particular the

non-degeneracy of C (P) -)

3.4 Implementation of the Optimal Search

Befoi-e going on to a specific example of the calculation of

C (P) and the associated strategy, it is instructive to consider the

implementation of the resulting strategy. We assume, then, that

C(P) , y and 6 have been obtained. The search process proceeds

as follows.

1. If O-SP<y or 6<P:51 , make the appropriate terminal

decision. The search is c ýrer, and the expected cost is T (P) .

Z. If y"•5PZ 6, then take an observation x, . Calculate the

a posteriori probability that the target is present:

PS P 1(xI)P Pi (xI)P
A I~g ) i (X I) -p, (Xl) P4-p0 (Xl)(1 -P) '

Compare this new probability with y and 6 . This is the equivalent

of comparing the likelihood ratio L (xl) = p1 (xl)/p0 (xl) with the

values -- P and I '6- with the resultP l-7 P 1-6

if L (xI) < I-P __ : DO

I -P 1-6

l-P) i. :)1

-48 -

W"OO wi-row"



3. If L (x) lies in the W region, take another o17 3ervation x.

and compare

p1 (x1 ) p1 (Xz)
L(xixz

p (x1 )p(x')

,: ~ ~~ ~~ 1. 0Xl x2 -P xl O(

' I-P 1 -P 6
with the values and -and soon.

We see, then, that we have generated a Wald sprt equivalent

to the one described by equation (2. 10), but with the decision points

A and B given by

I-P 6
P 1-6

1-P 'Y
P 1--y

The advantages of the search just derived over the sprt are apparent

in three important respects. First, the values of y and 6, and thus

the decision thresholds, depend by definition upon the various cost

factors and a priori probabilities involved in the search. The previous

method of assigning arbitrary a and P errors to determine A and

B can be now examined for consistency, if not completely replaced.

Second, if it is at all necessary to truncate the search, the decision

pointo described by -n and 6 are the result of a straightforwardn

and well defined optimization process, whereas the truncation of Wald-

type tests in the literature are rather arbitrary.

The third advantage of the approach just developed is

the important fact that not only is tha strategy calculated, but C (P),

the minimum cost obtained by using that strategy, is a natural by-

product. Thus, if we wish to compare two different systems, it is

only necessary to compare their respective C (P)'s, and choose

-49-
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the one which has the higher C (P) at the P of interest. This

point will be the subject of some later sections, in which certain

near-optimal strategies are considered and compared.

3.5 Examples and Sample Calculations

With the assurance of section (3. 3) that the process will

converge, it is extremely easy to successively iterate equation (3. 3)

to any desired degree of accuracy. In particular, by referring to

the proof of theorem B, we see that if C (P) is at most C awayn

from C 1 (P) ,then G (P) will be within C of G (P) , forcing
nlI.n+ I n

a like bound in the i I imum difference between Cn+ (P) and Cn (F)

Thus, as in the work that follows, we may select some C and stop
the iteration when max {C (P) - C (P)) < C

P n n+l

Another helpful computational technique is available.

This involves approaching the limit C (P) from below rather than

from above by starting out with C0 (P) a 0 rather than C0 (P) - T (P)

as before. That this process also converges, and to the same C (P)

is easily shown by simple modifications to the proofs of theorems A

and D. This convergence from below" suffers in not having any

intuitive basie for the index of the convergence, but has the advantage

of converging more rapidly than the standard way for very low-minimurr

cost systems. It also serves to check the accuracy of whatever numer;c

approximatio@e might be made in the calculations, by reaching C (P)

independently.

3.5. 1 Known Signal in GIaussian Noise

For general illustrative purposes, we shall consider the

simple example of the search for a target having known characteristics
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in the presence of additive noise having known (statistical) properties.

In particular, let the known target signal be s (t) , O:5-t-ST , with

S s ?Tsg (t) dt

0

the signal energy. We assume the noise is Gaussian in magnitude
NNwith auto-covariance -N 6 0.) , where N is the known noise energy

density. It can then be shown (Helstrom (19), for example) that if

a statistic x is taken to be proportional to the cross-correlation of

s (t) with the received signal v(t)., i.e.

Z ST
s (t) v (t) dt

0

then x is sufficient and has the p. d. f. s. under S and S, of
01

PO(X) =fN(x; 0,1)
(3,.11)

P, (x) = (x; I1)

and

P (x) 2

where

f The literature contains many analyses based upon this

model of signal and noise characteristics. It has the advantage of

being a good approximation to many realistic situations. In addition,
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the "strength" of a signal, relative to noise may be represented'

the single variable 1A, the familiar signal-to-noise ratio. As w

have seen in the discussion of the ROC in Chapter II, an increast

& (all other system variables remaining constant) is always dev.

but i&: is often fixed for any given detection device and target.

The convergence of C VP) to C (P) from above anc"n

is illustrated in Figure 3. 2, with the parameter values C 0 1 = (,

W= W= I and I = 1 . Table 3. 1 shows the convergence of

and 6 for the same parameter values. Figuro 3. 3 shows t...n

for various other values oIf W 0 , WI and p .

The calculations were performed on an IBM 7090 at tkt

M. I. T. Computation Center, and consisted of simple iterations

equation (3. 3). For the examples in Figure 3. Z and 3. 3, the P-

was represented by points at intervals of'.01, and Cn •P) was

linearly interpolated between them. The integration was done nut

rically by simple trapemodial addition to an error of roughly . If.

The value of 9 ased was .001, and as can be seen from the figur

the coavewe, . is quite rapid. A flow chart of the computer pro

involved appears in appendix C.

3.5.2 Numerical Zxample

The shepherd of the previous examples now realizes th,

his experimentation (observat-'an of readings on the baa-meter) dc

cost something. In fact, because of the rural location, olectriciti

is very expensive, and he estimates that the meter operating cost

is $ 10 for every ten-minute integration period (a fixed time unit
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Iteration cO(P) T(P) C{P)= 0
Number

n N6

0 .500 .500 ....

1 .389 .606 .100 .900

2 .373 .621 .183 .814

3 .369 .627 .250 .744

4 .366 .629 .304 .689

5 .365 .625 .339 .655

6 .354 .639

7 .361 .632

8 .364 .631

9 .365 .630

TABLE 3.1

Convergence of yn and 6 = 1, W0 = W1 =1,

c 0 1 = CO 10I.
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Figure 3. 3 Example ~..f C (P)



required by the meter for each observation). Using the reduced cost
matrix of section (2. 4. 2) (in •n•ts of $ 100)

[C ijI 1 0 .

he notes that C01 = C10 = . , and the meter operating cost assigns
W0 =W1 .I . Figure 3. 2 and Table 3. 1 give the strategy:

1. If P > .63 , don't take any measurements at all, and go

directly to the pasture

2. If P < . 37 , don't take any measurements at all, and go

directly to town

3. If .37 --<P _S.63, take, measurement x 1 . Then
compare Licl) = exp(x. 5) with the value -I-P T'

C* P I1-Y1-P 1-P 6 1-P
Pand P j-.=--p- (1.85)_P 1 -P

4. Ifexp[xI .51 is outside the range (L (. 5 9 ) (1.86)
take the appropriate terminal decision. If exp[x1 -. 51 is
within that range, take another observation x. , and
compare oxp [(x -. 5)+(x 2 -. 5)I with that range, and

s0 on.

Thus, if P = i, the optimal decision rule requires at least one
observation, and offers an expected loss (in dollars) due to wrong
deciaion of 39 (from Figure 3. 2), or a total loss of -50+39=-11 .
By using the STSD decision rule as in section (2. 4. 2), the cost was
-19 , to which we must add 10 , the cost of the required experiment
for a total of -9 . The optimal sequential rule thus saved $ 2
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The saving becomes even more substantial as P approaches

0 or 1, and is $ 10 (the cost of the needless experiment required by STSD)

for the certainty prior information conditions P = 0 or 1. This is shown

in Figure 3.4.

If the cost of experimentation were much smaller (say $ 1

per observation, so that W0 = W = . 01), then the advantage of using

the optimal sequential search becomes even more pronounced, as is

also seen in Figure 3. 4

3.6 Fixed Threshold Sequential Search

Now we shall consider some practical limitations to the

applicability of the optimal search just derived. We have assumed

that the result of any observation is the measurement of some continuous

random variable, the value observed being called x . In order to

implement the search, it is necessary to be able to calculate L (x)

in order to obtain the posteriori probability needed for comparison

to y and 6.

Many physical detection systems, however, are limited

in their capability to measure x as a continuous variable. Others

have very limited mathematical capability (whether space-cost limited

computers, or time-ability limited humans) and the storage and cal-

culation of continuous likelihood functions are beyond them.

A particular form of limitation typical of many systems in

use today will be discussed in this section, with the object of provi-

ding a means of comparing the best results available with these limited

systems to the results obtained in the previous sections.
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The limitation involved will be the required use of a fixed

threshold for every observation, with the output of the observation

being simply "over threshold" or "under threshold". An example

that illustrate#s this is the use of an active sonar that every cycle

displays either a "blip" or not. Inside the sonar unit there is a dis-

crimination device that can only tell whether or not the received

signal statistic is over or under some pre-set threshold, and a blip

is displayed or not as a consequ•ence. The observer then must make

decisions on the basis of observing a series of binary variables rather

than a series of continuous ones.

It is convenient here to let "indication" mean the exceeding

of the fixed threshold by a signal. This word must be used with some

care, in that an indication alone does not imply any decision concerning

the presence or absence of the target. An indication is just a way of

reporting the output of a particular (threshold) detection device.

Decisions are to be made on the basis of (perhaps) many indications.

The problem facing us now is essentially identical to

that stated in section (3. 1), witn the substitution of a binary random

variable y for the continuous x , with probability mass functions

h0 (y) and hI (y) replacing to p0 (x) and p1 (x). If we let y take

the values 0 or 1, we have

1 •-f y=O

-f y=l

1 -d y=O

h (Y)

d y=1

1 -59-



where f and d are the "false indication" and "detection" probabilitiec

defined by

00
f f (x*) =po Wdx

x*

(3. 12)

d d(x*)= YPWdx

where x* is the threshold that is assumed to be fixed throughout the

length of the search. (Note that these equations are identical to

equations (2. 7) for pf and pd * We use "f" and "d" for notational

ease, and to remind us that they now refer to "Indications" in the

analysis of this more general decision structure.)

For a given fixed setting of x* , let us define F (P) to

be the minimum expected cost obtained by using the optimal truncated

fixed threshold strategy. Then by using arguments identical to those

leading up to equation (3. 10) we may write

(l-P) Cl0 6n :SPSI

J01P) PCoI O:sP[ n Pd(313)

1PW +(I-P)W0 +[Pd+(i -P)f] Fnl[Pd+(.-P)f +

€[PI ")+l "~l -•] n-I I P(I -d)+(1 -P)(ll-f) n

where we have made use of the fact that

prob. {y=I) = Pd + (l-P)f

prob. {y=O) = P(l-d)+'(l-P)( -f)
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Pd
prob. {S iy-lj Pd=l-~

Iy; =P d + (1 -P)f

P (1 -d)
po Y=Oly_ = p(l-d) + (1-)(l-f)

It is important to repeat the fact that although there is a fixed

detection threshold x* that leads to indications, there still remain the

important points 7 and 6 "which define the decision regions. Thesen n

points are referred to as decision thresholds.

In the limit as n-- 00 , if we can show that F (P) converges,n

we may call lim F (P) = F(P).
n"-QO n

That F n(P) converges, along with 6n and Yn , may be

shown exactly as in theorems A, B, C and D of section 3. 3. 1 with the

minor changes in notation necessary to allow for the discrete character

of y.

The F(P) and associated strategy that is calculated are still

conditioned upon the threshold x* , in that both d and f are functions

of x* . For a final overall cost minimization, we may select, for

every P, that x* which minimizes F(P) . Calling this overall

optimum F Min (P) we see that

F .(P) = min [F(P)] (3.14)

Quantization of the continuous target information into a binary

variable is sure to produce a loss in the information sense, but

in the cost context of the present problems we can readily compute

the loss in more meaningful cost terms.
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Successive iterations of equation (3.13) are again straight-

forward, and computer calculations are greatly speeded by the

absence of an integral. Figure 3. 5 shows a typical convergence to

F(P) for a particular setting of x* . Figure 3.6 shows the application

of equation (3.14). To avoid confusion in drawing, only some selected

curves for F(P) are shown, but in general F in (P) is the lower

envelope of all F(P) curves. It is also convenient (and illustrative)

to label the F(Pl curves by the d corresponding to their ':x# througl

equation (3.12). The values of the paranieters have been selected to

provide comparison with the C (P) of Figure 3. 2, which is shown in

dotted lines. The optimal threshold setting (and equivalent d) that

results from this example is plottr-d as a function of P in Figure 3. 7.

Note that for P outside some range there is no optimal threshold

setting, as the decision rule in those cases calls for a terminal

decision with no observation taken.

The impllementation of the search is identical to that

described by section 3.4. where L (x) ih replaced by L (y)

I -d
17f

L(y) a

d ~yu

3.6. 1 Numerical Example

On occasion, the shepherd of our previous examples has to

use a less versatile meter, one that contains a built-in threshold (that

may be set at the start of the search). The signal afid noise statistics

are still characterised by the p. d. f. s.

-62-



.5.

c 10"" CO1 = 1
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.4 n=O x* =.61

F(P) (n =0)

.3

cost 5

3
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0
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Figure 3.5 Convergence of F (P) to F(P)
n
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Figure 3.6 Calculation of Fmin (P)
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Figure 3. 7 Optimal x* as a function of P
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P0 (x) = fN(x; 0, 1)

I (x) = fN (X; 1,I

so that, upon setting a threshold x* , the false indication and detection

probabilities will be

f = 1 - erf(x*)

d= 1 - erf(x*- 1)

With the cost values C 0 1 = G10= 1 , = W1 = "I of the earlier

examples, the shepherd uses Figures 3. 6 aeid 3. 7 to obtain the fallowiv"-

decision rule:

1. if P > .61 , donk take any measurements at all, and go directli

to the pasture.

2. If P < . 39 , don't take any measuremetits at all, and go directa'

to town.

3. If .39 S P : . 61 , sez the threshold as indicated in Figure 3. 7,

then take a measuremnent of y .
1.d (1-P)

4. If y0 (x < x*) then compaIe - with the values (1-P) )

.64 (1P)/P , and (16) - 1. 56 (1-P)/P . If y -1 (x.*,x*).64(-I•/, an I6"-) P "

then compare d/f with these values. If the likelihoods fall

outside these limits, make the appropriate terminal decision.

If within them, take another measurement, and so on.
1

V, as before, P = - we see that at least one measurement must be taken.
From Figure 3. 7 we find that the threshold is set such that d = .68

f = .3 , If y = I is observed, since J (l) = .68/.3 = 2.,77 is greater

than 1.56, a D decision is required. If y = 0 is observed, aince
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L(0) = .32/,7 .46 is less than .64 , a D decision is required. This

strategy (for P = 1/2) is idential to the STSD strategy, and so we would

expect the search cost at this P to be the same as th- STSD cost, which

it is. However, at other values of P , the advantage of the sequential

threshold strategy becomes apparent.

Illustrations of the difference in costs using the three strategies

mentioned so far in this chapter are shown in Figure 3. 8. The curves

shuw the percent increase in cost (over the minimum cost attainable by

the optimum sequential search) due to using either the non-sequential

STSD strazfy, or the sequential fixed threshold strategy. As shown by

the figures, the importance of using a sequential search is considerable

when the expcrimental cost decreases.

3. 7 Adaptive Threshold Sequential Search

The previous section considered the threshold x* to be fixed

throughout the search. This limitation is often attributable to a lack of

the time needed to adjust the threshold (if necessary) inbetween possible

observation periods. In some systems, however, although the detection

device is by nature a threshold indicator, it is possible to vary the

threshold inbetween observatione. A practical example is the use of

a radar FPI scope by an experienced operator. The operator usually

keeps the gain of the scope low (to avoid ifsnow") until a possible blip

shows up at some point. The operator can then increase the gain on the

next sweep because he will be concentrating on a smaller region of the

scope, (i.e. the neighborhood of the possible blip) and so is not as

effected by the increased noiee.
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It.

This process of controlling the threshold is often referred to

as the "alerting effect" and shows up in our model of sequential search

in the following way. Let the decision structure be such that the searcher

is required to take two observations, and that he must make a terminal

decision after the second observation, both limited to threshold obser-

vations. If he determines the first threshold x* on the basis of STSD,

Ie has (with C = CII = O)

L(x*)= 1-p( CIO--j
I P C011

The resultant first observation can either be y = I or y = 0 (indication,

or no indication). Now suppose y = 1 is observed. Then the posterior

"target present" probability P1 is

P= prob. {S 1, y:l) =

P Pd + (I -P) pf

He would now want to set the second threshold so that

doP _ 1 Pf (1-P C 1 0  _Pf
L (x =-inI - I _- =_ L (x)

F(C01 / d( /O I0 Pd I

Since in practical systems pf < we see that L (x*) < L (x) . With

the usual monatonic likelihood function, this implies that x* < x* so

the, second threshold has been lowered. Because this lowering of the

th~reshold between first and second observations yields a corresponding

tendancy towards deciding the target is present, the expression "alerting"

is descriptive. The "alert" is due to the reception of y 1 (x1 > x*)

If y = 0 (x1 <x ) were received, there would be an equivalent "dulling"

effect by an increase in the second threshold.
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This sort of adaptive threshold adjustment may be carried

over into the framework of the previous problems, and calculations can

be made to compare the resulting mirimum cost with the solutions of

the fixed threahold and continuous variable searches of the previous

sections. In order to show this, let us define K (P) to be the minimurrn

cost attained.dy using an optimal truncated adaptive threshold strategy.

Then we may write

T (P)

K (P) = minn
min Ln (P, x*)
x* n

where

LnlP, x*) = PW1 + (I -P)r' + [P d+ (1 -P) flKn. P d+(-

n ~ ~ ~ 1 01 -d)(Pd+ P

+ [P(I-d)+(I-P)(I-f)] K.. (P(i-d)

The dependence of L n(P.x*) on x* is a consequence of d = d(t*),

£ = f(x*) as defined in. equations (3. 1Z).

Again, calculation of K n(P) is straightfor ward, but rather

lengthy due to having to explore the x* variation at each stage of the

iteration, rather than just at the limit as ýn the previous section. The

approach of K n(P) to the limit function k(P]) as n-90 is assured by

simple modifications to the proofs given in section 3. 3. 1. The resulting

minimum cost function and strategy is agkin similar to those derived

before.

Although calculations of K(P) have not been carried out, it

is possible to prove the intuitive inequality

C (F) s.(P) zF min(P) for all 0 -- P--5I

the proof is not instructive, and is omitted here.
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CHAPTER IV

TARGET ARRIVAL AT A RANDOM TIME

4.1 Towards a More Realistic Model of Certain Searches

All the previous work in this paper has been carried out with the

condition that the states of nature describing the system were fixed throunr

out the search. This was a basic part of the model first described in

Chapter II, and it is only on this basis that any of the hypothesis tests,

sequential or otherwise, could be applied. In the analysis of sequential

search strategies, this condition of stationarity of the target can be seen

to be a very limiting one, in that the duration of the search is a random

variable. Thus "throughout the search" means all that time for which

the probability of the search duration is non-zero. This time range is

often infinite. The use of a hypothesis test must therefore be carefully

considered, and should be used only when the only alternatives to the

states of nature are either S and S1 , and when only one of these

states will definitely hold for the entire search.

Many practical problems which have been analysed from

the point of view of hypothesis testing are much more reasonably

approached by a new model which will be treated in this chapter.

This model allows the target to arrive in the cell at some time t

(a random variable), after the start of the search and then remain

there for the rest of the search. The decision rules should then be

based upon the probabilh~y that the target has arrived yet, rather than

whether or not it is present at all,
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This sort of model is certainly applicable in many military

detection models, and the term "raid recognition" has often been used

to describe the general problem statement. When searching for a

submarine in a particular area, for example, we -arely have the luxury

to assume that it will either be there or not for the rest of the search

(i.•- time of interest). In particular, when the decision D = toTarget

not present" is made, the search equipmnent would not be turned off.

In fact, in problems of this type the decisions become limited to two

decisi•cns: D1 or W . Let us continue the submarine searc14 examInle

to develop typical actions and cost factors.

Suppose decision D (T) is the order to send ASW aircraft

at time r to the region representing the cell covered by the detection

device. If the submarine has not yet arrived, then the aircraft must

return to base, some resultant cost of false decision has been incurret.

and the search continues. If the submarine has arrived at some time

(before the D decision was made) then the longer the delay between

t and r the more difficult an eventual interception, and thus there is

an increase in what we might call the interception cost when the D 1 (r)

decision is made. The search is then considered to be terminated.

One obvious objective is to make decisions so that the expected cost

of the search ib minimised. This chapter will consider such a model,

and the optimal search that evolvo s from it.

We shall also spend some effort in the development of a

simple way of comparing some specific non-optimal rules that are

being practiced or proposed, by use of a concept similar to the ROC

described in Chapter II.
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4.2 General Problem Statement

1. The target arrives in the cell of interest at time t

(t=O, 1,...) with known probability p (t).

2. If the cell is observed at time T , the result is a random

variable x which has p. d. f. p 0 (X) if t> T and p1 (x)

if t "ST

3. At every time T (T=0, 1,...) the searcher makes one of the

following decisions

D(T) : Decide the target has arrived -

W(T) : Wait for another observation

4. The decision D((T) may or may not be a terminal decision:

If D((T) is picked and t > T , then a false decision cost

F is incurred, the knowledge that t > T is gained, and

the search continues.

If D(T) is picked and t -- T , then the search is terminated

with a cost of 0(t,T) .

5. The objective is to minimize the expect cost of the search.

The strategy achieving this minimum cost is called the

"optimal" strategy.

5 Although we shall not solve the general problem as stated above, it is

helpful to keep it in mind when solving it subject to reasonable assump-

tions. Again, as in the previous work, we shall restrict p0 (x) and

pl (x) such that L (x) = p1 (x)/P 0 (x) is monotonic non-decreasing in

x , to ease the notation.

4. 3 Linear Terminal Cost, and Geometrical Arrival Time

Two assumptions will now be made in order to obtain a

solution. These also have the advantage of reasonably representing

some real search situations.
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First, we shall assume that the terminal cost is proportiona

to the time 'late 1, i.e. *(t, T) = (T -t)W . This form of the function

is not necessary for a solution, but offers a minimum of algebraic

difficulties that might otherwise cloud the development.

Second, and more restrictive, we shall assume that the tarp.,

arrival time distribution is

pt W G (-X)t t = 0$ 1,... (4. P

This geometric distribution has the advantage in describing the arrival

as being conceptually ,random' by the fact that it provides a constart

probability of arrival per unit time (A) , given that it hasn't yet arrivw,

This property also provides a simple representation for a state variabi

by summing up the total information about the state of nature (i. e. wh:.

or not the target has arrived). This is outlined as follows.

If we let P (T) be the probability that the target has arrived

at or before time i" , then by equation (4. 1)

7PO•) 0 1P(t). (Z-;X)T+I (4.2z)

two

FTwkthiroe, we cut show that

P~vu~) a (l-A)P('r) +

so that (without any other information) to describe P(T+l) , al, that

is needed is P(.r)

In addition, suppose that a value of x(T) is observed at

time r . Then

P('r+l jX()) .prob. (x C(),r +l)
prob. x('r)
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To calculate prob. (x(T), T-+1) , we note that this could happen in two

ways: the target could have arrived at time T or before, in which

case p1 (x) is the p.d.f. of x(T) , or the target could have arrived

at time Tr+l , so that po0 (x) is the p. d. f. Thus

[P () P (x) + [1 -P(T)] Xp 0oX)]
P (Tr+l 1X (T)) = - P(T) p1 (x) + (I -P (T)) p0 (x) (4.3)

and we see that given some observation x , the posterior probability

of the target arriving at or before time T+l is still dependent only

upon P(r) , and not T explicitly. It is this basic Markov property

that allows us to proceed now in a way similar to the approach in

Chapter III (where, we recall, the Markov property of the successive

likelihood ratios led to the dynamic program approach).

The assumption leading to equation (4. 1) also enables us

to characterize the start of the search, since P (0) = X . What is

more important, we note that according to statement (4) of the problem

definition, when the false decision {D(T) It>T) is made, knowledge

that t > I is automatically gained. This fact and equation (4. 1) lead

to P(,r+l Jr>T) = X.

We are now prepared to write a functioial cquation for the

minimum search cost. Let us define V(P(r) ) as the minimum starch

cost obtained using the optimal eearch strategy at time r where P(r)

is the present value of the probability that the target has arrived previo',Is

to or at time T . There are two decision choices. One is D(r) :

decide target has arrived, with resultant probability being wrong of

1-P (r) , and subsequent cost of F plus what the continued search

will cost from then on. The other is W(7) : wait for more information x ,
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in which case the 'clate" cost is incurred only if the target has arrived

(probability P(7) ), and the search continues with the proper posteriori
. I

probability given by equation (4. 3). The minimum cost is then given by

( •(-P) (F+V(W)) :D

V(P) =minf

Pw 00(x) V p 1P (x+(l -P)p0 Wx)PW+~ [Pp lX)+II-P)Polx)]V ]
P 1 0 L P1 (x)+(1 -P)p0 (x)

(4.4)

The T has now been purposely left out as an argument of P and

the decisions, since this equation holds for all T and only P (T) = I-

is needed to express the right-hand side. In what follows T will be

left out except when necessary to avoid ambiguity.

One result is immediately apparent. By letting P"-O we

have

V(O) =min [F+ V(X),V(A)] = V(X) for F> 0

This tells us that the cost of search, if we know the target has not

arrived, is the sanme as if we waited one time unit and started again.

This is because there can' be no '!Late"• cost W if the target has not

yet arrý Lod.

In order to develop a feeling for the solution to equation

(4. 4), and to obtain an upper bound upon V(P), the next section

shall ccnsider the degenerate case getting no information from the

obaervations.
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4.4 Optimmal Search With No Information

Suppose that p0 (x) = p (x) . Then, as can be shown be equatior

(4. 3), an observation of x does not affect the posterior evaluation of P

In this case the observation x is irrelevent, and th.z searcher gains no

information. The searcher may still develop an optimal strategy, which

now consists simply of either waiting one time unit, or deciding the targe-:

has arrived. Equation (4.4) becomes

SP)(F+ V(X)) D

V(P) = min (4.5)

WP + V [P + (1 -PA• W

As noted before, V(O) = V(P) , and we can also easily see that

V(l) = 0

From the form of equation (4. 5) it is postulated that dhe

structure of the strategy will be

if P-a : lD

P--:5 Y W

where -y is a decision point to be determined as part of the solution.

That this in indeed the form of the strategy, and that it is

not degenerate (that is, 0 < y < 1), may be shown by the following

proof by contradiction. (The discussion that follows car. also be

shown to be valid for the more general equation (4. 4). Since it is the

form of the proof that is of interest, it is carried out in this less

complicated case.)
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Let us define

D(P) = (l-p)(F + V(A))

G(P)U-WP+V[P+(-P)AX.I .

A sketch of these functions is shown in Figure 4.J. DM(F' is i straight

line with D(O) = F + V(A) = F + V(0), D(1) x 0 . G(P) has an unknowa

functional dependence on P through V[P + (l-P)AI , btut it is continuou"

by the continuity of V(P) . The boundary values are known and are

G(O) = V(X) = V(O), G(l) =W + V(I) = W. Since F > 0 and W > 0

then G(1) > D(1) and G(0) < D(0) so that 0(P) and D(P) must

intersect at at least one point.

Suppose G(P) were such that G(P) and D(P) intersect

at more than one point (in Figure 4. 1 this is illustrated by the dotted

l.ne), say V' , 'Y" and y"' . Let us select a point P' such that

7y < PI < O7"

,Y"< P, + (I-PI)A < -y", (4.6)

whorls ['v, -'Y11 it a D region and [I" , .']I is a W region.

Then by eequation (4.5)

v0" (P1 (1 -P ')(Ir + V (A)) < WP' + V[]P' + (I -?')• (4.7)

andl

V (P' + (I-)) =W(P' + (1 -P') X + V [P + (I -P ),x + (I -P )(I -A))L

(4.8)
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Combining equations (4. 7) and (4. 8)

(I-P')(F + V(X)) < WP' + (1-PI)(1,X) [F + V(>)]

which reduces to

w• (4.9)

if we select another point P' so that

T I < Pi+ (I -P")x <1 (4. ILI

we can show in a similar manner that

P to< AF + V (X))
w

which, with equation (4.9) implies that p'I< pi . But, mince equations
(4.6) and (4. 10) require PF < -" < Pit the contradiction is proven.

We have justoshowr then that G(P) and D(P) intersect at
MO PoiO , ad defining this point as P 7 'y, we re-write equation (4.5)

01-P)(r + v(X) P t'y
ri(P) -

(4.11)•WP+ v[P + (I -p) x p 15'y

As a first step in the solution of this equation, let P a v
Then Since '+(1-7) A >Y we have V(v) •(I-y)(F+V(X)) = WT+
+ ( 'V "T)>) 2 Wy + (I-'Y)(1-A)(F+V(A)) from which we get

--'0(



I

so that equation (4. 11) becomes

I~ -L-- P 2t,

V (P) (4.13)

Wl + v[P + 0(-P)X] PSY

The next step is to find y in terms of W, F and X . Once

this is obtained, the optimal strategy is defined. (Determination of the

functional form of V (P) for P -- -y will then r -NIy upon iterations of

(4.13) in a manner to be described later.)

To determine y , let us assamue that -y has been obtained

and is such that

<-(:-A) <-

G -0-7) < ly

S-.X),-C) -Y (4.14)

where n is the smallest integer such that equation (4.14) holds.

By n-I successive applications of equation (4.13) we get

V(C) w A +v[l - (I-A) 2 )

= WX + W(l - (1-1) ) + v[l - (i-_)3]

-w(n-) - (I - + Vfl - (1A-X}nl

all (n-1) ste•ps being the result of W-decisions. Finally, since the
th

n must be a D-decision:

V (, O) = Vm [(n_-1) _-•L),, ),+( )n*y W
11-A n-
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Using the value of V(A) from equation (4. 12) we may solve for y in

terms of n

S. 1 - ••(4.15)

A. + n)

By use of equation (4.14) we find that n is the smallest integer such

that

( 'XI. ) _ . (4.16,)
14,. (-+n)

Once n is found, -1 is then obtained from equation (4. 15).

We have just proved that the form of the strategy consists

of waiting for a fixed amount of time (number of time units) n-,l ; .ther

choosing a D-decision. In the event that the search has just started,

(or that a D-decision has just been n-Ade but the target has not yet

arrived, so that the search must be resumed with P = 0), this fixnd

amount of time is given by equation (4. 16), from which V can be

determined.

N the search starts out so that P 0 X , then by sur-cessive

applications of equation (4. 13) we can show in a calculation similar

to that above that the time until a D-decision , n (P) , is g'vian by

the smallest a (P) that satisfies

(I-P)(I-X)n(P) I S 1 (4.17)

In order to compute V (P) we again simply apply equation

(4.13), [n(P)-II times with decision W , and the n(P) th time witn

a D-decision. This gives the following form of the minimum cost,

where n = n (P)

S~-82-
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1.E-li-iI
V(P) W[(11-l) (- 1?A) I"n-I

(4. 'S)

When the mean arrival time gets. very large (so that A < 1),

an interesting approxirnation holds. Since n gets large, -we mp~y

consider equation (4. 16) to be an equality, and as X-"O we find,

I + X F I + n) _i- n-, " 1 + n>, + n--' --) (z +I

so that

n(n+ ) 2 -
WX

or, since n is very large, n - With this approximation

equation (4.15) becomes

F %2FX
W + w

fX + IZFX

and so V(0)= V(Q) = " W from equation (4. 1Z). Thus, if the

search always starts with P = 0 or P = A , this extpression gives

the minimum expected search cost.

4.1. 1 Numerical Example of the Non-Informative Search

In this section we shall treat a simple example of the search

,tnalysed in the previous section. The solution is in itself interestig

and is also useful in order to compare the result with an informative

search to be tieated later.
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It is known that an uniriendly trawler will arrive in a certair

region of the ocean in order to cut some trans-oceanic cables. The

defense of this region is carried out by a unit that can dispatch high

speed aircraft to the region which are able to identify and deter the

trawler. If, when the aircraft are sent out, the trawler is not present,

they note this fact, return to base and a flight cost of $ 10,000 is incu,

However, for every half-hour (unit time) period after it. a~rrives- that.t'h

trawler is unchallenged in the region, it does $ 1,000 worth of damar,.<

It is assumed that the time that the trawler will arrive at the region iL.

a geometrically distributed random variable with a mean of 5 hours

(10 unit time periods), so that A = .1. In units of S 10, 000, F = I

and W= 1.

Using equation (4.16)

(.9)n , (2 ÷.In) "I

we find that the smallest n thi,• satisfies this expression is n I I

Thus the optimal strategy, given that the trawler is not present at the

start of the search, is to wit (n-l) time units (5 hours) before sending

out the aircraft, and repeat this procedure, until the trawler is fouad.

A calculation of V is made with equation (4.15)

"l- (2. .673

and the expected cost at the beginning of the search is

V(O) a V(.%) a __ L_ .*673 -1=1I .3X7 "3"
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If P is the probability that the trawler is in the region at

the start of the search, then n(P) and V (P) may be calculated by mean

of equations (4. 17) and (4.18) with the value of y = .673 . A plot of V(P;

is shown in Figure 4. 2. Note that V(P) consists of the lower envelope

of 11 straight lines. These represent the cost of search if the strategy

is to wait (n-1) units of time before sending the aircraft, where

n = 1,2,..., I . The n for the minimum cost at any P is thus n(P)

For example, for P =t y, n = 1 and equation (4.18) gives

V (P y (I -P) 0 .06 (1- P)

4.5 Previous Work Relating to the Non-Informative Search

Before considering the informative search model it should be

noted that the non-informative problem has been considered in the litera-

ture, but not within the framework of search. Barlow et. al (2) discuss

this probhnta as an example of a "checking" procedure, and consider its

applications particularly to problems of checking equipment that is subjec.

to random failure. Thus the D-decision is the decision to check the part

to see if it has failed yet, with some appropriate nuisance cost if it hasn't,

while the W-decision is the decision to wait one more time unit. They do

not attempt to treat the extension of the problem to the possibility of obser.

vring some noisy signal associated with the failing part (a temperature

reading, for example). The problem is defined in terms of continuous

times, so that n is replaced by t , and equation (4.14) and equations

derived from it become equalities.

What is an interesting comment on their work, however, is the

fact that although they assume a general form of the arrival distribution,

they never prove the form of the optimal solution. What is done, in effect,

is to assume that the optimal checking procedure will be to wait some time

tI, then check, if no failure is seen, wait some time t2 , check, etc.

They go on to show that for the exponential failure time density function

(the equihalent of out geometric mass function) these t. are equal.
1

The assumption of the (now proven correct) fixed checking time for-m

- $5 -
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of solution enables them to ime*ndiately write a cost expression in tnMo

of the checking time t , which can be minimized by differentiation.

The dynamic programming approach adopted in section 4. 2

thus has the advantage of providing the form of the optimal strategy,

as well as its parameters. In addition, as will be seen below, we

are now in a position to simply extend the structure to allow for

observations of a random variable relating to the state of nature

(whether or not it concerns a target arriving, or a piece of failing

equipment).

4.6 Optimal Search With Information

We are now ready to attack the problem involving observations

of a random variable x with every W decision First we note that the

proof in section 4.4 concerning the form of the non-informative search

may be carried over conceptually to the more general case represented

by equation (4. 4), so we state without formal proof that equation (4.4)

may be written

(D(P) D (P) P 2t

V (P ) = ra in [ H (. S9)

where

D{P) = (1-P)(F + V(A)

go/'P p,(x) + (l -P) p 0 (H(P) =PW + [PP, (x) + 0 -F)Po(X)) V P P (x)+ (I-p) dx

We are now faced with a functional equation similar to that treated in

Chapter III. Unfortunately, however, there is no efficient way to

intuitively truncate the search, as was done in that case. In spite
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of this lack of intuitive truncation, it is of course still possible to

solve equation (4. 19) by such an iterative procedure. In fact, a standard

technique for solving such functional equations, and many transcendental

equations, is simply the method of successive approximations used in

the previous section. If convergence properties can be shown, then

any such method is valid, despite the non-physical character of

intermediate solutions.

For this reason, we shall re-write equation (4. 19) with V

as a fuwtktion of an iteration index n (that has no particular connection

to any physical index of the search). Doing this yields

V P)=sinD• n(P) = (I -P)(F + V W •)(4 O

n n-i 14~

V n(P) = m inm 
P p W + 1 -P (

nCnr[ .. x:(. -:p•

(1) = PW+j.oP P (x)+(l -P) P0 (x)] Vn-l Ppl (x)+(l-P) .

N11 that is needd now is the selection of the boundary condition V0 (P)

and assurance that successive iterations will converge the process

to V(P) as n-co . If we let V 0 (P) = 0 for all P , then

VI(P) z min [(I-P)F, PW] 20 = V0 (P)

With the fact that we have found some V (P) V 1 (P) , a proof

very simlmar to that leading to theorem B of section 3. 3. i allows us

to show that in fact all V (P) IL Vn (P) , so that the process will

approach V(P) from below, To complete the convergence, we need

to show that V(P) is bounded from above, This can be shown by

noting thnt

S(1-)8(F + -)
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so that V(A) -- F • and therefore

V(P) 5 (1-P)(F+ V(X) ) 1 X-P F (421

Again, as in Chapter I1I, it is easy to show that ^n

the solution of

Dn(,yn) = Hn(,y)

converges to some limit Y' as n-'0.

An example of this iteration process is shown in Figure 4.3,

where we have selected the values of the parameters to compare to

the results of section 4.4. 1. The p 0 (x) and p1 (x) are normal dis-

tributions with unit variance and mean of 0 and jt respectively,

where p. is the signal to noise ratio.

These calculations were calculated on an IBM 7090. As can

be seen from the figure, the convergence is much slower than that for

the problems of Chapter III. However, the computations are still

essentially additions, with an appropriate approximation for the integral.

The general solution of the search for a randomly arriving

target, with observations of an appropriate signal, has thus been

obtained, with the minimum cost attainable and optimal strategy

comprising the solution. An pointed out in a previous section, this

model applicable to a randomly arriving target may also be applied

to such problems as a randomly failing piece of equipment.
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4.6. 1 Numerical Example of Informative Sequential Search

The defense unit of section 4. 4. 1 has decided to install a

sonar apparatus to aid in the search against the trawler. The results

of integrating sonar signals for the half-hour unit time is a random

variable x that has p. d. f. p0 (x) if the trawler has not yet arrived,

or p1 (x) if the trawler has arrived, where p0 (x) = fN(x; 0, 1) ,

P1 (x) = fN(x; 1, 1) . As indic-'ed in section 3.5.1, this is the case

when detecting a known signal . additive Gaussian noise, with a

signal-to-noise ratio 1.- 1 .

From Figure 4. 3 we note that -y = .78 . This is higher

than the value of . 673 , and indicates that ýhe availability of informatioi,

will let the searcher be less quick to respond. We rtie note that

V(0) = V(M) -- . 58 , which is a saving of close to 50% compared to

the ion-informative search. The strategy that gives these results

follows.

Suppose P = = .1 to start the search. Since I = .78,

an obsezvation is required at the first time interval. Suppose a value

x is the result of this observation.

The posteriori probability P(xl) that the target h u s arrived

is now given by equation (4. 3)
1

(.1) P (x l+ (, W. 9) PO Xl) 1.)exp (xl - 1)+ .o9
P(xI) = 1

11 (+9)p0 (x1 ) I exp(x 1 - ) + .9

Comparing this with 7 , we see theft i1

1
?xp (x -) Z: Z7 . 8
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or

xI +. I n 17.8 5w,.t.

then the aircraft should be eieut out. If not, another observation x

should be made, the a posteriori probability P (xi, x2) should be

calculated and compared to y, etc.

4.6.2 A Comment on The Solution

As is shown by the exam•.ple in Figure 4. 3, although con-
vergence of Vn (P) to V(P) is guaranteed, the speed with which

the process converges is rather slow. In fact, a~s X gets very stratA,

causing the cost of search to increase, the convergence is even slower.

This unfortunate practical difficulty is at present unresolved. One

possible approach ip suggestes here.

We decided in section 4.6 to start the iteration with V0 (P)

which consequently assures convergence fr,•m below. It is equally

possible to start, the iteration at some appropriate large value, which

will again asute convergence, but then from above. One such value

would be the right hamd side of the condition given in equation (4. Z1),

i.e. V0 (r) x • However, a lower starting point is available by

noting that the minimum cost o1 the informative search is less than

or oqual to the minimum cost of the non-informative rearch, for all

values of P . This lbwer starting value of V0 (P) could considerably

decrease the number of Iterations needed to provide a given degree of

accuracy.

Other techniqu6s for establishing a reasonable first guess

of V FP) , and )eWL.ig this equal V0 (P) , •Io4l4 be a Valbable. -
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aid in the computation. In general, however, convergence proofs might

"be dIfficult for arbitrary starting functions V0 (P)

4.7 Implementation of the Strategy and Comments On the Geometric
Arrival Assumptin

In Chapter III we showed that the use of the optirnal search

strategy resulted in essentially a Wald sprt, where the decision boundaries

were determined by cost considerations rather than by error probabilities,

A similar analysis of the implementation of the strategy developed in

section 4. 6 is of interest, in that it points out a basic limitation to the

treatment -f the problem.

From the form of the decision structure presented in equation

(4. 18), we see that P , the probability that the target has arrived up to

some time, is constantly compared to some decision. threshold y . When

a D-decision occurs, P automatically returns to 0 if the target has aot

yet arrived. With a series of W-decisions, however, a series of obser-

vations x 1 ,x., ... has been made, and the posterior probability of the

target having arrived can be derived.

Specifically, let us consider the search to start with a

W-decision at 7 = 1 , and that n successive observations of

... Px are made, We shall also consider a completely general

arrival time distribution f(t), t=l, 2,... (we define f(O) = 0) . Using

the statement of conditional probability, where x = (xx, , . , Xn ),

we define

P iprob. {t 5 nx) = prob. {LxIt-In) rob. {t-<n)
n prob. { x
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The unconditional probability of receiving some vector x is

a n n
prob. (x f (1) A~ pi (xi ) + f (2) p0 (xj) .112 p, (x.) + f (3) P0 (xj) p0 (x2)i• -.

00

+ ... f(n) 1 =1 P% (xi I p n (xn) + (J) I PO (x i)

j=n÷

1 = 1~i= I x) + £(J) 1•= PO(X N =j P1 ('k)

j=Z j=n+ 1

(4.22)

Similarly, we may calculate

n ~ nn

prob. {x It:5n) -pr ob. {t:5n) = f (1) AII p1 (x.)+Lf (i)( P (xi)k..P, (X.
j = Z --

(4.23)

The condition for a D-decision, given that x hŽs been observed, is

that P n & y Using the above expressions this co ndition becomes

n

JsZ 0un , k 1 /lY \I lO

Dividing by ji, PO (xi) givoa the conditiun

£"(x1 j/3 K j=n+1
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where I (xi) is the likelihood ratio for each observed x.

We note now an interesting relation between this search and

the one developed in Chapter III, and described in section 3 4. If we

assume that f(t) is such that

f(l) = P

f(j) =0 j < 0

f(cO) 1 - P

(that is, the target either arrives at t=i with probability P , or it

never arrives so that f(00) = l-P) , then the condition (4.24) becomes

nIi L(x ) > 7- -i=l -- i-Y P

which is precisely the condition needed in the sprt to reach a D

decision. We see then that we have not only L sprt, biut one with

no lower decision point, which implies that W0 = 0 (see the proof

of theorem D and the definition of r'). We have shown then that a

certain class of the problems described by equation (3. 2), namely

those for which W 0 = 0 , are imbedded in the general solution uf

equation (4. 4).

Returning to the prbblem at hand, in the general case

represented by equation (4. 24), we can no longer describ,; the test

that develops as a simple random-walk. In fact the equation repre-
n

sents a very complicated process. Not only is the .I L(x.) termn
1=3 1

weighted by the f(j) , this weighting is successively compared to

a term which gets smaller as n increases. Since the simple
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random-walk with constant absorbing barriers has n~ot been fully solved

(see Appendix A), there is no reason co believe that chis non-M.rkovi.n

(bczause P is more than just a function of P .1) procesiL with non-n n

constant barrier wcou ld be any easier. Thus a strictly Wald-type approa¢cI

depending as it does upon the statistics of such a proce.s, -woul-l not seea

too profitable.

Ii we let f(t) = X (14)t-I (t =, Z, .. .), ho-wever, an interest-d.

result is shown. Equation (4.24) becomes
n Go

x l-x)j-II. L (x.) >: -I X(l -. )jI= lk n

Ii=J 1 -Y
j=1 j =n+1

and by defining A(x) - L(xi)/(1-A) we get

n
n

X.1 A(x.)

j-

which has the advantage of being a test that compares a variable

n
n

Jul

to a convstant decision threshold.

In addition, the. #oqumnce Z 4escribes a Markoov process in

that z only depends upon Zn (as well as A(xul +I, of course). lo

show this we note that

zn+l u Zn A (xn+ I) + A(x+1)

which can be verified by direct substitution into the definition of Z n

n
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The geometric distribution of arrival times thus imparts

a Markov character to the decision process. And indeed, it is just

this character that has allowed us to approach the problem from the

dynainic programming point of view. By allowing the argunent of V

to be P (and similarly the argument of C in Chapter I11), we have

been assuming that P is completely descriptive of the searcher's

state of knowledge about the system, and that the history of events

that lead to P are unimportant. Conversely, since for the general

arrival time distribution it cannot be shown that equation (4. 24) re-

presents a Markov process, we cannot write a general equation

similar to equation (4. 4) as P alone is not sufficient to represent

a "state" of the process.

4.8 Fixed Threshold Sequential !search

As a prelude to the next sections, we shall consider here

the optimal search with the use of threshold observations defined ia

section 3. 6. Again we shall c-nasider the comparison of x to some

fixed threshold x* which remains constant throughout the aearch.

Defining, as before

f =f(x*) =Yp 0(x) dx
o0

d =d(x*) = p, (x)dx
X'

we may write an equation similar to equation (4.4), with R(P) here

representing the minimum expected cost obtained by usiliv the optimal

fixed threshold sequential strategy, and the observations consist of

",=t(x;zx*) and y= 0 (xcSx*).
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I(1 -P)( + R(X)

R (P) = nin ~ Id

•__PW + [Pd + (l-PilR P. d+ (l'Pl-f- +
Pd Q (1-.P) + (l-P)(l-f9t

P d +(1-P)(1 -f)2

(4. 25)

As in the previous sections we shall compute R (P) = lim R (P)

using the equation

A:(P) A(lP) P? y

Rn (P) = rmin = (4.26)
(P) BnP) P --

where

A (n(P)=(1 F)+R (A)) 0 + R-00

X (P) a PW + [Pd + (I-P)f] R _ Pd+(1-P
Ik P + (1-P) f

+ [P (1-d) + (I-P)(l-)] R P d + (I-P)(1-f) x

&ad

% (P) a 0.

Again, we note that R (P) is a function of x* through d

and f, and so the final optimisation takes place for each P (and,. in

particular, for P = A) such that

min (P)= n [(P)
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An example of such a calculation is shown in Figures 4.4, 4. 5,

and 4. 6 with values of W , F , X and ýt similar to those used in previous

examples for the no observation case, and for the continuous x case.

Figure 4. 4 shows the convergence of R (P) to R (P) for a particularn

x value. Figure 4.5 is a plot of RI(X) as a function of x* (and thus

a function of d), and Figure 4. 6 is a plot of R min (P) as a function of P

4.8.1 Numerical Example of Fixed Threshold Sequential Search

We return to the search for the trawler of the previous example,

and assume that the sonar device has a built-in threshold which must be

set permanently before the search starts. Given the same cost para-

meters as before, we see from Figure 4. 5 that if the search starts with

P X tho threshold x* must be set to equal x* = . 88 so that d = .55

f = . 19 . Using this value of the threshold we see from Figure 4.6 that

= .75 and V(X) = .67 , whici is a higher cost than the search with

observation of continuous x , but a lower cost than obtained in the non-
informative search. These oth4r. two costs are also illustrated by the

other lines in Figure 4.6.

The fixed threshold strategy that results is as follows. Suppose

that the search starts with P = X . Since A = . 1 < - = . 75 , an observa-

tion y1 should be taken. The two possible output results, are y, "" 0

(x S x*) and yl = 1 (x ; x*) , which produce the a posteriori probabilities,

(. 1)(1 -d) + (. 1)(.9)(1 -f) . 15 Yl = 0

)(.1)d+ (.l)(.9)f
(._)d + (.9)f f .32 Y1  I
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Since both these values are less than y = . 75 , another measureme

should be taken. Now the a posteriori probability depends upon the

sequence Y, Y7 ' and ix

((.15)(1 -d) + 1,(. 1(85)(1 =).18 10, 0
15)(1-d) + (,85)(1-f)

(.15)(d+ (.1)% 8)f = .40 (yly2) (0,1..

S(.32)(1 -d) + (68) (1 -f) = . 8 (Y''y 2 )"= (1,uG

(.3Z)d+ (.1)(.68)f f

G. 32) d + (. 8)f1

which are all ctill less than . 75 . However, we see that the observ

with y = 1 (i.e. (0,1) and (1, 1) ) have a higher P . We would e':-

that in these cases a y 3 = 1 observation would result in P > . 75 ,

in fact this is so. Thus the sequential strategy develops sequences

observations which lead eventually to the decision to send the &i-rcra

4.9 Analysis of Somre Non-Sequential and Non-Optimal Decisio
Au-as: ' Practical Considerations

Although the threshold search process of the previous sect

involves a simpler equation than the one where continuous x is mea

the implementation still requir,," cakulation of a weighted sum of li:

lihood ratios and comparison with a thresholdJ, just as in the earlier

sections. For this reason, the required decision making demands a

sophisticated arithmetic capability, 4 condition often laiking in pract

situations.
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A study of some non-sequential (and therefore non-optirral)

decision rules that have the adwantage of being simple to uae are now

coasidered using the model of a randomly arriving target derived in

this chapter. In particular, we would like to evaluate some of the

"classical" rules under thl eondition that, although they were designed

for hypothesis testing, they are %pplied to the randonily arriving target.

The non-sequeltial STSD rules of section (2. 4) are of particular

interest. Suppose that they are used in repeated situations, so that at

every time interval decision D1 or D is made, but that the prohabi-

lity P of "target present" is always the same at each situation. We

consider the search to continue until the correct decision {D 1 S1 }

is made, at which time it terminates. If we wish to consider this

within the structure of the randomly arriving target model, we see

that it is the equivalent of assuming the rule:

for any xi., if x. 1x2 : D11

x ix* : W

or, in words, take action on the first measurement that exceeds some

fixed threshold x*. Let us investigate how x* is obtained.

With STID, C (P) , the cost per decision is minimized, to

get x*, wfhere

C (P) -(0-P) CIO f + PC 0 (1 -d) (4.27)

(from equation (2. 4), with f pf, dpd , Coo = C 1 1 = 0).

The cost structure of the randomly arriving target, however,

requires a minimization of the cost of the entire search V(P) . The

cost of search, given that the target arrives at time. t and using the
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above strategy, consists of two terms. The first is the cost of false

decisions that occur until t , an average of f per unit time. The

second term is due to the expected tihne T needed to make the correct

rn-decision after the target- arrives, which is

o0
S= d(1-d)rl

The total cost V(t) given arrival time t is thus

V(t) = fFt + 'It"'- -

and the average total cost V is

0o

V ILV(t) p(t) = fFT+ W ?

t=0

where p(t) is the arrival time distribution. By saying that P is the
t

same for each observation we have assumed that p(t) = P(1-P) , so

that =1- and
P

I -P W(4.28)v(P) -=v = f F( + T " "(4 8

We have seen before that the operating point when the cost

is expressed by equation (4. 27) is defined by the point on the ROC

where

d(d) I-P C10
"d'f P C 01

By minimizing the cost assumed in equation (4. 28)5 however,

we have for an operating point

d(d) =dZ 1-P F (4.29)
df P W
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If we observe that F and W are the exact analogues of the costs C1 0

and C01 respectively (that is C1 0  = cost of (DIS0) , and C01 = W=

cost of OrI{s 1 ) we see that the operating point expressed by equation

(4. 29) required a smaller value of d(d)/df on the ROC, and so operation

at - higher d and f. See, for example, Figure Z. 2.

What is most interesting, however, is that for the randomly

arrivivrg target, the two variables of detection that enter into the cost

of eep2rch are the probability per unit time (or "rate ') of making false

alarms and the expected time until detection after the target arrives.

For the simple" decision rule analysed above, the false alarm rate was

simr1y equal to the false indication probability i , since only one indi-

cation was required for a D-decision. Similarly, T , the average time

until detection after the target arrives is simply related to d since "r

the time until detection after the target arrives is geometrically diotri-

buted with parameter d , and hence T = (-), Ia I bn aral -howexer; .. ,

we see that for the model of the randomly arriving target we can charac-

terize the search s (detection device plus a decision rule) by

means of a couple (*, i' , where + is now defined as the false alarm

rate. We recall that a false alarm is the decision to decide the target

has arrivoA when in fact it has not.

This characterisation of a system by (*; r) will be shown to

be entirely analagous to the characterization of a detection device by

the (pf, pd) couple defining the ROC, as in Chapter 11.

4. 10 The &stem Operatint Characteristic (SOC)

Just as in ST8D the receiver operating characteristic (ROC)

was a useful concept in comparing and evaluating detection devices,

(see section 2. 3) a claim is now made for the use of a similar concept
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for the comparison and evaluation of certain search systems. By search

system we mean a detection device used in conjunction with a decision

rule. Although the ROC can be used to compare search systems, it can

do so only if they conform to the same set of decision rules, which in

turn lead to some equivalent pf and pd '

The System Operating Chara t ýistic (SOC) that is proposed

here is simply a plot of T v. S. ý for any search system. By 4) we

now mea. that fraction of time that the system produces the wrong

decision {DISo} , and by T we mean simply the expected time to

reach the decision {DIS 1 ) after the arrival of the target. For the

randomly arriving target model the SOC may be used for both qualitative

and quantitative comparison of different systems, just as the ROC was

used to compare detection devices for the stationary target model.

For example of the qualitative aspects, let us consider two

systems S1 and S with operating points (TI , cI) and (T, .

If Tr < T and ý < c5Z .then S1 is preferable to S, .and so the
1 121

direction of preference on the SOC is 'down and to the left.. In order

to obtain a SOC it is of course necessary to give the decision rule as

well as the characteristics of the detection device. The SOC's in

Figure 4.7 are the equivalent of the ROC's given in Figure 2. 2, i.e.

for the detection of a known signal in additive Gaussian noise, (with

% the signal to noise ratio), and the decision rule: if x >-- x* : DI I

if x -- x* • D at every observation. Note that an increase in I. is

still a universal improvement.

Once the SOC is given, the optimal operating point for any

decision criterion (not only the 'Bayes') may be obtained. As shown

in the previous section, the cost of search may be written in general as

V = eFt + WT- (4.30)
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so that the minimum-cost (',Bayes'l operating point is where

dO

with t the mean arrival time of the target.

If the Neyman-Pearson criterion is usel, some arbitrary

maximum allowable false alarm rate c = 4* is ixed, and the - -

operating point determined by the SOC at the poi t 4 = 0 . The

use of the SOC for this criterion is very well ilh strated by the

following example. Suppose that the decision rule is to make decision

DŽ only when there are indications (x > x*) at k successive times,

and the detection device is for the familiar known target in additive

Gaussian noise.

From standard recurrent event theory one can show that

k
(-pf

k

1-pdk
_ 1) Pd

( 1- pd pdk

where again

Pf = Spo (x)dx

Pd " (x) dx

x-
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For any fixed k and x* there results a value of ý and T , and by

lettipg x* vary from minus infinity to infinity we produce the SOC for

the k-in-^ -row system. These SOCIs are shown in Figure 4.8 for

k = I (thSTSD case), k = 2 , k = 3 with i = I . As can be seen,

the valua of k to be used depends upon where in the l - 1 plane

the operating point is located,

For the Neynan-Pearson criterion, it is often useful to

present ROC as a plot of Pd V. ', it for the given desired p.

Similarly we may draw the SOC for the above erample, for a given

as a plot of r v.a. -I, or , more convenient, as a plot of

T/7 v.s. f.. Figure 4.9 shows such a plot fcr a fixed 1* = I0 8

(This value of critical false alarm rate seems to be a popular one

for radar search systemd.) We note that as IL becomes large '--•k

(which is reasonable since it still requires k measurements before

a D-decision can be made) and the k = 1 rule is best. However,

as 14 becomes small, it becomes advantageous to use the 2-in-a-row

rule, then the 3-in-a-row rule, and so on.
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CHAPTER V

CONCL USION

5.1 Summary of Results

The objective of this study has been to obtain a set of decision

rules for use in certain general search situations. These rules, called

optimal sequential search strategies, are "Optimal' in that their use

insures that the total cost of search is as small as possible. They are

"sequential" in the sense that at any point in the search, the decision rules

are affected by what has been observed up to that point.

The principle technique employed has been the representation

of the search process in terms of a stochastic dynamic program. This

method not only provides the form of the optimal strategy. it also produces

as a natural consequence the minimum cost attained by using such a strategy.

This allows an immediate quantitative comparison of the results with any

non-optimal strategy for which the cost is available.

The models that were treated involved the use of detection devices

that are imperfect, in the sense that a target that is present might go unde-

tected, or a "detection" might occur when the target is in fact not present.

The latter error is referred to as a false alarm, and its consideration is

what distinguishes the present work from most of the published literature

in search theory.

5. 1. 1 Optimal Sequential Search for a Stationary Target

In thiL, model, discussed in Chapter III, the target is considered

to be, for all time, present in the region of search with probability P ,

or not present with probability (1 -P) . Knowing the value of P , at fixed
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intervals of time the searcher must either make a terminal decision or

make a measurement of a random variable. The distribution function of

this random variable depends upon whether or not the tai-get is actually

present. The two terminal decisions involve taking action corresponding

to the conclusion that the target is present, or that the target is absent.

The search is then ended, and a cost is incurred if the conclusion reached

is wrong. If a measurement is taken, a cost (which depends upon whether

or not the target is present) is incurred. The measured random variable,

however, also depends upon whether or not the target is present, so

information about the target's presence is gained from every measurement

TI e optimal strategy (which decisions to make on the basis of

a knowledge of P at the start, plus possible subsequent measurexnents)

and minimum cost were then obtained by the solution of a functional

equation. This functional equation may be solved numerically by a

method of successive approximations which is equivalent to treating

the equation as a dynamic program. The state variable of this program

is the probability that the target is present, which is adjusted by Bayes

Rule after every observation.

Proof of the convergence of such a program, and the general

form of the strategy that arises were developed and examples calculated

for interesting cases. In particular, it was shown that the optimei, se-

quential strategy is similar to the Wald sequential probability ratio test

(sprt). The sprt, however, involves the a and P error-s of classical

statistics and may be only approximately derived, while the new result

offers the minimum cost directly, and provides a solution to any desired

degree of accuracy. In addition, if the search must be truncated (stopped

after some given length of time) the dynamic programming solution still
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offers, by definition, the minimum cost search, whereas sprt truncation

solutions often are quite arbitrary. The results were also compared

with the minimum cost non-sequential decision rule that is a part of

the Statistical Theory of Signal Detection.

Tha- method of solution also facilitates the evaluation of certain

non-optimal decision rules. In particular, we have analysed the situation

where observation of a continuous random variable is restricted to noting

whether or not it exceeds a fixed threshold. The extra cost due to this

quantization of the observation was then obtained.

The method developed here for treating this problem is in fact

applicable to any hypothesis testing situation, where the cost of experi-

mentation depends upon the state of nature, and the a priori hypothesis

probability and the terminal decision error costs are known.

5.1.2 Optimal Sequential Search for a Target Arriving at a
Random Tirite" .

Chapter IV treated a search situation that is often referred

to as the "raid recognition" problem. At the start of the search, the

target is present in the region of interest with an a priori probability

P . At successive constant time intervals thereafter, if the target is

not yet present, it has probability X of arriving. Once the target

arrives in the region, it remains for the rest of the search. At every

time interval, the searcher must either decide to take action commen-

surate with the conclusion that the target has arrived, or make an

observation of a random variable which has a distribution that depends

upon whether or no the target has in fact arrived. If it is concluded

that the target has arrived, and it hasn't, the searcher- is so informed
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and a false alarm cost is incurred. After the target has arrived, a cost

is incurred that is proprotional to the length of time it takes to conclude

that it has arrived.

The optimal sequential strategy and resulting minimum cost

were again obtained from the solution of a f.nctional equation of the

dynamic programming type. The state variable of the program is the

probability that the target has already arrived. This is adjusted by

Baye*' Rule after every observation, or set to zero if a "target has

arrived" conclusion is made and the target hao in fact not yet arrived.

Comparison between ýhe optimal sequential strategy and some

non-optimal strategies was made, and the difference betweem them

discussed.

A side result of the solution has been the development of what

is called a System Operating Characteristic. This is simply a plot of

time until detection (given the target has arrived) against false alarm

rate for any search system (search strategy plus detection device).

Its use is aaaloosas in the randomly arriving target search to the use

of the Receiver Operating Characteristic in the hypothesis tent search,

in that it allows both a qcutitative and quabtitive comparison of -:arious

detection devices and decision rules.

It has also boon noted that the solution is valid for a larger

class of problems than simply those of search. For example, the

method developed here may be used to derive optimal checkitg stra-

tegies for machinery subject to random failure while some pertinent

output parameter 4kXMSdVvariable) is being monitored.
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5.1.3 Comments on the Solutions --- Need for Further Analysis

The major results of this study have been the formulation of the

search models in a way that takes into account their intrinsic sequential

qualities. Due to the dynamic program form of the resulting equations,

analytic solutions (except for the non-informative random target arrival

time search) are not attainable. An additional analytical difficulty has

been the existence of the (reasonable) assumption that the observed

random variables are normally distributed. Although the solutions

can be obtained numerically for any set of parameters, it would be

interesting to obtain at least approximate solutions for certain limiting

cases. There are two of these in particular that the author has

attempted, with (to date) little results.

The first concerns the limiting behavior of C (P) , the

minimum cost of sequential search for the stationary target. In

many practical cases, P is very close to zero, while the false

alarm cost is very much greater than the missed target cost

(C0>>C 0) . How does C(P) vary with IA in this limit, and howAV 01
does the strategy vary?

The second problem has to do with the very slow convergence

of the calculation of V(P) , the minimum cost for the randomly arriving

target search, when X , the probability of arrival per unit time, be-

comes small. If it were possible to start the iteration at oome reason-

able guess for V(P) , the convergence would become that much quicker.

The problem of interest, then, is to obtain sothe reasonable approximation

for V(P) as a function of 1A as X-. In particular, an approximation

for V(O) = V(X) would be useful.
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In general, any results that can produce an analytic expression

for V(P) and C (P) , or the decision regions (y, 6) and (0, e) defining

the strategies, for any (non-degenerate) limiting case, would be worthwhile.

5. 2 Suggested Areas of Further Re3earch

The subject of sequential estimation as an element of search was

quickly mentioned and dropped in Chapter II. This very difficult topic is

related to the problem of parameterization of Markov processes, one

that has been recently attacked by Kramer (28). Using his results, it

might be possible to analyse the following sort of problem. A stationary

target is being searched for as in Chapter III. The signal-to-noise ratio

;L is uncertain, however, and is in fact a random variable with (say) a

known p. d. f. g (IL) . If a decision is made that the target is present,

then an estimate of 1L must accompany this decision. An appropriate

cost of wrong estimation is assumed. What is the best sequential strategy

including a rule for estirnating p ? This problem could be set up in a

dynamic programming fashion if the posteriori p. d. f. on I, given an

observation x , has the same functional form as g (p) . However, this

rarely is the case, and approximate techniques (such as those developed

bj- Kramer) are needed. It is interesting to note that some approximate

sequential estimation techniques, based upon fiducial probability arguments,

have been derived for this sort of problem (see Turner (44)).

Although the Randomly Arriving Target model was created to

represent a more realistic type of search, it too has a basically weak

assumption--- that after arriving the targ' -emains in the region for

the rest of the search. In fact, in many realistic search situations the
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target is continuously appearing and dissapearing, often 'at random".

Kimball (25) and others have formulated models reflecting this effect,

but there has been no analysis taking into consideration false alarms.

A related problem hay been studied by Drake (12), with the emphasis

on the information-theoretical aspects of the "noisy" observations of

such an appearing-disappearing model. A decision-theory approach

to this sort of situation would prove fruitful in such fields as submarine

search, detection of epidemics, etc.

A final suggestion for further work concerns what is probably

the most well known of results in search theory, Koopman's (26)

solution for the distribution of search effort over a continuous field.

Here, the target location is represented by a p. d. f. (on a line, say),

and the searcher mtot allotate.a fied quantity of search effort along

the line such that the overall probability of detection of the tar--t i.%

a maximum. The detection probability at any point x is assumed to

be an increasing fuzaction of the search effort placed between x and

x + dx . Suppose now that there is in addition a false alarm probability

at every x that is independent of the target behavior, but a function of

the search effort at x . With an appropriate cost structure, what

should the distribution of search effort be? The author has pointed

out in an earlier paper (37) that the no-false-alarm solution to the

discrete-cell search approaches Koopman s solution in the limit.

It would be interesting to see the relation between the results in the

present work and a solution to the problem above.
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APPENDICES

A. Random Walk With Absorbing Barrier

We mention here some results concerning the one-dimensional

random walk with absorbing barriers. In section Z. 5 we noted the relation

between the sprt and this problem. Specifically, if we, let zI be the

logarithm of the likelihood ratio L (x.) and

k

Zk = z
i=l

then the test comparing Zk to the boundaries a ara b is such a random

walk. . A solution to thi.s problem should consist of (at least) the proba-

bility that the walk ends with absorption at each of the boundaries a and b,

and the expected length of time (number of samples) needed to do so, under

each state of nature S and S1 .

Wald (47) has shown the followinL results that lead to a partial

solution. Let the z. all have the same p. d.f gh (z) under the state of1

nature Sh(h=O, I) . We define Eh( ) to be the expected value of random

variable I under Sh . Then if +h(t) M EhZetz) is the moment-generating

functionoi go ) and Eh(0) *0 and g, (z) >0 for some z >0 and some

z < 0 , then there exists a t = th such that

*h'(th) = 1 (A. 1)

and th, following fundamental identity may be proven

h {eZnh(t)-} = I (A. -)

where r. (a random variable) is the length of time until absorption.
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Now let us define

ITh(b, a) = prob. {Zn 5 b)

1 - IIh (b, a) = prob. {Zn -a} (A. 3)

where Z is the value of Z at termination, and we have takenn

advantage of the fact that the process terminates with probability

one.I
We can now use (A. 1) and our knowledge of gh (z) to

calc alate t. By letting t = t in (A. 2) we also obtain L

h (eth Zn) (A.4)

Now let us suppose that when the walk terminates, it does

so at exactly Z = a or Z = b (i. e. we neglect any e:ccess of Zn n n

over these bouidaries). Then we may write (A. 4) with the aid of

(A. 3) as

bth ath

I1h Ab,a)e + [h + n h(ba)] e h= 1

or, solving for ILh(ba)

(a-b)th - bth
IIh (b,a) (a-b) e (A.5)

e - 1

Using the same appruximation we may also write

Eh%)( bIIh(b, a) + at( - h(ba)I
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and we may easily show that

Eh(Zn)
Eh(n) = E h (Z n) (A. 6)

h Eh (z

Identifying I 0 (b, a) with l-pf and I I (b, a) with 1 -pd leads

directly to equations (2. 13).

The above formulae hold, unfortunately, only for the

restriction used above---that the walk ends only with a jump exactly

onto the boundary. When (a-b) is very large compared to the values

of z. , then we see that this assumption is reasonable. However1

in the general case considered in Chapter III we cannot guarantee

this because we cannot tell beforehand the values that these boundaries

will assume.

Perhaps a more direct way of deriving the I 1h (b, a) is to

use a Chaprnan-Kolmogorov equation to describe the walk in going

frum one step to the next. Thusb
it h (b, a) (ls) ds + (s) n h(b-z,a-z)dz

-- b

The solution for this equation is not, in general known. A most

exhaustive and interesting study of such problems has been rece.t-Lly

undertaken by J. H. B. Kemperman in The Passage Problem for a

&ationary Markov Chain, University of Chicago Press (1961).

B. Decision Regions For C(P) When W0 or WI Are Zero

Theorem D has been proven for the cast where the experi-

mental costs W0 and W1 are non-zero. We demonstrate here the

proof for the condition W0 =0 or W1 = 0
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1. Letustake W0 =, Wi >0. Then bystep2of

theorem D we still have 6 _< A<1 .n

2.G (P) = PW + g ( 1 (x) dR _1 Yg n x1 g Wp 1()
Z>PW + -1 - dx1 YKn- )

-00

for any y> - o. y.

3. (Z) above becomes a strict inequality if (x) dx> 0.

Let us assume this is so. -00

4. Let y be the solution to

= 6 n
Pi (y) P + P0 (y)(1 -P) 1n-

so that y = y(P, 6nl)

5. Let yn=Pin (2) above. By(4) and the fact that

Gn (P) = yn COI , we get

"YnCo 1 > /n W1 + (1-yn) CIO YSPo (x) dx

y 6 'n -n.1)
6. Since 6n-1 : SA by theorem A.(5) becomes

C 10YQQP (x, dx

" ,yn > - Y ( -in , A) P

G01 - wlI +p 0• Po (x) dx
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7. We postulate that Yn> X'*O . Then

0 y(I" ,A) > (-n'A)

and (6) becomes

00

C o0 5 PO (W) d

Tn >'y 1, A) W
C0 1 - W1 + C110,Y PO(x) dx

y (1 , " )
8. By letting the right-hand side of (7) be equal to I" we

note that /" = 0 is a solution, and we have proved that

lir -
n-00 fn = n '

If the assumption made in (3) does not hold then the proof is invalid,

and in fact Y' 0 . A similar proof is followed for the condition

Wo0 >0 , W=1 0

C. Flow Chart of Computer Program

We present in Figure C. 1 the flow chart of the computer

program that iteratively calculates C (P) by use of equation (3. 3).

The programs used to evaluate other quantities in this work are

similar in structure and so are not shown.

The x-axis (where x is the observed random variable)

extends from -4 to +12 and is represented by 161 points . I apart.

The P-axis goes from 0 to 1 and is represented by 101 points .01

apart. It is assumed that fN (x; 0,1) = 0 for x < -4 and x> 4.
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I

CO is the initial value for the iteration and is read in for each

calculation. To evaluate C(P) when (.0l)n < P < (.Ol)(n+l) , where

n = 0, 1,..., 99 , the linear approximation

0(P) 5 C[(.O1)n] (n+l-OOP) = C[.01)(n+l)] (n-lOOP)

is used, which is exact when C (P) = T (P)

The integral

9 (x) C n- I g(x) )dx

-00

is approximated by the sum

lZ /IP (x) P\
G.1) g g(x i) C n-I gx

x.=-4
1

which produces for

SPo x) dx = Ix) dx
-00

the value 9994.
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Compute f0 (x)

Read in data

'WO,W0 W1,C00 1, CIO, C 0,

No

Compute T (P) g gWx

C ompute G n(P) I C 0 1 P, C~ 0 1P

G n (P) Minimum of G n(P) C0
C I P, C 1 0 (V1-P) C 1

6 n P ~C 1 0 (P) y P

Pr int C, (P),ISn y

Compute

E- ma [C (P) -c 1 (P)J

FIGURE C. I

Flow Chart for Computation of C (P)
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