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PART 1

ON THE MODIFICATIONS OF FLOW GRAPHS

1, Introduction

| The association of a topological structure with érset of
linear algébraic équatipns was intrbduced‘by Masoﬁ {1,2] énd is caxlgd
the sighai fipwvgraph. Coates L3]‘invented é different linear graph,
" called a flow graph, for theréame'éssoéiatiqn and gave‘a rigorous,
syStematic'devéiopmenﬁ.of some.of the toboiégical fdrmulas.,‘Hoﬁeﬁér,
these fdrmulas for the graphrgains (for both thersignai floﬁ graphs
. an&-the floﬁrgraphs)‘are not very efficiént>because of therexistence»
. of a‘lérge numﬁerrbf caﬁceilatioﬁ terms. The purpose of this pépér is
‘to‘@odifj the (Masoﬁ or>Coates) flow graphs a little bit (only the
»wéights asQQCiated with the self-loops) sortﬁéﬁ the mofe efficient .

- formulas can be obtained.‘1

2, Definitions

A directed (linear) graph G consists of a set V of elements
called nodes together with a set E of 6rdered‘pairs‘of the form (i,j)3
- . i and j'e V, called the edge§ of the.éraph; the node i is called the

initial ndde,rand node j the terminal node, For any i € V the symbols

P(i) and b*(i) will be used to demote the cardinals of thé,Sets of

edges of G having i as initial and terminal nodes, respectively. They

Seshu and Reed list this problem as one of tne research
problems in the appendix of their book [4] (p. 297, problem 18),



 are called the outgoing and incoming degrees of G at i. A node not

incident to:any edge is called an isolated node. 1Iwo subgraphs arer
disjoiﬂt'whenrthey have no edges and nodes in éqmmon; 1f S is a sub~
graphrof'G and each node of G is a node of S,'then SAis a sg;nning

‘ subgragh;ofAC. | A

| o A difected7graph G is regular of &egtee k if p(i) = p*(i)r- k
- for eaéh i eV, Agdirected circuit of G is a regular subgraph of . |
»éegreé 1; A direc:eé circuit is of lgggﬁh mrif the number of edges

contained in the directed circuit is m."A directed circuit of length 1

is called a difected self?loop‘(or simply a‘self-ioog).

A dirécted‘path Pij is a sequence of the form

‘whete'i,j‘énd,kt, t = l,if-,mraie nodes in V It is not requiredvthat

j shall be &istiht. If they are, Pij is said td ’

be a - directed simglergath. Again node i is called the initial node of

all the nodes of Pi

Pij gnd nqde J thg tefminal npde., Both nodes i and j are refegred to
as end nodes.

. To every diréctéd lineér graph G thefe'is an assoéiated
unairected‘graph Gu,whose‘edges'are thé same as those in G but with
direcﬁions-dmittgd anﬂ parallel edgns combined, G, is said to be
connected iF, for‘any two nodeé i and j, there existé an undirected
path in Gu with these two nodes as end nodes, A component of‘Gu is a

maximal connected subgraph of Gu' G is connected if Guvis connected,

A subgraph H of G is called a comgoﬁent of G if H is a maximal connected
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,Subgraph of G. An even component is a compohentiwhich confains an evén
qumber'of edges. Aﬁ isolated node is considered as an even componeﬁt.
:An n-factbriof G is a spanﬁing'subgraph of G which is réguiar
of degree n, More specificaily, a l-factor is a set of‘direé:ed‘diﬁ-
joint circuits which include ail nodes~6f‘G, Sbmétimes‘i-factors are
also fefér:ed to as connections in literature [3,5].
For the sake of later analysis the following operéfibns and

notation will be usad without any further explanation.

7 A1 \Y Az’(unibn) = elements contained either in A1'6r7A2‘0r>
both
AL A Azr(intersection) =7é1ementé contained both in'A1 and A,

‘Al‘- A2 (minus) = elements contained in A, but not in‘A

1
u(Al) = the number‘of,elementé.cqntained'in Ay

2

- where A1 and Aé are'subsets of some set A,

3. 'Modigigations of Flow Graphs and Network Determinants -

- It is always possiblé to associaté a directed liﬁear‘gréph;
called a fiow graph L3,5]; with a given sﬁuare matrix A *,L?ijJIOf
~order n, Each row (or column) is representgd by a ﬁodé,anq is labelled
by oﬁe of the iﬁtegers from 1 to n such that the node labelled k is

assécia;ed witﬁ kth row (or kt'h column), If a { # 0, there is an edge

‘ 3 |
- (1,)) directed from i to J with associated weight a For a more

it ,
-compact description'of a flow graph, tne notation of 3-tuple G(V,E,f)
is used where V is a set of nodes; E is a set of directed edges; and
f is a mapﬁing function from E to the complex field such that £((i,}))

= aj{‘for ail i,j eV, Also it is convenient to extend the mapping




function f from a single edge (i,j) € E to any subgraﬁh R of G(V,E,f)
such that |

E(R) = TE((E,K))

'7 where the product is taken over all (t,k)‘é R.‘
| Coates has given a topological fbrmula for ' he graph gain of
a'flow'gréph L3,5], The reasdn for its inefficiency n the caiculétion
df,;hé electrical netﬁo;k gain is mainly due to the fact that there
éxists a_ large nﬁmbéf of canéellations. This is bést3illustrated by
‘:‘fbe‘fqilowing example; Consider the néfwofk shown in Figﬁrérl(a)}

VThe corresponding flow graph is shown in Figure 1(b).

I,

(a)

. Figure 1, The Illustrative Example.

spc
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o m—— o e Blcemion.

The corfespondiﬁg network determinant 4 isrgiven by'

4 = (Zl+23)(Z +Z +Za)(Z +2Z +Z6) ( 23)( Z3 Zz)’Z +Z +ZG)

= (fzh)(-za)(zf+23)
= 21(22+z3)(z4 +2,) + (2 +23)za(zs+z6)

At this point‘one'readily realizes that the hain-réason for
the existence of such‘cancellations is-bééause the weigﬁés,assdciated
with the self-loops contain some of the weights of théredges incident
to that particular node., In order to‘ébtain a mbre éfficient formula,

the modified flow graph G (V' E',f' ) of a glven flow graph G(V,E, £) is

:obtained as follows

Vi =V
E' = E

£((1,1)) = £((1,3))  for i 4 ]
n .
kgl f((k:j)) i=j.

This amounts to the game thing that the weights associated with the

7 edges (i,1), 1 = 1,2,.:.,n have been changed to the shms'of‘weights

originally incident to the node i, 1 = 1,2,*,n, In Figure 1(b5,Athe
weights associated with the self-loops (1,1),(2,2),(3,3) have been

changed to Zl’ 0, Z5fz6, respectively,

Definition 1: A semi-factor R 6f'a,flow graph G(V,E,f) is a spanning

subgraph of G(V,E,f) which does not contaiﬁ.any directed circuits of

length > 2, and such that p¥(i) = 1 for all nodes i in R.

The following theorem is a direct consequence of the above

definition.
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Theorem t: FEach component of a éemi-féét&r,R of a flow graph»G(V,E,f)‘
contains axaétly‘dne seif-loop. Fﬁfthermore, the nuﬁber-of‘edgés'in R
 is (V). |
| The fo'lowing theorem will be provedf
Theorem 2: Suppose G'(Vf,E',f() is‘tﬁe modified f£low gfaph of a given
flow gréph G(V,E,f). Tﬁén the determinant (denoted By detVG)ch the

. matrix associated with G(V,E,f) can be obtaine: uy
. . q'
det G = %,“(-1) £'(R")

 ,where R' is a éemi;factér of G'(V',E',f');rq' is the number of thé even | ' ‘
jcomponeﬁts in R} and the summation is over all possible R' € ¢'(V',E},f'). |
The proof of this theorem is contained in Appendix II. .
:It is interésfing‘to,note that if bne assoéiate§'eaqh compo-
nent'bf R' either a plus cor a minus sién, accordiné to*ﬁhéther‘the"
,compoﬁéﬁt‘is odd or'even, then the resulting prbduct will givérthe same
Sigﬁ‘as (-l)q'.‘ |
| | Thé ﬁodified’flow graph G'(V',E',f') of Figure 1(b) is shown
in Fiéure 2, rThe semi-factors of G'(V',E',f') are shown in Figure 3,

By Theorem 2, one gets
det G‘f A = z'](zj+zz)z4 + 3324(25+Z6)

2) (Bg2g)Z, + 2 (25+2() (4+Z))

o= zl(zz+23)(zafzs+z6) + (zr+z3)za(zs+26),




: - () ‘ ' : (d)
Figure 3. The Semi-Factors ot Figure 2. -



One immediately observes that the cancellations due to the
paséive elémentsrdo not exist, In general, there ma& be éome cancels~
lations due ﬁo the active elements, but in this particular example such
tgrms do not appeér.‘ In case théwglvénrnetﬁork is passive, this method
d0¢§ not caicﬁlaﬁe any superfluous terms as do many others [1-4].

Ih'order that tﬁerabbve theorem may Be used effectively, the
‘bﬁoice of variables is very important. One way to accomplish this is

" to draw the corresponding flcw graph either from the node-zdmitts -e

ﬂlii

"matrix or the loop-impedance matrix of a given network. Yowever, the
restriction imposed on the choice of the variables is not serious, and
‘this is the price one has to pay for. a more efficient formula.

j j""J S ‘ o
Definition 2: A subgraph denoted by R 12 ‘k‘of a flow graph G(V,E,f)

is said to be a k-semi-factor of G(V,E;f) if when the edges.(ji;ji),
‘ ' ' ‘ PR PRERE A
! 2'7” k the resulting gcaph becomes

(jz,jz),"';(jk,jk) are added to R
- 2 semi-tactor of G(V,EV {j;,J;) vr<j2,j2> Vo V(s 1,0, ) where
EV (i V (Jz,jz) \VARREIRY (jk’jb) is the set union of E and the
Cedges (J;53q), (Jyndy)se oty (3pady). | |

: j"z' 3

Cousequently, each component of R k contains either a
self-loop or no sglf-loop at all, The nu b . o cémponents whiéh,dov‘
not contain ahy sélf-ldop is precisély k

Theorem 3: Suppose G'(V',E',f') is the ~cdified flrw graph of a given
flow graph G(V,E,f); then the ith row, jth column cofactor‘Aij of

det G is given by -

U L) SR, |
B4 = gi( DI R
yo



where R§ is a 1-semi-féct0r‘of G'(V',E',f') where ihe subsciip: j
indicates that the nodes i and j are éontaiﬁed in the same componené
,Of Rj q' Ls the number of'the even conponents in Rj, and the. summa-'
tinn is taken over all RJ e G'(V',E', f ).

Proof: L- . G"(V” E", f") be the flow graph obtained. from G'(V',E', f )

in rhe f0110W1ng way

™ = VI— 7
B = ' - {(e,1)| (k1) € B' and k # 4,5}
CE((E,W) = £ ((E,u))  for u b i

=1 for t =u= i or-
7 t= j, u=i,
Tt follows that
= n
Aij Vdet G .

By Theorem 2 one obtains

Q" o pan
by = BeDT e

where S" is a semi-factor in G"(V",E",f"); q" is the number of the even
components in 5" and the summation is taken over all s" e G"(V',E",f").

Since S":must be one of the following two forms.
s" =S v (k,i) k=j or i

where S" is the subgraph obtained from S" by the removal of the edge
7(3,1) (or (i,i)), one readily realizes that the corresponding subgraph‘
" 5' of S‘ in G'(V',E',f') forms a 1-semi factor in G' (V',E',f") such

that
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f"(s.') - f.‘,s')'

Next, consider a semi-factor of the form S*v(j, 1) € G"(V',E", f").‘
There always exists a unique semi-factor S*v(i 1) ¢ G"(V",E", £ ) such that
9 .. o qlil o ' ‘
(-1) © £7(8*v(j,1)) = (-1) £7(s*v{i,1)) i#j
where q, 15 the‘number of the even components in S*v(j,i). AConversel&,
if S*V(i,i) is a semi-factor of G"(V",Er,f"),such that nodes i and j are
"noﬁ contained in ﬁhe‘same component then there alweys exists a unique 7

semi-factor S*v(i,l) ; G "(V",E",£") thh the above property. 'Therefore;‘

Co1t follows that the only terms which will appear in the final expansion

Of Q&j are those semi-facrors S*V(i’i) w1th nodes i and j belonging to
_fhelsame oomponent; )
Finally;'obéeree the one-to-one eorrespondence between the un-
= cancelled semi-factors S*v(i i) € G"(V" E', ") and l-sem1-factors R; €
G'(V"E' f')' Observe also that the removal of the edge (i,i) from

S*v(1 i) increases or decreases the number of the even components of

S*v(i, i) by one, so it follows: ' - ‘
te

| -ne f"(S*V(i ) = DYt f'(R;)V

This completes the proof of this theorem,

Again, consider the example in Figure 2, The lésemi-factors

of the forms R; and R1 are shown in Figure'4 and Figure 5, respectively.

Therefore, one pets

+Zz)z4 = (Zs+Z2)(Z4+Z5+26)

A = (- 1)0l f'(R;) = (23+Zz)(25+zs)+(zs

12 1

2 ‘ o

Y -1, 1 - . (" '

VA. = Rf 1 £f'(R7) = (ZS+ZG)Z4+(Z3+ZZ)Z4f(Z3+Z2)(Z5+ZG)—(£5+ZG)(ZZ+Z3+Z4)
+ 24(23*22)‘
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(a) ' . {b)

Figure 4.  The l-semi-factors R;.' ‘

o)

{a). 1 {b)

‘ Figurre 5. The 1-semi-factorsR1.
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4, The Enumeration of Semi-factors and l-semi-factors

Let‘G'(V',E?,f') be the modified flow graph of a given flow

graph G(V,E,f) and ¢,

be the Cartesian product of the subsets Si’ i.e,,
: ... n
- L}
. Cl B kglsk

1,2,~",n} . It follows that each

'  :where S; = {(t,i)i(t,i) c,E';,t

c € C, is either a semi-factor or a subgraph which contains at least

1
r,one directedrcircait of length > 2. By eliminatiﬁg the latter from C1
it can easily be shown that the remaining elements of C1 will give all

'possiblefsemi-factofs of G'(V‘,E',f'); ,Similafly, the i-semi-factdrs

of the form R’ are contained in

n
- . H
€y =0, 8y .
k#j

Consider the:gfaph in Figure 2, 'One gets
o = @ {e,a0}x {2.9,6,9] .
Thé semi-factors are.
(1,1)(3,2)(3,3); (1,1)(1,2)(2;3); (1,1)(1,2)(3,3); (2!1)(3’2)(3’3)r

Elements in C, which contain at least one directed cifcuit of lehgth

1
> 2 are

(1,1)(3,2)(2,3); (2,1)(1,2)(3,3) :
(2,1)03,2)(2,3); (2,1)(1,2)(2,3),

. Next, consider the product

¢, = {1,2,0.2) x {29,639}
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The l-semi-factors aré
(1,2)(2,3); (1,2)(3,3); (3,2)(3,3),

and (3,2)(2,3) is the only element in C, which ccntains a directed

2
circuit of length.z 2.

5. Conclusions

itihas Seenrshown that the efficiéni‘formulas‘can be obtainzd

for the mbdifiéd flow graphs., The ﬁodificatidns'are simple and the
for@ulas are a1s§ yéry compact . ‘It is true that a "best method" de-
pends uponrone's familiarify,xandvin féctrmostréeopleiare So‘familiaf
wiﬁh the éxistiﬁg formulas of a flbw.graph, they‘probabiy'do not like
. the ideérdf quifiéations. .NeVertheiess, this is a new approach‘to
the probléms. For a given system one techniqqumayrwak‘bettefrthan'
aﬁqﬁher. It is always better to know two ways of solQing é brobleﬁ
rather than one, f&r then‘one can choqsé a particulaf‘approach or com-
bination of approaches,.so asito solve ﬁhe problem af héﬁd‘in the
simplest énd most satisfying manner;r | |

| ‘The'extension of thé,formulas fox-thg‘coféctoré to minor
detérﬁinanES‘of‘any order can be easily oBfained. The results (cor-
résponding.to k-semi-factors) are only trivially differéntrfrom‘fhose

- discussed in Section 3., Therefore they will not be repeated here.
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APPENDIX I -
. The following'théqrem has been shown by Coates [3,5].
Theorem A Suppose G(V,E,f)‘is the associated flow graph of a matrix

| A . Then
nxn
det A = (-1) E (-1) P£n)

where h is a l-factor in G(V,E,£); Lp,is the number cfrdirectéd cir-
- cuits in h; and the summatibn is taken over all h € G(V,E,f), -
'>There islan alternétive way of finding the signs assdciated

wiéh each h, and the result is given below without proof [12].‘
PR Lp o q
DD PEm) = (D)

where q is the number of even components in h.
' This result is useful in the sense that one can associate
~each component of h either a plus or a minus sign, according to whether

the component is odd or even.
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APPENDIX II

Outline'of,a Proof of Theorem 2

Let A = [a ] be elther the node-admlttance or loop-
Tijnxn ‘

impedance matrix of a. ngen e1ectr1ca1 network, and G*(V* E*, f*) be
the flow graph constructed as follows: |
(1) Each row (or column) isdfepfesented by a node and is
labelled by one‘ofdthe integers from 1 to n suohrthatd
the node labelled k is associated with kth row (or kth
: column);> |
“(2) If a J # O, i # j, there is an edge (i,3) d1rected from
node i to node j and ‘also a self loop denoted by (J,J) at
such that | 7 |
| EX((1,9) = ay

o Ci,i = 1,2,°-;,n and i # j
£((3,1),) = -ay, e T

(3) - If x§1 a, # 0, there is a self-loop (i,i), at i such that
* E 3 = LN
3 ((ioi)i) , XEI aix i ]jszs 0 .

In the light of Theorem A in Appendix I, it is easy to show that the
- following lemma holds,

' . &%
Lemma 1: det A = det G* = E*(rl)q £% (h*)

where h* is a 1-factor of G*(V* E*,f*); q* is the numbet of the even
components in h*' the summation is over all h* € G¥%(V*, E¥, f*), and det G*

is the determinant of the matrix associated with G*(V*,E*,f*).

J



~ where q is the number of the even components in P1

16
In fact, Lemma 1 still holds in case G* (V¥ E¥* f*) contains
parallelredges.

Lemma 2 . Suppese h1 is a l-factor of G*(V¥,E¥, f¥) such that it contains

at least one di;ected circuit of,length‘z‘Z; then there exists a 1-

2

Proof: By Lemma 1 it is always possible to write

" factor h, € G*(V*,E*;f*),'hz # h), such that £i(h) = -£*(h)).

e | ) ). H(6)
By = (lljil)k JCm: )k RS M)

(u ) a1
L,

where P ,s are d1rected disjoint" c1rcu1ts of Gk(Vk E%®, %)

and such that P nas the form

pil"= (23 Ugedg) v Gpedp

» where t s,m are approprlate integers

" There alwaye exists al- factor h2 € G*(V* E%, f*) such that

h, = (11?i1)k1,"; (it’it)k E(jz’jz)j (j3;j3)32'...

(jl’jl)j P(z) 100 P(s) .

The mapping of h1 and h2 with associated signs are -

q ; ' ' - ‘ .
erhy) = (1) D e, [D™ 3 el

11 et 0 3y dsdy
and

oA, tm (2 (s)
fr(h,) = (=1) “(«1) a ERY: a .a Y- fx(p se P )
2 Ly kg dady dadp Ty 1 1

(2),,.p(8) . pe
1 »

lemma follows immediately,
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" Lemma 3: Let‘A1 be the set of all 1-factor§'df G*(V*,E*, f*) each of

which contains at least one directed circuit of length > 2; also let

2

A, be the set of all l-factors of G¥*(V¥,E¥, f*) eéch of which contains
only self-loops of the‘formv

: (i »1 ) V(i i ) <o (i-di-)
1’71 kl S22 k2 N i’ kj

such that there exists a set of subindices k,_ k_ - ce kt','r.z 2, of

t
, ‘ 1 72 r
k's and also a corresponding set of subindices it it ce it of i's
: ‘ : N o
with i =k , p=1,-+,r-1 and i_= k_ where j and r are appropriate
t t.’ - t t :
p+l p , 1 r '

integers; then
,?’*‘%Y%“O-—

—Prqdf:, Let
u L. .. 12
hi = (Jl’jl)kl (Jt’Jt)ktPi Pi- -Pi
where P?, mj=,1,‘--,a are directed disjoint circuits of iength‘atfleastA
223 t, @, i, u are approptiate intggets, and hg € A1 v A2 be such that
. ) . ' A

there exists no h: e'Al v Aé which has the prbperty;

s ¢ ‘; . Py 1.2
by = UpdpiGended e B Py
‘with B > 1 and t' < t-2 vhere B and t' are some positive integers.
For each edge (i,j),‘i ¥ j, € G*(V*,E*, f*) there exists a
unique corresponding self-loop (§,j); also € G¥(V¥,E%, f*), If 5? is
" defined to be a graph obtained from P?'by replacing edges in P? with

their corresponding unique self-loops, then the elements in A1 v A2 can

always,be grouped into a set S of subsets such that for each Si €S
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1 .
{h lh €AV A2, and h = (31,31 K, (J 23 )k :
[T A LR LS o e e
P P P " P.%..p. , Where i'i "'lx and Jlgé"fJ&_x

RS SRS S | i 172"

are the complementary indices of the integers 1 2-..o '

. ou, - o . ' . u
in h;; all other notation is defined the same as in hi‘J'
: i’ : ‘ : 7 ; _

Since all the l-factors in A1 \ A2 are distinct it follows
that Si'A Sj = for i # j.

It is easy to show raat there are 2 l-factors in Si‘ Half -
" of them containsP;, say, the other half does not. By replacing P; by Ei
in the former half, one‘ebtains the latter half. Thetefore, it ie
Lol ky  ky o o
always possible to form 27 -~ disjoint pairs (hi , hi ) such that (by-

lemma 2}

kq kg, | '
f*(hi ) =r-f*(hi ) for all pairs in Si
or

V'G 3 =
£ (ai) | 0.

ThlS, in turn, implies f*(S) f*(A' V A ) = 6

Lemma 4: Suppose B1 is the set of all l-factors of G*(V* F¥, f*), and
B, is the set of a11 semi-factors of G'(V',E',f"), then there exiscs a
one~to-one correspondence betweer: the elements in the set Bl'Al_Az and
"the elements in the set B2

ing elements h* ¢ BI-AI-A2 and R' ¢ 82 are such that

ge(h) = (-1)3 £'(R")

where q' is the number of even components in R',

Furthermore,lthe mappings of the correspond-

et s s
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Proof: If one associates each edge (j’j)i ¢ E* with an edge (i,j) ¢ E'
- for all i # j, and (1,1); € E* with (i,i) ¢ E' for all i = j, the first

part of the theorem follows immediately. Since

-£'((i,5)) for i # i

£%((3,5) )

£((i,i)) for i = j

by Theorem 1, it is possible to associate each component of R' either
a plus or 2 minus sign, according as the component is odd or even. This

completes the proof of this lemma.

‘At this point it is obvious that Theorem 2 a direct consequence of

Lemma 1 and Lemma 4.
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. PART Ii
FLOW GRAPHS AND BIPARTITE GRAPHS

1. Introduction

' A'In a fecehtrcommunication, Chéw and Roe fl] iﬁtroducedla new
grabh‘caLled'the "matrix graph' in connéction with the solution of a
'systemrofllinear equétions.r However,'thié‘ﬁethod is‘not practical in
the sense that it i# difficult to fiﬁd all bossible "simple subgraphs”
evén.for a system wi;h moderate order. Furthermore, the "matrix graphs"
are éctually theﬁwell-knbwn bipaiiite gfaphsriﬁ literature [2-6]. The '
‘purpose 6f this nbﬁe is fo develép éoﬁé felatioﬁé and properties‘bg-‘
tweer. flow graphs and bipartite gfaphé, ahd‘use bipartiﬁe graphs as aﬂ:

intermediate step in the simplification of fhelcdmresponding flow graphs.

2. Definitions and Notation

A directed (linear) graph (denoted by G(V,E,f) or simply G)

‘éonsists of a node set V and anredgerset E of‘prdered pairslof the form .

(i,§), i,j € V; and a mapping function f with domain in g and range‘in

the complex field. 1 is calléd the initial node and j the terminal node.

For any i € V the notation P (i) and 0*(i) denote the cardinals

of the sets of edgés of G having 1 as initial and terminal nodes, re-
spectively, If Q is a subgraph of G and each node of G is a node of Q,

then Q is a spanning subgraph of G. A directed graph islregularrdf

degree k if (1) =p*(1) =k for all i € V. An n-factor of G is a
reg.ilar subgraph of degree n. For an undirected graph H the - ymbol p(i)

will belused to indicate the cardinal of the set of edges of H incident

at node i. An undirected graph H is regular of degree k if p(i) = k for
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A Lo + ' : ‘
all i in H. A matching subgraph of H is a s aning subgrapn of H which
is regular of'degree'l. For both directed and undirected graphs, the nota-

tion u(A) denotes the number of nodes con’ained in the node set A..

- 3. Bipartite Graphs Associated with Flow Graphs -
. " A bipartite graph [6] i§ a linear grabh B(V{,Vé,E',f;) (or simply
- B) in which the node set decomposes into two disjoint sets Vi and Vé '

" such that eaéh edge (i',j') € E' cohngcts a node i’ € Vi'wi;h a node
"j're:Vé whére E' is_# sét of un@jrected édges'and f' ;s a mapping fgnction;
Thisrspecial ﬁype;of gfaph plays anriﬁportant rolerin the ahalysis of
the associated flow gfaéhs of the matrices. |
For any flow graph G(V,E,f) there is an quivalént representa-
tion a;'a pipartitg graph‘B(Vi,Vé,E',f):Ato thé node sét‘V-of G(V,E, f),
2 , , ,
V = V.. For each edge (i',;') € E' if and only if there exists an edge

one;éqnétructé a‘replica V"which is in a éng-to-one correSpondence with:
1
’(i,j) € E. The mapping'funétioﬁvf' is defihediby‘
£1((1',4")) = £((1,3)) for all edges ¢ E' and E

“‘éonversely, it is evident that wﬁen fhere i§ a bipartite grnph‘
B wiﬁh u(Vi) = u(Vé) there is a one-to-one cerrespondepce between gdgés,
'ii can be repfesented as a flow»grnph invVv., It Lg élways possibie td
associate a matrix with a bipartite graph [4].

4. Relations Between Flow Graphs ﬁnd Bipartite Graphs

‘Definition 1: An edge of B(V},V4,E',f') is said to be essentiai

if and only if it is contzined at least in one of the matching subgraphs

_ +Chow calls this a 'simple graph.' However, the above definition
is more commonly used in. literature [4,5],




of B. Otherwise itris‘a~non—eSSentia1 edge.
| . ,Theorem 1:"Suppose B(V',V‘ E',f') is the corresponding bipartite

graph of a flow graph G(V,E,f), then any subgraph Q of G is an‘h-facfor
if and only 1f the corresponding subgraph C of Q in B(V « E' ,f! ) is a
Vregular graph of degree n.

Proof: Suppose Q is an n-factorrof G, it is 6bviqué that C is
‘a spannjng subgraph of B. Suppose C is not régulérrof dégree n, then
thére'exists a node i' §f degree;> n‘in C; The degree of fhe éorres;
ppnding node i din Q is such that either p(1) > n-or p*(l) >n whlch coﬁar
'tradicrs,the ussumpxion that Q is an n—factor. Therefore C is a regular
sﬁbgraph of degree ﬁ. VSimilarly,‘the converse is trué.

| Corollarg 1: Any subgraph h of G is a 1-factor' in G if and

only if the ocrrespohding suﬁgraphrM 6f h in the éorresbrnding Bipartite
'graph B is a match1ng subgraph. | | |

Corollarz -' Any s;bgraph h of G is a 2-factor in G 1f and
only if the corresponding subgraph M of h in B forms a set of spanning
non-touching circuits.

~. Corollary 3: An edge is‘esséntial in B if and only if the :

correspohding edge in G is contained At leagt in one of the l-factors of
. | , ,

“For any given flow gr%ph G(V,E;f)‘let

o(S)
o*(S)

L(8) - u(rR(8))
1(8) - u(rR*(s))

1.Soxm?:t:i:mas this is called a connection [7,8].
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where 8 is a subsetrof‘v; R(S) is a subset of-v‘and contains the set of

a;l terminal nodes of edges having'their initiai nodes inVS; and R*(S)
is aléo é subset of V and contains the set of all initial'nodes of edges
havihg their terminal nodes-;n S, b(S) énd d*(S)'are ﬁsually,referred
‘to as‘the—deficiency and tﬁe converse defiéiency [2-6] of a directed
graph, respectively.

A matrix A is said to be reducible if and only if it can be

1partitioned into the form

Aj; O ‘ | A1 12

21 Ao : 22

%
It
=
o
]
<
Cd >
T i

whgrc All ahd A22 are square Submé#rices. On=~ extends fhis definition
‘alsb>t§ inclﬁde as reducible those matrices - aich can be traﬂsformed
into akpartitioned‘ﬁatrix with the‘abévé‘pfoperty, byAinterqhanging the
lines of A; It should be noted thatrthe corresponding rows and columns
are noi pequired torpermute‘simultgneously. |
| 'befinition 2: ‘The associated'f1ow giaph G(V,E,f) of a given
matrix A is said to be separab1e if and only if the matrix A is re-
ducible. Otherwise it is inseparable.
‘The definition of separability defined here for flow graphs

is different frém that defined in the graph theory [9].

| Theorem 2: ‘The necessary and sufficient condition that the
associated flow grapﬁ G(V,E, ) ofra given maérix A be separable is that
 ‘there exists at leasf one proper spbset S, S#£¢ (empty sét’, of V such

that either 0(S) or o*(S) is equal to or greater than zero. Furthermore,

[ T S I R T SR R e Y
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if.either g(S) or o*(S) is greater ﬁhén zéro then the detefminant'of the
matrix associated with G (or simplv determinantrdf GS vanishes.

Proof: Suppose there exists a proper subset S, S # @, such
that o(S) = Q(S) ~Vu(R(S));2‘0;Vin terms of fhe rows and columns"bf fhe
matfix A,”u(R(S)) is the number of fowé in A having at léést one non-
vanishing éleﬁent in commoh with oneréf the columns corresponding to S.
"It follows fhat;G is separable, Cénvérsely, if G is separablerthenrthere
exists at least oné'propér subset S, S5 # ¢, such that either U(S).? 0 or

ro*(S);g 0. Similarly for the other case,

"If either g(8) > 0 or g*¥(S) > 0 there exists at least one

1 22

line containing'all zeros in Al or A in addition to that either Alz

or‘Aél‘is zero. This compieteé the‘hrqof of this fheorem.

Vit is obvioué that thiS theorem provides an altérnati?e'in
determining Qhethef‘a given matrix can be written é§ thé direét'sum of
submatrices [10,11]. -

The deficiency functions défined for flow graphs have a

corresponding meaning in bipartite B(Vi,Vé,E',f'); i.e.,

5N = u()) - ndOY)

6*(Né)

BOND) - wDAG)

1 2

the set of all nodes inVVé‘which are joined by an edge to at .least one

where N' and N! are subsets of Vi and Vé, respectively; D(Ni) denotes

node in Ni of Vi; D(Né) denotes the set‘of al) nodes in Vi.which are

joined by an edge .o at least one node in Né of Vé{




Theorem 3: If G(V,E,f) is separqbie'end the'eonrespondiné
determinant is non—zero,‘then it can be split into at least two un~
connected'components such that the union of the node sets of the com-
ponents is V and furihermore the detefminanf of G(V,E,f)‘is equal to
) ihe product‘of the determinants of‘the'eomponents.

Pnoof: Snppose B(V' V' E"f') is the conresponding bipartite
graph of G(V E,f), then by Theorem 2 there exists a proper subset
N Vi, Ny # @, in B(Vi,Vé,E' Y ) such that u(N') - u(D(N)) = rt‘

is evident from Corollary 1 and Corollary 3 that all the edges (i',j"),
! E V' - N' '€ D(N') are non-essential, and can be removed without
changing ‘the value of the determinant of B. Since the 1nterchange of
" the labels of any two nodes in Vé corresponds to the intercngnge of
the corresponding oolumns in the asSociated matrin, it follows that
it is always possible, oy using an even number of interchanées, to re-

' and D(N') have the same

name the- nodes in V' in such a way that N1

de51gnat10ns. Consequently, the corresponding flow graph of this modified
'bipartite gnaph‘conteins ‘at least two unconnected components, and the
‘theorem folloﬁs immediately. |

V’Corollanx 4:‘ If S is a subset of V in‘G(V,E,f) such that
| u(S)‘s‘u(R(S)) then il the edges of the form (1,3), i e (V-8) and
Je R(S), can be removed without changing the value of the determinant

of G. Similar result is obtained if u(S) = u(n*(S))

5. Tne'Determinant of the Product of Two Matrices

Let

A = |a, j . ¢ = ] m >’n

ij ‘nxm. [cij mxn -
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~ be two given matrices, and Bd(Vl,Vz;E,f) (or simply Bd) be a special

bipartite graph such that

(1) wv) =n and (V) =m
(2) There is a directed edge (i,j) € E, i € Vl and j € V2

with £((i,j)) = if and only if a . # O

SRS 13 |
(3)  There is a directed edge (i,j) € E, 1 € V, and j € Vs

with £((i,3))

c;, if and onl if c # 0.
-1 7 y J

it

Theorem 4: det AC (-l)n'Z' -1)9 f(h)

where h is a set of'non-touching circuits in Bd which contains a11 the

nodes in Vl, q is the number of circuits in h; ‘and the summatlon is over

all h in Bd'
Proof: Let the nodes in V1 be labelled from 1 to‘n and the
’nodes in V2 from n+1 to n+m. (The TrOows and columns of A and C are labelled

;accordingly, i.e,, the rows of A and the columns of C are labelled from
.1 ton, and the. columns of A and the rows of C from n+l to n+m. ) If
A(Jl,Jz,,{.,Jh),;g a major determinant of A formed by the columns j,,J,,
.,.,Jn andAC(Jl,Jz,...,Jn) is the corresponding major determinant of

AW sdgreeesdy) 0 Cwith §) < Jy < .ow <4y, then

A A(Jlez’ L .’Jn)C(Jl’J2’ X o’-Jn)

JiJz"'Jn : . 12..0“ )
= (@ ¢ a, ...a, )(Z¢ c c eesC )
klkz"‘k lk 2k ‘ nk 111 ...i Jlil j 1 Jnin
where k. .k ...k is a permutation of the integers J ,j ,...,j and
12 1’72 J n;
7 7 2".
1112"'1n is a permutation of the integers 1,2,...,n. ek k Lk
is +1 or -1 according as the permutation klk ...k is even or odd.
12,..n
Similarly for 61112-..1 . Since




12...n Jpdyeeady
'..c

E . . e . .a. c . Cc . ; }
1112"'1n klkz"'kn‘ ik, 2k " nk SPE TR PL N 7 jnin

n 12,..nj.j,:¢.J S
Chpkyerek 31,0000 1k P2k,

li Olia
12 nla2

ceesC .

= (-1) k Cp . C, i
¥p J1*1 Jata J

i
n a

and all the row and column indices are distinct, respectively, by follow-
ing the same'argument as in the derivétioh of the gain af a flow graph

[8], one obtains
A(leJzy"'an) C(JlJJzJ"O,Jn) = (~1) % (-1) f(h')

where h"iS'a set of non-touching circuits which contains all the nodes

'1,2,...,n,j1,j2,..;,jn; q' is the.numbe; of circuits in h'; and the

summation is taken over all possible such h' in Bd'

Since det AC is equal to the sum of the products of all corres-

~ ponding major determinants, the theorem follows immediately.

Cbroilarz 5: In Theorem 4,‘if m = n then h,becomes a l-factor

in Bd'

6. Illustrative Example:

Consider the flow graph G(V,E,f) shown in Fig. 1. Since there

exists non-empty proper subset S of the node set V such that

S = {3,74}

R(S) = 4’3,2}‘

o\

and 1(8)

" u(R(S))

'by Theorem 2 and Corollary 4, it follows immediately that G is separable

and the edges (5,3), (2,2), (1,2) of G are nbn-essential, so they can

‘be removed without changing the value of the determinant of G. Further-

— e gy = g

e wrw sv o
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more, since G is separhble it is possible to construct (it !zamt) two
unconnected components (by Theorem 3) such that fhe determiran. of G

‘iz equal to the product of determinants of the components. V(Fig. 2)

Q22

Css

a
: 34
Fig. 2. The Corresponding Two Unconnected
‘Components. of Fig. 1.
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PART III
AN EXTENSION OF THE STAR-MESH TRANSFORMATION

The basic problem of analysisrof‘combinational‘circuits is the
aerermination oI‘the relation between any given connection matrix1 and
the correspoading ou*put matrix. To accomplish this, Hohn [1] showed
first ng;to obtain‘from‘a given circqit an equivalent circuit using
"one less .on-ﬁerminal node in the forﬁation of the connection‘matfix;
This cp*vation (the star-mesh trénsfdrmétiqﬁ [1]) is repeated until
there is no non-terminal nodés'in the aqcounting. ?oeli [2] generaiized
it to the ﬁrocess pfAmultiple-ndde removal in ah‘algebraic form, The
purpose of,fhis note is to poiht 6ut that Yoeli's process Can'be
accomplished topolqgically. | |

Let C be the connection matrix (hot necessari1y symmetrical)

of a given circuit G and be partitioned in such way that

¢ = [c

]

13 'nxm © P
- LCy  Ca nxn

where 011 is :. square submatrix of order p which corresponus'to‘the‘
terminal nodes of G, For conveience, a mapping function f is defined

from the brénches(i,j) of G into the Boolean algebra such that

for all branches in G

2,9 =y

* Also define

£r =11 £((u;,u,))
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where (ul,uz) is a branch in R, and R is any; non-empty subgrgph of G.

Next let

C = [C. .

{Cp} = [mij](n- p x(n~p)

and

F= (e, ]

f. . )
-3J " PxP

where {sz} is tke adjoint matrix of 022 [2].
' Yoeli [2] has‘shown that if F is the correspbnding output

matfix of order p, then?
F= n *,C12,{022} €a1}

Suppose . C,, + C,, [sz} 021 = [diJ}

then
n-p
11 12 21
dig =%y * ﬁﬁl Cix Mkt 1

- Since s is the switching function from ﬁodq k to node { of the circuit

cdiresponding to C

227 it follows that
m, =% f£(P')
ki Py ke
where Pél is a directed path from node k to node l in the sectional graph3

1The definitions and notation used by Hohn [1] and Yoeli [2]
will be used here.

R

. e e o -

- W - ey S o
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G[A] where A is the node set corresponding to the submatrix C22, and
‘the Boq;ean-sum is taken over all possible Pﬂl € G[A]
~ Therefore
‘ s - .
dij 5 f(pij) for i#j
ij
=1 . for i=j

rwhere Pij is a difected path from eode'i to node j in the sect‘onal

graph G[Avivj] where Ayiyj is the set union of the nodes i,j, and the

‘node Set Aj ‘and the Boolean sum is taken over all possitle P 23 € [Av1vj]
Theorem 1: With the notation ‘used above‘if Gr is the circuit

obtained from G in such a way: () Gr only'contains p terminal nodes of

G; (2) if dij #0, there is a branch from node i to node j with associated

weight dij; .hen Gr and G are equivalent (same output matrix). .
~ Corcllar i : If 022 is of order 1, tﬁe above tyeorem rednceer

to the star-mesh transformation in Hohn's paper [2]

At this point, 1t is obvious that the topological reduction
process not only displays in a very intuitive manner‘the causal
relationships among the‘vuriubles of the system under study, but also
shows that the procesl.13‘1ndependenf‘of the 1abelling of the nodes.
As a‘matter of fact, Theorem 1 still holds even ifrpart of the non-
terminal nodes is ropovod.

Example 1: ‘Censider the circuit shown in Fig. 1(a). The
dotted part is the sectional grapb to be removed. fhe reduced circuit

is shown in Fig. 1(b).
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. a'b'c'+a'be

(a) - (b)

Fig. 1. (a) Example for Multiple-node Removal
. (b) The Corresponding Reduced Ci.cuit of (a)"

It is interesting to néterthat.thiS'prbcess caﬁ‘be easily
appiiéd to'éequentiél machines'to give the corrésponding‘muitiple
"étaté :emovél" algorithm wifhrminor mndificafioﬁs. o

If G[A]} is fhe sectional graph to be‘remOQed from a state
diagram G where‘A is a set of states‘ahd if théré'exist‘sélf-loops in
‘VG[A], then thq process shown in Fig. 2 must be used inrordér to
eliminate all such self-loops (1 is used as identity’for'multipiication

but 1 +b#£1). kis a non-negativé integer.

(1+3bk) ¢,
(1+3bk)c,
(1"'Zbk )C;

(l*Zt‘k)Cn

(a) 7 ‘ (b).

Fig. 2. (a) A Node with a Self-Loop
‘ (b) With the Self-Loop Removed
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After all the .olf-loops having been removed, Theorem 1 now
‘ can be applied to obtain thelcorreSponding reduced state diagram.
Example 2: Com: ler the state diagram of Fig. 3(a). The
dotted part is the sectional graph to be removed. Fig. 3(b) is the

corresﬁonding reduced state. diagram.

3. Example for Multiple State Removal

(a) N ()

‘Foothotes:

1. The definitions and notation,usgd byVHohn [1] and Yoeli [2] will be

used here,

2., This result was first discovered by Shekel dhd pubiished in {2]. In
a recent communication, Brown [4) restated the same result for a

more restricted class of elements, i.e., Boolean algebra.

3. A sectional graph (denoted by G[A]) of G definedrby‘a node set A
is the subgraph whuse node set is A gnd whose brénches are all those

- branches in G ﬁhich cohnect two nodes in A,
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" PART IV

A SIMPLIFIED WAY OF SOLVING A SYSTEM OF
SIMULTANEOUS LINEAR EQUATIONS

1. Introduction

Many methods of séivingla system of simultaneous liﬁeaf
equations have been published in litéfature [1], but no fbést method"
can be recommended. For a give#‘syétem, one technique may work better
thén the 6thers. Therefore;'it‘only depends dpon‘the nﬁfure ofﬂthe>
 problems and one's fahiliarify‘ﬁith a particular métﬁéd{ Inrthié’paper,

‘a new'méthod based on the reduced flow graphs is pfesented.

2. Definitions and Notation

It is alwayélpossibie>to associate 'a directed linear graph,
called a fiow graph {2,31; with a given équafe r. ~ix A = [aii] of order
n. Each-fowr(or column) is fepresehted‘byra node and is labelled by
‘ oﬁe of the integeré from 1 to nrsuhh\thét.the node labelled k is

associated with k- row (or kth column). If a i # 0, there is an edge

, J , _
(i,j) directed from i to j ﬁith associated weight aji' For a more
compacf description of a flow graph, the notafion of 3-tuple G(V,E,f)
ié‘use& where V is a set of nodes; E is a‘set of directed‘édges; and

f is a mapping functiqn‘frbm E to the complex field such tha;‘f((i,J))

=

aJi for all i,Jre V. Also if is convenient to extend the mapping
function £ from a sinele edge (i,j) € E to any subgraph R of G(V,E,f)
such that

f(R) =T1£((t,k))
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where the product‘is taken:over all edges (t,k) € R.
| pr any i € V the notation P(i) and P*(i) denote the cardinals
6f theVSefs éf edges of é ﬁaving‘i as ihifial‘ahd teiminglrno&és,

respéctively. They are called the outgoing and incoming degrees of G ‘

at i. A directed—graph‘is,regular of‘degreé k if (i) = p*(i) = k for

"each i € V.

If A‘is a subseﬁ of V, the séétional grabh (den§ted by G[A])
ofﬂdrdéfined;by A is the'subgfaph'whose node set is A and whoée edges
‘are all thoSe‘edées‘in G.which connect two nodesiin A. When A'=7V
‘fhe sectional graph is G itself. Two subgraphs are 2}522325 when 't hey

have no edges and nodes in common. If S is a subgraph of G and each

‘node of G is-a,node of S, thenisris a spanning subgraph of G. A com
_ponent of G(V,E,f) is a maximal connected subgraph of u(V,E,f). A
connection of G(V,E,f) is a spanning subgraph of G(V,E,f) which is

regular of degree 1. A subgresph (dehoted‘by Hia) of G(V,E,f) is said

' to be a one-connection from node i to node j if it contains: (1) a
‘directed path frow node i to node j; (2) a set of disjoint circuits

which include all nodes of G(V,E,f) except those contained in (1).

3. Main Résult

It will be convenient tc write the system of simultaneous’(conﬁistent)

- linear equations in mgtrix form

(1) AX =B

‘whefe A= [aij] is the coéfficient matrix of oxder n; aqd—x and B aré'
the column'vectors.‘ Frequently, to save spacé, the column vectors X and

.,bn}, respectively.

B are written in the form {xl,xz,...,xn} and‘{bl,bz,..
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~.Let G(V,E,f) be the flow graph‘#ssociatédrwifh the systém (1);‘
i.e., gssociate a'flow‘graph‘to the coefficieﬁf matrix A and then attach
a source node (denoted by‘n+15 Lo it in such a way if‘bk # 0 there
is an edge (n+1,k)‘with f(kn+1,k)) = =b, .

Also }et Gc(vc’Ec’fc) be
the flow graph obtained from G(V,E,f) such that '

VvV =V
c, .
and . ) fé((i,j)):= 0 : for i < j
. ql'l
Z (-1 £(H, )
i 1J ‘
£, ((1,3)5 - —=2 < | for i > j
4 (~1)7 f£(h)
h 4
where Hij is a one-conrection in the sectional grabh G[1lv2v...vjvi] where

‘ 1v2v...vjvi is the‘node set cd'taining the pode;:i, 2, ..., j and i}‘h'
lis a conneétion in G[1v2v...vj ] where lvév; ;vj is the node éet‘containing
the nodes 1, 2, ..., jﬁ‘ql and q are theﬁumbers ff ciréuits jn'ﬂij,and
‘h,vrespect;vely; and the summations are taken over all'ﬂij and h in
G[lev...ﬁjvi} and G[1v2v...vj], respectively. It is also assumed that
the deteruihnnts of the mﬁtrices associated with the sectional graphs
G[1v2v;.,vk], k:l,...;n‘are non-zero

The reduced f;ow graph Gc(vc,ﬁc,fc) miy be defined as thé

canonical form of G(V,E,f), and usually has the form shown in Fig. 1.
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Fig. 1. The Canonical Form of G(V,E,f) .

Theorem 1: With the same notation‘:used;above, the solution

of Eq. (1) is given by

N « |
=Z | - V p ;= * o0 ’
x p(mm( 1 P f,c,(P(““”) E 1,...,n

(n+1)j _
qp is the number of edges in P

where P . "is a directed path frbm node n+l ﬁo node j € Gé(vc’Ec’fc);
(n+1) 5} and the summation is taken over

all P € G (VB T).

(n+1)j
Proof: If a row of zeros is attached to the bottom of the .
matrix>[A,-B] where [A,-B] is obtained from A by attaching -B to the right

of A, and then an operation sim " ir to the "sweep-out’ process [4}rfor

evaluaﬁing deferminants is applied, the reauitant matrix A' turas out

to be



. 12 A 21(n-1) ®1n %1(n+1)
i n 11 11 n
‘ ad ab-l AR A+L
o . "2 2 - T2 2
2 2 -2 2‘
- APl A AR an+l
J o4 _
0 0 eee 1 e K = e
J - J J
A= | . o Ah ARFL
' 0 0 ...0 ...1 o
n-1- n-1
An+1
0 0 ...0 ...0 1 -
N . n
(4] 0 ees O ees O 0 0
where '
a,, am e By
- a a, ... a ‘ ,
Aj =det | 2t 2? o 23 for j=1,...,n
a a ese A,
J1 Jj2 JJ
L. : _
‘and
a1+ 2@~ Mk
a,. ... @ § a
i - .
' *» : i = 2,...,1’1 .
. ' k =3,...,n+d
851 0 *1a-n 0 ik '
.th V = ) = P
vf1 am(n+1) bm for m 1, sh
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It is obvious that the systems (1) and
(2) A'X' =0

where X° = {xl,xz,f..,xn,l} are equivalent. Therefore, by Cramer's rule

one gets A
Jo= (=1)" d t A}
xJ c(") (n+l)j
- where Aén+l)j is the submatrix obtained from A' by strikixg out the

(n;;-l)th row aﬁd\jth'coluﬁn of A’, By a theorem due to Coaces '2 ,3]
‘(whlch is contalned in appendlx) one readily realizes that th: flow
) graph G (V ,E'L,ET) assoc1ated ‘with the system (2) is precxseiy the
reduced flow graph G (V E f ) of G(V,E,f) except that the wexghts
‘assoc1ated with the self—loops (i, 1) i:l,...,n are 1l's rather than

zeros. Therefore

o n- (n+1)+3 . n;l' ‘ Lérl ' .
Cx, = (=1) {( 1) {1 Z (v f"H' )]}
N (h+1)j : (n+1)J
where Hé' l)J is a one«conne"tlon from node (n+1) to node J in G' (V‘ E S I )
L' is the number of cirauits 1n HE l)j‘ "and the sunmatzon 15 taken over
. ' € Gy E!' £ ] V ‘ l ‘ .
all H(n+l)j G'(V',E',f"). If p(n+1)3 is tye direéted path from node
(n+1) to node J € H(n+1)j’ then
“L' = ‘n+l) - 1)
o n+l) (qp+ )
where qp is the number of edges contained in p(n+1)j It follows that
7"2 Cene
~ £ -

(n+l)j

This‘completes'the proof.

-

- .y =

= e i en
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In Ease séme’of the uaterminants AE, j#l_z,;..,n~1 are zero,
1t c(an be showp thu}.1t4;: a.way- possihle eirthor by relabelling'or
‘snl£t1ng fad thé nodes o1 G(V;E,f) «n fuch a way that rthe as%umption
aolds. If d, =0 .croate >k, 0L X < n, the extensrion is frivial

3 - . ) ,
s3ince (n»ki‘veczcrs of & can be‘t:uated‘zs B.

‘Tt shonld ke ﬁoteﬁvtha{ in the process of ihﬁ construction of
Gé(Vc’Ec"c' the mos; cqmp};éated @apping iernm §§'fc((n+l,n)) which
ccr;ébgonds to caluulaté X, € C(V,E,I)‘bv coctes’ yethqd‘[z].‘ The re-
maining te:mg are mﬁtained from the sectional gréphs oﬁ G(V,E,fj. Theré—
‘ffOPe;‘if'all‘xJ; j:l,f.;,n are reguired, this methodréer;ainlvaill de—}

| monstfate its supgriority. This :s5 best illustxatEO by the following
examplé.  | “

Example 1: Consider the system ofiequations

“x1¢x2+x3+x4-1 =0
2x1+xé+2x3#x4-1 =0
éx1+éx2»x3+2¥4«5 =0
z£¢2x2+3x3+3x4-3 = Q’

The flow graph «(V,E,£) and 1ts caponical form Gé(vc’Ec’fc)

are shown ip Fig. 2. Then, by Theorem 1, one has

% =3
X3 = -1 ‘

%, = ~(-1)+{(-3)(1) = -2

x, = = (1)+(=1) (14 (1) (1)~ (=3) (1) ) (=33 (1)

=1
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I R - F

Fig. 2. The Flow Giaph G(V,E,f) ancd its Canonical Form
o w'Gc(vc’Ec’fc) ¢t Example 1.

"4, Conclusions

: The topological approgéh brfefsvan alterhafive viewpoiht
which,éompleménts and enha es the more fimiliar classical methods of
solviné.a system of simultanecous Iinear'equntions. 1t is alwnyg bgtteg
to know tyo wa&s of io;ving ﬁ problem rather than one, for then cne

can choose # particular appyroach ox gombinution of nbproaches, 80 a8 to

solve the problem at hand in the & .mplest and most;satiifying manner.
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APPENDIX

The following theorem has seen éhown by Coates and Desoer

[2,3]. |
77 Theorem: Suppose G(V,E,f) is the associated flow graph. of '
a matrix Aanlthen | ' B
: . | . Ip
det A = (-1) % P osm
i+] ' n .— Lbri N
(1) det rgij = ('x)r 5 D f(x.ij) . for i#j

ij
Q@efé h isa’éonnectionin G(VeE,IS; Hij"is arogé—cohnééfiop f;om node
i to node j—ih G(V,E,f); Ib and LG are the numﬁers §f‘circuits7in h and
Hij? respectiyély; and fhe summafions‘arevtaken‘over a11.h apdrﬂij iﬁ
h

G(V,E,f). Aij is obtained from A by striking out the ith row and jt,

i’columh of A{j



Part V o at

On Signai-Flow Graphs

, Methods of simplification for signal—fleu'graphs have been ;reated
extensively in the literature [1,2]. The purpose of ihis note is to gener-
_alize a,single—node removal algorithm to a mu;tiple-node‘remevellalgorithm.

For cenyenience the notation f(R).uill be used to represent the .
rproduct cf the weighfs*associated with the edges in R where R is a subgréph

- of some s1g1a1 ~flow (or flow) graph TIf A is a subset of the node set of

‘G the sectional graph (denoted by G[A]) of G defined by A is the subgraph
whose node set is A and whose edges are alluthose edges 1nvG which connect -
'two nodes in A. The foilowing theorem is obteined for'ehe‘flow—g;aphs‘[S].l
Theorem 1;» Supposerv 1s the node set of arilow grauh G, aud,V'

15 a‘proper subset of V such that detG[V ] # o, then detG = K detG w1th

‘K =‘detG[Vm] uhere G is the reduced flow graph obtalned from G by the
following process; | |

(1)‘ Remove‘G[V>J from 63 i.e., remove all nedes end edges incident to andr

rfrom any node in Vi ; .

(2) The weight,b ‘ associated with the edge (i j) € G is given by

1

(-1,77(‘” o S
bij‘ " ; (- 1) I(Hlj) for all ffj € (V—Vm)r

_where HTJ is a oneuconneetion from i to j 1"‘G[VAJHJJ! where

v Uiuj is the set union of the nodes i,j and the nodes in Vm; 9,

.is the number of the loops in H J' n(v ) represents the number of
nodes in'Vm; and the summation is taken overrall H?j € G{VAJiuj].

waen i = J, G[V&JﬁJj] reduces to G[VAJi] and the one-connections

from i to j become the connections in G[Vd}i] by definition.
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A similar result islobzained for the sighﬁlfflo; grapha.
Theorem 2: Suppose V*is thé noderset of a signal—flow graph G'}
‘and Y& 1s g proper subset‘of V' such that detCl[V’m] # 0, then detG' =
K'Vdth; with K' = det Gl[V'm] where G; is the réduced'signél-flow‘graph
ob;ained from Gl‘by the following process:
(1) Remove Gl[Vé];‘

(2) The weight bi']_ ‘associated with the edge (i,j) € G! is given by
. ] 1 ’ 3 ‘ ‘ . . 1 N
b! = — P.a for all 1,J € v "Vm) .

_where Pk is the gain. of the kth forward path from i to j in G*[VéJiUJ];

4& is the value of detG'[VAJan] for that part of the graph not touch-
‘ing therk;h forward path; and the summation is taken over all Pﬁﬁk‘e

HVATEVERR

Itrshould’be‘ngtedfthat the léferminants of the'gf;phs uséd in
. the>a66§é lheorem are.éécording to‘Mason's'definitlon tl-4].

. “The verbal aspect of the above theorems seems very inveolved, but
';the topological structure is rather simple.

The following corollary is seen to be. true.

Cornllarz: The galn between the nodes i and J,Vi,J ev n’ in G'

‘ is equal to the gain bntween the same nodes in G'
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