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PART I

ON THE MODIFICATIONS OF FLOW GRAPHS

i. Introduction

The association of a topological structure with a set of

linear algebraic equations was introduced by Mason [1,2J and is called

the signal flow graph. Coates L3] invented a different linear graph,

called a flow graph, for the same association and gave a rigorous,

systematic development of some of the topological formulas. However,

these formulas for the graph gains (for both the signal flow graphs

and the flow graphs) are not very efficient because of the existence

of a large number of cancellation terms. The purpose of this paper is

to modify the (Mason or Coates) flow graphs a little bit (only the

weights associated with the self-loops) so that the more efficient

formulas can be obtained.I

2. Definitions

A directed (linear) graph G consists of a set V of elements

called nodes together with a set E of ordered pairs of the form (ij),

i and j e V, called the edges of the graph; the node i is called the

initial node, and node j the terminal node, For any i e V the symbols

0(i) and P*(i) will be used to denote the cardinals of the.sets of

edges of G having i as initial and terminal nodes, respectively. They

1 Seshu and Reed list this problem as one of the research
problems in the appendix of their book [4] (p. 297, problem 18).

S,., i il iiE i i- i
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are called the outgoing and incoming degrees of G at i. A node aot

incident to any edge is called an isolated node. Two subgraphs are

disjoint when they have no edges and nodes in common. If S is a sub-

graph of G and each node of G is a node of S, then S is a spanning

subgraph of G.

A directed graph G is regular of degree k if P(i) p*(j) = k

for each i e V. A directed circuit of C is a regular subgraph of

degree 1. A directed circnit is of lengch m if the number of edges

contained in the directed circuit is m. A directed circuit of length 1

is called a directed self-loop (or simply a self-loop).

A directed path P.. is a sequence of the form

P (i kl ) (kk2)(k k )...(k 'j)

where i,j and kt, ,...,m are nodes in V It is not required that

all ,the nodes of P shall be distint. If they are, P is said toij i
be a ,directed simple path. Again node i is called the initial node of

P and node j the terminal node. Both nodes i and j are referred to
ij

as end nodes.

To every directed linear graph G there is an associated

undirected graph G whose edges are the same as those in G but withu

directions omitted and parallel edg-s combined. G is said to be
U

connected if, for any two nodes I and J, there exists an undirected

path in Gu with these two nodes as end nodes. A component of Gu is a

maximal connected subgraph of G u G is connected if G is connected.
u U

A subgraph H of G is called a c~omponent of G if H is a maximal connected
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subgraph of G. An even component is a component which contains an even

number of edges. An isolated node is considered as an even component.

An n-factor of G is a spanning subgraph Of G which is regular

of degree n. More specifically, a 1-factor is a set of directed dis-

joint circuits which include all nodes of G. Sometimes 1-factors are

also referred to as connections in literature [3,5].

For the sake of later analysis the following operations and

notation will be used without any further explanation.

A1 V A2 (union) = elements contained either in A. °or A or

both

A- A A2 (intersection) = elements contained both in A and A2

A1 - A2 (minus) = elements contained in A but not in A
1 21. 2

p(AI) - the number of elements contained in A1

where A and A2 are subsets of some set A.

3. Modifications of Flow Graphs and Network Determinants

Tt is always possible to associate a directed linear graph,

called a flow graph [3,5], with a given square matrix A L La. .J ofii

order n, Each row (or column) is represented by a node and is labelled

by one of the integers from I to n such that the node labelled k is
asoiae wt th kth

associated with k row (or k column). If aji # 0, there is an edge

(ij) directed from i to j with associated weight aji. For a more

compact description of a flow graph, tae notation of 3-tuple G(V,E,f)

is used where V is a set of nodes; E is a set of directed edges; and

f is a mapping function from E to the complex field such that f((i,j))

= aji for all i,j e V. Also it is convenient to extend the mapping
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function f from a single edge (ij) 6 E to any subgraph R of G(V,E,f)

such that

f(R) = Hf((tk))

where the product is taken over all (t,k) C R.

Coates has given a topological formula forý he graph gain of

a flow graph L3,5J. The reason for its inefficiency n the calculation

of Ahe electrical netw&..k gain is mainly due to the fact that there

exists a large number of cancellations. This is best illustrated by

tbe following example. Consider the network shown in Figure l(a).

The corresponding flow graph is shown in Figure l(b).

'Z2 1S• . Z1+Z3,

V, i -Z 3 Z2

-Z4

+ .Z 2 +7 Z4 Z4+Z5+ZG

(a) (b)

Figure 1. The Illustrative Example.



5

The corresponding network determinant A is given by

A = (Z 1 +Z3 ) (Z3 4Z2 +Z4 ) (Z4+Z 5 +Z 6 ) - (-Z 3 ) (-Z 3 -Z 2 ) 4Z4 +Z5+Z 6 )

- (-z 4 ) (-z 4 ) (Z1 Z3 )

= ZI (Z2 +Z 3 ) (Z4eZj+Z6 ) + (Zi+7 3 )Z 4 (Z5 +Z 6 ).

At this point one readily realizes that the main reason for

the existence of such cancellations is because the weights associated

with the self-loops contain some of the weights of the edges incident

to that particular node. In order to obtain a more efficient formula,

the modified flow graph G'(V',E',f') of a given flow graph G(V,Ef) is

obtained as follows:

V= V

E' -'E

f((i,j)) - f((i,j)) -for i # j

n

k=l f((k,j)) i = j.

This amounts to the same thing that the weights associated with the

4 edges (i,i), i - 1,2,-...,n have been changed to the sums of weights

originally incident to the node i, i = 1,2,".,n. In Figure l(b), the

weights associated with the self-loops (l,l),(2,2),(3,3) have been

changed to ZV, 0, Z5 +Z6 , respectively.

Definition I: A semi-factor R of a flow graph G(V,E,f) is a spanning

subgraph of G(V,E,f) which does not contain any directed circuits of

length > 2, and such that P*(i) 1 for all nodes i in R.

The following theorem is a direct consequence of the above

definition.
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Theorem L: Each component of a semi-factur R of a flow graph G(V,E,f)

contains exactly one self-loop. Furthermore, the number of edges in R

is 4(v).

The fo'lowing theorem will be proved.

Theorem 2: Suppose G'(V',E',f') is the modified flow graph of a given

flow graph G(V,E,f). Then the determinant (denoted by det G) of the

matrix associated with G(V,E,f) can be obtainei ,y

det G = >, (-l)q'f'(Rf)

where R' is a semi-factor of G'(V',E',f'); q' is the number of the even

components in W; and the summation is over all possible R' e G'(V',E',f').

The proof of this theorem is contained in Appendix II,

It is interesting to note that if one associates each compo-

nent of R' either a plus or a minus :ign, according to whether the

component is odd or even, then the resulting product will give the same

sign as (-1)q'.

The modified flow graph G'(V',E',f') of Figure l(b) is shown

in Figure 2. The semi-factors of G'(V',E',f') are shown in Figure 3.

By Theorem 2, one gets

det G - -7 Z (Z 3+Z 2 )Z 4 + Z3 Z4 (Z +Z 6 )

ZI(Z 5+Z6 )Z4 + Z1 (Z5+Z6) ( 3+Z 2)

" Z1 (Z2+Z3 ) (Z4 Z+Z 6 ) + (ZI+Z 3 )Z4 (Z5 +Z6 ).
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-Z3 -Z3-Z2

-Z4 'I

11

Figure 2. The Modified Flow Graph VI(V',Elf') of F-gure 1(b).

13

(b)

(c) (d)

Figure 3. The Semi-Factors of Figure 2.



One immediately observes that the cancellations due to the

passive elements do not exist. In general, there may be some cancel-

lations due to the active elements, but in this particular example such

terms do not appear. In case the-given network is passive, this method

does not calculate any superfluous terms as do many others [1-4].

In order that the above theorem may be used effectively, the

choice of variables is very important. One way to accomplish this is

to draw the corresponding flcw graph either from the node-admitte ..e

matrix or the loop-impedance matrix of a given network. Powever, the

restriction imposed on the choice of the variables is not serious, and

this is the price one has to pay for a more efficient formula.

Definition 2: A subgraph denoted by R of a flow graph G(V,E,f)

is spid to be a k-semi-factor of G(V,E,f) if when the edges (j 1 ,ji),
S~JlJ2..*Jk

U(j2 ,J 2 ), .'',jk,)k are added to R the resulting graph becomes

a semi-iactor of G(V,E V (jl,J1 ) V (j 2 ,j 2) V '. V (jkVk), where

E V (jl,Jl) V (J2,j2) V ,.. V (jkJV) is the set union of E and the

edges (jl,Jl),(i2,J 2 ),...,(JkJk).

Consequently, each component of R contains either a

self-loop or no self-loop at all. The nu b'.., components which do

not contain any self-loop is precisely k

Theorem 3: Suppose G'(V',E',f') is the -,dlfied flow graph ot a given

flow graph G(V,E,f),, then the ith row, jth column cofactor Aij of

det G is given by

j |=A.=Z.(lq f(
2i.R]

.1
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where Ri is a 1-semi-factor of G'(V',E',f') where the subscript j

indicates that the nodes i and j are contained in the same component

o q Is the number of the even cor..ponents in R and the summa-

tion is taken over all R. G G'(V',E',f').

Proof: L-_ G"(VC',E",f") be the flow graph obtained from G'(V',E',f')

in the following way

Vi" = V1

El -E f(k,i)j(k,i) € E' and k # i,j}

f"((t,u)) = f'((t,u)) for u # i

= 1 for t =u = i or

t j, u i.

Tt follows that

aij= det G".

By Theoren, 2 one obtains

EZ(- 1 )q f,(s")
ii So

where S" is a semi-factor in G"(V"',E",f"); q" is the number of the even

components in S" and the summation is taken over all S" G G"(V",E",f").

Since S" must be one of the following two forms

S"i S V (k,i) k - j or i

where S is the subgraph obtained from S" by the removal of the edge

(j,i) (or (ii)), one readily realizes that the corresponding subgraph

S' of S in G'(V',E',f') forms a 1-semi-factor in G'(V',E',f') such

that
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f"l(S"I) f f '5').

Next, consider a semi-factor of the form S*v(j,i) c GE(VltE of")

There always exists a unique semi-factor S*v(i,i) e G"(V",E",f") such that

(-1) f"(S*v(j,i)) = (-1) f"(S*v(ii)) igj

where q is the number of the even c~mponents in S*v(j,i). Conversely,

if S*v(i,i) is a semi-factor of G"(V ,E f") such that nodes i and j are

not contained in the same component, then there always exists a unique

semi-factor S*v(.J,i) G" (V",E",f") with the above property. Therefore,

it follows that the only terms which will appear in the final expansion

of are those semi-factors S*v(iji) with nodes i and j belonging to

the same component.

Finally, observe the one-to-one correspondence between the un-
i

cancelled semi-factors S*v(ili) c G"(V",E",f") and 1-semi-factors R E

G'(V',E',f'). Observe also that the removal of the edge (i,i) from

S*v(i)i) increases or decreases the number of the even components of

S*v(i,i) by one, so it follows:

(_,)q f"(S*V(i~i)) = (_)q'- f'(R )

,j

This completes the proof of this theorem.

Again, consider the example in Figure 2. The 1-semi-factors

1 R1
of the forms R2 and R are shown in Figure 4 and Figure 5, respectively.

Therefore, one rets

A) - -1q.'-fI(Rl2) = (Z +Z )(Z +Z )+.Z 3Z2)Z = (Z +Z M(Z +Z +Z )
12 1 2 32 56324 32 456

A= I)qI = (Z 5 +Z6 )Z 4 +(Z 3 +Z 2)Z 4+(Z 3+Z 2 ) (Z 5+Z 6 )=(Z 5 +Z6 ) (Z 2 +Z 4 )

R
+Z4(Z 3 Z 2.



1 11

22

(a) (b)

Figure 4. The 1-semi-factors 2*

(a) (b) (C)

Figure 5. The 1-semni-factorsR1
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4. The Enumeration of Semi-factors and 1-semi-factors

Let G'(V',E',f') be the modified flow graph of a given flow

graph G(V,E,f) and C1 be the Cartesian product of the subsets S. i.e.,

n
CI k=l k

where S= f(t,i)i(ti) C E'; t = 1,2,-..,n} It follows that each

c C CI is either a semi-factor or a subgraph which contains at least

one directed circuit of length > 2. By eliminating the latter from C1

it can easily be shown that the remaining elements of CI will give all

possible semi-factors of G'(V',E',f'). Similarly, the I-semi-factors

of the form Ri are contained in

n

= 1s
C2 k=l k

k~j

Consider the graph in Figure 2. One gets

C j (l~l),(2,l)} X {(3,2),(l,2)} X {(2,3),(3,3)}

The semi-factors are

(1,1)(3,2)(3,3); (1,1)(1,2)(2,3); (1,l)(1,2)(3,3); ý2,1)(3,2)(3,3).ý

Elements in C which contain at least one directed circuit of length

> 2 are

(l,l)(3,2)(2,3); (2,1)(1,2)(3,3)

(2,l)(3,2)(2,3); (2,1)(X,2)(2,3).

Next, consider the product

C 2 {(1,2),(3,2)1 x {(2,3),(3,3)}
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The 1-semi-factors are

(1,2)(2,3); (1,2)(3,3); (3,2)(3,3),

and (3,2)(2,3) is the only element in C2 which ccntains a directed

circuit of length > 2.

5. Conclusions

It has been shown that the efficient formulas can be obtained

for the modified flow graphs. The modifications are simple and the

formulas are also very compact. It is true that a "best method" de-

pends upon one's familiarity, and in fact most people are so familiar

with the existing formulas of a flow graph, they probably do not like

the idea of modifications. Nevertheless, this is a new approach to

the problems. For a given system one technique may work better than

another. It is always better to know two ways of solving a problem

rather than one, for then one can choose a particular approach or com-

bination of approaches, so as to solve the problem at hand in the

simplest and most satisfying manner.

The extension of the formulas for the cofactors to minor

determinants of any order can be easily obtained. The results (cor-.

responding to k-semi-factors) are only trivially different from those

discussed in Section 3. Therefore they will not be repeated here.
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APPENDIX I

The following theorem has been shown by Coates [3,51.

Theorem A: Suppose G(V,E,f) is the associated flow graph of a matrix

A Then
nxn

L
det A 1(-)n z (-)L pf(h)

h

where h is a 1-factor in G(V,E,f); L is the number of directed cir-
p

cuits in h; and the summation is taken over all h C G(V,Ef).

There is an alternative way of finding the signs associated

with each h, and the result is given below without proof [12].

n L
(- )n(-l). Pf(h) =(-l)qf(h)"

where q is the number of even components in h.

This result is useful in the sense that one can associate

each component of h either a plus or a minus sign, according to whether

the component is odd or even.
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APPENDIX II

Outline of a Proof of Theorem 2

Let A = [a.ijInn be either the node-admittance or loop-

impedance matrix of a given electrical network, and G*(V*,E*,f*) be

the flow graph constructed as follows:

(1) Each row (or column) is represented by a node and is

labelled by one of the integers from 1 to n such that

th ththe node labelled k is associated with k row (or k

column);

(2) If a.. 0 0, i 0 j, there is an edge (i,j) directed fromji

node i to node j and also a self-loop denoted by (j,j), at j1

such that

f*((iMj)) a

i,j 1,2,''',n and i ÷ j

f*((j,J)i) - ,aji
n

(3) if E a 0, there is a self-loop (i,i)i at i such that

n

f*((ili) E a x i - 1,2,...,n

In the light of Theorem A in Appendix I, it is easy to show that the

following lemma holds.

Lemma i: det A = det G* -E (l)q*f*(h*)
h*

where h* is a 1-factor of G*(V*,E*,f*); q* is the number of the even

components in h*; the summation is over all h* e G*(V*,E*,f*); and det G*

is the determinant of the matrix associated with G*(V*,E*,f*).
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In fact, Lemma 1 still holds in case G*(V*,E*,f*) contains

parallel edges.

Lemma 2: Suppose h1 is a 1-factor of G*(V*,E*,f*) such that it contains

at least one directed circuit of length > 2, then there exists a 1-

factor h 2 e G*(V*,E*,f*), h 2 # hi, such that f*(h) = .f*(h2).

Proof: By Lemma I it is always possible to write

h ( ~ .. t~ P(I) P(2) ... P(s)

1 1 kI t' kt1 1 1

_(u)
where P1  , u = l,-'-,s are directed disjoint circuits of G*(V*,E*,f*)

and such that PI as the form
1

p(1l) =(j, )(jJ3 . ml)
1 jVj2  ~2  3

where t,s,m are appropriate integers.

There always exists a 1-factor h2 C G*(V*, E*,f*) such that

h= L(illil)k ' (it,it)k [(J 2 J2 )l (i 3 j 3 )
2 1ILt J2

(jl~j •(2) .... P[s)

The mapping of h 1 and h 2 with associated signs are

f*(h 1 ) (_I= ) -ta (. k - aik[ aj ia ...a f*(P(...P()
Stk aJ2 1aJSJ2" him 1

and

t+m

f*(h 2 ) = ( .1) (1) aik "aikajj fa(p (2) ... Ps)

where q is the number of the even components in e 2),e. . The

lemma follows immediately.
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Lemma 3: Let A be the set of all 1-factors of G*(V*,E*,f*) each of

which contains at least one directed circuit of length > 2; also let

A2 be the set of all 1-factors of G*(V*,E*,f*) each of which contains

only self-loops of the form

(il,il)k (i 2 ,i 2 )k (i i )k
ý2 j

such that there exists a set of subindices kt kt kt r > 2, of

k's and also a corresponding set of subindices i i it of i's
I 2 r

with i = ki, p = 1,...,r-I and it= k where j and r are appropriate
tP+l t t tr

integers; then

f (AI V A2 ) = 0

Proof: Let

u (jlJl)kI . .i~t i p...p?
hi .. (J'J~kPi Pi ..P

m
where Pi' m = I,...,C are directed disjoint circuits of length at least

> 2; t, o, i, u are appropriate integers, and h1 e AI V A be such that
1 1 2

there exists no hi C A1 V A2 which has the property.

u' 1 2hi (Jlj k (it'( Jt,,Jr,)kt,PPi .

with , > I and t' < t-2 where 0 and t' are some positive integers.

For each edge (i,j), i # J, C G*(V*,E*,f*) there exists a

unique corresponding self-loop (j'j)i also C G*(V*,E*,f*). If Pm is

defined to be a graph obtained from Pm by replacing edges in Pm with
i I

their corresponding unique self-loops, then the elements in AIV A2 can

always be grouped into a set S of subsets such that for each S. £ SSi1
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rk k k
S. = h~h. CA1 V A2 , and h.'= ( 'i k (j d i)
S Lhiih Il~kl"(tJt~kt i

i' j' -'
~~~~ a j - x ij

P Pi. P. *..P. , where i'i . .i' and ... 4 .X

are the complementary indices of the integers ! 2... a

in U
inu all other notation is defined the same as in h.3 .

Since all the 1-factors in A V A are distinct it follows1 2

that S. A S. = cp for i # j.
12 J

It is easy to show thiat there are 2 1-factors in S.. Half

1 1
of them contairsP , say, the other half does not. By replacing p by P1 1 b

in the former half, one obtains the latter half. Therefore, it is
k, k2

always possible to form 2 disjoint pairs (h. , hi ) such that (by

lemma 2)

f*(h i) -f*(h 2) for all pairs in S.

or

f*(Si) = 0

This, in turn, implies f*(S) f*(A1 V A2) - 0.

Lemma 4: Suppose BI is the set of all 1-factors of G*(V*,E*,f*), and

B2 is the set of all semi-factors of G'(V',E',f'), then there exists a

one-to-one correspondence betweev the elements in the set B -A I-A2 and

the elements in the set B Furthermore, the mappings of the correspond-

ing elements h* C B -AI-A2 and R' C B2 are such that

f*(h*) = (-)q'f (R')

where q' is the number of even components in R'.



Proof: If one associates each edge (Jij)i e E* with an edge (ij) e E'

for all i # j, and (ii)j C E* with (i,i) e E' for all i = J, the first

part of the theorem follows immediately. Since

f*((j,j)) =-f'((ij)) for i # I

= f'((i,i)) for i = j

by Theorem 1, it is possible to associate each component of R' either

a plus or a minus sign, according as the component is odd or even. This

completes the proof of this lemma.

At this point it is obvious that Theorem 2 a direct consequence of

Lemma I and Lemma 4.
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PART I I

FLOW GRAPHS AND BIPARTITE GRAPHS

1. Introduction

In a recent communication, Chow and Roe [1] introduced a new

graph cailed the "matrix graph" in connection with the solution of a

system of linear equations. However) this method is not practical in

the sense that it is difficult to find all possible "simple subgraphs"

even for a system with moderate order. Furthermore, the "matrix graphs"

are actually the well-known bipartite graphs in literature [2-6]. The

purpose of this note is to develop some relations and properties be-

tweer. flow graphs and bipartite graphs, and use bipartite graphs as an

intermediate step in the simplification of the corresponding flow graphs.

2. Definitions and Notation

A directed (linear) graph (denoted by G(VEf) or simply G)

consists of a node set V and an edge set E of ordered pairs of the form

(i~j), ij C V; and a mapping function f with domain in E and range in

the complex field. i is called the initial node and j the terminal node.

For any i V the notation P(i) and p*(i) denote the cardinals

of the sets of edges of G having i as initial and terminal nodes, re-

spectively. If Q is a subgraph of G and each node of G is a node of Q,

then Q is a spanning subgraph of G. A directed graph is regular of

degree k if A(i) =p)*(i) = k for all i E V. An n-factor of G is a

regular subgraph of degree n. For an undirected graph H th! -ymbol p(i)

will be used to indicate the cardinal of the set of edges of H incident

at node i. An undirected graph H is regular of degree k if p(i) = k for
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all i in H. A matching subgraph of H is a s. aning subgrapti of H which

is regular of degree I. For both directed and undirected graphs, the nota-

tion u(A) denotes the number of nodes contained in the node set A..

3. Bipartite Graphs Associated with Flow Graphs

A bipartite graph [6] is a linear graph B(V ,V2,E',f') (or simply

1 2B) in which the node set decompo ses into two disjoint sets V i and V2

such that each edge (i',j') E E' connects a node i' E V1 with a node

j' E V2 where E' is a set of undirected edges and f is a mapping function.

This special type of graph plays an important role in the analysis of

the associated flow graphs of the matrices.

For any flow graph G(VEf) there is an equivalent representa-

tion as a bipartite graph B(VVý,E',f): to the node set V of G(V,E,f),

one constructs a replica Vý which is in a one-to-one correspondence with

V Vi. For each edge (i',,2) E E' if and only if there exists an edge

(i,j) E E. The mapping function f' is defined by

= f((ij)) for all edges E E' and E

Conversely, it is evident that when there is a bipartite graph

B with 4W(V) = P(V1) there is a one-to-one correspondence between edges,

it can be represented as a flow graph in V. It is always possible to

associate a matrix with a bipartite graph [4].

4. Relations Between Flow Graphs and Bipartite Graphs

Definition I: An edge of B(VIV2,,E1,f) is said to be essentiai

if and only if it is contained at least in one of the matching subgraphs

tChow calls this a "simple graph." However, the above definition
is more commonly used in literature [4,5].
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of B. Otherwise it is a non-essential edge.

Theorem 1: Suppose B(V ,Vt,E',f') is the corresponding bipartite

graph of a flow graph G(VE,f), then any subgraph Q of G is an n-factor

if and only if the corresponding subgraph C of Q in B(VI,V2,E',f') is a

regular graph of degree n.

Proof: Suppose Q is an n-factor of G, it is obvious that C is

a spanning sobgraph of B. Suppose C is not regular of degree n, then

there exists a node il of degree > n in C. The degree of the corres-

ponding node i in Q is such that either p(i) > n or p*(i) > n which con-

tradicts the assumption that Q is an n-factor. Therefore C is a regular

subgraph of degree n. Similarly, the converse is true.

Corollary 1: Any subgraph h of G is a i-factor in G if and

only if the ocrresponding subgraph M of h in the corresponding bipartite

graph B is a matching subgraph.

Corollary 2: Any subgraph h of G is a 2-factor in G if and

only if the corresponding subgraph M of h in B forms a set of spanning

non-touching circuits.

Corollary 3: An edge is essential in B if and only if tLe

corresponding edge in G is contained at least in one of the 1-factors of

G.

For any given flow graph G(V,E,f) let

(ys) = •(S) - g(R(s))

0*(s) = g(S) - g(R,(s))

tSometimes this is called a connection [7,83.
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where S is a subset of V; R(S) is a subset of V and contains the set of

all terminal nodes of edges having their initial nodes in S; and R*(S)

is also a subset of V and contains the set of all initial nodes of edges

having their terminal nodes in S. o(S) and &*(S) are usually referred

to as the deficiency and the converse deficiency [2-6] of a directed

graph, respectively.

"A matrix A is said to be reducible if and only if it can be

partitioned into the form

•A = [Z: :22 or [All :121

[A 21 'A2210 A 22-

wherc A and A22 are square submatrices. One extends this definition

also to include as reducible those matrices j aich can be transformed

into a partitioned matrix with the above property, by interchanging the

lines of A. It should be noted that the corresponding rows and columns

are not required to permute simultaneously.

Definition 2: The associated flow graph G(V,Ef) of a given

matrix A is said to be separable if and only if the matrix A is re-

ducible. Otherwise it is inseaarable.

The definition of separability defined here for flow graphs

is different from that defined in the graph theory [9].

Theorem 2: The necessary and sufficient condition that the

associated flow graph G(V,Ef) of a given matrix A be separable is that

there exists at least one proper subset S. S ; 0 (empty set), of V such

that either a(S) or o*(S) is equal to or greater than zero. Furthermore,
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if either j(S) or ey*(S) is greater than zero then the determinant of the

matrix associated with G (or simply determinant of G) vanishes.

Proof: Suppose there exists a proper subset S, S ; 0, such

that a(S) = F(S) - i(R(S)) > 0, in terms of the rows and columns of the

matrix A, p(R(S)) is the number of rows in A having at least one non-

vanishing element in common with one of the columns corresponding to S.

It follows that G is separable. Conversely, if G is separable then there

exists at least one proper subset S, S p 0, such that either CT(S) > 0 or

a(S) > 0. Similarly for the other case.

If either C(S) > 0 or o*(S) > 0 there exists at least one

line containing all zeros in A or A22 in addition to that either A1 2

or A21 is zero. This completes the proof of this theorem.

It is obvious that this theorem provides an alternative in

determining whether a given matrix can be written as the direct sum of

submatrices [10,11].

The deficiency functions defined for flow graphs have a

corresponding meaning in bipartite B(VV2,E',f'), i.e.,

6(Ni) = p(Nl) - p(D(NI))

6*(N') V .(N;) -((N)

where N I and N' Are subsets of V1 and V2 respectively; D(Ni) denotes
1 2

the set of all nodes in V' which are joined by an edge to at least one
2

node in NI' of V';' D(N') denotes the set of all nodes in V' which are

joined by an edge Lo at least one node in N' of V'.
2 2
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Theorem 3: If G(V,E~f) is separable and the corresponding

determinant is non-zero, then it can be split into at least two un-

connected components such that the union of the node sets of the com-

ponents is V and furthermore the determinant of G(V,E,f) is equal to

the product of the determinants of the components.

Proof: Suppose B(V,V2,E ' , ) is the corresponding bipartite

graph of G(VEf), then by Theorem 2 there exists a proper subset

N1= V1, N' #1 0, in B(VV2,E'' f') such that P(N') - p(D(N')) 0. It

is evident from Corollary 1 and Corollary 3 that all the edges (i',j'),

i' E Vj - Nj, J E D(Nj) are non-essential, and can be removed without

changing the value of the determinant of B. Since the interchange of

the labels of any two nodes in V2 corresponds to the interchange of2

the corresponding columns in the associated matrix, it follows that

it is always possible, by using an even number of interchanges, to re-

name the nodes in V2 in such a way that and D(N1 have the same
21

designations. Consequently, the corresponding flow graph of this modified

bipartite graph contains at least two unconnected components, and the

theorem follows immediately.

Corollary 4: If S is a subset of V in G(VE~f) such that

•CS) =(R(S)) then all the edges of the form (iJ), i E (V-S) and

J E R(S), can be removed without changing the value of the determinant

of G. Similar result is obtained if p(S) =(R*(S)).

5. The Determinant of the Product of Two Matrices

Let

A [a nC C=[c j]mxn>naij nxm
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be two given matrices, and Bd (VIV 2 ,E,f) (or simply Bd) be a special

bipartite graph such that

(1) (V = n and (V2 ) =m

(2) There is a directed edge (i~j) E E) i E V1 and i E V2

with f((i.j)) = a if and only if a d 0
ij ij

(3) There is a directed edge (i)j) E E, i E V2 and i E V1)

with f((ij)) = ci if and only if c 0.

Theorem 4: det AC (-1)' (- 1 )q f(h)

where h is a set of non-touching circuits in B which contains all the
d

nodes in V1 ; q is the number of circuits in h; and the summation is over

all h in Bd.

Proof: Let the nodes in V1 be labelled from 1 to n and the

nodes in V from n+l to n+m. (The rows and columns of A and C are labelled
2

accordingly; i.e., the rows of A and the columns of C are labelled from

1 to n. and the columns of A and the rows of C from n+l to n+m.) If

A(jlJI 2 •.,.*Jn) is a major determinant of A formed by the columns jl1J2)

".,,J, and C(j•J2y1 'j'.n) is the corresponding major determinant of

A(J IPJ2$...Jn) in C with J < J 2 < ... < jn) then

A(Jl1.1J2,...Jn )CO(JlJ2)..pjn)

JlI J20 "in 12...n

= 12 kk ...2kn alkIa2 k 2. afk n Ei1i2 ...i J11J212 ... nn

where kI k 2okn is a permutation of the integers j 1,j 2,...j n; and
J2J2 .. in

i i 2...i is a permutation of the integers l,2,...,n. Ek k ...k
1 2 n

is +1 or -1 according as the permutation k k 2..kn is even or odd.

12... n

Similarly for Ei 12" n ...i Since
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E12...n Ekiik2 .. " Jna a a

Ei Ii 2 E... kk 2..k alk a2k ".nk a c .c . ... c nnl n 1 k2" 113~l212 Jnm

n 12 ... nJJ...2
=k 1kl 2... in1 1 ... in lk 12k 2...nk n jil1j2i2 - j nfn

and all the row and column indices are distinct, respectively, by follow-

ing the same argument as in the derivation of the gain of a flow graph

[81, one obtains

A(jlJ 2 -.. Jn) C(JlJ2...,Jn) = (-1)n (_ 1 )q' f(h')

where h' is a set of non-touching circuits which contains all the nodes

l2...nl23... q' is the number of circuits in h'; and the

summation is taken over all possible such h' in Bd

Since det AC is equal to the sum of the products of all corres-

ponding major determinants, the theorem follows immediately.

Corollary 5: In Theorem 4, if m = n then h becomes a I-factor

in B
d

6. Illustrative Example:

Consider the flow graph G(VEf) shown in Fig. 1. Since there

exists non-empty proper subset S of the node set V such that

S = ý3, 4}

R(S) = ~3,2

and 4(S) = "(R(S))

by Theorem 2 and Corollary 4, it follows immediately that G is separable

and the edges (5.3), (2,2), (1.,2) of G are non-essential, so they can

be removed without changing the value of the determinant of G. Further-
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more,, since G is separable it is possible to construct (it :ear-it) two

unconnected components (by Theorem 3) such that [-he determivan, of G

is equal to the product of determinants of tI'e comnptcnerts. (Fijý. 2)

022

2
0 12 a23

0121

all a33

0523

042
024

0155

Fig. 1. The Illustrative Example.

Gl23

a24 033

a44

034

Fig. 2. The Corresponding Two Unconnected
Components of Fig. 1.
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PART III

AN EXTENSION OF THE STAR-MESH TRANSFORMATIOi

The basic problem of analysis of combinational circuits is the

Qetermination of the relation betwee'n any given connection matrix and

the correspoading output matrix. To accomplish this, Hohn [1] showed

first how to obtain from a given circuit an equivalent circuit using

or!e less .on-terminal node in the formation of the connection matrix.

This G,'-a.ion (the star-mesh transformation [(]) is repeated until

there is no non-terminal nodes in the accounting. Yoeli [2] generalized

it to the process of multiple-node removal in an algebraic form. The

purpose of this note is to point out that Yoeli's process can be

accomplished topologically.

Let C be the connection matrix (not necessarily symmetrical)

of a given circuit G and be partitioned in such way that

C [C jln VC 11 C 12]
[ciJ [21 c22 nxn

where 11is square submatrix of order p which corresponus to the

terminal nodes of G. For conveiience, a mapping function f is defined

from the oranches(i,j) of 0 into the BoolrAn algebra such that

cij for all branches in G

Also define

fC? =11 f((ulu 2 ))
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where (ul,u 2 ) is a branch in R, and R is any non-empty subgraph of G.

Next let

tlt
C t [Ij ] tl,t 2 =1,2

t t =1J

(C22) [mij](n-p•x(n-p)

and

F = [(fi]

where (C22] is the adjoint matrix of C2 2 [2].

Yoeli [2] has shown that if F is the corresponding output

matrix of order p, then2

F = C C (C2 C]
11 2 22) C21 5

Suppose Cl1 + C1 2 (C22 3 C 2 1 = [dj]

then

d 11 n-p 12 21
ij ij +Pýk "In mki C1 j

Since mk is the switching function from node k to node I of the circuit

corresponding to C2 2 J it follows that

mki= P2 f(Pl')

~ki

where P' is a directed path from node k to node I in the sectional graph3

k1

The definitions and notation used by Hohn [1] and Yoeli [2]
will be used here.
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G[A] where A is the node set corresponding to the submatrix C2 2 , and

the Boolean sum is taken over all possible P' E G[A].

Therefore

di. i f(Pi.) for i~jPj P ij

= Ifor i=j

where Pij is a directed path from node i to node j in the secti4onal

graph G[Avivj] where Avivj is the set union of the nodes i,j, and the

node set Ai and the Boolean sum is taken over all possiile PLj E C-[AViVj].

Theorem 1: With the notation used above if G is the circuit
r

obtained from G in such a way: (1) G only contains p terminal nodes of
r

G; (2) if dii 7 0, there is a branch from node i to node j with associated

weight di ; .hen G and G are equivalent (same output matrix).

Corllary 1: If C2 is of order 1, the above theorem redulces

to the star-mesh transformation in Hohn's paper [2].

At this point, it is obvious that the topological reduction

process not only displays in a very intuitive manner the causal

relationships among the variables of the system under study, but also

shows that the process is independent of the labelling of the nodes.

As a matter of fact, Theorem 1 still holds even if part of the non-

terminal nodes is removed.

Example 1: Consider the circuit shown in Fig. l(a). The

dotted part is the sectional graph to be removed. The reduced circuit

is shown in Fig. l(b).
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a'b'c'+o' bc

! 

a

4' 6 Ca

a "xb b' b. )c'b

4

(a) (b)

Fig. 1. (a) Example for Multiple-node Removal
(b) The Corresponding Reduced Ci.cuit of (a)

It is interesting to note that this process can be easily

applied to sequential machines to give the corresponding multiple

"state removal" algorithm with minor mndifications.

If G[A] is the sectional graph to be removed from a state

diagram G where A is a set of states and if there exist self-loops in

G[A], then the process shown in Fig. 2 must be used in order to

eliminate all such self-loops (I is used as identity for multiplication

but 1 + b P 1). k is a non-negativ, integer.

a, b (1+Z bk) c1

02 .2 (1••cj °z• (l+Xbk )Cb

03 c 03 U(+Zbk )c 3

0, cn am .( I + ,•bk )Cn

(a) (b)

Fig. 2. (a) A Node with a Self-Loop
(b) With the Self-Loop Removed
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After all the .- lf-loops having been removed, Theorem 1 now

can be applied to obtain the corresponding reduced state diagram.

Example 2: Cone Jer the state diagram of Fig. 3(a). The

dotted part is the sectional graph to be removed. Fig. 3(b) is the

corresponding reduced state diagram.

bb

2 2
0 0

9 
b

b ig. 3. Example for Multiple State Removal

(a) (b)

Footnotes:

1. The definitions and notation used by Hohn [1] and Yoeli [2] will be

used here.

2. This result was first discovered by Shekel and published in [2]. In

a recent communication, Brown [4] restated the same result for a

more restricted class of elements, i.e., Boolean algebra.

3. A sectional graph (denoted by G[A]) of G defined by a node set A

is the subgraph whose node set is A and whose branches are all those

branches in G which connect two nodes in A.
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PART IV

A SIMPLIFIED WAY OF SOLVING A SYSTEM OF

SIMULTANEOUS LINEAR EQUATIONS

1. Introduction

Many methods of solving'a system of simultaneous linear

equations have been published in literature [1], but no "best method"

can be recommended. For a given system, one technique may work better

than the others. Therefore, it only depends upon the nature of the

problems and one's familiarity with a particular method. In this paper,

a new method based on the reduced flow graphs is presented.

2. Definitions and Notation

It is always possible to associate a directed linear graph,

called a flow graph [203], with a given square r2 -ix A = [a..] of order

n. Each row (or column) is represented by a node and is labelled by

one of the integers from 1 to n such that the node labelled k is

th th
associated with k row (or k column). If aji d 0, there is an edge

ji
(i,,j) directed from i to j with associated weight a j. For a more

compact description of a flow graph, the notation of 3-tuple G(VEf)

is used where V is a set of nodes; E is a set of directed edges; and

f is a mapping function from E to the complex field such that f((ij))

= a for all iyj E V. Also it is convenient to extend the mapping

function f from a single edge (i,J) E E to any subgraph R of G(V,E,f)

such that

f(R) = 11f((t,,k))
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where the product is taken over all edges (tk) E R.

For any i E V the notation p(i) and p*(i) denote the cardinals

of the sets of edges of G having i as initial and terminal nodes,

respectively. They are called the outgoing and incoming degrees of G

at i. A directed graph is regular of degree k if P(i) =*(i) = k for

each i E V.

If A is a subset of V, the sectional graph (denoted by G[A])

of G defined by A is the subgraph whose node set is A and whose edges

are all those edges in G which connect two nodes in A. When A = V

the sectional graph is G itself. Two subgraphs are disjoint when they

have no edges and nodes in common. If S is a subgraph of G and each

node of G is a node of S, then S is a spanning subgraph of G. A comu-

ponent of G(VE.,f) is a maximal connected subgraph of J(V,EJf). A

connection of G(VEf) is a spanning subgraph of G(V,E,f) which is

regular of degree 1. A subgraph (denoted by Hi) of G(VE~f) is said

to be a one-connection from node i to node j if it contains: (1) a

directed path front node i to node J; (2) a set of disjoint circuits

which include all nodes of G(VE.,f) except those contained in (1).

3. Main Result

It will be convenient to write the system of simultaneous (consistent)

linear equations in matrix form

(1) AX = B

where A = [a ] is the coefficient matrix of order n; and X andB are
ij

the column vectors. Frequently, to save space, the column vectors X and

B are written in the form txl,x 2 ,...,xn] and (b 1,b 2 ,.**.bn}, respectively.
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Let G(VEf) be the flow graph associated with the system (1),

i.e., associate a flow graph to the coefficient matrix A and then attach

a source node (denoted by n+l) Lo it in such a way if b k 0 there

is an edge (n+lk) with f((n+lk)) =-bk. Also let Gc(VcEcfc) be

the flow graph obtained from G(VE~f) such that

V =Vc

and f c((ij)) 0 for i < j

qI
S(-1) f(H j)
H..j

f c(i j)) 3 J for i > j( -J)q f(h)

h

where Hij is a one-connection in the sectional graph G[lv2v... vjvi] where

lv2v.. .vjvi is the node set cot raining the nodes 1, 2, ... , j and i; h

is a connection in G[lv2v...vj ] where lv2v. .vj is the node set containing

the nodes 1, 2, ...9 j; ql and q are the numbers of circuits in H.j and

h, raspectively; and the summations are taken over all Hij and h in

G(lv2v...vjvij and G[lv2v...vj), respectively. It is also assumed that

the determinants of the matrices associated with the sectional graphs

G[lv2v...vkl, k=l,...,n are non-zero

The reduced flow graph G c(VCOEcofC) may be defined as the

canonical form of G(VE,f), and usually has the form shown in Fig. 1.
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Fig. 1. The Canonical Form of G(V.,E,f)

Theorem 1: With the same notation used above, the solution

of Eq. (1) is given by

-j (n+1)j C (nl

where P (lj'is a directed path from node n~e- to node j E G c(VcE f c);f

qpis the number of edges in P (n+i)j ; and the summation is taken over

alP(n+l)j CGc(cEO

Proof: If a row of zeros is attached to the bottom of the

matrix I A,-B] where [A,-B] is obtained from A by attaching -B to the righit

of A, and then an operation sim 'ir to the "sweep-out' process [41 for

evaluatin~g determinants is applied, the resultant matrix A' turns out

to be
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1 12 a _. a 1 (n-1 ) ialn a 16+1)

a11  a 1 1  a11  a1 1

1 2 2 22

2 2 2 2

0 0 ... -

n-i n-+I
0 0 ... 0 1 S- 0

n-I n-I

•n+ 1
n

0 0 ... 0 ... 0 1
n

0 0 0 ... 0 0 0

where

a a a*..

A=det a21 a22 a 2j for j=1,...,n

aj, a ... ajj

and

all " ' a 1(i _,) 'lk

'k_ j 2 1 .. a 2 a 2
- det 2(i-1) 2k for k > i

i• i =2...,n

k =3...n+I

Sil "'" a.(il) aiA

with am(n+l) =bm for m=1,...,n

rn ni'1I I
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It is obvious that the systems (1) and

(2) AX' = 0

where XV = IX VX2Y... Xnl are equivalent. Therefore, by Cramer's rule

one gets

x. r(-I" n-J-l A'
x , " dec A(n+l)j

where A' n+l) is the submatrix obtained from A' by striki ig out the

(n+l)th row and jth column of A'. By a theorem due to Coaces !2,3j

(which is contained in appendix),one readily realizes that th.* flow

graph G'(W, E',f') associated with the system (2) is precisely the

reduced flow graph G c(V cECfc ) of G(VE~f) except that the weights

associated with the self-loops (i~i), i=l... .n are l's rather than

zeros. Therefore

n-jL- (n+l)+j n+lx Hiý (-I) v%'(nH' j)
. [(-1) (n+l) (n+l)j

where H~ 1 ~( i is a one-conneztion from node (n+l) to node j in G'(V'IE'If),

L' is the number of circuits in Hn j; and the summation is taken overa (n+l)j
all H n+l)jE "G(VIEIf). If P n+l)j is the directed path from node

(n4-) to node j C H' then

L' ',n+l)- (qp+l)

where q is the number of edges contained in P l It follows that
p (11+l )j'

qXj [ "-I) P ] (P
[ P(n+l)j c P (n+l)j

This completes the proof.
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In case some of the unterminants g j=12,...,n-1 are zero,

it can be showv thai it t. a-way.- possjhlp etirb-r by relabelling or

s.nattrng !, the nodo-, ot GCVIE,f) .•n Fuch a va, rhat the -s-3umption

nolds. If 0 -cr an J > k, 0 < k < n, the exren-ion is trivial

since (n-k) vectors of A can be t:,,ated as B.

it shonxld to noted that in the process of the construiction of

G c(V C,Ec ic the most complzcated mapping term is f C((n+l,n)) ahich

correbponds to caleulate x E G(VE,f) by coate'•" method [2]. The re-n

maining tez ns are ebtained from the sectional graphs of G(V,E,f). There-

for'e, if all x. j=, ... n are requlired, this method certainly will de-

monstrate its superioxity. Thus ,s best illustrated hy the following

exampl e.

Example I: Consider the system of equations

Tl.X2+X " x4-1 =0

2x +x 2+2r, 3+X4-l 0

2x +2X -x +2x -5 = 01 2 3 4

I .2, +-3x3 +3x 4-3 = 0

The flow graph 4 (VEf) and its canonical form G (V c,Ec,f)

are shown in Fig. 2,. Then, by Theorem 1, one has

x 4=-
x3

X 2 -1)+(-3)(1) -2

x =-(-I)+(-i) (1)+(!) (I)-(-3) (I) ••-•
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(a)(b

Fig. 2.ý The Flow Graph G(VE.,f)- and its Canonical Form

G Gc(Vc)E c jc) ct Example 1.

4. Conclusions

The topological approach offers an alternative vFewpoint

which complements and enha .ves the more fimiliar classical methods of

solving a system of simultaneous linear equations. It is always better

to know two ways of solving a problem rather than one, for then one

can choose a particular approach ox combination of approaches, so as to

solve the problem at hand in the k .mplest and most satisfying manner.
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APPENDIX

The following theorem has .3een shown by Coates and Desoer

[2,3]1.

Theorem: Suppose G(VEf) is the associated flow graph of

a matrix A then
nXn

L
det A = (- 1 )n l (-1) f(h)

h

L -1
(-1)ij det A =(_,n (-1) f(1. ij) for i;j

where h is a connection in G(V,EVf); H.. is a one-connection from node13

i to node j in G(V,E,f); Lp and La are the numbers of circuits in h and

HiV3 respectively; and the summations are taken over all h and Hij in

.th th
G(V,E,f). A is obtained from A by striking out the i row and j

ij

column of A.,



Part V 47

On Signal-Flow Graphs

Methods of simplification for signal-flow graphs have been treated

extensively in the literature [1,2]. The purpose of this note is to gener-

alize a single-node removal algorithm to a multiple-node removal algorithm.

For convenience the notation f(R)-will be used to represent the

'product cf the weights associated with the edges in R where R is a subgraph

of some sit-ial-flow (or flow) graph G. If A is a subset of the node set of

G, the sectional graph (denoted by G[A]) of G defined by A is the subgraph

whose node set is A and whose edges are all those edges in G which connect

two nodes in A. The following theorem is obtained for the flow-graphs [3].

Theorem I: Suppose V is the node set of a 11ow graph G, and VS~m
is a proper subset of V such that detG[V] 1 0, then detG K detG with

K = detG[V m where Gr is the reduced flow graph obtained from G by the

fol lowi ng process:

(1) Remove G[Vm] from G, i.e., remove all nodes and edges incident to and
m

from any node in V n

(2) The weight bi. associated with the edge (i,j) f Gr is given by

qr

b (-l) f(Hj) for all i,j e (V-V )
ij ij m

where m is a one-connection from i to j in G[V UiUjl where
ij

V UIUJ is the set union of the nodes ij and the nodes in V q
m m M

is the number of the loops in Hij;.(V )represents the number of
ij m

nodes in V; and the summation is taken over all I? E G[V UiUJl.
ij m

when i = j, G[V U'Uil reduces to G[V ui] and the one-connections
m m

from i to j become the connections in G[V~jjil by definition.
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A similar result is obtained for the signal-flow graphB.

Theorem 2: Suppose V' is the node set of a signal-flow graph G',

and V' is a proper subset of V' such that detC'[V' 0 • 0, then detG' =
nl m

K' detG' with K' = det G'[V' ] where G' is the reduced signal-flow graph
r m r

obtained from G' by the following process:

(1) Remove G'[V'];
m

(2) The weight b. associated with the edge (i,j) E G' is given by
13 r

bi. = P for all i,j E (V'-V')
ij K1 k k M

k

where P is the gain of the kth forward path from i to j in G'[V'UiUj];

-k is the value of detG'[V'UiJj] for that part of the graph not touch-
Sh

ing the kth forward path; and the summation is taken over all PA ae
k k

G' [v' iUJ].

It should be noted that the ieterminants of the graphs used ir.

the above theorem are according to Mason's definition (1-4].

The verbal aspect of the above theorems seems very involved, but

the topological structure is rather simple.

The following corollary is seen to be true.

Corollary: The gain between the nodes i and J, i,j E V', in G'm

Is equal to the gain between the same nodes in G'.
r
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