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FOREWORD

The great effect of the damping properties of a mecharical
system on its behavior on vibrations is well known; these proper-
ties acquire particular significance in resonance conditions, when
the ampiltudes of osclllations become limited as a result of pre-
cisely this damping. Factors causing damping of vibrations of any
system are: influence of the medium in which the vibrations are
performed (aero- and hydrodynamic damping), internal friction in
the material and, finally, friction in supports and couplings.

In those cases when the above types of damping do not suffi-
ciently limit of amplitude of vibrations, special devices, called
vibration dampers (or dampers), are introduced into the system;
for appropriate parameters these dampers become the most effective
medium for vibration damping. However, the introduction of special
dampers can in no way be regarded as an universal method, if we
keep in mind the large variety of possible mechanical systems; var-
lous structural or service considerations frequently prerent the
installation of vibration dampers.

Therefore, in the overwhelming majority of actual structures
damping is created by the action of the medium, friction in the
material and friction in the supports and couplings. The first two
of these factors were most thoroughly investigated. The investiga-
tion of the action of the medium on a vibrating elastic system bel-
ongs to the fleld of hydro- and aerodynamics; great successes achie-~

ved in this field, in particular in conjunction with important prob-
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Teme of alrerart wliys and tall structure Inctability (Flatts r), i

knorm, Internal trrletlon in the matoriad g Uor o tory: porion of

tirme boen subjeetl o continuoun attention by phyaicints; o lthonrh
the mechanism of intcernal rfrlcetlon has not an yet boeen cufflecionily
investigated, coxtenrive experimental material has been eollootod aned
a volum of reliablce information on qualitative and nquantital ive

characteristics of various materialc hac been obtaincd as of tnday.

We should, however, confess that the effect of thic factor on iLhe
damping properties of the majority of actual structures wac of'ten
overestimated.

It has at present become entirely clear thet in the overvheln-
ing majority of cases the most important role 1s played by frietion

losses in couplings of mechanical systems. Two classes of casec

should be here distinctly distinguished: 1) friction in moving coup-
lings (of the type of bearings, guldes, etc.); 2) friction in per-
manent joints (press-fit, riveted, slotted, threaded and the like).
While the problem of friction in moving joints has been studied for
a long time and is rather extensively illuminated in the literature,
friction in permanent Joints was subjected to investigation quite
recentiy, although it is of foremost significance in damping of dy-
namic processes in machinery, ship and aircraft structures and many

other mechanical systems. The last type of damping is further called

structural damping; we shall utilize this, possibly insufficlently
exact, term for the want of a better one.

Not much time has passed fram the publication of the first papers
specially devoted to the problem of structural damping; however sig-
nificant theoretical and experimental material, pertaining to the
most varied types of Joints has been collected at present. The pre-
sent work represents an attempt to generalize all the results ob-

FTD-TT-63-T55/1+2 -2-




o P e s w3

tained in this ficld, here the basic content of the book pertains to
the theory of structural camping; problems of experimental character
are illuminated only to the extent necessary for reinforcement of
theoretical calculations. Alongside with a detalled presentation of
materlals obtained by the authors in the applied mechanics labora-
tory of the Automation and Mechanice Institute of the Latvian SSR
Academy of Sclences works of other investigators are also illumina-
ted.

§§ 6 and 7 were written by N.G. Kalinin, §§ 12, and 1416 - by
Yu.A. Lebedev, §§ 8 and 9 - by V.I. Lebedeva, the introduction, §§ 1,
13, 18 and the conclusion - by Ya.G. Panovko, §§ 2 and 3 - by G.I.
Strakhov. Secticn 17 was written by N.G. Kalinin and Yu.A. Lebedev,
§§ 4, 5, 10, 11, 19, 20 and 21 - by Ya.G. Panovko and G.I. Strakhov.
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INTRODUCTION
As has been pointed out in the preface, a distinction chould be

made between the cases of friction in moving joints and cunco of

friction in permanent Jjoints. The point of the matter i:s that in

solving problems of the first type it 1is natural to ignore the f{zct
that the elements making up the kinematic pair are defcrmable, and
to consider them to be entirely rigid; in the solution of problerc
of the second type it 1s impossible to ignore deformations and it
becomes necessary to simultaneously consider both the friction for-
ces along contact areas and the deformation of the joined elements.
It 1s understood that the term "permanent joint® should be taken
conventionally, since we will everywhere assume a certain mobility,
caused by small deformations and relative slip of the Joint elements.
The energy dissipation phenomencn in permanent joints on their cycli-
cal loading will subsequently be called structural damping.

The importance of structural damping for dynamic processes in
mechanical systems has been known for some time, but it is only
recently that reliable experimental data conclusively coenfirming
the paramount significance of structural damping in the most differ-
ent structures have been obtained. This pertains mainly to mechani-
cal systems 4in operation of which it is impossible to entirely elir-
inate resonance modes (ship and aircraft structures, turbine buckets
and the 1like). The distinguishing feature of structural damping is
the known possibility of "controlling" the frictional losses in coup-

lings; thus, a change in the forces exerted by mutual compression
-4




between elements making up a structure can in come cases increase
energy dissipation and in others - decrcase it. By virtue of the same
fact the designer finds himself in & situstion (at least within cer-
tain 1limits) where he can control the damping in the system.

In published experime¢antal works relatively much attention was

paid to experimental investigations of energy dissipation on cyciical
deformation of riveted joints (mainly in conjunction with the opera-
tion of metal structures in englneering installations). In particular,
the substantial influence of the degree of compression of structural
elements on energy dissipation attendant to cyclical loadings has
been e+ tablished long ago; this influence follows directly from the
dependence of dry friction developed in the Joint on the normal pres-
sure. More than thirty years ago I.M. Rabinovich [19] has proposed to
estimate the state of riveted bridge jJoints by an experimentally de-
termined absorption coefficient.® G.A. Shapiro's book [31], in which
the methodology of determination of frictional forces 1s developed
and the description of experimental equipment and special apparatus
is glven, 1s specially devoted to the damping properties of riveted
Joints.

The importance of damping created in riveted Joints can also be
inferred from the results of tests on hulls of river and sea vessels
(Taylor [39], N.N. Babayev [1] and Kumai [34]); 1t has been establish-
ed that riveted hulls of sea and river vessels have a considerably
larger abscrption coefficient in comparison with welded hulls of the
same type.

A similar phenomenon 1s observed in housings of gas turbines,

where the utilization of riveted instead of welded Joints makes it
possible to significantly lower the amplitudes of vibrations. It has

been established in the Reference by A.M. Soyfer and V.P. Filekin [24]
-5




that succcessfl duaping o vibrations In pgas turbline houcings ear be
achleved by utlillclny cpeclal damplng welded scans. The lottoer differ
rfrom ordinary welded scame by the fact that oo rednbive siip ol
velded componentg, within 1limlits allowed by the neam ctrongth, o
possible. Comparative tosts of damping seams of diffcrent declend
have shown that the largest absorption coefficient i:c provided by
seams executed by means of spot welding.

A.M Soyfer's articles [21, 22] are devoted to a systematic ex-
perimental study of structural damping in gas turbine componentc. It
is proven in these articles that structural means are solely effective
for damping of inevitably arising vibrations. The author suggestc a
number of design schemes; thus, application of a special wire braid-
ing on the ¢as turbine pipelines has made it possible to considerably
decrease the amplitude of resonance vibrations. Even more substantial
results were obtained with special wire dampers.

An important question about vibration damping in banks of tur-
bine buckets was investigated by A.D. Kovalenko [9] and a number of
other authors. A.M. Soyfer in Reference [23] suggests the utiliza-
tion of a speclal design of the working part of the bucket with a
core as a damper of vibrations oi a turbine or gas turbine pump
bucket. A metal core 1s fitted with positive or negative allowance
inside the hollow bucket; relative displacements of the core and the
bucket occur on segments of contact on cyclical deformations of the
bucket, with the result that a part of the energy is lost 1n over-
coming the frictiocnal force. D1 Taranto, in Reference [32], has in-
vestigated the effectiveness of steel wire clusters intreduced into
the bucket. The energy dissipation in this case occurs not only due
tc friction at the surface of contact of the bucket with the core,
but also at the expense of friction between individual wires within

-6 -




the cluster proper.
D.N. Reshetov and Z.M. lLevin [20] have, on the basic of a large
number of experiments, determined the energy dissipation characteris-

tics in flat, cylindrical and tapered machine-tool component joints

and have discovered optimal dimensions of these joints from the point
of view of largest energy dissipation. On the basis of analysic of
experimental results the authors have established operating condi-
tions wunder which the greatest energy dissipation is obtained and
they have also performed a comparative estimate of the effectiveness
of the different types of dampers. In particular, structural hyster-
esls dampers were investigated; 1t was also established that stacked
dished dampers as well as stacked dampers with rippled spacers are
the best. The dished disks are deformed when the stacks are compressed,
slip takes place on the tapered contact surfaces and irreversible
friction work is perormed. Stacked dampers [made from] rippled
plates operate similarly. The elastic properties of a rippled plate
are directionally anisotropic: the plate's rigidity in the direction
of the ripples 1is considerably greater than the rigidity in the trans-
verse direction. The campression of a rippled spacer between rigid
plates 1is accampanied by an expansion of the plate in a direction per-
pendicular to the ripples. This expansion results in the displacement
of the ripples relative to the rigid plates which, in turn, results in
the appearance of the work of frictional forces. According to the
authors' data, the energy absorption coefficient reaches the value of
1.4 - 1.6.

V.L. Biderman, Reference [2] and I.G. Parkhilovskiy, Refererce
[16], have experimentally 1nvestigated.energy dissipation in stacked
systems of the leaf-spring type.

Energy dissipation in [railroad] car suspensions is considered

-7 -




in I.V. Krasavin's dissertation [10]. It 1s shown in Reference [27]
that the intensity of the dissipated energy in a bank of elastic
cantilevered beams with mutual contact at the end sections only, de-
pends substantially on the normal pressure at the contact surface.
Only by changing the compressing force of the leaves does it become
possible to obtain a several-fold lowering of the maximal magn?tude
of vibrational stresses. Experimental results were obtained in the
work for a schematized twin-leaf spring. The work by Meyer [35] is
devoted to a closely related topic.

The effect of frictional forces in collet Joints was experimen-
tally investigated by E.L. Poznyak {17] in conjunction with the phe-

nomena of shaft rotation instability in the supercritical region. As
we know, forces of internal friction in the material or couplings of
the rotor can be the cause of "swingout" of vibrations; the friction-
al forces in these cases exert an influence opposite to that of
damping and are of substantial significance, although in a different
sense than for permanent jJoints. The effect of structural friction

on shaft rotation instability is investigated also by M.I. Chayevskly,
Reference [30a].

Goodman and Klamp [33] and Pian and Hallowell [38] have experi-
mentally investigated energy dissipation in composite beams, consist-
ing of layers pressed tightly together; here the tangential forces of
interacvion between the layers on bending of the beam are reallzed
only in the form of frictional forces. It has been established that,
in structures of this type, energy dissipation resulting from friction
along contact surfaces exceeds manyfold the energy dissipation due to
internal frictior in the material of the beam's camponents.

Certain new experimental data about energy disslpation 1in models
of riveted beams and in threaded Joints are described below in Chap-

-8 -
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We have touchcd above on experimental inve:tipatlons pertaining
to the problem of structural damping. Altopcther, these inveitlga—
tions conclusively prove the paramount importancce of structural damp-
ing for systems of the most different typcco.

Theoretical investigations of problems of structural damping

also begin to appear gradually. They pertain to simplified typical
schemes and are constructed upon two basic assumptions of a general
character: the material of the joint camponents is assumed to be
completely elastic and the frictional properties of contact surfaces
are described by the law of dry friction.

The bending of a cantilever reinforced at the top and bottom
by thin pressure plates is considered in Reference [38]; the pressure
plates are pressed to the beam and take up a part of the cantilever's
length, without reaching the fastening surface (Fig. 1la). It 1s assum-
ed that when the cantilever 1s loaded by a transverse end force, only
frictional forces impede the s8lip of the pressure plates relative to
the beam. The interaction between the pressure plates and the beam
is different on two segments of the pressure plate's length. Near the
end of the beam the tangential forces between the pressure plates and
the beam are determined by the ordinary formula of strength of mater-
ials, here the tangentilal forces are smaller than the limiting value
a, = Ip (£ 1s the friction coefficient and p 1s the specific pressure
on the contact surface); the pressure plates do not slip along the
beam. However, it is required for the equilibrium of the pressure
plates that the direction of tangential forces in its remaining length
be opposite to the direction at the first segment; the pressure plate
does slip along the beam at this second segment and the tangential

-9 -




forces are equal to ag¢ The loading of the top prescure plate 1is
shown in Fig. 1lb; the bottom pressurc plate ic loaded in a like man-
ner (the tangential forces acting on 1t arc of opposite directions).

It should bc kept in mind that the slip

A2 V'\’\, | zone appears for any as cmall as desired

\ aP values of the force aP. (Here and subse-
Tirreet quently we denote by a a dimensionlecs

o) & il:a-i ¢ . load parameter, varying between the limits
S ~1 < a <13 P 1s the maximal magnitude of

: the force.)
M’o Goodman and Klamp [33] have solved
the problem of cyclical loading of a can-

Fig. 1
tilevered beam, consisting of two identi-

cal layers; the latter pressed to one another by a given pressure
(Fig. 2). As long as force aP is small, the tangential forces g, de-
termined by the ordinary strength of materials formula, are smaller than

the 1imiting value Qg5 there 1s no rela-
tive s8lip between the beam layers and the

cantilever bends as a beam with a mono-

lithic cross section. No energy dissipa-
Fig. 2 tion occurs at this stage.

When, in the process of increasing the force, the tangential
forces reach the limiting value qg» 8lip will occur between the bean
elements and the frictional forces will perform a certain irreversible
work. Goodman and Klamp have analyzed an entire symmetrical loading
cycle and have found the area of the hysteresis loop. It turned out
that this area depends in a peculiar manner on the given pressure p
between the beam components; it was established, in particular, that

- 10 -
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there exists a certain optimal valuc of the pressure for which the
energy dissipated during a single cycle becomes largest. This fact
can be interpreted in the following manner. When pressure p 1s ab-
sent, no frictional forces are developed and there is no energy dis-
sipation. On the other hand, no energy dissipation will exist for
sufficiently large values of pressure, since slip between beam layers
1s [then] absent. A similar problem with a composite beam in the ab-
sence of slip at the ends is solved by V.L. Filekin {30].

V.I. Feodosev [29] has solved the problem of redistribution of
tangential forces in a press-fit joint, described in Fig. 3a. It is
assumed that the shaft 1s held in the sleeve by frictional forces
only and that the contact tension stress creating these frictional
forces 1s congstant along the entire length of the contact zone.

The greatest value of load aM is con-

an
. HH:(":ﬁ*'w“' sidered to be small enough so that the
4 ' shaft does not rotate at all within
el
) ® T ~~sﬁ‘§’ii5ff§§‘ i 3 4 ‘m@ the sleeve. Since the sleeve and the
Ty shaft are not absolutely rigid, slip
C)‘ ‘g{,.js._.. e P @
o "'"*"‘"‘J at the contact surface will begin for
) e A ©  any, as small as desired, values of a;
Fig. 3 here the slip zones will adjoin the erd

of the shaft and the end of the sleeve.
The graphs of the torsional moments in the shaft and sleeve sectlons
for the first loading stage are shown in Fig. 3b and c¢c. The substan-
tial peculiarity of structural hysteresis in permanent Jjoints is
distinctly seen in this case: a singlevalued determination of fric-
tional forces is impossidble without an analysis of the deformation of
the mating elements.

Cyclical loading of a press-fit shaft-sleeve Joint by longitu-
- 11 -




@ (S o dinal forccs (Fig. 4), 1s cyctematic-
< AN e e
"'7."‘..‘—.?-‘& “é&:;@ ally conciderecd in Article [14].

The diagramc of the dictributlon

Fig. 4 of longitudinal forcec in the chaft

and sleeve sectionc are in thic cace

similar to the dilagrams in Fig. 3b. The Reference investigates the
entire cycle, loading -~ unloading - loading,and determines the erergy

dissipated during one such cycle. The effect of transverse deforma-

tions of a shaft on the dissipated energy 1s investigated iIn Refer-
ence [25]; these deformations are unavoidable on longitudinal loacing
of the Joint under consideration and in
aM ““f i “.““,. ¥ certain cases are of substantial signi-

( / Lo ) f1cance.

R Structural hysteresis resulting

—o4 b from slip arising between individual

wires is also observed in elongation of

Fig. 5
wire cables. This problem was investiga-

ted by S.D. Ponomarev [18] (see also [4]).
The construction of the hysteresis loop for a spring was given
by V.L. Biderman [2] and in Reference [27].

The case of bending of a beam with pressure plates pressed to it,

described in Plig. 5, is considered in Reference {14]. The bean, at
its mlddle segment, deformms together with the pressure plates and
pure bending in the ordinary sense of the phrase 1s taklng place;
tangential forces are absent along the mating surfaces of the pres-
sure plates and the beam. The end segments of the pressure plates are
loaded in a manner shown in Filg. 5b; furthermore, the tangential for-
ces qq are uniformly distributed along the length a of the ead seg-
ment; they balance the force N devolving upon the middle segment of
-12 -
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the pressure plate. It 1s understood that the length a increases
gradually during the proccess of increasc of the moment oM.

The investigation of the role of frictional forces in a torsion
beam, a schematic of which is prcscnted in Fig. 6, ic due to N.F.
Karpachev [7]. The torsion beam represents a bank of leaves pressed
to one another at their ends, which is twisted by two end couples.

The energy disslipation attendant to the compressing of a disk
bank is studied in Article [26]. The bank conxists of disks made of
materials having different mechanical characteristics (a pair of disks
1s described in Pig. 7). If the friction coefficient is equal to zero

and no frictional forces arise on the contact surface between the

Fig. 6 Fig. 7

disks, then the axial deformations of disks with different moduli of
elasticity €, will also be different and, consequently, the radial
deformations g, will also be different, even for identical Polsson's
ratios. It 1s, therefore, obvious that if f # 0O, then frictional
forces will inevitably arise at the contact surface (these frictional
forces are shown in Fig. 7).

The scheme of the frilctional clutch, investigated in Reference
{13] and represented in Fig. 8, also pertains to this class of prob-

lem. Two disks pressed one against another created a coupling, capa-
- 13 -




ble of transmittiny, by virtuc of' friction, n toruc not cxcccedlng the

1Imiting value Mpr’ for which slip between the dick: takes piuce. IT
the condition aM < Mpp Is satisfled, then a certaln annalar ©1lp zone
the radius of which 1n omaller than the out-
" side radlus and which incrcaces with the in-
* @: ol oM crease in the glven torque, ic created in
\ the loading process. An annular zonc of
rigid coupling of the dicks 1s formed on

Fig. 8 their periphery.

Structural damping in a thin-walled beam is investigated in Ref-

erence [6]. It is assumed thai the wall resists shear only and, there-
fore, the transverse force in each cross section of the beam ic re-
sisted by the wall, and the bending moment - by the flanges. The wall
is pressed to the rods (flanges and supports) by forces of constant
iutensity. Only shear deformations of the wall in that zone A (Fig. 9),
where the wall 1is pressed to the rods, are taken into account in the
determination of relative slip between the wall and the flanges.

hjh

o

=

W
s WV

Fig. 9 Fig. 10
In all the enumerated cases the tangential forces of interazction

oF

’h.H—.!’

g
©

between the mating elements are assumed to be realized in the form
of frictlonal forces only. Systems of thls type can be called systems
in which the interaction between the elements is of purely frictional

character.

In addition to these systems, a serles of other important schemes

- 14 -
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in which the frictional forces of interaction between the elements are
accomplished both in the form of friction as well as in the form of
an elastic resistance to slip, was considered; riveted joints should
primarily be counted among this type of Joints. We shall call these

systens systems with an elastic-frictional character of interaction

between the elements.

Pian, in Reference [36], has investigated structural damping in
a beam with pressure plates (Fig. 10). This scheme differs from that
shown in Fig. 1 by the fact that the pressure plates are clamped to
the beam by rivets, which exert an elastic resistance to the slip of
the pressure plates relative to the beam.

Two types of riveted joints, represented in Fig. 11, are system-
atically investigated in Reference [11]. The first scheme constitutes
two elastic strips, Joined by a riveted seam by means of two cover

plates; the connection transmits a cyclically variable longitudinal

g —t—
oM (: Eaeees e m— :) aM

Pig. 11
force. The second scheme is a natural generalization of the scheme

given In Fig. 5; a beam with two riveted pressure pvlates loaded by
two end bending couples. As it turned out, a certain optimal value of
the clamping force on the two pressure plates, ensuring greatest struc-
tural damping, exists also in this case.

The threaded loint, considered in Reference [15], also belongs

among these types of systems with elastic-frictional character of

- 15 -




interaction. A certaln reclative slip of the bolt and nut threads oceurc

ohi 1oading of' thin comnectlong the t'rictional orecs vhich nre: desrclop-

-

| 2P
4 otructural hystoercnin,

cd arc tThe cause of
The above glves a certain conception o' the varlety of Lhe experi-
mental and theorctical material accumulated during the last fow joearc,

However, 1t cannot as yet be assumed that the scope of thece lnvecti-

sations corresponds to the great practical importance of thc¢ problem
of structural damping. A multitude of problems still awaits their
theoretical solution, and a series of concrete design schemes -~ thelr
experimental investigation.

We subsequently present a systematic presentation of solationc

pertaining to simplified typlcal schemes. Here almost all of the

attenticn 1s pald to the construction of hysteresls loops and to the
determination of the energy dissipated in the Joint during a single
cycle of the system!s deformation. Recommendations on the taking into
account of energy dissipation in the solution of problems of vibra-
tional theory are given only in the conclusion; desplite their sinpli-
city, the recammended methods of calculation ensure sufficlently accu-
rate results.

The law of dry frictlon 1s assumed in the entire subsequent present-

ation for forces of friction over contact surfaces, and the properties

of the material are assumed tu conform with Hooke's law. Kinematic

and static hypotheses, commonly used in the methods of the strength
of materials and the applied theory of elasticity are widely used in
the solution of concrete p.oblems; this makes 1t possible to realice
substantial simplifications without serious detriment to the accuracy
of results. For sake of generality asymmetrical lo .ding cycles with
an arbitrary characteristic of the cycle r:

- 16 -

“



are ccnsidered in the majority of cases. We shall denote the current
value of the external force acting on the joint in the form of P,
where a 1s a dimensionless load parameter. a = 1 for a maximal load

and a = r for a minimal load.

Manu-

script

Page [Footnote])
No.

5 Let us keep in mind that by absorption coefficient ve mean
the ratio of energy dissipated during one cycle to the great-
est potential energy of the system.

Manu-
script {Iist of Transliterated Symbols]
Page
No.
11 B = v = val = shaft
14 np = pr = predel'nyy = limiting
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Part Onc

SYSTFMS WITH FRICTIONAL COUPIING

Chapter 1
PRESS-FIT JOINTS
§1. AN ELEMENTARY SYSTEM
An example of an elementary system of the type to wvhich the cur-
rent chapter 1s devoted 1s shown in Fig. 12; certain importarnt prop-
erties inherent to the entire class of problems considered here can

be noticed in this example.

P
oP

R0 R
(4

Fig. 12
Iet us consider a quite thin elastic strip, pressed to an abso-
lutely hard foundation by a constant pressure p and let us investi-
gate the phenomena occuring as the strip 1s loaded by a longitudinal
force aP, varying cyclically within the limits from Pmin to P. Ve
willl assume that the greatest value of P 1s Insufficient for causing
the displacement of the entire strip along the foundation, 1l.e.,

P < fpbl = g1, (1.1)
vhere f 1s the frictlon coefficient between the strip and the foun-
dation, b and 1 - the width and the length of the strip and q, - the
intensity of limiting frictional forces.

In the investigation of the distribution of frictional forces
between the strip and the foundation 1t is important to direct one's

attention to the following two pecullarities of the scheme under con-
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slderation.
1. The intensity of the frictional forces (per unit of strip
length) 1s equal to the limiting valuc

% = Jpb (1.2)
everywhere where slip of the elements of the strip along the founda-
tion exists, 1.e., on those segments vhere deformation of the strip
is taking place; this follows directly from the assumed law of dry
friction.

2. The frictional forces are entirely absent on those segments
where tihe strip 1s not deformed. Actually, according to Hooke's law,
the strip does not experience any load on these segments (and fric-
tional forces would have represented such a load).

The frictional forces developed on the contact surface thuz are
equal either to q, or to zero. Assuming Hcoke's and Coulomb's laws
we exclude the possibility that frictional forces different from
zero and at the same time smaller than 9y act anywhere. We shall suc-
cessively consider three characteristic stages of loading variation.

1. An increase of force aP from zero to the greatest value of P;
0 < a <1 during this stage.

2. A decrease of force aP fram the greatest value P, to the
smallest value Pmin =rP; 1 > a > r during this stage.

3. An Iincrease of force aPf from the smallest value Pmin to the
largest value P; r < a < 1 during this stage.

The two last stages willl alternately repeat themselves during
repeated cyclical loading.

The first stage. Length a of the deformation zone (slip zone) 1is

determined by the condit'on of equilibrium of the strip and is equal
to (Fig. 13a)
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N _-_4;.’.... (1'3)
%

On gradual incrcasc of' load aP, thc lenpsth of thils zcne will in-

crease; according to Ccndition (1.1)

a1 mas = —f;- <l. (1.4)

In accordance with Hooke's law, the relative elongation of an
element of the deformed zone

= (1.5)

where u, (x, a) 1s the displacement of an arbitrary section in the
direction of the x-axis, N (x, a) is the longitudinal force in the
strip cross section, EF is the strip's rigidity on stretching and F
is the area of the strip's cross section. It follows from the condi-
tion of equilibrium of an element of length dx, that

N =g (1.6)
Here and everywhere below, a prime denotes differentiation in
respect to the x-coordinate. Substituting here (1.5), we will get

u;’-_—_E!’F.. (1.7)
The solution of this equation
= g’
“l'-"l"'Bl"‘l‘-z—E—p—' (1°8)
Conditions pertaining to a section situated on the boundary of
the deformed and undeformed zones have the form

wul—e =0 u(—a, =0 (1.9)
They express the absence of displacements and longitudinal force in
this section. We will find from (1.9)
Nl—e) X . )) 1.10
=T Bi=—Sg— (2.10)
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Fig. 13
Substituting this into (1.8), we will get
L Sl -2 1.11

where a; 1s a function of a and is determined by Expression (1.3).
The following dependencies are necessary for further {discussion]:

q.(l——-agm—-z)’.

(., 1) = 2 EF (1.12)
2
i d, 2) = -5:-.—%- (1.13)

Dependence (1.12) describes the distribution of displacements u,y

along the length of the deformed zone at the end of the first load-
ing stage. Dependence (1.13) determines the displacement of the end
section of the strip during the entire first stage.

The second stage. As soon as force aP begins decreasing, the end

elements of the strip will begin to displace themselves opposite to
the directlon of the x-axis; frictional forces, acting in the direc-
tion of the x-axis will, correspondingly, appear. The condition of
equilibrium of the strip (Fig. 13b)

ol - Q3 — Qo {73 nuax - a:) =0 (1' 14)
will make it possible to find the length of the zone of "reverse"
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dispiacements

(a4 -20p
"y :—.——-:"-qa.)—o (1.15)
here
” U—nk (1.16)
- Max t.'q"

Thevequation of the equilibrium of an element sltuated anywhere
within the limits of this zone has, in contrast with (1.6), the form

1‘7'="“'q.- (lo 17)
Substituting here (1.5), we will arrive at the equation

‘u;=_..z‘!;,.. (1.18)
the solution of which

iy = Ay + Br — % (1.19)

should satisfy the conditions

Up(l— @y, &) =y (—a,, §
éﬁ:-l .L..E :l—:. i)i (1.20)
These conditions express the equality of displacements and longi-
tudinal forces in section x = 1 — a,, where the zone of "reverse" dis-
placements borders on the zone of "direct" displacements;;Dependence
(1.12) should serve as the starting point in the setting up of the

right-hand sides of Expressions (1.20). Prom (1.20) we will get

A= Pl —aymal — 20— 2.

(1.21)
=%%ﬂ—2%+m-d:
consequently,
g (1. 3) = 5Pz 04 — 01 max — 2 —
(1.22)

—(—a— P —2 4 2(l—a,) (a3 — ay mar)l.




where a, 1s a function of a and 1c determlned by Expression (1.1%).

Further we necd the following dependencles:

ulr, = A2 =g U -y gud 3P (1.23)
B 49 EF k¥ T
1 4-22 — ot
- ’. R - ’:_,
S Y (1.24)

Dependence (1.23) determines the distribution of dicplacementc u,
along the length of the zone of "reverse" displacements at the end
of the second loading stage and Dependence (1.24) - the rule of dis-
placement of the end section during the entire second stage.

The third stage. At the beginning of the third stage pcsitive

displacements will again arise at the ends of the strip over length
a3; the distribution of frictional forces during this stage is shown
iIn Fig. 13c. .- m the condit'ons of equilibrium of the strip

J—(ﬂsw—ﬂzm)q.-‘lﬂ.'l'(ﬂzw—ﬂa)%:o (1.25)
we willl determine the length

«—~r

7 P (1.26)

a =

The differential equation again acquires the form of (1.7); its so-
lution 1s

uy = Ay + Byx + gg; (1.27)

Conditlons at sectlion x = 1 - a3

ll,(l—-‘;. ﬂ):“,(l—“. ')'

uy(l—ay, s)=u; (Il —a 1) (1.28)
glive
_(+2r—r)P2 L. )
A= tqo EF - y;i"'m'—-"'s)'—-?a;]. 120
=—-q:.- _,f_“:’a__l) *
EF q 3
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Consequently,
RELERR SV T & - ayek
A A F LF o
U I (1.30)
:,..l.""' o - —--7:_—1-.—-—__...

and the displacement of the end section x = 1 ic determlned by the

dependence
- - " T :1’ Likd 2'- — 1:,1':
S b : (1.31)
T @) e b 68)

| ]
1}
ost

P pt

, JE s

05 10 ‘q.c Zq‘c

Fig. 14

Dependencies u, (1, a), u, (1, a)and ug (1, a) for cases r = 0.5 and
r = 0 are shown in Fig. l4a and b; the closed hysteresis loops can be
seen here distinctly. The area of the loop represents an irreversible

part of the work, performed by the force aP. We will utilize formula

» 5
Y= flu. @, 2)~us @, 0V @P) =P [(u: — us)da. (1.32)
Pain v

for calculation of this work. Substituting here Expressions (1.24)
and (1.31), we will find
Pl —r
?=—’—;;";:—EF——)'" (1-33)

The interpretation of this result will become easier if we denote the
amplitude of force aP by P, and we note that P(1-r) = 2P,. Now For-
mula (1.33) acquires the form op?
¥ = 2. (1- :“)

3g,EF

- 24




It follows dircctly from this that the cnerpty dicsipation is independ-

ent of the mean value ot the force

/ 'm - __________un‘

Lo +P
)

-

and 1s determlned by the variable component Pv. The hyperbolic depend-
ence of the dissipated energy on the Ilntensity of pressure p (to which
the 1imiting frictional forces q, are proportional) represented in
Fig. 15 by a solid line corresponds to Expression (1.34); it is valid
only for those sufficlently large values of p which correspond to Con-
dition (1.1). The shorter the zone, the larger should be the corres-
ponding minimal value of p. If the

left end of the zone is fastened, the

Limitation (1.1) is lifted. An investi-

gation of this last case results in a

(] dependence shown in Flg. 15 by a dashed
line. The existence of a maximum of the

Fig. 15 area of the hysteresis loop, aclkieved

for a certain preset value of pressure p, 1s noticeable.
§2. ENERGY DISSIPATION ON TWISTING A PRESS-FIT JOINT

Having analyzed an elementary system, let us now examine in de-
talil the problem of energy dissipation on twisting of a purely fric-
tional press-fit joint of the shaft-sleeve type (see Fig. 3). We shall
consider three types of Joints, differing in their structure and in
the type of loading (Fig. 16). In the joint of the first type with
the shaft cut in half (Fig. 16a), the loac 1s in its entirety trans-
ferred to the sleeve by the frictional forces and the value of the
torque M 1s such that the joint becomes uncoupled (the half-shafts
revolve in the sleeve). In the second type of joint, with 2 continu-
ous shaft (Fig. 16b), the loading is transferred to the sleeve only
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in the degree pemitted by the frictional forces. No torques capable
of uncoupling exist for Joints of the sccond type; furthermore, the
strength of the Joint 15 determined by the ctrength of the shaft and
is not limited by frictional capabilities. In joints of the third
type (Fig. 16¢) the torques at the shaft'c end sections are unequal.
When a large torque M2 is transferred to the sleeve, the cleeve may

rrevolve on the shaft.

Local slip of the shaft relative

to the sleeve 1n the extreme regions

of the contact surface appears in all

the three cases of "permanent" joints

for any as small as desired load.

Joints of the first type have four

local slip zones. Their length de-
pends on the limiting frictional for-

ces (1.e., on the stress and on the

friction coefficient), the value of

the load and the ratio of rigidities

of the elements of the press-fit
Fig. 16

Joint. However the ratio of the diner-
sions of the regions, a:b, 1s determined only by the ratio between
the rigiditles of the shaft GJ and of the sieceve GTJT on twisting. If

-

one of the elements of the Jjoint, the shaft or the sleeve, 3is sc ri

o

id that it is pracilcally possible to disregard its compliance, then
the system substantially becdames analogous to an elastic strip on an
absolutely rigid foundation. In the case of a totaily rigid sleeve b =
0, and slip occurs cnly in the extreme region a; if 1t 1s the shaft .
which is totally rigid, then b # O, but a = 0. Slip in two extreme
regions appears in the Joint of the second type on loading. When the
- 26 -




system is symmetrical in respect to the median cross section the dimen-
sions of these rcglons will be ddentiecal; they depend, as in jointc of
the first type, on the load, limiting frictional forces and the rela-
) tionshlp between the rigidities of the press-fit joint. Due to the
absence of symmetry in the loading scheme of joints of the third type,
the two extreme slip regions have different dimensions.
Let us start the study of quantitative relationships governing
the phenomena of energy dissipation with jJoints of the first type.
Let us assume that the system is fully symmetrical, the contact sur-
face constitutes an annular cylinder, the pressure at all surface
points is the same and the friction coefficient is the same over the
entire length of the Jjoint. Under these conditions it 1s sufficient
, to consider only one half of the shaft (Fig. 17a) and to double the

thus obtained result in calculating the area of the hysteresis loop.
Let us also assume that no frictional
am ~ o
s 177717 u_nii\_ forces exist at the contact surface at
L A\ LRy
Y the beginning of the first loading.

The first stage. During this stage

L

i-s.-l

’
<
i
|
i
H
)

the load aM varies between zero and the

value M; we shall assume that the lar-

(o))
@ @

gest load 1s not sufficient for complete

uncoupling of the Joint. The shaft and
Fle. 17 the sleeve are deformed differently in
: the slip zones a and b, under the action of the torque. No slip of
the shaft relative to the sleeve exists at the mid-segment of the
Joint, the angles of twist of thelr cross sections are equal to one
another and, therefore, the torque 1s distributed between the shaft

Mv, and the sleeve "’1" proportional to their rigidities
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M,:-alM, (2.1)

M - M, (2.2)

wherc k=;:,—;:'}:‘.—r-l; represer:ts the radio of the shaft's rigldity GJ,
to the total rigidity of the joint; GTJT is the torsional rigldity of
the sleeve.

It can be seen from the consideration of tne equilibrium of a

sleeve segment of length ay along which slip has occurred that

My = ma,, (2.3)

vwhere

m =2z R* gy (2.4)
represents the intensity of the torque due to frictional forces; this
torque is uniformly distributed along the shaft's slip segment; R is
the radius of the cylindrical surface of contact between the shaft
and the sleeve.

The length of the slip region

,,,=’"“;*‘L"_’. (2.5)

1s determined from Relationships (2.2) and (2.3). The length of the
second slip region bl 1s determined from the conslderation of t.e
equilibrium or the shaft's end segment. We will find

b= Mo _ =M (2.6)

m m

Thus, distributed torques of intenslity m act on segments 24 and
bl‘ Diagrams of m, HT and !% are presented in Flg. 17.

Let us consider the angle of twist or the shaft end I - I rela-
tive to the sleeve section II - II. This angle of twist i1s found by
adding the angles of twist of the three segments of the system. We get
here
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[ VY |

(. a) = v (2'7)

One's attentlon 1is attracted 1n this fomula ¢« the precence of
a nonlinear dependence detween the force and the deformation, thic
nonlinearity 1s characterlistic of elastic systems with frictional
couplings. Let us note that form = «, 1.e., when the shaft and the
sleeve are rigidly joined (f — »), the first term of the formula van-
is..es, with only the term determining the angle of twist of a continu-
ous shaft remaining. For k — 0, (the case when the rigidity of the
sleeve 1s considerably greater than the rigidity of the shaft
GJ --_ urJy) the structure of the last formula coincides with the anal-
ogous Pormula (1.13) for a thin strip on a rigid foundation.

For the greatest value that the load can take on in the first
loading stage, 1l.e., for a = 1, the displacement of this section 1Is

determined by formula

ul(lv i’=2mcl' 1 — & +GJ

Terms, corresponding to elastic twist of that part of the sleeve vwhich
1s free of the shaft are absent in these formulas, since these temms
do not aeffect the energy dissipation characteristics.

The second stage. A redistridbution of frictional forces cceours

in the process of unloading the Joint, and regions along which siip
occurs in the reverse dlrection appear. Let us denocte the lengths of
these new regions by geand E;they are determined, as in the first
stage, from the consideraticn of the egullibrium of shaft and sleeve

segments:

LM (2

"g't ("—1)—:———'
M
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Lot o by " (2.10)

Jm

Fipure 18 shows the diagrams of the torques m, M, and M.. By adding
the angles of twist of the several segments, we can find the displace-

ment of the same shaft section I - I In

C (ﬁ.ﬁ‘{;’_’::ﬁ?ttjf@:@ the unloading stage in the ferm
sl Sl
5 A TR VLR v

e “ally a) = Pl (= 22—~ '1“—'/.“")"’"'(.'1“' (2.11)
g Y
i A= —
Y= - — ;@9 For k — 0, the structure of this formula
=8~ e
IR : coincides with that of the znalogous For-
' 4_\/-—-\/\ , ]
é . . ‘\f* mula (1.24) for the displacements of the
.f"
'\"—/\/ end sections of the thin elastic strip
Fig. 18 along a rigid foundation during the second

icading stage. If the load reaches..the greatest value (a« = 1), then
tLis formula, obviously, gives the previous result (2.8), and for a
minimal value of the load, the displacement of the shaft's end section
is written ia the form

a2

u, (. ')—; G.I“

1 — 3k + 303) . rkM
el e (2.12)

The third stage. In contrast with the first stage, slip is al-

ready present on individual segments of tine contact surface toward
“he beginning cf the third stage under consideration and a certain
system of fricticnal forces 1s in existence. The increase of the load
from the minimal to the greatest value results in the appearance ol
£t111l ancther two slip reglons ag and b3 (Fig. 19). The lengths of
these reglons are determined fram the equilibrium conditions and have

the values

a = (2 - ) 2 (2.13)
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 na i (2.14)

- 11

The diagrams of the torques m, due to frictional forces, and of I-’IV

and ¥, are shown in Fig. 19b, ¢ and d. The displacement of cectlon

Fig. 19

I~ I relative to section IXI - II in thi:c
loading stage 1s determlined by the formu-
la

32 S A TR
uyd. 7y - ’quJ f or .- -hn(l . —," -

and; " -
FIRY/] (2. 15)

el

For k = O this formula coincides with the
analogous Formula (i.31) of the preceding
paragraph. If the load reaches 1its great-

est and smallest values, then Formula (2.15) gives the same results as
Formulas (2.8) and (2.9). Thus, when the load varies cyclically, the
relationship between u (1, a) and the torque aM 1is represented by a
closed curve. fo.ming a hysteresis loop. The shapes o the hysteresis
loops are entirely similar to those shown in Fig. 1l4. The area of the
hysteresis loop calculated by Formula {1.32) will be:

M1 -3k = 3 ~
k4 - t‘ " e 2 - 10
' SmGl T--4 ( )

—7)
where VM. -= -{-l—z,r’ !

This formula makes it possible to estimate the effect of design

1s the amplitude of the cycle.

parameters of the Joint and of the frictional forces distributed along
the contact surface on the rate of energy dissipation attendant to
cyclical loading. As can be seen, the work of the frictionai force 1is
a functlon of the cubte of the cycle's amplitude and 1s related hyper-
bollcally to the pressure p at the contact surface; this can be easily

noticed if one takes into account the fact that m is determined by
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Formula (2.4). It also follows from Formula (2.16) that the work of
the frictional forcez does not depend on the mean load of the cycle.
The result obtained by Formula (2.16) should be doubled in order to
determine the energy dissipation in both halves of the joint. Let us
again point out that the load is insufficlent for uncoupling of the
Joint.

Let us consider the problem of energy dissipation in a press-
fit joint of the second type which was briefly characterized above.
Figure 20 shows the distribution of the torque In the shaft and sleeve

scctions along the length of the contact surface, successively during
three loading stages. Let us assume that the load applied to the end
sections of the Joint's shaft i1s smaller than the limit for which the
mutual slip of the shaft and sleeve sectlons is propagated over the
entire length of the contact surface (M < ml).

Formulas for the angles of twist of the end section I - I of one
half of the shaft relative to the mid-section II - II (Fig. 20) dur-
ing all the three loading stages have the form

S ak3Ml

ul, 2)= ma’ (i—,\’-}'-—c‘,—' (2.17)
AT &M ~~ -
uy , #) = s (0 — - (1 + 22— %) = 2 (z.18)
[A)
A a)—- il (l——l)’ 1=-2r—2ur- :Gp-’—ia-,l—l- (2.19)

Energy dissipated in one half of the Joint during z complete cycle
of load variatinn is determined by the formula

2M3 (1 — & (2.
ImGJ )

s

N

«
e

¥ =

As can be seen, energy expended on irreversible processes 2gzin

in this case 1s independent of the mean value of the load, but depends

- 32 -




................ [
el
1 1
- - - i
- —ee P, P
-— .. - .'—.. -J
i ~~
o —_—— ».
on T
T &
r &= e
- . @
— = i
-mr’—\_’\luﬂ @
|
M E’
SN
}
- ®
=g
1
' ®
Fig. 20

on the cube of the o2ycle'c amplitude.
The hyperbollce dependence of the dlcsi-
pated cncrgy on the preccurc at the con-
tact surface 1c also retaincd.

Let us further concider the cacse
of complete slip when the amplitude of
the torque applied to the chaft exceeds
the 1limlting value ¥, > ml. Unldirec-
tional slip is propagated over the entire
contact surface durlng each stage of the
cycle. Slip accumulated during the pre-
ceding stage of the cycle is "erased"

and appears in a new, opposite direction

Let the greatest load of the first loading stage already exceed

a value

2 M = ml, (2.21)

such that the length of the slip region becomes equal to half tihe

length of the contact surface (Fig. 20). In this case, the loading

process breaks up Into two stages: during the first stage the bound-

ary of the slip region is displaced as the load is changed; during

the second stage the position of the boundary does not change.

The displacement of section I - I relative to the stationary

section II - II during the first stage is determined by Formula (2.17);

during the second stage, when slip 1s propagated over the entire

length of the contact surface, the angle of twist of the same section

1s determined by formula

mn

it 2) - S Qe —a). (2.22)

where aq is the 1limiting value of the dimensionless load parameter;
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t can be found by Formulu (2.21) from thc condltlons of equilibrium
of the hali-sleeve,

As can be seen, the pressence of a ctationary boundary of the
31ip reglon results in the appearancc of' 2 linear dependence of the

angle of twist on the load.The function uy = u, (1, «) is shown graph-

1cally in Fig. 21. The nonlinear segment of the first branch o the
curve showr in the graph corresponds to Dependence (2.17), the linear
segnent of the branch - to Dependence (2.22).

Let us now consider the unloading process. The angle of twict of
section I - I relative to section II - II (slip has not as yet propa-
gated itself over the entire contact surface) during the first stage
is determined by Formula (2.18); during the second unloading stage
"his angle 1s determlined by formula

uy(l. =)= 5= (22 —a,). (2.23)

Thus, on unloading (second branch of the hysteresis loop of Fig.
21), dependence u, (1, a) 1s quadratic during the first stage. This
dependence becames linear during the second stage.

The second loading czuses a new change in
the direction of slip. The angle of relative

twist of section I - I and II - II iIs ceter-

. mined by Formula (2.19) during the first stace.

and during the second stage, by Fermula (2.22).

The nonlinear dependence of displacement or the

Fig. 21 loading for a moving boundary of the slip re-
gion and the linear depgndence for a stationary boundary of the slip
region also exist during this process of repeated loading. The third
branch of Fig. 21 corresponds to thls process. Energy dlssipated Suring
a comolete loading cycle is determined by the fcrmula
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. AP .
R L Sl U N (v.24)

where  a, -,’3(1 -7r) 1s the amplitude of the varlation of the dimerne
sionless load paramcter, so that the wrplitude of the torquce can be
expressed by the dependence Mv = avIvI.

Formula (2.24), in contrast to (2.20), 1is valid for small values
of frictional forces, and therefore makes it poassible to investigate
the characterlstic of energy dissipation for m — 0. The dissipated
energy depends on the amplitude of the load for small values of tan-
gential frictional forcess furthermore, this energy does not depend
or. the mean value of the cycle's loading. The dissipated energy is
parabol®cally related to the normal pressure on the joint's contact
surface. If we take into consideration Dependence (2.21), then For-
mula (2.24) for the area of the hysteresis loop can be transformed to

the fom
- kﬁ'fli M, -5 Jl:ﬂ(" 2k — 12 ”‘:] (2.25)
For p = 0, i.e., when normal pressure on the contact surface 1s absent,

there 1s no friction in the Jjoint and there 1s no energy dissipation.
For the value p = Py whicli 1s determmined by the formula

_ 3V, 2.26
LRl 2y 7 77y gy ( )

energy dissipation reaches its highest value. In this case the area

of the hysteresis loop is equal to:

. kAT A ’
Vou = om0 =7l (2.27)

A further increase 1in pressure results in a decreased energy
dissipation. Under the condition Mv = a.oM, which determines the lower
boundary cf applicability of Formula (2.24), the same result is ob-
tained as when using Formula (2.20) for which this condition 1s the

- 35 -




upper boundary of applicability. Figure 22 shows the graph of the de-

pendence of the area of hystcrecsis loop on the normal pressure at the
contact surface, constructed by Formulac (2.24) and (2.22). Let us
note that the ~nergy discipation increases with an increase in the

rigidity of the sleeve (i.e., for a decreasing 5) (compare Fig. 22

with Fig. 15).

The most wldespread type of a press-
fit torsional joint is the third type ol
Joint. A sheave or a gear on a trans-

mission shaft, seated with interference,

’ 1s a characteristic example of this type
Fig. 22 o joint.

Due to the absence of loading symmetry (see Fig. 16) the end slip
regions are of different dimensions. The presence of a torque ci the
step in section II - II results in the appearance of a median slip
region. The dimensions of these three reglons depend on the load, in-
tensity of the moments of frictional forces and also on the ratio be-
tween the rigiiities of the shaft and the sleeve.

In the 1imiting case, when the rigidity of the shaft 1s equal to
infinity, slip occurs only in the end contact regions. Let us deterr-
ine the energy dissipation during a cycle for thils elementary and at
the same time interesting for practical purposes case (since the rig-
1dity of the step is usually by far greater than the rigidity of the
shaft).*

It has already been pointed out above that for a rigid press-fic
joint sleeve the problem- of cyclical torsion is entirely analogous to
the prcblem of the elastic strip on a rigid foundation. Therefore the
dimensions of the extreme slip regilons on first loading are determined
by formulas
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“hitch see wupiote v o sle w0 Poamule {1.3).

The torgques In the extreme shaft scetlionc !z}'il and rﬁﬂ.3 and zlco
the torque applled to the step aM., saticly the equilibriw. cornditiorn
of the Joint

a (M, -~ My + M) - 0.

The angles of twlst of the extreme shaft sections can be determ-
ined relative to any section situated outside the slip region (sec-
tions situated in this region remain mutuvally stationary). For ex-
ample, the angle of twist of the right end section of the shaft for
the stage of first loading is determined by the formula

M3

ll‘(l, ’)= SmCT : (2-29)

the angle of twist of the left end section 1s determined by the form-

ula

=l = o3 (2.30)

Similarly, during the unloading stage we have

t . o) = iy (1 = 22 — o3 (2.31)
uy (—1, ¢)=.f‘,:_£é_l.(l < 22— aY), (2.32)

The angles of twist of the extreme sections during the second loading
stage are determined by the formulas

2
vy ®) = ok (=227 + 2 + o), (2.33)

(2.3%4)

u (:—I ) *—-:‘5——(!—-2"-!-%-‘}-&’).
VT 2mGT

The area of the hysteresis loop for the given joint is calculated Ly
the formula
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where Mlv and N3v are the amplitudes of torgucs applied to the rlgnt
and the left ends of the shaft. Let usc no.e that the last formula ig
valid only in the case when slip has not spread over the entire con-
tact surface.
§3. ENERGY DISSIPATION IN A PRESS-FIT JOINT DURING TENSION — COMPRECSICH

Results obtained in the preceding paragraphs can be generallzec
to [include] press-fit joints during cyclical tension-compression.
The problem of cyclical tension-compression of a press-fit joint be-
comes fully analogous to the problem with cyclical torsion of a press-
fit joint, if, as in the latter case, we assume that the shaft and
sleeve material is subject to Eooke's law, the tangential frictilonal
forces at the contact surface zie subject to the law of dry friction
and that sections which were plane before loading dc not change their
shape and remain plane after the load has been applied both in the
slip region as well as outside this region. In addition, it is neces-
ary to assume that the normal pressure p at the contact surface g:es
not change either during the loading process or along the  ength of
the joint. Th's assumption, obviousliy acceptable in torsionzl prcblers.
becomes much more doubtful in problems of longitudinal loading here
considered; actually, for a Polsson ratio different from zerc ths
lonzitudinal loading will result in a change of effective tensicn and
the frictional forces wlll lose their previous property of ccnstancr.
we shall consider this somewhat further on; at the .icment we will stov
at the elementary assumption, according to which the tension remains
corstant.

In accordance with Section 2, the following formulas can be
written for areas of hysteresis loops in various types of jJoints (see
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oo Pe 13k FA2 (5.7)
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In joints of thc second type (sleeve-continuouc shaft) the urea
oI the hysteresls loop for one half of the Jjoint ic determincd cimi-

lar to Formula (2.20)
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The following notaions are here utilized: Pv is the amplitude of the
longitudinal force, Qg - the 1limiting frictional force, EF - the rizid-
ity of the shaft on tension-compression and k, as before, the ratic
of the longltudinal rigidity ol the shaft to the total longitudinal
rigidity of the Joint.

In the case of full slip over the entire contact surface the
formula for the area of the hysteresis loop in the Joint of the sec-
ond type takes on a form similar to that of Formula (2.24):

¥ = o 13293 323 + ol (1 — 7 (3.3)

where a3, is the amplitude of the dimensionless load coefficient.

We shall examine in detall the influence of the Poisson's effect
for the elementary case of a Joint between a rigid sleeve and an elas-
tic shaft (Fig. 23a).

The first stage. As before, we shall assume that no tangentizl

forces of interaction between the shaft and the sleeve exist®zt the
beginning of the first loading. The initiai normal pressure on the
contact surface is proportional to the difference between the shaft

diameter and the internal diameter of the sleeve before press-fitting

Po = v3,, (3.}4)
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and DT — the tnltial dimmetore of Lthe ohatt oond Liv leove Loeiors:

where 8 -D Dy, v - D

ic o opronortions ity coci i iclent 504

pressfitting.

A change in the normal prescure p alony, Lhe length of the fitted
segment arises attendant to the loadirmr o Liv _hoit't by a lengitudinal
force. This pressurce can cven dicappeiar entircl, f'or 2 sufficlentliy
large value of the longitudinal strctching {orcc and then a gap 111
appear between the sleeve and shaft surfaces. Below we shall still
assume that the initial pressure Po is sufficlently large and a gap
does not appear. Let N(x) be the current value of the longitudinal
force in the shaft section and p(x) -- the current value of the pressure
on the contact surface; in the absence of an external load {i.=., for
a=90) we have N = 0 and p = Py- When the shaf elongates (N >2) “he
pressure is diminished (p < po); when 1t is compressed (N < pCL 14
increases. Under these conditions,
the radial deformation of the shaf
1s determined by the formula

.Y p—pD) ‘

Here E and y are the modulus ol eliss-

’=$£Azé9%72283%%“
n

ticity of the shaft material and the

Polsson's ratio and F 1s the crocs-

sectional area of the sha’t.

@

The first term expresses the

effect of the longitudinal ferce,

®

the second ~ the e¢ffect of the pres-

Fig. 23

sure drop from the value L to the
value p (x). However, an absolutely rigid sleeve makes it impossible

for the shaft to change its cross-sectional dimensions, 1l.e., the
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radlal deformnatlion o the chat't 1c voiop sxproecoion (j.;) Loesoren the

cquat ton
S ) 0
We find from thir cquation
P py - '—\;,(.'Q call w). (5.7)
Tet us introduce the notation
B - (2.2)

Quantity N* represents the force N, for which the pressure p {x) = 5.
As has already been sald, N < N¥.
The relationship between pressure p (x) and force N (x) takes on

the form

p =Ly v, (3.9)

The intensity of the 1limiting frictional forces

s (2) = =Dpf = 3. IN® — N (z}} (3.10)
varies as a function of the longitudinal force in the shaft sectlon

and is proportional to the gquantity

;‘-_-.:“.*f.?_’_é_’_::ﬂ. (3.11)

The fellowirg equation can be obtalnel fram the equilibrium concition
c¢f a shaft element of length dx:

N =t (3.12)
The solution of this equation under the boundary conditions

N©) =P
has the form

N@) =X —(N*—aP)cn. ° (3.13)
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The dlapgr-m o' N 1o shown 1n Fig. 23c¢. Wipurc 23b glves the dlagram of
iy {x) corresponding to Dependence (3.10) L' N (x) Cfrom (3.12) ic sub-
stituted into 1it.

The boundary o! sllip propagation iz determincd {rom the concider-

at ton of the caulillibriwe o the cntire chaft

o
al -- | q,(2)dr. (5.14)
/

(WY

Keeping 1in mind that q, (x) 15 determined by Dependence (3.1C) =znd

M (x) - by Expression {3.13), we will get ’
1 N*

Y e (3.

When loadiing 1s absent {(a = 0) we have a, = 0. If a, = 1, then the

L 1
joint 1s uncoupled; the force necessary to bring this about is de-

termined from (3.15)

2P = N*(1 — ). (3.16)
If the load reaches its largest value a = 1, remalning smaller than
the 1imiting [load], then the length of the 811D region is determined
by tne formula

1 Ne
Gy =—In<-

A "-__P" (3'17)

Cr. the basis of Hooke's lak we have the equation

Taxing (3.13) irnto account, we will obtain, on integration under the
conditions uy (2,) =0,

a
L}

“ z, ) = E’F[' (£ — ) + = (V* — 2P)(c — ex:)] . (3.19)

Corr- .ponding.y, the disp’acement of the end sectiorn is equal to:

u 3 a) = T;{i““-‘ — aP) (2* — 1) — A\ o). (3.22)
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It the load reanchies 1ts maximal valuc (o - 1

o this sectlon ¢ detemnlned by the formula
1 ( Ne .
1) R I . \N® REra I e 2
Y Y (4.21)

Under the condition that thc Poiccon coffeet 1 abuert (0 — 0), the
latter Tformula, after the proper limit trancition, fully coinecidec
with the analogous Formula (1.13).

The second stage. When the loading 1s decreaced, shaft csectionc

are pulled into the sleeve at the extreme contact region, and re-
verse slip appears on a part of the contact surface. The equilibriunm

equation of a shaft element situated in this zone gives

N =gy (s). (3.22)
Substituting the expression for q, (x) into this eguation, we will

obtain a new equation for the normal force in the shaft section

N —A(N* — N (1)) =0. (3.23)
The solutior. of this equation under the condition N(O) = gP:
N(2) = N — (N* — aP)c =, (3.24)
If we now take the external load off completely, then residual stresses

distributed according to the rule

N@ =N — ). (3.25)
will appear in the pressfitted part of the shaft at the reverse slip
segrent. The diagrams of N (x) and 9, (x) are shown in Fig. 2/c; the
boundary of the reverse slip propagation is determined from the condi-

. tion of the shaft's equilibrium:
@=—]$mk+

+ [t (3.26)

[
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W eubstitut. for the inteprund 4 (x) 1t: value from (3.10), taking

into acecount thut the normal force

y

,r“‘—mr""“' "1 in the chart ccetion N (x) on the

L “,t:"; _ X divcet o1ip copment ic determlined by
al[ "",‘:".‘ ——— & iFormula (3.1%) and on the reverse
slip cegment — by Formula (3.24).

Then the boundary of the reverse slip

region will be determined by the for-

b mula

o T o= g Ye=p (3:27)

Reverse slip is absent fora =1
Fig. 24
(a2 = 0); 1f the load 1is brought to

its minimal value a = r, then the dimensions of the reverse slip re-
gion are determined by the formula
- /\\

1
=330 NP

(3.28)

We shall determine the displacements during loading, again utiliz-
ing Dependence (3.18). After substitution of Expression (3.24) into
this dependence and integrating under the condition of continuit; cf

displacements at the boundary between direct and reverse slip segrents
Uy (a3) = Uy, (ay) (3- 29)
we will get

-

e (2, ) = 23?[“" (8 = @) + 1 (N —P) (dou — o) +

+ LV —aP) (= -e-h-)]. (3.3¢)

Expressing a, and a, 1n terms of the parameter a, we will obtain z

formula for the displacement of the end section
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NPT

u, (x, ) b

I ANe b Ny
afve :?;i»n:i-i"t“p‘)l. (3.31)
At the boundary of the f{irst and second ctujyrez, i.c., lor o = 1, For-
rmla (3.31) coincides with Formula (3.21). If thc load rcachcs its
minimal value, then the displacement of thc end cection 1o determired

by the formula

i N
llz(l.O)—m AN — /P - N\* lnh -—-P-

{3.32)

— 2V =1P) O — p)] .

The deformation of the shaft does not disappear for a = 0 and the
shaft 1s loaded by a system of residual forces. The residual displace-

ment of the end section x = O is equal to:

00 =L [ove —xern N _
us 00 ;.._F il g

—ﬁ’Wﬂ]- (3-33)
Let us note that, as a result of elementary transformations and of
1imit transition, Formula (3.31), under the condition A — O, coin-
cides with the analogous Formula (1.24) for an elastic strip on a
rigid foundation.

Tne third stage. On repeated loading of the shaft "erasure" of

reverse slip occurs in the extreme region of the mating surfaces and
a segment of direct slip &3 apaln appears (Fig. 25).

The normal force N (x) is, within the limits of the direct slip
segment, determined by Formula (3.13). The position of boundary ag is
determined, as in the previous two stages, fram the condition of the
shaft's equilibrium

[N 8y G
sP=[q.(r)dx—jc.(z)dr+j % () dx. (3.34)
C g
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From this we gct

y
N l 4\ “"’P
| e gyt (339
af [ = ’L"" ——= -
R T i If a=r, thena3=0; for a =1
| Sopyaa—— B
. B 1 Ne— P
a L——\"%«L_“ ‘ ayq == l A. ! (3 36)
= -1 05—~ i
The dlagrams of N (x) and 4 (x) for
the second loading stage are shovn

in Figs. 25b and c.

The displacement ug (x, =) will

be determined i1f we integrate Ej.

(3.18) under the condition of contin-
ulty of displacements on the bound-
ary between positive and negative slip:

s (2, ) = 2 WN® (2 — a) + (V* — P) (o — o) +

3.37

+ (VO —1P) (e — e—am) + (N* — aP) (A& — A)]. (3.37)
Utilizing the above dependenciles of the dimensions of slip re-

glons ays 25 and a3 on the dimensionless load parameter a, we will

determine the displacement of the end section by the formula

us {0, a) = -)—‘;—i.[up + 2 (N®* —rP)(N®* — aP) — ( )
3.3

— 2 N*=PF) (N* —rP) — N, ln P]

For A — C this formula coincides with the corresponding Formula (1.31).
If the load takes on the value rP, then the last formula ccincides
with (3.32); Result (3.21) 1s obtained for a = 1.
The hysteresis loop for a cycle with an arbitrary characteristic
is shown in Fig. l4a. Calculating its area, we obtain the formula

1
8 =%f{yu\°—p) W =rP) — J(N*—P)(V* —aP)— (3.39)

- 46 -




VNS Taly (NS A el ) da. (3.39)
If we utllice the conceepts of the mean valuc of load Pm andg of* the

cyele amplitude Pv, then after perfoming quadraturec we will have

4P, , _—
e = GiplPe - Py 1 VT =) (). (3.40)

It follows from this formuZa that thc conzideration of trancverce
deformations in a press-fit Jjoint changes conclusions made earlier
relative to the independence of the area of the hysteresic loop on
the mean value of the load. The area of the loop depends not only on
the amplitude of the cycle but also on the mean value of the load.
This follows inevitably from the fact that the normal pressure depends
on the shaft deformation. If we assume that p 1s 1lndependent of the
transverse deformation of the mating elements, 1.e., if we assume
that u = 0, then Formula (3.40), after the proper 1imit transition,

takes on the fom

v,,-_-a% (3.41)
and coincides fully with the result obtained in Section 1 for an elas-
tic strip on a rigid foundation.
Figure 26 shows zraphs of Yr/Yrb as a function of PV/N* for a
syrmetrical (lower grapn) and pulcating cycles.

As can be seen, the results of calcula-

%iy | T l , tions by Formula (3.41) for »mall values
|
3 i ‘L/ R of N# practically do not ditfer from re-
2 -
! :::1 sults obtained by Formula {3.40). For a
{ —
' symmetrical cycle they coinclde very weil

N’ for large loads, even close to failure.
Fig. 26 In the case of a pulsating load the en-

ergy dissipation increases rapidly when the mean force of the cycle is
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incpcased. The utilization o Formula (3.41) for calculation of energy
dissipation for nonsymmetrical cycles gives a result on the low side.
Thus, the lowering of the effective tension for a noncymmetri~al cycle

results in an increase of the area of the hysteresis locp.

Manu-
seript [Footnotes]
Page
No.
3z The case of an elastic sleeve can also be investigated by
similar methods; however, the computations will become
much more cumbersame.
39 They can appear on pressfitting, and also as a residual
effect of previous loadings.
Manu-
script [Iist of Translliterated Symbols ]
Page
No.
27 B = v = val = shaft




Chapter 2
COMPOSITE BEAMS
$4. PURE BENDING OF A HEAM WITH PRESSURE PLATES

Let us return to the scheme of a beam with a rectangular crocs-
section with thin pressure plates which are pressed to the beam by
pressure p, described in Fig. 5. The end sections of the beam are
loaded by moments aM, acting in the structure's plane of syrmetry.

It should be kept in mind that 1t is not entirely indifferent by
vhich method the bending moment 1s applied to the end: whether the
corresponding surface loads are applied only to the beam proper or

. only to the pressure plates or, finally, to the beam as well as to
the plates. The first locading version is assumed telow; similar
results can also be found for the conditions of the second version.

. However, 1f the loading is achleved according to the third versilon
and the longitudinal stresses are distributed linearly over the end
secticn. then no frictional forces will develcp between the pressure
pPlates and the beanm.

And so, let us assume that the tei” ng moments are applied onily
tc the beam proper, and the end sections of the pressure plates are
free of normal stresses. The interaction between the pressure plate

‘ and the beam will differ on aifferent length segments. At a certain
distance from the end the beam and the pressure plates act together
and no slip takes place on the contact surfaces. Tangential forces
arc absent on these segments and the nortal force in the pressure
plate section will be then determiried by the formula
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where J 1s the moment of inertia of the beam sccetion (taking the pres-
sure plates into account), h 1s the hecight of thc beam crocc cection,
F is the cross-sectlional area of one pressure plate, a — the dimen-
sionless load parameter, B = Fh2/2J ~ a constant for a given bean

and M 1is the greatest value of the moment.

Slip of the pressure plates over the beam surfaces takes place on
the end sections; the appearance of tangential forces 9 correspond-
ing to the law of dry friction, 1s related to this. Let us formulate
the equations of equilibrium for a part of the upper pressure plate

shovn in Fig. 5b:

N—ga=0. (4.2)
The corresponding part of the lower pressure plate acts similar to
the upper. Equality (4.2) makes 1t possible to determine the dimen-
slons of the segment within the limlits of which slip takes place:

o= 2. (4.3)

As can be seen, as the load increases (1l.e., with increasing a) the
slip is propagated in the direction of the beam's middle. Belo:r we
consider 2 case where the greatest value of the moment 1s moderate
and slip does not reach the median section of the beam, 1l.e., when

¢m=%<l. (5.4)
/

Iet us follow the operation of the Joint during various stages
of the cycle; as a result of the assumed symmetry of the beam it !s
gufficlent to consider only one half of it (Fig. 27a).

The firs: stage (0 < @ < 1). As the moment oM 1s increased, the

slip 1s propagated from the free end of the pressure plate tc the mid-
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dle of the beam. The corresponding loading of the upper pressure piate
1s described in Fig. 27bs here the size of clip o 71vent ay it determin-
ed by Formula (4.3). Considering now the deflection of the right half of
the beam under the action of loads represented in Fig. 27a, we will find
the angle of twist of the end section durilng the loading process:%*

_a( —pM | (agMp
o 0) = Sy (4.5)

where EJO is the rigidity in bending of the beam without the pressure
plates. At the end of the first stage a = 1 and

_U—pM  @aMy
ﬁ(‘)-——E,:——-f--zqhu:- (14.5)

The second stage (1 > a > r). Reverse slip appears on a part of

the contact surface in the unloading process. The loading of the upper
pressure plate 1s shown in Fig. 27c. Equating the longitudinal force
(4.1) to the sum of frictional forces, we will find the length of the

reverse slip segment:

o= =02 Tz’:l-‘”’. (4.7)

We will find the angle of twist of the beam's end section in the form

(LEJ?’)J‘"_*_ (1 + 22 — o) (BAM) (4.8)
o

. N - X
A @ (x) = Sk EJ, .

-

If we substitute a = 1 into this expression, then we will agzain obtain

the previous result (4.6); for the end of the second stage, when a = r:

_rA—8M (1 -+2-P) GNP
O =gyt E, (4.9)

The third stage {r < a { 1). The distribution of frictional forces

on renewed loading is shown for the upper pressure plate in Fig. 274.
The length of the segment on which direct slip appears anew:

o = % («—n) (4.10)




-

In accordancc with the schematic deceribed in Fig. 27a, we will find

the angle of twlst of the beam's end cecetion:

s —-2M_ (1hat 2 —2an M)

= . gLt 4.11
v (2) k1, hquhd, (4.11)

Exnressions for cp3 and P coincide for a = r; expressionc for 9, and
<
@, coincide simllarly for a = 1.
The first terms of Expressions (4.5), (4.8) and (4.11) are iden-

tical. This coincidence 1s not accidental, since these terms

2 —8) M _ «Ml
Fi, E7

represent angles of twist of monolithic beam, fabricated as a single

entity together with the pressure

'l'”“““l'“li plates. The second terms of these ex-

o -1 — ______J>_‘ pressions show the effect of slip de-
' veloped between the beam ard the pres-

b N - F sure plates. The structure of these

0 N —— 6 —— terms does not differ from the right-
. f— 0 — hand sides of relationships found in

e ~_-“°=°‘{:_:57_:: Section 1 for the elementary probler.

Flg. 27 Therefore the character of hysteresis
loops for the problem beling considerec
w11l be the same as is shown in Fig. 14.
For determination of energy dissipation during cyclical loadinrg

ve will utilize the expression

1
¥ =M [ (o — o) da (4.12)
L 4
After performing quadratures we will find

— 5’4‘!’(‘ —')'

If we now introduce the amplitudes of the cycle




e

(--nM (4.14)
then (4.13) can be written in the form

2% c
‘l'::—s-—q.—,—‘-EJ;. (4'1))

As can be seen, the structure of this formula coincldes with
those of the expressions obtained above, in §§ 1 and 2, for compression-
tension cases; the energy dissipation 1is proportional to the cube of
the amplitude of the bending moment and is inversely proportional to
the clamping pressure of the pressure plates; furthermore, the mean
value of the bending moment does not exert any influence on the damping
properties of the system.

If Condition (4.4) is not satisfied (for large values of the bend-
- ing moment), then slip embraces the entire length of the beam. Without
dwelling on details, which are similar to those presented in § 2, let
us point out the final furmula for the area of the hysteresis loop:

2 2
v- 2 o~ e, (4.16)

where Mv, as before, 1s the amplitude of the bending moment and aoM

is that value of the bending moment for which slip embraces the entire
length of the beam; it 1s easy to establish, by means of Dependence
(4.4) that

lb"ﬂt!%!.

Iet us note that the region of applicability of Formula (4.16) is
l1imited by condition Mv'z aoM, which means that slip is propagated

(4.17)

over the entire length of the surface of contact between the beam and
the pressure plates. If the load Just reaches the value for which siip

is propagated over the entire length of the contact surface, i.e., if
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conditlon M, - a;M 1s satloflced, then Formmla (#.16) glves the recult
vbtained abeve by (4.19).

Iet us note that under conditlons MV > uOM the arcs of the hyc-
teresis loop 1is proprotional to the first power of the amplitude of
the moment, and niot to the cube of the amplitude, ac 1 the -anne for
MV < aOM.

To estimate the effect of compression i'orces p on energy dicci-
pation, it 1s sufficient to consider the effect of the quantity 109
which 1is proportional to the pressure p. Substituting Expression
(4.17) into Dependence (4.16), we will get

_ 2q0 29,0 g
Y= I (M, — -53—-). (4.12)

The maximal value of Y corresponds to a value of qo, equal to

_ 33M. 4,1
=g (4.19)

In general, thnese results coincide with the results obtained at
the end of § 2 for the problem of torsion in a press-fit joint.
§5. TRANSVERSE BENDING OF CANTILEVERED BEAMS

Iet us consider structural damping attendant to transverse benrnding
of cantilevered composite beams.

We shall first of all dwell on the problem (Fig. 28) first sclved
by Goodman and Klamp [33]. A cantilevered beam consisting of twc iden-
tical layers, pressed to one another by a distributed pressure p, 1s
at 1ts free end loaded by force aP, alternating within the rarge be-~
tween — P and P. Let us find the displacements of the beam's end as a2
Tunction of the magnitude of the force acting during a single loading
cycle.

The first stage. As long as force aP 1s srall and the intensity of

the tangential forces g in the plane of contact between the layers
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docs not excecd the vaiue qq = Ipb, no clip ocrurc between the layers
(b 1s the width of thc becam). The system deforms ac though it were

a becam with a monolithic cross sectlon and

mmmm’nml the intensity of tangential forcec on the

L l contact surface 1s determined by the D.I.
Zhuravskly formula
L _31” [l
1= (5.1)
SRR The deflection of the end of the beam will be

¢ ]

-3 91—y -s—}-"" u, (¢)=24i£—,' (5.2)

Fig. 28 Here h 1s the height and J the moment of in-

ertlia of the section of one layer.
The first stage will be terminated whern the intensity of the tan-
gential ferces will reach the value q = q,. According to (5.1), force

..p=# (5.3)

Corresponds to this case and, according to (5.2), the deflection of the

end
4 (%) = 5057 (5.4)

It 1s assumed that ag < 1.

The second stage. After the load has reached the value a.oP, slip
willl begin at the contact surface. Since the tangential forces are
everywhere the same, therefore slip will occur simultaneously along
the entire beam length. On further increase in the force (a > a,) the
tangential forces on contact planes remain constant and equal to ag-
Each layer of the beam bends as an independent beam.

Figure 28b shows loads resulting in the deflection of the layer -
beam: force 1/2 aP at the end and tangential forces uniformly distri-
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buted over the ontire beam length. Determining the deflection of the
beam end 1t 18 convenient to replace the tangential forces by o uni-
formly distributed moment loading (Fig. 28c¢), the intenslity of which
will be

el agP (+.5)

= T e S/
2 8

The displacement of the beam end during the second loading stage will
be determined as the deflection of any layer and is exprecsed in the
fo1lowing manner:

"1(1)=£— :;'Enl; =214,:'.l (4a—32,). (5.6)

For the beginning of the second loading stage (a = ao) Result (5.4)
i1s again obtained from (5.6). The second stage will be terminated
when the force will reach its highest value P; here the deflection of

the end amounts to
s (1) = 57— 3m). (5.7)

The third stage of the process cames at the instant when force

aP begins to decrease (the coefficient a again becomes less than unity).
The frictional forces at the contact surface also decrease and, since

q < LAY 8lip between layers camnot occur and the beam again bends as a
beam with & monolithic cross section. The tangential forces at the con-
tact surface will here be

34 —
q=q.--—-(—4h—‘l£- (5.8)

The defliection of the end of the beam will be determlined by the

formula

w (-)nu,(l)—i'—'.j;}-ff—a-._,{,::y- (3 --3aq +- 9). (5.9)
As can be seen from (5.6) and (5.9), the deflections at the
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peginning of the third staze and at the end of the second are identi-
cal. Let us note that on full unloading (a = 0) the deflection is not

equal to zero; the residual deflectlon 1s equal to

3

us () ’:i"] (4 --2,). (5. 10)

-

The third stage will be terminated for a valuc of the force alP
such that the tangertial rorces determined by Formula (5.8) will reach
the value Qg but will be directed in a direction opposite to the one
they had cuaring the first loading stage, 1.e.,

340 —2)#
% 2l == M:', = — . (5.11)

The load coefficient, corresponding to the termination of the
third and the begimning of the fourth loading stage is determined

fron the above:

4y =1-—22. (5.12)
The deflection of the beam's end can here be found by Formula (5.3),
if we substitute in it a = @5

uy (1) = 22:.1 (4 — 33). (5.13)

The fourth stage. As soon as the load becomes smaller than “1P’

slip betweeu the beam layers starts again, however, the directicn of
slip dbetween the layers will became opposite. The deflection of the
beam's end durinz the third stage will be determined as the deflection
at the end of the third stage plus an additional deflection of one

layer due to the force P

U (@) : o (my) — ;E;’pp 2’;21(&.1-4:). (5.14)

At the end of the fourth stage, when the force reaches its smallest
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value (a = — 1), the deflection will be cqual to

X ¢ 11\
"‘(--’) B ?’ll.j (‘ b “19)' \oed)

Comparing this with (5.7), we see that the deflcctions at the
end of the second and at the end of the fourth stage arc of the came
magnitude but of opposite sign.

Dependencies (5.2), (5.6) and (5.14) are represented in Fig. 29
by straight lines 1, 2, 3 and 4, respectively. If we now follow the
displacements of the beam's end as the load increases {rom the smallest
to the largest value then, on considerations similar to those presented
for the third and fourth stages, we can easily cbtain the dependencies
described in Fig. 29 by the straight lines 5 and 6. A hysteresis loov,

the area of which 1s equal to the energy dissipation during one loading .

cycle and which amounts to:

¥ = by () 5P = 20T (5.16)

is thus obtained.

FPor estimating the effect of different para-
meters of the Joint, in particular of the pressure
between layers, on energy dissipation in the beam,
it 1s convendent to write the last formula in the

form

¥= 2%""‘.32;"*"’- (5.17)

Jiy the way, this form of writing explicity exposes

Fig. 29 the linearity of the relationship ¥ = ¥(P); Formula
(5.16) can create an erroneous impression that the
dissipated energy is proportional toc the square of the load (actually,
quantity a, depends on the maximal force P).

- 58 -




preasrd. -

[P

|
z
|
3

for which the cnergy dissipation becomes grcatcest:

) mp

Waar = g5 (£.19)
Accordingly, 1f pressure p 1is gliven, then a value of force P* such
that tlie energy dissipation 1s maximal exists. It can be found from
(5.18) that this value amounts to

pe =.§q.z.. (5.20)

As the load increases, when P > P¥#, the energy dissipation decreases.
A further increase in the interlayer pressure, above the optimal,
(p > popt) results in a decrease in the energy dissipation. ir p
reaches the liniting value .
Prpea = ;,,%% . (5.21)
then the twin-layered beam acts as if 1t were continuous for any
values of the load up to the greatest loading by force P; energy
dissipation due to slip disappears in this case. Accordingly, if the
pressure is gilven, for a force P < #/Bqdh the caaposite beam acts
as a beam with a monolithic cross section.
The absorption coefficient can be determined, for example, as
a ratlio of the dissipated energy to the greatest energy of deforma-

tion of one layer:

o _ ol BP — 4q,) _
Y= “-—"‘.J‘,,—-——'-- 5.22)

The absorption coefficient reaches its greatest value for a load
P* calculated by Formula (5.20) and decreases sharply witn a decreas-

ing load.
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The graph constructed by Goodman and Klamp showing the dependence
of the absorption cocefficient on the amplitude of the greatest stress
in the root sectlon as a ratio of the endurance limit 1s presented in
Fig. 30. The graph is constructed for a beam composed of two strips of
soft steel, 32.4 cm in length. The cross section of the beam was square
(r.27.1.27) cme, the height of each layer was (0.5:1.27) cm. The layers
were clamped to one another by twenty-five callbrated aluminum brackets
uniformly distributed over the length of the beam with a &tep of 1.27 cm.
The pressure with which the strips were clamped reached the value of
P = 5.62 kg/cme.

The friction coefficlent at the contact surface was taken as
equal to f = 0.14. For comparison, the curve showing the variation of
the energy absorption coefficient due tc absorption in the material
is also shown in this graph. As can be seen, energy dissipation related
to the structural peculiarities of the beam considerably exceeds losses
due to dissipation in the material for any loading values. As pressure
P increases this difference becomes even greater. The losses in the
material increase under large loads and the values of the two types of

energy dissipation tend to even out.

“

b oo s o o > an wm

oql&a&ia%.

Fig. 30. 1) Dissipation in the ma-
terial; 2) kg/cme.
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The experimental investipation pori'ermed by Geodman and Klamp of
a model of a twin-laycrcd becam, the dimenslons and ctructure of which
were deseribed in conjunction with Fipg. 30, is of interest. It has
been established by special investigations that the frictlon coeffi-
cient £ Gepends very little on the contact pressure a'u remainc practi-
cally constant as the number of cycles increases fron 103 to 106. It
has also been established that iIn a wide range of slip rates the fric-
tion coefficlent does not effect the area of the hysteresis loop.
Hysteresls loops were taken in the beginning in an almcst static mode
and with a velocity of 1450 cycles per second — in the second cycle of
investigations.
Tte area of the hysteresis loop calculated by Formula (5.17)
for the given beam model for a pressure p = 5.62 kg/cm2 amounts to
0.243 kg-cm/cycle, while when measured in the static mode 1t was 0.234
. kg-cm/cycie and in the dynamic mode, for a frequency of 1030 cycles per
second, the area of the locp was equal to 0.241 kg-cm/cycle. These
data affirm the permissibility of utilizatlion of the law of dry fric-

tion in structural damping problems. In the experiments, alongside
with changing the above parameters, the clamping pressure was also
varied within the range between 1.406 kg/cm and 9.842 kg/cm the
‘4 . experiments have fully affirmed results obtained from calculations.
J Figure 31 presents a graph of the dependence of the absorption coeffil-
cient calculated by Formula (5.22) on the pressure at the contact sur-
face. The calculated dependence ¥ = ¥(p) 1s shown by the solid line;
. : the points represent the experimental results obtained under static
conditions; the results of the dynamic experiments are shown by circles.
Iet us now examine in detall the problem of bending of a cantile-
vered beam with thin pressure plates which is loaded by an end force,
cyclically varying with time (Fig. 32a). As has been pointed out in
- 61 -
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Pig. 31 a) Kg/cmz.
the introduction, this problem wa.. the first of the problems of the
cycle under consideration, it was raised and solved in 1953 by Pilan
and Hollowell [38].

It is assumed that both pressure piates are clarped to the beam
by a pressure p and tangential forces between the beam and the pres-
sure plates are realized only in the form of frcitional forces. 4T
we were to determine these frictional forces over the entire length
of the pressure plate by strength of materials formulas, then the
condition of the pressure plate's equilibrium (projected on the longi-
tudinil axis) would notbe satisfiled. It 1s therefore necessary to
assume that slip of pressure plate: over the beam takes place at a
certain segment of the contact surface. The frictional forces 1n
this region act in the reversed direction and are determined 20t by
the D.I. Zhuravkiy's formula, but by the law of dry friction. The
dimensions cf the slip region are determined fram the conditlcns cof
equilibrium of the pressure plate (Fig. 32b).

kalPl
=m O2
f Gh+ kapP ' (5 3)

where k = Fha/EJ is the value of the longitudinal intensity of thc
frictionai forces, constant for a given beam with pressure plates,
F 1s the cross-sectional area of a pressure plate, J is th: moment
of inertia of the cross section of the beam and the pressu:- plates

and b and h are the width and helght of the beam cross section.
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When the load 1lncrcascs, the dimensions of the slip reglon are

also increascd and emnbracce half® of the contact curface for the load

_ 2
WP = e

The tangentlal forces 1in that part of the conta~t surface where
they are determined by the D.I. Zhuravskiy's formula increasc with
the increase in the load. At the instant when the force will reach
the value ayP, determined by Formula (5.24), these tangential forces
will become equal to dg» and therefore slip will occur also on the
other half of the contac.t surface, but it will be directed in the
opposite direction. Friction forces of opposite direction thus act
on each of the halves (Figz. 32c). A furthzr increase in the load will

not change the pressure plate loading

. lr—f e

I |

conditions.

2 unuuﬁin
It should be noted that the posi-
. [ g op
% T RARRALAAIARLR tion of the s8lip zone 1s pointed cut by
a. 4 Pian and Hollowell without an appropri-
W |
&b F==ﬂ=========? ate explanation. It is therefore usaful
%' 3‘%
9 to dwell in particular on the problem of
e Py =y
§c ____2___ — the position of the initial slip zone.
o ! L
__Z_, } As has been pointed out, the appearance
86 e ' of the slip zone in the problem under
L% §-4. consideration 1s necessary on static
—0,
-o,]q‘ congsiderations; however the position of
. 113 2______ —— this zone cannot be determined from the
=~ laiq i P3
it 9 equilibrium conditions only.
- Fig. 32

Slip will occur first of all namely
at the left end of the pressure plates for the reason that bending mo-

ments, resulting in deformations ¢ = ¥/EW in the extreme beam layers,
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act on the pressurce plates irn the covresponding beam sections, while
the pressure plates do not experience any longitudinal deformations
(the longitudinal forces in these pressure plates' cross secticns are
zero). Slip of extreme layers of the beam relative to the pressure

plates 1s here inevitable due to the difference in deformations; fur-

thermore, as the loading will increase, slip will be propagated from
the left pressure plate ends to their middle. The length of the slip
zoae 1s determined at any instant from the condition that the deforma-
tions of the pressure plate and the extreme beam fibers at its bound-
ary are identical. The beam seems to have a monolithic cross section
at tkhe right sides of the pressure plates and the tangential forces
on the contact surfaces are detemmined by Zhuravskiy's formula.

To analyze the deflections of the beam during different loading
stages, it is simplest to consider the bending of the beam without
preasure plates, replacing the action of the latter by corresponding
tangential forces (or, in a manner of speaking
— by distributed bending moments). Figure 33
describes three dlagrams of bending moments,

|

- i - corresponding to three ordinary stages of beam
w' loading. These diagrams pertain to a beam with-
i ,’_,.' out pressure plates; their peculiar form 1s de-

Q@mﬁhﬂlwﬁw termined by the peculiarities of the action of

the pressure plates over different segments of
Fig. 33 length.
Utilizing the graphlico-analytic method for determination of deflec-
tions, we can find that the deflection of the beam's end during each

stage amounts to:

v = PP gAP 2*iPt — 2kw Pgh (5.24)
73T, 6ET, T (aPk—qhf
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PP qhP_[I®12 4 2Pkgh
AES, T GET, | TR ohp

o (4 — &) P2+ 4 (§ — «) Pkgh (5.25)
Y Y l

Us =

_ sPP  ghP [P*i2 + 2Pkgh
T 3EJ, T GET, | T(PEFqup”

1 — )PP L 4 (1 —r)Phgh
1 — r) Pk + 24P

<9 (« —r)PP22 4 4 (@ — r) Pkqh
[(@ — r) Pk + 2qh]t ]'

a4

+

(5.26)

here the lengths a, and a3 of slip segments are equal (the length of
segment a; is glven above in Formula (5.23)):
A —=)PH__

—r) P
ay = (—._L:mg——_’-:-z—q-i (5.28)

A calculation of the area cf the hysteresis loop glves

= P ®Pgk
Y= STaP e (5.29)

The dependence of the area of the hysteresis loop on the load 1s close
to cubic; as ir the majority of previously considered cases, the area
of the hysteresis loop 1s independent of the mean value of the cycle's
load.

Experiments performed by Pian and Hollowell on a model of a beam
have confirmed that the dependence between the area of the hysteresis
loop and the lcading amplitude 1s close to cubilc. Figure 34 shows the
graph of the dependence of the area of the hysteresis loop on the amp-
litude of the moment in the root section of the cantilevered beam.
Experimental results are denoted by points; the solid line cocrresponds
to the analytic dependence (5.29). Similar dependencies were obtained
for three different values of clamping forces.
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Let us turn to the scheme of a leaf spring with point contact be-
tween the leaves [27]. An elementary model of this system is shown in
Fig. 35 and 1t represents a cantilevered beam bullt up {rom two leaves,
rigidly inserted in the root section. Shoes
are fastened to the leaves at secticns close
to the ends, so that contaci between the leaves

is possible only over small surfaces of con-

tact between the shoes and can be considered

as point contact. The leaves are held toge~

ther by a clamp around the end section; this,

however, does not prevent possible slip of one
g;%ie?uﬁ)azgfﬁgfm/ leaf relative to another. The clamping force
between the leaves 1s taken as equal to P*¥.

The external lcad is, in the form of a force aP, applied to the end
section of the upper leaf; hair of this force 1is transmitted to the
lower leaf through the contact surface.

No slip occurs at the contact surfaces for relatively small values
of the external load aP and the spring deforms as a channel-shaped
frame with an absolutely rigid cross bar. The transverse force in the

frame's crcss bar in this case 1s:
«Pl
= (5.30)
(h 1s the distance between the leaves' centers of gravity and 1 is

the lengzth of the spring); here Q is smaller than the limiting force
T which i8 determined by the law of dry friction:

T=(ps+3ep)s. (5.31)

The displacement of the end section is, during this stage, determined
by the formula




B et da v

af'P
u,l, a) = QT (5.32)

where EJ 1s the rigidity in bendlng of onc spring leaf. Segment 1
of the graph (Fig. 36a) correspondc to this

\ o P loading stage.
}- The first stage of the system's elastic
it deformation terminates as socn as slip appears

ﬂ.
in the point of contact. The appearancs of

Fig. 35
slip becames possible if the transverse force

in the cross bar,Q, reaches the value of the limiting force T. There-

up f opP

)

Pig. 36
after the structure begins to act as a system with friction. The load
for which sl!p appears and the second stage begins 1s determined by

the formula
o=l (5.33)

The dlsplacements of the end section during this stage are determlned
by the formula

u u)sg— (.Pt‘zzl;)’” . (5-32‘)

Segment 2 on the graph (Fig. 36a) corresponds to this dependence. The
second term of Expression (5.33) characterizes the frictional propertie:
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of the system. Thc system's rigidity during thic loading stage amounts
to 1/2(2 — 3rh/1) of the frame's rigidity 24EJ[13. After the load has
reached its greatest value (a = 1) and begun to decrease, slip ceases

and the spring again deforms as a channel-shaped frame with a rigid

cross bar. Dependence u., = u on thic serment of the hycterecics
3 3 (l) a)
loop 1s written in the form

&%ﬂi_'_’:’éﬁ‘w (5.35)

uy (l, 2) =

and is represented by segment 3 in Fig. 36a. Here the rigidity is the
same as during the first stage.

The third loading stage for the beam terminates when reverse slip
appears on the contact surface. Thereafter, the displacement of the
end section (segment 3 in Pig. 36a) is determined by the formula

wd =5y~ L e (5.36)

If the external load is completely taken off, then, in the presence
of initial tension P* # O, the end section does not return to the zero
position. The residual deflection will be eqgual to:

wd. =20 (5.37)

If P* = 0, then the three stages which were considered acquire the
character described in Fig. 36b. When the load takes on a minimal value,
the third stage ends. Thereafter reverse s8lip ceases and the system
again deforms as a channel-shaped frame on new loading. The displace-
ment of the end section during this fifth loading stage is determined
by the formula

wb, =R L 22T (5.38)

(segment 5 in Fig. 36a). The fifth stage terminates when direct slip
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arises on the contact surface. The end of the fifth ctage ~dfipletes a
camplete loading cycele. Stages 2 — 3 — 4 — 4 arc repeated during sub-
sequent cycles.

The area of thc hycteresis loop for an arbitrary characterictic

of the c¢ycle 1s dctermined by the formula

L ' N - ) __ Pt g TN
Y= “‘7.7."’“‘" o< 41%) — b el + A1%) -- 2P?), (5.39)
where
(@ — 2k _ @+ 2hp
a= T ;,-.....m__. (5.40)

Formula (5.38) shows the peculiar dependence of the area of the hys-
teresis loop on the clamping effort [appiled to] the contact surfaces.
As in the case of the cantilevered beam, we can point out an optimal
clamping effort for which the energy dissipation in the system becomes
maximal; this force 1s equal to:

Pig= L= TP, (5.41)

There is little energy dissipation due to friction at the contact sur-
face for small values of P#, for P* = 0 it depends only on the external
load. If the clamping effort satisfies the inequality

Pior > qgle =1+ Ve=7F F8G—7D). (5.42)

then the beam acts as an elastic channel-shaped frame for any loads up
to the maximal [load] P; no slip arises on the contact area between
the leaves in this case. For the given clamping force we can haere point

out the load
1GP*
Pos = —- (5.43)
which corresponds to maximal energy dissipation.

If the initial pressure between the leaves 1s absent (P* = 0),
- 69 -




then Formula (5.38) acquires the form

S LT T -
y m Jmlaap.l_ (Pa- P,) (b—a)). (5.44)

This formula slows distinctly the dependence of the energy dissipation

on the mean value of the load. This dependence 1s a result of the exist-
ence of a relationship between the frictional forces and the externai
load. It is not difficult to notice that, in the absence of this rela-
tionship, when T = fP¥%, the limiting frictional force 1s independent

of the external load and the second term vanishes in Formula (5.31);

the Formula for the area of the hysteresis loop (5.39) acquires the

fom
q-=%"_'[p.p-:-4pcm. (5.45)
Below are presented results of static and dynamic tests of a model of

a two-leaf spring. The schematic of the installation is shown in Fig.
37. The spring leaves were made from spring steel, the length of the

J -]
7 R B

=
Fig. 37
leaves 1 = 500 mm and the dimensions of the leaf cross sections
t x b =8 x 65 m. The contact surfaces were cleaned to remove the
skin and were degreased.
The areas of the hysteresis loops were measured under static con-

ditions (cycle length 3-4 minutes) after the joint had been properly
conditioned (103 cycles) under dynamic conditions.
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The curves of damped vibrations were recorded during the dyr.amic
tests by a tensomcter installation with wire sensors. Then the energy
dissipation during one cycle was determined by the curve in the ucual
manner for different amplitudes.
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Fig. 38. a) Kg-cm;
b) kg.

Figure 38 presents a graph of the dependence of the area of the
hysteresis loop on the force with which the leaves are clamped together.
The results of calculations for a symmetrical cycle for two values of
the friction coefficient T = 0.20 and f = 0.25, by Formula (5.39) are
shown by the s0lid line. Experimental results are denoted by points.
The experiments confimm the existence of an optimal clamping force
P‘“opt’ for which the greatest energy dissipation exists in the Joint
for a given external load.

For large clamping forces (considerably larger than Popt) the ex-
perimental points do not agree with analytic results. This is due to
the fact that the experimentally measured energy dissipatior depends
not only on the friction in the slip region but also on other factors
(energy dissipation in the beam's fastening and in its material). Hys-
teresis of another type acquires dominating significance for large
clamping efforts. Ratlo Ymax : 'min can be utilized for estimating the

relative importance of losses; as can be seen, the relationship between

the two types of losses for a spring on optimal clamping P#* o

pt fluctu-




ates between 8 and 10.

Figure 39 shows the graph of variation

v
v of the absorption coefficient as a function
- F-:m-.a of the amplitude of the damped vibrations;
- theoretically calculated results are also

presented for compariscn. The experiments

' [T ¥ R T M ,s,,

Ii‘iso 39. a) Kg; b)

cm}.

point to an increau=z cf the absorption co-
efficient with decreasi.g amplitudes. How-
ever, for a preset value of the amplitude of vibrations slip vanishes
from the contact surface, rigid coupling between the leaves takes over
and the spring begins to act as an elastic system; in addition energy
dissipation due to friction on the contact surface also cease¢z. The
fact that cohesion takes place beiween the contact surfaces 1s also ex-
pressed by the fact that a change in the rigidity of the system, and
together with this in the frequency of natural oscillations, takes
place. Figure 40 presents an experimental graph of the variation of
the frequency of a system's natural oscillations as a function of the
amplitude of oscillations.

.y ® Similar experimental results were ob-
» tained also in investigations of stacked
. ™ ) ‘ joints of flat cantilevered rods (multi-

. = - “};' leaf spring of the cantilever type) with

point contact between them.
Fig. 40.a) Cycles per
second; b) [mm].
§6. TRANSVERSE BENDING OF A MULTILAYERED CANTILEVER
The Goodman and Klamp problem on bending of a two-layer cantilever
considered in the preceding paragraph can be extended to the case when

the cantilever consists of many layers (Fig. 41). Let us assume that

the layers are identical (made fram the same material and having iden-
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tical dimensions) and the compression intensity between the layers is
constant along the beam length for all contact surfaces. The cantilever
1s loaded at the end by a perlodic force aP, the coefficient of which

varies within the limits of -1 < « < 1.

v

ARERRRREREREER! Let us first furn to a three-layered

: " beam (Fig. 42a). The first process of load-

‘[""”';""'”: ing the beam (0 < a < 1) consists of two
Fig. 41 stages. During the first stage, when the

tangentlal forces on the contact surfaces are sufficiently small and

satisfy the inequality

42P
‘I":"'g‘,"'(%- (6'1)

no slip occurs between the layers

and the cantilever bends as a beam

P n
badidd bt of a monolithic cross se-tion. The

a) oP deflection ai 1he beam's end will

IR ERRREE

here be:

wO=gg-  (6.2)

Symbols b, h and J = bh3/12 in

Formulas (6.1) and (6.2) dencte, re-
Fig. 42 spectively, the dimensions of the

cross sectlon and the moment of inertia of a single beam layer.
The first stage will be terminated at the instant when the tangen-
tial forces determined by Formula {6.1) will reach the value qg- The

force here has the value

P = -2—0.1«. (6.3)

and the deflection of the end amounts to
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u‘(.‘)aﬁ"g;, (6.4)

Force aoP is not distributed uniformly between the layers:
7/27 aoP is devolved upon each of th> c¢xtreme layers and 13/27 aOP
upon the median layer. This distribution can be found from the tangen-
tial forccs diagram or from the equality of deflections of the ends
of the median and extreme layers due to the load shown in Fig. 42b.
During the second stage (ay  a < 1), as soon as the force ex-
ceeds the value aoP, simultaneous 8lip along both contact surfaces
takes place oveir the entire length of the cantilever. The bLeam loses
its monolithicity and subsequently bends as three separate beam-
layers; since the deflections of these layers are identical, the load
increase (a — ao)P will be equally distributed between the layers. The

deflection of the cantilever end is here determined by the formula
pe pe
s (&) = 1 () + g (% — &) = g7y (B — 8. (6.5)

At the end of the second stage, when the force reaches its great-
est value (a = 1), the deflection will be

e (1) = g7 (@ — Bmy).

The unloading process also consists of two stages. During the
first stage, when the load decreases, (a*o £ a < 1), the cantilever
again bends as a beam with a monolithic cross section. The tangential

forces on the contact surfaces
,-,._ﬂ’_;‘h_‘)i' (6.6)

and the deflection of the beam's end

us @) =1 () — ST PE B e, 4 0). (6.7)

If the load 1is completely removed (a = 0), then the beam, obvious-
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ly, will not rcturn to its initial position. The residual deflection

uy (1) = Ealng (1 — a).

The first stage of the unloading process will tcrminate at the
instant when the tangential forces dctcrmined by Formula (€.6) will
reach the value Qg with a minus sign. The coefficient aB, corresponding
to the force at the end of the third stage

az=:.‘%=:—z-. (6.8)

is determined from this condition.

During the second unloading stage (-1 < a < aa), as soon as the
force becomes smaller than asP, s8lip again occurs between the layers.
But now the layers will be displaced in a direction opposite to the
direction of slip during the second loading stage.

The deflection of the beam's end during the second unloading stage

18 determined from the formula
e (8) = s (53) — g (o4 ~ #) = AT (B + 90). (6.9)
At the end of this stage, when a = - 1, the deflection will be

w(—1)=— T @—Be).

As can be seen, the magnitude of the deflection for the smallest
value of the force 1is equal to the deflection due to the greatest load
magnitude, but is of opposite sign.

If we now again increase the force, varying the load coefficient
between the limits from -1 to + 1, then it becomes necessary to consider
a secondary loading process which is fully analogous to the unloading
process. The hysteresis loop can be constructed by Dependencies (6.2),
(6.5), (6.7) and (6.9). A sample of its shape 1s given in Fig. 43. Curve
0 - 1 -~ 2 corresponds to the first loading period, curve 2 — 1% — 2% _ ¢
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the unloading period and the dashed curve — to the secondary loading
period. The area of the hysteresis loop will b::

1'=4.,,(o)¢.p=32"‘:“‘%;°)”. (6.10)

Let us pass on to the consideration of a beam consisting of many

identical layers (Fig. 41). Let us assume that

L n, the number of layers, is odd. The median
/ layer will be called the first, and the number-
f T ing of layers will be subsequently extended for
‘._// r one, upper half of the beam, starting from the

r
median layer to the extreme layer. The same num-—

Fig. 43
bering [system] 1s also retained for layers
situated below the medlan layer.

Let us consider the first loading perilod, when the force increases
from O to P. The first stage of this period 1is characterized by the
fact that the tangential forces on all contact planes are smaller than
their limiting value q < q5- The cantilever bends as a beam of monolith-
ic cross section; the tangential forces at an area situated at a dis-

tance y from the neutral layer are determined by the formula

,-'_"_('_’g;i_*ﬂ!. (6.11)

and the deflections at the end will be

.(.,-gg]. (6.12)

In particular. the tangential forces at the contact planes of the
first layer (y = 1/2h) wiil be:

o200, (6.13)

The first loading stage will terminate at the instant when these
tangentlal forces will reach the value qy- The value of the force
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a01P, corresponding to the end of the first stage, is determined from
Formula (6.13), if we set in 1t q; = gt

P = s Wk (6.14)

the value of the end deflection will hoere be:

e I'B ¢
R R TS $6.15)

As soon as the load becomes greater than QOIP, slip will occur
along the contact planes of the first layer. The cantilever cross
section is no longer monolithic and we now have three beams which
bend together: the first layer and two banks, composed of layers situ-
ated above and below the first layer. The simultaneousness of bending
of these three beams 1is expressed in identity of the deflections, and
therefore the load increase (a — u°1)P is distributed between the
beams proportional to their rigidities in bending.

It can be shown that secondary s1lip will occur along surfaces of
contact between the second and third layers. The slip between layers
will subsequently be propagated, with ui.creasing load, from the middle
to the extreme layers. For the sake of brevity, those beam layers whict
are subject to slip conditions will be called displaced. It 1s conven-
ient to follow the process of slip transition from one contact plane
to another on a tangential force diagram in any cross section of the
cantilever (Fig. 44).

Let us consider the upper half of the section. Parabola q,, ana-
lytically expressed by Formula (6.11), corresponds to the beginning of
first slip. This parabola passes through the points q = 0, y = nh/2
and q; = qp, ¥ = h/2. Secondary s8lip will occur at the instant when
the tangentlal force dlagram will be described by parabola LPY which
should pass through the points g, = 0, y = nh/2; q, = g5, ¥ = 3/2h and
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dp = Qy» ¥ = h/2. Let us denote the corresponding value of the force by
“02P‘ Since the bending of the already dis-

placed layer also increases as the force 1s

z 1 < B increased from a01P to °‘02P’ thils layer will
ﬂ"%_ “:3;_ also accept a part of the load increment. Sub-
g ‘:’f‘l sequent load increase to the value ao3P re-
“’*: H ! sults in a third slip, with parabola q cor-

responding to it, etec.

Iet the s8lip reach the kth contact plane
when the magnitude of the force 1s a, P (Fig. 45). It is obvious that
this plane is situated between layers k and k + 2. At the same time,
the dlag:am of tangential forces on that part of the section which 1is
situated between the kth and the extreme layer 1s described by para-
bola Qs whose equation is

; %
h=EE=T+ha—g 7 T¢Ik
+ Nn (n—2k+2).

(6.16)

In this formula k 1s the number of displaced layers. Since the
81ip process occurs simultaneously below as well as above the median
layer, therefore k=1, 3, 5, ... (n -~ 2). In particular, Dependence
(6.11) corresponding to the first slip is obtained fram Formula (6.16)
for k = 1, the second slip will take place for k = 3, etc.

. S1ip between layers (k + 2) and (k + 4)

l__ * h will occur when the force will have the value
il - %, k4oF» When the diagram of tangential for-
BL.. ces in the extreme layers (6.5) will be re-
— - presented by the parabola
Flg. 45 = PR H ey Y kD

‘ (6.17)
+ M (n — 2k—2)].
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This expression 1s obtained from (6.16) by replacing k by (k + 2).

‘ihus, & load increase by the value

APiya), a = (%0, 242 — 24, 0)P (6.18)
displaces slip .ast one layer, 1if we consider only one half of the
beam section. The load increment increases the tangential forces not
only in the bank of extreme layers, but also in each of the displaced
layers.

The tangential forces in the bank of extreme layers will increase
by the value |

A!cﬂﬁ.{"‘ 42— = ,,(,...k)l(:’.—f)f-—il ’

(6.19)
=4y +2(n 4 K) hy — K nk].

Force Aﬂk}2 K’ corresponding to such an increment of the tangen-
b
t1al stresses at one half of the cross section, is numerically equal

to the area crosshatched in Fig. 45.

uh

T
Mhrisa= ‘!Ah-;-:.xdr = _(;..(_2:'{).:.):_‘. gk (6.20)
T

Let us denote the increment of the transverse force in one dis-
placed layer, when the load increases by APk, by AQl. Each of the k
displaced layers will have this increment of the shear force. Conse-
quently, the load increment can be written in the form of an equality

APy 3a = 2800 ;24 + KAQ;. (6.21)
In addition, quantities Aﬂk&2,k ard AQI are related to one another
by the condition of equality of the deflections of the extreme layer
bank and cnc displaced layer, 1i.e.,

85Qs-5a P _ AQ,P .
= SR ST =3 (6.22)
Fram this
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M~ s (6.23)

Consequently, we can write kquality (~.21) in the form

T R P (6.24)

APyyan == T

Substituting here M, ., , from (6.20), we get
’

. 2(n—kpP-+ 8k
APy ;o= F=DiR _I);:nlo. (6.25)

The increment of force aOkP, necessary for the slip to be dis-
placed through one layer, is determined by this formula.

The following dependence betiseen the values of the load at the
ends of two adjacent loading stages is now obtained from Formula
(6.18):

- - 2m— kP48
..-Mt”’“.hp+”i+2.l-mp+('___‘.)“'_‘.’)!_41 ’q" {6.26)

Dividing through all the terms of this equality by the maxinmal
value of the load P, we will obtalin the relationship between the
loading coefficients of two adjacent loading stages

_ 20— AP +8k b
L Y32 ) “.."" (""")“.‘—W‘-‘".T. (6.27)

If we utilize Equality (6.14) then we can represent this relation-
ship by the coefficient a5 1° corresponding to the first slip, 1i.e.,
>

wrrr = ot J D= Bl . (6.28)

Formulas (6.26) and (6.27) represent recurrent dependencies, making
it possible, starting with the first stage, to obtain the values of
loads successively at the end of the second, third, fourth, etc.,
loading stages. The stage corresponding to k = n — 4, when slip will
reach the extreme beam layers, will be the one before last. Thereafter
the beam will act as n scparate layers which have identical deflections.

Let us now turn to the determination of deflections of the beam's
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end during different loading stages. The deflection at the end of the
first stage 1s determined by Formula (6.12). Let the deflection have
the value u(ao,k) at the instant layer k 1s slipping. Then the force
increment Apk+2,k increases the slip reglon again by one layer from
each side and results in a deflection increment by the value Auk.
Consequently, the deflection due to force Qo,k+2P can be written in

the fom

U (w01 2) = u (=) + Auy. (6.29)
The value of the deflection increment Auk is determined from
Formula (6.22), where Mo o from (6.24) should be substituted.
»
Finally, we will get

*(oar12) = ¥ () + TE— T T (6.30)

If we substitute here gqjh frca (6.14), then

- 4(n*—1) s PP
u(epaiz ) =u(xga) + e Wle— =i & (6.31)

We have obtained a recurrent formula, relating the deflections
of the beam's end during two adjacent loading stages. Deflections of
stages starting with the second and ending with the one before the
last are determined by this formula. During the last loading stage,-
when s8lip has embraced all contact surfaces and the cantilever bends

as a system of separate beam-layers, the deflections are deter-

mined from the following equality:
W) = b (rgag ) + S St PP (6.32)

Here 1 > a » %, n-2°
When the force reaches 1its greatest value, the deflection -"111 be:

6 (1) = u (egas) + LT PT (6.33)
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We shall now consider the unloading periocd, during which the
force 18 decreased from P to — P. The vaiues of ioad coefficients

will be denoted by a*. Stages analogous to those already considered

in the first loading period can be observed during the unloading period.

During the first unloading stage the cantilever bends as a beam with
a monolithic cross section. The tangential forces in all layers of
the cross section decrease during this time. In particular, the tan-
gential forces on contact surfaces, displaced when the layers were

loaded, 1.e., for y = kh/2, will be

The displacement of the beam's end during the first unloading
stage will dbe found as the difference between the deflection for the
greatest value of the force and the deflection due to a change in
the load by (1 —~ a*)P:

u (x%) = u (1) ~ ‘%—.—'?”-. (6.35)

The first stage will terminate when the tangential forces at
the contact surfaces of the first layer will reach the value Qg
l.e., Q= qy- The value of the load coefficient at the end of the
first unloading stage is determined from this condition. Utilizing
Equality (6.14), we will get

4“‘“3??‘?—%7"“2'“- (6.36)

The result obtained for a multilayered peam will naturally be
the same as for a beam formed by two or three identical layers. As
can be seen, the absolute value of the force during the first unload-
ing stage becomes twice as large as on the first loading stage. This
i8 due to the fact that a force equal in magnitude to °‘01P is needed
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at the beginmning of unloading so that the tangential forces on the
contact surfaces of the firet slip should become zero. The same magni-
tude of force 1s subsequently also needed so that the tangential for-
ces on the same planes, on changing their sign, should again become
equal to qQp-

Substituting of, from (6.36) into (6.35), we will get the deflec-
tion at the end of the first unloading stage:

(o) = () — UL (6.37)

Slip along the contact surface of the first layer will occur
as soon as the force will become greater than “51P' On subsequent
decrease of the force slip will be propagated from the middle to the
extreme edges of the beam. But now the direction of relative displace-
ments of the Jayers will be opposite to that existing during the load-
ing stage.

The process of layer slippage with a decreasing force is analo-
gous to the just considered process during the loading period. It
should, however, be taken into account that the change in the force
necessary for displacement of 8lip through one layer will, during
each unloading stage, be twice as great as during the first loading
period. Therefore the recurrent formula (6.27) takes on, in this case,

the fom

et hnie Ly =y 51 ey T Sy i (6.38)

or

. - - I(n*—1) [2(n— &)* 4 8k]

Formula (6.31) is also similarly modified. Now the deflections
at the ends of two adjacent unloading stages are related by the rela-
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tionship

8(n*—1) ey PP 4
Fr—nim—ar—a & (6.40)

“ o asd (el )+

During the last unloadiag state, when slip has occurred on all con-
tact surfaces and the cantilever bends as a system of separate layers
under the action of a force varying between aa,n__aP and P, the de-
flection 1s determined from Formula (6.33). The deflection for the
smallest value of the load will be:

(1) = (of ag)— & +§L;5*””'. (6.41)

The period of the renewed load increase, now from the smallest
to the largest value, fully repeats the unloading period. Formulas
(6.35), (6.39) and (6.40) remain valid for this period.

The character of the hysteresis loop on transverse bending of a
multilayered cantilever is shown in Fig. 46. The area of this loop
can be calculated by the formula

w(t)
- s _
¥=2 r-[‘ ’(r,(,, P (6.42)

The first term in the square braces represents the equation of a
straight line connecting points 5 and 5%, the second term — the un-
lca.ding curve between the same points.

As an example, let us consider a beam consisting of nine layers
{n = 9). The first loading period (0 < a < 1). The load coefficient
and the deflection at the end of the first stage are calculated by

Formulas (6.14) and (6.15):

__2-9 gk
Il 7 e T el

ok
=608% .

“(ln)*s%’;y'
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The load coefficient and the value of the deflection at the ends
of the second, third and fourth stagesare subsequently found by

Formulas (6.28) and (6.31).

The second stage, k = 1.

(@ —-1)-3120—-1+8-1) e
&3 == Kyt -i- 7. !FT(‘J— ’){f‘_“zr“— Ry = i, s
wPP A. (@ 1) 2PP _ eyl

“Od) TR T wE IIe =R &~ SET

The third stage, k = 3.

- 3FE—1)I1209—-3*+8. 3) -
s = 1,350mgq -+ T e — 4] %, = 1,747sq; ,

“ED =T tFe e le— =4 5 -
. ..pp )
=25 ypr -

The fourth stage, k = 5.

3@—1i209— .
o= 100Tey + 2O EOF 8D o 220,

—opey®sPP . A@—1) Lo
") =200 Tt SR oo — 8T £

39,333'.;'“.?'.

During the fifth stage, when the cantilever bends as a system of
separate layers, we find by Formula (6.33):

The polygonal line 0 — 1 — 2 —~ 3 — § — 5 in Fig. 46 represents
the relatlonship between the end deflections and the load variation
during the first loading period. Loads, which should be multiplied by
P, are lald of{ orn the ordinate axls, and the deflection coefficients,
which should be multiplied by P13/93‘EJ — on the abscissa axis. For

the sake of definiteness of construction, coefficient a5, was taken

to de equal to 0.4.
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Fig. 46

The numb~r at the point where the line 1s broken correspcnis
to the end of the corresponding loading stage.
The unloading period. The value of the load coefficlent and the

deflection at the end of the first stage are found by Formulas (6.36)
and (6.37):

wg1 = 1 — 2mqy;

o (od0) = (27 — 33,42000) gopy — SUPT. = 27— S dwe) -

The value of the load coefficient and of the deflection at the
end of the second, third and fourth stages will be found by Formulas
(6.39) and (6.40). The constant quantity

3m—1) 3@ ~1)_
ﬂ! = F——-—O,33.

enters these formulas.

The second stage, k = 1.
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woy — 1 — 2ag -("—33-(2 (g +48) ] 2oy = 1 — 2,71myy;

u (":.3) = (27 -~ A dany — gﬂg:‘;) lol) P E] =

reP

= (27—58.76301) 9; EJ .

The third stage, k = 3.

03(2-@+8.3),

xas =1 — 271ag — = ot = 1 —3.51ngy;
u (ags) = [27 — 543 u?@- o ..,] -
= {27 — 58,76 u.)m .
The third stage, k = 5.
«ty =1 —35aq _o'm‘iij‘f_:"‘?‘ 5) agy = 1 — 4,67a¢s.

. 2 7 8.8 PP
) = [27 ekl 7 p=r ) 'ﬂ]?}? =
pp
=@ —1ee) 5 EF-

The deflection at the end of the fifth unloadiqgﬁ:tggg 18 calcu-
by Formula (6.41):

u(—1)=(27— 72'1,“)9'1’:7__ a4+ 1 — 4.67a0) PP _

= (— 27 4 73924) -9,—5-.

As can be seen when the results of calculations are plottedron a
logarithmic scale, the magnitude of displacement u(~ 1) almost coin-
cides with that of u(l).

The unloading stage is in Fig. 46 represented by the dashed 1line
5~ 1% — 2% _ 3% _ 4* _ 5%  If the force now increases from the small-

est to the greatest value, then the line shown by dashes in Fig. 46
can be obtained similarly.

The area of the hysteresis loop can now be calculated by Formula
(6.42).
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§7. TRANSVERSE BENDING OF A THIN-WALLED BEAM

Iet us determine the energy dissipation in a thin-webbed riveted
beam. We will assume a simplified computational scheme, assuming that
the beam web works in shear and the flanges and standards in compres-
sion-tension. In this case the bending moment in each beam cross sec-
tion 1s taken up by the flanges and the transverse force by the web.
We shall consider the above problem for relationships between the
acting load and the wall dimensions such that the shear has not as
yet caused the wall to lose stability.

Since structural damping is due to the friction of camponents
Joined with one another, it 1s necessary to investigate relative dis-
placements between the rods (flanges and standard) and the wall in
the case of thin-webbed beams. Energy dissipation occurs in the seams
at which the wedb 18 connected to the rcds. The problem consists in find-
ing the energy absorbed by the seams during one loading cycle.

Iet us consider a purely frictional scheme of the problem, when
tangential forces between the rods and the web are created only in the
form of friction. We do not go into the factors that compressed the
web to the rods. This, ior example, might be tightening by clamps or
rivets ir the rivet shanks do not f£ill the holes. The important thing
is that such compression exists and the factor causing 1t does not by
itself prevent the possible displacements of the web relative to the
rods. Only frictional forces between the web and the rods prevent
these displacements within certain limits. It is assumed that the
frictional forces obey the law of dry friction and the deformation of
the elements from which the beam is bullt up lie within the limits of
proportionality.

It 1s convenient to clarify the peculiarities of the problem under

consideration on a simple example of a single-panel beam (See Fig. 9)
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formed by a wall flanged by two parallel flanges and two siardards. The
beam 1s fastened at nodes A and B and 1s loaded by a variable force
aP at node C.

When force aP acts in any vertical section of the beam, according
to the assumed scheme, two normal forces causing tension in one flange
and compression 1n the other and also tangential forces in the wel,

the intensity of which 1s found fram the formula

q=l-;—;—‘, (7'1)

where H 1s the computational height of the beam, will arise. We wish
to attract the reader's attention to the fact that in this paragraph
q denctes the magnitude of tangential forces in the web of the beam.

As a result of longitudinal deformations of the flanges and stan-
dards, and also of the shear deformation in the wall, the panel will
warp and the point C, where the force is applied, will be displaced.
Determining this displacement, by the Mohr's method, for example,
possible slip of the web in the region of the seams relative to the
standards and flanges 1s usually not taken into accouant. It is precise-
ly during this slip that the frictional forces do their work. Finding
the relative displacements of the web and the rods in the region of
the seams we will further simplify che probtlem and we will assume that
the rods are absolutely rigid and the sought displacemements are due
to the shear deformation of the wall.

Since the seam 1s under the same loading conditions along the en~
tire perimeter of the joint, 1t 1s sufficient to consider a seam ele-
ment the length of which 1s unity. Let us 1solate a unit seam element
for example, from the lower flange (Fig. 47) and let us orient it to
an orthogonal xy coordinate system, directing the x-axis parallel to
the axis of the flange and the y-axis in the plane of the wall. The
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width within the 1limits of which the wall is clamped between the flanges
is shown in this figure by the letter a.
Iet us clarify what takes place, as

, ) the force aP 1s varied, on that segment of
JE the web which 1s pressed to the rod.
T d Let us consider the first loading stage,
— 1 — when a varies from zero to a certain moder-
Fig. 47 ate value Q- As soon as the force is

applied tangential forces and shear deformations corresponding to 1t
will arise in the web. These deformations extend only to a certairn
depth a; (Fig. 48) measured from the top edge of the rod; it is only
over this width that slip of the web. relative to the rod will take
place. Frictional forces at the contact surface will arise as a result.
If we denote the force of normal campression of the wall to the flanges
per unit contact surface by p, then the specific frictional force

1o = P (here £, as before, 1s the friction coefficient). No relative

displacements of the rod and the wall exist in region a — a,-.

Peoresiis cavamsenanied
Sty |
St nersirabe
T —

g 3 L
-— - .

a) § b &)
Fig. 48

In Fig. 48, as well as 1n the following figures, the specific fric-
tional forces Ty are shown only for one side of the clamped web

segment.
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Quantity aq will be found from the condition of equilibrium of
the clamped wall:

N 4
¢,==-2%.—=-H. (7.2)

The multiplier 2 is hcre employed due to the fact that the wall is
clamped by the rod from both sides.

The x-axis of the adopted coordinate system will be directed
along the lower boundary of the slip zone.

The 1limiting value of the tangentilal force_qpr, for which slip
is propagated over the entire width a of contact between the wall
and the rod will be

b=21'.‘. (7'3)
The corresponding value of the force

P”=q-u=27.¢ﬂ. (7'1“)
From the condition of equilibrium of forces acting on the plate

element isolated in the slip zone (Pig. 49), we will get

%-zﬁ. (7.5)

Here qy i1s the tangential force in the section y = constant. Consid-
ering the deformation of the same element (Fig. 50), we will find

=v. (7.6)

HE

Here u 1s the displacement in the direction of the x-axis and y 1s the
angle of displacement. We assume that the shear deformations are
within the proportionality limits and, therefore, according to Hooke's

law,

Consequently,
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Here & 1s the thickness of the wall znd G 35 the shear modulus. Dif-

ferentiating this equation in respect to y and equating to (7.%),

¥ N s )
L% 1 |
= T+ A o—
i dyb . i
5, L u- ==L
| |
. x P 4
Fig. 49 Fig. 590
we will obtain the following differential equation:
%=}_}. (7.8)
From this
u=-2 2+ Cy+D,. (7.9)
G3 :

I
Q
~

The displacement and stress at the lower edge of the slip zone (y
are equal to zerc (u = 0; %‘=0) . Consequently, constants C1 = Dl = 0,

.u=%f. (7°10)

The displacement diagram during the first loading stage 1is shown 1in
Fig. 49.
The tangential forces are determined from Eqs. (7.7) and (7.10):

=GO = 20y (7.11)

dy
The displacement of the upper edge of the clamped wall segment

where the force qy acte will, at a certain lcading instant, be:

o P .1
S I (7.12)

Iet us consider now the unloading stage, when the force, having
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reached the wvalue alP, begins to decrcasce. As soon as the value of
force q will decrease, the shears will decrcase alco and as a resalt
the wall will sl'p relative teo the rod in the opposlte dircction. This
slip will alsc begin at thec upper matling cdgce and will be propagated
downward.

Let us assume that the force, without changing direction, reached
the value agP at a certain instant of unloading. The reverse slip in
this case will spread out by an aﬁount as- Forces acting at this in-
stant on the clamped panel element are shown in Fig. 51.

The width as of the reverse 2lip zone is found fram the condition
of the element's equilibrium:

o — P
B -y (7.13)

All the previously obtalined differential dependences rerain valid

‘.:

for segment a,, except thai tae sign of the friztional force To should

be reversed.

In particular, the displacements are equal to:
u=——29+Cy+D;. (7.14)

Constants 02 and D2 are determined from the conditions of equality
of displacements and of the equality of tangentilal forces at the edge

y = a; — ay, separating the remainder of the first zone from the second
zcne. This gives

Cn=’g:‘(‘n"‘c)i D.=-—%-(ﬁ~¢.)'.
Consequently,
ve -yl —a)y—2(q—a)l. (7.15)

The dlagram of displacements during the unloading stage 1s presented
in Fig. 51.
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Fig. 51
In particular, for a certain intermediate value of a (a, < o < o)
the displacements at the upper edge of the clamped wall segment, vhere

the tangential forces q, are applied, are equal to:
v o (a2 + 22, « — of). (7.16)
3T gL G 1 T

The tangential forces in the wall cross section on the reverse

£1lip region are determined by the formula

‘ ,,:caj“.;azf.izal_.zg,-,), (7.17)

The diagram of tangential forces 1s seen in F.g. 51.

All the quantities characterizing the stressad state of the wall
segment on unloading when the load coefficient hus a certain value
%gy < a,, can be determined by the relations (7.13), (7.15) and (7.17).
For example, in the case a = 0 the external load is completely taken
of{, but a forse system shown in Fig. 52 continues to act on the ele-
ment. It 1s obvicus that the upper edge does not return to its initial
pozition at this instant. Residual displacements, determined by Forrula
(7.16) for a = 0, are:

{
LIF =%

Iet ue assume that the load is decreased to the minimal value
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Fig. 52
of the force corresponding to the coefficient ay = ray and then the

loading begins again. Let us now consider this renewed loading. As

the force is increased, slip of the web relative to the flange will

occur, starting with the upper edge, in the same direction as during
the first loading stage. As the force 1s increased, the slip region
is propagated downward, shortening the reverse slip regicn.

Forces acting on the clamped wall element at a certain instant

of the renewed loading are shown in Fig. 53. Width a3 of the slip
zone 1s found from the equation of the element's equilibrium:

+ 22, (28, — a5) _ (x—ag)P )

Here o > a 2 a,.
Constants c3 and D3 of the expression for the displacements in

the third zone
u= 2 C
TsYV ~ Gy +Dy

are determined from the conditions of equality of displacements and
of equallty of the tangential forces on the stralght line y = a, - a3
separating the remainder of the second from the third zone. Performing

the necessary calculations, we will get:
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u - _:‘_,",u’ + Atay —ag)y + 2 (@ ~- a3)* ~ 2(0, — &y)). (7.19)
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in the third zone are equal to:
@y =21, Iy + 2 (e ~ay)l. (7.20)
The force diagram 1s shown in Fig. S4. In Expressions (7.19) and

(7.20) vy > a; ~ a,. In particular, the dispiacements at the upper
edge of the clamped wall segment (y = al) will be

n=ged - = e s d b2 (7.21)

The hysteresis loop for the joint under ~onsideration is shown
in Fig. 54. The values of displacements
u for the upper edge of the clamped wall
segment are lald off on the abscissa axis
and the valuee of the tangential forces,
determined by Formula (7.1), — on the
ordinate axis. Curve 1 is constructed by

Dependence (7.12) and corresponds to the
Pig. 54 first loading stage, curve 2 represents
the unloading stage and Dependence (7.16), curve 3 pertains to the
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secondary loading stage and courresponas to Dependence {7 21}, The area
of the hysteresis loop ?1 28 numericaliy equal to tne energy irreversi-

bly absorbed by a unit seam eliement durling one loading cycle. The
point 1s that forc2 g 1s an external force relative to the seam ele-
ment under consideration, the energy of which is used up 1n elastic
deformationg of the clamped wall segment and in the overcoming of the
frictional forces.

This area, calculated by formula
o,
I
v,-.hi-_((u,....,m, (7.22)

for ay = 1 and a, =r becomes equal to

A—rFP __ P

Pv is the ampiltude of the cycle.

The total energy, dissipated per cycle by a seam of length lsh
1s determined in the form:
¥Y=¥,lg (7 . 2‘%)
The total erergy abscrptien in several seams will be found as a sum

of energles absorbed by each seam separately.

[Footnote]
Manu-
script
Page
Mo.
51 It is more convenient for this purpose to utiiize the graph-

iccanalytic method, considering the ensemble of frictionsl
forces as a uniformmly distributed moment load.




Manu-

script

Page
No.

59
59

97

{List of ''ransliterated Symbols |

ont = opt = optimal'nyy = optimum
npeit = pred = predel'nyy = limiting
np = pr = predel'nyy = limiting

i = sh = shov = seam
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Chapter 3
FRICTION CLUTCHES
§8. TWIN-DISK CLUTCH
The system represented above in Fig. 8 consists of two clutch
halves, each of which has a finite torsional rigldity when loaded by
torques M. lo clarify the methodology of construction of the hyster-
esis loop, we will consider here the axially symmetrical scheme 1llus-
trated in Fig. 55. It 1s assumed in this scheme that one of the disks
1s undeformable and constitutes a rigid foundation to which the second,
deformable disk 1s pressed by the given constant pressure. The disk is
bounded by two parallel planes and two circular cylindrical surfaces;
the internal and external disk dlameters are, respectively, 2a and 2b,
the disk thickness is h. The given torque 18 achleved in the form of a
system of tangential stresses, wniformly distributed along the internal
periphery and equal to

“""";:i‘ (8.1)

It 1s assumed that, even for a = 1, when the torque reaches its greztest
value, no complete s8lip of the disk along the foundation takes place.

In view of the fact that the thickness of the disk is small, we will
consider the problem as being two-dimensional.

The stress system t(a) is balanced by a system of tangential fric-
tional forces, which develop between the disk and the rigid foundation.
As in Section 1, frictional forces arise only in the zones of the disk's
deformation and are equal to the limiting value To = fp. An assumption
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stating that any whatcver frictional forces exist in the undeformable

zone would have contradicted Hooke's law, and an assumption stating

FPlg. 55

that the intensity of {rictlional forces

in the deformed zone where slip takes

place 1s different than T does not agree
with Coulomb's law.

Let us consider in detall the first
stage of loading the disk, when the dimer-
sionless load parameter increases gradually
from zero to unity. An annular zone along
which the disk slips on the foundation
wlll appear near the internal disk peri-
phery for any as small as desired load ‘.

The disk is in equilibrium under the action of loads described in Fig.

56a. The external boundary of the slip region 1is determined from the equ

14brium condition

'
_/&%.]p'lp:dl. (8.2)

where p, 1s the external radius of the slip zone. We find from (8.2)

n=m= e (8.3)
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Further, from the condition of equilibrium of the part of the éisk
described in Fig. 56b, we will find the tangential stresses, corres-
ponding to the current coordinate p:

o —¢. (8.4)
?(P)EW

Determining the tangential stresses, we can write the expression for
shear in any point of the disk, according to Hooke's law:

()]
Y(P)=—%‘ (8.5)

Since radial displacements are absent, the shear 1s expressed
only vy the tangential displacement v

L 3 8.6
1 st (8.6)

As a result of axial symmetry of our problem, the tangential displace-
ment is independent of the ¢-coordinate and 1s only a function of the
p-coordinate. The differential equation for determination of the dis-

placement v

dr r = (p) 8.
=8, (8.7)

is thus obtained from (8.5) and (8.6). Substituting here (8.4) and
integrating, we will obtain the following soluticn, satisfying the
boundary condition v( pl) = 0

r(a)=£,’.—p(a-—?)(£t?—m-'2v‘)- (8.8)

Iet us introduce the structural-parameters: 3=%‘, v =g§.—.-,.

Then, substituting for p, by Formula (8.3), we will obtain for the

k=Ch.
points on the internal periphery (p = a)

r.(a)=a-2_-[(n.\1+3)—-3(ux+1)*]- ' (8.9)
This expression describes the first stage of the process.
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The investigation of the gucceedinr unloading and secondary load-

Lwn
g ')

(]

- b &
»

ing stages is substan i1lar tc the corresponding investigation
for the elementary system (§ 1). Leaving out detailed calculations, we
will present the final results (for conclusions see [13]); the rela-

tionships between the displacement ve(a) and the torque during the un-

loading stage -

2 @) --a%{(:».ll--li) —aeM+nt o

(8.10)
-1-6[{: (-4 l]’,:‘

[We have] the same relationshlp during the renewed loading stage

. (.)=..%{(..M+3)-3(w+ yt +
(8.11)

+6[-§-(i—r)al+ :]*-s[%(.-.ﬂuﬂl*}-
The hysteresis loop, calculated by Expressions (8.9), (8.10) and (8.11),
coincides with the hysteresis loop for the elementary system (Fig. 14).
The energy dissipated during one cycle amounts to

1
\r-!.: I (o — ) u. (8.12)

Performing quadratures and introducing the value of the load amplitude

x,a";’.v. we will find

It can be seen from Expression (8.13) that energy dissipation, as
in cases presented aliove, is independent of the mean value cf the load;
the dependence of the quantity ¥ on the amplitude of the cycle 1s
slightly more camplex than in the case of previously considered problem
(this d=pendence 1s repr-sented graphically in Fig. 57).

If both disks are deformable and have characteristics k, and Ky
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Flg. 57
then the energy dissipated per one cycle is equal to:

=L Hfom+atorm+ot—n-w}. (618

§9. A MULTIPLE-DISK CLUTCH

Figure 58a 1llustrates the schematic of a multiple-disk friction
clutch, representing a system of flat disks with finite rigidity. Iet
ua assume that the external torque is uniformly distributed among
the disks, s0 that a fraction of the load aM 1s devclved upcn each
disk pair. Let us analyze the operation of this pair. The disks are
pressed to one another by a constant pressure p (Fig. 58b) and are
loaded by variable, equal and oppositely directed torques denoted by
oM (the first — along the internal periphery, and the second — along
the external).

Fig. 58
Annular slip zones (Fig. 59a), where the frictional forces o

balancing the external torque are developed, arise on lcading, 1n the
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vicinity of the internal and external peripherles. The middle part of
the disks deforms as a separate entity and each disk takes up a part

Fig. 59
of the load proportional to its rigidity
= My ML (9.1)
M=i e Y1

It is possible to disregard the deformation of the middle part In
the calculation of the dissipated energy, setting shear at its bound-
aries equal to zero. The energy dlssipation is determined as the work

of the external torque aM on the angular displacements o= "“’)
and e =-'%Q. where vl(a) is the tangential displacement of points
of the internal periphery of the first disk and va(b) — the tangential
displacement of the points on the exte rnal periphery of the second
disk, relative to the "nondeforming"” middle part. The boundaries of
the slip zones (p1 and 92) are found considering separately the equili-
brium of the internal and external regions (Fig. 59b). The equilibriux

equations are written in the fom -

O
oM — 2xv, [ dp = M,.
" (9.2)
M, —2c3 [ fdp =0.
L

From the conditions of equilibrium of the annular segments, isolat:

in the vicinity of the internal periphery of the first disk and in the
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£ the external periphery of the second disk, we determine

"!"5;’]‘-(’:"'”‘0 (9.3)

-;,:-:#h—(;’_@f.;-’ (9-4)

The tangential displacement v(p) is independent cf g and 1is de~
termined from Eq. (8.7) after r(p) is replaced by 1ts value from For-
mula (9.3) for the internal regilon of the first disk and by Formula
(9.4) for the external region of the second disk. Thence the problem
is solved in the same manner as the preceding one. Introducing the
parameters 8, v and k and the notation t = a/b, we obtain the following
expressions for energy dissipation in one disk pair per cycle:

) i
11:0:’;‘-__%_&%) lt?” ol gen)
[%Q".';Q "mi,“k""- R ”’l (9.5)
.[;%.("3;:‘5)_"“*;:‘"”31 %-"-:{:«w’] (9.6)
=Y Y,

Here !1 is that part of energy which is dissipated in the internal

region, !2 — in the external region. In the case when k1 - k2 = k Ex~
pressions (9.5) and (9.6) are substantially simplified and take on the

form

v, = 2 s - %M-)"{t +3a)—1]. (9.7)

o= 2l - g ow) (1= ea) 1) (9.8)

These dependencies are represented graphica_ly in Pig. 60. It can
be seen from the graph that !2« !1 for any given values of the cycle's
amplitude. The energy dissipgation is independent of the mean value of
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the load. The dependence of the energy dissipation on the intensity of

the compression force for one disk pair 1s shown in Fig. 61. The energy

dissipation curve in a two-disk clutch is also given here for comperi-

son (by the dashed line).

Pig. 60. Fig. 61.




Chapter 4
DRY FRICTION ABSORBERS

§10i SEPARATCR STRIP

Let us consider the process of cyclical compression o1’ a short
elastic parallelepiped by two completely rigid plates (Fig. 62). We
shall assume that the dimensions of the parallelepiped are of different
order of smallness: the dimension in the direction of the x-axisz con-
siderably exceeds the dimension 21 in the direction of the y-axis,
and the latter exceeds manyfold the height of the parallelepiped h,
measured in the direction of the z-axis (Fig. 62b). Such a

Pig. 62
scheme can be arrived at in the investigation of the operation of elastic

separators of the strip type, used for cushioning of varilous types of
machinery.
When the strip is compressed its dimension in the direction of the
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z-axis will decrease and tr~ dimensions in the directions of the x-
and y-axes will increase. Frictional forces which are here developed
along the stript!s horizontal surfaces will tend to restrict the
widening of the strip in the direction of the x- and y-axes, in which
case displacements in the direction of the x-axis can be consldered
to be completely nonexistent due to the great length of the strip. In
this case it 1s sufficient to investigate the compression of any unit
atrip, 1solated at a certain distance away from the short edges, re-
presented in Fig. 62c; all the remalning strips of this type will be
subject to the same conditions as the strip under consideration.

We shall imagine that an element shown in Fig. 624 is 1solated
fram the strip by two plane sections perpendicular to the y-axis. All
the facets of the element experlence the action of normal stresses; in
addition the horizontal facets are loaded by tangential forces To5 the
latter are frictiuvnal stresses on the surfaces of contact between the
strip and the plates. We will consider all the above stresses to be
uniformly distributed over the entire area of each face of the element.

Slightly coatradicting the evolved traditions, we have taken as

positive compressive streases, which 18 more natural in our problem.

The direction of the tangential stresses shown in the figure corres-
pcnds to the assumption that the element 18 displaced in the positive
y-direction.*®

The equation of the element's egquilibrium in projection on the

y-axis is
u%+zy«. =0 (10.1)
Utilizing Hooke's law
= 5 lo—ple+ o, (10.2)
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6= .}{g,—-ﬂ(‘s +°U)’ (10-2)

(the compression deformation should now be considered as positive)
and keeping in mind that (i Z 0, we find from the first and third
equalities

=Tty (10.3)

We will consider quantity g, as constant at all points of the

strip and equal to

,,g%, (10.4)

where w 1s the distance separating the lcading plates, which

1s the given quantity. Substituting (10.3) and (10.4) into (10.1) we

arrive at the equation for the stress oy

ey ., 2w __
%""h(ﬂ-—p)"'ui—?i 0. (10.5)

Under the boundary condition oy(l) = 0, the solution of this

equation has the form

-_
“=garmif - (10.6)
where
207t
A= i (10.7)

is the strip constant.

According to (10.3) we now have for the normal stress 0,:

o -—“-:_-?)— l(‘--) (10.8)

Pigure O3 shows the graphs of the distribution of the normal
sti1esses 03 and o, clong the length of the strip.
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It should be kept in mind that Expressions

O

8) are valid only in the strip's

L4 & » - —-—

(10.6) and (1

vens ornd m
& Wiitawvs .she

deformation zone, wWher

¢ Ey median part of the strip length can turn out
Y be
to be in a state of rigid coupling with the
v——‘—h
o #ﬁ clamping plates; not only g = O in this part
’ " but also & = 0. Then, according to (10.2),
Fig. 6 . — uEw .
g 03 ST gFwa—zn  (10:9)
Bo(l—w (10.10)
TAFeA—2)h

Iet y* be a coordinate of the section, situated on the boundary
of the rigld coupling region. Expression (10.9) should be equal to
Expression {10.6) in this region:

ute [#-D 1)

TFOa—29k uu-mk

Consequently,
—g
y’-—Jli-—.—ln 1*2:} (10.11)

It can be seen from this that if

z<l-£L—§? (10.12)

then no rigid coupling rogion exists at all. Thus, for u = 0.47 (rubber)
it follows from (10.12) that no rigid coupling zone will exist for

A < 1.55. If, for example, f = 0.2, then ratio 1/h < 4.36 follows from
(10.12). We shall assume that Condition {10.12) 1s satisfied and we

‘will 1imit ourselves to the case when no rigid coupling zone exists.

In this case 1t 1s possible to find the total load on the strip
aP, by integrating the expressions for o, over the entire length of

the strip




e —1
= z[«.a=-‘,,,"i(}-;—|;1- (10 13)

-

During the load increase stage w 1s thus a linear function of aP, and

the coefficient of rigidity is equal to

_ 2El(e* —1)
’x-m- (10.14)

For a very small value of parameter A {for example, due to the fact
that the friction coefficient f 1s small) we can take ¢ =1+ and

Formula (10.14) will take on the form

251
“=Fa—r (10.15)

This expression determines the rigidity of the strip for vanish-
ingly small frictional forces.

Iet us now turn to the strip's unloading stage and first of all
let us clarify the stress distribution when the frictional force g
changes direction. There 18 no need to repeat all the calculations,
gince the expressions which are needed can be written immediately by
the dependencies derived above simply by changing the sign of the
friction coefficient f.

Thus, we will get from (10.6)

-1
T & ) (10.16)
and, in accordance with Expression (10.8), the stress o, will be:
:—%) :
W (10. 17)

The distribution of stresses ay and g, during the unloading stage 1is
given in Pig. 64. Dependence (10.13) will now be replaced by

281 (4 — %) (10.18)
F=a=a "
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i.e., the rigidity coefficlient of the stage under consideration is
different trom the value of (10.14):

€ = —2;%—((:%:-{;1 (10.19)

Dependencies (10.13) and (:0.18)
. (straight 1lines 1 and 3) are represented in

Fig. 65. The figure shows clearly that a
stage, during which neither direct nor re-

3

4 &% verse slip 1s taking place — a rigid coupling

stage along the entire length — 1must inevita-
Fig. 64 bly lie betveen the processes described by
rays 1 and 3.% This stage 1s illustrated in Pig. 65z by segment 2.

-k a por b"

v ]
Fig. 65
According to Expression (10.9) the change in quantity w by AW re-
sults in a change in stress g, by

E(t —p)

Aoy = e AR {10.20)

Since Aaé is independent of the y-coordinate, then the corresponding
change In force aqP amounts to:

2E1 (§ —u)

A () = Yha, = o (10.21)

Consequently, the rigidity of the strip durlng this stage is egual to:

__2Ed—wn
=T w (-2 (10.22)

The hysteresis loop for a pulsating cycle thus has the shape of a
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triangle. The straight line

P - g <o (10.23)

i .,
s — -y

corresponding to the value of ¢, for f = O given in (10.15) 1s given
in the same Pig. 65a by a dashed line.

If unloading does not go to zero, then the hysteresis loop
acquires the shape of a trapezold (Fig. 65b); its side 4 is parallel
to the side 2.

§11. A ROUND SPACER

This paragraph considers the problem of compression of a thin
round disk between two absolutely rigid plates (Fig. 66); in 1its sub-
stance this problem 1s closely related to that considered in Section
10. Figure 67b shows a typical element of a disk-spacer, isolated by
two infinitesimally close axial sections and by two infinitesimally

close cylindrical sections. As in Section 10,
up the compression stresses are taken here to be

positive. The equation of the element's equili-
brium has the form

do, . op—ay , 20:f _
de ¢ + A =C. (11.1)

We shall use the usual sign convention
ocP - (positive displacement [starting] from the cen-
Fig. 66 ter) for the displacements u in the radial di-
rection, while for deformation we shall utilize the sign convention
assumed for the stresses (compression deformation is considered posi-
tive ). In this case the relationship between the displacements and
deformations will become such: t.=~g-:; :.=-l;-; :,==-'{--
According to the assumed sign convention, Hooke's law will be

written in the following form [8]:
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= T=% ( ~&% T—a T*i‘-’;")'
261 —
.-—-—-——-( "’ —--i-:;;;—-- "‘ C,). (11-2)
' %=wu—m u_du nu

T—2 "i—ﬁ?"“i-—u?*")‘

(11.1), we will get

R T e

where w/h = g, and

= (f"fp) (11.4)

1s the space: constant.

If slip occurs in the reverse direction, i.e., toward the spacer
center, whicbh can happen on unloading, then the frictional forces

change directions and tne equilibrium equation {11.1) takes on the
form

do, . Gp—1g 2a.f _

. it 2 =0 (11.5)
Correspondingly,
u LY g 2w ﬁ\__l(l-m g (11.6)
P ‘?( ) ( T L
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will be obtained instead of (11.3).

As in the preceding paragraph, the case when slip is propagated
only over a part of the spacer 18 not considered. Three spacer deforma-
tion stages are thus possible:

1) the loading stage, when Eq. (11.3), assuming existence of slir
from the spacer center, 1s valid;

2) the unloaiing commencement stage, when slip 1s canpletely ab-
sent;

3) the renewed lcading stage, when slip takes place toward the
center of the spacer; Eq. (11.6) corresponds to this stage.

The solutions of Eqs. (11.3) and (11.6) should be subjected to
the boundary conditons

w@=0 o @=0 (11.7)
The solution of Eg. (11.3) for the loading stage has the form

ﬂ—p—%ﬂéui+a’¥—5l
"= ? S
= AlT—pR G200 —2—eh) a

The solution of the equation for the stage of unloading with

. (11.8)

slip is obtalned as follows:

R [
we 4 2l — iy 11.
v 3‘123‘(1—;)1*4-(1 —sga—r—eh ¢ *"a" (11.9)

Substituting now the Just found solutions into the third of
equations (11.2) we will find the distribution of stresses c, along
the spacer radius. For the loading stage

o= _ (1 + w23 (11.10)
TR U—aN+ A —200+2—#¢)
and for the stage of unloading with slip
G @ + p) 2 e=30-3) (11.11)

= iRt d -2 —A—e™’
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Integrating Expressions (11.10) and (11.11) along the spaceris
contact surface, we will obtain a relationship between the compressing

force and the convergence of the compressing plates. In the first case
we find:

2za’Gr A+wEE—1—2)
P= A—prt(—Znd+2—7) (11.12)

The analogous expression for the second case has the form

2%a’Gw A+uEt—1+2)
=B+ (1 -2 (L —A—e?) (11.13)

The dependencles thus found are illustrated by rays 1 and 3 in

Fig. 65. Accordingly, the rigidity of the spacer during these loading
stages comes to

2e' G A+p)EE—1—)

a="R d—AF:-@-Zpa+i—d)" (11.14)
24°G +ue*—1+2

a="% (T—pl+(I—-2p(—2—e%" (11.15)

For the intermedlate sezond stage, to which rigid coaplinc be-
tween the spacer and the plates corresponds, we have from the third

equation

G — €z 11.
o - Lfoue (11.16)
Integrating this expression along the contact surface of the spacer,
we will find the relationship between the load increment and the in-
crement of the quantity Aw:
22a’G (1 —
A(-P)=——;,—_(-_—z;—,'%ﬁ" (11.17)

Consequently, the coefficlent of rigidity during the second stage 1is
equal tc

__2:!’6(1-]!). .
f:*W (11018)

If A = 0 1s substituted into Expressions (11.i4) and (11.15) then,
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after evaluating the indeterminate function we will find the rigidity

of the spacer ir the absence of friction:

0 - bu‘a(“:‘-i-u), (11.19)

The relationship governing the deformation of this spacer is shown in
Fig. 65a by a dashed line.

If the spacer 1s deformed with fric-
tion not according to the pulsating cycle,
then the hysteresis loop takes on the
shape of a trapezoid, as shown in Fig.
65b.

The problem of cyclical compression
of an elastic washer between rigid disks
(Fig. 68a) 1s of interest. The main pe-
culiarity of this problem consists in
the fact that slip along the surfaces

cf contact between the washer and the
Pig. 68 _ disks takes opposite directions in two
different annular reglons. The =1ip arising on loading 1s directed to
the center along the internal annular region and away from the center
along the external annular region. These two regions are separated
from one another by a rigid coupling zone (Fig. 68b). Depending on
the ralue of the characteristic ), this annular zone can degenerate
intc a circle (Pig. 68c). It is namely this case, as being of practical
significance, that 1s csupbsequently consildered.

The equation of equilibrium of a typical element, situated in the
internal slip region is written in the form of (11.5) on loading; dur-
ing the unloading stage, when £lip changes direction, the equation of
equilibrium of the same element is written in the form of (11.1). The
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equilibrium equations during the loading stage (11.1), and the unload-
ing [stage] (11.5) for an element of the external slip region are
written similarly.

Without going into a detailed investigation of the loading stages,
let us point out that the relationship between the ceparation ¥ and
the load during the loading stage 1s written in the form

. m )!l(l*—;a)b'-Hl-p)c'l !(i—-l'-')r -(i——“)h l
ETEE LT

10 - e+ — e .‘(H»‘-‘)r —(4) e-a"

topedefee—(-g) |

Here ¢ 1s the radius of a circle separating the two sllip regions.
For loading, this dependence takes on the form

el lwﬂwﬂ' —#el hl’*‘) “—(““) --l

7 (1—23) - =
1—p ab ""
l 1-—zp i "'é) - “*’) (11.21)

eP =

(11.20)

P=

e+ —gel- [(1——e —-u—z)A]

+
g e o)

The relationship between the load increment and the separation

W during the lntermediate rigid coupling stage has the form

226G —p) (et —1

The hysteresis loop for a washer deformed between rigid plates 1s shown
in Pig. 65.
§12. ABSORBERS WI'/H TAPERED RINGS

We are considering here systems of ring-shaped springs, which can
be assemtled from two different types of rings - split and continuous.
A spring with contimious rings is shown in Fig. 69a, and with split rings
in Fig. 69b. The contirnuous rings experience primarily expansion or
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compression when the spring shrinks, while the split [rings] exper-
ience bending; therefore the computational dependencies for determin-
ation of damping characteristics will be different.

Iet us first consider continuous rings. As each ring comes under

pr:sure, it 1s loaded by a system of uniformly distributed loads p
and fp (Pig. 70).

The problem of the rings' deformation
can be solved approximately [and] with
sufficient accuracy, regarding each of them

b as a thin ring with radius R, loaded bty a
7 uniformly distributed radial load of inten-
sity . which 18 equal to the sum of the
projections of loads p and fp on the radial
direction.

The first stage. The directlion in which the frictional force acts

during the first stage corresponds to Fig.

i
P ’Pﬂ’ P 70. From the sum of load projections on the
p 1? spring axis
b4 P

Fig. 70

2zR (psin B + fpcos 8) = aP (12.1)
and on the radial direction

2(pcasB —fpeinB) = ¢ (12.2)
vwe will find the value of the radial load.

4 — 4
e (12.3)

The circumferential deformation of the ring is determined by

Hooke's law for a unlaxlal stressed state

(12.4)

L= Taam s

EF

where E 18 the modulus of elasticity of the ring material and F -~ the
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cross-sectional area of the ring.
The axial approximation of two rings in the vicinity oI the
ring under consideration and -iused only by the deformation of the

latter 1s equal to

v=2eRogh. (12.5)
The total upsetting of the spring can be calculated as a result
of multiplying w by the number of rings. The relationship between the
convergence of rings and the load during the first loading stage can
be found after the expressions found earlier for quantities

_ _2R(cigp—1

are substituted in the latter. This dependence 1s represented in the
graph (Fig. 7i) by 2 straight line passing through points 0 and 2. At
the end of the stage under consideratior. a = 1, so that

= R
tn—mp. (12.7)

The second stage. When the load is decreased, parameter a assumes

successively diminishing values, smaller than unity. Relative slip of

P the mating surfaces is absent for a cer-
P 2 tain value a = ag and the axial conver-
ol,P s gence of the rings becames constant and
:'; ! equal to w o . On the graph (Pig. 71),
o Wenen U, W this process is represented by a straight
Fig. 71 1ine parallel to the ordinate axis and

passing through points 2 and 3. The value of ag will be deteimined be-
low.

The third stage. After parameter a reaches values smaller than

ag, the rings will begin to move apart. During this stage the load

continves to decrease, therefore the frictional forces have directions
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opposite to those which they had during the first stage; the radial

load is determined by the dependence

= ‘_!:—I.t.';p_—.
After repeating the calculations performed for the first stage, but
for a new value of q,s we will obtain a relationship between the axial

convergence of the rings and the load in the form

_ 2R (g8 +))
- it .p. (12.9)

o
The value of ag can now be determined from the condition of
equality of displacements calculated by Formulas (12.7) and (12.9) for
point 3 on the graph (Fig. 71):

_ letg&—) (gE—1)
“ g 0gsTh (12.10)

The straight line corresponding to the dependence (12.9) passes, in
Fig. 71, through points O and 3.
The fourth stage. After the load has reached the minimal value

(for a = r) 1t again begins to increase. No slip exists along the
contact surfaces up to a certaln value a = @y and the axial conver-

gence remains constant and equal to LI

_Regs=N.p (12.11)

A straight line parallel to the ordinate axis and passing through
peints 4 and 1 corresponds to this dependence on the graph (Fig. 71).
After the load reaches the value alP, the convergence of the
rings is again determined by Dependence (12.6) and the cycle 1s re-

peated.

The value of ay 1s determined fram the ¢onjition of equality of
displacements, calculated by Formulas (12.6) and (12.11) for the point
1:
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et - poas )
“ T N@S—h (12.12)

The area of the hysteresis loop described in Fig. 71 is equal to:

’ ml(ttgp_*_‘gg) ”‘.3___, < ('gp.,_’ T
¥ N (s b .
caerwd [(2oe) (G L} (2.13)

Taking intc account Relatlonships (12.10) and {12.12), we can re-
write Expression (12.13) in the form

. 2Rf(ctgB + 12 B) (g B -+ 1) B
¥ = Srrags—nogs—p =l PP (12.14)

or

. _2Rf(c1gB+1gB) (8B —Nyps
"""a““‘fr(cmgp+n(tsﬂ-rn’m (PP (12.15)

It can be seen from Expressions (12.14) and (12.15) that the en-
ergy dissipated during a cycle s propoertional to the difference be-
tween the squares of the loads corresponding to the beginning and end
of relative slip of the mating planes on loading or unloading.

Analyzing Dependence (12.13), we can see that the value of the
energy dissipated during a cycle increases with a decrecse of angle
g and for the value 8 = ﬁl’ determined from the conditlon

wh=F (12.16)
the entire supplied energy is dissipated during one loading cycle. The
same value of B8 1s alsc the minimal allowable, since Jamming ensues
for smaller angles..

Let us now turn to 3plit rings. Let us consider a split ring ¥ith

variable cross section, with geometrical dimensions shown in Fig. 72.
It 1s loaded in the same manner as the continuous one, by forces dis-
tributed over the contact surfaces, the resultant of which is equal to
the external axial load aP.

The ring bends under the action of the radlial pressure component
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der consideration will be basically de-
termined by the bending deformation due
to the action of radial forces; the remain-
ing effects can be disregarded. For the
sake of simplification of computations,
let us replace the pentagonal ring sec-~

tions by rectangular. This will not intro-

duce substantial errors 1if the triangular

parts of the sections are replaced by

Pig. 72

rectangular ones with sides b and

)
3P  The width of the ring tounded by eccentric annular cylindri-

2¥3
cal surfaces, measured along the normal to the center line, passing

through the section's centers of gravity, 1s determined by the depend-

ence

T -
VT

Here R 1= the radius of the central axial 1line; e — the eccentricity
of the internal and external circles; ho the width of the ring at the

h=bhyt+eccosp+ (cu;s

(12.17)

Joint lock and ¢ 1s an angle reckoned from the radius passing through
» 1

the jJoirt lock. Dropping terms ( ?’) » we will write the approxi-

mate expression for the width of the ring

h=e(l —cosg) 4 ke, (12.18)
which will be further utilized in the calculations of the section
moments of inertia.

The scheme of force distribution along the ring based on the known
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concepts of the interaction of a split ring with the rigid cylindrical
surface in ccntact with it 1s shown in Fig. 73.

It Jollows from the differential equation

of the elastic curve of a curved rod

dFu u
M=FE1 ’E"'iii) (12.19)

that on segment BCB, where the radial dis-

placenent 1is constint, the bending moment

is equal to

Flg. 73 -Map =£Jli:;. (12.20)

Substituting for J its value found accoiuing to Expression (12.18) we

will get:
R Myy = uEbe (1 :'2:’—“»09?)’ (12.21)
vhere
' -
e

The bending moment at the segment AB
Maz=Pysing. (12.22)

From the equality cf “BB and MAB at section B for ¢ = ¥, we can find

uFde (1 4 k—cce )’
Py = 5T Y ) . (12.23)

Starting with differential dependenceg for a curved beam with a
circular axis (Fig. 74) loaded by distributed radial forces of inten-

sity qr

gaq,ni;ﬁ

y %’-@. . (12.24)
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we can get

-}

|

1
3
3
-~
N
"
NI

or, after integrating once,

+M=Rg¢ +C. (12.26)

Flg. Th
The constant of integration C will be determined after the value

oM -
=R¢+ RN
L
found from Expressions (12.24) and the boundary conditions for ¢ = ¥
M=PRsn¢ and N=—P,sin} (12.27)

are substituted into (12.26). It follows from this that C = O.
Let us substitute into the thus found dependence

o =gmlartH) (12.28)

the expression for the bending moment M; then the relationship govern-
ing the pressure distribution along segment BC3 will be written in the

form

" ufbe? -
go = Sop (6 + 1P =3+ Dome +

12.2
o 6(k+1)sis’ p — B cosp sia’y + 2cos ol (12.29)

The mament equation relative to point C makes it possible to find the

force P2:
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Py= op—— 'p[‘l‘ Lip ok -3 ) - (12.30)

The condition relating the radial displacement of point A to the
previously found values of the bending moments

¢ =
M‘. OM“ - -"u 9_‘_’._!
s |
after the quantities entering it are substituted and after integration,
gives an equation for the determination of the angle ¥, bounding the

rings! contact zone:

) ]
3“8%(‘8‘%—:‘)-.—(&‘-—2—--1-»’) arctg |——} =

i d). (12.32)

_k
k42 *

For k = =, the equation (12.32) for a ring with constant thick-

where s=

ness will be written in the fom

. |
_,me-cosﬁ. (12.33)

which gives ¥ = 122°; for k = O we will find that ¥ = O.
The condition of equivalence between the radial forces and the
external load is determined by the dependence

E. 3
«P(tgh T )= 2P, + 2P+ 2 [ oRdy. (12.34)
*

After the values of the appropriate gquantities are substituted in-
to the last expression we will find

aP (ctg B :na"—ﬁ-—?w. (12.35)

where




v e (2@ 5 P60 + b —
b
— 2k +1P+6(k+1)2+92(k4 1)) cos +

+ 6 (k + 1) coe’ § + (6k + 4) cos® ) — (12.36)

1
— et ) g 1P )+ Xk D) )+
+ 5 &+ 1) Sn2p 4 o wind b— 5 siny.
Repeating the same deliberations as in the preceding problem, we

can construct a hysteresis loop, which has the shape shown in Fig. T71.
The area of the hysteresis loop is equal to:

2R'l(cta9+tm cagB—1 ' [88+1 N, (12.37
¥= [(tssﬂ (ma /"n (22.37)

[Footnotes]

Manu-

script

Page

No.

107 Pigure 62d does not show tangential stresses in the strip's
cross sections; these stresses, variable along the length
(arising according to the pairing property of tangential
streases), create a self-halanced system in each section and
will not enter the equations that are subsequently f~iulated.

111 A more detailed analysis shows that no rigid coupling on a
; segment of the strip length 1s possible during unloading.
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Part Two
SYSTEMS WITH ELASTIC-FRICTIONAL COUPLINGS

Chapte» 5
RIVETED JUINTS

§13. AN ELEMENTARY SYSTEM

To clarify the basic qualitative peculiarities of the defsmmation
of systems with elastic frictional character of Interaction between
parts, let us consider the elementary system represented in Fig. 75a.

The system consists of an elastic strip, pressed to a rigid un-
deformable foundation; it differs from the system considered in § 1
by the presence of couplings elastically resisting slippage of the
strip aiong the foundation. Therefore, not only frictional forces but

also tangential forces of interaction

a’ .uuunudgn by
. sy X which have an elastic character, arise be-
L—*—L . tween the strip and the foundation. The
ﬁﬁ number of elastic couplings 1is assumed to
i be sufficiently great so that it 1is possi-
]9 ble to replace discrete couplings by a

continuous elastic layer; furthermore, the
Fie. 15 tangential iInteruction forces between the
1 strip and thc foundation will be assumed to be distributed along the
entire length of the strip.
The pecullarities of the distribution of fricticnal forces between
v the strip and foundation pointed out in Section 1 remain valid in this
case; frictional forces are equal to zero at segments where slip is

absent; where slip is present, these forces are equal to - Let us

add to this that the reactions of elastic couplings arise only in those
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regions where the strip slips along the foundation; the elastic reac-
tions thus arise only in those reglons where frictional forces are
present. The intensity of the reaction of elastic couplings will be
determined by the dependence

t=oa (13.1)
where ¢ (kg/em®) is the rigidity coefficlent of the couplings and u,
as above, the dilsplacement of the current section in the direction of
the x—-axls; this displacement will be denoted by the indices 1, 2 and
3, corresponding to the three stages of th= process.

The first stage. Fig 75b 1llustrates an element of the strip iso-

lated in its deformatlion zone, and also forces acting on this element.

The equilibrium equation

N—g—an=0 (13.2)
after the substitution

N =EFu; (13.3)
is reduced to the differential equation

l;“"""l = ﬁ'o (13'4)

where

p:V:_E-F—' (13.5)

The solution of Eq. (13.4) has the form
= A 4 Bt — 2 (13.6)

For determination of the quantities Al and Bl and also of the slze of
the deformation zone, we will utilize the following three bcurdary

conditlons:
nil—ea, =0 ";(l"“l-')""o: (13.7)
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Here ay 1s the length of the slip region corresponding to the given
value of a. It 1s assumed that force N 1s not too great, so that a, <1
even for a = 1. The first two conditions thus pertain to the left
boundary of the slip segment, where 1t 1is the displacement and the
longitudinal force N, proportional to the derivative ui, which are
equal to zero; the last condition pertains to the right end of the
strip. Utilizing (13.7), we will get

& =;7:':';~[Vr:(:%§;)r + i].
&:3?—2’%‘1“/1+ -;',;- +i]. {12.8)
o =%-1u[iil'(’/s +(;%‘7,-) -H)].

The distribution of tangentlal forces of interation between the strip
and the foundation in the process of the first loading 1s shown in

Fig. 75c.
The second stage. During the second stage a reverse slip zone

appears near to the end; the equation for this zone wilil be written in
the fom

uy == — (13.9)

The solution of thils equation should satisfy the boundary condi-

tions

Ul —ara) =u, {1 —a,1),
up ( — a2, %) = uj (1 — &, 1), (13.10)

o) =5
The first two conditions pertain to the boundary dbetween the direct and
reverse slip zones, when the solutions of Eqs. (13.4) and (13.9) should
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coincide with the first derivatives of these solutions.
The solution of Eq. (13.9) has the form

Up sy B he R {13.11)

where

_ BP *\® 3
m 2 [V G )
__ BPeM Y T
B =52 “/H- (#) -—Vlu-—-i)’-i (:"-7) —.l.
The length of the reverse slip zone is determined by the formula

-.a-;-nn{i‘-,’-fv(--an(%)’--ul. (13.13)

The third stage. The load increases agaln. For the end segment

(13.12)

when direct slip is renewed, the equation again acquires the previous
form (13.4), so that the solution will be written in the form

Uo = dgebs + Byete — 2, (13.14)
Boundary conditions

e (1 — 85, &) = uy (| — 4. 7),

uy @t &) = o'y (— a7}, (13.15)

. l"a@-")"%-
serve for the determination of the length of the end zone a3 and of the
quantities A3 and B3 Utilizing (33.15), we will find

a.—%hi%V(z-—r)‘-l—(%%Y-f:-r].
W
o+ V(c-r)'+(§):+c]. (23-16)
B, -"—’%"—[Va_(ﬂr—- Yo+ +
s Y= B -<]-
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Uti1lizing Expressions (13.6), (13.11) and (13.14) for u;, U, and us,
we can construct a hysteresis loop for ziuyy given cambination of th;
system's parameters. The general character of the loop coincides with
that 1llustrated in Fig. 14. The area of the lcop 1s determined by
Formula (1.32} and 1s equal to

,; =P, 2l S A “”()
T

Substituting here, as above, P(1 — r) = 2Pv’ we will get

(13.17)

> N+ —1 (13.18)
T [2” L v:+"'?+il
where the parameter
. 13.1
o (13.19)

characteriz.s the role of frictional forces in relation tc the found-
ation. For a vanishingly small rigidity of couplings we can assume
that 8 = 0 and the expression in parentheses will tecome indeterminate.
After the indeterminate function has been evaluated, we find that it
is equal to 1/3; furthermore, Solution (1.34) coincides with Solution
(13.18) obtailned above for the case when elastic couplings are absent.
For vanishingly small frictional forces qy = O and the entire expres-
sion (13.18) becomes zero.

Figure 76 shows the dependence of the area of the hysteresis loop
¥ on the dimensionless parameter ¢y. The ratio of ¥ to the value of ¥o
calculated by Formula (1.34) and corresponding to the case when elastic
couplings are absent is laid off along the ordinate axis.

As can be seen from the graph, already for ¥ > 2 the difference
between ¥ and YO becomes insubstantial and it 1s possible toc approxi-
mately estimate energy dissipation diaregarding the role of elastic
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couplings.

g i /[ . The solntion here presenced can with-
m{- _ out difficulty be extended to the case
’: ) ‘* when slip takes place along the entire

) F

length of the strip for large values of P.
Flg. 76 §14. JOINING TWO STRIPS BY COVER PLATES
Let us now consider two strips Jolned by cover plates by means
of rivets (Pig. 77). If the number of rivets 1s sufficlently great
we cal assume that the intensity of tangential forces of interaction

in the slip zone is equal to

g=qo+ ¢y — ), (14.1)
where uy is the displacement of the current section of the strip and
u, is the displacement of the current section of the cover plates.

The intensity of the reaction of the elastic coupiings
s =y — ). (14.2)

Figure 78 shows the loading of the elements of the joint at the
end of the first loading stage (it 1s assumed that the value of force
P 1s insufficient for the relative displacements to propagate over the
entire mating surface).
Let us consider the equlilibrium of

‘ ’ E I S

-
] an end segment of the strip, con vhich

e — e —

slip takes place. This segment has a
Figo 77
length ay and 1s sub’ected to the action
of forces aP, g and kaP, as this 1s shown in Pig. 79a. The magnitude cof

force kaP 1s determined from the con-

dition of equality of the displaceunents

of the strip and the cover plates at
Fig. 78 the boundary of the segment and is

- 132 -




e B At WS

equal to

= P (14.3)
l.e.,
k= L , (14.4)
k+5

where ky is the rigldity of the strip's section and k2 is the total
rigidity of the cover plates' sections.

Denoting the normal forces in the current sections of the strip
and the cover plates by El and NZ’ we wlll write the condition for
the equilibrium of the strip element {Fig. 79d)

Ny—eln—u) =g (14.5)

Differentiating Eq. {14.5) in respect to x and keeping in mind

- = . ‘P . P
that N) = kju'; and .,=._...: (since N, = of — N; 1n any section),

Ok
we willl get the equation

u;’t—-ﬁ’u;=-i%:-. (14.6)
where
p'=c(-}; +2) . (14.7)

As follows from load systems on the element during the second and
third loading ccages (Fig. 79b and c), Eq. (14.6) 1s valid also for
these stages.

Assigning to u additional indices, corresponding to the stage
numbers, we will write the boundary conditions for each stage.

The first stage:

=0,
':n(""* r, (14.8)
T ("qg"‘.-';"'
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ug; (e. a,) = —.k—’;-n
(14.8)

4o 9
“n {:n" == 'kl—.l

The second stage:

U (e, &) = uy (1,a5) — d ™ :-)::a,

n:, (v &) =u,, (1, a:) — ‘k.—i-‘lf'_

(14.9)
%hwammm-%.

u, (s, q)) = :E?

The third stage:

(z — 1) Pay
gy (v, ) = “u(’aﬂa)‘i"—*-‘-q_—k:—

&—nP
R (14.10) 3
o a) = uji . a) + 2,

“ (‘!ﬁ)- k‘, (’a .I) +

.“("-‘I)"%

Subjecting the solution of Eq. (14.6) successively to the boundary
conditions (14.8), (14.9) and (14.10), we will obtain the following
expression for determination of the displacement'of the right erd

section.

During the first stage:

& [ [A=DB ::L

vhere o PA—RE AP B)
S +vr,. T

(14.12)

During the second stage:

unsﬁ{wﬁ“"*’ +1— (14.13)
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_z‘/[(w-)%;-k)ﬂ’r.“._j,}d, f{ﬂg (14.13)

buring the third stage:
= 9 [ PEA=4F A—nPU—HBBF . ,.
w=gal [P - YR

42 f[E=NPA—-0BF 4. Py
Vl Py -t e TR

(14.14)

The graph of the dependence of the displacement of the right end
section of the strip on the force aP is similar to that illustrated ‘

NbA S

Pig. 79

in Fig. 14.
Finding, as before the area of the hysteresis loop, we wil) obtain

the value of the energy dissirated in the considered part of the Joint:

4P 1 — &P 3 1 (14.15)
e )
where
. )
T = 7.(1':-___53; P-"'—-f: . (14.16)
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Te determine the energy dissipated on tiie internzi segments of
the muting surface (segment aj in Fig. 75), it ic sufficient to in-
terchange the pocittons of kl and ke in Expression (114.15). Then we

will obtaln the following expression for the total Clcsipated energy:

y . 409} 3y 4 VI — & 1\R
P At an T (-t L] ()

where
T posE - (14.18)

Figure 80 1llustrates the dependence
of the area of the hysteresis loop on the

parameter v = ;—’-— V.:_l for different ra-

tios k2 H kl The ratio of ¥ to the value

of YO corresponding to a purely frictional

coupling is, as before, laid off on the

ordinate axis. Value k2 : kl = 1 corres-

Fig. 80

pords to the maximal energy dissipation,
the value k2 : kl = o — t0 minimal dissipation. The curve for k2 : 14:1
= w coincides with that shown in Pig. 76, since in this case Formula
(14.17) 1s transformed into {13.18). As can be seen from the graphs,

y the simpler Formula (13.18) can be

utilized for an approximrate estimate,
and Formula (1.34) — for v > 2.

The character of the dependence of

o

the area of the hysteresis loop ¥ on the

frictional force q, is shown in Fig. 81.

~ P
Fig. 81

In the general case, the curve has two

maxima, corresponding to the maxira of
energy dissipated in two different ends of the mating surface.
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§15. PURE BENDING OF A BEAM WITH COVER PLATES
Figure 82 shows the beam with cover plates which is considered
here, loaded by two bending moments. The cover piates are joined to

the beam by rivets; the external moment is applied only to the beam.

. This scheme 1is simllar to that considered in Section 4.
i s e s e e s
HE IR
oM Pl ettt oM
Fig. 82

i
%" S1lip of the cover plate relative to the external fiber of the beam -
! occurs at the beam's ends for any value of oM. The intensity of the

i

! tangential forces of interaction between the cover plates and the beam

| will be written as before in the form

.- g=cluy— )+ ¢ (15.1)

' vhere u, i1s the displacement of a point of the extreme beam layer and

uy is the displacement of the corresponding point on the cover plate. »

It is assumed in the subsequent calculations that the cover plate_;'i
" are sufficlently thin and their rigidity in bending is not taken into
 account. "
Figure 83 shows the beam loading during the three loading stages

(the cover plates are taken off). Let us ’A

ot R RS B K e

separate a differential element of the
segment where slip took place (Fig. 84)
and, denoting the bending moment in the
beam section by Ho, let us write the con-

”
~

3 dition for the element's equilibrium
|

s _qamo, (15.2)

Fig. 83

where h 1s the height of the beam.
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oM = M, - EFu, (15.3)

and the relationship

M, = z’i’- v, (15.4)

where F is the cross-sectional area of the cover plat: and JO 1s the
moment of inertia of the beam section without the cover plates, we
will obtain the equation

Mch
u;"- B.d..;‘u; = —-2:’; ’ (15' 5)

where J is the moment of inertia of the cross section of the beam with

the cover plates.

The form of Eq. (15.5) is similar to Eq.

b id
Ny (= (I (14.6). Similar to the manner in which it uas
| :(,{,. ) done in the preceding paragraph, we can obtain
) the following expression for the energy dissi-
o “Pig. 84 pated during the beam's loading cycle:
i MZPP( B _L),
Y= i Y v'lwshY (15.6)

| - $hyEE.

Y=aVa; (15.7)

It 1s obvious that alsc in this case it 1s possible to approxi-
mately det-mine, for vy > 2, the dissi-
)” pated energy by Formula (4.15), cbtained

for a purely frictional Joint.

If the s8lip regions are propagated
over the entire mating surface, the hys-
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teresis loop has the shape shown in Fig. 21. In this case a successilve

analysis of the five loading stages results in the following formula

frn *ha anas A +thae Tnnnes
-~ W WEEWw WAL WwW WA waaN L A
8 1 ( 1
= -f——=]+thpl—8], .
¥ = g [~ + o —#] (15.8)
where a"- E‘.JJ— ; and 21 1is the length of the cover plate.
“ ]

The boundary of applicability of Formuias (15.7) and (15.9)[sic]
1s determined by the amplitude of the moment

M, = 35%.@!. (15.9)

Formula (15.6) 1s valid for smaller amplitudes and Formula (15.8)
for larger ones.

The applicability of the dependencies obtained above for determin-
ation of energy dissipation of actual riveted joints operating in the
dynamic mode was verified by experiment.

The experimental specimen constituted a steel beam with a rectan-
gular cross section (Fig. 86) fabricated together with the

Fig. 86

end masses as a single entity. The cover plates were fastened to the
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beam by steel rivets. To ensure a sufficiently uniform precsi. e
cover plates to the beam and to improve filling of the holes, the et
heads were formed by pressing tne rivets using the same force for each

of them.

Fig. 87
The general view of the experimental installation is shown in

Fig. 87. The beam was suspended by vertical wires to masslve plates

and was brought intc resonance by an electrcmagnet oscillator, fed by
variable-frequency AC. Of the twc possible bending-vibration modes,

(Fig. 88), we indiced the first. The amplitude of the disturbing
force could be changed and the amplitude controlled by varyling the
distance between the oscillator and the beam. After the given ampli-
tude has been set, the cscillator was shut off and the oscillogram
of free vibrations was reccorded. The recording was made off a tenso-
neter utilizing the UD-3M (IMASh AN SSSR) amplifier and the.MPO~2
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Fig. 88
oscillograph.

The energy dlsslpated during one cycle was detemined by the for-
mula

where k is the rigidity of the beam, 1.e.. the torque creating 2

1elative angle of twist of the erd masses equal to one radian and 9

is the angle of rela.ive twist of the end masses.
The determination of the beam's rigidity and calibration of the
oscillograms were performed under static conditions.

A iinear relationship between the deformation on one hand and the

torque and angle of twist on the other was assumed in the interpreta-
tion of the oscillograms.

The results of the experlment were compared with the theoretical,
calculated by Formula (15.7) transformed to the form

AR y;?.;.'g_g
wm(wh: Yh FaraTri) (15.12)
Here
1 5 2p A
A “F

where fp is the fricticnal force corresponding to one rivet, ¢ is the
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rigldity of one rivet and n is the number of riv-:ts per unit length of

the cover plates.

The number of rivets n and the frictional force fp were varled in
the course of the experiments; the latter was achleved by changing the
force with which the rivet heads were pressed.

Special specimens (Fig. 89), concisting of two plates joined by
cover plates by four or six rivets, the heads of which were pressed
by the same force as was used 1n the assembly of the beam, were fabri-
cated for the determlination of numerical values of quantities ¢ and
fp. Thir graduation lines were made in the polished side surfaces of
the specimen; the specimen was stretched in a special fixture and
the relative displacements of the graduation lines on loading and un-
loading were measured under a microscope with 280X magnificaticn
(MIM-6). Graphs of the dependence of the stretching force Q on the
mean relative displacement § had the shipe shown in Fig. 90. The val-
ues of fp and ¢ were taken as equal to:

_o _ e

where n 13 the number of rivets on the specimen.'It was found that the

62 frictional force fp 1s equal to 25 and 60

kg respectively for a head pressing force of
1000 and 3000 kg. The mean rigidity c on
changing the pressing force from 1000 to

3000 remained¢ constant and was equal to 6.10)1l
kg/cm. Deviation from the mean values did
not exceed 25%.

Fig. 89 The frictional force was determined by
st111 another method. A slot from the middle

rivet hole to the edge was cut in one of the specimen's plates (Fig. 91).
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rlateg were joined to this plate by one rivet put into the
slot. The frictional force was assumed to be equal to half of the
a tearing capacity of the plate. Results
measured by the first and second methods
gave the same mean value of the quantity
£p.
Graphs showing the dependence of en-
L4 ergy dissipated during one cycle on the

Q

$ amplitude of the torque and the experimen-

tal points corresponding to them are shown

Fig. 90 in Figs. 92 and 93. The experimental re-

sults fully verify the validity of the theoretical relationships. A
curve corresronding t> the case ¢ = 0 (purely frictional joint) is
shown in Fig. 93 by a dashed line. The two curves almost colncide,
which verifies the previously drawn conclusion as to the applicability
of Formr:la (4.15) for approximate calculations of en-
ergy dissipation in elastic-frictional joints (for
large values of parameter 7). ‘

§16. TRANSVERSE BENDING OF A CANTILEVER

We shall consider Goodman's and Klamp's problem

ﬁ cewupmly - 8

$2e C Y, 1:#
Tiaen /y" b

) [ ] .'Hﬂ
93 a) Kg“cm’ b) kg/m:

°) d) kg-cm.
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presented in Section 5 on the assumption that not only tangential
frictional forces, but elastic resistance forces (for example, due to
a rivet or bolt system) can act on the mating surface of two beam
layers.

During the first stage, as in the Goodman and Klamp problem, both
halves of the cantilever deform together a2nd the end deflection is
determined by Formula (5.2) up to the value ay = 4/3 qgh; here the
tangential forces along the mating surface of the parts are realized
only in the form of frictional forces.

After the tangential forces reach the value A simultaneocus slip
will occu.’ over the entire mating surface. The load system on a half
of the cantilever during the second stage is shown in Fig. 94. The in-
tensity of the distributed tangentlal lcad g 1s determined by tThe de-

pendence
g =g +2am, (16.1)
vhere u 1s the displacement in the current section along the mating
plane.
For determination of the displacement
% u let us consider the conditions for the
%::::_ pinalg equilibrium of an element isolated at a

distance x from the free end (Fig. G5):

4
9

M+ Qu+g)3—Q=0. (16.2)

N — Qu+4) =0, (16.3)
where M, N and Q are the bending moment, the normal and shear forces
in one layer of the cantilever.

From the condition of equilibrium of the cut-off part of the can-

tilever (Fig. 96) we will get
Nh+ 2M = «P1. (15.4)
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Hooke'!s law for thc beam's contact surface can be written in the

form

N oM .

Utilizing Dependencies (16.2), (16.3), (16.4) and (16.5), ve will
get the czuation

M — Bt = _3‘?'_.5_&_}’.‘3. (16.6)
where
8¢
B = e (16.7)

The bpoundary conditions of our problem have the following form:

«s=0, «@=0. (16.8)

Determining u and thus clarifying the value of the distributed mo-
ment lcad,equal to gh/2, we will find the displacement of the cantil-
ever's end during the second stage:

n=gple-m-se—z-m+5)} (6.9

The two halves again deform together during the third stage and
the deflecticn of the cantilever's end is equal to:

7y =20 — (1 —e«) PP (16.10)
or
» =z [+ 00— (grp— 58] (16.11)

Without dwelling on the subsequent [processes], let us note that
in the glven case the hysteresis loop is similar to that presented in

Fig. 29. Calculating the area of the loop by Formula (5.16), we will
get

S 1o
""ET.P“""""”(FF“T’;") (16.12)
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Figure 97 1llustrates the dependence of the ratio ¥ : ¥, (YO 1is
y Formula [(5.17) unev the parameter 1/6l. The graph coin-
cides with that shown in Fig. 76. rhe ratio Y/YO differs very little
from zero for the value 1/@1 > 2, i.e., the role of clastic couplings
becomes Insignificant. The dependence of thce diccipated energy on the
frictional forces can be illustrated by graphs (:zce Fig. 81), by
changing the scale of the ordlnate axis by a ratio of

3(gr 2259

Iet us present the final results of the solution of the problem
of bending of a cantilevered beam with pressure plates {see Fig. 10).

2 o.de
1
~< ‘ ! )mdn
M ﬁ\"odﬂ ’
8, ;
Pig. 95 L
N oP
N l
N | 0 4
1 - g5 1 (5 2 25 3
M L: x -! : ﬁl
Fig. 96 Fig. 97

Pian [36] has solved a similar problem on the assumption that the in-
teraction between the cover plates and the beam carries an elastic-

frictional chazracter, and has obtained the following formula for the

energy disslpated during one beam loading cycle:

4E], o0

Sl — Arst). (16.13)

Y =

Here

__PFR_ V
= g + PFk Y EFT,
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Formula (5.29) is obtained for ¢ = O as a particular result of
Formula {16.13).

The expreriment set up by Pian has as its goal checking the depend-
ence of dissipated energy on the amplitude of the force. The experimen-
. tal beam is shown in Fig. 98. The pressure plates were fastened to the

beam by special threaded Jolnts, consisting of dowels with two nuts.
The design of the Joints ensured transmission of the elastic forces

from the beam to the pressure plates. It has been established by special

AR

0777275 Y
$§§k =Y
L7 e

’7};'""
n
n
'H
n

w '
N
w0

Fig. 98
measurements that the rigidity of the elastic couplings amounts on
the average to T400 kg/hm2, and the frictional force per unit length
of the pressure plate is related to the nut tightening torque M in
the fcllowing manner:

g, = 20M.

The value of the dissipated energy was calculated by the oscillo-
grams of free damped vibrations. Figure 99 shows theoretical and ex-
perimental dependencies of the dissipated energy on twilce the load
amplitude, obtained by Pilan.

As can be seen, the experimental data verify the theory very well.
§17. STRUCTURAL DAMPING IN A RIVETED THIN-WALLED BEAM

-

Earlier (§ 7) we have considered the purely frictional scheme of

- 7 -
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the structural damping problem in a

Mepomnd | . Ropm thin-walled beam. It was assumed there
Y -——m:urc- ;‘ —— P2 ot
Lo LU R o 2 -1 L
Tohgeey o ::i::%.t; that the rivets connectlng the veb to
20 - T =
T the rods (standards and flanges) only

ensure pressing the web to the rods

and do not resist relative slip of the

web and the rods due to the fact that

the rivet blanks are seated In the hales

with a positive allowance.

I i [ In the present section we will
{

W% W0 20 % 00 i approximately take into account the
Fig. 99. a) Experiment; b) elastic resistance force which is ex~
kg-cm; c) theory; d) kg/cm.

erted by the rivets on the displace-
ments of the wall relative to the rods. As in the preceding sections,
we wlll assume that a hamogereouselastic layer between the Joilned ele-
3 ments has replaced the rivets. This layer exerts a resistance to the
- s1ip of the joined components, proportional to the relative displace-

ments.

‘,///l é
T 1T
,f:, PR = N
4 SN ] ~1 -
[ B 4 [eol
a) fop t &
Fig. 100

Iet us consider a single-panel thin-wallied peam shown in Flg.
100a. Since all the seams are subject to the same nonditions, it is
sufficient to consider a seam element of unit length (Fig. 100b). As

can be seen, the contact region where the web 1s compressed between
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the angle bars forming the flange 1s of width a.

The tangential forces g in the beam web are determined by the
formula

=5 (17-1)

If the beam 1s multi-panelled and several forces aP act on one
8lde of the section under consideration, then the transverse shear
force should be substituted into Formula (17.1).

The tangential forces in the web increase with an increasing
load. As a result, shear takes place also in that section of the web
which is compressed between the rods. This shear results in slip of
the web relative to the rods. If we discuss Fig. 100b, then slip
starts in the upper part of the contact region and is propagated down-
ward.

Let us consider the equilibrium and de-
¢ z- ) formations of a web element (Fig. 101),
- isolated in the slip zone. The element 1s

b

il
Ll %]
| I

subject to the action of: tangential forces

qy in the section where y = const., frictim-

. * al forces and elastic rivet reaction forces.
Fig. 101

Iet us refer the frictional forces T and
the rivet reaction forces cu to unit contact surface. The quantity c
is the rigidity coefficient of the plastic layer which replaced the

rivets. Projecting the forces applied to the element on the x-axls, we
will get

‘;‘7'1.=2r.+w. (17.2)

The multiplier 2 of T takes into account the two-sided contact
between the web and the flange and u 1s the displacement of the web
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relative to the flanges in the contact zone.
The shearing strain in the web 1s equal to Txy = du/dy. Utiliz-
ing Hooke's law, we will get

du _ (17.3)

Here 8 1s the web thickness and G 1s the shear modulus. From (17.2)
and (17.3) we will obtain the differential equation

d'u _ 24, 17.4
gl (17.4)

where

¢
3'37:'5- (17.5)

The solution of Eq. (17.4) has the form:

ucA,chpy-t-B,sipy-—}cl". (17.6)
Then from (17.3):
% = GB3 = BOB(Ay sh by + B, ch By). (17.7)

Let us turn to the first loading stage when a varies fram zero
to unity. Let, for a certain value of the coefflclent @45 when the
tangential forces in the web reach the value a5 the slip have
spread to the width a, (Fig. 102a). The x-axis will be directed along

the lower boundary of the slip zone. Then u = 0 and qu =0

iy

I

4

Fig. 102
for y = 0. Under these boundary conditions we will find from (17.06)
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and (17.7)

."‘ ="c"; B'So.

Consequently, the displacements and tangential forces in the s1ip

region are, during the first loading determined by the formulas

ury =22 (en gy - 1), (17.8)

gy = 222 b 2y, (17.9)

The diagrams of quantities qu and . arc shown in Fig. 102b and c.

y
For y = a, the tangential forces qu = Q- ¥rom this condition and

from Formula (17.9) we can find the width a, of the slip zone:

b pey — B8 (17.10)

‘2"‘;..
In particular, the displacement of the upper edge of the contact
region will be determined from (17.8) if we set y = a;. We will get

" =~2~§°-(cnp¢,——l). (17.11)

For a; =a the slip will spread to the entire width of the contact
surface. We subsequently assume that the load coefficient a = 1 corres-
ponds to this case.

Let us now consider the unloading stage, when the force in the
web changes fromq1 to PY As the load decreases, slip will occur
in a direction opposite co that of the loading stage. This slip will
also start fram the top and will spread downward. For a5 the width of
the reverse siip zone w1ill be a, (Fig. 103a). Dependencies (17.6) and
(17.7) remain valid in the reverse slip zone, it is only necessary to
change the sign of 1o i.e.,

2
up = Ay ch By + B, sh By + 2.

; 17.1
¢o=0GC3(4, sty + Bcaty) (17.13)
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In these equalitiles a; - a, {y < ay.

The constants of integrution A2 and B2 are determineu {rom the

conditions that the displacements are u2y = uly

at the edge y = ay — a, separating the first and

and the tangentlal

forces q2y = qu

second slir zones. Performing the recessary calculations, we will get

21,

Ay = ..._.li ~2¢h 8 (a, — a3l
‘- (17.14)
Bg:-—é!shﬂ(a,——az)_
Conicequently, in the reverse slip zone
u”=£‘-jlll+chﬁy—2ch$(¢,—-a,—y)l. (17.15)
9 =-2—:31sl|,’.y-§- 2sh B (4, —az — ). (17.16)

The width a, of the reverse slip zone will be found from (17.1&)
and the condition that Aoy = 9g [sic] for y = ay. Taking into account
Equality (17.10), this gives

shba:=—%-(sh§a,———-.)_f_(ll:f_‘_’_’_"..~ (17.17)

If a, = a, then reverse slip will embrace the entire width of the
contact region. a = - 1 corresponds to this case.
The displacement of the upper edge of the contact region, where

Yy = 8y, during the unicvading stage, will be

(1 -+ ch 8a, — 2 ch Bay). (17.18)

_ 27,
T e

As ~an be seen, on full unicading, when Qs = 0, the system dces

a0t return to its original state. The residual displacements at the

2
u,(0)=—g~2'3~ i+ch§a,—-2yi+%:%)-

Iet the lcad, having reached a certaln smallest value, for which

upper edge will be
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the force in the web 1s equal to q,, begin to increase anew. Togethe:x
with the increase in the load slip of the web will occur in the same
direction as during the first loading. Referring to Fig. 100b, tlr.is
slip, starting from the top, will spread downward, When the force in
the web reaches a certain value a3 the width of sllp reaches the val-
ue ag (Fig. 104a).

”n

—— by )

Fig. 103 Fig. 104
Dependencies (17.5) arnd (17.6) remain valid in the secondary slip

zone, l.e.,
27
uy = A3 ch By + By sh By —— =
9sy = BG3 (4, sh By + Dy ch By),

Coastants A3 and 133 willl be found from the conditions that “2y =
u3y and qzy = q3)’r for y = ay — a3. Performing the necessary calcula-

tions, we will fincd
H=Pu2ap@—0) 286,
By =22 1sh g (o, — ) — sh 8 (0 — ).

Then the displacements and the forces in the web sections in the zone

y22a— ag wlll be

u,,=§:! (—1+c by +2ehB @ —a—y)—2bB O —a—-yl,  (17.19)

,,,:%lsupy--zshb(c.——aa—r)+2aiﬂ(-.-—¢a-'-.~)l- (17.20)
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Diagrams of the quantities q3y and u3 are shown in Fig. 104b and ¢.

\
These same figures show the character of the force and displacements
distributions in the slip zone, when the tangential forces in the veb
vary within the 1limits qQy > q3 > PR

The width a3 of the secondary slip zone will be found from the
condition that a3y = a3 for y = a,. Utilizing Equalities (17.10) and

(17.17), we will get

b oy = 2B =0, (17.21)

The displacements at the upper edge of the contact region (y =
al) are determined by the formula

.,,=£‘.’-(_x+cm.+2chpa.—-zchpa,). (17.22)

It can be easlly seen that for ag = 0 Equality {17.22) coilncides
with (17.15). If ag = a, then the reverse slip zone disappears and
Equality (17.8) is obtailned fram (17.22).

A hysteresis loop the area of which 1s proprotional to the energy
irreversibly absorbed by unit seam element during one loading cycle
is presented in Fig. 105. The displacements of the upper cidgxe of the
contact region are laid off on the absclssa axis and the load coeffi-
2ient a — on the ordinate axis. Curve 1 corresponds to the first lcad-
ing and represents Dependence (17.11), curve 2 corresponds to the un-
loading stage and Equality (17.18), curve 3 describes the displacements
on the renewed loading stage, determined by Formula (17.22).

The energy absorbed by unit seam element during one locading cycle,
vhen the load coefficlent varlies between the limlts r { a {1, 1s cal-

culated by the formula
1
. P
¥ = ”—f(u,——u,)d._
r
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from (17.22) and performing the necessary cal-

culations, we will get:

ﬂ'n
Y= #’(S‘YP -t [P, —’l—;—rp’l} (17.23)

vhere

-“2—%-,, (17.24

Energy absorbed by a seam element of length

lsh will be obtained by multiplying Yl ty lﬁh'
Manu-
script [List of Transliterated Symbols ]
Page
No.
140 MMALL AH CCCP = IMASh AN SSSR = USSR Academy of Sclences Ir-

stitute of Machine Bullding
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Chapter ©
THREADED AND SLOTTED JOINTS
§18. THE ELEMENTARY PROBLEM
In order to analyze the energy dissipation attendant to the load-
ing of a threaded Joint, 1t 1s first necessary to consider the follow-
ing auxiliary problem. A thin disk, bounded by two parallel planes and
two conic surfaces (Fig. 106), 1s locaded by a system of normal stresses
°x and °x + Aax, uniformly distributed along the disk base.
The following simplified assumptions wiil

L
» ) be utilized in the subsequent analys.s of the
1w
p il » deformations and displacements; their conven-
6"“'
) ience and nature will become clear below, when
Fig. 106

we will speak about the deformation of a bank of
sinilar disks. We shall assume that the disk 1s pressed only 1o the low-
er conlcal rim surface; the normal reactions p and the tangential fric-
tional forces fp, which are assumed to be uniformly distributed along
the entire bearing surface, arise z2long this sirface. We shall further
assume that the disk does not bend and, therefore, disk bes=es which were
plane before loading will remain plane also after loading. Finally, we
shall assume that the system of support reactlons results in compression
of the disk in the radial direction constant along its entire thicxmess;
it is understood that the normal stresses, gliven at the disk base, wilil

alsc exert an influence on thils compression.
Reactions p are determined from the condition of equilibrium of

the entire disk A o
_Box o | (18.1)




where r, 1s the mean radius of the tapered surface of the disk.

The average stress along the disk thickness, Ops amounts to
=~ Pl —1gh). (18.2)

Let us now find the disk's radial deformation, caused both by the

stress o, as well as by the stress oyt

or(l—p) pox pU—/gB)(i—u) po,
L g —e (18.3)

The mean radius of the disk changes as a result of the radial de-
formation; the absoliute value of this change

Pl — @B — ) | re%e (18.4)
2E E

A’.:—t'r‘:'::

This lessen)ng of the disk radius, in turn, 1s the factor causing the
disk to te ¢ Hlaced in the direction of the x-axis:

Ay pr, (1 —11gB) (1 —p) , Wy .
“=®b- 2Eup +Zies (18.5)

It should te noted that the displacement of the disk depends on the
value of a (the second camponent), as well as on the value of Ac, (the
first component), in the terms of which the pressure p is expressed in
accordance with Formula (18.1).

Let us now consider the disk's unloading process. The beginning
of this process is quite unique. As soon as the external load on the
disk begins to decrease, a decrease of the frictional forces along
the bearing surface will also occur. Since the new values of the fric-
tional forces are smaller than the limiting value fp, slip of the
disa becomes impossible and rigid coupling of the disk with the rim
will occur. The change of external forces during this loading stage 1s
not accompanied by any displacements of the disk. This 13 shown in
Fig. 107. The frictional forces are here smaller than the 1limiting

value fp and are related to the reactions p by the condition of con-
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stancy of the disk's radial deformation.

As the load is decreased, the frictional forces will alsoc de~
crease, change their sign and, finally, will agzin reach their limit-
ing value fp, which will signal the beginning of reverse slip; the
loads on the disk during this new stage are shown in Fig. 108. The
following group of expressions, replacing Relationships (18.1) -
(18.5) of the first loading stage, corresponds to this stage:

~Be . 18.6
P=& Wh=T’ (18.6)

o =—Ft+igp): (18.7)
9=_fu+4%?ﬁ—ﬂ_%?q (18.8)
A _PROHIEHA—0  we (18.9)
] 28 , E ’
=P /(1 —w) , nrox (18.10)
2E1gd " Ewp”

The expressions presented above can be obtained from Relationships
(18.1) — (18.5) by simple change of signs of the friction coefficient
£.

Having solved thils elementary problem, we can pass on to the so-
lutlion cf the basic problem of the present secticn about eaergy dissi-
pation in a threaded joint (Fig. 109). This joint can be regarded as
an ensemble of a large number of disks, situated in an elastic rim

nut; here each disk will represent a simplified schematic of one turn
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of the bolt thread. For a quite large number of turns it 1is natural to
make a 1limit transition and to regard the threading as consisting of
an infinitely large number of infinitesimally thin disks: this approach
has received wldespread application in threaded Jjoint calculations
(see, for example, the Reference by I.A. Birger [3])*. For the sake of
simplification of our calculations we will assume that the nut 1is
completely rigid, which will make it possible to most clearly expose
all the substantial peculiarities of the problem's solution. The case
when the elasticity of the bolt, as well
as the nut, is taken into account is con-
sidered in Article [15].

Making a 1imit transition, we will ob-
tain instead of (18.1)

[ 18.11
P= "G gp+1 (18.11)

Tnen Expression (18.5) will take on the

form

Al— —p)op , Wl
u:--—r————-'( t:;.(f:‘:f;;,‘ +E‘8’. (18.12)

Correspondingly, the derivative of u in respect to x 1s

 _BO—fRBi—Wea , W%
© =T 2Ewgpusern - Eigh (18.13)

On the other hand, we should also have
y _ o __ Ox 2us, o , i‘f("“]“’a
""""1?"’7?'T'7?1'“'_—7T__£‘

(18.14)

L0 well—/ £ or
E
Equating (18.13) and (18.14) we will obtain the fundamental equation
of the problem for the first loading stage:

o + a0, —bay = 0. (18.15)

The notations used here are:
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o " 2"’(1+‘§p) ’
r(l—jgp){i—pu' L18.16)

bo _ liEEURE LN (18.17)
i)t —un
The solution of this equation, subjected to the boundary conditions

6 =0 for z=0,

Q‘::""':‘ fOI‘ ’t::”)

has the form

(18.18)

Substituting {18.18) into Expression {18.12) and then setting x = H,
we wlll find the displacement of the end section as a function of the

applied force

o [a—jupa—p[ =% )
“‘:’ﬁg’ﬁ[ 5{gB+D (tsg{)'a'-i-“ ol (18-19)

Expression (18.19) describes the jJoint's loading process; this
prccess 1s 1llustrated by the straight line 1 in PFig. 110. The dis-
placement 1 at the beginning of the loading process remains constant
up to the time when the frictional forces change sign and reach the
1imiting value fp (see segment 2 in Fig. 110). The subsequent process
willl be described by new equations, which can be obtained as before
by a limit ¢transition in Expressions (18.6) and (18.10). We will then
obtain the previous Expression (18.15), but with different values of
the coefficients

D) )
S~ At ehi—m (18.20)
b= 2igB gt — N (18.21)

T AT+l —w
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These expressions can be obtained directly from Relationships (18.16)
and (18.17) by changing the sign of the friction coefficient f. Con-
tinuing further in the same manner, we will arrive at a new expression
for u which differs from (18.19) only by the sign of f. Ray 3 in Fig.
110 1llustrates the last stage of the loading process. The triangular
hysteresis loop, fcrmed by segments 1, 2 and 3, pertains to a pulsating
cycle. The area of this loop 1s equal to

; L . 14
‘=m‘?zs"+"&’>"[’-r£—$ ' (18.22)
_ni—ftud)—u f VEFTEE
where m(h= TTEY) (u%'-ym s},
() = re(i4-f1gB)(1 — ) V“f-!-éb, _
7 ¥ 9 +%

The center line in Flg. 110 corresponds to the case when no hys-
teresis losses exist in the system.

Conslderation of a cycle with any other asymmetry characteristic
will not present any fundamental difficulty.

§19. THREADED JOINTS -

The preceding section was devoted to the consideration of &
simplified scheme of a threaded jJjoint, with the nut regarded as &bso-
lutely rigid. Here we consider typical threaded Joints and we take
into account the finite rigidity of the nut. Figure 111 shows three
schemes of threaded joints: bolt — nut, bolt — turnbuckle and bolt
- sleeve. The most widespread type of a threaded joint is the bolt —
nut joint (see Fig. 11la), and we shall therefore clarify the peculi-
arities of the cyclical loading process of a threaded Joint with
triangular threads on an example of this _oint type.

The displacement of an infitesimally thin disk can be determined
1f 1imit transition is performed in Expression (18.6) of the preceding
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section, 1.e., if expression Aoix/Ax is
replaced by 1ts derivative daix/dx. This
approach, obviously, does not make it possi-

ble to take into account the effect of the

local bending deformatlion of the thread pro-
Fig. 110 file on the force distribution between the
threads.

After limit transition 1s performed, the displacement of the bolt
section which is removed from the origin of coordinates by the distance
x (Fig. 112), for the loading stage, can
be determined by a formula, following

from (18.12):

° =

#1051 gz,_ozx) 7a

E, E, Jigg
rgmk dc‘x (19‘ 1)
T 2gh dz

_fsinB8—cosf | _1—m

° DR where ms e sbreamg FT B0 %1x and

E ] Fig. 111 Jpy are the normal stresses in the x
section of the bolt and the nut, By Uos El and E2 are constants of the

bolt and nut materials and r. is ihe mean radius of the thread.

0
The normal forces in the bclt and nut sections will be equal,
respectively, to OixFl and GéxF2‘ We find from the condition of equili-
brium of that part of the joint sifuated between the origin of coordin-

ates and the given sectlon, that

oF1=onFs- (19.2)
Expressing the cross—-sectional areas of the bolt and the nut in
terms of the known thread dlameters and of the equivalent nut diameter,
we will obtain a relaticnship between the stresses in the belt and nut
sections in the fom A

G = 72 .';5'8::.
i1} (19.3)
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where r_ 1is the equivalent nut radius. Relationship (19.1) for the
loading stage will now take on the fom

rd rikm  dey, (19.%)

“TRBTIgE

where

r
l=.£}_+ s _PL.
E, - E

The displacement of this section for the unloading stage will be
determined by the formula

I‘J ’3& dﬂu

U = ——— g

lgﬂ ns'-m-—*—' (19-5)

where
[sinB + cos B

A= fccaB—smf§

The above expressions for u should be transformed in such a manner

as to obtain the dependencies of the displacement

B ;& . y on the current value of the load aP, which are of
X .
TS interest to us. For this it s necessary to take
A\ 1 \ into account the fact that relationship
olP - . 19.6
x
where
Fig. 112

‘ra}’(fﬁl’—mﬁ)-%r.a%. (19.7)

exists between the atresses and the longitudinal deformation of the
bolt.

Keeping in mind that g = du/dx, we will obtaln, according to
(19.4), for the loading stage




Replacing now ., 1. the right-han ide of (19.6) by its expression

1

(o
v

(19.7), we will, after 1imit tronciticn, cobtaln the basic equation of

the problem for the loading stage

c;'——na;-i—bc,ﬂo. (19.8)
where
MR cumey) , 2wp
mlrk, ) mlsiE, (19.9)

»

, I )
Under the boundary conditions os(0) =0, e, i) ;2 the coluttion of this

ejuation will take on the fomm

e —
TTh VS 4
ap TRV (19.10)
Ox (I) == ; - Y] H———. - Y
v e 7 sh -—,-!/'Ez_.:_ b

Here H is the length of the engaged parts of the bolt and the nut
threads (the height of the nut). Relationship (19.10) determines the
normal stress distributlicn along the bolt sectiors during the loading
process. It should be noted@ that this distribution 1s substantiaily
dependent on the friction coefficlert f; this circumstance 1s impcrtant
not only in the determinatiorn of hysteresis losses, but also in strength
calculations of threaded Jolnts.

Utilizing (19.4) and (19.10), we will obtain the displacement of

any section as a funetion of the load:

mk
(2, 3)=abP +
4 Y S
g8 e 2 sh-i—l o -+ 4b
-3 19.
. e Sh;‘Va’—:--ﬁb (19.11)
7;;-.083 "3 <h ;ya’-ﬁ-‘

Substituting here x = H., we will find the dependence ¢ the displacement

of the section to which the lcad is applied on the dimensionless load
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parameter 1in which we are inte. :sted:

aPkm

: u(x, ) = TR ( — V& ¥ 40 ug at + 50 +._:L'l_.. (19.12)

re ig ¥

ILet us note that the displacement of the section » = 0, to which
no load is applied, is not equal to zero, i.e., u(a, 0) 7 0. This means
that, for any as small as desired value of the load, the bolt and nut
interaction is realized simultaneously along the entire length of the
engaged part of the thread.

The basic solution uf this problem for the unloading stage, when
reverse slip between the thread turns appears, can be obtained from
Eq. (19.8) by changing the sign of the friction coefficient f. The co-

efficients of the new equation

2¢E, +untgd) 2188 (19.13)

= ’ .
Eynryk R Enk

- The dependence of the displacement on the loading for this stage

O i —vz""ua;ww)z

wir, )=

>
1 ¢ Ta-{y—,r—-
;‘%}giiy? y>)
+aP—1 ; (19.14)
k. e.-i’-sh—m

The displacement of the bolt's end section with the coordinate
x = H (the load 1s applied to this section) 1s determined by the foi-

mula

wdh = Zos (e —VEF .d.-,m...r:—-a)* s (19.15)
®

- The displacement of section x = H when the bolt is loaded by a
pulsating load is thus described by three different analytic expressions:
1) by Dependence (19.12) during loading;
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2) by the dependence u{a, H) = const immedlately after the commence-
ment of unloading, as long as rigid coupling between the bolt and nut
threading takes place;

3) by Dependence (19.15) in the subsequent unloading stage. The
graph of this dependence coincides with that presented in Fig. 110.

It can be seen from this figure that the shape of the hysteresis loop

is triangular; the area of the loop 1s equal to:

Y- — 7 lnkr Ve - 4d ('lg---,'cz +4d —

4s .l" tgs
=7 o My Mgt
— mhs, fa® - 46 ('m—Z-ll"- oAb - £y (siv? gl bftosz ]
(19.16)
kmr,Ya® = 4b 4bctb——-] TR 2‘ mig8+1

>
- knr, V& /nd(lh lc-~,-’-r1-—— E Lntg8-+1
1

The hysteresis loop for a cycle with the arbitrary characteristic
r = Pmin/P has the form of a trapezoid. The commencement of the re-
newed lcading 1s accompanlied by rigic coupling of the thread turns
alongz the concact surface; therefore the beginning o this stage on
the force — displacement graph (see Fig. 110) also appears as a
vertical segment (dashed line). The area of the hysteresis loop 1s de-

termined by ° ae formula

¥ ~-;,—P-(B' —r). (19.17)

wiere

4"‘83‘ nfe - Hcth——-]-’ —

e mf@ Tt L yT T 4 ma— nc). (19.18)

(]

e e 9
m)’a’-&&bcth—”—l’a’ + 4b —am -.:.1.

B= My |
RYS + 4d cth = Vc’-*—M—-cnq-l:—
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ne dependence of the zrea of the hyvsteresis loop on the friction

coefficient f for a pulsating cycle 1is shown in Fig. 113.

The calculations were performed for a steel

Yerew o bolt with an M20 metric thread for a nut of
002 normal height. The maximal value of the load
was taken as being P = 1000 kg. It can be
o seen from the graph that there exists an op-
0 o1 0z o3 08 05 f timal value of the friction coefficlent for
Fig. 113. a) Kg-cm. which the energy dissipation 1s greatest.

There is little dissipation for small values of f, since the frictional
forces are not great; jamming of the threads (rigid coupling) takes
place for large values of the friction coefficient.

The b1t — turnbuckle nut Joint is another type of a threaded Joint.
The schematic of the bolt — turnbuckle nut joint is shown in Pig. 114.
The bolt and the turnbuckle nut expand under the action of ti. load.
The condition for the equllibrium of that part of the joint which 1s
situated between the origin of coordinates and the given section will,
in this case, be written in the fomm

Fio1c + Fy a3x = P, (19.13)
where Fl°ix and F2°éx’ respectively, are the nommal forces in the bolt
and turnbuckle nut sections.

The equilibrium condition (19.19) makes 1t
possible to establish a relationship between

T
x
L

the stresses 01y and Opy - Expressing the areas
in terms of the mean thread diameter and the

equivalent turnbuckle nut radjus, we will get

—
o= (19.20)
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The basic solution of the problem for the loadin; stage 1is written
also in the form of (19.8), however; the equation's coefficients should

be calculated by the formulas

2 (m_in28+fooeZB g rs | , 2183
§),b o (19.21)

T TemK\E, (fcos 2§ smp)cosp £ 7F
These coefficients can be obtalned for the unloading stage by a
simple change of the sign of friction coefficlent f. The sclution of
Eq. (16.8), satisfying the boundary conditions

P
0!:(0) =0 and 0;.—([1) =1§’

e
1s written in the form of (19.10).
Utilizing (19.4), it 1s not too difficult to set up an expression

for the displacement of an arbitrary section

um,z) =
-.28 ﬁ z T - I3 b
I I bt Gl e GRS b 5 [a* +4b
4=tgP __al +

= . H
CTASYETD

x
5 T ——
[ 4 ‘Shiigaﬁ_._‘qb

where " &Pryy, L _aPs (
: ; : . 19.22)
= —_ =r, t _H
i —ri)igs " TulES r oo
2
b To ]

= —————— .
El rf-—-rﬁEz

The displacement of the end section to which the lcad is applied

aPmk
ww i)~ ey men L yaTn )+

1C
!Pr.p, , 2Ps (*1'23)

T (F ) gs | ewE

The hysteresis loop for cyclical loading with a cycle having an
arbitrary characteristic has the shape of a trapezoid, the sides of
which are formed by two ray segments and two Inclined segments paraillel
to one another (Fig. 115). The parallel segments correspond to the ini-
t1al phases of the loading and secondary loading cycles, when rigid
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re at the contact surfaces. We disregard the inclination

of the parallel segments in the calculation of the hysteresis loop area,
and then the area of the trapezoid IQRS 1is de-

o Q termined by Formula (19.17), in which coeffi-
L clents A and B are expressed by the following
R formulas:
¢ A=t Ly eTacn
Flg. 115 =~ T tgh ren +4dcth 3 & +4d —
— romkVaE gy 2mftg8 )
remk o= 546 cth 2 | + 8- g T8 = feo? 2’)].(19.24)
”
e = r.:—-" Bz ‘o gl_ ’
. romk etk TR+ ER—7 " E, G ijewg)ont
- .
| L L. 52 !
rpkfct+4dc V—"r“‘*‘ 's r: E‘(sins_,mp)mg (19-25)

The bolt — sleeve joint is 1llustrated in Pig. 116. The bolt ex-
pands under the acticn of the external load and the sleeve expands with
1t. The computational scheome of thi: jJoint is similar to that of the
boit ~ turnbuckle nut scl.eme; however, certain substantial peculiarities
do appear in the dissilpatir.r-characteristic calculation for this joint.
The basic equation of the problem is written in the form of (19.8); the
coefficients of the sought function and its derivatives are determined
by Formulas (19.21). The solution of the basic equation for the boundary

conditions
Ch«»: -:‘{v
O1a fw)=?.
has the form
= z
ow =D T sh(-i—m-i—v)- (19. 26)




Constants D and 9 for the loading stage are de-
| orP
vemined by formules
o o VT T
l 2 ' 2% S shllya@ 3 4b
A / 1»///,:4
x  $ il Vat TG (19.27)
~ P g% she «—jee- ol el -
% %% Vezwe . sotia oy gt Yot 550+ 1
7 ¥4
and the coefficients a and b — by Formulas
P (32.21). Pormulas (19.27) for the unloading
Fig. 116 stage are obtained by replacing f with — f.

Now, on the basis of {(19.4) it is not difficult

to obtain the dependence of the displacement on the load

u(1,.r}=—-%—’%§%[”a.= - 4b (-h(—l‘ ® 4 4b + @) —
—ablEvETm oM F P 19.28
o (FrEEm )| ¥ EwE—rws T (19-26)

Relative displacement of bolt sections situated on the planes of
the nut ends, u = u(a, 2H) — u{a, 0) will be determined for the loading

stage by formula

22Ps _aPkm ( J_Ya‘?'——,Lébsnlla

“Twws T mws\ T anfe e (19.29)

and for the unloading stage — by formuala

2aPs . _aPln (r Y+ 4d sh He

Tl E=gs\"T anyessl {(19.30)

The hysteresis loop for a bolt and sleeve loaded by a cyclical load
with an arbitrary cycle characteristic has the shape of a trapezoid
(see P1g. 115). The area of the hysteresis loop is determined ty (19.17);

however, constants A and B have new values:
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. [mkr,l’?.m_ﬂl_l_{f_
=8} h i Ve + &b
— , (19.31)
_ nhr re ¥ - 4d sh He 2, fie B
st e Tad E, (<in? 8 — 2ot B)
miry)a® ¥ {bsh Ha wart ",
= SR 40 E,(r’- r3) bx(ﬂn5+lcos3)cos$
nkr.[c’-fodabllc_{_ wyf
shHf S+ ud t:,(r’-.,’) E;(sinﬂ—-leosﬁ)cmﬁ
(19.32)

Formula (19.17) for the area of the hysteresis loop, for the cor-
responding values of quantities A and B entering it, determmines the
intensity of structural damping per cycle in the above three types of
threaded Jjoints.

§20. SLOTTED CONNECTIONS

(a simplified system)

The problem of energy dissipation in slotted Jjoints arises, for
example, 1In conjunction with vibrations of turbine buckets with an
attachment of the "fir-tree" type (Fig. 117;; similar joints are used
in fastening of gas and steam turbine buckets and alsc for fastening
of axlal compressor buckets. We shall zubseguently consider the prob-

lem of a bucket attachment acted upon by a variable bending moment only.

It 1s assumed for the sake of simplification that longitudinal forces
are absent. It is obvious that this consideration can provide us with
only the most general theoretical basis fcr the calculation of energy
dissipation in actual turbine bucket attachments. ILet us consider the
following auxiliary problem. A thin plate, rectangular in plan, with
side dimensions 2a x b and thickness Ax 1s loaded along planes parallel
to the median plane by stresses Oy and a + on, independent of the
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Fig. 117
z-coordinate and varying linearly along the y-axis. This stress system
is statically equivalent to two couples with moments Mx and Mx + AMx.
The plate is supported on two absolutely rigid bearing surfaces along
its two side faces, parallel to the z-axis; these faces fom an angle

8 with the median surface. The two other sides of the plate are not
loaded (Fig. 118). Normal reactions P, and p, and also tangential fric-
tional forces plf and pef, uniformly distributed along the bearing
surfaces, wlll arise on the bearing surfaces. It follows from the con-
ditions of equiiibrium that P = Pos consequently, the limiting fric-
tional forces are also equal. We shall assume that surfaces of the
plate, plane before the load has been aprlied, remain plane also under
the action of the external forces and that the system of the support re-

actions results in an uniform campression of the plate in the directicn
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the y-axis; deformation of the plate in the direction of the z-axis

is taken as egqual to O. It is obvious that stresses on the end surfaces

of the plate aiso exert an influence on the plate's deformation.

Reactions p are determined from the condition that the plate is 1in
equilibrium and are equal to

1 AN
P= Sabosp—jomp) Az - (20.1)

The 1imiting frictional force T at the support surfaces has the
units of a force per unit length of the loop contour, and is equal to

— fp o f AN
T=fp= Jab(cos 8 — fsn B) Az (20.2)

Average stresses o& along the plate thickness amount to

.. __gB—/ AM 20.
YTEEA—TgH Ar - (20-3)

Average stresses a, along the plate thickness are determined by Hooke's

law from the condition g, = 0. Then the relative deformation & brought

about by the stress components Oy s oy and a, will be determined by the

formula

y=plod—W—pd+wel (20.4)

where E and g are the modulus of elasticity and Poisson's ratio for

the plate material.

The absolute deformaticn of the plate in the direction of the y-

axis 1s influenced only by the stresses 9&3 therefore

4a
_ _1—y' gp—/ AN

As a result of the fact that the plate 1s compressed in the direc-
tion of the y-axis 1t becames possible for the plate to turn relative
to the base as a rigid body. Slip over bearing surfaces between the
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plate and the base occurs during this rotation.
The angle of rotation of the mecdian plane of the plate on loading
is determined by the formula

By, 1o weof  AM 20.6
O e MTTE g —Twh A ( )

Iet us note that this angle depends only on the increment of the bend-
ing moment and 1is 1ndependent of 1ts absolute value.

Let us now consider the unloading process, the commencement of
which 1s quite peculiar: as soon as the external lcad applied to the
plate begins to decrease, a decrease in the pressure at the bearing
surface takes place and the 1limiting value of the fricticnal forces
1s decreased. Hovever, the actual value of the frictional Tforce during
the beginmning of unloading still remains smaller than ithe limiting
{value] fp; this makes it impossible for slip tc occur, since rigid
coupling between the plate and the base takes place. The change in
external forces during this unloading stage 1s not accomparied by any
displacements of the plate.

As the load is further decreased, the actual value of the frictional
forces becomes equal to the limiting and slip again begins on the bear-
ing surfaces. Slip and frictional forces have directions opposite to
those which they had during the loading stage. The fellowing group of
expressions corresponds to the plate's unloading during this new stage

under consideration:

1 AV 20.
P =3 (cond +fsiu3) Ar (20.7)

_ g3 +f AW .
"= 2m0(1 < ftgp) Ar’ (20.8)

L

1—p g4 f AU
= ZE  (T+fgh) Az (20.9)

The beginning of the new loading is agaln accompanied by rigid
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cc2pling. Only after the actual value of the fricticnal force will be-
ccme equal to the limiting and slip willl again appear on the bearing
surfaces will the loading process be accompanied by rotation of the
plate. All the stages of this process are repeated successively with
a cyclically varying load.

In solving the problem of energy dissipation in a sleotted Joint
of the "fir tree" Jjoint type 1t 1s natural to consider the slotted
root as an assembly of plates. In the case of a sufficlently large
number of small plates 1t 1is natural to consider the joint as consist-
ing of infinitely large number of infinitesimally thin plates. This
approach has come into wildespread use 1n threaded-joint calculations
ané was already utilized by us in §§ 18 and 19.

For the sake of simplicity, let us first consider a slotted joint
in which the roct constitutes an elastic prismatic body and the base
is absolutely rigid. Making a 1imit transition, we will obtain instead
of (20.1)

i dM v
P=2ab(:w§$-—lsin$)‘ dr’ (20. 10

vwhere 2 and b are the dimensicns of the rcot cross section, M is the

bending moment 1n section x and = and p Zre the modulus of elasticity

2 # AV R Wil N

and Poisson's ratio of the root material.

o A

LR

As a result of the 1imit transition, Expression (20.6) will take
on the fomm

_1—¢ gp—4 v
""_E—_' 2!6&-—](") * 2z ' (20-11)

ROV IVRE S e o

where @ 1s the angle of rotation of the current root section. The mo-
ment M is related to the angle ¢ by the known relationship

do _ M @) .
=" (20.12)
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where J 1s the moment of 1nertia of the rcot section. After differen~
tiation cf (20.11) in respect to x and substitution of the derivative

into (20.12), we will obtan an equation for the moment

‘%",L.mt=o, (20.13)
where
2abil —f1e3) (20.14)

FETO=—dHegE—o

The solution ¢f Eg. (20.13), subjected to the boundary conditions

M@=2M for ..o

20.1
(h 1s the root length), has the form
M(z, ) ="-"L-f£i;-'-;—’3u£ {20.16)

Taking a derivative of M(x, a) in respect to X, substituting it into
(20.11) and then setting x = 0, we will cbtain the angle of rotztion

of the initial root section during the lcading stage

- g2 tg & — . ~——
7 0,a)= “q LR 1%_""@‘; cth 2hiadf . (4\;.1?}

Rigid coupling between the root slots and the mating base takes place
during tne begimning of the loading phase, and therefcre the rcst sec-

tions €5 not rotate, l.e.,

Tne angle oi rctaticn of re first roct section after siip has begun
ane will be citalned from Expressicr. (20.17) by a simple cnange of

ihe friction cceffi~lent f ana by redlazement of the constant A by w.

_U—ue 8] 1 {00 1R
¢ (0, «) ZFab ¥ /g e cn whadf, {20.18)
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wopere

. . _2ab(1+/wB) (20.19)
JagB +N(t —u?)

&

The loading and unloading process 1s 1llustrated in Fig. 110 by
rays 1, 2 and 3.
The area of che hysteresis loop for a pulsating cycle is deter-

mined by the formula

2 —_— —
v . M —p)2 g I cth 2k

4Eab T 1—fgp ll-
B z(tgﬂ—l)(1+llgﬁ)cuﬂf'], (20.20)

o(I—11g2) (g3 + fctn wlht

§21. A SLOTTED ATTACEMENT OF THE "FIR-TREE" TYPE

Having solved the simplified system, let us pass on to the consid-
erztion of the problem of energy dissipation in turbine bucket root
attachments. Of all the different forms of slotted root joints we will
consider only multi-slotted joints of the "fir-tree" type with the
slots having a straight axis. The consideration of slotted Joints with
a curvilinear axis 1s more comp.ex, but possible in principle. The de-
sign of a fir-tree attachment involves the idea of strength equality.
The profile of the slots (see Fig. 117) is similar to the profile of
bearing threads and thL: contour of the root has the shape of a wedge
{the vertex angle of the wedge, 2c¢ [sic}, varies in actual turtine
bucket designs between the limits 25 — 40°).

Iet us consider a buckst root element, formed by two parallel
planes normal to the longitudinal root axis and removed fram one an-
other by the distance dx.

The differential relationship between the normal pressure p on the
element's bearing surface and the current bending moment M(x) has the
form of Dependence (20.10) of the preceding section (a and b are the
dimensions of the root section), nere a(x} depends on the coordinate
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of the section and 1s determined by the dependence

d(l)z(”—r)lgtz

o~
o
Pt
Yot

-

wherc H 1s the height of the root wedge (see Fig. 119) and 26 is the
vertex angle of the wedge. The absolute deformation of the bucket root
element 1is determined by the formula

1—ul wp—f dM

ET-Tes & (21-2)

Aa.‘:—

where lE:1 and K, are the elastic characteristics of the root material
and M 1; the b;nding moment in the root section.

The angular displacement of an element of the bucket attachment
depends nct only on the rcot deformation but also on the deformatlon
of the turbine runner with wvhich it is mated. Regarding a single pro-
Jection on the runrcr as a reversed bucket root, Xoaded by an external
bending moment oM in the rcot sectior, we will determine tle absolute

deformation of an element of the procjection by a formula similar to

(21.2):

1 — 2
Ac=_"Ha x
bEx (21.3)
xg2—1 dY
“T—figs  dz’
where Ed and hy are the elastic constants of the disk materlal and 2¢
15 the width of the current element of the rotor's prejsction. The
relationship between the quantity c(x) ané the design dimensions of

the attachment has the form

c{n)=1—H—2)1g8
vhere 21 is the spzcing at which the buckets are seated along the runner
circumference.

The bending mament in the section of the vrotor's projection is de-

teminéd by the formula
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My() =M —M (@) (21.4)

The angle of rotatlion of a bucket element 1s determined by the rormula

o(x.-)="—";‘(§f—° (21.5)
cr
__(wB—DNwp 1 — pa .C(I) A — gldM o
P = ia-Jws \ E Taw :.’)%' (21.6)

If we assume that the differential relationship (20.12) 1s valid

for a wedge-shaped bucket root subject

to bcnding, then we will find the depend-

ence for the change of the bending moment
along the root length, which is of inter-
est to us. However, in the utilization
of Relationship (20.12) we should keep
in mind that the moment of inertia J of

the wedge-sh: 2:d root depends on the x-

coordinate. Differentiating (21.6) orce

in respect to x, and substituting the
X value of dp/dx into (20.12), we will ob-

Flg. 119 tain the differential equation

i-——.:.:_‘_i——y.i _ d’z”_l"‘!‘;
‘[ E, T ¢ “’] e lb’. +

-l dM _ 3(1—f1g8) M
e ’] @z " Faigiigs—f)gh (21.7)
intc which the new independent variable

:=a=H--1)g3 (21.38)
has been introduced. The Jjust obtained equation can be solved by classi-

cal methods. However, of practical interest is the case when the elas-

tic pruperties characteristics of the rotor and bucket materials are
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the same, E1 E4 and “‘1 = p.. Equation (21.7) 1s considerably simpli-
fied in this case and 1s transformed to the form

M dY A
T gm0 (21.9)

where

R Ll A &
Wi aigs ('xﬁ—l)(i Y

The general sclution of the last equation will be written in the form

v (L e V7)) 2 cR @Y (21.10)

where 13 and K3 are the Bessel functilons of the Imaginary argument and
Cl and C2 are censtants of Integration which will be determined from
the boundary conditions

M(z)=12M fOr.— Higs, (21.11)

M@ =0 for :=(H—h)tgd
in the form

C‘ -
Hgd) 5 K, Y H -} iy 1g 8) aM
T1, 2 aH1g8) K\ (2} w- i Tyigh) I, Vo H—tygd) K,(2YxHigd)
C‘ =

o o bt

-~
[AV]
Yo
.
Ny

~—

=l ungt)h.(21'7411—':)!38)—1:(" ¥ zw-fmgs) K (2]7H1g8)
The angie of rotation of the current section x is, on the basis of

Expression (21.6) determined by the fcrmula

11— E(rs—figs clxy=+ar)dM

o= 2Ea(nb(1 —figt) a(z) dz’ (21.13)

and the angle of rctation of the first section — by tue formula

_U=a ggs—puye dyi ,
w00 = T T —Tigh) @ (21.14)

where




‘1.;."! = —~31g 3y g3 |C,1, QYAH g3 + K, QYMT 1g 8)) —
!‘ 3'
—Hag@ 3ValGd, Vi g d) — Gk, VAT g 3)).
(21.15)

! Taking into account that constants C, and C, are determined by Formula

1 2
(21.12), let us note that the displacement ¢(0, a) 1s linearly depend-
ent on the parameter a.

Formula (21.13) establishes a relationship between the external
load and the displacement during the loading stage. A similar relation-
ship for the unloading stage will be ottainec by simply changing the

silgn of the friction coefficient f

___legs+ gk ,i-u’gL
w00 Hhg 3AF/GH) E & ks (21.16)
where %’L‘_‘ has 3 new value
. ‘.EL_?._zxgsym"‘g 3 [D:ls QYail ig3) + Do, Y H 15 3))—
— g 3V alDL, 2Vl (g 3) — DK, @Vl g 3)); (21.17)
here

Higd K ele T =R M

e et —
e——————

‘ Ds = Vel ark @Y o T—Fiig 8) L CFwii— RygiyK Yl \g )

#Hwy ' ele@—REh

Dy = G i gty Kol w il — g 8) I @Yl —Ng by XY 18 )

1 +/wh) i
“= @3 g8 +NIU—#Y) (21.18)

+he lcading and unloading process fcor a ovulsating loading cycle
is 1llustrated by rays 1 and 3 (see Pig. 110), the beginning of the
unloading process — by segment 2. This stage is characterized by a

r complete absence of rotation of the section
%@-‘)"”lm-”‘
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The triangular hysteresic loop rormed by sepmentc 1, 2 and 2 per-
tains to a pulsating cycle. Thc arca of the hydterecic ioop i de

ined by the formula

¢, 1 ’ -
¥y . %9, © l)[i ~ a:{".“.; : (21..{9)

Consideration of a cycle with an arbitrary cnaractericstic does not
present any special difficulty.

As a more particular case of the prcoblem we can consider energy
dissipation in a bucket attachment with a prismatic rcct. The displace-
ment of the current section when the rcct and the runner are made from
the same material 1s determired bty the formula

1 t —'f)tg s
?(2‘,!)-—— (E;:zz K (g_f‘g“) dI ’ (21.3\;)

vhere a, b and 1 are the design dimensions of the Joint. The basic so-
lution cf the prcblem will be written in the form of (20.13); however,

A now hzs the neiv vaiue

b 1—JiR 21.21
T— U (e5—Nwh (21.21)

A=

The general soiution of the basic c¢vmigtiosn subjected to the bound-
ary conditlons (£0.15) is, for the rew value of A, written in the form
of (20.16).

Iet us detemine the anglie of rotation of the first root section,

to which the external load 1is appilied. On loading

o (0, 1) = u;;;—gwl Ug‘:jit)glxacm“ o (21.22)

The angle of rotatiorn of the same {irst secticn during the unlecad-

ing procecs 1c deternined by the lformula

w00 =200 L LD E chan oM. (21.23)
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where
o Wb iijuwb
-l (g8+NHwh

The area of the hysteresis loop of a pulsating cycle is determined
by Formula (21.19), into which Expressions (21.21) and (21.23) should

be substituted with the corresponding values of the arguments:

_MA—uh (gB—Ngp _
Y= ——“-’—w— . —1_:—"‘-5——61‘1 lh(i

2 tgp—/ 1+fgs oM.,

—— o~

« T—fgp @EFf cme
After appropriats transformations this formula fully coincides

(21.24)

with the similar formula for the hysteresis loop obtained for the case
of a rigid base.

[Footncte]
L 4
Maru-
script
s Page
No.
159 The problem of force distribution along th2 thresd Joops
was first solved by N.E. Zhukovskily [5].
Manu-
script ‘Iist of Transliterated Symbols]
Page
No.
162 3 = e = ekvivalentnyy = eguivalent
178 a1 = 1 = lopatka = bucket
178 n =d = disk = disk
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CONCLUSICHN
The entire preceding presentation has golved in subctince a serles
of static problems, devoted to the problem of the operation of elastic-

frictional systems. Naturally, the question can be raised as to the de-

gree and manner in which the above results can be applied tc the solu-
tion of dynamic problems.

To give an answer to this question, let us dwell on the following
ezsential circumstances.

1. The assumed simplified concepts about The nature cf forces of
dry fricticn make 1t possible ti assume that energy dissipation attend-
ant to vibrations is independent of the rate of the prccess. In this
sence, the rate of change of exterrzl fcrces acting on the Jjoint be-
comes indifferent.

2. In all the rni-oblems with relatively weax damping {i.e., in those
cases wher intensive drainage cf the hydraulic damper ¢ype is absent)
energy dissipation plays a noticeztls role only in the imnediate prox-

Inmity of resonance. Thereforz the «cnslderziion of Trictiosn losses in

o

Joeints has a practical sense oniy ir the analysi:z of rescnance nodes.

3. The complex problem ¢f the form of forced vibraticns of systems
with several degrees of Tfreedom I'vr arbitrary perlicdic disturbances
beccmes relatively siwple, 1f any of the resonance mode: i3 cons.dsred.
Actually, here:

a) ever when the cisturbing force is multi-rarmonic i1t is permiscsi-
ble to take into accoun®t only the resonance harmonic; by virtus of the
seme fact 1t 1s possible to consider z single-harmcnic vibrators Tro-
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cess simply assuming all the nonresonance harmoriics as being absent;
») the mode of forced vibrations under the above conditions of weak
damping can be regarded as coinciding with the mode of free undamped
vibrations corresponding to the resonance frequency under considera-
tion.

The above circumstances make it possible to designate the rollow-
ing practical scheme for calculation of resonance amplitude of vibra-
tionc for systems with weak damping.*

1. The frequencies and modes of Iree vibrations of the given sys-
tem are determined on the assumption that friction losses are absent.

lLet, for example X(x), the fundamental function for the case of
a vibrating beam, be normalized in such a manner that the deflecticn
cf any characteristic section is equal tc unity. Then the deflectlions
in the state of greatest deflection of a system performing forced vi-
brations will be described bty the dependence

Y = AX (1), (22.1)
where A is the amplitude of vibrations of the above section.

2. The work cf the disturbing load per one vibratory cycle 1s de-
termined. If the resonance harmonic of the disturbing force 1s given
in the fom

Pz 0 =P, () sin o, (22.2)

then the sought work amounts to:

1
ﬂ‘=foP,(z)X(z)¢x. (22.3)

This expression 1s a generalization of a formula, determing the work of

a concentrated disturb!ng force

P () =P,sia ut (22.4)
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on rescnance vibrations according to the relationchip
Gy - Aros o (e2.9)

(y(t) 1s the displacement of the point of applleatlion of force P); as
we know, the werk o. the disturbing force per one vibratory cycle is
i~ this case equal to WPOA.

3. The energy dissipation ¥ in the damping element per one vibra-
tosy cycle 1s determined, but not as a function of the amplitude of
the force applied to the element, but of the amplitude of its displace-

ment; the latter is expressed by A and the dependence

¥ =¥ ). (22.5)

is thus established.

4. The work of the disturbing load (22.3) is equated to the ener-
gy (22.6) and the simple algebralc equation thus obtained is then sclved.

The operations by which the resonance amplitude is calculated thus
make 1t unnecessary to formulate and integrate complex nornlinear dif-
ferential eguations; let us note that the nonlinearity inherent tc the
systems under consideration influences 21so the recormended order of
calculations, but this only in the last stage of solut”on of the abcve
algebraic equation.

As an elementary problem, let us consider the determinaticn cof

resonance amplitudes for the Goodman and Klamp prchblem (§ 5), assuming

(84

that a mass m 1s attached to the end of the cantliiever ard 1s so grea
that 1t is possible to disregaré fthe mass of tﬁe team proper. Let is
assume that a disturbing force Posin wt 1= applied to this mass. The
amplitude of resonance vibrations can be found from the energy balance
equation: the work of the external force nPoA per one cycle 1is egual
to the dissipated energy Y(A), which 1is measured by the area of the

hysteresis loop, 1l.e.,
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=P A =Y (4) (22.7)
The area of the hysteresis loop in this equation must be written as a
function of the amplltude of the displacement A of the point of appli-
cation of the external [rrce. For this we shall substitute into Formula
(5.17) the expression for P from Formula (5.7); then we will obtain in-
stead of (5.17)

V(_q, .. 4%,.,3 ._.....9_’.__ R (22.8)

where the quantity A coincides with the gquantity u2(1) in Expression
(5.7). Here Eq. (22.7) becomes linear; however, even for nonlinear
dependencies ¥(A), as this takes place in the majority of structural
damping problems, the solution does not encounter serious difficulty.
Solving Eq. (22.7) for A, we will get

4= TG (e2.9)

This expression makes sense only under the condition that the friction-
al forces are sufficiently great |[g,4 >-§—P.); in the opposite case the
vibratory amplitudes become infinite. This éoincides with the known re-
sult, according to which dry friction absorbers are capable c¢f limiting
the amplitude of resonance vitrations only for sufficiently la,ge fric-
tional forces.

Expression (22.9) also makes possible the determination of the
optizal value of compression of beam layers.

It 1s obvious that the above computation procedure ig rot always
possible. Absorber systems of the tapered rings type, il.e., systems
with quite intensive energy dissipation, require a more exact analysis.
Lucklly, it 1s namely in these cases that the hysteresis loop is formed
by straight line segments and it is possible to perform segment by aseg-
ment solution, as for separate linear systems,utilizing the [curve]
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fitting method.

We shall not dwell on the details of this problem, or on certain
other problems of solution of dynamic problems, bearing in mind that
the main zoal of the present book 1s to obtain estimates of structural

damping in different types of systems, since the unavallability of pre-
cisely these estimutes has resulted in specific difficulties in the
formulation of dynamic problems.

[Footnote]
Manu-
seript
Page
No.
18= These recommendations obviously retain their validity also

for other cases of weak damping, for example, in problems
on vibrations of systems with internal friction in the ma-
terial.
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