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FOREWORD

The great effect of the damping properties of a mechanical

system on its behavior on vibrations is well known; these proper-

ties acquire particular significance in resonance conditions, when

the amplitudes of oscillations become limited as a result of pre-

cisely this damping. Factors causing damping of vibrations of any

system are: influence of the medium in which the vibrations are

performed (aero- and hydrodynamic damping), internal friction in

the material and, finally, friction in supports and couplings.

In those case3 when the above types of damping do not suffi-

"ciently limit of amplitude of vibrations, special devices, called

vibration dampers (or dampers), are introduced into the system;

for appropriate parameters these dampers become the most effective

medium for vibration damping. However, the introduction of special

dampers can in no way be regarded as an universal method, if we

keep in mind the large variety of possible mechanical systems; var-

ious structural or service considerations frequently pre ,ent the

installation of vibration dampers.

Therefore, in the overwhelming majority of actual structures

damping is created by the action of the medium, friction in the

material and friction in the supports and couplings. The first tw:o

of these factors were most thoroughly investigated. The investiga-

tion of the action of the medium on a vibrating elastic system bel-

ongs to the field of hydro- and aerodynamics; great successes achie-

ved in this field, in particular in conjunction with important prob-
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3cmL'of rait'ci]ar! wlngo ind tall . t.udmir4 I rw-l.:,'btI 1 1 t l']ti.yr0),"'

klowlO•;. Internal:) I''Il- •let m ]In the( malrtcr.-:, ki:,; l',,r° :, |onij, p( rioi,, cf'*

) l'it•" v( l • b ,]e c t. t o ) c o,)rt •li ltl u :'. :tt1 . ,n t ,)io l b ~y I : , • : t i; . , ,

the ,echanism of int-rnal 'rlcttlon haLi nol. j.n y(t. b(,(;Yi ui't'li, /

invcstigatcd, extent-ive experimental ma;teralI hao bccn coj ]',:t,,} :Irf

a vl.unm• of reliable inf-n.-nation on qualitative and quantitat1J. iV.

characteristics of various materials hau been obtained an ol" t,,fa.

We should, however, confess that the effect of thiz factor orn thý-

damping properties of the majority of actual structures waz ofte:n

overestimated.

It has at present become entirely clear that in the overw-:heln,

ing majority of cases the most important role is played by frictiron

losses in coul4ngs of mechanical systems. Two classes of case-

should be here distinctly distinguished: 1) friction in moving coup-

lings (of the type of bearings, g•ildes, etc.); 2) friction in per-

manent joints (press-fit, riveted, slotted, threaded and the like).

While the problem of friction in moving joints has been studied for

a long time and is rather extensively illuminated in the literature,

friction in permanent joints was subjected to investigation quite

recently, although it is of foremost significance in damping of dy'-

namic processes in machinery, ship and aircraft structures and many

other mechanical systems. The last type of damping is further called

structural damply; we shall utilize this, possibly insufficiently

exact, term for the want of a better one.

Not much time has passed from the publication of the first papers

specially devoted to the problem of structural damping; however sig-

nificant theoretical and experimental material, pertaining to the

most varied types of joints has been collected at present. The pre-

sent work represents an attempt to generalize all the results ob-

?TD-TT-63-755/1+2 - 2 -



tained in this field, here the basic content of the book pertains to

the theory of structural camping; problems of experimental character

are illuminated only to the extent necessary for reinforcement of

* theoretical calculations. Alongside with a detailed presentation of

materials obtained by the authors in the applied mechanics labora-

tory of the Automation and Mechanics Institute of the Latvian SSR

Academy of Sciences works of other investigators are also illumina-

"ted.

§§ 6 and 7 were written by N.G. Kalinin, §§ 12, and 14-16 - by

Yu.A. Lebedev, H§ 8 and 9 - by V.I. Lebedeva, the introduction, §§ 1,

13, 18 and the conclusion - by Ya.G. Panovko, 5§ 2 and 3 - by G.I.

Strakhov. Section 17 wns written by N.G. Kalinin and Yu.A. Lebedev,

§§ 4, 5, 10, 11, 19, 20 and 21 - by Ya.G. Panovko and G.I. Strakhov.

A

3 -
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INTRODUCTION

As has been pointed out in the preface, a dirtlnctiori zbouile be

made between the cases of friction in moving joints and ca;cz of

friction in permanent joints. The point of the matter is that in

solving problems of the first type it is natural to ignore the fact

that the elements making up the kinematic pair are deformable, and

to consider them to be entirely rigid; in the solution of problen.z

of the second type it is impossible to ignore deformations and it

becomes necessary to simultaneously consider both the friction for-

ces along contact areas and the deformation of the joined elements.

It is understood that the term "permanent joint" should be taken

conventionally, since we will everywhere assume a certain mobility,

caused by small deformations and relative slip of the joint elements.

The energy dissipation phenomenon in permanent joints on their cycli-

cal loading will subsequently be called structural damping.

'The importance of structural damping for dynamic processes in

mechanical systems has been known for some time, but it is only

recently that reliable experimental data conclusively ccnfirming

the paramount significance of structural damping in the most differ-

ent structures have been obtained. This pertains mainly to mechani-

cal systems in operation of which it is impossible to entirely elln-

inate resonance modes (ship and aircraft structures, turbine balckets

and the like). The distinguishing feature of structural darnping is

the known possibility of "controlling"the frictional losses in coup-

lings; thus, a change in the forces exerted by mutual compression

,~ ~ , -



between elements making up a structure can in some cases increase

energy dissipation and in others - decrease it. By virtue of the same

fact the designer finds himself in a ultuation (at least within cer-

tain limits) where he can control the damping in the system.

In published experimuntal works relatively much attention was

paid to experimental investigations of energy dissipation on cyclical

deformation of riveted joints (mainly in conjunction with the opera-

tion of metal structures in engineering installations). In particular,

the substantial influence of the degree of compression of structural

elements on energy dissipation attendant to cyclical loadings has

been e-5tablished long ago; this influence follows directly from the

dependence of dry friction developed in the joint on the normal pres-

sure. More than thirty years ago I.M. Rabinovich [19] has proposed to

estimate the state of riveted bridge joints by an experlmentally de-

termined absorption coefficient.* G.A. Shapiro's book [31], in which

the methodology of determination of frictional forces is developed

and the description of experimental equipment and special apparatus

is given, is specially devoted to the damping properties of riveted

joints.

The importance of damping created in riveted joints can also be

inferred from the results of tests on hulls of river and sea vessels

(Taylor [39], N.N. Babayev [1] and Kumai [34]); it has beern establish-

ed that riveted hulls of sea and river vessels have a corsiderably

larger abscrption coefficient in comparison with welded hulls of the

same type.

A similar phenomenon is observed in housings of gas turbines,

where the utilization of riveted instead of welded joints makes it

possible to significantly lower the amplitudes of vibrations. It has

been established in the Reference by A.M. Soyfer and V.P. Filekin [241

-5 -



•l11t successfull dwii-11, p n 1'el vibration" ]a•, i~a&, tjrbln•;. hou= 1rl;',z rv-jr, bc

:.chlcved by utlli] l:Nu -sp('clal damplnrý w:lu•c :carr,:o. Tihe ,ttc:r dl 'fTcr

I'POIU or'dina1Vr welded s'nmV- by the fact t,,it , In-'1 cIl,0.,Lie; ! ",ip of

welded component,, within limits allowed by the -eamn ztrcr.nth, ;z

possible. Comparative tests of damping seams or different dezlrrj

have shown that the largest absorption coefficient iz providcd b.j

scams executed by means of spot welding.

A.M Soyfer's articles [21, 22] are devoted to a systematic .x-

perimental study of structural damping in gas turbine components. It

is proven in these articles that structural means are solely effective

for damping of inevitably arising vibrations. The author suggezts a

number of design schemes; thus, application of a special wire braid-

ing on the ias turbine pipelines has made it possible to considerably

decrease the amplitude of resonance vibrations. Even more substantial

results were obtained with special wire dampers.

An Important question about vibration damping in banks of tur-

bine buckets was investigated by A.D. Kovalenko [9] and a number of

other authors. A.M. Soyfer in Reference (23] suggests the utiliza-

tion of a special design of the working part of the bucket with a

core as a damper of vibrations of a turbine or gas turbine pump

bucket. A metal core is fitted with positive or negative allowance

inside the hollow bucket; relative displacements of the core and the

bucket occur on segments of contact on cyclical deformations of the

bucket, with the result that a part of the energy is lost in over-

coming the frictional force. Di Taranto, in Reference [32], has in-

vestigated the effectiveness of steel wire clusters introduced into

the bucket. The energy dissipation in this case occurs not only due

to friction at the surface of contact of the bucket with the core,

but also at the expense of friction between individual wires within

- 6-



the cluster proper.

D.N. Reshetov and Z.M. Levin (20] have, on the basis of a large

number of experiments, determined the energy dissipation characteris-

tics in flat, cylindrical and tapered machine-tool component Joints

and have discovered optimal dimensions of these Joints from the point

of view of largest energy dissipation. On the basis of analysis of

experimental results the authors have established operating condi-

tions under which the greatest energy dissipation is obtained and

they have also performed a comparative estimate of the effectiveness

of the different types of dampers. In particular, structural hyster-

esis dampers were investigated; it was also established that stacked

dished dampers as well as stacked dampers with rippled spacers are

the best. The dished disks are deformed when the stacks are compressed,

slip takes place on the tapered contact surfaces and irreversible

friction work is performed. Stacked dampers [made from] rippled

plates operate similarly. The elastic properties of a rippled plate

are directionally anisotropic: the plate's rigidity in the direction

of the ripples is considerably greater than the rigidity in the trans-

verse direction. The compression of a rippled spacer between rigid

plates is accompanied by an expansion of the plate in a direction per-

pendicular to the ripples. This expansion results in the displacement

of the ripples relative to the rigid plates which, in turn, results in

the appearance of the work of frictional forces. According to the

authors' data, the energy absorption coefficient reaches the value of

1.4 - 1.6.

V.L. Bidernan, Reference [2] and I.G. Parlhilovskiy, Reference

[16], have experimentally investigated energy dissipation in stacked

systems of the leaf-spring type.

Energy dissipation in [railroad] car suspensions is considered

- 7-



in I.V. Krasavin's dissertation (10). It is shown in Heference [271

that the intensity of the dissipated energy in a bank of elastic

cantilevered beams with mutual contact at the end sections only, de-

pends substantially on the normal pressure at the contact surface.

Only by changing the compressing force of the leaves does it become

possible to obtain a several-fold lowering of the maximal magn 4tude

of vibrational stresses. Experimental results were obtained in the

work for a schematized twin-leaf spring. The work by Meyer [35] is

devoted to a closely related topic.

The effect of frictional forces in collet Joints was experimen-

tally investigated by E.L. Poznyak (17] in conjunction with the phe-

nomena of shaft rotation instability in the supercritical region. As

we know, forces of internal friction in the material or couplings of

the rotor can be the cause of "swingout" of vibrations; the friction-

al forces in these cases exert an influence opposite to that of

damping and are of substantial significance, although in a different

sense than for permanent joints. The effect of structural friction

on shaft rotation instability is investigated also by M.I. Chayevskiy,

Reference [30a].

Goodman and Klamp [33] and Pian and Hallowell [38] have experi-

mentally investigated energy dissipation in composite beams, consist-

ing of layers pressed tightly together; here the tangential forces of

interaction between the layers on bending of the beam are realized

only in the form of frictional forces. It has been established that,

in structures of this type, energy dissipation resulting from friction

along contact surfaces exceeds manyfold the energy dissipation due to

internal friction in the material of the beam's components.

Certain new experimental data about energy dissipation in models

of riveted beams and in threaded Joints are described below in Chap-
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ters 5 and 6.

We have tou-'hed above on experlmrw'tal iriv( tilgratlofnl pertaining

to the problem of strui'tural damping. Altog,,Ahcr, thr::' 1nv..t1ga-

tions conclusively prove the paramount impportanwtc ,,X :Atru,:tural damp-

ing for systems of the most different types.

Theoretical investigations of problems of structural danping

also begin to appear gradually. They pertain to simplified typical

schemes and are constructed upon two basic assumptions of a general

character: the material of the Joint components is assumed to be

completely elastic and the frictional properties of contact surfaces

are described by the law of dry friction.

The bending of a cantilever reinforced at the top and bottom

by thin pressure plates is considered in Reference (38]; the pressure

plates are pressed to the beam and take up a part of the cantilever's

length, without reaching the fastening surface (Fig. la). It is assum-

ed that when the cantilever is loaded by a transverse end force, only

frictional forces impede the slip of the pressure plates relative to

the beam. The interaction between the pressure plates and the beam

is different on two segments of the pressure plate's length. Near the

end of the beam the tangential forces between the pressure plates and

the beam are determined by the ordinary formula of strength of mater-

ials, here the tangential forces are smaller than the limiting value

qO = fp ( is the friction coefficient and p is the specific pressure

on the contact surface); the pressure plates do not slip along the

beam. However, it is required for the equilibrium of the pressure

plates that the direction of tangential forces tn its remaining length

be opposite to the direction at the first segment; the pressure plate

does slip along the beam at this second segment and the tangential

-9



forces are equal to q0. The loading of the top pressure plate is

shown in Fig. Ib; the bottom pressure plate is loaded in a like man-

ner (the tangential forces acting on it are of opposite directions).

It should be kept in mind that the slip
0 " zone appears for any as small as desired

lop values of the force aP. (Here and subse-

"5 -II"quently we denote by a a dimensionlecs

a •load parameter, varying between the limits

-1 ý a ý1; P is the maximal magnitude of

the force.)

Goodman and Klamp [331 have solved

the problem of cyclical loading of a can-Pig. 1
tilevered beam, consisting of two identi-

cal layers; the latter pressed to one another by a given pressure

(Fig. 2). As long as force aP is small, the tangential forces q, de-

termined by the ordinary strength of materials formula, are smaller than

I, ;1:41] the limiting value qo; there is no rela-

tive slip between the beam layers and the

cantilever bends as a beam with a mono-

lithic cross section. No energy dissipa-
Pig. 2 tion occurs at this stage.

When, in the process of increasing the force, the tangential

forces reach the limiting value qo, slip will occur between the beam

elements and the frictional forces will perform a certain irreversible

work. Goodman and Klamp have analyzed an entire symmetrical loading

cycle and have found the area of the hysteresis loop. It turned out

that this area depends in a peculiar manner on the given pressure p

between the beam ccmponents; it was established, in particular, that

- 10-



there exists a certain optimal value of the pressure for which the

energy dissipated during a single cycle becomes largest. This fact

can be interpreted in the following manner. khen pressure p is ab-

sent, no frictional forces are developed and there is no energy dis-

sipation. On the other hand, no energy dissipation will exist for

sufficiently large values of pressure, since slip between beam layers

is [then] absent. A similar problem with a composite beam in the ab-

sence of slip at the ends is solved by V.L. Filekin (30].

V.I. Peodosev [29] ,has solved the problem of redistribution of

tangential forces in a press-fit Joint, described in Fig. 3a. It is

assumed that the shaft is held in the sleeve by frictional forces

only and that the contact tension stress creating these frictional

forces is constant along the entire length of the contact zone.

The greatest value of load dM is con-

_ IlI[ LI sidered to be small enough so that the

shaft does not rotate at all within

*,a . ,.A:.. , • the sleeve. Since the sleeve and the

S:-"bshaft are not absolutely rigid, slip

TI-' h at the contact surface will begin for

Z~) 3)any, as small as desiredi, values of cuM;

Fig. 3 here the slip zones will adjoin the ern

of the shaft and the end of the sleeve.

The graphs of the torsional moments in the shaft and sleeve sections

for the first loading stage are shown in Fig. 3b and c. The substan-

tial peculiarity of structural hysteresis in permanent Joints is

distinctly seen in thip case: a singlevalued determination of frio-

tional forces is impossible without an analysis of the deformation of

the mating elements.

Cyclical loading of a press-fit shaft-sleeve Joint by longitu-

i -1n-



up dinal forcor (Fig. 4), is Cy-.tematic-

ally considered In Article [141.

The diagrams of the di-tribution

Fig. 4 of longitudinal forces in the zhaft

and sleeve sections are in thic caze

similar to the diagrams in Fig. 3b. The Reference investigates the

entire cycle loading - unloading - loadinrg,and determines the energy

dissipated during one such cycle. The effect of transverse deforma-

tions of a shaft on the dissipated energy is investigated in Refer-

ence [25]; these deformations are unavoidable on longitudinal loading

of the Joint under consideration and in

S , ,certain cases are of substantial signi-

ficance.

Structural hysteresis resulting

• ~ -- from slip arising between individual

wires is also observed in elongation of
F'ig. 5

wire cables. This problem was investiga-

ted by S.D. Ponomarev [18] (see also [4]).

The construction of the hysteresis loop for a spr %,as given

by V.L. Biderman [2] and in Reference [271.

The case of bending of a beam with pressure plates pressed to it,

described in Fig. 5, is considered in Reference [14]. The beam, at

its middle Lregment, deforms together with the pressure plates and

pure bending in the ordinary sense of the phrase is taking place;

tangential forces are absent along the mating surfaces of the pres-

sure plates and the beam. The end segments of the pressure plates are

loaded in a manner shown in Fig. 5b; furthermore, the tangential for-

cez qo are uniformly distributed along the length a of the e-d seg-

ment; they balance the force N devolving upon the middle segment of

- 12-



the pressure plate. It is understood that th( length a increases

gradually during the process of increase of the monent aM.

The investigation of the role of frictional forces in a torsion

* beam, a schematic of which is prc[cnted in Fig. 6, i9 due to N.F.

Karpachev (7]. The torsion beam represents a bank of leaves pressed

to one another at their ends, which is twisted by two end couples.

The energy dissipation attendant to the compressing of a disk

bank is studied in Article [26]. The bank conzists of disks made of

materials having different mechanical characterfestics (a pair of disks

is described in Fig. 7). If the friction coefficient is equal to zero

and no frictional forces arise on the contact surface between the

II

Fig. 6 Fig. 7

disks, then the axial deformations of disks with different moduli of

elasticity e. will also be different and, consequently, the radial

deformations Cr will also be different, even for identical Poisson's

ratios. It is, therefore, obvious that if f $ 0, then frictional

forces will inevitably arise at the contact surface (these frictional

forces are shown in Fig. 7).

The scheme of the frictional clutch, investigated in Reference

(13] and represented in Fig. 8, also pertains to this class of prob-

lem. Two disks pressed one against another created a coupling, capa-

-13-



ble of transmittingi., by vi,.tuc of friction, at toruc, riot c-xceedlng the

llmttIng value r'for which -lip between thc 01i-c; tak,- plu•cu. If

the condition al.1 < M i:p i atlsled, then a cer'tairi aria'IiPr :A;ip zonepr

the radius, oi which Iz nrialrcr than the out-

side radius and which increaces with the in-

C& am crease in the gi-iren torque, iz created in

the loading process. An annular zone of

rigid coupling of the disks is formnad on

Fig. 8 their periphery.

Structural damping in a thin-walled beam is investigated in Ref-

erence [6]. It is assumed that the wall resists shear only and, there-

fore, the transverse force in each cross section of the beam Is re-

sisted by the wall, and the bending moment - by the flanges. The jall

is pressed to the rods (flanges and supports) by forces of constant

Litensity. Only shear deformations of the wall in that zone A (Fig. 9),

where the wall is pressed to the rods, are taken into account in the

determination of relative slip between the wall and the flanges.

_ JD

Fig.9 .- g. 10

In all the enumerated eases the tangential forces of interaction

between the mating elements are assumed to be realized in the form

of frictional forces only. Systems of this type can be called systems

Li which the interaction between the elements is of purely frLctiona1

character.

In addition to these systems, a series of other important schemes

-14-



in which the frictional forces of interaction between the elements are

accomplished both in the form of friction as well as in the form of

an elastic resistance to slip, was considered; riveted Joints should

primarily be counted among this type of joints. We shall call these

systemts systems with an elastic-frictional character of interaction

between the elements.

Pian, in Reference [36], has investigated structural damping in

a beam with pressure plates (Fig. 10). This scheme differs from that

shown in Fig. 1 by the fact that the pressure plates are clamped to

the beam by rivets, which exert an elastic resistance to the slip of

the pressure plates relative to the beam.

Two types of riveted Joints, represented in Fig. 11, are system-

atically investigated in Reference [111. The first scheme constitutes

two elastic strips, ýoined by a riveted seam by means of two cover

plates; the connection transmits a cyclically variable longitudinal

IcP up
! i i~ llsl

Fig. 11

force. The second scheme is a natural generalization of the scheme

given in Fig. 5; a beam with two riveted pressure plates loaded by

two end bending couples. As it turned out, a certain optimal value of

the clamping force on the two pressure plates, ensuring greatest struc-

* r tural damping, exists also in this case.

The threaded point, considered in Reference [15], also belongs

among these types of systems with elastic-frictional character of

-15-



interaction. A certain relatlw y lip of' f]w bolt arLd njit torrixh; ,ccurcz

uii Loading OP' 4%,4.-. connet._i. , the V1!t'.in.tor whtl 1'r:::) whii r',: ,IJr ,Iclop-

ed ave the CattiwC o01 1,%r!. ... . c.. ,y:.t;.,.,.•.I .

The above gives a certain conceptio,, ,'i the vark.t, of thc, experi-

mental andi theoretical material accumul:tted dur~lig thVm lat fas 'Pt f*.-r:.

However, it cannot as yet be assumed that the scope of these imvezti-

gations corresponds to the great practical importance of the problem

of structural damping. A multitude of problems still awaits their

theoretical solution, and a series of concrete design schemes - their

experimental investigation.

We subsequently present a systematic presentation of solutionz

pertaining to simplified typical schemes. Here almost all of the

attention is paid to the construction of hysteresis loops and to the

determination of the energy dissipated in the Joint during a single

cycle of the system's deformation. Recommendations on the taking into

account of energy dissipation in the solution of problems of vibra-

tionil theory are given only in the conclusion; despite their simpli-

city, the recommended methods of calculation ensure sufficiently accu-

rate results.

The law of dry friction is assumed in the entire subsequent present-

ation for forces of friction over contact surfaces, and the properties

of the material are assumed to conform with Hooke's law. Kinematic

and static hypotheses, commonly used in the methods of the strength

of materials and the applied theory of elasticity are wridely used in

the solution of concrete p.oblems; this makes it possible to realize

substantial simplifications without serious detriment to the accuracy

of results. For sake of generality asyimetrical lo ding cycles with

an arbitrary characteristic of the cycle r:

-16-



p,

.. Ar^D Pand P -in th, 1.nr t-ft and smallest valuer of the load,

are considered in the majority of cases. We shall denote the current

value of the external force acting on the joint in the form of aP,

where a is a dimensionless load parameter. a = 1 for a maximal. load

and a = r for a minimal load.

Manu-
scrPpt [Footnote]Page

No.
5 Let us keep in mind that by absorption coefficient we mean

the ratio of energy dissipated during one cycle to the great-
est potential energy of the system.

Manu-
script [List of Transliterated Symbols]
Page

No.

11 B = v = val = shaft

14 np = pr = predel'nyy = limiting

17a
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Part On(,

SYSTF24S WITH FRICTIONAL COUPLING.

Chapter 1

PRESS-FIT JOINTS

§1. AN ELMENTARY SYSTEM

An example of an elementary system of the type to which the cur-

rent chapter is devoted is shown in Fig. 12; certain important prop-

erties inherent to the entire class of problems considered here can

be noticed in this example.

Fig. 12

Let us consider a quite thin elastic strip, pressed to an abso-

lutely hard. fnundation by a constant pressure p and let us investi-

gate the phenomena occuring as the strip is loaded by a longitudinal

force uP, varying cyclically within the limits from Pmin to P. We

will assume that the greatest value of P is insufficient for causing

the displacepment of the entire strip along the foundation, i.e.,

P IP =.t. (1.1)

where f is the friction coefficient between the strip and the foun-

dation, b and I - the width and the length of the strip and q0 - the

intensity of limiting frictional forces.

In the investigation of the distribution of frictional forces

between the strip and the foundation it is important to direct one's

attention to the following two peculiarities of the scheme under con-
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siderat ion.

1. The intensity of the frictional forces (per unit of strip

length) is equal to the limiting value

go- Ipb (1.2)

everyw:here where slip of the elements of the strip along the founda-

tion exists, i.e., on those segments where deformation of the strip

is taking place; this follows directly from the assumed law of dry

friction.

2. The frictional forces are entirely absent on those segments

where the strip is not deformed. Actually, according to Hooke's law,

the strip does not experience any load on these segments (and fric-

tional forces would have represented such a load).

The frictional forces developed on the contact surface thuz are

equal either to qO or to zero. Assuming Hooke's and Coulomb's laws

we exclude the possibility that frictional forces different from

zero and at the same time smaller than qO act anywhere. We shall suc-

cessively consider three characteristic stages of loading variation.

1. An increase of force aP frmn zero to the greatest value of P;

0 a < 1 during this stage.

2. A decrease of force aP fran the greatest value P, to the

smallest value Pmin = rP; 1 > a > r during this stage.

3. An increase of force aP from the smallest value Pnin to the

largest value P; r < a < I during this stage.

The two last stages will alternately repeat themselves during

repeated cyclical loading.

The first stage. Length a of the deformation zone (slip zone) is

determined by the condit ton of equilibrium of the strip and is equal

to (Fig. 13a)
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• ,' (1.3•)

On gradual increave of load ,P, the length of' this zcne will in-

crease; according to Condition (1.1)

,,l 840 -.= ±- 4 1. (1.4)

In accordance with Hooke's law, the relative elongation of an

element of the deformed zone

X ,,=•.(1.5)

where uI (x, a) is the displacement of an arbitrary section in the

direction of the x-axis, N (x, a) is the longitudinal force in the

strip cross section, EP is the strip's rigidity on stretching and F

is the area of the strip's cross section. It follows from the condi-

tion of equilibrium of an element of length dx, that

SA ,,(1.6)

Here and everywhere below, a prime denotes differentiation in

respect to the x-coordinate. Substituting here (1.5), we will get

EF (1.7)

The solution of this equation

us - A, +Ba,+ fee (1.8)

Conditions pertaining to a section situated on the boundary of

the deformed and undeformed zones have the form

,,,--,,, ,)=0; -;(-,,,, ,)=o. (1.9)

They express the absence of displacements and longitudinal force in

this section. We will find from (1.9)

A, 46 0-,,,- (1.10)
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Fig. 13

Substituting this into (1.8), we will get

• (l - • -- .)'(1 .1 1 )

2E7

where a 1 is a function of a and is determined by Expression (1.3).

The following dependencies are necessary for further [discussion]:

"](xt 1)-q 47 (/ sm" - zy(1.12)
2EF

alp'

(, -:f (1.13)

Dependence (1.12) describes the distribution of displacements u1

along the length of the deformed zone at the end of the first load-

ing stage. Dependence (1.13) determines the displacement of the end

section of the strip during the entire first stage.

The second stage. As soon as force aP begins decreasing., the end

elements of the strip will begin to displace themselves opposite to

the direction of the x-axLs; frictional forces, acting in the direc-

tion of the x-axis will, correspondingly, appear. The condition of

equilibrium of the strip (Fig. 13b)

.. t- - 2,, ) -(7(0 (1.14)

will make it possible to find the length of the zone of "reverse"
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displacements

"i(f 15)

here

'1 1.1 I- r)• (1.16)

The equation of the equilibrium of an element situated anywhere

within the limits of this zone has, in contrast with (1.6), the form+

'O' = - q.. (1.17)

Substituting here (1.5), we will arrive at the equation

the solution of which

=As+Bx• (1.19)
2EF

should satisfy the conditions

a 2(1--•., a)=u1 (1--,, 1),
2 Q0,2 K)=K; (I-aQd. 1) (1.20)

These conditions express the equality of displacements and longi-

tudinal forces in section x = 1 - a 2 , where the zone of "reverse" dis-

placements borders on the zone of "direct" displacements. Dependence

(1.12) should serve as the starting point in the setting up of the

right-hand sides of Expressions (1.20). From (1.20) we will get

As A- [(Ilu - 2a (1+ a2)].)
E(1.21)

consequently,

S("") 2-•[(so at. an -- r --

-(I- e,- ,-'-- + 2 (1- ,) (a, - a, .u)]. (1.22)
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where a 2 is a function of (a and iS determined by Expression (1.15).

Further we need the following dependencieo:

-I +2 --, - , r (1.23)

I 4- 2% - a'4q*.F: (1. 24)

Dependence (1.23) determines the distribution of dizplacementc u 2

along the length of the zone of "reverse" displacements at the end

of the second loading stage and Dependence (1.24) - the rule of dis-

placement of the end section during the entire second stage.

The third stage. At the beginning of the third stage pcsitive

displacement3 will again arise at the ends of the strip over length

a3 ; the distr~bution of frictional forces during this stage is shown

in Fig. 13c. m the condit'ons of equilibrium of the strip

WP - (PS 02 -- an) q9 -- aq, - (2wax-- as) q, -- 0 (1.25)

we will determine the length

as (1.26)

The differential equation again acquires the form of (1.7); its so-

lution is

us As + ,: +- --. (1.27)

Conditions at section x =1 - 3

S 0 43-. , . ) = 2 Q; ( - 9S., ) ( 1 . 2 8 )
U(10-as. a)= g';(0-. as )

give

A3 (I + 2r -r)P q# [( - 2 -
* 4q9EF 2UF

3 (1.29)
q I3 . -S=•- l- =-la,-
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Consequently,

*'": ('" . *) "-i.' -.:

and the displacement of the end section x = 1 i- determined by the

dependence

",l, i. %) --- 2ir---"4 -- (1.31)

ota)ot b,6)

U. U Us
0.5Pes u. Z

oQ3 to o.,0 21 Q o
nJg. 14

Dependencies ul (j. a).. u2 (1, ca)and u3 (1, a) for cases r =0.5 and

r = 0 are shown in lFig. 14a and _b; the closed hysteresis loops can be

seen here distinctly. The area of the loop represents an irreversible

part of the work., performed by the force aP. We will utilize formula

P I
=u.i )- 31,a)dP = Phu. --u3) d.t (1.32)

for calculation of this work. Substituting here Expressions (1.24)

J ~ and (1.31). we will find T /(-

T=PO-r (1.33)IJqEF

The interpretation of this result will become easier if we denote the

amplitude of force aP by Pv and we note that P(1 - r) = 2Pv. Now For-

mula (1.33) acquires the form 2PI,
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It follows directly from this that the energy diz-ipation is independ-

ent of the mean value oC' the force

I, -- P"a +±P

and is determined by the variable component PV. The hyperbolic depend-

ence of the dissipated energy on the intensity of pressure p (to which

the limiting frictional forces qo are proportional) represented in

Fig. 15 by a solid line corresponds to Expression (1.34); it is valid

only for those sufficiently large values of £ which correspond to Con-

dition (1.1). The shorter the zone, the larger should be the corres-

ponding minimal value of £. If the

left end of the zone is fastened, the

Limitation (1.1) is lifted. An investi-

gation of this last case results in a

P dependence shown in Fig. 15 by a dashed

Stline. The existence of a maximum of the

Fig. 15 area of the hysteresis loop, achieved

for a certain preset value of pressure £, is noticeable.

§2. ENERGY DISSIPATION ON TWISTING A PRESS-FIT JOINT

Having analyzed an elementary system, let us now examine in de-

tail the problem of energy dissipation on twisting of a purely fric-

tional press-fit joint of the shaft-sleeve type (see Fig. 3). We shall

consider three types of joints, differing in their structure and in

the type of loading (Fig. 16). In the joint of the first type with

the shaft cut in half (Fig. 16a), the load is in its entirety trans-

ferred to the sleeve by the frictional forces and the value of the

torque M is such that the joint becomes uncoupled (the half-shafts

revolve in the sleeve). In the second type of joint, with a continu-

ous shaft (Fig. 16b), the loading is transferred to the sleeve only
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in the degree permitted by the frictional forces. No torques capable

of uncoupling exist for joints of the second type; furthermore, the

strength of the joint is determined by the strength of the shaft and

is not limited by frictional capabilities. In joints of the third

type (Pig. 16c) the torques at the shaft's end sections are unequal.

When a large torque M2 is transferred to the sleeve, the sleeve may

revolve on the shaft.

Local slip of the shaft relative

"to the sleeve in the extreme regions

of the contact surface appears in all

- a I- 6 * the three cases of "permanent" Joints

for any as small as desired load.

S•-Joints of the first type have four
b

local slip zones. Their length de-

pends on the limiting frictional for-

"ces (i.e., on the stress and on the

"friction coefficient), the value of

the load and the ratio of rigidities

of the elements of the press-fit
Fig. 16

joint. However the ratio of the dirien-

sions of the regions, a-b, is determined only by the ratio between

the rigidities of the shaft GJ and of the sleeve GTJT on twisting. If

one of the elements of the joint, the shaft or the sleeve, !s sc rig.-

id that it is pracl Ically possible to disregard its ccmpliance, then

the system substantially becomei, analogous to an elastic strip on an

absolutely rigid foundation. In the case of a totally rigid sleeve b

I0, and slip occurs only in the extreme region a; if it is the shaft

"4hich is totally rigid, then b 1 0, but a = 0. Slip in two extreme

regions appears in the Joint of the second type on loading. When the
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sysCotcm iss -ey-!netrica 1 in reopect to the median cros.- section the diMen-

sius of these regions will beientioaI they depend. as in joint- of

the first type, on the load, limiting frictional forces and the rela-

tionship between the rigidities of the press-fit Jolnt. Due to the

absence of symmetry in the loading scheme of Joints of the third type,

the two extreme slip regions have different dimensions.

Let us start the study of quantitative relationships governing

the phenomena of energy dissipation with Joints of the first type.

Let us assume that the system is fully symmetrical, the contact sur-

face constitutes an annular cylinder, the pressure at all surface

points is the same and the friction coefficient is the same over the

entire length of the Joint. Under these conditions it is sufficient

to consider only one half of the shaft (Fig. 17a) and to double the

thus obtained result in calculating the area of the hysteresis loop.

Let us also assume that no frictional
_ ._, ff forces exist at the contact surface at

f the beginning of the first loading.
Lid -- The first stale. During this stage

b B
am ithe load o0 varies between zero and the

value M; we shall assume that the lar-

d ,gest load is not sufficient for complete

uncoupling of the Joint. The shaft and
Fig. 17

the sleeve are deformed differently in

the slip zones a and b, under the action of the torque. No slip of

the shaft relative to the sleeve exists at the mid-segment of the

Joint, the angles of twist of their cross sections are equal to one

another and, therefore, the torque is distributed between the shaft

V, and the sleeve MT, proportional to their rigidities
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Al,:1 - OE1,, (2.1)

!: • . -- L-) .•I. (2.2)

GJ
where k.= j. T-j; represents the radio of the shaft's rigidity GJ,

to the total rigidity of the Joint; VTT is the torsional rigidity of

the sleeve.

It can be seen from the consideration of tne equilibrium of a

sleeve segment of length aI along which slip has occurred that

.,, = Maj. (2.3)

where

9 Rq6 (2.4)

represents the intensity of the torque due to frictional forces; this

torque is uniformly distributed along the shaft's slip segment; R is

the radius of the cylindrical surface of contact between the shaft

and the sleeve.

The length of the slip region

0=- - A (2.5)

is determined frim Relationships (2.2) and (2.3). The length of the

second slip region b 1 is determined from the consideration of cae

equilibrium oZ the shaft's end segment. We will find

-- "- (2.6)

Thus, distributed torques of intensity m act on segments a1 and

b 1 . Diagrams of m, NT and Mv are presented in Fig. 17.

Let us consider the angle of twist ef the shaft end I - I reoa-

tive to the sleeve section II - II. This angle of twist is found by

adding the angles of twist of the three segments of the system. We get

here

28-



al- "., .UtJ •j-" I- ..
li, (I. 4t)-

One's attention is attractel in thin £onnula tr, the p*.czence of

a nonlinear dependence between the force and the deformation, thiz
nonlinearity is characteristic of elastic systems with _'rictiona1

couplings. Let us note that for m--', I.e., when the shaft and the

sleeve are rigidly joined (f- c), the first term of the forinula van-

is.les, with only the term determining the angle of twist of a continu-

ous shaft remaining. For k 0-*, (the case when the rigidity of the

sleeve is considerably greater than the rigidity or the shaft

(J .. -1;J.) the structure of the last formula coincides with the anal-

ogous, Formula (1.13) for a thin strip on a rigid foundation.

For the greatest value that the load can take on in the first

loading stage, i.e., for a = 1, the displacement of this section is

determined by formula

A I- 3k+A+i' (2.8)

Terms, corresponding to elastic twist of that part of the sleeve which

is free of the shaft are absent in these formulas, since these terms

do not affect the energy dissipation characteristics.

The second stage. A redistribution of frictional forces occurs

in the process of unloading the Joint, and regionr along whi4.h slip

occurs in the reverse direction appear. Let us denote the lengths of
these new regions by aand b;they are determined, as in the first

stage, frcm the consideration of the equilibrium of shaft and sleeve

"segments:

...- 2 9) -(29)
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I. 01 • i 1,) (2.10)

-II.

ue• 13 shows the diagrams of the torques m, M and M_. By adding

the mng.les of twist of the several segments, we can find the displace-

ment of the -Jame shaft section I - I inC -'x *...-,*.i• the unloading stage -in the form

I - k _

I , : For k -* 0, the structare of this formiula
is as-

coincides with that of the analogous For-

Smula (1.24•) for the displacements of the

"end sections of the thin elastic strip

Fig. 18 along a rigid foundation during the second

loading stage. If the load reaches. the greatest value (a = 1), then

tLis formula, obviously, gives the previous result (2.8), and for a

w•inimal value of the load, the displacement of the shaft's end section

is written in the form

u20. -' ) (1 - -(- - 3k +31. 3 rk.,,, (2.12)u,(l G () =1&-~ = -• -4-, +--Y-

The third stage. In contrast with the first stage, slip is al-

ready present on individual segments of the contact surface towrard

""he beginning of the third stage under consideration and a certain

system of frictional forces is in existence. The increase of the load

fror the minimal to the greatest value results in the appearance of

still another two slip regions a3 and b (Fig. 19). The lengths of
3

these regions are determined fram the equilibrium. conditions and have

the values

a3=(3--r) Of
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C., ( r) 0 /1 (2.14)

The diagram.s of the torques m, due to frictional forces, and of v

and A are showm in Fig. 19b, c and d. The displacement of zection

I - I relative to section II - II in thiz
meP

loading stage is determined by the formu-
l.f...

la
-• ' - C9  'P1•! -!. . '1 zr ,*: .-~~'-;';jŽ

_ .'.2A)I1 (2.15)

For k- 0 this formula coincides with the

"analogous Formula (1.31) of the preceding

Fig. 19 paragraph. If the load reaches its great-

est and smallest values, then Formula (2.15) gives the same results as

Formulas (2.8) and (2.9). Thus, when the load varies cyclically, the

relationship between u (1, a) and the torque aM is represented by a

closed curve. fo.,ming a hysteresis loop. The shapes of the hysteresis

loops are entirely similar to those shown in Fig. 14. The area of the

hysteresis loop calculated by Formula (1.32) will be:

-(2.16

where 31V- -LJ2Y is the amplitude of the cycle.

This formula makes it possible to estimate the effect of design

parameters of the Joint and of the frictional forces distributed along

the contact surface on the rate of energy dissipation attendant to

cyclical loading. As can be seen, the work of the frictional force is

a function of the cube of the cycle's amplitude and is related hyper-

bolically to the pressure p at the contact surface; this can be easily

noticed if one takes into account the fact that m is determined by
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Formula (2.4). It also follows from Formula (2.16) that the work of

the frictional forcea does not depend on the mean load of the cycle.

The result obtained by Formula (2.16) should be doubled in order to

determine the energy dissipation in both halves of the Joint. Let us

again point out that the load is insufficient for uncoupling of the

Joint.

Let us consider the problem of energy dissipation in a press-

fit Joint of the second type which was briefly characterized above.

Figure 20 shows "he distribution of the torque in the shaft and sleeve

scctions along the length of the contact surface, successively during

three loading Etages. Let us assume that the load applied to the end

sections of the Joint's shaft is smaller than the limit for '1:hich the

mutual slip of the shaft and sleeve sections is propagated over the

entire length of the contact surface (M < ml).

Formulas for the angles of twist of the end section I - I of one

half of the shaft relative to the mid-section II - II (Fig. 20) dur-

ing all the three loading stages have the form

,, (i, e)= ;:w (I -. ;,? + "M (2.17);!mG1 T

Big I, i () = 4?(1 -- -- 1 (- i

.,1(Q. m)= (I - .e-(l +2 -.- '2r - x2) (2.19)

Energy dissipated in one half of the Joint during a complete cycle

of load variati'm is determined by the formula

2" V: (1 -k2

3mr) (22)

As can be seen, energy expended on irreversible processes again

in this case is independent of the mean value of the load, but depends
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on t11 (:ubc of' thc ýycle'. amplitude.

C _- -Thm h~ypcrbollec dependence of' the dicsi-
pated energy on the prezzurc at the con-

_ .. tact surface 12 also rctanird.

Let u, further consider the case

-. - of complete slip when the amplitude of

S- z the torque applied to the shaft exceeds
I_______ _ •the limiting value Mv > ml. Unidirec-

I .,tional slip is propagated over the entiri

*.. I @contact surface during each stage of the

"hm"; -- -- "---, cycle. Slip accumulated during the pre-
ceding stage of the cycle is "erased"

Fig. 20 and appears in a new, opposite direction

Let the greatest load of the first loading stage already exceed

a value

Ml, (2.21)

such that the length of the slip region becomes equal to half the

length of the contact surface (Fig. 20). In this case, the loading

process breaks up into two stages: during the first stage the bound-

ary of the slip region is displaced as the load is changed; during

the second stage the position of the boundary does not change.

The displacement of section I - I relative to the stationary

section II - II during the first stage is determined by Formula (2.17);

during the second stage, when slip is propagated over the entire

length of the contact surface, the angle of twist of the same section

is determined by formula
-In

, ,1. ) -. (22 - 1). (2.22)

where a0 is the limiting value of the dimensionless load parameter;
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it can be found by Foxmula (2.21) fron the conditions of equilibrium

of the half-shl'Aro'.

As can be seen, the pressence of* a stationary boundary of" the

_lip region results in the appearance of a linear dependence of the

angle of twist on the load. The fAnction uI = uI (1, u) is sho,,:n graph-

ically in Fig. 21. The nonlinear segment of the first branch of the

curve shown in the graph corresponds to Dependence (2.17), the linear

segment of the branch - to Dependence (2.22).

Let us now consider the unloading process. The angle of t-:izt of

section I - I relative to section II - II (slip has not as yet propa-

gated itself over the entire contact surface) during the first stage

is determined by Formula (2.18); during the second unloading stage

'his angle is determined by formula

= I -23)

Thus, on unloading (second branch of the hysteresis loop of Fig.

21), dependence u2 (1, a) is quadratic during the first stage. This

dependence becomes linear during the second stage.

The second loading ccuses a new change in

the direction of slip. The angle of relative

twist of section I - I and II - II is deter-

mined by Formula (2.19) during the first stage.

and during the second stage, by Formula (2.22).

The nonlinear dependence of displacement or. the

Fig. 21 loading for a moving boundary of the slip re-

gion and the linear dependence for a stationary boundary of the slip

region also exist during this process of repeated loading. The third

branch of Fig. 21 corresponds to this process. Energy dissipated r:•

a complete loading cycle is determined by the fcrmula
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- , 13W,,00 - (;at' I '113I (P. 24)

11

whcIe r ,e - r) 10 the am;plitude of' the variatlor, of thQ- dimcri

sionless load parainctc'. So that thy wnr~plitude of the torq'ue can be

expressed by the dependence Mv = arM 1.

Formula (2.24), in contrast to (2.20), is valid for small values

of frictional forces, and therefore makes it possible to investigate

the characteristic of energy dissipation for m. 0. The dissipated

energy depends on the amplitude of the load for small values of tan-

gential frictional forces; furthermore, this energy does not depend

or the mean value of the cycle's loading. The dissipated energy is

parabol.cally related to the normal pressure on the Joint's contact

surface. If we take into consideration Dependence (2.21), then Forl-

mula (2.24) for the area of the hysteresis loop can be transformed to

the form

"r i p" - f (2.25)

For p = 0, i.e., when normal pressure on the contact surface is absent,

there is no friction in the Joint and there is no energy dissipation.

For the value p = pI, which is determined by the formula

P, = W!,(2.20_6)
P 4 4J(211 (2 -- 2k -- I)

energy dtssipation reaches its highest value. In this case the area

of the hysteresis loop is equal to:

.; - , (2.27)

*2(4 13- (I - 4f

A further increase in prtssure results in a decreased energy

dissipation. Under the condition Mv= oM, which determines the lower

boundary ef applicability of Formula (2.24), the same result is ob-

tained as when using Formula (2.20) for which this condition is the
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upper boundary of applicability. Figure 22 shows the graph of the de-

pendence of the area of hysteresis loop on the normal pressure at the

contact surface, constructed by Formulas (2.24) and (2.22). Let us

note that the -nergy dissipation increases- with an increase in the

rigidity of the sleeve (i.e., for a decreasing k) (compare Fig. 22

with Fig. 15).

The most widespread type of a press-

al • _fit torsional joint is the third type of

j- Joint. A sheave or a gear on a trans-

ST § •mission shaft, seated with interference,

" -is a characteristic example of this type

Fig. 22 of' joint.

Due to the absence of loading symetry (see Fig. 16) the end slip

regions are of different dimensions. The presence of a torque or. the

step in section II - II results in the appearance of a median slip

region. The dimensions of these three regions depend on the load, in-

tensity of the moments of frictional forces and also on the ratio be-

tween the r!.gViities of the shaft and the sleeve.

In the limiting case, when the rigidity of the shaft is equal to

infinity, slip occurs only in the end contact regions. Let us deterr.-

ine the energy dissipation during a cycle for this elementary and at

the same time interesting for practical purposes case (since the rig-

idity of the step is usually by far greater than the rigidity of the

shaft).*

It has already been pointed out above that for a rigid press-fiE

joiTt sleeve the problem1 of cyclical torsion is entirely analogous to

the problem of the elastic strip on a rigid foundation. Therefore the

dimensions of the extreme slip regions on first loading are determined

by formiulas
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•h'-.h .•t' ' ;:p , t, l\" :, .w1c -,u t F'.",inul'i (1.3).

The tor•quc. In the extreme shaft occtlonz .1 and iM3 n•dn also

the torque applied to the step cd.t,, satizfy the equilibrix-. cor.ditiorn

of the Joint

•(JI, + .11' z M0)-:.

The angles of twist of the extreme shaft sections can bc determn-

ined relative to any section situated outside the slip region (sec-

tions situated in this region remain mutually stationary). For ex-

ample, the angle of twist of the right end section of the shaft for

the stage of first loading is determined by the formula

0. 2) (2.29)

the angle of twist of the left end section is determined by the form-

ula

U, 2mG/ (2.30)

Similarly, during the unloading stage we have

%(q. a) =•( --' 02z-- 0)}: (2.31)

ua(4, a)= 2x-e). (2.32)2 -GJ ( -2 -z)

The angles of twist of the extreme sections during the second loading

stage are determined by the formulas

us ,, -- a,+ 2,+ 0), (2.33)

2m(2Af !(2.3 4)i U3 - a. ) = - - (t - ,r+ 2r,+ 4 .

The area of the hysteresis loop for the given Joint is calculated by

the formula
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2 , (2.35)
,.orques applied to the right

where N11 and M3v are the anplitudes of Iu. p ti

andi the left ends of the shaft. Let u, no-e that the last formula is

valid only in .the case when slip has not spread over the entire con-

tact surface.

§3. 1•ERGY DISSIPATION IN A PRESS-FIT JOINT DURING T•tJSION - C'v'"PRESIC'--i•

Results obtained in the preceding paragraphs can be generalizec

to [include] press-fit joints during cyclical tension-compression.

The problem of cyclical tension-compression of a press-fit joint be-

comes fully analogous to the problem with cyclical torsion of a press-

fit joint, if, as in the latter case, we assume that the shaft and

sleeve material is subject to Hooke's law, the tangential frictional

forces at the contact surface ar'e subject to the law of dry- friction

and that sections which were plane before loading do not change their

shape and remain plane after the load has been applied both in the

slip region as well as outside this region. In addition, it is neces-

ary to assume that the normal pressure p at the contact surface d:es

not change either during the loading process or along the L.ength of

the joint. Th.s assumption, obviously acceptable in torsional probler.s.

becomes much more doubtful in problems of longitudinal loading here

considered; actually, for a Poisson ratio different from zero the

longitudinal loading will result in a change of effective tension and

the frictional forces will lose their previous property of constancr-.

We shall consider this somewhat further on; at the .. cment "se .-:ili stop

at the elementary assumption, according to which the tension remairn

constant.

In accordance with Sectlon 2, the following formulas can be

written for areas of hysteresJs loops in various types of joints (see
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Fig.- -r). PO4 n Ir.t tf',I ( h,' j ft c-ut iritoA. L'W' I .+ A W 41 4. , 1.. - . _

hIlves in a sh.¢v(,), c:u), h ", , oxir,,:, (2. h) ,. h'v,+

2 _P, I_--3k -3/."
3 q,-'Y 1 --

In joints of the secund type (sleeve-continuouz chart) thU..area

of the hysteresis loop for one half oC the Joint iz detcrminid .itAi-

lar to Formula (2.20)

2 P,3 (.2)S W.

The following notations are here utilized: Pv is the amplitude of the

longitudinal force, qo - the limiting frictional force, EF - the rizid-

ity of the shaft on tension-compression and k, as before, the ratio

of the longitudinal rigidity ol the shaft to the total longitidinal

rigidity of the joint.

In the case of full slip over the entire contact surface the

formula for the area of the hysteresis loop in the joint of the sec-

ond type takes on a form similar to that of Formula (2.24):
2P _ __32 __ 4 (i-- ., (3.3)

':=;,•ý. 13x. =,, -- .3 -- 3

where av is the amplitude of the dimensionless load coefficient.

We shall examine in detail the influence of the Poisson's effect

for the elementary case of a joint beAween a rigid sleeve and an elas-

tic shaft (Fig. 23a).

The first stage. As before, we shall assume that no tangential

forces of interaction between the shaft and the sleeve exist*at the

beginning of the first loading. The initial normal pressure on the

contact surface is proportional to the difference between the shaft

diameter and the internal diameter of the sleeve before press-fitting

P. (3.4)
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where 8 -.1, 1, - -( - : O f 0(A i' I t / o(.OAin'',j-z~t 1D" " _

and DT - the tIi.tti ] d :lmLtt t,.: of* th( ;-1i|:tt ;,i,,J ti( zlcc.vc rcfor,-.-

pressf Itt Ing.

A change in the noiiial pt.czsur. p :,]urii thi. lV.rith of th(n fitted

segment arises attendant to the londinu ol' th ,h;j!*t b/ a lcngitudinal

force. This pressure can cvcn dhaptj,' tnt , 1w iPor- ) sufficenti7

large value of the longitudinal stretching t'orce and then a gap -.ill

appear between the sleeve and shaft surfaces. Below we shall still

assume that the initial pressure pO is sufficiently large and a gap

does not appear. Let N(x) be the current value of the longitudinal

force in the shaft section and p(x) -- the current value of the pressurle

on the contact surface; In the absence of an external load (i.e., for

a = O) we have N = 0 and p = p.. 161ien the shaf elongates (N > :) the

pressure is diminished (p < po); when it is compressed (N < po) 1t

increases. Under these conditions,

the radial deformation of the shaft

is determined by the formula
X , . (-c *-P~x ( 55)

,----• -+ •g -(I-

Here E and p are the modulus of eiaz-

,--ticity of the shaft material and the

./ Poisson's ratio and F is the crozs-

sectional area of the shaft.

The first term expresses the

"aII effect of the longitudinal force,

the second - the effect of the pres-
Fig. 23

sure drop from the value p0 to the

value p (x). However, an absolutely rigid sleeve makes it impossible

for the shaft to change its cross-sectional dimensions, i.e., tie
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radlal defomixatIon o," the Sh,.!'t ", vh i o; J-xprI.: ',. ( :, ! ) ltor,' :t!h

cquzit ton

•~- l\ , ,,, /,,t. •tE IF I.," tI ,

Wc find from thi:- e-luAt*on

I' () I) - 0 ")(

Let us introduce the notation

I 0t -- I)

Zuantity N* represents the force N, for which the pressure p (x) - C.

As has already been said, N < N*.

The relationship between pressure p (x) and force N (x) takes on

the form

P (t -) 0 -- N (z)1. (3. 9)

The intensity of the limiting frictional forces

, (z) - -..Dpi - 1. !%O -- N" (z)) (3.10)

varies as a function of the longitudinal force in the shaft section

arnd is proportional to the quantity

= (I -IL-) (3.11)
F

The followirg equation can be obtained-' fran the equilibrium condition

of a shaft element of length dx:

N =-(3.12)

The solution of this equation under the boundary conditions

has the form

N (,) =.,-- (,V- KM c,-)P= (3.13)
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The dlai-rrr'r fi I'll IL ohon in Fig. 2" c. !"lp-urc 23b gvcz the diagraxL of

' W (x) corrospondhtiqt, to Dependence (3.10) i, N (x) from (3.13) is sub-

stituted into It.

The boundary o," soip propagation iz determined fror, the consider-

ition of the ciui1lbr" o the cnt"r'c sha't

OgP -"qo(i) dx. cn. . .hs

Keeping in mind that qo (x) is determined by Dependence (3.10) and

1, (x) -- by Expression (3.13), we will get

). No m
= x.(3.15)

When loading is absent (a = 0) we have a1  0. If aI=, then the

joint is uncoupled; the force necessary to bring this about is de-

termined from (3.15)

cop = AV* U-- e-U. (3.16)

J- the load reaches it-, largest value a = 1, remaining smaller than

the limiting [load], then the length of the slip region is determined

by the formula

02 -!In N-0 ' (3.17)

Cn the basis of Hooke's lIk we have the equation

U'= " (3.18)

TaKing (3.13) into account, we will obtain, on integration under the

conditions u1 (a,) = 0,

a (x-a)+ (N 1(

Corr- .ponding.Ly, the disp'acement of the end section is equal to:

u,(3, ) -- ! "
-, j3, a)- I 2 (N - - 1) - xN'a, (3.
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It the load ,e:nciicz it-.- m:axtz l -vi-tutic L -- 1) th... th. ,_-, .. nt

ol' this section U1. d('ttetiriJ.rl, by tll, ['()rInfulu

Under the condition that tbc P.Aiso(,n cf'cct I-.; ab::cr.t (.--), thr

latter formula, after the proper limit tranc.ition, fully concirlez

,:ith the analogous Formula (1.13).

The second stage. When the loading is decreased, shaft sectiont

are pulled into the sleeve at the extreme contact region, and re-

verse slip appears on a part of the contact surface. The equilibrium

equation of a shaft element situated in this zone gives

X" = N (4. (3.22)

Substituting the expression for qO (x) into this equation, ,.,e wrill,

obtain a new equation for the normal force in the shaft section

Jr'-- I* - (N))0. (3.23)

The solution of this equation under the condition N(O) = cP:

N (2) z- X. - (.V- -aLP)- -. (3.24)

If we now take the external load off completely, then residual stresses

distributed according to the rule

N (r) = N. (I - Zz). (3.25)

-ill appear in the pressfitted part of the shaft at the reverse slip

segment. The diagrams of N (x) and qo (x) are shown in Fig. 24c; the

boundary of the reverse slip propagation is determined from the condi-

tion of the shaft's equilibrium:

up= - g()dz +
see

+ fq. zdz. (3.26)
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ltf-ubztitut, for the integrand qO (x) It:; v:ulu(.: frc.x (3.10), taking

lhit,, :tecount that the normal force

III tl, ::h:i(t :'(:Ctorl U (x) on the
-1-- c -, 11 ;-,

" x d~'cet .:lt, :;ciicnt iz detcr•ined by

A - 00i1riu11 (3 1)j arid on the reverse

Ssl ip zeLg nent - by Formula (3 .24 ).

"Then the boundary of the reverse slip

region will be determined by the for-

b •1 mula.

= -- ._ (3.27)

*0
Reverse slid is absent for a = 1Fig. 24
(a2 = 0); if the load is brought to

its minimal value a = r, then the dimensions of the reverse slip re-

gion are determined by the formula

"I In N.-W (3.28)

We shall determine the displacements during loading, again utiliz-

ing Dependence (3.18). After substitution of Expression (3.24) into

this dependence and integrating under the condition of continuity of

displacements at the boundary between direct and reverse slip segr.ents

U (th) = U,, (as) (3.9)

1-e will get

UZ (a, X) N* . (Z -- a321 +. I'% -- P) 1e" -- +

+ ("-- ";9 (e-ka -e--,-) (33C

Expressing a1 and a. in terms of the parameter a, we will obtain a

formula for the displacement of the end section
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u. (i. 0) 11•N*

at/') - I -v'** 2 I)P. 3

At the boundary of1 the first and second stavesz, i.e., f'or ri 1 , For-

riula (3.31) coincides with Formula (3.21). If the load reaches; its

minimal value, then the displacement of the end section iz determined

by the formula

, (1.0) - -rP -- *I N
,X] N O -P.3 .3 2 )

- 2 t (NV* - rP) ,N - P

The deformation of the shaft does not disappear for a = 0 and the

shaft is loaded by a system of residual forces. The residual displace-

ment of the end section x =0 is equal to:

u, (0,0) " = - XN In -A--p --

-2 CVY (N-. -

Let us note that, as a result of elementary transformations and of

limit transition, Formula (3.31), under the condition X -- O, coin-

cides with the analogous Formula (1.24) for an elastic strip on a

rigid foundation.

Trhe third stage. On repeated loading of the shaft "erasure" of

reverse slip occurs in the extreme region of the mating surfaces and

a segment of direct slip a3 again appears (Fig. 25).

The normal force N (x) is, within the limits of the direct slip

segment, determined by Fozrw_1a (3.13). The position of boundary a3 is

determined, as in the previous two stages, from the condition of the

shaft's equilibrium

--'f. (z) z - fq (z) d + f * ) di (3-34)
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From this we gct

,I I N--rP
... 3 2, - (3.35)

If a = r, then a =0; for a = 1

I NO-rP
a22  In (336)

The diagrams of N (x) and q (x) for

the second loading stage are showtm

in Figs. 25b and c.

,- I. The displacement u3 (x, a) will

be determined if we integrate Eq.

Fig. 25 (3.18) under the condition of contin-

uity of displacements on the bound-

ary between positive and negative slip:

U3 Cr. GO = .LN" (z - &12) + (No - P) (e,,.- -- e•,,) +
ILEF (3.37)

+ (,Vo - rp) (e-1 - ,-I-) + (,NO - ,)( -•I

Ut.lizing the above dependencies of the dimensions of slip re-

gions a1 , a2 and a3 on the dimensionless load parameter a, we will

determine the displacement of the end section by the formula

u,-O, a)= JaP + 2V (N'--rP) (N -- P) -- (338)

- 2 (. - P) (- P)- .V* lIn -V. -

For X -- 0 this formula coincides with the corresponding Formula (1.31).

If the load takes on the value rP, then the last formula coincides

with (3.32); Result (3.21) is obtained for a = 1.

The hysteresis loop for a cycle with an arbitrary characteristic

is shown in Fig. 14a. Calculating its area, we obtain the formtula
£

2P ~f[ (No -P) (V-6 - j'TN-P) .VS- jl)- (3.39)

p4



- . - i 7. -,) + -, -;i, Jd,. (3.39)

If we utilizec the concept. (A* the mean valuc of load P,, aridJ of the

cyole amplitude P v , then after performiCng quadraturmz we will have

L; p P.-P. i (XN - iP). (3.40)

It follows from this formnua-- that the con.ideratiorn of tranzverze

deformations in a press-fit joint changes conclusions made earlier

relative to the independence of the area of the hysteresiz loop on

the mean value of the load. The area of the loop depends not only on

the amplitude of the cycle but also on the mean value of the load.

This follows inevitably from the fact that the normal pressure depends

on the shaft deformation. If we assume that p is independent of the

transverse deformation of the mating elements, i.e., if we assume

that p = 0, then Formula (3.40), after the proper limit transition,

takes on the form

2K (3.41)

3g#U
and coincides fully with the result obtained in'Section 1 for an elas-

tic strip on a rigid foundation.

Figure 26 shows graphs of Yr/Yr as a fumction of PvA* for a

syrnetrical (lower graph) and puliating cycles.

As can be seen, the results of calcula-ya
Y4 tions by Formula (3.41) for •mall values

3j-1 of N* practically do not differ from re-

suits obtained by Formula (3.40). For a

~ symmetrical cycle they coincide very well

N" for large loads, even close to failure.
Fig. 26 In the case of a pulsating load the en-

ergy dissipation increases rapidly when the mean force of the cycle is
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inc....... h-o ,iii-pntoinn o' Formula (3.41) for (;alculation of energy

dissipation for nonsy.metrLal cycles gives a result on the low side.

Thus, the lowering of the effective tension for a nonsymmetri,:al cycle

results in an increase of the area of the hysteresis loop.

Nanu- [Footnotes]
script
Page

No.

The case of an elastic sleeve can also be investigated by
similar methods; however, the computations will become

much more cumbersame.

39 They can appear on pressfitting, and also as a residual

effect of previous loadings.

Manu-
script [List of Trawsliterated Symbols]

Page
No.

27 B = v = val = shaft



Chapter 2

COMPOSITE BEAMS

§4. PURE BENDING OF A BEAM WITH PRESSURE PLATES

Let us return to the scheme of a beam with a rectangular cross-

section with thin pressure plates which are pressed to the beam by

pressure p. described in Fig. 5. The end sections of the beam are

loaded by moments 214, acting in the structure's plane of syrm-etryj.

It should be kept in mind that it is not entirely indifferent by

w:hich method the bending moment is applied to the end: whether the

corresponding surface loads are applied only to the beam proper or

only to the pressure plates or, finally, to the beam as well as to

the plates. The first loading version is assumed below; similar

results can also be found for the conditions of the second version.

However, if the loading is achieved according to the third version

and the longitudinal stresses are distributed linearly over the end

secticn. then no frictional forces will develop between the pressure

plates and the beam.

And so, let us assume that the beizsng moments are applied only

to the beam proper, and the end sections of the pressure plates are

free of normal stresses. The interaction between the pressure plate

and the beam will differ on Qifferent length segments. At a certain

distance from the end the beam and the pressure plates act together

and no slip takes place on the contact surfaces. Tangential forces

are absent on these segments and the normal force in the pressure

pla.te section will be then detexmined by the formula
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N • ,.31 = IL"A " "

whe're J is the monc-tjt of inertia of the beam section (takinr the pres-

sure plates into account), h is the height of the beam cross section,

F is the cross-sectional area of one pressure plate, a - the dimen-

sionless load parameter, 0 = Fh 2/2J - a constant for a given beam

and I.! is the greatest value of the moment.

Slip of the pressure plates over the beam surfaces takes place on

the end sections; the appearance of tangential forces q0 2 correspond-

ing to the law of dry friction, is related to this. Let us formulate

the equations of equilibrium for a part of the upper pressure plate

sho•'n in Fig. 5b:

N - qsa =0. (4.2)

The corresponding part of the lower pressure plate acts similar to

the upper. Equality (4.2) makes it possible to determine the dimen-

sions of the segment within the limits of which slip takes place:

a (4.3)

As can be seen, as the load increases (i.e., with increasing a) the

slip is propagated in the direction of the beam's middle. Belo;v: we

consider a case where the greatest value of the moment is moderate

and slip does not reach the median section of the beam, i.e., v-:hen

:.( t

Let us follow the operation of the Joint during various stages

of the cycle; as a result of the assumed symmetry of the beam it -!.s

sufficient to consider only one half of it (Fig. 27a).

The first stae (0 g • I). As the moment aM is increased, the

slip is propagated from the free end of the pressure plate tc the mid-
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dile of the beam. The corresponding loading of the upper presu-re plate

is described in Fig. 27b; here the size of zlip z, '-lnt a1  is determin-

ed by Formula (4.3). Considering now the deflection of the right half of

the beam under the action of loads represented in Fig. 27a, we will find

the angle of twist of the end section during the loading process:*

(t)+ -•).1 + (4.5)

where EJ 0 is the rigidity in bending of the beam without the pressure

plates. At the end of the first stage a = 1 and

( A) + - •"-pf" (4.(6)

The second stage (1 2 a 2 r). Reverse slip appears on a part of

the contact surface in the unloading process. The loading of the upper

pressure plate is shown in Fig. 27c. Equating the longitudinal force

(4.1) to the sum of frictional forces, we will find the length of the

reverse slip segment:

(0 - a) ;t (4.7)

We will find the angle of twist of the beam's end section in the form

- 9,(*)= A(1-•)AU+ (I+2x-,,) (GA, (4.8)

"J, 4% EJ,'

If we substitute a = 1 into this expression, then we will again obtain

the previous result (4.6); for the end of the second stage, when a = r:

E-- 4I,,EJ - (4.9)

The third stage (r _< a ý 1). The distribution of frictional forces

on renewed loading is shown for the upper pr'essure plate in Fig. n7d.

The length of the segment on which direct slip appears anew:

as= (a -)..c)

25



In accordance with the schematic dccribed in Fig. 27a, we will find

the angle of twist of the beam's end cection:

*( O -- % M l.In I -I-, Ot > -",,) (u.i (t1?

Expressions for 1P3 and q2 coincide for a r; exprecsionz for ?p and

V, coincide similarly for a = I.

rhe first terms of Expressions (4.5), (4.8) and (4.11) are ider-

tical. This coincidence is not accidental, since these terms

a(-- ) . mn i.1ll

FJ, El

represent angles of twist of monolithic beam, fabricated as a single

entity together with the pressure

plates. The second terms of these ex-1: .pressions show the effect of slip de-

veloped between the beam ard the pres-

-- __b _-sure plates. The structure of these

g •_terms does not differ from the right-

nd Ma hand sides of relationships found In

Section 1 for the elementary probler..

Fig. 27 Therefore the character of hysteresis

loops for the problem being considered

will be the same as is shown in Fig. 14.

For determination of energy dissipation during cyclical loading

we will utilize the expression

I =,.f- )ds (4.12)

After performing quadratures we will find

=P11.,a 0,-- (4.13)

If we now introduce the amplitudes of the cycle
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(1--a,),,l(4.14)
,4I.= 2~ -'

then (4.13) can be written in the form

* 2p~M~(4.15)

As can be seen, the structure of this forir:ula cuincides with

those of the expressions obtained above, in §§ 1 and 2, for ;ompressiorn-

tension cases; the energy dissipation is proportional to the cube of

the amplitude of the bending moment and is inversely proportional to

the clamping pressure of the pressure plates; furthermore., the mean

value of the bending moment does not exert any influence on the damping

properties of the system.

If 3ondition (4.4) is not satisfied (for large values of the bend-

Ing moment), then slip embraces the entire length of the beam. Without

dwelling on details, which are similar to those presented in § 2, let

us point out the final formula for the area of the hysteresis loop:

, qhE(. -'--,,2 (4.16)

where Mv as before, is the amplitude of the bending moment and a0 N

is that value of the bending moment for which slip embraces the entire

length of the beam; it is easy to establish, by means of Dependence

(4.4) that

gem .=%M. (4.17)

Let us note that the region of applicability of Formula (4.16) is

limited by condition Mv,ý V., which means that slip is propagated

over the entire length of the surface of contact between the beam and

the pressure plates. If the load just reaches the value for which slip

is propagated over the entire length of the contact surface, i.e., if
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eondition Mv -- a0 M i1; oatI.fi'd, theri l.(Ojiuila (4j.16) Livez the r.czult

obtained above by (11. 1r).

L-t uos note that uidCe condltlonlitif Mv > M thi: a W. o' th,. h;yz-

teresis loop is proprotional to the first power of the amplitude of

the moment, and not to the cube of the amplitude, a. i;; tht. '":-. for

Di < a0 M.

To estimate the effect of compression forces p on energy dizzi-

pation, it is sufficient to consider the effect of the quantity qos

which is proportional to the pressure p. Substituting Expression

(4.17) into Dependence (4.16), we will get

2,, '419 (4.18)

The maximal value of Y corresponds to a value of qO, equal to

q4300AMI (4.19)
4hL

In general, these results coincide with the results obtained at

the end of § 2 for the problem of torsion in a press-fit Joint.

§5. TRANSVEMSE BENDING OF CANTILEVERED BEAMS

Let us consider structural damping attendant to transverse bending

of cantilevered composite beams.

We shall first of all dwell on the problem (Fig. 28) first solved

by Goodman and Klamp (33]. A cantilevered beam consisting of tw.:o iden-

tical layers, pressed to one another by a distributed pressure p, is

at its free end loaded by force cP, alternating within the rarge be-

tween - P and P. Let us find the displacements of the beam's end as a

function of the magnitude of the force acting during a single loading

cycle.

The first stage. As long as force aP is small and the intensity of

the tangential forces q in the plane of contact between the layers
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does not exceed the value qo = fpb, no slip oc,'r. between the layers

(b is the width of the beam). The system deformc a& though it were

a beam with a monolithic cross section and

the intensity of tangential forcec on the

a IMP contact surface is determined by the D.I.

ZhuravskLy formula

' "UP (5.1)

_,___.•___. The deflection of the end of the beam will be

-'(s) = z i(5.2)

Fig. 28 Here h is the height and J the moment of in-

ertia of tbhe section of one layer.

The first stage will be terminated when the intensity of the tan-

gential ferces will reach the value q = qO. According to (5.1), force

"cap= (5.3)

Corresponds to this case and, according to (5.2), the deflection of the

end

r = 7(5.4)
24E1

It is assumed that ao < 1.

The second stage. After the load has reached the value ao0P, slip

will begin at the contact surface. Since the tangential forces are

everywhere the same, therefore slip will occur simultaneously along

the entire beam length. On further increase in the force (a > ao) the

tangential forces on contact planes remain constant and equal to qO.

Each layer of the beam bendti as an independent beam.

Figure 28b shows loads resulting In the deflection of the layer -

beam: force 1/2 aP at the end and tangential forces uniformly distri-
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buted o"e' tho ontltev hnn':ir lnith. rtrminrinn- thc deflection (if the

beam end it is convenient to replace the tangential force-z by n uni-

fonnly distributed m(ment loading (Fig. 28c), the intensity of* which

will be

q.I _- 3G. 0
2 8

The displacement of the beam end during the second loading otage will

be determined as the deflection of any layer and is expressed in the

following manner:

us (a) =j @kIP.= PP (4 --3o. (5.6).. (2 -EJ 3EJ 24

For the beginning of the second loading stage (a = a0 ) Result (5.4)

is again obtained from (5.6). The second stage will be terminated

when the force will reach its highest value P; here the deflection of

the end amounts to

PP
= ( -3 .(5.7)

The third stage of the process comes at the instant when force

aP begins to decrease (the coefficient a again becomes less than unity).

The frictional forces at the contact surface also decrease and, since

q < qO, slip between layers cannot occur and the beam again bends as a

beam with a monolithic cross section. The tangential forces at the con-

tact surface will here be

3( -a)P ( 5 .8)
4h

The deflection of the end of the beam will be determined by thc

formula

Ux (a --- 2 (I -6 P- : e (3 ~-- :a, -I-a). (5.9)

As can be seen fram (5.6) and (5.9), the deflections at the
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beginning of the third stave and at the end of the Cecond are identi-

cal. Let us notoý that on full unloadine (a = 0) the deflection is not

equal to zero; the residual deflection iL equal to
I,"

""1 (0J x) ( -,,.(5.10)

The third stage will be terminated for a value of the force alP

such that the tanrg.tial forces determined by Formula (5.8) will reach

the value qO, but will be directed in a direction opposite to the one

they had daring the first loading stage, I.e.,
3, (1 -- ot,1.
q* 4 -: -- •. (5.11)

The load coefficient, corresponding to the termination of the

third and the beginning of the fourth loading stage is determined

from the above:

I -1 2x. (5.12)

The deflection of the beam's end can here be found by Formula (5.9),

if we substitute In it a = a,

ux (1)= (4-- 5). (5.13)

The fourth stage. As soon as the load becomes smaller than aP,

slip betweea the beam layers starts again, however, the dictien of

slip between the layers will become opposite. The deflection of the

Sbeam's end durin3 tVie third stage will be determined as the deflection

at the end of the third stage plus an additional deflection of one

layer due to the force 2,--.p
2

U4)- (a)t ,, -- (A•,--)PP PP

At the end of the fourth stage, when the force reaches its smallest
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value (a =- 1), the defl•ction will be erqual to

Iq I, i, %
-(i---

Comparing this with (5.7), we see that the deflc-ctlons at the

end of the second and at the end of the fourth stage arc of the same

magnitude but of opposite sign.

Dependencies (5.2), (5.6) and (5.14) are represented in Fig. 29

by straight lines 1, 2, 3 and 4, respectively. If we nowr follow the

displacements of the beam's end as the load increases £rorn the s-.allest

to the largest value then, on considerations similar to those presented

for the third and fourth stages, we can easily obtain the dependencies

described in Fig. 29 by the straight lines 5 and 6. A hysteresis loo1,

the area of which is equal to the energy dissipation during one loading

cycle and which amounts to:

T= 4#3 () Sp = 740--%)P (5.16)

2EV

is thus obtained.

For estimating the effect of different para-

C(P meters of the Joint, in particular of the pressure

-- between layers, on energy dissipation in the beam,

it is convenient to write the last formula in the
form

-i& Ur 7

1P 70 the way, this form of writing explicity exposes

r. 29 the linearity of the relationship T = T(P); Formula

(5.16) can create an erroneous Impression that the

dissipated energy is proportional to the square of the load (actually,

quantity ao depends on the maximal force P).
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A1 the prlvosurc Is incrcascd, .ncr in the system

increases at first. We cun puhlto out the optiiJUaL. VaLLuv of. th&prSure

for which the energy dissipation becomes greatest:

112Pv = 1A (.9)

Accordingly, if pressure p is given, then a value of force P* such

that the energy dissipation is maximal exists. It can be found from

(5.13) that this value amounts to

P 8 = (5.20)

?%s the load increases, when P > P*, the energy dissipation decreases.

A further increase in the interlayer pressure, above the optimal,

(p > Popt) results in a decrease in the energy dissipation. ir.£

reaches the limiting value

Sa(5 .21)

then the twin-layered beam acts as if It were continuous for any

values of the load up to the greatest loading by force P; energy

dissipation due to slip disappears in this case. Accordingly, if the

pressure is given, for a force P < 4/3qoh the ccaposite beam acts

as a beam with a monolithic cross section.

The absorption coefficient can be determined, for example, as

a ratio of the dissipated energy to the greatest energy of deforina-

tion of one layer:

= (3P -- -. (5 22)

The absorption coefficient reaches its greatest value for a load

P* calculated by Formula (5.20) and decreases sharply with a decreas-

ing load.
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The graph constructed by Goodman and Klamp showing the dependence

of the absorption coefficient on the amplitude of the greatest stress

in the root section as a ratio of the endurance limit is presented in

Fig. 30. The graph is constructed for a beam composed of two strips of

soft steel, 32.4 cm in length. The cross section of the beam was square

(1.27-.127) cm2 , the height of each layer was (0.5.1.27) cm. The layers

were clamped to one another by twenty-five calibrated aluminum brackets

uniformly distributed over the length of the beam with a step of 1.27 cm.

The pressure with which the strips were clamped reached the value of

p = 5.62 kg/cm2.

The friction coefficient at the contact surface was taken as

equal to f = 0.14. For cimparison, the curve showing the variation of

the energy absorption coefficient due to absorption in the material

is also shown in this graph. As can be seen, energy dissipation related

to the structural peculiarities of the beam considerably exceeds losses

due to dissipation in the material for any loading values. As pressure

p increases this difference becomes even greater. The losses in the

material increase under large loads and the values of the two types of

energy dissipation tend to even out.

e p-S 62,*f++ p =56.a"

2 2?

cps 06

09 (2 (A0

Fig. 30. 1) Dissipation in the ma-
terial; 2) kg/cm2 .
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The expci.litental invLtigation .. by ... •.l- .. . n. .la.p .

a model of a twin-iayercu beam, the dLiand, Z rn aCd ctU.M ..........

were described in conjunction with Fig. 30, is of interest. It has

been established by special investigations that the friction coeffi-

cient f depends very little on the contact pressure a:,d remain- practi-

cally constant as the number of cycles increases from 103 to 10 6 . it

has also been established that in a wide range of slip rates the fric-

tion coefficient does not effect the area of the hysteresis loop.

Hysteresis loops were taken in the beginning in an almcst static mode

and with a velocity of 1450 cycles per second - in the second cycle of

investigations.

The area of the hysteresis loop calculated by Formula (5.17)

for the given beam model for a pressure p = 5.62 lc/cm amounts to

0.243 kg-cm/cycle, while when measured in the static mode it was 0.234

kg-cm/cycle and in the dynamic mode, for a frequency of 1030 cycles per

second, the a.-ea of the loop was equal to 0.241 kg-cm/cycle. These

data affirm the permissibility of utilization of the law of dry fric-

tion in structural damping problems. In the experiments, alongside

with changing the above parameters, the clamping pressure was also

2 2varied within the range between 1.406 kg/cm and 9.842 kg/cm ; the

experiments have fully affirmed results obtained from calculations.

Figure 31 presents a graph of the dependence of the absorption coeffi-

cient calculated by Formula (5.22) on the pressure at the contact sur-

face. The calculated dependence # = #(p) is shown by the solid line;

the points represent the experimental results obtained under static

conditions; the results of the dynamic experiments are shownn by circles.

Let us now examine in detail the problem of bending of a cantile-

vered beam with thin pressure plates which is loaded by an end force,

cyclically varying with time (Fig. 32a). As has been pointed out in
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CO 000

a

Fig. 31 a) Kg/cm

the introduction, this problem va. the first of the problems of the

cycle under consideration, it was raised and solved in 1953 by Pian

and Hollowell [38].

It is assumed that both pressure plates are clamped to the beam

by a pressure p and tangential forces between the beam and the pres-

sure plates are realized only in the form of freitional forces. -.2

we were to determine these frictional forces over the entire length

of the pressure plate by strength of materials formulas, then thE

condition of the pressure plate's equilibrium (projected on the longi-

tudinal axis) would notbe satisfied. It is therefore necessary to

assume that slip of pressure platct over the beam takes place at a

certain segment of the contact surface. The frictional forces in

this region act in the reversed direction and are determined Aot by

the D.I. Zhuravkiy's formula, but by the law of dry friction. The

dimensions cf the slip region are determined from the conditLons of

equilibrium of the pressure plate (Fig. 32b).

""kuP1 (5.23)"q= •+kaP'

where k - Fh2 /2J is the value of the longitudinal intensity of th

frictional forces, constant for a given beam with pressure plates,

F is the cross-sectional area of a pressure plate, J Is tbh moment

or 4-nertia of the cross section of the beam and the pressuz- plates

and b and hare the width and height of the beam cross section.

- 62 -



When the load inorcacs, the dimenuions of thu: slip rcgion are

also increased and erubratv half of the (,ont(.wt :arfaace for the load

The tangential forces in that part of the conta.-t surface where

they are determined by the D.I. Zhuravskiy's formula increase with

the increase in the load. ft the instant when the force will reach

the value a0 P, determined by Formula (5.24), these tangential forces

will become equal to qo' and therefore slip will occur also on the

other half of the contact surface, but it will be directed in the

opposite direction. Friction forces of opposite direction thus act

on each of the halves (Fig. 32c). A further increase in the load will

not change the pressure plate loading

-- conditions.

O(P It should be noted that the posi-

4tion of the slip zone is pointed out by

Pian and Hollowell without an appropri-

--b ate explanation. It is therefore useful

to dwell in particular on the problem of

--------- --- the position of the initial slip zone.

As has been pointed out, the appearance

___of the slip zone in the problem under

1.1. •'P¶ consideration is necessary on static

considerations; however the position of

5) . -" ---- this zone cannot be determined from the

equilibrium conditions only.

Fig. 32 Slip will occur first of all namely

at the left end of the pressure plates for the reason that bending mo-

ments, resulting in deformations £ = ,M'W in the extreme beam layers,
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act on the pressrure platez, In the co'rresponding beam sections, while

the pressure plates do not experience any longitudinal deformations

(the longitudinal forces in these pressure plates' cross sections are

zero). Slip of extreme layers of the beam relative to the pressure

plates is here inevitable due to the difference in deformationsi fur-

thermore, as the loading will increase, slip will be propagated from

the left pressure plate ends to their middle. The length of the slip

zoae is determined at any instant from the condition that the deforma-

tions of the pressure plate and the extreme beam fibers at i.ts bound-

ary are :adentical. The beam seems to have a monolithic cross section

at the right sides of the pressure plates and the tangential forces

on the contact surfaces are determined by Zhuravskiy's formula.

To analyze the deflections of the beam during different loading

stages, it is simplest to consider the bending of the beam without

pressure plates, replacing the action of the latter by corresponding

tangential forces (or, in a manner of speaking
~-0. -

,. - by distributed bending moments). Pigure 33

describes three diagram of bending moments,
L -corresponding to three ordinary stages of beam

loading. These diagrams pertain to a beam with-.

go-t out pressure plates; their peculiar form is de-

termined by the peculiarities of the action of

the pressure plates over different segments of

Big. 33 length.

Utilizing the graphico-analytic method for determination of deflec-

tions, we can find that the deflection of the beamrs end during each

stage amounts to:

ePP _ Wh atL"I- Us Pqk (5.24)
3E1* WiEI (a Pk qkr



2 *PP qhP 1I'4-2 + 2Pkqh
M-4 :JJ 'J(k + qA)'-

(I - a)' PA- + (-) Pkqh (5.25)
-- I(It - Lk± 2qkP-- -[ I

U3 PP 911P [po + 2l'kqh
"3EY= -. iT:-y, l-(PJF-qtpk)--

2 (0 -- rP'L- -+ (4 - r)Pkqk+
I(I - r)Pk -r 2qIP

2 (a -- rifPk + 4 (a - r)Pkq~k
I(i -- ")Pk + qhI 1" (5.26)

here the lengths a 2 and a 3 of slip segments are equal (the length of

segment aI is given above in Formula (5.23)):

(I - a) Pkl
62ti- o)Pk +2q' (5.27)

"= (a - r) Ph[ (5.28)

A calculation of the area of the hysteresis loop gives

,y' = k'Pqk (5.29)
WD7kP, + qk)?

Tne dependence of the area of the hysteresis loop on the load is close

to cubic; as i.. the majority of previously considered cases, the area

of the hysteresis loop is independent of the mean value of the cycle's

load.

Experiments performed by Pian and Hollowell on a model of a beam

have confirmed that the dependence between the area of the hysteresis

loop and the loading amplitude is close to cubic. Figure 34 shows the

graph of the dependence of the area of the hysteresis loop on the amp-

litude of the moment in the root section of the cantilevered beam.

Experimental results are denoted by points; the solid line corresponds

to the analytic dependence (5.29). Similar dependencies were obtained

for three different values of clamping forces.
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Let us turn to the scheme of a leaf spring with poInt contact be-

tween the leaves (27]. An elementary model of this system is shown in

Fig. 35 and it represents a cantilevered beam built lip froom two leaves,

rigidly inserted in the root section. Shoes

"are fastened to the leaves at sectic.ns close

to the ends, so that contact between the leaves

is possible only over small surfaces of con-

tact between the shoes and can be considered

as point contact. The leaves are held toge-

111b ther by a clamp around the end section; this,
" at on a •• however, does not prevent possible slip of one

Fig. 34. a) kg-cm/ leaf relative to another. The clamping force
cycle; b) kg-cn.

between the leaves is taken as equal to P*.

The external load is, in the form of a force aP, applied to the end

section of the upper leaf; half of this force is transmitted to the

lower leaf through the contact surface.

No slip occurs at the contact surfaces for relatively small values

of the external load aP and the spring deforms a- a channel-shaped

frame with an absolutely rigid cross bar. The transverse force in the

frame's cross bar in this case is:

Q PI (5.30)

(h is the distance between the leaves' centers of gravity and I is

the length of the spring); here Q is smaller than the limiting force

T which is determined by the law of dry friction:

SR~ik (5.31)

The displacement of the end section is, during this stage, determined

by the formula
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u,1(0. 4) m " (5.32)

where EJ is the rigidity in bending of' one spring leaf. Segment 1

of the graph (Fig. 36a) corresponds to this

Iip ['•loading stage.

. iThe first stage of the system's elastic

I- deformation terminates as soon as slip appears

in the point of contact. The appearance of
Fig. 35

slip becomes possible if the transverse force

in the cross barQ, reaches the value of the limiting force T. There-

Cecp

f2

U U

I~ S b
a'

Pig. 36

after the structure begins to act as a system with friction. The load

for which slip appears and the second stage begins is determined by

the formula

P = I- (5.33)

The displacements of the end section during this stage are determined

by the formula

aPP (aP + 2P*)I (534a)w . (5.34,)

Segment 2 on the graph (Fig. 36a) corresponds to this dependence. The

second term of Expression (5.33) characterizes the frictional propertie:
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of the system. The system's rigidity during this loading stage amounts

to 1/2(2 - 3fh/l) of the frame's rigidity 24F4J/1 3 . After the load has

reached its greatest value (a = 1) and beg uni to decrease, slip ceases

and the spring again deforms as a channel-shaped frame with a rigid

cross bar. Dependence u3 = u 3 ( ,a) on this ser'l.cnt of the h:-zterezis

loop is written in the form
-1+ )// P "4 2/P"

,,t.,)= 3 )M-!• (5.3.5)
usV.%) 2W W W

and is represented by segment 3 in Fig. 36a. Here the rigidity is the

same as during the first stage.

The third loading stage for the beam terminates when reverse slip

appears on the contact surface. Thereafter, the displacement of the

end section (segment 3 in Fig. 36a) is determined by the formula

w 0 P+ 2P*
W Va. ,) - - V A- (5.36)

1f the external load is campletely taken otf then, in the presence

of initial tension P* i 0, the end section does not return to the zero

position. The residual deflection will be equal to:

•.•. ,- -• .(5.37)

If P* - 0, then the three stages which were considered acquire the

character described in Fig. 36b. 'When the load takes on a minimal value,

the third stage ends. Thereafter reverse slip ceases and the system

again deforms as a channel-shaped frame on new loading. The displace-

ment of the end section during this fifth loading stage is determined

by the formula

(.a.- + 3I + r+ .-P - (5.38)

(segment 5 in Fig. 36a). The fifth stage terminates when direct slip
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arises on the contact surface. The end of the fifth stage t¢l~pletes a

conplcte loading cycle. Stages 2 - 3 - I- are repe.ated during sub-

sequent cycles.

The area of the hyoteresis loop for an urbitrary charactcristic

of the cycle is determined by the formula

I
4V • ribi ( -u )- P.€ ',-:•P (5.39)

where

IN * +21)" (5.40)

Formula (5.38) shows the peculiar dependence of the area of the bys-

teresis loop on the clamping effort [applied to] the contact surfaces.

As in the case of the cantilevered beam, we can point out an optimal

clamping effort for which the energy dissipation in the system becomes

maximal; this force is equal to:

MO.=, - ,b)p (5.'41)16

There is little energy dissipation due to friction at the contact sur-

face for small values of p*, for P* = 0 it depends only on the external

load. If the clamping effort satisfies the inequality
S~P

STr !,-,± + (o-i +) '8- b)J, (5.42)

then the beam acts as an elastic channel-shaped frame for anay loads up

j to the maximal [load] P; no slip arises on the contact area between

the leaves in this case. For the given clamping force we can here point

out the load

- (5.43)

which corresponds to maximal energy dissipation.

If the initial pressure between the leaves is absent (P* m o),
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then Formula (5.38) acquires the form

%10- A• Ra.p,". - (,. - PV) (b - GOl (5.44)
4L. Vab

This fomula sLows distinctly the dependence of the energy dissipation

on the mean value of the load. This dependence is a result of the exist-

ence of a relationship between the frictional forces and the external

load. It is not difficult to notice that, in the absence of this rela-

tionship, when T = fP*, the limiting frictional force is independent

of the external load and the second term vanishes in Formula (5.31);

the Formula for the area of the hysteresis loop (5.39) acquires the

form

IT (P.,e I- 4* li 1 (5.45)

Below are presented results of static and dynamic tests of a model of

a two-leaf spring. The schematic of the installation is shown in Fig.

37. The spring leaves were made from spring steel, the length of the

F - 37

leaves 1 - 500 um and the dimensions of the leaf cross sections

t x b = 8 x 65 Mu. The contact surfaces were cleaned to remove the

skin and were degreased.

The areas of the hysteresis loops were measured under static con-

ditions (cycle length 3-4 minutes) after the joint had been properly

conditioned (103 cycles) under dynamic conditions.
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The curves of damped vibrations were recorded during the dyr.amic

tests by a tensometer installation with wire sensors. Then the energy

dissipation durinp one cycle was determined by the curve in thre usual

manner for different amplitudes.

Sa,.

a 30• 4 PoI

Fig. 38. a) Xg-cm;
b) kg.

Figure 38 presents a graph of the dependence of the area of the

hysteresis loop on the force with which the leaves are clamped together.

The results of calculations for a symnetrical cycle for two value3 of

the friction coefficient t' = 0.20 and f - 0.25, by Formula (5.39) are

shown by the solid line. Experimental results are denoted by points.

The experiments confirm the existence uf an optimal clamping force

P.opt' for which the greatest energy dissipation exists in the Joint

for a given external load.

For large clamping forces (considerably larger than Popt) the ex-

perimental points do not agree with analytic results. This is due to

the fact that the experimentally measured energy dissipation depends

not only on the friction in the slip region but also on other factors

(energy dissipation in the beam's fastening and in its material). Hys-

teresis of another type acquires dcminating significance for large

clamping efforts. Hatio Ymax : .in can be utilized for estimating the

relative importance of losses; as can be seen, the relationship between

the two types of losses for a spring on optimal clamping P*opt fluctu-
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ates between 8 and 10.

SbFigu re 39 shows the graph of variatli n

V of the absorption coefficient as a function

all, P-,.•s, of the amplitude of the damped vibrations;

theoretically calculated results are also

Spresented for comparison. The experiments

Fig. 39. a) Kg; b) point to an increaLe of the absorption co-
fem]. efficient with decreasLg amplitudes. How-

ever, for a preset value of the amplitude of vibrations slip vanishes

from the contact surface, rigid coupling between the leaves takes over

and the spring begins to act as an elastic system; in addition energy

dissipation due to friction on the contact surface also cease.3. The

fact that cohesion takes place between the contact surfaces is also ex-

pressed by the fact that a change in the rigidity of the system, and

together with this in the frequency of natural oscillations, takes

place. Figure 40 presents an experimental graph of the variation of

the frequency of a system's natural oscillations as a function of the

amplitude of oscillations.

a Similar experimental results were ob-

tained also in investigations of stacked

Joints of flat cantilevered rods (multi-

leaf spring of the cantilever type) with
b point contact between them.

Fig. 4a a) Cycles per
second; b) =I].

S6. TRANSVERSE BENDING OF A MULTILAYERED CAMNILEVER

The Goodman and Klamp problem on bending of a two-layer cantilever

considered in the preceding paragraph can be extended to thc case when

the cantilever consists of many layers (Fig. 41). Let us assume that

the layers are identical (made from the same material and having iden-
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tical dimensions) and the conpression intensity between the layers is

constant along the beam length for all contact surVaces. The cantilever

is loaded at the end by a periodic force aP, the coefficient of which

varies within the limits of -1 < 1.
P

Let us first furn to a three-layered

_. beam (Fig. 42a). The first process of load-
* *Sh'" * @0 ing the beam (0 a < 1) consists of two

Fig. 41 stages. During the first stage, when the

tangential forces on the contact surfaces are sufficiently small and

satisfy the inequality

42P
q f<(6.1)

no slip occurs between the layers

and the cantilever bends as a beam

P of a monolithic cross section. The

al ... P deflection at ihe beam's end will
i11t I I t- I I I I here be:

b6 4 ,,. ,"_______-__- ( .2
S* - - -27 (62

__Symbols b.hand Ju bh3 /12 in

4'PFormulas (6.1) and (6.2) denote, re-

Fig. 42 spectively, the dimensions of the

cross section and the moment of inertia of a single beam layer.

The first stage will be terminated at the instant when the tangen-

tial forces determined by Formula (6.1) will reach the value qo" The

force here has the value

v*P q0A.(6.3)

and the deflection of the end amounts to
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, (O (6.4)

Force a 0o is not distributed uniformly between the layers:

7/27 aoP is devolved upon each of th. extreme layers and 13/27 a0 p

upon the median layer. This distribution can be found from the tangen-

tial forcce diagram or from the equality of deflections of the ends

of the median and extreme layers due to the load shown in Fig. 42b.

During the second stage (cz0 < a . 1), as soon as the force ex-

ceeds the value a0 P, simultaneous slip along both contact surfaces

takes place over• the entire length of the cantilever. The beam loses

its monolithicity and subsequently bends as three separate beam-

layers; since the deflections of these layers are identical, the load

increase (a - ao)P will be equally distributed between the layers. The

deflection of the cantilever end is here determined by the formula

PP Pieus (a) al (a l)+ - a*) I-M k - W-. (6.5)

At the end of the second stage, when the force reaches its great-

est value (a - 1), the deflection will be

PrIM) - (9 -- 8%).

The unloading process also consists of two stages. During the

first stage, when the load decreases, (a* 0 - a S 1), the cantilever

again bends as a beam with a monolithic cross section. The tangential

forces on the contact surfaces

9A (1-a)P (6.6)

and the deflection of the beam's end

u"~ ~ ( (' "1- (a-)PP iPP
U(i)8WE/ = (8-M(-&*,,+a). (6.7)

Ir the load is completely removed (a - 0), then the beam, obvious-
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ly, will hot return to its initial position. The residual deflection

,13 (0) =8P ( -

The first stage of the unloading process will t(.minate at the

instant when the tangential forces dc.tr,_n•ined by Formula (6.6) will

reach the value qo with a minus sign. The coefficient I, corresponding

to the force at the end of the third stage

a=I - -2%=- (6.8)

2F

is determined from this condition.

During the second unloading stage (-1 • a S a8), as soon as the

force becomes smaller than a8P, slip again occurs between the layers.

But now the layers will be displaced in a direction opposite to the

direction of slip during the second loading stage.

The deflection of the beam's end during the second unloading stage

is determined from the formula

U4(a) = us (4) a); (a,--a) = --i& (8+). (6.9)

At the end of this stage, when a =- 1, the deflection will be

Pa.u,(-1) f--m (9-- 8%).

As can be seen, the magnitude of the deflection for the smallest

value of the force is equal to the deflection due to the greatest load

magnitude, but is of opposite sign.

If we now again increase the force, varying the load coefficient

* i between the limits from -1 to + 1, then it becomes necessary to consider

a secondary loading process which Is fully analogous to the unloading

process. The hysteresis loop can be constructed by Dependencies (6.2),

(6.5), (6.7) and (6.9). A sample of Its shape is given in Fig. 43. Curve

0 - 1 - 2 corresponds to the first loading period, curve 2 - 1* - 2* - t
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the unloading period and the dashed curve - to the secondary loading

period. The area of the hysteresis loop will bW:

T = , 32---• (1 - Q)P (6.10)81EI-

Let us pass on to the consideration of a beam consisting of many

Identical layers (Fig. 41). Let us assume that

, n, the number of layers, is odd. The median

f 7 layer will be called the first, and the number-

I- -Ing of layers will be subsequently extended for

one, upper half of the beam, starting from the
.

median layer to the extreme layer. The same num-
bering [system] is also retained for layers

situated below the median layer.

Let us consider the first loading period, when the force increases

from 0 to P. The first stage of this period is characterized by the

fact that the tangential forces on all contact planes are smaller than

their limiting value q S qo. The cantilever bends as a beam of monolith-

ic cross section; the tangential forces at an area situated at a dis-

tance y from the neutral layer are determined by the formula

- -, _AV)(6.11)

and the deflections at the end will be

amp- . (6.12)

In particular, the tangential forces at the contact planes of the

first layer (y - 1/2h) will be:
P - (6.13)

The first loading stage will terminate at the instant when these

tangential forces will reach the value qo. The value of the force
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"aoiP, corresponding to the end of the first stage, is determined from

Formula (6.13), if we set In It q, = qO:

%1P (6.14)

the value of the end deflection will hlrc be:

U .. (JO - 1) ,E6.

As soon as the load becomes greater than z0 1 P, slip will occur

along the contact planes of the first layer. The cantilever cross

section is no longer monolithic and we now have three beams which

bend together: the first layer and two banks, composed of layers situ-

ated above and below the first layer. The simultaneousness of bending

of these three beams is expressed in identity of the deflections, and

therefore the load increase (a - go1)P is distributed between the

beams proportional to their rigidities in bending.

It can be shown that secondary slip will occur along surfaces of

contact between the second and third layers. The slip between layers

will subsequently be propagated, with i..,reasing load, from the middle

to the extreme layers. For the sake of brevity, those beam layers whict

are subject to slip conditions will be called displaced. It is conven-

ient to follow the process of slip transition rrom one contact plane

to another on a tangential force diagram in any cross section of the

cantilever (Fig. 44).

Let us consider the upper half of the section. Parabola ql, ana-

lytically expressed by Formula (6.11), corresponds to the beginning of

first slip. This parabola passes through the points ql - 0, y = nh/2

"and q, = qO, y = h/2. Secondary slip will occur at the instant when

the tangential force diagram will be described by parabola q 2 , which

should pass through the points q 2 = 0, y = nh/2; q2 = qo, y = 3/2h and
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q 2 y Y h/2. Let us denote the corresponding value of the force by

ao2 P. Since the bending of the already dis-

placed layer also increases as the force is

- increased from aqoP to aO2P, this layer will

also accept a part of the load increment. Sub-1$ - - . sequent load increase to the value ao 3 P re-

- sults in a third slip, with parabola q3 cor-

responding to it, etc.
Fig. 44

Let the slip reach the kth contact plane

when the magnitude of the force is qOY (Fig. 45). It is obvious that

this plane is situated between layers k and k + 2. At the same time,

the dia&gam of tangential forces on that part of the section which is

situated between the kth and the extreme layer is described by para-

bola qk" whose equation is

f h - A (" -- k 2) ( m "-(6 .1 6 )

+ A's(a-2k+2).

In this formula _k is the number of displaced layers. Since the

slip process occurs simultaneously below as well as above the median

layer, therefore k - 1, 3, 5, ... (n - 2). In particular, Dependence

(6.11) corresponding to the first slip is obtained from Formula (6.16)

for k - 1, the second slip will take place for k = 3, etc.

Slip between layers (k + 2) and (k + 4)

will occur when the force will .are the value

aO, k+2P, when the diagram of tangential for-

ces in the extreme layers (6.5) will be re-

presented by the parabola

,q6l.-2 + 4 (k+ ) hy+
Fig. 45 43 (a -k (..-k-(

+T8(a- -- 2)i.
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This expression is obtained from (6.16) by replacing k by (k + 2).

Txhus, a load increase by the value

AP,+2). h = (O. t+t -+ . a)? (6.18)

displaces Blip dast one layer, if we consider only one half of the

beam section. The load increment increases the tangential forces not

only in the bank of extreme layers, but also in each of the displaced

layers.

The tangential forces in the bank of extreme layers will increase

by the value

A (a ,+- 4-- k [(i--k- " (6.19)

S[-49W + 2(ak)AV- A ki.

Force Aqk+2,k' corresponding to such an increment of the tangen-

tial stresses at one half of the cross section, is numerically equal

to the area crosshatched in Fig. 45.

-1Qa+2A = j4ai+zady a-) qk- (6.20)
(is - 1A)

Let us denote the Increment of the transverse force in one dis-

placed layer, when the load increases by aPk, by A 1. Each of the _k

displaced layers will have this increment of the shear force. Conse-

quently, the load increment can be written in the form of an equality

S-%P + 2- 2,+& + k5Q,. (6.21)

In addition, quantities Ak+2,k ar4 Al are related to one another

* by the condition of equality of the deflections of the extreme layer

bank and cnc 4isplaced layer, i.e.,

Au P All -P (6.22)

From this
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8.%Qh(6.23)

Consequently, we can write Equality (-:.21) in the form

, (a --- k)$+"8 & , (6.24)
(is- k?

Substituting here Ak+2,k from (6.20), we get

S- (a- P(6.25),!u•; ,, =(it -._ L) I(A -- k)P-- 41 k.(.5

The increment of force q0, necessary for the slip to be dis-

placed through one layer, is determined by this formula.

The following dependence between the values of the load at the

ends of two adjacent loading stages is now obtained frum Formula

(6.18):

%66,P - ,,,P +AP,,.,., =-- ,P + (a. 2- (a -- Q)P +-S- *I q (6.26)

Dividing through all the terma of this equality by the maxfial

value of the load P, we will obtain the relationship between the

ioading coefficients of two adjacent loading stages

2(as-k)P+Sk %4(627
,,, .. ,+ (_ .k),_ _1. (6.27)

If we utilize Equality (6.14) then we can represent this relation-

ship by the coefficient a 0 1V, corresponding to the first slip, i.e.,

3 Le_, - +) -12(n -..k) +_.•Ski (6.28)

Formulas (6.26) and (6.P7) represent recurrent dependencies, making

it possible, starting with the first 6ýage, to obtain the values of

loads successively at the end of the second, third, fourth, etc.,

loading stages. The stage corresponding to k - n -- 4, when slip will

reach the extreme beam layers, will be the one before last. Thereafter

the beam will act as n eeparate layers which have identical deflections.

Let us now turn to the dete"xination of deflections of the beam's
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end during different loading stages. The deflection at the end of the

first stage is determined by Formula (6.12). Let the deflection have

"the value u(UO,k) at the instant layer k is slipping. Then the force

* increment APk+2,k increases the slip region again by one layer from

* each side and results in a deflection increment by the value Auk*

Consequently, the deflection due to force QOk+2 P can be written in

the form

U (a.&+ ) = U(UK) +-U& - (6.29)

The value of the deflection increment Auk is determined from

Formula (6.22), where A 2 frm (6.24) should be substituted.

Finally, we will get

10.W (6.30)
"(•.4, =• (•.•+3 (n- k) (a,--Ay - 41 E"

If we substitute here q0 h frc.n (6.14), then

4(0'-t) PP (631)
"(,,,.,.,) =- M(,,.,0 + -- k-1.- - k9P-41" -E.63

We have obtained a recurrent formula, relating the deflections

of the beam's end during two adjacent loading stages. Deflections of

stages starting with the second and ending with the one before the

last are determined by this formula. During the last loading stage,

when slip has embraced all contact surfaces and the cantilever bends

as a system of separate beam-layers, the deflections are deter-

mined from the following equality:

(a) = U,. + + .M (6.32)

Here 12 a 2 aO nS_2

When the force reaches its greatest value, the deflection -'ill be:

U (1) = a(-} + 0(I -.-- elPP)

S(6.33)
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We shall now consider the unloading period, during which the

force is decreased from P to - p. The values of load eoeffleLents

will be denoted by a. Stages analogous to those already considered

in the first loading period can be observed during the unloading period.

During the first unloading stage the cantilever bends as a beam with

a monolithic cross section. The tangential forces in all layers of

the cross section decrease during this time. In particular, the tan-

gential forces on contact surfaces, displaced when the layers were

loaded, i.e., for y - kh/2, will be

(I -- 0) AP (0,, - AP), (6.34)
8 Al

The displacement of the beam's end during the first unloading

stage will be found as the difference between the deflection for the

greatest value of the foree and the deflection due to a change in

the load by (1 - a*)P:

- ()-- . (6.35)

The first stage will terminate when the tangential forces at

the contact surfaces of the first layer will reach the value qo"

i.e., q -- qo. The value of the load coefficient at the end of the

first unloading stage is determined from this condition. Utilizing

Equality (6.14), we will get

• 04_h (6.36)

The result obtained for a multilayered beam will naturally be

the same as for a beam formed by two or three identical layers. As

can be seen, the absolute value of the force during the first unload-

ing stage becomes twice as large as on the first loading stage. This

is due to the fact that a force equal in magnitude to qo1P is needed
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at the beginning of unloading so that the tangential forces on the

contact surfaces of the first slip should become zero. The same magni-

tude of force is subsequently also needed so that the tangential for-

ces on the same planes, on changing their sign, should again become

equal to qo.

Substituting a81 from (6.36) into (6.35), we will get the deflec-

tion at the end of the first unloading stage:

2a.,PPS(*A) U- (1) -- X - (6.37)

Slip along the contact surface of the first layer will occur

as soon as the force will become greater than cx1P. On subsequent

decrease of the force slip will be propagated from the middle to the

extreme edges of the beam. Bat now the direction of relative displace-

ments of the layers will be opposite to that existing during the load-

ing stage.

The process of layer slippage with a decreasing force is analo-

gous to the just considered process during the loading period. It,

should, however, be taken into account that the change in the force

necessary for displacement of slip through one layer will, during

each unloading stage, be twice as great as during the first loading

period. Therefore the recurrent formula (6.27) takes on, in this case,

the form

& + -- l(6.38)

or

.s' - 12 (it-. k + Ski (6.39)4•-- 4.+ " (it _ A-) lot • -- kr •

Formula (6.31) is also similarly modified. Now the deflections

at the ends of two adjacent unloading stages are related by the rela-
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tlonship

Wt8(.- 1) %16.4o)

Daring the last anloadltg state, when slip has occurred on all con-

tact surfaces and the cantilever bends as a system of separate layers

under the action of a force varying between an-2P and P, the de-

flection is determined from Formula (6.33). The deflection for the

smallest value of the load will be:

01 + , ,,,)PP (6.41)

The period of the renewed load increase, now from the smallest

to the largest value, fully repeats the unloading period. Formulas

(6.35), (6.39) and (6.40) remain valid for this period.

The character of the hysteresis loop on transverse bending of a

multilayered cantilever is shown in Fig. 46. The area of this loop

can be calculated by the formula

i) -,(6.42)

The first temr in the square braces represents the equation of a

st gt line connecting points 5 and 5*, the second term - the un-

loading curve between the same points.

As an example, let us consider a beam consisting of nine layers

(n 9). The first loading period (0 S a S 1). The load coefficient

and the deflection at the end of the first stage are calculated by

Formulas (6.14) and (6.15):

2.?V qk
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The load coefficient and the value of the deflection at the ends

of the second. third and fourth stages are subsequently found by

Formulas (6.28) and (6.31).

The second sqtae, k = J.

(9, • 1). 312J-- I) + 8. 11

U (. got PP -- C92- 1) PP = %PP
" ) 3 - W'e.i W ( - 1) I(9 -- 1)2 --41 -D- -IW

The third stage, k = 3.

•~~~ (92 =-1 (-1 )12 (9--3 + 8.-31
2 . "I. -- Iy-4 . t747%.:

___ 92_ 1_ sPP"(9*) Ts +97 (- 3) 1(9 -- 3)1 -- 41" EJ

- Z,667r-•

The fourth stage, k = 5.

.,=1.747%, +3 3(9t-- 1) 12 (9--5)1 + 8- 51 ..

2 . 9'(9- -5-4- t5r,42'.3a,%
,.(,f.) =2,66"/"PP + Q'-1 ,R

TS+ v(9-- -- or- 41

DIuring the fifth stag, when the cantilever bends as a system of

separate layers, we find by Formula (6.33):

(1) =- 93 4%PP. 1- . ) P ~ P

The polygonal line 0 - - 2 - 3 - 4 - 5 in Fig. 46 represents

the relationship between the end deflections and the load variation

during the first loading period. Loads, which should be multiplied by

F, are laid off on the ordinate axis, and the deflection coefficients,

which should be multiplied by p13 /9ýT - on the abscissa axis. For

the sake of definiteness of construction, coefficient aO1 was taken

to be equal to 0.4.
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p.g
Fig. 146

The numbr.r at the point where the line is broken correspcr.-%z

to the ene of the corresponding loading stage.

The unloading period. The value of the load coefficient and the

deflection at the end of the first stage are found by Formulas (6.36)

and (6.37)-.

s? 41 =(27 -53,42not)~ -P .2ASI- (27 -54,1*0) Pr

The value of the load coefficient and of the deflection at the

end of the second, third and fourth stages will be found by Formulas

(6.39) and (6.40). The constant quantity

3(n-,1) 3 (V,- =1) o,33.

enters these formulas.

The second stae. k - 1.
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S0..13(2.83+8. 1)

u(.) (27-.1., 8"(8'-1) actPP

m (8 - 47 -91'E7

= (27-58.litol)

The third stage, k =k.

• ~0,3 (2.• G' +-8.3) "o, -
S(-ti- 4)

U(.) [27--5,.43. 8 80 ] Pe

--(27 -- 58!.76 a&,,) . .
P's

The third stage, k = 5.

S 0,33(2.4'+8. 5).$ = I -4,67so,

. --4,1 --7 - 4,7 -- -- -- P P,, ,;,,)= •,•,-1 (4t,_-4. 9 7 =

PP
(27- 7Za.n) 1-p-D.

The deflection at the end of the fifth unloading stage Is calcu-

by Formula (6.41):

PP (I + t --4.67,,,)PP

(-- ~2 -:a 5399 (2 -PP,•3.£
RP=(- 27 + i3 .9 .u.) -. t

As can be seen when the results of calculations are plottedr.on a

logarithmic scale, the magnitude of displacement u(- 1) almost coin-

cides with that of u(l).

The unloading stage is in Pig. 46 represented by the dashed line

5 - 1* - 2* - 3* - 4* - 5*. If the force now increases fram the small-

est to the greatest value, then the line shown by dashes in Fig. 46

can be obtained similarly.

The area of the hysteresis loop can now be calculated by Formula

(6.42).
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57. TRANSVERSE BENDING OF A THIN-WALLED BEAM

Let -is determine the energy dissipation in a thin-webbed riveted

beam. We will assume a simplified computational scheme, assuming that

the beam web works in shear and the flanges and standards in compres-

sion-tension. In this case the bending moment in each beam cross sec-

tion is taken up by the flanges and the transverse force by the web.

We shall consider the above problem for relationships between the

acting load and the wall dimensions such that the shear has not as

yet caused the wall to lose stability.

Since structural damping is due to the friction of components

Joined with one another, it is necessary to investigate relative dis-

placements between the rods (flanges and standard) and the wall in

the case of thin-webbed beams. Energy dissipation occurs in the seams

at which the web is connected to the rods. The problem consists in find-

ing the energy absorbed by the seams durirg one loading cycle.

Let us consider a purely frictional scheme of the problem, when

tangential forces between the rods and the web are created only in the

form of friction. We do not go into the factors that compressed the

web to the rods. This, for example, might be tightening by clamps or

rivets if the rivet shanks do not fill the holes. The important thing

is that such compression exists and the factor causing it does not by

itself prevent the possible displacements of the web relat'Lve to the

rods. Only frictional forces between the web and the rods prement

these displacements within certain limits. It is assumed that the

frictional forces obey the law of dry friction and the deformation of

the elements from which the beam is built up lie within the limits of

proportionality.

It is convenient to clarify the peculiarities of the problem under

consideration on a simple example of a single-panel beam (See Pig. 9)
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formed by a wall flanged by two parallel flanges and two stardards. The

beam is fastened at nodes A and B and is loaded by a variable force

aP at node C.

When force aP acts in any vertical section of the beam, according

to the assumed scheme, two normal forces causing tension in one flange

and compression in the other and also tangential forces in the .aeb,

the intensity of which is found from the formula

q=a , (7.1)

where H is the computational height of the beam, will arise. We wish

to attract the reader's attention to the fact that in this paragraph

q denotes the magnitude of tangential forces in the web of the beam.

As a result of longitudinal deformations of the flanges and stan-

dards, and also of the shear deformation in the wall, the panel will

warp and the point C, where the force is applied, will be displaced.

Determining this displacement, by the Mohr's method, for example,

possible slip of the web in the region of the seams relative to the

standards and flanges is usually not taken into account. It is precise-

ly during this slip that the frictional forces do their work. Finding

the relative displacements of the web and the rods in the region of

the seams we will further simplify ;he problem and we will assume that

the rods are absolutely rigid and the sought displacemements are due

to the shear deformation of the wall.

Since the seam is under the same loading conditions along the en-

tire perimeter of the joint, it is sufficient to consider a seam ele-

ment the length of which is unity. Let us isolate a unit seam element

for example, from the lower flange (Fig. 47) and let us orient it to

an orthogonal xy coordinate system, directing the x-axis parallel to

the axis of the flange and the y-axis in the plane of the wall. The
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width within the limits of which the wall is clamped between the flanges

is shown in this figure by the letter a.

Let us clarify what takes place, as

the force cP is varied, on that segment of

the web which is pressed to the rod.

. _l Let us consider the first loading stage,

"--- when a varies from zero to a certain moder-

Fig. 47 ate value a,. As soon as the force is

applied tangential forces and shear deformations corresponding to it

will arise in the web. These deformations extend only to a certain

depth a1 (FIg. 48) measured from the top edge of the rod; it is only

over this width that slip of the web relative to the rod will take

place. Frictional forces at the contact surface will arise as a result.

If we denote the force of normal ccimpression of the wall to the flanges

per unit contact surface by p, then the specific frictional force

To = fp (here f, as before, is the friction coefficient). No relative

displacementS of the rod and the wall exist in region a - al.

Nif
l~ll

b
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Quantity a 1 will be found from the condition of equilibrium of

the clamped wall:

= " asp (7.2)

The multiplier 2 is here employed due to the fact that the wall is

clamped by the rod from both sides.

The x-axis of the adopted coordinate system will be directed

along the lower boundary of the slip zone.

The limiting value of the tangential force.qpr, for which slip

is propagated over the entire width a of contact between the wall

and the t-od will be

16,= 2r.. (7.3)

The correbonding value of the force

par =-mf 2-,%0. (7.4)

From the condition of equilibrium of forces actInS on the plate

element isolated in the slip zone (Fig. 49), we will get

A (7.5)

Here %y is the tangential force in the section y - constant. Consid-

ering the deformation of the same element (Fig. 50), we will find

I 
(7.6)

Here u is the displacement in the direction of the x-axis and ey is the

angle of displacement. We assume that the shear deformations are

within the proportionality limits and, therefore, according to Hooke's

law,

Consequently,

-91-



du& 9j, (7-7)

Here 6 is the thickness of the wall Cnd G J2. the shear modulus. Dif-

ferentiating this equation in respect to y and equating to (7.5),

Fig. 49 Fig. 50

we will obtain the following differential equation:

'au 2 T (7.8)

From this

_= (7.9)

The displacement and stress at the lower edge of the slip zone (y = 0)

are equal to zero =O0;!=t . Consequently, constants C1 = DI = 0,

S * (7.10)

The displacement diagram during the first loading stage is shown in

Fig. 49.

The tangential forces are determined from Eqs. (7.7) and (7.10):

q,=- GId=2W. (7.11)

The displacement of the upper edge of the clamped wall segment

where the force q, acts will, at a certain lcading instant, be:

", 4' 4P •• (7.12)

Let us consider now the unloading stage, when the force, having
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reached the value a P, begin-s to de(:r.(:asc. As soon as the value of

force _ will deerease, the shears will de':rc:a-(.e a) o and as a resalt

the wall will sl1_ relative to the v.od it the, opposite direction. This

slip will also begin at the upper matirig cdgc arnd will be propagated

downward.

Let us assume that the force, without changing direction, reached

the value a2P at a certain instant of unloading. The reverse slip in

this case will spread out by an amount a 2 . Forces acting at this in-

stant on the clamped panel element are shown in Fig. 51.

The width a 2 of the reverse slip zone is found frcm the condition

of the element's equilibrium:

All the previously obtained differential dependences remain valid

for segment a 2 , except tha,.. tale sign of the frictional force To should

be reversed.

In particular, the displacements are equal to:

"U=-"Iu'+cW+DS. (7.14)

Constants C2 and D2 are determined from the conditions of equality

of displacements and of the equality of tangential forces at the edge

y = a 1 - a 2 , separating the remainder of the first zone from the second

zone. This gives

Consequently,

U =4 K-. + -us)-2(A,-,),I. (7.15)

The diagram of displacements during the unloading stage is presented

A in Fig. 51.
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Fig. 51

In particular, for a certain intermediate value of a (a2 < a _< a,)

the displacements at the upper edge of the clamped wall segment, where

the tangential forces q2 are applied, are equal to:

,= P_-• (kit +.2*ý a--• a(7.16)

The tangential forces in the wall crosi section on the reverse

Plip region are determined by the formula

CaG da • Z- 2,-Z) (7.17)

The diagram of tangential fircea is seen in L.g. 51.

All the quantities characterizing the stressed state of the wall

segment on unloading when the load coefficient hzs a certain value

%2 S a,, can be determined bythe relations (7.13), (7.15) and (7.17).

For example, in the case a - 0 the external load is conpletely taken

oft, but a force system shown in Fig. 52 continues to act on the ele-

ment. It is obvious that the upper edge does not return to its initial

pocition at this instant. Residual displacements, determined by Form.ula

(7.16) for a 0, are:

4 p

Let ur assume that the load is decreased to the minimal value
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X U.

= It

Fig - u

of the force corresponding to the coefficient a2 =raI and then the

loading begins again. Let us now consider this renewed loading. As

the force is increased, slip of the web relative to the flange wzill

occur., starting with the upper edge, in the same direction as during

the first loading stage. As the force is increased,, the slip region

is propagated downwrard,, shortening the reverse slip region.

Forces acting on the clamped wall element at a certain instant

of the renewed loading are shown in Fig. 53. Width a3 of the slip

SgZone is found from the equation of the element's equilibrium:

i Heref

! Constants C3 and D3 of the expression for the displacements in
S~the third zone

. are determined from the conditions of equality of displacements and

• ~of equality of the tangential forces on the straight line y = aI- a3

i separating the remainder of the second from the third zone. Performing

the necessary calculations, we will get:
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-j -" ""+4(:-.,)y+2(4,--2a 3?-2(@-at,)- . (7.19)

,L~ U.a. V ~ %A 4,U C4,, &J .4&& 1~ti I forces

1A"~~£4----- .

!U

a) fbL
Fig. 53

in the third zone are equal to:

qj, =- 21,y + 2 (as-- eI. (7.20)

The force diagram is shown in Fig. 54. In Expressions (7.19) and

(7.20) y 2 a, - a3 . In particular, the displacements at the upper

edge of the clamped wall segment (y - a,) will be

+24 j 2-- + o-,f-2uw- + +2.qus f7.21)

The hysteresis loop for the Joint under =onsideration is shown

in MiS. 54. The values of displacements

SH•" u for the upper edge of the clamped wall

segment are laid off on the abscissa axis

3 and the values of the tangential forces,

determined by Formula (7.1), - on the

ordinate axis. Curve 1 is constructed by

Dependence (7.12) and corresponds to the

Fig" 54 first loading stage, curve 2 represents

the unloading stage and Dependence (7.16), curve 3 pertains to the
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secondary loading stage arid ourresponrjs to Depe, ,r- 7..2 1. The are1

of the hysteresis loop T is numerically equal to tihee energy 4rrcv-4=
1

bly absor~bed by a unit seam elerent during one loading cycle. The

point is that forec q is an external force relative to the sean ele-

ment under consideration, the ernergy of which is used uip in elastic

deformations of the clamped wall sefiernt and in the overcoming of the

frictional forces.

This area, calculated by formula

, - (a..,, -U,,.r, (7.22)

for a, = I and a2 = r becomes equal to

1t -- ')=* pal (7.23)

24r.4GUP 3iG&H*

Pv is the amplitude of the cycle.

The total energy, dissipated per cycle by a seam of length ish

is determined in the form:

S=-(7.24)

The total energy absorption in several seams will be found as a sum

of energies absorbed by each seam separately.

[Footnote ]

script
Page

51 It is more convenient for this purpose to utilize the graphI
icoanalytic method, considering the ensemble of friction.al.
forces as a uniformly distributed moment load.
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Manu-
script [List of Transliterated SymboloJ
Page
No.

59 OIIT = opt = optimal'nyy = optimum

59 rnpejiI = pred = predel'nyy = limiting

91 np =pr =predel'nyy limiting

97 m sh shov =seam
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Chapter 3

FRICTION CUJTCHES

§8. TWIN-DISK CLUTCH

The system represented above in Fig. 8 consists of two clutch

halves, each of which has a finite torsional rigidity when loaded by

torques 0M. ro clarify the methodology of construction of the hyster-

esis loop, we will consider here the axially symmetrical scheme illus-

trated in Fig. 55. It is assumed in this scheme that one of the disks

is undeformable and constitutes a rigid foundation to which the second,

deformable disk is pressed by the given constant pressure. The disk is

bounded by two parallel planes and two circular cylindrical surfaces;

the internal and external disk diameters are, respectively, 2a and 2b,

the disk thickness is h. The given torque is achieved in the form of a

system of tangential stresses, uniformly distributed along the internal

periphery and equal to

•M (8.1)

It is assumed that, even for a 1., when the torque reaches its greatest

value, no ccmplete slip of the disk along the foundation takes place.

In view of the fact that the thickness of the disk is small, we will

consider the problem as being two-dimensional.

The stress system T(a) is balanced by a system of tangential fric-

tional forces, which develop between the disk and the rigid foundation.

As in Section 1, frictional forces arise only in the zones of the disk's

deformation and are equal to the limiting value To = . An assumption
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stating that any whatcver frictional f'orces exi.st in the u.ndeformable

zone would have contradicted Hooke's law, and an assimnption stating

that the intensity of frictional for"ces

29- In the deformed zone where slip takes

I) place is different than To doez not agree

,.4 with Coulomb's law.

Let us constder in detail the first

10 stage of loading the disk, when the dlmen-

sionless load parameter increases gradually

from zero to unity. An annular zone along

which the disk slips on the foundation

will appear near the internal disk perl-

Fig. 55 phery for any as small as desired load cd.

The disk is in equilibrium under the action of loads described in Fig.

56a. The external boundary of the slip region is determined from the equ

it

liu bl)
Fig. 56

librium condition

2Kr. fop = am (8.2)

where p, is the external radius of the slip zone. We find from (8.2)

"(8.3)
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Further, from the condition of equilibrium of the part of the disk

described in Fig. 56b, we will find the tangential stresses, corres-

ponding to the current coordinate p:

' ,-i.(8.4)

Determining the tangential stresses, we can write the expression for

shear in any point of the disk, according to Hooke's law:

"- - (P) (8.5)

Since radial displacements are absent, the shear is expressed

only by the tangential displacement v

r + d(8.6)

As a result of axial symmetry of our problem, the tangential displace-

ment is independent of the q-coordinate and is only a function of the

p-coordinate. The differential equation for determination of the dis-

placement v

r r = -(8.7)

is thus obtained from (8.5) and (8.6). Substituting here (8.4) and

Integrating, we will obtain the following solution, satisfying the

boundary condition v(Pl) - 0:

r •p)= -•hp _7 •( +p•-• (8.8)

Let us introduce the structural -parameters: .s =Gh. ""--

Then, substituting for p1 by Formula (8.3), we will obtain for the

points on the internal periphery (p . a)

ra (a) = a. (av.V 3) -3 (wv*M+ 1)* (8.9)

This expression describes the first stage of the process.
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The 1n*Vest',0&0at~cn of the .,diu'unjoading and secondary load-
ing stages 15 ntially la- 'r to the Coreeondvi~ng investlgation

for the elementary system (§ 1). Leaving out detailed calculations, we

will present the final results (for conclusions see [13]); the rela-

tionships between the displacement v2 (a) and the torque during the un-

loading stage-

r. (,,l--, A I (,.,, -- 3)--.3 (W + 1)1

+ P.. (1 - ) M + 1j . .(.

(We have] the same relationship during the renewed loading stage

rs (a) =a A(a#M + 3) -3(vMV+ 1)1 + (8.u)
+s-4- ,-.)M+ ,]i-61•-(.-r)M+ Ili).

The hysteresis loop, calculated by Expressions (8.9), (8.10) and (8.11),

coincides with the hysteresis loop for the elementary system (Fig. 14).

The energy dissipated during one cycle amounts to

LV VS da.(8.12)

ierformidng quadratures and introducing the value of the load amplitude

~ t--l. we will find
2

7 ('+3) nvM9+ 1A - 11I- 4.) (8.13)

It can be seen from Expression (8.13) that energy dissipation, as

in cases presented above, is independent of the mean value cf the load;

the dependence of the quantity T on the amplitude of the cycle is

slightly more complex than in the case of previously considered problen

(this dependence is repri.sented graphically in Fig. 57).

If both disks are deformable and have characteristics k. and k2,
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VM

I I

Fig. 57

then the energy dissipated per one cycle ts equal to:

+ 3)I~vW + )* 11 vje). (8.14)

§9- A MULTIPLE-DISK CLUTCH

Figure 58a illustrates the schematic of a multiple-disk friction

clutch, representing a system of flat disks with finite rigidity. Let

us assume that the external torque is uniformly distributed among

the disks, so that a fraction of the load izM is devolved upon each

disk pair. Let us analyze the operation of this pair. The disks are

pressed to one another by a constant pressure p (Fig. 58b) and are

loaded by variable, equal anl oppositely directed torques denoted by

cX (the first - along the internal periphery, and the second - along

the external).

Fig.58

Annular slip zones (Fig. 59a), where the frictional forces To

balancing the external torque are developed, arise on loading, in the
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vicinity of the internal and external peripheries. The middle part of

the disks deforms as a separate entity and each disk takes up a part

4 DI

Fig. 59

of the load proportional to its rigidity

W, Wks (9.1)k,= + .-.-. M2 = k, + k-.

It is possible to disregard the deformation of the middle part In

the calculation of the dissipated energy, setting shear at its bound-

aries equal to zero. The energy dissipation is determined as the work

of the external torque uM on the angular displacements ( =

and v(b Va. where vl(a) is the tangential displacement of points

of the internal periphery of the first disk and v2 (b) - the tangential

displacement of the points on the exte nal periphery of the second

disk, relative to the "nondeforming" middle part. The boundaries of

the slip zones (p! and p2) are found considering separately the equili-

brium of the internal and external regions (Fig. 59b). The equilibrium

equations are written in the form

"" (9.z)

MI -N , PdP =0o.

From the conditions of equilibrium of the annular segments, isolat4

in the vicinity of the internal periphery of the first disk and in the
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vicinity of the external periphery or the second disk, we determine

I
TX (9.3)

I ~ (9.4)

The tangential displacement v(p) is independent of q and is de-

termined from Eq. (8.7) after r(p) is replaced by Its ialue from For-

mula (9.3) for the Internal region of the first disk and by Formula

(9.4) for the external region of the second disk. Thence the problem

is solved in the same manner as the preceding one. Introducing the

parameters 1, v and k and the notation t - a/b, we obtain the following

expressions for energy dissipation In one disk pair per cycle:

isA(01- 0) MA k, -L2 k2
, -, AI ,-. T1 -k, V K, -+i;No]

wtQ k* . **_+19(1

.[F (g --j It 6. k + -

k 9 P 9(9.6)

Here 1 is that part of energy which is dissipated In the internal

region, T2 - In the external region. In the case when k- - k2 -=c Ex-

pressions (9.5) and (9.6) are substantially simplified and take on the

form

k 2 !-.-'-f*)-( 1" 1 v .49-1-.1. (9.•)

"k -- (9.8)

These dependencies are represented graptica_ ly in Fig. 60. It can

be seen from the graph that 12 C T1 for any given values of the cycle's

amplitude. The energy dissl1g2tion is independent of the mean value of
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the load. The dependence of the energy dissipation on the Intensity of

the compression force for one disk pair is shown in Fig. 61. The energy

dissipation curve in a two-disk clutch is also given here for compari-

son (by the dashed line).
a¥

V

Fig. 60. Fig. 61.

1
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Chapter 4

DRY FRICTION ABSORBERS

S10. SEPARATOR STRIP

Let us zonsider the process of cyclical compression oi" a short

elastic parallelepiped by two completely rigid plates (Fig. 62). We

shall assaue that the dimensions of the parallelepiped are of different

order of smallness: the dimension in the direction of the x-axis con-

siderably exceeds the dimension 21 in the direction of the y-axis,

and the latter exceeds manyfold the height of the parallelepiped h,

measured in the direction of the z-axis (Fig. 62b). Such a

b)

SI ~~6z fO

6V

1.62

Fig. 62

scheme can be arrived at in the investigation of the operation of elastic

separators of the strip type, used for cushioning of various types of

machinery.

Mhen the strip is compressed its dimension in the direction of the
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z-axis will decrease and tr'- dimensions in th dlirections of the x-.

and y-axes will increase. Frictional forces which are here developed

along the strip's horizontal surfaces will tend to restrict the

widening of the strip in the direction of the x- and y-axes, in which

case displacements in the direction of the x-axis can be considered

to be completely nonexistent due to the great length of the strip. In

this case it is sufficient to investigate the compression of any unit

strip, isolated at a certain distance away from the short edges, re-

presented in Fig. 62c; all the remaining strips of this type will be

subject to the same conditions as the strip under consideration.

We shall imagine that an element shown in Fig. 62d is isolated

from the strip by two plane sections perpendicular to the y-axis.. All

the facets of the element experience the action of normal stresses; in

addition the horizontal facets are loaded by tangential forces TO; the

latter &re frictional stresses on the surfaces of contact between the

strip and the plates. We will consider all the above stresses to be

uniformly distributed over the entire area of each face of the element.

Slightly contradicting the evolved traditions, we have taken as

positive ccmpre.rsie stresses, which is more natural in our problem.

The direction of the tangential stresses shown in the figure corres-

ponds to the assumption that the element is displaced in the positive

y-direction.*

The equation of the element's equilibrium in projection on the

y-axis is
h -±L+21as=o. (10.1)

dy

Utilizing Hooke's law

C' a P(,,V+ V.(10.2)
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I
p - - og- I L ki a .)l.

CS= T tat- ,(as + e,)! (10.2)

(the compression deformation should now be considered as positive)

and keeping in mind that Lx -, we find from the first and third

equalities

I+= (10.3)

We will consider quantity e. as constant at all points of the

strip and equal to

as= (10.4)

where w is the distance separating the leading plates, which

is the given quantity. Substituting (10.3) and (10.4) into (10.1) we

arrive at the equation for the stress Cy

+_+!!L_2= 1E o. (10.5)
4y is(I - W P)on

Under the boundary condition aQ(1) = 0, the solution of this

equation has the form
Em. fN,-'-) _(+ (10.6)

where

(10.7)

is the strip constant.

According to (10.3) we now have for the normal stress z

0 ,,. (10.8)

Figure 53 shows the graphs of the distribution of the normal

stiesses a and a along the length of the strip.
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It should be kept in mind that Expressions

- 0. and .. 8) 3e 0 !.$ nn the strip's

deformation tone, wher-e -4P 4.. Pro-t. Th

median part of the strip length can turn out
be

to be in a state of rigid coupling with the

% clamping plates; not only E. = 0 in this part

but also 0= . Then, according to (10.2),

Fig. 63 Oxw am=Fig 63o,= , =(I + IL) (I -- 2p• ('10.9)

m E(I-I) (10.10)
+ p') F1 - 74) A

Let y* be a coordinate of the section, situated on the boundary

of the rigid coupling region. Expression (10.9) should be equal to

Expression (10.6) in this region:

pEw ___[EiJw~(1 +j4(l -Zp)k a(1 + ) - "

Consequently,

It can be seen from this that if

A r,(In (1-.12)

then no rigid coupling region exists at all. Thus, for a - 0.47 (rabber)

it follows from (10.12) that no rigid coupling zone will exist for

X < 1.55. If, for example, f = 0.2, then ratio 1/h S 4.36 follows from

(10.12). We shall assume that Condition (10.12) is satisfied and we
#will limit ourselves to the case when no rigid coupling zone exists.

In this case it is possible to find the total load on the strip

aP, by integrating the expressions for a over the entire length of

the strip
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aP = 2/.,v El jA - 1) (10 13)

During the load increase stage w is thus a linear function of aP, and

the coefficient of rigidity is equal to

" 2(e-t (10.14)

For a very small value of parameter X (for example, due to the fact

that the friction coefficient f is small) we can take E m I + and

Formula (10.14) will take on the form

20711 - IM (10.15)

This expression determines the rigidity of the strip for vanish-

ingly small frictional forces.

Let us now turn to the strip's unloading stage and first of all

let us clarify the stress distribution when the frictional force .

changes direction. There is no need to repeat all the calculations,

since the expressions which are needed can be wrItten Immediately by

the dependencies derived above simply by changing the sign of the

friction coefficient f.

Thus, we will get from (10.6)

£"•-a'•)-I (10.16)

and, In accordance with Expression (10.8), the stress a will be:

s- = (10.17)

The distribution of stresses cý and oz during the unloading stage is

given in Fig. 64. Dependence (10.13) will now be replaced by

221(1 .) (10.18)
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!=e- the rigidity coefficient of the stage under consideration is

different trom the value of (10.14):

(10.19)

Dependencies (10.13) and (i0.18)

"(straight lines 1 and 3) are represented in

Fig. 65. The figure sho.:s clearly that a

Sbo stage, during which neither direct nor re-

verse slip is taking place - a rigid coupling

stage along txhe entire length - .rnust inevita-

Fig. 64 bly lie between the processes described by

rays 1 and 3.* This stage is illustrated in Fig. 65a by segment 2.

9~be

Fig. 65

According to Expression (10.9) the change in quantity w by tw re-

sults in a change in stress a by

A -1 I( -(1#) h (-24 (10.20)

Since A iz is independent of the y-coordinate, then the corresponding

change in force aP amounts to:

-) , (1 -(.21)

Consequently, the rigidity of the strip during this stage is equal to:

2EI (I -- (10.22)

The hysteresis loop for a pulsating cycle thus has the shape of a
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triangle. The straight line

KP cw 2M (10.23)

corresponding to the value of cf for f = 0 given in (10.15) is given

in the same Fig. 65a by a dashed line.

If unloading does not go to zero, then the hysteresis loop

acquires the shape of a trapezoid (Fig. 65b); its side 4 is parallel

to the side 2.

§11. A ROUND SPACER

This paragraph considers the problem of ccmpression of a thin

round disk between two absolutely rigid plates (Fig. 66); in its sub-

stance this problem is closely related to that considered in Section

10. Figure 67b shows a typical element of a disk-spacer, isolated by

two infinitesimally close axial sections and by two infinitesimally

close cylindrical sections. As in Section 10,

the campression stresses are taken here to be

positive. The equation of the element's equili-

brium has the form

dpT P +& - (1.1)

We shall use the usual sign convention
C (positive displacement [starting] fr.in the cen-

Fig. 66 ter) for the displacements u in the radial di-

rection, while for deformation we shall utilize the sign convention

assumed for the stresses (compression deformation is considered posi-

tive ). In this case the relationship between the displacements and
du Vdeformations will become such: to= -w-- ,4 = -- -- ; = v

According to tt.e assumed sign convention, Hooke's law will be

written in the following form [81:
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* = ~~~2GQt-p) da F
-___2p F--- -+ .(11.2)

1-2p' ( -pdp II Fp

Substituting these expressions into the equilibrium equation

z ) b 0)

I p

Fig. 67

(11.1), we will get

_74(7 (11.3)

where w/h = Cz and
2•.=

2,(,-p) (11.4)

is the spacei- constant.

If slip occurs in the reverse direction, i.e., toward the spacer

center, which can happen on unloading, then the frictional forces

change directions and tne equilibrium equation (11.1) takes on the

form

S_.(11.5)

Correspondingly,
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will be obtained instead of (11.3).

As in the preceding paragraph, the case when slip is propagated

only over a part of the spacer is not considered. Three spacer defor~aa-

tion stages are thus possible:

1) the loading stage, when Eq. (11.3), assuming existence of slif.

from the spacer center, is valid;

2) the unloaiing commencement stage, when slip is ccinpletely ab-

sent;

3) the renewed leading stage, when slip takes place toward the

center of the spacer; Eq. (11.6) corresponds to this stage.

The solutions of Eqs. (11.3) and (11.6) should be subjected to

the boundary conditons

U =o; O• g.o. (11.7)

The solution of Eq. (11.3) for the loading stage has the form

"ul= 2-p I =wx p• + (I - 21) (I - I - e,% )

The solution of the equation for the stage of unloading with

slip is obtained as follows:

1( .,L_2IAe._- l ( 11.9)

Substituting now the just found solutions into the third of

equations (11.2) we will find the distribution of stresses az along

the spacer radius. For the loading stage

T __ 0 _ 2___ _-"-') (1. 10)

and for the stage of unloading with slip

,. (I + X2 e-441 - S-)
" -( "T 7--1 ,) 21 L+ (I - Aj -•,-)
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Integrating Expressions (11.10) and (11.11) along the spacer's

contact surface, we will obtain a relationship between the compressing

force and the convergence of the compressing plates. In the first case

we find:

9P =2aoGw 0+P)O 1(1.2k =- I O- p) IF + (I 2g (I + -

The analogous expression for the second case has the form

aP=-+j--' + (11.13)

The dependencies thus found are illustrated by rays I and 3 in

Fig. 65. Accordingly, the rigidity of the spacer during these loading

stages comes to

2mC 0 + 44(A-- -- 1A -- (- -- "&)) Pe- (1 -- 2) (I + I-- eL)' I.I

ZG 0 + A(e-4 -1 + (11.15)4,= -k (I -- IL) P + it -- 2p) (I -- ) - -- a)}

For the intermediate second stage, to which rigid colplizin be-

tween the spacer and the plates corresponds, we have from the third

equation

G ( -I (11.16)

Integrating this expression along the contact surface of the spacer,

we will find the relationship between the load increment and the in-

crement of the quantity Aw:

(I-=2,L) k

Consequently, the coefficient of rigidity during the second stage is

equal to
C2usG ( -- p)

((I1.12)

If X 0 is substituted into Expressions (11.A4) and (11.15) then,
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after evaluating the indeterminate function we will find the rigidity

of the spacer ir the absence of friction:

ire __p)(11.19)

The relationship governing the deformation of this spacer is shown in

Fig. 65a by a dashed line.

If the spacer is deformed with fric-

tion not according to the pulsating cycle,

then the hysteresis loop takes on the

00 •'shape of a trapezoid, as shown in Fig.

* e b65b.

The problem of cyclical compression

of an elastic washer between rigid disks

(Fig. 68a) is of Interest. The main pe-

Stop culiarity of this problem consists in

the fact that slip along the surfaces

of contact between the washer and the

Fig. 61 disks takes opposite directions in two

different annular regions. The slip arising on loading is directed to

the center along the internal annular region and away from the center

along the external annular region. These two regions are separated

frcm one another by a rigid coupling zone (Fig. 68b). Depending on

the value of the characteristic X, this annular zone can degenerate

Into a circle (Fig. 68c). It is namely this case, as being of practical

significance, that is e'Wosequently considered.

The equation of equilibrium of a typical element, situated in the

internal slip region is written in the form of (11.5) on loading; dur-

ing the unloading stage, when slip changes direction, the equation of

equilibrium of the same element is written in the form of (11.1). The
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equilibrium equations during the loading stage (II. 1), and the unload-

ing (stage] (11.5) for an element of the external slip region are

written similarly.
Without going into a detailed investigation of the loading stages,

let us point out that the relationship between the separation w and

the load during the loading stage is written in the form

it - 4 -( U~A(1 0
____ ,)•- - (1-) fl•

+ 
't

At'- (11,..21

Here c is the radius of a circle separating the two slip regions.

For loading., this dependence takes on the form

1(1+ )Q(I -F)'I

+ 1

The relationship between the load increment and the separation

w during the intermediate rigid coupling ostage has the form

P 2=r. 01 - p) (i,2 - 12)
h (t,_ 2+) ((11.22)

The hysteresis loop for a washer deformed between rigid plates is shown

in rig. 65.

§ 12. ABSORBERS WITH TAPERED RINGS

We are considering here systems of ring-shaped springs, which can

be assembled from two different types of rings - split and continuous.

A sprirg with continuous rings is shown in Fig. 69a, and with split rings

in Fig. 69b. The continuous rings experience primarily expansion or
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c-prezion wAhen the snring shrinks, while the split [rings] exper-

ience bending; therefore the computational dependencies for determin-

ation of damping characteristics will be different.

Let us first consider continuous rings. As each ring comes under

pr!.,sure, it is loaded by a system of uniformly distributed loads p

and fp (Fig. 70).

The problem of the rings' deformation

can be solved approximately [and] with

sufficient accuracy, regarding each of them

b as a thin ring with radius R, loaded by a4!• uniformly distributed radial load of inten-
sity qr' which is equal to the sun of the

Pi.g. 69 projections of loads p and f on the radial

direction.

The first stage. The direction in which the frictional force acts

during the first stage corresponds to Fig.

P##-P P T70. From the sum of load projections on the

P pspring axis

2R (snAIp+cs )=P (12.1)
Fig. TO

and on the radial direction

2 (p, rft - I A,, A = q, (12.2)

we will find the value of the radial load.
1-ftg- (12.3)

The circumferential deformation of the ring is determined by

Hooke's law for a uniaxial stressed state

qR (12.4)

where E is the modulus of elasticity of the ring material and F - the
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cross-sectional area of the ring.

The axial approximation of two rings in the vicinity of the

Sring under consideration and -. used only by the deformation of the

latter is equal to

R = c'gP. (12.5)

The total upsetting of the spring can be calculated as a result

of multiplying w by the number of rings. The relationship between the

convergence of rings and the load during the first loading stage can

be found after the expressions found earlier for quantities

W 2R(+'#p-k)p (12.6)

are substituted in the latter. This dependence is represented in the

graph (Fig. 71) by P straight line passing through points 0 and 2. At

the end of the stage under consideratiorn a = 1, so that

p . (12.7)

The second stage. Wen the load is decreased, parameter a assumes

successively diminishing values, smaller than unity. Relative slip of

th- mating surfaces is absent for a cer-

* tain value a = u3 and the axial conver-

*l•ip 'F gence of the rings becomes constant and

SeCP4p, equal to Wmax. On the graph (Fig. 71),
0 Uwf this process is represented by a straight

Fig . 71 line parallel to the ordinate axis and
iW

passing through points 2 and 3. The value of a3 will be determined be-

low.

The third stage. After parameter a reaches values smaller than

a, the rings will begin to move apart. During this stage the load

continues to decrease, therefore the frictional forces have directions
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opposite to those which they had during the first stage; the radial

load is determined by the dependence

9, 21.- 
1  -Itp (12.8)

After repeating the calculations performed for the first stage, but

for a new value of q'½ we will obtain a relationship between the axial

convergence of the rings and the load in the form

4 = f(tgP +,) a. (12.9)

The value of a3 can now be determined from the condition of

equality of displacements calculated by Formulas (12.7) and (12.9) for

point 3 on the graph (Fig. 71):

Itot -- ) (tg A- (12.10)

The straight line corresponding to the dependence (12.9) passes, in

Fig. 71, through points 0 and 3.

The fourth stage. After the load has reached the minimal value

(for a = r) it again begins to increase. No slip exists along the

contact surfaces up to a certain value a = a1 and the axial conver-

gence remains constant and equal to WmLn:

"2R (ctg -- ,p. (12.11)

A straight line parallel to the ordinate axis and passing through

points 4 and 1 corresponds to this dependence on the graph (Fig. 71).

After the load reaches the value alP, the convergence of the

rings is again determined by Dependence (12.6) and the cycle is re-

peated.

The value of a1 is determined from the -. nwition of equality of

displacements, calculated by Formulas (12.6) and (12.11) for the poirt

1:
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- - .)(t1 .. t (12.12)

The area of the hysteresis loop described in Fig. 71 is equal to:

2RI/(Ctg 0 + Ig ) [(t .!-I 'S-) (4-1 R !r+)IJA (12.13)
r.I..'1• (W ' A - I) Ng '- + I I I

Taking into accouter Relationships (12.10) and (12.12), we can re-

write Expression (12.13) in the form
2,?1 (,-,g P + ,R A) (C9 0, + ,1) I.,) ,p 1 .

or

2RI (ctig + IR A) (dcg A IP(P (12.15)
i"EF (ctg p +) ftEp -r

It can be seen from Expressions (12.14) and (12.15) that the en-

ergy dissipated during a cycle Is proportional to the difference be-

tween the squares of the loads corresponding to the beginning and end

of relative slip of the mating planes on loading or unloading.

Analyzing Dependence (12.13), we can see that the value of the

energy dissipated during a cycle increases with a decre.se of angle

1 and for the value 1 = 1, determined from the condition

'gN=1. (12.16)

the entire supplied energy is dissipated during one loading cycle. The

same value of p is also the minimal allowable, since Jaming ensues

-for smaller angles..

Let us now turn to split rings. Let us consider a split ring with

variable cross section, with gemetrical dimensions shown in Fig. 72.

- It is loaded in the same manner as the continuous one, by forces dis-

tributed over the contact surfaces, the resultant or which is equal to

the external axial load aP.

The ring bends under the actinn of the radial pressure component

i
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and or the frictional forces acting along the mating surfaces. It is

ob..cua +h•.* thp axial convergence of rings neighboring on the one un-

der consideration will be basically de-

termined by the bending deformation due

to the action of radial forces; the re-idin-

Ing effects can be disregarded. For the

sake of simplification of computations,

let us replace the pentagonal ring sec-

, __,__ tions by rectangular. This will not intro-

duce substantial errors if the triangular

Fig. 72 parts of the sections are replaced by

rectangular ones with sides b and

-- 1- The width of the ring 1bounded by eccentric annular cylindri-
21S

cal surfaces, measured along the normal to the center line, passing

through the section's centers of gravity, is determined by the depend-

ence

A =- ke + e cm i +,fie ' IW51_
- q)_R 

(12.17)

Here R is the radius of the central axial line; e - the eccentricity

of the internal and external circles; h the width of the ring at the

Joint lock and 4p is an angle reckoned frcin the radius passing through

the Jointt lock. Dropping terms e coo it , we will write the approxi-

mate expression for the width of the ring

I, = e( - ,) + 40. (12.18)

which will be further utilized in the calculations of the section

moments of inertia.

The scheme of force distribution along the ring based on the known
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concepts of the interaction of a split ring with the rigid cylindrical

surface in contact with it is shown in Fig. 73.

It .1l1ows from the differential equation

of the elastic curve of a curved rod

that on segment BCB, where the radial dis-

placenent is constant, the bending moment

is equal to4S

Fig. 73 Ma, =EJi. (12.20)

Substituting for J its value found accoiuing to Expression (12.18) we

will get:

uEb i I + k---cs (12.21)
(12-21

where

The bending moment at the segment AB

MAN - PI W1 6a (12.22)

From the equality of I4. and MAB at section B for i , we can find

P,(I+ k-- * (12.23)

Starting with differential dependences for a curved beam with a

circular axis (Fig. 74) loaded by distributed radial forces of inten-

sity q

a*R +N

(12.24)
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we can get

or, after integrating once,

-+ M=-4 + C. (12.26)

-# 0

Fig. 74

The constant of integration C will be determined after the value

OM =jet+ RN

found fram Expressions (12.24) and the boundary conditions for I =

M-P*Rsn• and N=-Psm4. (12.27)

are substituted into (12.26). It follows from this that C = 0.

Let us substitute into the thus found dependence

"=qa,2=I' O )M (12.28)

the expression for the bending moment M; then the relationship govern-

Ing the pressure distribution along segment BC3 will be written in the

form

(12.29)
6- n(k+ 1), so-6 cos,9 s,,t + 2,,ca, 9.

The moment equation relative to point C makes it possible to find the

force P2 :
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1 41A _j.. 2_.,,_(&4.- -U] (12.30)

The condition relating the radial displacement o" point A to the

previously found values of the bending moments

+' U .2.u b RM.ud +fAR4. (12.31)

after the quantities entering it are substituted and after integration,

gives an equation for the determination or the angle *, bounding the

rings' contact zone:

(12 .32)

where '=1(•27

For Ic = , the equation (12.32) for a ring with constant thi•ck-

ness will be written in the form

2-- 4 -- +COS,. (12.33)

which gives * _- 1220; for k = 0 we will find that 0 = 0.

The condition of equivalence between the radial forces and the

external load is determined by the dependence

up (ctpTh = 2P+ 2P2+2f9R (12.34)
9

After the values of the appropriate quantities are substituted In-

to the 2ast expression we will find

uEkO (12.35)U P (CtgP T 4) R3 " .35)

where

I

i -1z25-
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I- +(1 i2U2+ kp--.60 (+ k)) -

-- 12(k+ If +6(k+ I)' + 12(k-i A1)rem++
+ 6 (k + 1) €•a, , + (6k + 4) to + - (12.36)

I I
--o'}+ -1(k+ 1pin' (4-• + - (1 j) (--n)

3 3 3

Repeating the same deliberations as in the -receding problem, we

can construct a hysteresis loop, which has the shape shown in Fig. 71.

The area of the hysteresis loop is equal to:

~.2Wflctgl 9)FC -1. 1Ct9P+1.pj. (12.37)

[Footnotes]

IManu-
script
Page

No.

10T Figure 62d does not show tangential stresses in the strip's
cross sections; these stresses, variable along the length
(arising according to the pairing property of tangential
streases), create a self-balanced systen in each section and
will net enter the equations that are subsequently f--iulated.

111 A more detailed analysis shows that no rigid coupling on a
segment of the strip length is possible during unloading.
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Part Two

SYSTEMS WITH ELASTIC-FRICTIONAL COUPLINGS

Chapte" 5

RIVETED J(INTS

§13. AN ELEMENTARY SYSTEM

To clarify the basic qualitative peculiarities of the deformation

of systems with elastic frictional character of interaction between

parts, let us consider the elementary system represented in Fig. 75a.

The system consists of an elastic strip, pressed to a rigid un-

deformable foundation; it differs from the system considered in § 1

by the presence of couplings elastically resisting slippage of the

strip along the foundation. Therefore, not only frictional forces but

also tangential forces of interaction

I-- -. which have an elastic character, arise be-

-L tween the strip and the foundation. The
b dx

6) A number of elastic couplings is assumed to

be sufficiently great so that it is possi-
SC

,..6).ble to replace discrete couplings by a

continuous elastic layer; furthermore, the
Fig. 75

tangential interu.ction forces between the

S strip and th( foundation will be assumed to be distributed along the

i entire length of the strip.

The peculiarities of the distribution of frictional forces between

• the strip and foundation pointed out in Section 1 remain valid in this

case; frictional forces are equal to zero at segments where slip is

absent; where slip is present, these forces are equal to qo. Let us

add to this that the reactions of elastic couplings arise only in those
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regions where the strip slips along the foundation; the elastic reac-

tions thus arise only in those regions where frictional forces are

present. The intensity of the reaction of elastic couplings will be

determined by the dependence

"(13.1)

where c (kg/cm2 ) is the rigidity coefficient of the couplings and u,

as above, the displacement of the current section in the direction ('r

the x-axis; this displacement will be denoted by the indices 1, 2 and

3, corresponding to the three stages of the process.

The first stage. Fig. 75b illustrates an element of the strip iso-

lated in its deformation zone, and also forces acting on this element.

The equilibrium equation

.N =o (13.2)

after the substitution

X-N -; (13.3)

is reduced to the differential equation

f = (13.4)

where

p-• - (13.5)

The solution of Eq. (13.4) has the form

Ajý +ke-O - -!ý -(13.6)
C

For determination of the quantities A1 and B, and also of the size of

the deformation zone, we will utilize the following three bourdary

conditions:

=-1 2 - ) =0: (13.7)
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Here aI is the length of the slip region corresponding to the given

value of a. It is assumed that force N is not too great, so that aI < I

even for a = 1. The first two conditions thus pertain to the left

boundary or the slip segment, where it is the displacement and the

longitudinal force N, proportional to the derivative uj, which are

equal to zero; the last condition pertains to the right end of the

strip. Utilizing (13.7), we will get

"2is I +' +'
2 IV • + +,(13.8)

I 1-sha 199* 
m -)

The distribution of tangential forces of Interation between the strip

and the foundation In the process of the first loading is shown in

Fig. 75c.

The second stage. During the second stage a reverse slip zone

appears near to the end; the equation for this zone will be written in

the form

_i ,(13.9)

The solution of this equation should satisfy the boundary condi-

* .tions

~~. 0 (- 42") =--•s
• 24(l-o' ) = U; (I -a (13.10)

,4dCa) rap

The first two conditions pertain to the boumdary between the direct and

reverse slip zones, when the solutions of Eqs. (13.4) and (13.9) should
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coincide with the first derivatives of these solutions.

The solution of Eq. (13.9) has the form

u 13.11)

where

. V I() IV P-UOTaI
The length of the reverse slip zone is determined by the formula

A.4 [94Fa -1P -() -g+ Ij (13.13)

The third stage. The load Increases again. For the end segment

when direct slip is renewed, the equation again acquires the previous

form (13.4), so that the solution will be written in the form

C (13.14)

Boundary conditions

lea --, , -(13.15)
up.

serve for the determination of the length of the end zone a3 and of the

quantities A3 and By. Utilizing (13.15), we will find

t V'(a-"r + 4L ]

"+ I +•Ol (
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Utilizing Expressions (13.6), (13.11) and (13.14) for u1 , u2 and u,39

we can construct a hysteresis loop for any given combination of the

system's parameters. The general character of the loop coincides with

that Illustrated in Fig. 14. The area of the loop is determined by

Formula (1.32) and Is equal to

C C (13.17)
S--r+ --r)2P w

Substituting here, as above, P(1 - r) :2Pv, we will get

where the parameter

S~(13.19)

"characterim-ps the role of frictional forces in relation to the found-

ation. For a vanishingly small rigidity of couplings we can assume

that f = 0 and the expression in parentheses will become indeterminate.

After the indeterminate function has been evaluated, we find that it

is equal to 1/3; furthermore, Solution (1.34) coincides with Solution

(13.18) obtained above for the case when elastic couplings are absent.

For vanishingly small frictional forces q, = 0 and the entire expres-

sion (13.18) becomes zero.

Figure 76 shows the dependence of the area of the hysteresis loop

T on the dimensionless parameter y. The ratio of T to the value of TO

calculated by Formula (1.34) and corresponding to the case when elastic

couplings are absent is laid off along the ordinate axis.

As can be seen from the graph, already for y > 2 the difference

between T and T0 becomes insubstantial and it is possible to approxi-

mately estimate energy dissipation disregarding the role of elastic
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couplings.

-- The solition here presented can with-

476 - out difficulty be extended to the case

-. when slip takes place along the entire

Fig. 76 length of the strip for large values of P.

S14. JOINING TWO STRIPS BY COVER PLATES

Let us now consider two strips Joined by cover plates by means

of rivets (Pig. 77). If the number of rivets is sufficiently great

we ca- assume that the intensity of tangential forces of interaction

in the slip zone is equal to

(14.1)

where u is the displacement of the current section of the strip and

U2 is the displacement of the current section of the cover plates.

The intensity of the reaction of the elastic couplings

8v ,(14.2)

Figure 78 shows the loading of the elements of the joint at the

end of the first loading stage (it is assumed that the value of force

P is insufficient for the relative displacements to propageae over the

entire mating surface).

Let us consider the equilibrium of

an end segment of the strip, on which

slip takes place. This segment has a
Fig. 77

length a1 and is sub-'ected to the action

of forces aP, s and kaP, as this is shown in Fig. 79a. The magnitude of

force kaP is determined from the con-

"n •dition of equality of the displacements

of the strip and the cover plates at

Fig. 78 the boundary of the segment and is
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equal to

Lup' = k (14.3)

i.e.,

k= (14.4)

where .• is the rigidity of the strip's section and k is the total

rigidity of the cover plates' sections.

Denoting the normal forces in the current sections of the strip

and the cover plates by N1 and N2 , we will write the condition for

the equilibrium of the strip element (Fig. 79d)

S-=(14.5)

Differentiating Eq. (14.5) in respect to x and keeping in mind

that N 1 = kU 1 and 4P (aiInce N2 = P- N1 in any section),

"we will get the equation

ape
*I-* -- hl; k- -(14.6)

where

S"= C +I (14.71

As follows from load systems on the element during the second and

third loading stages (Fig. 79b and c), Eq. (14.6) is valtd also for

these stages.

Assigning to u additional indices, corresponding to the stage

numbers, we will write the boundary conditions for each stage.

The first stage:

,,(,,o)- =o(14.8)
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(a! at)

The second stage:

", (. • = .. .• -(I - Ki__p.
"vs* (a.", =, 0 t)--• +- "

k1 - (14.9)

k.
apM, (-, aj = • -.

The third stage:

"",,(,.,,,k.a . (14.10)

Subjecting the solution of Eq. (14.6) successively to the boundary

conditions (14.8), (14.9) and (14.10), we will obtain the following

expression for determination of the displacement of the right end

section.

During the first stage:I~~ ~~I-ý)4 -- +.• •, _a,, .-+% I.I

~(14.11)

w~here IP P r(1) +vn 1T 71
(14.12)

Duhring the second stage:

MgInA1AJfO (14.13)

-134-

Th: I i , I i I i I I I° i I I I --



During the third stage:

.= 9.. 1,,II1-k•( _, _,- _______-__-+•

(14.14)
+214(,F)Pl•k) Of + 1_1) + "P._.29# k, k+ A,

The graph of the dependence of the displacement of the right end

section of the strip on the force aP is similar to that illustrated

"P.

Fig. 79

in Figg.149

Finding, as before the area of the hysteresis loop, we will obtain

the value of the energy ditsirated in the considered part of-the Joint:

.4P1,,_( - _AukIIt (14.15)

where

"Ti . ,,, -. ,W,, P. (14.16)
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To determine the energy dissipated on the interrial segments of

the mating surface (segment a' in Fig. 78), it i-. sufficient to in-

t'erchange the pozit.ons of k and k in Expression (14.15). Then we

will obtain the following expression for the total Cissipated energy:

where

7. (14.18)

Figure 80 illustrates the dependence

of the area of the hysteresis loop on the

parameter -y = -for different ra-

tios ... : . The ratio of Ta raeo the value

of corresponding to a purely frictional

coupling is, as before, laid off on the

ordinate axis. Value k2 : k1 = 1 corres-

-•Fig. 80 ponds to the maximal energy dissipation,

the•value k2  I - -- to minimal dissipation. The curve for k2 : k,

= , Coincides with that shown in Fig. 76, since in this case Formula

(14-17) is transformed Into (13.18). As can be seen from the graphs,

the simpler Formula (G3.18) can be¥
utilized for an approximate estimate,

and Formula (1.34) - for -y > 2.

Ir The character of the dependence of

the area of the hysteresis loop I on the

frictional force qo is shown in Fig. 81.

In the general case, the curve has two

Fig. 81 maxima, corresponding to the maxira of

energy dissipated in two different ends of the mating surface.
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115. PURE BE=DING OF A BEAM WITH COVER PLATES

Figure 82 shows the beam with cover plates whlch Is cons4dered

here, loaded by two bending moments. Tne cover plates are joined to

the beam by rivets; the external moment is applied only to the beam.

This scheme is similar to that considered in Section 4.

Fig. 82

Slip of the cover plate relative to the external fiber of the beaw

occurs at the beam's ends for any value of aN. The intensity of the

* tangential forces of interaction between the cover plates and the bea

will be written as before in the form

* 9C=i-m)+9p (15.1)

twhere u 1 is the displacement of a point of the extreme beam layer and

ui is the displacement of the corresponding point on the cover plate.

It is assumed in the subsequent calculations that the cover platei

are sufficiently thin and their rlgidity in bending is not taken into

account.

Figure 83 shows the beam loading during the three loading stages

(the cover plates are taken off). Let us
M separate a differential element of the

segrnet where slip took place (Fig. 84)

and, denoting the bending moment in the

beam section by N, let us write the con.

dition for the element's equilibrium
t - 0 (15.2)

Fig. 83

where h is the heiht of the beam.
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IL.Liz1ng a•so the %O... .#r4 the A.66.. 46 te en0 seg-
.erit of thc beami-- o05

.t M.+E•u; (15.3)

and the relationship

2FJ*= Ug;. (15.4)

where P is the cross-sectional area of the cover plat: and J is the

moment of inertia of the beam section without the cover plates, we

will obtain the equation

".. .i _.• (15.5)

where J is the moment of inertia of the cross .ection of the beam-with

the cover plates.

The form of Eq. (15.5) is similar to Eq.

! '=dM* (14.6). Similar to the manner in which it was

.• E ,,done in the preceding paragraph, we can obtain

u "--the following expression for the energy dissi-

Fig. 84 pated during the beam's loading cycle:

: (e - -e•• -- A• , (15.6)

" = •-= Va•'.(15.7)

It is obvious that also in this case it is possible to approxi-

mately det4-rnIne, for y > 2, tie dissi-

pated energy by Formula (4.15), ebtained

P ý for a purely frictional Joint.

Fig. 85 If the slip regions are propagated

over the entire mating surface, the hys-
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teresis loop has the shape shown in Fig. 2]. In this case a successive

analysis of the five loading stages results in the following formula

A, %#A, wag%, -16.f

,- q.I -- (15.8)

where PP- and 21 is the length of the cover plate.

The boundary of applicability of Formulas (15.7) and (15.9)[sic]

is determined by the amplitude of the moment

-fv (15.9)

Formula (15.6) is valid for smaller amplitudes and Formula (15.8)

for larger ones.

The applicability of the dependencies obtained above for determin-

ation of energy dissipation of actual riveted Joints operating in the

dynamic mode was verified by experiment.

The experimental specimen constituted a steel beam with a rectan-

gular cross section (Fig. 86) fabricated together with the

i, -39 -
I "

-I

i end masses as a single entity. The cover plates were fastened to the

j 139-"
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beam by steel rivets. To ensure a sufficiently uniform pressi. ie

cover plates to the buam and to improve filling of the holes, the ,et

heads were formed by pressing tne rivets using the same force for each

of them.

Fig. 87

The general view of the experimental installation is shown in

Fig. 87. The beam wssus-oended by vertical wires to massive plates

and was brought into resonance by an electromagnet oscillator., fed by

variable-frequency AC. Of the two possible bending-vibration modes,

(Fig. 88), we incdhiced the fir-st. The amplitude of the disturbing

force could be changed and the amplitude controlled by varying the

diztance between the oscillator and the beam. After the given ampli-

tude has been set, the oscillator was shut off and the oscillogram

o-~ free vibrations was re-corded. The recording was madr off a tenso-

meter utilizaing the TJD-3N4 (f4A.Sh Ali SSSi) amiplifier and the DIP0-2
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Fig. 88

oscillograph.

The energy dissipated during one cycle was determined by the for-

mula

k 2 =--•- 912,t), (15.10)

where k is the rigidity of the beam, i.e.: the torque creating a

ielative angle of twist of the erd masses equal to one radian and IV

is the angle of rela'ive twist of the end masses.

The determination of the beam's rigidity and calibration of the

oscillograms were performed under static conditions.

A ]linear relationship between the deformation on one hand and the

torque and angle of twist on the other was assumed in the interpreta-

tion of the oscIllograms.

The results of the experiment were compared with the theoretical,

calculated by Formula (15.7) transformed to the form

-0JE~ (3-5.12)

Here

where p is the frictional force corresponding to one rivet, c is the
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rigidity of one rivet and n iL the number of riv.?ts per unit length of

the cover plates.

The number of rivets n and the frictional force fp were varied in

the course of the experiments; the latter was achieved by changing the

force with which the rivet heads were pressed.

Special specimens (Fig. 89), conisting of two plates joined by

cover plates by four or six rivets, the heads of which were pressed

by the same force as was used in the assembly of the beam, were fabri-

cated for the determination of numerical values of quantities c and

a. Thir- graduation lines were made in the polished side surfaces of

the specimen; the specimen was stretched in a special fixture and

the relative displacements of the graduation lines on loading and un-

loading were measured under a microscope with 280x magnification

W(MI-6). Graphs of the dependence of the stretching force Q on the

mean relative displacement 6 had the shape shown in Fig. 90. The val-

ues of f and c were taken as equal to:

,i~C 1P ; c

where n Is the number of rivets on the specimen. It was found that the

frictional force 11 is equal to 25 and 60

kg respectively for a head pressing force of

1000 and 3000 kg. The mean rigidity c on

changing the pressing force frcm 1000 to

3000 remained constant and was equal to 6.104

.• o kg/cm. Deviation from the mean values did

not exceed 25%.

Fig. 89 The frictional force was determined by

still another method. A slot from the middle

rivet hole to the edge was cut in one of the specimen's plates (Fig. 91).
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-•h %.ce pateo, wereo Jininpa to this plate by one rivet put into the

slot. The frictional force was assumed to be equal to half of the

tearing capacity of the plate. Results

measured by the first and second methods

gave the same mean value of the quantity

Graphs showing the dependence of en-

ergy dissipated during one cycle on the

1 _8 • amplitude of the torque and the experimen-

tal points corresponding to them are shown

Fig. 90 in Figs. 92 and 93. The experimental re-

sults fully verify the validity of the theoretical relationships. A

curve corresponding tz the case c = 0 (purely frictional Joint) is

shown in Fig. 93 by a dashed line. The two curves almost coincide,

which verifies the previously drawn conclusion as to the applicability

of Formu:la (4.15) for approximate calculations of en-

Sergy dissipation in elastic-frictional Joints (for
large values of parameter -y).

§16. TRANSVERSE BENDING OF A CANTILEVER
Fig. 91 We shall consider Goodman's and Klamp's problem

gas

Fi. 92. a) Kg-cm-.b) kg/cm Fig. 9.3._a) Kg- cm b) kg/cm;
c) kg; d) kg-=. c) kg; d) kg-cm.S-143i-
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presented in Section 5 on the assumption that not only tangential

frictional forces, but elastic resistance forces (for example, due to

a rivet or bolt system) can act on the mating surface of two beam

layers.

During the first stage, as in the Goodman and Klamp problem, both

halves of the cantilever deform together and the end deflection is

determined by Formuls (5.2) up to the value a0 = 4/3 q0 h; here the

tangential forces along the mating surface of the parts are realized

only in the form of frictional forces.

After the tangential forces reach the value qo, simultaneous slip

will occuu, over the entire mating surface. The load system on a half

of the cantilever during the second stage is shown in Fig. 94. The in-

tensity of the distributed tangential load q is determined by the de-

pendence

-q. +2-. (16.1)

where u is the displacement in the current section along the mating

plane.

For determination of the displacement
Z u let us consider the conditions for the

- - - equilibrium of an element isolated at a

ZZdistance x from the free end (Fig. 95):

Fig. 94 &i+2+*)1-Q=0, (16.2)

-(2cu +q) = 0, (16.3)

where M, N and Q are the bending moment, the normal and shear forces

in one layer of the cantilever.

From the condition of equilibrium of the cut-off part of the can-

tilever (Fig. 96) we will get
N'i + 2.1 ==P. (16.4)
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Hooke's law for the beam's contact surface can be written in the

form

JV ff (16.5)

Utilizing Dependencies (16.2), (16.3), (16.4) and (16.5), we will

get the cc-uat ion

.. _ _ 3a---,)P (16.6)
EW

where

8=C (16.7)

The boundary conditions of our problem have the following form:

,g=o, ,'(I)=O. (16.8)

Determining u and thus clarifying the value of the distributed mo-

ment Icad,equal to qh/2, we will find the displacement of the cantIl-

ever's end during the second stage:

I&-3~ a--r (16.9)

The two halves again deform together during-the third stage and

the deflection of the cantilever's end is equal to:

(16.10)

or

v~ = ~(16.11)

Without dwelling on the subsequent [processes], let us note that

* in the given case the hysteresis loop is similar to that presented in

Fig. 29. Calculating the area of the loop by Formula (5.16), we will

get
E-" 4 - "(16.12)
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Figure 97 illustrates the dependence of the ratio T : T0 (T0 is

.1i.,,h1-. h1nr Pr lp tvl 17_ ,_,;,. the pmrameter 1/pa. The i.raDh coin-

cides with that shown in Fig. 76. 17he ratio T/ 0 differs very little

frum zero for the value 1/01 > 2, i.e., the role of elastic couplings

becomes insignificant. The dependence o,' the dissipated energy on the

frictional forces can be illustrated by graphs (oee Fig. 81), by

changing the scale of the ordinate axis by a ratio of

Let us present the final results of the solution of the problem

of bending of a cantilevered beam with pressure plates (see Fig. 10).

Q a.dQ• I

I'? ' Hid1

M
44

N

Fig. 96 Fig. 97

Pian [36] has solved a similar problem on the assumption that the in-

teraction between the cover plates and the beam carries an elastic-

frictional character, and has obtained the following formula for the

energy dissipated during one beam loading cycle:

T 4F 9 -U-(I-f-A rs). (16.13)

Here
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Formula (5.29) is obtained for c = 0 as a particular result of

Formula (16.13).

The experiment set up by Plan has as its goal checking the depend-

ence of dissipated energy on the amplitude of the force. The uxperlmen-

tal beam is shown in Fig. 98. The pressure plates were fastened to the

beam by special threaded Joints, consisting of dowels with two nuts.

The design of the Joints ensured transmission of the elastic forces

from the beam to the pressure plates. It has been established by special

SFig. 98

measurements that the rigidity of the elastic couplings amounts on

the average to 7400 kg/cm2 , and the frictional force per unit length

of the pressure plate is related to the nut tightening torque M in

the following manner:

q = 20W.

The value of the dissipated energy was calculated by the oscillo-

grams of free damped vibrations. Figure 99 shows theoretical and ex-

perimental dependencies of the dissipated energy on twice the load

amplitude, obtained by Plan.

As can be seen, the experimental data verify the theory very well.

§17. STRUCTURAL DAMPING IN A RIVF'EI) THIN-WALLED BWM

Earlier (§ 7) we have considered the purely frictional scheme of
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the structural damping problem in a

I • Ma "I thin-walled beam. It was assumed there
Y-He 2 rcis

i--- ¢ ---- . that the rivets connecting the web to

m | •the rods (standards and flanges) only

ensure pressing the web to the rods

/ and do not resist relative slip of the

2 4 '/1ii2web and the rods due to the fact that

ii! the rivet blanks are seated in the holes

' : [with a positive allowance.
or !In the present section we will

":qo to 0 5DO approximately take into account the

Fig. 99. a) Experiment; b) elastic resistance force which is ex-
kg-cm; c) theory; d) kg/cm.

erted by the rivets on the displace-

ments of the wall relative to the rods. As in the preceding sections,

we will assume that a humogeneouselastic layer between the joined ele-

ments has replaced the rivets. This layer exerts a resistance to the

slip of the joined ccoponents, proportional to the relative displace-

ments.

42

a) o( bP

Fig. 100

Let us consider a single-panel thin-walled beam shown in Fig.

1OOa. Since all the seams are subject to the same nonditions, it is

sufficient to -consider a seam element of unit length (Fig. 10Ob). As

can be seen, the contact region where the web is compressed between
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the angle bars forming the flange Is of width a.

The tangential forces q in the beam web are determined by the

formula

q=- (17.1)

If the beam is multi-panelled and several forces aP act on one

side of the section under consideration, then the transverse shear

force should be substituted into Formula (17.1).

The tangential forces in the web increase with an increasing

load. As a result, shear takes place also in that section of the web

which is compressed between the rods. This shear results in slip of

the web relative to the rods. If we discuss Fig. lOOb, then slip

starts in the upper part of the contact region and is propagated down-

ward.

Let us consider the equilibrium and de-

,u • formations of a web element (Fig. 101),

isolated in the slip zone. The element is

subject to the action of: tangential forces

qy in the section where y = const., frictix-

X al forces and elastic rivet reaction forces.

Fig. 101
Let us refer the frictional forces To and

the rivet reaction forces cu to unit contact surface. The quantity c

is the rigidity coeffliient of the plastic layer which replaced the

rivets. Projecting the forces applied to the element on the x-axis, we

will get

L - 2-;. +• (17.2)

The multiplier 2 of To takes into account the two-sided contact

between the web and the flange and u is the displacement of the web
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relative to the flanges in the contact zone.
•. -•. Trf- 4 1 4,-•

The shearing strain in the web is equal to xy= uu/dy. Ul-

ing Hooke's law, we will get

;u& a. (17.3)

Here 6 is the web thickness and G is the shear modulus. Prcm (17.2)

and (17.3) we will obtain the differential equation

u 2, (17.4)

where

P M C. (17.5)

The solution of Eq. (17.4) has the form:

U - A, CY +slap, -15__. (17.6)

C

Then from (17.3):

I,=3-, = PC-(A, s A + B ch y). (17.7)
dy

Let us turn to the first loading stage when a varies from zero

to unity. Let, for a certain value of the coefficient a1 , when the

tangential forces in the web reach the value ql, the slip have

spread to the width a1 (Fig. 102a). The x-axis will be directed along

the lower boundary of the slip zone. Then u = 0 and qly 0

b C
, ,I bal

Fig. 102

for y = 0. Under these boundary conditions we will find from (17.6)
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and k17.7)

A, o me O.
C

Consequently, the displacements and taientilal orfc. 'Uin thse S-'J-LP

region are, during the first loading deternmined by the formulas

,,J, = 2% (cl -).(17.8)
C

2%y (17.9)

The diagrams of quantities qly and uly arc shown in Fig. 102b and c.

For y = a1 the tangential forces qly = ql. From this condition and

from Fovirula (17.9) we can find the width aI of the slip zone:

_=h (17.10)

In particular, the displacement of the upper edge of the contact

region will be determined from (17.8) if we set y = aI. We will get

U, = !a (CA PC,-. (17.11)
C

For a = a the slip will spread to the entire width of the contact

surface. We subsequently assume that the load coefficient a = 1 corres-

ponds to this case.

Let us now consider the unloadLng stage, when the force in the

web changes from qc to q2. As the load decreases, slip will occur

in a direction opposite to that of the loading stage. This slip will

also start from the top and will spread downward. For q2 the width of

the reverse slip zone will be a2 (Fig. 103a). Dependencies (17.6) and

(17.7) remain valid in the reverse slip zone, it is only necessary to

"change the sign of To, i.e.,

,= • cAChp+2s a •C (17.13)
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In these equalities aI - a2 • y ý aI.

The constants of integration A2 and B2 are determineu from the

conditions that the displacements are u2y = Uly and the tangential

forces q2y = qly at the edge y = a, - a2 separating the first and

second slip zones. Performing the necessary calculations, we will get

A9 II -- 2 ,i (a, -- 9)1.
C (17.14)

?2 = 4. 7 -- a2).

Consequently, in the reverse slip zone

,,%, = -*• It + ca Py -- A ' (@I -- a,--, (17.15)

-2, Is, 4' + 2bh -- P --()f. (17.16)
C

The width a 2 of the reverse slip zone will be found from (17.16)

and the condition that q2y = q0 2 [sic] for y = a1. Taking into ac

Equalý.Ay (17.10), this gives

If a 2 = a, then reverse slip will embrace the entire width of the

contact region. a = - 1 corresponds to this case.

The di.splacement of the upper edge of the contact region, where

y = a,, during the unloading stage, will be

u 2-s (I + ch ýa, -- 2 ch Pa.(118
C

As '.an be seen, on full unloading, when q2 = 0, the system does

!ot return to its original state. The residual displacements at the

upper edge will be

Let the load, having reached a certain smallest value, for which
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the force in the web is equal to q2, begin to increase anew. Togethez,

with the increase in the load slip of the web will occur in the same

direction as during the first loading. Referring to Fig. lOOb, t)his

slip, starting from the top, will spread downward, When the force in

the web reaches a certain value q3 the width of slip reaches the val-

ue a 3 (Fig. 104a).

b- b b -

S.... y, __I"___

_ _ __ _. f

Fig. 103 Fig. 104

Dependencies (17.5) and (17.6) remain valid in the secondar-j slip

zone, i.e.,

2TO

q = PQG8 (Ash y + S Ch PV).

Constants A3 and B3 will be fo'md from the conditions that Uy =

U3Y and q, = q3 Y for y = al - a Performing the necessary calcula-

tions, we will find

A, U i + 2 c iA (, -- a,)-- 2 ci P (#I -- ,J).
C

C, ( _ a, S , - ,,) - bb AS (as,- 6801.

Then the displacements and the forces in the web sections in the zone

y a- a3 will be

asp 2I-1 +cl. p++2chp(e.---)--2c p(. 1 -a---)I. (17.19)
C

w =1 Isb Py - - 2• P F---- i) + 21 P (al.-- 2 -'.,)1- (17.20)
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Diagrams of the quantities q3 Y and u3y are shown in Fig. 104b and c.

These same figures show the character of the force and displacements

distributions in the slip zone, when the tangential forces in the web

vary within the limits ql > q3 > q2 "

The width a3 of the secondar-y slip zone will be found from the

condition that q3Y = q3 for y = a,. Utilizing Equalities (17.10) and

(17.17), we will get

Spa (,-- 2) (17.21)

4?TO

The displacements at the upper edge of the contact region (y =

a1 ) are determined by the formula

I,- (-- + +2cbi,--2ha). (17.22)

It can be eaeily seen that for a3 = 0 Equality (17.22) coincides

with (17.15). If a 3 = a 2 then the reverse slip zone disappears and

Equality (17.8) is obtained from (17.22).

A hysteresis loop the area of which is proprotional to the energy

irreversibly absorbed by unit seam element during one loading cycle

is presented in Fig. 105. The displacements of the upper edge of the

contact region are laid off on the abscissa axis and the load coeffi-

cient a - on the ordinate axis. Curve 1 corresponds to the first load-

ing and represents Dependence (17.11), curve 2 corresponds to the un-

loading stage and Equality (17.18), curve 3 describes the displacements

on the renewed loading stage, determined by Formula (17.22).

The energy absorbed by unit seam element during one loading cycle,

when the load coefficient varies between the limits r a ,g 1, is cal-

culated by the formula

I
"= (u2 -- u3 da.
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CO j ia %0 ̀ A.d A s A7 " "MJ " " % 2  J6f ̀  `L ~ A 13

Sfrom (17.22) and performing the necessary cal-

culations, we will get:

2 G2v, •;-- {•-- ,. ITP.-LI, + F.•.I. (17.23)

w•here

(17.24

Fig. 105
Energy absorbed by a seam element of length

ish will be obtained by multiplying Tl by lnh.

Manu-
script [List of Transliterated Symbols]
Page

No.

140 I4MALI AH CCCP = IMASh AN SSSR = USSR Academy of Sciences Ir-

stitute of Machine Building
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Chapter 6

THREADED AND SLOTTED JOINTS

§18. THE ELEMENTARY PROBLEM

In order to analyze the energy dissipation attendant to the load-

ing of a threaded joint, it is first necessary to consider the follow-

ing auxiliary problem. A thin disk, bounded by two parallel planes and

two conic surfaces (Fig. 106), is loaded by a system of normal stresses

ax and ax + Aux, uniformly distributed along the disk base.

The following simplified assumptions will

be utilized in the subsequent analysi.s of the
'pp

deformations and displacements; their conven-

ience and nature will become clear below, when
Fig. 106

we will speak about the deformation of a bank of

simnilar disks. We shall assume that the disk is pressed only to the lo.-

er conical rim surface; the normal reactions p and the tangential fric-

tional forces 12, which are assumed to be uniformly distributed along

the entire bearing surface, arise along this strface. We shall further

assume that the disk does not bend and, therefore, disk bpces which .,ere

plane before loading will remain plane also after loading. Finally, w.-e

shall assume that the system of support reactions results in compression

of the disk In the radial direction constant along its entire thickness;

it is understood that the normal stresses, given at the disk base, will

also exert an influence on this campression.
Reactions p are determined from the condition of equilibri,= of

the entire disk
ha, •. (28.1)
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where r. is the mean radius of the tapered surface of the disk.

The average stress along the disk thickness, .r, amounts to
Ir

, O(18.2)

Let us now find the disk's radial deformation, caused both by the

stress ar as well as by the stress a

,-- M (18.3)"= • T = - 2E -

The mean radius of the disk changes as a result of the radial de-

formation; the absolute value of this change

2 E

This lessen).ng of the disk radius, in turn, is the factor causing the

disk to be d Alaced in the direction of the x-axis:

A tAP - + W4a (18.5)

It should be noted that the displacement of the disk depends on the

value of ax (the second component), as well as on the value of Aa. (the

first component), in the terms olf which the pressure p is expressed in

accordance with Formula (18.1).

Let us now consider the disk's unloading process. The beginning

of this process is quite unique. As soon as the external load on the

disk begins to decrease, a decrease of the frictional forces along

the bearing surface will also occur. Since the new values of the fric-

tional forces are smaller than the limiting value _Q, slip of the

disx.A becomes impossible and rigid coupling of the disk with the rim

will occur. The change of external forces during this loading stage is

not accompanied by any displacements of the disk. This is shown in

Fig. 107. The frictional forces are here smaller than the limiting

value JQ and are related to the reactions p by the condition of con-
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6.-J~ 6*.6.

J.LLIJitttttt

6..•€ e6.46.

Fig. 107 Fig. 108

stancy of the diskts radial deformation.

As the load is decreased, the frictional forces will also de-

crease, change their sign and, finally, will again reach their limit-

ing value fp, which will signal the beginning of reverse slip; the

loads on the disk during this new stage are shown in Fig. 108. The

following group of expressions, replacing Relationships (18.1) -

(18.5) of the first loading stage, corresponds to this stage:

ýfx_ P. .(18.6)

4 0 + Ago.;(18.7)

P. = 0 + I tg P), (I-A pas, 18
- 9 - __- T-I (8 8

Pr'. 0 "( + I, tg ) ft -A Pro .•. (18.9)Are ~2E tI

_.W9(1+Itg+)(I- I) (Lrq.A (18.10)

2E tg t Etgp

The expressions presented above can be obtained from Relationships

(8.1) -- (18.5) by simple change of signs of the friction coefficient

Having solved this elementary problem, we can pass on to the so-

lution of the basic problem of the present section about energy dissi-

pation in a threaded Joint (Fig. 109). This Joint can be regarded as

an ensemble of a large number of disks, situated in an elastic rim

nut; here each disk will represent a simplified schematic of one turn
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of the bolt thread. For a quite large number of turns it is natural to

make a limit transition and to regard the threading as consisting of

an infinitely large number of infinitesimally thin disks: this approaah

has received widespread application in threaded Joint calculations

(see, for example, the Reference by I.A. Birger [3])*. For the sake of

simplification of our calculations we will a:isume that the nut is

cmnpletely rigid, which will make it possible to most clearly expose

all the substantial peculiarities of the problem's solution. The case

when the elasticity of the bolt, as well

_1 • Y as the nut, is taken into account is con-

sidered in Article (151.

Making a limit transition, we will ob-

tain instead of (18.1)

ii= (18.11)
btg + I

K Then Expression (18.5) will take on the

Fig. 109 form

N 2Etg•pfIp+fi YO (18.12)

Correspondingly, the derivative of u in respect to x is
PI (I-It )( )o" + pr a,*.p. -
- t2gpft-a-A.,- L,-P. (18.13)

On the other hand, we should also have

S',= e = z (I tg

B E Eg+t
.a 4- ff= +g A)litt

Equating (18.13) and (18.14) we will obtain the fundamental equation

of the problem for the first loading stage:

(18.15)

The notations used here are:
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44 0 + ti 0)
0 - ,i ,_ 0)( - P

b =- O- F %-' .W';IS 1- I'll- .

• ( --itg 0) ( -•

The solution of this equation, subjected to the boundary conditions

a, 0 for z=O,

'as . for Hz:I

has the form

&p LPC sh a+-4b
(18.18)

Substituting (18.18) into Expresi on (18.12) and then setting x = H,

we will find the displacement of the end section as a function of the

applied force

£P~ ~ ~ ~~0 [--t~1ilVa+44 b
~ 4(g~+H )+A~ (18.19)

Expression (18.19) describes the joint's loading process; this

process Is illustrated by the straight line 1 in Fig. 110. The dis-

placement u at the beginning of the loading process remains constant

up to the time when the frictional forces change sign and reach the

limiting value _ (see segment 2 in Fig. 110). The subsequent process

will be described by new equations, which can be obtained as before

by a limit transition in Expressions (18.6) and (18.10). We will then

obtain the previous Expression (18.15), but with different values of

the coefficients

2.4(1+ + te05) (18.20),,( + I t ) P- P
2tg,(tg-h (18.21)
Fw+ I g o) (I1-P)
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These expressions can be obtained directly from Relationships (18.16)

and (18.17) by changing the sign of the friction coefficient f. Con-

tinuing lurther in the same manner, we will arrive at a new expression

for u which differs from (18.19) only by the sign of f. Ray 3 in Fig.

110 illustrates the last stage of the loading process. The triangular

hysteresis loop, formed by segments 1, 2 and 3, pertains to a pulsating

cycle. The area of this loop is equal to

V- pig 1 - +"1i (18.22)

where lose exist in T ste
F&(4 Igp~+ ) jg

"p) (4 tgp +fi (18.23)

The center line in Fig. 110 corresponds to the case when no hys-

teresis losses exist in the system.

Consideration of a cycle with any other asymmetry characteristic

will not present any fundamental difficulty.

§19. THHEADED JOINTS

The preceding section was devoted to the consideration of a

simplified scheme of a threaded joint, with the nut regarded as Ebso-

lutely rigid. Here we consider typical threaded joints and we take

into account the finite rigidity of the nut. Figure 111 shows three

schemes of threaded joints: bolt - nut, bolt - turnbuckle and bolt

- sleeve. The most widespread type of a threaded joint is the bolt -

Snut joint (see Fig. llla), and we shall therefore clarify the pecull-

arities of the cyclical loading process of a threaded joint with

triangular threads on an example of this ,oint type.

The displacement of an infitesimally thin disk can be determined

if limit transition is performed in Expression (18.6) of the preceding
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section, i.e., if expression Aalx/Ax is
at replaced by its derivative dal /dx. This

S.!.- 2 approach, obviously, does not make it possi-

ble to take into account the effect of the

O U local bending defo¶m-ation of the thread pro-

Fig. 110 file on the force distribution between the

threads.

After limit transition is perfoiied, the displacement of the bolt

section which Is removed from the origin of coordinates by the distance

x (Fig. 112), for the loading stage, can

be determined by a formula, following

Sfrom (18.12):

° €,k dat (19. 1)

where no m• - k= l--,a

Fig. 111 a2, are the normal stresses in the x

section of the bolt and the nut, gI" u2" E and B2 are constants of the

bolt and nut materials and r 0 is the mean radius of the thread.

The normal forces in the bolt and nut sections will be equal,

respectively, to clXl and aWF2 . We find from the condition of equili-

brium of that part of the Joint situated between the origin of coordin-

ates and the given section, that

,•.,F,, = a.-F,- (19.2)

Expressing the cross-sectional areas of the bolt and the nut in

terms of the known thread diameters and of the equivalent nut diameter,

we will obtain a relationship between the stresses in the bolt and nut

sections in the form aft
" FS "(19.3)
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where re is the equivalent nut radius. Relationship (19.1) for the

loading stage will now take on the form

pot FLUE dal. (19.4)

is-A 2Ig A dx

where

The displacement of this section for the unloading stage will be

determined by the formula

rot P#* da.U• am (19.5)

where

If co.B--,tl •

The above expressions for u should be transformed in such a maraier

as to obtain the dependencies of the displacement

on the current value of the load axP, which are ofr

interest to us. For this it is necessary to take

I \ into account the fact that relationship

CO 2ff,(19.6)

ix

i where
Fig. 112

1 dn--.to--(19.7)
4

exists betueen the atresses and the longitudinal deformation of the

bolt.

Keeping in mind that x= du/dx, we will obtain, according to

(19.4), for the loading stage

r dot , -- j' a "l
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Replacing now ar D1. the right-hand side of (19.6) by Its expression

(19.7), we will, after limit tra.nMitic-, obtain the basiz equation of

the problem for the loading stage

+ b 0 o (19.8)

where

m P

Under the boundary conditions a-(0)---0,W) the colutforIo of this

equation will take on the forn

W M- (19.10)

"2) _--•,, .- F=-b

Here H is the length of the engaged parts of the bolt and the nut

threads (the height of the nut). Relationship (19.10) determines the

normal stress distribution along the bolt sectiors, during the loading

process. It should be noted that this distribution is substantially

dependent on the friction coefficient f; this circumistance is inportant

not only in the, determination of hysteresis losses, but also in strength

calculations of threaded Joints.

Utilizing (19.4) and (19-10), we will obtain the dis1 lacement of

any section as a function of the load:

mk (a la2-..4b j-'i"Q lch' '+ 2)u(.•=,P k 2 2,-'.• 4

- = 4itg~

"S* z (19,11)

+ Kp- -

Substituting here x = H, we will fInd the dependence of the displacement

of the section to which the load is applied on the dimensionless load
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parameter in which we are intem_•sted:

"(aH' "1) "Pwo W vH I ) "+ (19.12)

Let us note that the displacement of the section 7 = 0, to which

no load is applied, is not equal to zero, i.e., u(a, o) / O.This means

that, for any as small as desired value of the load, the bolt and nut

interaction is realized simultaneously along the entire length of the

engaged part of the thread.

The basic solution of this problem for the unloading stage, when

reverse slip between the thread turns appears, can be obtained from

Eq. (19.8) by changing the sign of the friction coefficient f. The co-

efficients of the new equation

2 A + a •1 tg) d 2 tg (19.13)

Ejuur,~k ?FEWk(1.3

The dependence of the displacement on the loading for this stage

ao,-X)=sP k (c• +g- "+

+ UP 2 (19.14)

e22

The displacement of the bolt's end section with the coordinate

x H (the load is applied to this section) is determined by the fo*--

mula

aa, Ik + (19.15)

The displacement of section x = H when the bolt is loaded by a

pulsating load is thus described by three different analytic expressions.

1) by Dependence (19.12) during loading;
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2) by the dependence u(c, H) const immediately after the commence-

ment of unloading, as long as rigid coupling between the bolt and nut

threading takes place;

3) by Dependence (19.15) in the subsequent unloading stage. The

graph of this dependence coincides with that presented in Fig. 110.

It can be seen from this figure that the shape of the hysteresis loop

is triangular; the area of the loop is equal to:

470 e '7"-4,- :_!_!. •.
mix. t•1-.-1 ,-"hit- _ ,,___ 1.g

(19.16)

3.. viie 4T.-- I +

-knr. V?++1Adh :-4'd -- !I- a-ntg~+

The hysteresis loop for a cycle with the arbitrary characteristic

r =Pmin/Pmax has the form of a trapezoid. The ecumencement of the re-

newed loading is accompanied by rigid coupling of the thread turns

along the conract surface; therefore the beginnming of this stage on

the force - displacement graph (see Fig. 110) also appears as a

vertical segment (dashed line). The area of the hysteresis loop is de-

termined by "ie formula

.T - - W ) (19.17)

where

A=4r.tg 2 4

m a- + 0Cti 2 - m • 21

"nCc"-+ 4- c' -- I - eb - I-..

2 Ar,
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Te fdependencc ,,e of tve e gf the hVqtPi-eaRh loop on the friction

coefficient f for a pulsating cycle is shown in Fig. 113.

The calculations were performed for a steel

Wart" a bolt with an M20 metric thread for a nut of

normal height. The maximal value of the load

was taken as being P = 1000 kg. It can be
60

seen from the graph that there exists an op-

0 0.5 0.2 0.3 4 Q~s5f timal value of the friction coefficient for

Fig. 113. a) Kg-cm. which the energy dissipation is greatest.

There is little dissipation for small values of f, since the frictional

forces are not great; Jamming of the threads (rigid coupling) takes

place for large values of the friction coefficient.

The býit - turnbuckle nut Joint is another type of a threaded Joint.

The schematic of the bolt -- turnbuckle nut Joint is shown in Fig. 114.

The bolt and the turnbuckle nut expand under the action of tt. load.

The condition for the equilibrium of that part of the Joint which is

situated between the origin of coordinates ad the given section will,

in this case, be written in the form

Fj, + F2 ft. = &P. (19.19)

where Flal, and F2a2x, respectively, are the normal forces in the bolt

and turnbuckle nut sections.

01 The equilibriium condition (19.19) makes 
it

0' -_ possible to establish a relationship between

' • the stresses al, and a... Expressing the areas

in terms of the mean thread diameter and the

equivalent turnbuckle nut radius, we will get

Fig. 4(19.20)
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The basic solution of the problem for the loadrlD stage is written

also in the form of (19.8), however; the equation's coefficients should

be calculated by the formulas

2;&-y (jt C(W 2 + -in ) OS F r*,r . " (19.21)

These coefficients can be obtained for the unloading stage by a

simple change of the sign of friction coefficient f. The solution of

Eq. (19.8), satisfying the boundary conditions

up
"CI (0) = 0 and (11) = -2,

is written in the form of (19.10).

Utilizing (19.4), it is not too difficult to set up an expression

for the displacement of an arbitrary section

up C- I m* it sh '4 q +6 *: -4

ap e-' 2s a2 -- 4b
where ups• -r-- r- -T ' -4

am- f (19.22)

E !1  r42r Et

The displacement of the end section to which the load is applied

"(',")=• -- t'4,,t,-b a'+ 4b +
rn g A (10.23)

The hysteresis loop for cyclical loading with a cycle having an

arbitrary characteristic has the shape of a trapezoid, the sides of

which are formed by two ray segments and two inclined segments parallel

to one another (Fig. 115). The parallel segments correspond to the ini-

I tial phases of the loading and secondary loading cycles, when rigid
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coupling+ Qura-a WP disregaaM the Inclination

of the parallel segments in the calculation of the hysteresis loop area,

and then the area of the trapezoid QIRS is de-

CK 12 termined by Formula (19.17), in which coeffi-

cients A and B are expressed by the following
R formulas:

-U II __

Fig. 115 A ,t k V cc+ 4d 4th e + -

- ,.wk Va2 -+O , 11,0_-4 - 41(• -_ s' ) 9A(19.24)

*F ~ Fr E(An, P4 COSI)co

r-WVWCta-VFt'+ P2 -*-E 1(i -lwp aA (19.25)

The bolt - sleeve Joint is illustrated in Fig. 116. The bolt ex-

pands under the action of the external load and the sleeve expands with

it. The computational scheme of thl, Joint is similar to that of the

bolt - turnbuckle nut scl.me; however, certain substantial peculiarities

do appear in the dissipatlr.•characteristic calculation for this Joint.

The basic equation of the problem is written in the form of (19.8); the

coefficients of the sought function and its derivatives are determined

by Formulas (19.21). The solution of the basic equation for the boundary

conditions
2P

4LP
a l a ( 2 .H ) = z

has the form
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Constants D and 1P for the loading stage are de-
lop A--..,--. U y..SM. 1"Ift

'L- -" IVi - "j~~wsit *HJI' Va 4b+

: '1•- .. •, : + 4b (19.27)

*[ 4 I I'i" ~/I ...- lV+Tb + 1

and the coefficients a and b - by Formulas

IC(P (19.21). Formulas (19.27) for the unloading

Fig. 116 stage are obtained by replacing f with - f.

Now, on the basis of (19.4) it is not difficult

to obtain the dependence of the displacement on the load

,(,x)= 4tgAl--bh • 4+ -

-a hj Va+4b ~ (t~~tg~(19.28)

19 A ( 9)_

Relative displacement of bolt sections situated on the planes of

the nut ends, u = u(c, 2H) - u(cz, 0) will be determined for the loading

stage by formula

r. tg AshHr-+4ti,

and for the unloading stage - by formula

o .,n ., C r _-+4d A-- " (19.30)

The hysteresis loop for a bolt and sleeve loaded by a cyclical load

with an arbitrary cycle characteristic has the shape of a trapezoid

(see Pig. 115). The area of the hysteresis loop is determLned by (19.17);

however, constants A and B have new values:
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, r VW+ 4 b Ao
(19.31)

_ r,,/ A' i w. lie 2p, f tg A
-r1c1 4d.'4.'7e (Sil,fg 12CM

-,M h II J'Y'--E- r I E.i,,: N - tI C(,, s p) J

-,•l•Thu,+ ... ,,.t,

,hir,,e + , .

(19.32)

Formula (19.17) for the area of the hysteresis loop, for the cor%-

responding values of quantities A and B entering it, determines the

intensity of structural damping per cycle in the above three types of

threaded joints.

§20. SLOTTED CONNECTIONS

(a simplified system)

The problem of energy dissipation in slotted Joints arLses, for

example, in conjunction with vibrations of turbine buckets with an

attachment of the "fir-tree " type (Fig. 1171; similar Joints are used

in fastening of gas and steam turbine buckets and also for fastening

of axial compressor buckets. We shall subsequently consider the prob-

lem of a bucket attachment acted upon by a variable bending moment only.

i It is assumed for the sake of samplification that longitudinal forces

| are absent. It is obvious that this consideration can provide us with

Sonly the most general theoretical basis fcr the calculation of energy

Si dissipation in actual turbine bucket attachments. Let us consider the

following auxiliary problem. A thin plate, rectangular in plan, with

side dimensions 2a x b and thickness ax is loaded along planes parallel

I to the median plane by stresses a and a. + Acx, independent of the
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Fig. 117

z-coordinate and varying linearly along the y-axis. This stress, system

is statically equivalent to two couples with moments Mx and Mx + t-Mx-

The plate is supported on two absolutely rigid bearing surfaces along

its two side faces, parallel to the z-axis; these faces forn an angle

I

Fig. 118

1 with the median surface. The two other sides of the plate are not

loaded (Fig. 118). Normal reactions p1 and P2 and also tangential fric-

tional forces plf and p 2 f, uniformly distributed along the bearing

surfaces, will arise on the bearing surfaces. It follows from the con-

ditions of equilibrium that = P 2 ; consequently, the limiting fric-

tional forces are also equal. We shall assume that surfaces of the

plate, plane before the load has been applied, remain plane also under

the action of the external forces and that the system of the support re-

actions results in an uniform compression of the plate in the direction
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of the y-axis; deformation of the plate in the direction of the z-axis

is taken as equal to 0. it is obvious that stresses on the end surfaces

of the plate also exert an influence on the plate's deformation.

Reactions p are determined from the condition that the plate is in

equilibrium and are equal to

Pý t li (20.1l)
~2ab(cosp5--Isimp) Ax (01

The limiting frictional force T at the support surfaces has the

units of a force per unit length of the loop contour, and is equal to

= /I (20.2)T =/p:!: :b (Cos A -- I anm ST *"

Average stresses cy along the plate thickness amount to
Wb-i1 AM (20.3)

2&-b ( - -AT )" "

Average stresses az along the plate thickness are detern!ined by Hooke's

law from the condition 0z = 0. Then the relative deformation e brought

about by the stress components a . cy and az will be determined by the

formula

(20.4)

%here E and p are the modulus of elasticity and Poisson's ratio for

the plate material.

The absolute deformation of the plate in the direction of the y-

axis is influenced only by the stresses ay; therefore

1" tgP-- Am
-,a "6 = h 20"

* As a result of the fact that the plate is compressed in the direc-

tion of the y-axis it becomes possible for the plate to turn relative

to the base as a rigid body. Slip over bearing surfaces between the
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plate and the base occurs during this rotatIon.

The angle of rotation of the median plane of the platr on loading

is determined by the formula

9 3 tt = J - e,- A (20.6)
a C 2ab (I _- Ig) 1-

Let us note that this angle depends only on the increment of the bend-

ing moment and is independent of its absolute value.

Let us now consider the unloading process, the camencement of

which is quite peculiar: as soon as the external load applied to the

plate begins to decrease, a decrease in the pressure at the bearing

surface takes place and the limiting value ofl the frictional forces

is decreased. However, the actual value of the frictional force during

the beginning of unloading still remains smaller than Lhe limiting

(value] fp; this makes it impossible for slip to occur, since rigid

coupli-ng bet%:een the plate and the base takes place. The change in

external forces during this unloading stage is not accompanied by any

displacements of the plate.

As the load is further decreased, the actual value of the frictional

forces becomes equal to the limiting and slip again begins on the bear-

irg surfaces. Slip and frictional forces have directions oppoeite to

those which they had during the loading stage. The follo';Ang group of

expmessions corresponds to the plate's mnloading during this new stage

under consideration:

w (20.7)

,-p -L t+I (20.8)
9'a=6 ,(1 + tgp) AX

9 Fab2. - (I +I tgP) ,-U (20.9)

The beginning of the new loading is again acccmpanied by rigid
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cc ipling. Only after the actual value of the frictir.nal force will be-

ccone equal to the limiting and slip will again appear on the bearing

_-Rrfacea will the loading process be accompanied by rotation of the

plate. All the stages of this process are repeated successively with

a cyclically varying load.

In solving the pr'oblem of energy dissipation in a slotted Joint

of the "fir tree" Joint type it is natural to consider the slotted

root as an assembly of plates. in th( case of a sufficiently large

number of small plates it is natural to consider the joint as consist-

ing of infinitely large number of infinitesimally thin plates. This

approach has come into widespread use in threaded-Joint calculations

and was already utilized by us in §§ 18 and 19.

For the sake of sImplicity, let us first consider a slotted Joint

in which the root constitutes an elastic prismatic body and the base

is absolutely rigid. Making a limit transition, we will obtain instead

of (20.1)

&Wd (20 - IG)
2ab (zs5- I-i,,) "s pW

where a and b are the dimensicns of the root cros%3 section, M is the

bending moment in section x and E and I. tre the modulus of elasticity

and Poisson's ratio of the root material.

As a result o,0 the limit transition, xpression (20.6) will take

on the form

tgf-I &V (20.11)

E 2&b(1-jtgP) ds'

where y is the angle of rotation of the current root section. The mo-

ment M is related to the angle 9 by the known relationship

d? N W(20.12)
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where J is the moment of inertia of the root section. After differen-

tIation of (20.11) in respect to x and substitution of th': derivative

into (20.12), we will obtain an equation for the moment 2

- 23 = 0. (20.13)

where

. ,(20.14)

The solution cf Ec. (20.13), subjected to the boundarj conditionz

M (x) =f,, for •.-OM(=0 for =. (20.15)

(h is the root length), has the form

M za) ((20 •.,•.'16)

Taking a derivative of M(x, a) in respect to x, substituting it into

(20.11) and then setting x = 0, we will obtain the angle of rotation

of the initial root section during the loadi-r- stage

2Eab I -Ig

Rigid coupling between the root slots ai. the mating base takes place

during tne beginning of the loading phase, and therefore the root sec-

tions do not rotate, i.e.,

Thne an-gle of rotation of .r.e first root :ectIon after slip has bMe.'u-'-

ane,-- will be obtained from Expression (20.17) by a simple cnarnge of

thE friction coeffli'ient f ani Dy rlElaexent of the constant X by w•.

3 .-- ,, ct, hilf.(2 .18)

zEab I + Ig' "
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wohere

2ab(1 + ! ) (20.19)

The loading and unloading process is illustrated in Fig. 110 by

rays 1, 2 and 3.

The area of che hysteresis loop for a pulsating cycle is deter-

mined by the formula

' ý7._1•(1 -- -)_ tg;2-) X Lct rx/ I-

"4Eab t -- !tg

f(t -•-)( + I/ g A) ctz ;.lh (20.20)

§21. A SLOTTED ATTAC!•-34EW- OF THE "FIR-ThEE" TYPE

Having solved the simplified system, let us pass on to the consid-

erotioon of the problem of energy dissipation in turbine bucket root

attachments. Of all the different forms of slotted root Joints we will

consider only multi-slotted Joints of the "fir-tree" type with the

slots having a straight axis. The consideration of 3lotted Joints with

a curvilinear axis is more complex, but possible in principle. The de-

sign of a fir-tree attachment involves the idea of strength equality.

The profile of the slots (see Fig. 117) is similar to the profile of

bearing threads and th-, contour of the root has the shape of a wedge

(the vertex an,71e of the wedge, 2 a [sic], varies in actual turbine

bucket designs between the limits 25 - 400).

Let us consider a bucket root element, formed by two parallel

planes normal to the longitudinal root axis and removed from one an-

other by the distance dx.

The differential relationship between the normal pressure p on the

element's bearing surface and the current bending moment M(x) has the

form of Dependence (20.10) of the preceding section (a and b are the

dimensions of the root section), here a(x) depends on the coordinate
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of the section and is determined by the dependence

'•--. -I#

where H is the height of the root wedge (see Fig. 119) and 26 is the

vertex angle of the wedge. The absolute deformation of the bucket root

element is determined by the formula

-- •--jI al (21.2)

where E1 and •1 are the elastic characteristics of the root material

and M is the bending moment in the root section.

The angular displacement of an element of the bucket attachment

depends not only or. the root deformation but also on. the deformation

of the turbine runner with which it is mated. Regarding a single pro-

jection on the runrer as a reversed bucket root, loaded by an external

bending moment aM in the root section, we will determine the absolute

deformation or an element of t4-he vro-'e(.-Ion by a formula similar to

(21.2):

Se-1- X
bEl (21.3)

SOf

w :here Ed and 4d are the elastic 2=nstarnts of the disk material and 2c

is the width of the current element of the rotor's projection. The

relationship between the quantity c(x) and the design dinmie-sions of

"the attachment has the form

where 21 is the sp~acing at which the buckets are seated along the ru-rner

circumferen ce.

Thebending moment in the section of the rotor's projection is de-

termined by the formula

-178-



M,(z) = M -M (z) (21.4)

The angle of rotation of a bucket element is determined by the formula

(x. a) = -AC (21.5)

.(z)

cr

(t~-ftg~ ~ z) 21.6) S(z = 2a (z--- 1, (1 - tg •) " a (z) d. I z

If we assume that the differential relationship (20.12) is valid

for a wedge-shaped bucket root subject

to bcnding, then we will find the depend-

"ence for the change of the bending monenti Iy
along the root length, which is of inter-

est to us. However, in the utilization

of Relationship (20.12) we should keep

in mind that the moment of inertia J of

the wedge-sh,_ ad root depends on the x-

-- ' coordinate. Differentiating (21.6) once

in respect to x, and substituting the

i Z value of dq/dx into (20.12), we will ob-

tain the differential equationFig.19

F2 ~ U d'dF 'g(t~Jf t

l,-- I , 1 Q- _ +I • -

+ -X2(2 -z f ( - IA) (21.7)

into which the new independent variable

: = a=(H -- )tg (21.8)

has been introduced. The just obtained equation can be solved by classi-

cal methods. However, of practical interest is the case when the elas-

tic properties characteristics of the rotor and bucket materials are
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the same, E1 = Ed and 41 = 4 d Equation (21.7) is considerably simpli-

fied In this case and is transformed to the form

d- 41 - )O f (21 .9 )

where

The general solution of the last equation will be written in the form

.11-:2 1(- 1 i4) A'. (2V ), (21.10)

where I3 and K are the Bessel fumntions of the imaginary argument and

C1 and C2 are constants of integration which will be determined from

the boundary conditions
M ()= f for:,Htg3, (21.11)

.11-) = 0 for :=( - h)tga

in the form

C,=
2

(H tg )- 2 K3 (2 -r) (i - ii) tg 9) uM
-t (21 X-#K 2 (2 X(H_- ,.) -.-.) -1, (2 )H-Ittgg) K32Y'fltg3)

- & (21.12)

-- (t s)-7 13 (2 =(H- 7t) tg 3) £ a--&(l'• g=(')X'h)g•)-n(- F)(H-•,)-K)*'(2- l' -ga)

The a--gie of rotation of the current section x Is, on the basis of

Expression (21.6) determined by the formula

p -- E (,I -f c tg (z a (x) d•xlS(* " = 2E=a (z) 6 (1 -- f tv 4) , : • ,(2 .

and, the angle of rotation of the first section - by the fcrmula

(0 -- A2) I t -- f ) t .; d.1

where
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T•.•. =-3 ,g 8f t-98? Ifis (2 VAR tg i + (AK (2 VWI-7" 8,-

- i- , Y-) [ciss, (2'JI tg1 ) - C•, (2 t9'•• ).

(21.15)

Taking into account that constants C1 and C2 are determined by Formula

(21.12), let us note that the displacement 9(0, a) is linearly depend-

ent on the parameter a.

Formula (21.13) establishes a relationship between the external

load and the displacement during the loading stage. A similar relation-

ship for the unloading stage will be obtained by simply changing the

sign of the friction coefficient f

A &0.) = 2W6 , a o +tip) E d , (21.16)

where has a new va~lue
dzj 3 .

_ , r, e|rf-wBIii (2 YZ-i" g ) - Ddr, (2 Y,,., -ta -- (21.17)

here

(Htg9 )- _I, (2 Jr. (H - k)h tl)M

DS = # tg(tg q-l-l 2.8

0( + I tgA)

-!he loading and unloading process for a pulsating loading cycle

is illustrated by rays 1 and 3 (see Fig. 110), the beginning of the

unloading process - by segment 2. This stage is characterized by a

complete absence of rotation of the section

S(0, a) = " 0•,).
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The triangular hyzteresiz loop 'omned by zc',h~ 1, 2 an. -

tains to a pulsating cycle, The area of the !-ytp-re Ui LO detern,-

ined by the formula

Consideration of a cycle with an arbitrary characteriztIc does riot

present any special difficulty.

As a more particular case of the problem we can consider energy

dissipatIon in a bucket attachment with a prismatic root. The displace-

ment of tho current section when the rcot and the runmer are made from

the same material is determired by the fonrmula

•(,.y I- , (,gp.- f t pd- (21-30)
2Ea•b dz-f g ) g

where a, b and 1 are the design dilensior•s of the joint. The basic so-

lution cf the problem will be written in the form of (20.13); however,

X now has the new value

2,= b _-_____ (21.21)0 -- e) I Or P -- 1) t9 P

The general solution of the basic .- ,.-ztrk-_._ subjected to the boland-

ar-j conditions i20.15) is, for the new value of X, written in the form

of (20.16).

Let us determine the angle of rotation of the first, root sectio-n,

to w1hIch the external load is applied. On loading

Q) ( - 4) (, g -P Cth m - am. (21. 22)

The angle of rotation of the zame first section during the unload-

ing process is deterzined by the fonmula

.0a I--;) ( P+ f)tIg cih•.S.. (21.23)
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where
240~b I + M90l
2.240)Ij ( +1 ) tip-

The area of the hysteresis loop of a pulsating cycle is determined

by Formula (21.19), into which Expressions (2].21) and (21.23) should

be substituted with the corresponding values of the argunents:

W=*-~t--L') (tgA-- NOM x A,.(4X*' ig - P .(i- (21.24)

After appropriate transformations this formula fully coincides

with the similar formula for the hyste-esis loop obtained for the case

of a rigid base.

[Footnote ]

Maru-
script
Page

No.

159 The problem of force distribution alon1 the threr. loops
was first solved by N.E. Zhukovskiy [-5.

Manu-
script jList of Transliterated Symbols]
Page

No.

162 3 = e = ekvivalentnyy = equivalent

178 n = 1 = lopatka = bucket

178 = d :disk = disk
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CONCLUSION

The entire preceding presentation has solved in Subzt- .re a series

of static problems, devoted to the problem of the operation of elastic-

frictional systems. Naturally, the question can be raised as to the de-

gree and manner in which the above results can be applied to the solu-

tion of dynamic problems.

To give an answer to this question, let us dwell on the following

essenzial circumstances.

1. The assumed simplified concepts about the nature of forces of

dry friction make It possible t;. assume that energy dissipation attend-

ant to vibrations is independent of the rate of the process. in this

sernse, the rate of change of exterral forces acting on the joint be-

comes indifferent.

2. In all the rivoblems with relatively weak damping (i.e., in those

cases -.hc.r: intensive drainage cf the hydraulic damper' type is absent)

energy dissipation plays a noti.ceable role only in the i-nediate prox-

imity of resonance. Therefore the " eraide-raTion of friction losses in

Joints has a practical sense oni- ,n the analysis of resonance nodes.
3. The complex problem of the fox•n of forced vlbraticns of systens

w 4-Ith several degrees of freedom f.-r arbitrary periodic disturbances

becchaes relatively sir-ple, if any of the resonanmce node3 "3 consd.ered.

Actually, here:

a) even when the disturbing force is multi-harmonic it is permis!i-

ble to take into account only the resonanrre harmonic; by virtue of the

same fact it is possible to consider a single-har-acnic vibrattor:' ro-
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cess simply assuming all the nonresonance harmonics as being absent;

1,) the mode of forced vibrations under the above conditions of weak

damping can be regarded as cninciding with the mode of free undamped

vibrations corresponding to the resonance frequency under considera-

tion.

The above circumstances make! it possible to designate the follow-

ing practical scheme for calculation of resonance amplitude of vibra-

tions for systems with weak damping.*

1. The frequencies and modes of free vibrations of the given sys-

tem are determined on the assumption that friction losses are absent.

Let, for example X(x), the fundamental function for the case of

a vibrating beam, be normalized in such a manner that the deflecticn

of any characteristic section is equal to unity. Then the deflections

in the state of greatest deflection of a system performing forced vi-

brations will be described by the dependence

Y = AX(z), (22.1)

where A is the amplitude of vibrations of the above section.

2. The work of the disturbing load per one vibratory cycle is de-

termined. If the resonance harmonic of the disturbing force is given

in the form

P (. P)=eP. * aat. (22.2)

then the sought work amounts to:

U-=.A JP. (4X (4,. (22.3)

This expression is a generalization of a formula, determing the work of

a concentrated disturb.ng force

P (.=Pe . at (22.4)
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on resonance vibrations according to the relationship

(y(t) is the displacement of the point of applicatlon of force P); as

we know, the work o," the disturbing force per one vibratory cycle is

Jr this case equal to rPOA.

3. The energy dissipation T. in the damping elemi.nt per one vibra-

to.y cycle is determined, but not as a function of the ariplitude of

the force applied to the element, but of the amplitude of Its displace-

ment; the latter is expressed by A and the dependence

T = T (A). (22.6)

is thus established.

4. The work of the disturbing load (22.3) is equated to the ener-

gy (22.6) and the simple algebraic equation thus obtained is then solved.

The operations by which the resonance amplitude is calculated thus

make it unnecessary to formulate and integrate complex nonlinear dif-

ferential equations; let us note that the nonlinearity inherent to the

systems under consideration influences also the recor-m'ended order of

calculations, but this only in the last stage of solut'on of the above

algebraic equation.

As an elementary problem, let us consider the determinaticn of

resonance amplitudes for the Goodman and Klamp prc'bltm k§ 5), assuming

that a mass m is attached to the end of the cantliever and is so great

that it is possible to disregard the mass of the beam proper. Let-

assune that a disturbing force Posin t, is applied to this mass. The

amplitude of resonance vibrations can be found from the energy balance

equation: the work of the external force nPOA per one cycle is ecrial

to the dissipated energy Y(A), which is measured by the area of the

hysteresis loop, i.e.,
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iP=A). (22.7)

The area of the hysteresis loop in this equation must be written as a

function of the amplitude of the displacement A of the point of appli-

cation of the external f'rce. For this we shall substitute into Formula

t (5.17) the expression for P frmn Formula (5.7); then we will obtain In-

stead of (5.17)

V (A) - 4 ,..., -(22.8)

where the quantity A coincides with the quantity u2 (l) in Expression

(5.7). Here Eq. (22.7) becomes linear; however, even for nonlinear

dependencies T(A), as this takes place in the majority of structural

damping problems, the solution does not encounter serious difficulty.

Solving Eq. (22.7) for A, we will get

*A q.-,--q" (22.9)

This expression makes sense only under the condition that the friction-

al forces are sufficiently great (,.h>4P.); in the opposite case the

vibratory amplitudes beccne infinite. This coincides with the known re-

sult, according to which dry friction absorbers are capable of limiting

the amplitude of resonance vibrations only for sufficiently laege fric-

tional forces.

Expression (22.9) also makes possible the determination of the

opt imal value of compression of beam layers.

It is obvious that the above computation procedure is 'not always

possible. Absorber systems of the tapered rings type, i.e., systems

* with quite intensive energy dissipation, require a more exact analysis.

Luckily., it is namely in these cases that the hysteresis loop is formed

"by straight line segments and it is possible to perform segment by seg-

ment solution, as for separate linear systems, utilizing the [curve]
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fitting method.

We shall not dwell on the details of this problem,- or on certain

other problems of solution of dynamic problems, bearing in mind that

the main goal of the present book is to obtain estimates of structural

damping in different types of systems, since the unavailability of pre-

cisely these estimates has resulted in specific difficulties in the

formulation of dynamic problems.

[Footnote]

Manu-
script
Page

No.

185 These recomnendations obviously retain their validity also
for other cases of weak damping, for example, in problems
on vibrations of systems with internal friction in the ma-
terial.
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