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FOREWORD

The material presented here is taken from lectures given by the author in an informal senu-
nar on quantum field theories, held in the Radiation Division of the U.S. Naval Research
Laboratory. The purpose of these lectures was to present a calculation of the propagators, or
Green’s functions, of the different types that appear in quantum field theories within the
framework of the theory of boundary value problems for linear partial differennal equations,
thereby rendering the Green's functions more amenable to physical interpretation. Further,
a classical setting of the propagators separates neatiy those properties of the propagators which
may be discussed without recourse 10 the procedures of second quantization from those proper-
ties which do require the latter methods.

A perusal of the table of contents will give the reader an idea of the scope of the subject
matter and the direction that is followed. Chapter 1 is devoted primarily to the basic ideas that
will be needed from the speaal theory of relativity and geometry, together with a presentation
of our notation. Chapter 2 introduces the various boundary value problems that may be posed
in conjunction with the Klein-Gordon equatisn and the auxihary functions associated with these
problems. It will become clear in the course of the development of these auxiliary functions,
variously called propagators and Green's functions, that their physical imerpretations reside
in the formuiation of the specific boundary value problems they enable us to solve. The propa-
gators are deterniined explicitly, in this chapter, in terms of known higher transcendeintal
functions, and are also presented in several integral representations that are useful in quantum
field theories, or appear often in such theories. Chapter 2 is basic to the rest of the material of
these lectures in that the formulation of the boundary value problem for the Klein-Gorden
equation carvies over to the wave equation for both scalar and vector helds virtually unchanged,
and cairies over, in substance, to the Dirac equation. In addition, the detailed results of this
chapter are used in the calculations of the subsequent chapters. The reader for whom Chapter 2
has become a part of his own experience will find the subsequent chapters relatively simple
fare. A summary of the results of Chapter 2 is presented for easv reference.

Chapter 3 contains a discussion of the boundary value problems of Chapter 2 but with respect
to the wave cequation. In applying the Green's funcuions of the wave equation to an integral
formulation of the field equations of the four-potential for the electromagnetic field, we take
proper account of the fact that the four-potential must satisfy the lLorentz condition. The
boundary value problems of Chapter 2 vis-a-vis the Dirac equation are discussed in Chapter 4.

Chapter 5 is a simple introduction to scalar meson field theory with second quantization in
order 1o show how a calculation of the propagators is rendered quite simple by the results of
Chapter 2. Although analogous developments for the electromagnetic and electron fields are
easy to carry through, they are not done here. Finally, a brief discussion is given, in this chapter,
of a few o' he mathematical problems that arise in quantum feld theories. The discussion of
mathemaucal iigor here is kept brief, for such a discussion in depth would carry us too far
aheld of our onginal purpose and requires volumes in itself. Finally, mathematical nigor in
quantum field theory is sull only little understood. The interesied reader will ind pertinent
mathematical detait and developnient in, for example, Hille and Phillips, “Functional Analysis
and Semi-groups,” «sp. Chapters 1-V

Finally, we must mention the subject of references. The reader will ind an occasional ref-
erence in footnotes scattered sparsely throughaut the text. The author made no effort to system-
atically search the literature to be compiete or to find original source material. The subject
matter has become generally too well known for this to be necessary in a set of lectures; many
textbooks will supply such a list of reference matenal. However the author wants to state his
indebtedness in partcular te the book “Field Theory,” Vol. 1, by Jan Ezewuski (Polish Academy
of Scierce, Physical Monographs; Hofner Publishing Company, New York) and recommends
it highly to the reader.
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CHAPTER 1
RELATIVISTIC CONCEPTS; NCTATIONS

It is not our purpose to develop the special
theory of relativity, but to present thse ideas
from that discipline that are pertinent to the subse-
quent work of this discussion. This short discus-
sion also provides the opportunity of presenting
the notation that will be used. On this latter point,
the reader will no doubt be aware of the plethora
of notations that are widely used; the choice that
one m2k=s, of course, is immaterial insofar as
the physics is concerned, so that the seiection that
is made is based on personai tastes or is simply
arbitrary. However, once having made a selec-
ton, we shall find little difficulty in comparing the
final results with the conclusion of others using
different conventions.

NOTATION

A point in space-time will be denoted by various
symbols: x, (%o, x1, X2, x3), (xe, %), (%0, 7), (x,):
a:, time point will also, at times, be referred to
as an event. The coordinates of a point in space-
time, x,,, will always be given in terms of the covari-
ant components; on no occasion shall the contra-
variant components be used. If a = (a,) and
b= (b,) are two four-vectors, their scalar or inner
product will be denoted by a - b or a,b, which will
be a symbolic representation of the number
—Gebo + albl + szz St agb; = —aobo +a-b The
length of any four-vector a is Va - a; since the
inner product is clearly indefinite, the number
a® = a - a may be positive, zero, or negative. If
a? < 0, the vector is said to be a time-like vector;
if a® > 0, the vector is said to be a space-like vector.

A set of four-points, S = {x, 5, z, ...} is said to
be a space-like set if (x — y)? > 0 for every pair
(x, y) of elements, each in S. In particular, if S
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constitutes a space-like three-dimensional “con-
tinuum” in four-space, S will be called a space-
like hypersurface. (For example. the set of all
space-time points for whicl. x is the same is the
entire three-dimensional space we ordinarily
perceive, and this constitutes a space-like hyper-
surface in the space-time continuum.) With the
exception of the preceding parenthetic remark,
meaningful definitions arise from this paragraph
if the term “space-itke” is replaced by “time-
like” and (x — ¥)* > 0 is replaced by (x —y)2 < 0.

The set of four-points Cr = {u, v, w, ...} such
that (u — x)? = 0 for all u belonging to C; is said
to be the light-cone associated with the point x;
here, x may be any point of the space-time con-
tinuum. If each point of C; is interpreted as a
physical event, then C; is that subset of all physical
events whose occurrence coincides with the arnival
of a light-signal from the event x or whose sig-
nals arrive at the event x.

The set of all time-like points L;= {u,v,w,...}
such that ue — x0 > 0 lie within the forward light-
cone associated with point x, where again x is any
point of the space-time continuum; similasly, the
set Ly = {u, v, w, ...} of time-like points such that
tio — xo < 0 are said 10 lie within the backward light-
cone of the event x.

A geometric representation of the above sets is
obtained in the usual wav: we suppress two of the
space components of a tour-poiat x in order that
a point in the space-time continuum may be repre-
sented by a point in a plane; then a Cartesian
representation of the remaining pair is used,
with the remaining space component, say x;, as the
abscissa and xo as the ordinate. The union of the
sets Co and C, is the light-cone C, associated with
the point x = 0; the shaded region marked by Ly
is within the forward hight-cone associated with the
origin. while the crosshatched area marked by
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Figure 1

Ly is within the backward light-cone of the origin.*
The axis xo =0 is a special and important case of a
space-like hypersurface S, while S® is a more
general space-like hypersurface, always possessing
the property that its slope nowhere acquires the
value +1 or —1 and is always between these two
members.

Let x be a point in the space-time continuum
not on, say, the space-like hypersurface S,
but otherwise arbitrary; with x, we associated a
time-like hypersurface T = {u, v, w, ...} such that
u; = x;, all uin T In our geometric representation
T is a straight line through x parallel to the xo axis.
T must intersect S® at some point z whose coor-
dinates are finite. If z¢ > xo, we shall say that xo
precedes S®, or is prior to 8%, or earlier than S*,
if z¢ < xq, we shall say that x is later (han S®.
Note that xo being eariier than S® does not imply
that all events on S* occur at a time later than the
event x occurs, as may be seen from the example
represented geometrically in Fig. 1. Of course, if
the hypersurface in question is one for which ue =
constant, all u € S, such as S® in Fig. 1, then x
indeed is an event which occurs prior to all events
on S. Similar observations for the case that x is
later than S® may be made.

LORENTZ TRANSFORMATIONS

A Lorentz :ransformation is, by definition, a
linear transformation on the componeiiis of a
space-tune which is, first, invertible, that is, the

*Ofientimes, the “solid” tet represented by the union of Lg and C,
will be 1eferred to as the forward lightcone. The context will usually
make clear whether one is sueaking of points on Coor in L,

inverse of the transformation exists, and second,
leaves the form (x — y)? unchanged in value and
in form, that is, if x’ is the transform of x, and
y' of y, then (x' — y')? = (x — y)*. A function on
the space-time continuum ¢{x) with the property
¢(x') = ¢(x) when x' is the Lorentz transform of
x is called invariant. Thus, a Lorentz transforma-
tion is an invertible linear transformation which
leaves the form (x — v)? invariant. It follows im-
mediately then that under Lorentz transforma-
tions, space-like hypersurfaces transform into
space-like hypersurfaces, time-like hypersurfaces
transferm into time-like hypersurfaces, and the
light-cone of any point transforms into the light-
cone of the transformed point. The forward and
backward light-cones of a given point must be
given more consideration, which will be done
when more detailed study of Lorentz transforma-
tion is given.

Let x be a point of the space-time continuum
whose coordinates are (xo, x1, X2, x3) = (x,).
The point x’, derived from performing a Lorentz
transformation on x, has components xq, xi,
23, x3 which are related to those of x by the equa-
tion

x{.=a,ax;+b, (l)
where u =0, 1, 2, 3, and the Einstein summation
convention is used. Equation (1) is linear by our
definition of the preceding paragraph. The point
y transforms to the point y' by equations of the
same form as (1). The condition that (x — y)? =
(x' — y')? leads to the condition

@

Quy Cur = S

or

det (a,n) ==1.

(3)
Let a,, be the cofactor of a,,; then

Ary Quy = 6;; .

4

Comparing Eqgs. (4) and (8), we see that ax, = a,a:
Eq. (1) is now readily inverted, by multiplying by
a., = a,, and summing over u:

=1r_ﬂv

Gur Yy =aua0t by ay,

or

=g, 1.+ 8. (5)




“RL

With Eq. (5) and the invanance of (x — y)?, we
conclude

(6)

AQyy Qrp = 8“ o

The defimtion of the Loreniz group given above
admits a wider class of ransformations than those
encountered in the usual development of the
theory of relativity; that is, in applying the prin-
ciple of relativity 10 determine the transforma-
tions of the compone:ats of a given point in one
inertial frame in terms of its components in an-
other inertial frame, one obtains thar subclass of
the above transformation that may be devcloped
in a continuous manner from the identity trans-
formation and with the characteristic that aee > 0;
this class has the property also that det |a,n|=+1;
this subgroup of the full Lorentz group is cailed
the proper orthochronous Lorentz group.(We are
not attempting to prove the statements of this par-
agraph, but content ourselves here 10 accept their
validity.) It is then clear that if x is a point in the
forward light-cone of the origin, then (x' — b) is
also, where b is the image of the orig:n under the
Lorentz transformation. Thus under Lorentz
transformations that are proper and orthochro-
nous, time-like intervals {(x — y) transform into
time-like intervals, spacc-like into space-like,
with the sigii of the zero component preserved;
here it follows that the forward and backward
lightcones of a givenn point transform under
proper orthochronous Lorentz transformations
into the forward and backward light-cones of the
transformed point, respectively. It becomes equal-
ly clear that if x precedes the surface S in one
inertial frame, under a proper orthochronous
lorentz transformation, x' precedes S’. Finally,
we observe that it § is, in one ineitiai frame, the
hyperplane x,= constant, then under a proper
orthochronous transformation, S transforms into
a hyperplane no longer parallel, in general, to any
hyperplane of the form x¢ = consiant; and if one
has a hyperplane of the latter type, there exists a
Lorentz transtormation which will transform the
hyperplane into one parallel 10 x¢ = constant in
some (one) inertial frame. From this, it follows di-
rectly that if 1 precedes the hyperplane § in a
given incrtial frame, there exists another iner-
tial frame wherein x’, the image of x under the
corresponding Lorentz transformation, not only
precedes the transformed surface, but all events
on the surface will have occurred at a ume, in
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this reference frame, later than the event x’. (That
this result is not true for more general hyper-
surfaces may be seen by considering a point x
that precedes a nonplanar hypersurface that
approaches the backward light-cone asyvraptoucal-
ly. Since we are not concerned with such cases,
we shall not dwell any further on this point.)

An example of a nonorthochronous, improper
Lorentz transformation is

x&'—=—x:
= X
(7)
X=Xz
[
X3= X3
J

If x precedes the hypersurface S, it is clear that
under the above transformation the image S
would precede x', the image of x under Eq. (7).
Such transformations are of considerable interest
in modern feld theories but do not play any par-
ricularly important role for cur purposes: there-
fore, their study will not be pursued further here.

REPRESENTATIONS OF THE
LORENTZ GROUP:. PARTIAL
DIFFERENTIAL EQUATIONS

Let O be an observer in a given inertial frame
studying a system which, he discovers, requires n
functions fj(x) = fj(r,xe) 10 describe it completely.
According to the principle of relativity, an ob-
server 0" in a second inertial frame will also re-
quire n functions, fi(x’) to describe the system.
The functional values at a point P as observed by
O’ will be related to the functiona! vaiues at the
point P as observed by O; if the ccordinates of P
are x' and x in the inertial frames of O’ and O re-
spectively, then with L denoting the Lorentz trans-
formation parameters,

filx) = AL (h(x), folx), ..., falx))  (B)
where Al is a general function of f,, f. ..., f.. but
one such that the set {[AL], [AL],...} form a
continuous group; that is, Eq. (8) are required to
be a realivanon of the Lorentz group. Hence,

-1
AL
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the inverse to AL, exists:
fi(x) = A,L—'(fl(x').fz'(x').---.f:.(x')) . (9

Observer (¢ will determine that his set[{f.} of
functions are, in general, correiated with one an-
other through some set of equations which we may
denote by

M(fiSt,.-n [3) =0. (10)
Again from the principle of relativity, Eq. (10) may
be written so that observer O’ arrives at the same
equation except for primes in the appropriate
places.

A very impertant class of fields will be those that
obey some form of superposition principle; if O
determines that {f;} and {g:} each satisfy (10) and
that {f; + g} satisfies Eq. (10), then O' must ob-
serve that f; + g/ also satisfies his version ot Eq.
(10). Thus, f+ g = {fi + g} is an acceptable field
configuration and transforms according to Egq.
(8) also:

hy(2') = AL (filx) + gi(x), fr(x)

+ g(x),..., fu(x)+ ga(x)) . (11)

In addition

hi(S) = fi (') + gik(x') (12)
where fi(2') and gi(x') are relaied to the func-
tions {f;} and {g} respectively by (8). From Eqs.
(1), (12), and (8), it then follows that the func-
tions AL must have the property that they are

linear in f:
AL({LA(S) +a(x)})

= M0} +AL{a(x)}) . (13}

If in the function space of the set of all accepta-
ble vector functions ({fi}) a metric is introduced,
then the notion of the “nearness” of one function
{fi} 1o another, say {g}, may be given definitive-
ly, and continuity of functions on this function
space, such as the AL, may be made precise also.
Without going irto detail, it is intuitively clear
that if {fi} is ncar o {&}, in some sense, for
observer O, then {f]} must be near to {g/} for
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observer O0’, which is equivalent o requiring that
the functions Af be continuous functions of the
functions {fi}; Eq. (13) requires them to be linear.
It may be shown that the only continuous solutions
of the functional equation (13) for AL have the
form

AL D) = $ a8 filx) .

(14)

Thus, for fields described by n functions and
obeying the principle of superposition, the set of
functions must transform under Lorentz trans-
formations according to (14), that is, according
to some n-dimensional representation of the
Lorentz group. The physical requirement that the
functions Af, for fixed L and k be continuous

functions of the f’s applies equally well to (8); that
is to say, this requirement is not related to the
superposition principle; hence if the system under
study is a nonlinear system so that the superposi-
tion of two solutions to (16) is not a solution, then
the set of functions that describe the system, if the
description is to be Lorentz invariant, need not
transform according to a representation of the
Lorentz group but instead according to some (non-
linear) realization of the Lorentz group. Unfor-
tunately, little is known about such systems, but
for us, the linear problems constitute our main
concern.

We here give a resumé of the equations of type
(10) that we shall study. The first equation that will
occupy our attention in considerable detail will be
the Klein-Gordou equaticn. Let ¢'(x') = ¢(x)
obey the partial differential equation

19! 1.1
‘7’90—;;—3—} mh’c ¢=0. (15)

Henceforth, we shall take A = ¢ = 1 and use the
notation

= 0,0,¢ . (16)

Then (15) reads
Op—mie=0. k)]

We shall, in Chapter 2, study this equation in
considerable detail, showing how to extract from
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a given solution of (17) the positive and negative
frequency parts, and how to ccastruct the Green'’s
functions for the different boundary value prob-
lems associated with (17}. In addition, we shall con-
sider not only (17}, but the inhomogeneous Klein-
Gordon equation, and its Green's functions to-
gether with their associated boundary value
problems. For all these functions, we shall develop
several different and useful integral representa-
tions and also explicit representations in terms of
known functions; further their asymptotic be-
havior will be made explicit. (' onsiderable atten-
tion to detail is given for the Klein-Gordon equa-
ton because a thorough understanding of the
work on that equation will greatly simplify the
calculations to follow.
In Chapter 3, we shall study the wave equation
O¢ =0, (18)
developing results analogous to those for the
Klein-Gordon equation described above; it will
become clear that the results of Chapter 2 will
carry over to Chapter 3 by simply putting m =0
or taking the limit as m — 0. We shall then prove
that the results for (18) may be applied directly
to the wave cquation for the four-potentials
{A.(x)} of the electromagnetic field; in (18), the
function ¢ is again a scalar, but in the equations
for A,,

OA4.(x) =0. (19)
The {A4,(x)} transform according to the vector
transformation law and obey the subsidiary con-
giiion

A

9Ap
ox, o &)
We shall show that the integra! formulation of
(18) will carry over to (19) in spite of (20).

In Chapter 4, we shall consider the boundary
value problems anaiogous to those considered in
the two previous chapters for the Dirac equation

(yu8u+m) Y(x)=0 (21)
where {y.)} are the Dirac matrices and y(x) is a
four<component function which transforms under
a Loremz wransformation accerding to a cenain
spinor representation of the Lorentz group, the
details of which will not concern us here.

GAUSS’ THEOREM; GREEN’s THEOREM

et 2 be a (four-dimensional) volume in the
space-tine  continuum whose boundary is the
space-like hypersurface S. To each point of S, we
may associate a four-vector (m,(x)) such that
n.n, = —1 and such that n,(x)éx, = 0 where
8x, is the uth component of an infinitesimal dis-
placsment from the point x in the surface S.
The four-vactor r will be called the normal to the
surface S at x; that the requirement a®* = —] may
be niet is guaranteed by the condition that S be a
space-like hypersurface. It becomes geometrical-
ly clear that if S is space-like at x, then n is time-
like, so that n,n, < 0; thus, n, may always be
normalized such that n n, = —1. If at x, S has the
tangent plane equal to x; = constant, then it is
clear that n = (%1, 0, 0, 0). *Ve shall always select
that choice of sign for n such that it points in the
forward light-cone of the point x. Here in our
special case, n = (+1, 0, 0, 0). In adiition to the
normal n(x) at the point x, we define the four-
vector n'(z) at the point x of S, calling it the out-
ward normal, in the following way: let 8x be a
displacement from x on § along the direction of
the norinal at x, n(x). If the point x -+ 8x does not
belong to Q2 for any such 8x, then n’(x) = n(x),
by definition. If x + 8x belongs to the set 2, then
n'(x) = —n(x), by definition. 1t is clear from this
definition (and assuming {2 contains no points of S)
that the outward normal points in the direction of
n when (1 precedes the point x on S, « =, whenever
ary space-like hypersurface through {1 precedes
z on §, and that n’ (x) = —n(x) when the opposite
is true. The geometric interpretation is quite
clear and is best illustrated by Fig. 2.

Analogous to ordinary geometry, in four-space
we define the element of area on a surface as the
pseudovector do, whose magnitude is that of the
area of the element and whose direction is the out-
ward normal ny:

do, = n,do (22)
and, on a space-like surface,
do = —n,do,, n%=-1. (23)
If we intrcduce ny, it is related to ne by*
ne = noli . (24)

*C. Moller. “ I'he Theory of Relatvity.” Oxford, 1952, page 129.
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Figure 2

If £, is a four-vector, then, with fy=if ;and x ;= ix,,

Uy o 3 s 3 s,

9x, 9x, Odx2 Ox3 09X
TN ST T S
dx; Odxs Ox3; Ox4

If © is a volume in space-time bounded by the
hypersurface S and f, is a continuous differenti-
able function in Q) and all pertinent integrals ex-
ist, then

!;d‘xg{ﬁ=£do,f“=£do nifu

(sum u=1,2,34) (26)
where d*x = dxodx, dx: dx;. Equation (26) is a
statement of Gauss theorem. We are especially
interested in the case § = S,US:,* where S, and

Sy are space-like hypersurfaces and S, is later
than S,; in this case Eq. (26) becomes

!d‘lﬁif::fdoufu_[daufu (27)
5 Se

where, now do, is a four-vector always pointing
in the forward light-cone:

do,=n, do (0 =1,2,3,4 only). (28)

*$,US; stands for the set union of S, and S;.

We shall often wake the space case S, = {x|zy =
const.}; then

[ dou s = [ dan,fi
= Id’x L;-'if.

= fd’x fo . (29)

Equation (29) tells us that dre=—d%x; we shali
have frequent occasion to recall these results.
Suppose next that f, = ¢(x)3.¥ — ¥a.¢; then

[ d's (0¥ — ¥O0p) =
[1]

[-[aofew 2 -vini] oo

S Sa

which is Green’s identity. This may also be written

f.m[v(m- m?) g — (0 - mt)g] =
[{]

fsdo(:pa%%-&%) 1)

where 3/9n’ = n’, 8/dx, is the derivative along the
outward normal on S. Again, let S =5,US; as de-
fined above, and S; = {(x)]|xe = const.}; then

fdo.¢(x)§;“;=—[d=w(x>£% (32)
sl

by (24). Thus, if we have an integral of the form
of the right side of (32), it may be given a covariant
geneialization by replacing it by the left side of
(32).

In the formulation of Gauss’ theorem and the
Green's identity, we required ¢ and § to be con-
tinuous and twice differentiable; the continuity
requirement will now be drepped but the theorem
retained; this is done to admit as solutions the
gener ilized functions or the so-called distribu-
tions. Though distributions do not always possess
desirable continuity properties, they are infinite-
ly differentiable and always integrable; hence we
can utilize them in our identities.




CHAPTER 2
THE KLEIN-GORDON EQUATION

THE HOMOGENEOUS
KLEIN-GORDON EQUATION

We shall consider, in this section, the boundary
value problem for a function ¢(x) which is a scalar
function under Lorentz transformations that are
proper and orthochronous and which satishes the
homogeneous Klein-Gordon equation:

(O — m?) o(x) =0. (1)
The pertinent boundary value problem is the
determination of the function ¢ at x in terms of
its values and the values of its derivatives on a

prescribed space-like surface. Prior to this, we
discuss the general solutions.

General Solutions; Positive and
Negsative Frequency Parts

Using the standard technique of separation of
variables in a Cartesian coordinate system, we see
immediately that ¢(x) = exp ik-x solves (1) if

K+m=0 (2)
or
ko= w 3)
where
w=+ VT

In general, one may obtain a solutiown of (1) by a
superposition of such plane waves. Put

¢uF7éFLMaMM“. @)

Applying the differential op~rator 0 — m? to both
sides of (4) and uulizing (1). a condition on a(k)
1s seen to be

(k2 +m?®) alk) = (5)

Now k2 + m? = (—k,2 + w?), which vamishes {or

those two values of k, given by (3) but not other-
wise; therefore, i order that (5) be met for all
values of

ko, a(k) must vanish when (3) 1s not

satished. This condiion may be met if a(k)
vanishes identically; but then (4) vanishes identi-
cally also, and we have the tnvial solution to (1).
Thus, if a(k) has the property

a(k)
alk) #0, ko =* &

=0,k #**w

and the integral over k, of a(k) is nonvanishing,

(4) will acquire meaning. These conditions are met
by

a(k) = a(k) 8(k2 + m?)
k
=%£{Nh-m)+&h+mﬂ 6)

where a(k) is, as yet, undetermined. With (6),
(4) becomes

(2 )*

fdak ‘( k,'-(o) ei(ln ﬂ-xo (7)

(2 )*

We define the two functions

ot (x) = fdak“("'“) pilhe —wrg)  (82)

(2 )*

(P‘_) (x) [({"’k a(k‘_w) eflxr +erg) (8b)

(2 )*

We shall call ¢'*! (x) the positive frequency part
of ¢(x) and ¢’ (x) the negative frequency part
of ¢(x). The above discussion shows that any
general solution oi the Klein-Gordon equation
in 2 given Lorentz frame mav be decomposed
into its positive and negative frequency parts:

¢lx) = ¢ (x) + ¢ (x). 9

We shall now show that this decomposition is
invariant under proper orthochronous Lorentz
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transformations. Consider a given Founier com-
ponent of ¢(x) characterized by the momentum
vector k; there are two terms in (7) afhhated with
this momentum vector, one whose exponential
part is characterized by the four-vector x, =
(w, k) and the other by x; = (— w, k). Now &'k, =
K1k = —m? < 0; thus cach of these four-vectors is
a time-like vector, one (x:) lying in the forward
light-cone and the other (x:) in the backward
light-con¢ of the origin in momentum-energy
four-space. Under proper orthochronous Lorentz
transformations x; will transform into a four-
vector that lies within the forward light<one
(see Chapter 1) and x; into one which lies in the
backward light-cone. It is thus clear that if in a
second inertial frame the transformed function
¢'(x') is decomposed into its positive and negative
frequency parts ¢'*) (x') and ¢~ (x'), and if

¢'(x') = Lo(x), (10

then

@' (x') = L' () (11

and the Lorentz invariance of the decomposition
(9) is established.

If, in Eq. (8b), —k replaces k as the integration
variable, Egs. (8) may be written as

¢ ) (x) = jdak"("w") ter (19)

(2 )¢
where
x=(w, k).

A very useful method for extracting the posi-
iive and negative frequency part of any function
which shows clearly the invariant character of
the decompositicn is due to Schwinger. To
develop this method, we first observe that

J'd'r im={l.m>0
2mi 0,a<0

where P is the contour in the complex 7-plane
shown in Fig 3.

Let n be atme-like four-vector pointing in the
forward light-cone; using (8) and (7) we see that

2%[?«:(:— m) = (x) (%)

r—=PLANE

Figure 3

and

-21— j ? ¢(x +7n) = o'-)(x).
P

The calculation is facilitated by the choice n =
(+1, 0, 0, 0. We shall utilize (13) quite often.

The Boundary Value Problems and the
Invariant A-Functions

THE INvARIANT FUuNcTIiON A(x) AND lT1S
ASSOCIATFD BOUNDARY VALUE PROBLEM

Let S be an arbitrary space-like hypersurface
in the space-time continuum and let x be an arbi-
trary spave-time point; x may precede S, lie on §,
or be preceded by S. The boundary value problem
we strive to solve here is the determination of the
value of ¢ at x when ¢ and 3¢/dx, (1=0,1,2,3)
are known at each point of S. (This may seem im-
possible for that case where x precedes S, because
it would appear tha: we wish to determine the
amplitude of the field at a given pont in space
and at a given time by its values (or events) that
occur in the future, which is a violation of our
intuitive notions of causality; but it must be point-
ed out that the Klein-Gordon equation does not
contain in it anything that precludes such cases of
boundary value problems. Said in another wav,
causality, however formulated, is a physical re-
quiretnent imposed on those hields ¢ of interest
quite distinctly from the mere solving of the equa-
tion, which is our purpose here. We shall discuss
cases later that meet some of our intuitive notions
of causal rclatons.)
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Figure 4

For the present discussion, assume x does not
lie on S, let &' be a surface that is space-like and
such that x |, on §’, and let § and S’ wincide
everywhere except in the region of finite diameter;
let Q2 be the four-volume enclosed between S and
S’ (see Fig. 4, which shows x later than S, although
the relations could as well be reversed).

Assuming ¢ (x) and ¥ (x) both satisfy the Klein-
Gordon equation for all x, Green's identity, Eq.
(30) of Chapter 1, reduces to

dcru[ () ) -y 28]~ g

(14)

and because the volume integral vamishes for any

1 due to the assumption that ¢ and ¢ solve the

Klem-Gordon equatnon, (14) i1s independent of §
and §'. Another way of writing Eq. (14) 1s

fd(r,'.[‘P(x')-—*—aw(; ) ¥ ')a‘sit )]

8!

—fd(r,"[d;(x') M_ (I.)Gdl(:t')] _
dax, ax,

We shall impose conditions on S°, S, and ¢ n
order to assist our evaluation of ¢ at x on 8. Sice
(15) is independent of 8" and S, choose §” to be the
hyvperplane xg = xo and S to be anv space-hike hy-
persurface preceding S or atter at, but otherwise

L

meeiing the requirements that Q2 be finite. Then
the ieft side ot (15) becomes

— [ &, [«:( ) M) _ w(x')‘ﬁ%].ue)

r'e=~Fe

We shall require of ay(x’)/dxe that it be a three-
dimensional delta function, — 8{¢’ — r):

a(r’) _

9xo

—- 8{r—r'). (17

Theu (15) reduces to

Bx'y(x') M

y(x) =-—
fda“ [ )i‘& )i‘(&] (18)

Equation (18) involves integrais over two
surfaces still; we wish to reduce it to only that
integral over the surface S, which means we
want the integral

f d&*x; d:(x')aLa(:o'.)

to vanish; this will be so if Y(x') = 0 on §’. This
requirement may be made more gtneral by
noting that if we want (18) to be Loremz in-
variant as it actually is, then ¢(x’) must vanish
outside the light-cone of the point x. We see that
this requitement is consistent with the above,
because under a Loremtz transformation the sur-
face xo' = x transforms into a hyperplane that is
space-like and goes through x.

Charactenzing the function $(x') by x as well,
the requirements we have placed on ¢ are

U-(x') =0, for (x'—x)2>0 (19a)
M:—&(r—').x'"=xo_ (lgh)
axa

If such a tunctuon ¢, (x') exists, then

«pm=—fd<ru'[w,<x')9%’.‘—)—¢(x )""”“ ’] 20)

N
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We shall see that ¥.(x'} does not exist as an
ordinary function, but as a distribution instead.
To this end, we decompose y-(x') into its positive
and negative frequency parts just as we did the
general soludon in the preceding section:

*;(2') =

Idaka“’I) i(he —wr?)

2w

(211)
=l

+ — | d%k
(27)*

Impose on (21) the condition (19a) on ¢, (x') in
the {form that ¥:(x') vanish on x’o = 20; then be-
cause the Fourier transform of zero vanishes
we get from (21) and (19a)

dk,~w:x)
2w

ei (e’ n-.r") .

2D

d(k,w;x) = —d(k,w;x) e =% (22)

and (21) and (22) combine to yield

AN i . —fmZg+ik- !
¥ (') ——(21’)‘ Id’k d(k,w;x) e X

sin w(xo’
w

~x) (23)

Applying condition (19b) to (23) in order to deter-
mine d(k,w;x), we get

¥r(x') = fd’ke”‘" -e) X

T (2m)

sin w(xe' — x0)
—

(24)

From (24), it is immediately evident that ¢, (x')
is invariant under translations; hence we may
write it as A(x" — x). It is not evidently invariant
under more general proper orthochronous
Lorentz transformations, althougth this will be
established shortly. It s evident that the integral
does not exist in the usual sense, since @®kjw ~

kdkd); hence A(x' — x) must exist in the sense of

a distribution (1.e., it may be regarded as a linear
functional on the linear space of the solutions of
the Klein-Gordon equation.)

We have thus solved the boundary value
problem posed:
¢(1)=—fda [A(x —1) "
Il
- BA(x'—x)]
e(x') T om
= - —x' ﬁ
[ dai [3a =20 32
S
A (x —x'
o BEZI] g
where
=] Sheiwe SIN WXo
A(x) = @)’ Id ket -
o=+ Vki+m? (26)

and it can be readily seen that (25) reduces to an
identity when S is chosen as x¢ = x. The A-
function with the special value m = 0 was first
introduced by Jorda. and Pauli.*

Expression (26) for A(x) is an integral repre-
sentation of this function. There are several
others that are useful and important. Observe that

sin wxy _ e~ tkoTo

@ T om jdko

(27)

where the contour C in the ko-plane is shown in
Fig. 5. With (27) and (26), we obtain a second
integral representation of A(x):

elkut

=1 ]
A(x) = (2n)‘fd“k’+ : (28)
¢
To get a third, define
+1,if ke >0
€(k) = 0,if k=10 (29)
—1Lif ke <O

*P. Jordan and W Paul. Z Phys 41 151 (1928)
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Im:.o

‘o = PLANE

uonw/aﬂo

Figure 5

and note that

sin wxo __ e'To —ei=To
@ 2wi

= L[ ko e % [8(ke + w) — (ko — @) ]

2iw

= :1]— J dko €(k)e %00

[S(ko + w2)w+ 8(ko — w) ]

=i',r dko €(k) e *o%o S(k2+ m?).
Then
__ 1 - ikr 2 4 2
A(x) (Zn)ﬂj’d‘ ke*r e(k) 8(k* + m?). (30)
The mvanance of  A(x) under proper ortho-

chronous Lorentz transtormations, is now easy
to prove; if xi = a,axa, then

A(x') =

jd‘k e kuturTr e(k) (A2 + m?) .

ot
(2m)3

Make a change of mtegration va iable from k&,
to ki = auk,. Because the transformation is prop-

er, the Jacobian is unity, and because it is ortho-
chronous, €(k’) will have the same value as e(k);
because it is a Lorentz transformation, k2 = A2;
hence

M) = = gy [d4 ' ek (kT + m)
- (22): f‘”‘ e'** c(k) 8(k* + m?)
or
A(x') = A(x) .

The following properties obtain, as is readily
shown from (26), (28), and (30):

A(x)* = A(x)
A(—r,x0) = A(r,x0)

A(r,—xe) = —A(r,x0)

A(=x) =—A(x) (3N

te., A(x) is real, an even function of its space co-
ordinates, and odd in its time coordinate. An
explicit representation of A(x) in terms of better
known functions will be derived in a later sub-
section.

THE INvARIANT FuNcTIONS A®) (x) AND A (x)
AND THEIR ASSC CIATE BOUNDARY
VALUE PROBLEMS

We have seen, from Eq. (25), that the values of
¢ at x mav be determined by the values of ¢(x)
ond ¢u(x) on some space-like surface S. Know-
mng ¢ (1) over all space, we may construc: by direct
computation or by Schwinger's method, the posi-
tive and negative frequence parts. Hence, one
should be able to determine these functions direct-
I interms of ¢ and ¢, on S, This 1s now quite
straighttorward; trom (25)

d¢
ax,.

¢(x *7n) =—J'da','. [A(x' *7n — x)
Ry

A
I'

~¢(x") ox.

(x' £ rn— x)].
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Performing the obvious integral 10 be done, ac-
cording to Schwinger’s prescription, we get

[

02 (x) == [doy]atrxr - 5 22
ax
s

6A‘

—e(x) 3 (x - x)] (32)

where
dr
T

AG)(x' - x) =2lf A(x" =70 = x). (33)
P

If we choose the second form of Eq. 25, te,

= ’ _on ¢
e(x) —+!do, [A(z x') Sl
_dA(x—x') ,)]
axh (34)
then using Schwinger’s integral again,
s
(2)
= (x x) elx )] (35)

The physical interpretation of Eq.(35)is rela-
tively straightforward, if we be lax in our ter-
minology. The functions A'*) and A!-) determine
directly the posiive and negative frequency
parts, respectively, of ¢ at x in terms of the
values of ¢ and ¢, on S. Eq. (35) rather than
Eq. (32), will be the final form of the bound-
ary value problems solved by A*) and A'").
Comparing (35) and (32), we see

A (x' —x) =— A (x —x') (36)

which also obtains from (31). From the defini-

tion of positive and negative frequency parts,
we have immediately

A(x) = &")(x) + &7 (x). (87)

Let us compute the integral representations of
A*)(x) and A")(x):

1
A (x) = omi j %I A(x—7n)

P
] lkr dT
=~ e [ 3 2mf sin w(xo— 1)

where we have taken n= (1,0,0,0); this immediate-
ly yields

) i ellne -wxg)
(+ =— —— . E—
A*)(x) (2,):]‘”‘ o (38)
and (38) and (36) together yield

AC) @ke Uhviar)
A second integral representation for these
functions analogous to the second integral

representation for A(x) as given by Eq. (28)
is obtained in the manner that Eq. (28) was
obtained:

e ] e-koro
P “*ﬁfcf""’ (ko + @) (ko= w)
1 e~ tkoTo
——2_1n'jdkok‘+m2 (40)
Cy

where C. is shown in Fig. 6; also

e*wo ]
70 -‘ﬁf"’“
C

e~ koTo

(ko + @) (ko — @)

-i*o-to
—+—]do (41)

where C_ is also shown in Fig. 6.
Applying (40) and (41) to (38) and (39) respec-
tively, one obtains

elk x

A¥)(x) = (2 T f s (42)
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Imkg
[
o- PLANE
C- Ce
Figure 6

elk-r
kt+ m?’

AN (x) = (2 T Id‘k

(43)

For a thiid integral representation, we use

+x

—io xr
:jﬂ:-zl_.f kO e-ik..l’o a(ko—w)
- 217,] dko e-*oe @ (k) [8(ko — w)
+ 8(ko + w)]
- fdko e-tkro O(K)S(K: + mt)  (44)
where
l, X0 > 0
0(x) =<1/2, x0=0 »>=0(x0). (45)
, x0 < 0

In a similar way,

+x

= I-dlro e ke To@(—k)S (A + m?) . (46)

x

eiw,..ro

2w

Using (38) and (39) with (44) and (40) respectively,
we get

AN (x) =~ (2”)3 fdak ek r0(k)S(k® + m?)
(47)
A (x) = (,, E fd‘k etk 9(—k)8(k* + m*)

k-

(48)
and it follows directly from (47) and (48) that

A(+)(1)*=A(—)(1) . (49)
Also, (47) and /48) exhibit the Lorentz invariance
of these functions.

THE INVARIANT FuNcTION A (x) AND ITS
ASSOCIATED BOUNDARY VALUE PROBLEM

Define the function A"(x) by

A (x) = #fd’k eite LS @WXo (50)

It is clear that A®(x) solves the Klein-Gordon
equation. This function may be related to the
function A (1) symbolically by

AM(x) = — —-——-———A(x)

Vartm S

where the symbolic operation —3o/V—3f + m? is
interpreted to mean, first, *xpress A(x) (or any
function the operation is applied to) in terms of a
Fourier integral and, second apply the operation
to each component; thus

__T_‘l'__A x) = 1 fdsk ! %
V -4t +mt (2m)3 V —at+ m?
o, 9 SN wXe
€ O —
dx, w

= 2")31(15’;“6“" (0S WXo.
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Suppose ¢(x) and d¢/dx, are knowa on §; let
us compute the function

I doy [A‘"(x —2') Qo)
s

e(x’) ,4M(x — x')] = ®lx).

Here ¢(x) may be any function whatsoever; now,
with (51),

O(x) =——0 f da.:[A(z — )%
V-di+mt/ 0xy

-, ,,0A{x—2'
..4,(1)4_5;:‘_1].

Suppose @(x) is ¢'*)(x), the positive frequency
part of ¢(x), where ¢(x) solves the Klein-Gordon
equation and ¢ and d,.¢ are known on S; the posi-
tive frequency part propagates independently of
the negative frequency part. To see this, suppose
¢(x) = ¢*)(x) with the negative frequency part
identically vanishing for all x; then,

#(x) = [ do a0 - 21) 2
S "

|

ox,

Analogously, if ¢(x) = ¢! (x) with ¢(*)(x) = 0,
then

ax.

¢ (x) =fda;.[A(x-,')iL"£.'_)
s

_v(-)(x')aA(I-I'Z]_

ox)

Now any function ¢ (x) may be decomposed thus-
ly. Hence we have

jda:.[am(x- )34 (x')
S

—¢' =) (2')3LAM (x — x')]

de
V—9}+m?

¢(=)(I) .

But
- a. (!,(x) =——.i——l_.
V-a1+m=‘° V-3 +m? (2m)¢

fd’ka(k' * w)e“k"z“)

2w

= (2;)‘ jd’k “_f"-zj w) (2;_@) el(ke swz)

=4 i¢(!)\*) .

Thus,

ox;

() (o'
fdo,'.[A‘”(z -1') =M (x")
s

AN (x — ')

—_ () ('
e (x') oxh

] =xip*)(x) . (52)

The functions A (x) will “propagate” the posi-
tive and negative frequency parts of ¢ and d¢/dx,
from S to the point x but with a change in phase,
in contrast to A(x — x'}).

Next, we develop integral representations for
AM(x). Expanding cos wx, in terms of exponen-
tial

COS WXy

2 = Idko 5(k2 + m?) e-thko%o (53)

we get immediately from (50)

1

A(l)(z) = (_2—."_)3

+>
Id‘k 5kt + m?) e'** (54)
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Utilizing (40) and (41) we get also

T 2mi I

C-

l -{koxo
& fon ez,

e“ktx.

COs wxo _
o nie ke ————
E+m

2w

Let C', be the contour C, traversed in the oppo-
site sense and let CV' = C_UC, ; then

k.r
iAW (x)=(—2;_}7 f d o

ct

(55)

Two equivalent contours C" are displayed in
Fig. 7.

Imko

b
ko*-w 7 \\ ko*+w //Reko

Figure 7

RELATIONS AMONG THE INVARIANT A-FUNCTIONS

That the functions A(x), A (x), A (x),
and A (x) are all invariant under proper
orthocironous Lorentz transformations is evident
from their integral representations involving
integrations over the whole of the k-space; that
they are not all independent of one another is
evident from the integral representation over
contours, if it were not evident before. The
following relations are easy to verify:

A(x) =A™ (x) + A" (x)
(56)

iAlx) =A%) (x) — A (x)

A (x) = [A(x) — A" (x)]/2
(57)

AC) (x) = [Alx) + iA™ (x)]/2]

It 1s seen from (56) and (57) that A and A"V
play roles analogous to cos x and sin x functions,
while A®) and A'") play roles analogous to the
exponential functions exp (—ix) and exp (+ix),
respectively.

EXPLICIT REPRESENTATIONS OF THE
INVARIANT DELTA FUNCTIONS

In this section, we shall evaluate the integrals
for A*)(x) and A‘")(x) in terms of the higher
transcendental functions and thereby obtain
explicit representations not only for A*’ and
A=), but, through (56), also for A and A"

In the integral representation (38), we trans-
form from Cartesian coordinates in k-space to
polar coordinates in k-space wherein the k.-axis
is made parallel to the vector r. It is an easy mat-
ter to show that (38) reduces to

+

i 3T e

8n2r ar w

Zx (58)

e—l(kr+~8.)

A(*) (I) =

where we place |¢| = r. Put k = m sinh B; then
dk = m cosh B8 dB and w = m cosh B8, and (58) may
be rewritten as

A9 (1) =g 2 LW (rx)  (59)
where
L) (r,xe) =2—- j dB exp[— im(r sinh 8
b + x5 cosh B8)]. (60)

From the fact that A©-)(x) = A" (x)*, we have

Al- )(x) =_l__L( D(,- 10)

mwr or

(61)

L= (ryxe) = L) (ryx0)*

We cannot derive all the pertinent results for
all values of (r,xo) with one development; instead
we musy consider certain regions of space-time
separately. These are labeled in Fig. 8.

Region 1
Since

r X
< 0

Vil—rt Vil-n
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Xo

Xo >0

“Xot +r*<o}/

thmv' 2:
X020 }
x,{«rbo

/ REGION 3.
Xo<0 }

REGION &

//' ////

REGION 3
-

REGION 4: {

Figure 8

there exists a real 8o such that

sinh B,= —-;\/‘g_—__r’
= Xo
cosh B.—\/I:__r’

Then

r sinh B + x0 cosh 8 = Vi — rt cosh (8 + Bo)

and

L) (r,xe ) =#I dp e""‘/‘o’ -3 cnh (8+89)

=§l;f dﬁ e-—ll%r: -r? uuhﬁ. (62)

We note that L*(r,x) does not converge in
the usual sense; however, since cosh 8 i1s always
positive, if A = Vixg* — r* is regarded as a complex
variable and A assumes complex values with neg-
ative imaginary part, then L‘*){A} converges off
the real A axis and below it. We may thus regard
L‘*)(r,xe) as the boundary value of what is clearly
an analytic function of A.* Instead of the param-

eter A, we put

*This result 18 4 special case of a very general resclt derived by
Wightmann (Phys. Rev. 101:860 (1956). In this paper of Wightmann
nes the foundanon of a deep study of held theory on an axiomatic basis
in which the a-function properties above come about in a very logxal
way, along with other important tunctons.

m Vi —r={

where, in general, { may assume complex values
whose real and imaginary parts we shall designate
by £ and % respectively. Thus L*)(r,x) may be
regarded as the boundary value of

i +x
— ~i{coshB
o jdﬁe .7 <0. (64)

From the theory of the Hankel functiont, we have

H' (z) = # Idﬁ eltshB I'm 7> 0 (65)

H'*(z) =— —jdﬁ e tzshB m 2 < 0. (66)

Thus, by analytic continuation,

LYrag) =+ 12HY(m Vx2 - 1)
, region 1.
L(rxe) =+ 12HM(m V xt — r) (67)

The second of Egs. (67) follows from the fact
that H\"(x)* = H\®(x) when x and A are real.

Region 2

Here, r > xo, 50 we cannot put r = V2 — x?
sinh 3o and x = Vr? — x¢? sinh B,; instead we put

————=cosh B,
Vrt —Io’

Xo

=sinh 8, .
VF’+X|)’ '

Then

m(r sinh 8 + xo cosh B8) =

mVrt — a2 sinh (B + Bo) .

Thus, in region 2,

“Methods of Mathemaucal Physis,”
hapter VI, Vol |

tSee Courant and Hilbert,
Interscience, New York, 1958, esp
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L (rx0) =§'1_rf dB e-{mYTT -~ I3 unh 8 ]
(68)

L (r,xe) == L™ (r,xe)
In Eq. (68), 1eplace i sinh B8 by its equivalent cosh
(B + i(w/2) and then let y = B8 + i(7/2) ; then

g +x+i( w/2)
L(o) r.x = —
( ’ 0) 21r

—x+f('/2)

d.y c-nqr’ - :.imnhy s

(69)

In the step between imy = 0 and Imy = n/2, the
integrand in (69) has no poles, and it is easily
seen that the countour integration above is then
equivalent to an integration on the real y—axis;

tx
L) =g [ dy -V v
. +x
-_—_.‘_ i!\/r’——r!-l I
21rf dye" Y

or, using analytic continuation again,

L (rxe) == 12HV(imV rt — xo?) (70)
while , region 2.
L(rxe) =+ 1/2 Hy"V (im Vr® — x2) 7
From (38) and (39), it follows that
AN =x0 ,0) == ANz , r)
(72)
A (= x0, 1) =— AN (x0 , ¥)
from which it immediately obtains that
L (rxe) == 1/2 Hd"(im V r* — x,?)
. region 3

L(rxe} =+ Y2 Hd" (im V r* — x2) (73)

L (raxe) =— 12 Ho™W (m V x3— 1)

L(rae) =—1j2 Ho ®(m V 2§ — 1)

, region 4.
(74)

We may combine the results (67) and (70) and
(71) 10 get a representation of L'*) and L'’ in
the union of regions 1 and 2 (with the light-cone
itself omitted):

~

L (roxe) =g { B(-x) B (mV)

= a(x’)HJ”(m\/—?)} g (75)*

L (r,xe) =~é HY (mV-x?)

/
(Region 1U2)

and we may combine (73) and (74):

LY (r,x0) =—% H(mV-1?) )
L (r,x0) = —-% {6(—1’)1{;”(;11\/—:’) >
_ (76)
9(1’)”0“’("!\/—:’)]J
(Region3U 4)

From (75) and (76), we get

Ax) =2 {C(I)[L(”('.Io)+L"’('.Io) ]]

1 8 (-
— —— ..._l
4 810 x?) X

[ ”0(2)(’"\/_:2)+”o(l)(m\/_*l) ]
2

= e(x) { 0(— x*) Jo(m \/_x')}

(n

4mr or

*#(x%) s the s:ep lunction 8(a) = 0 for @ < 0. #(0) = 1/2. and d(a)
= | for @ > 9. this 1s defined when a 1s a number. Contrast vhis with 8(x)
where 1 15 a four-vetor; we we ¥(x) = #(10).1n a2 umilar manner we
dehne €(a) See Equanon (45).
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Using the fact that

Yap(st) _, de(x?)
r or ar
— _ g 9¢(x?)
3(—x?),

when this operator operates on these functions of
(— x*) we get Ainaily

c(x)

Ax) =-S5 [ 3(x2)

_m(—2%) J,(m V—2x?) ] (78)

2 mV—x

Equation (78) applies everywhere including the
light-cone: the derivative operation implied in
(77) could not be performed for all points x in
classical function theory; but 0(—x?)Jo(mV—x?)

J. N. HAYES

exists as a regular generalized function and there-
fore possesses a derivative which, as (78) shows,
is also a generalized function.  From (78), it is
manifest that A(x) vanishes outside the light-cone,
and for xy = 0 (from the definition of €(x)). It
is a delightful exercise to verify directly from
(78) that A(x) sau. ‘es the Klein-Gordon equation,
and ihat

a
3x¢

=—6(r).
xo=0

Turning to the function A'"(x), we see from
Eq. (50) that

AV (— xo, ¢) = AV (xq, r) (79
so that it will only be necessary to obtain a repre-
sentation of A" for regions 1 and 2 and then it

will be known for the whole of space-time. From
(58)

IA(”(I)—M"& (L&) (rxe) —L'*)(r,%) ]
=74:r—rair [_H_gﬁl H},”(m\/’—_x’) _.0_(’2_1'1”4:)(,,,\/:7)]
__1 e(2)HY (mV—x?) — 0(—1’)”“’(m\/ )]
4ar or [

- I No(mV=27) ,
" A or | _gon(mvTH)

1 M\/’:I; ’
TN V=)
21r’\/_ b (m\/-)

m? Ny (mV=z?)

A\
4dm mV-—x?

k.gm\/—[

or

A1) (x)
m!
ot

x2 <0

x>0

<0

x22>0

(x* <0)

(80)
(x> 0)
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From (80) it is quite clear that A" (x) does not
vanish idcentcally outside the light<cone. The
functions Ny and N; in (80) are the Neumann
functions of order zero and unity respectively,
while Ko(z) is given by

Ko(2) =3’§‘H.(')(iz).

For explicit representations of A“)(x) and
A“)(x), one may use Eq. (57) together with
(78) and {80):

r_e(x)&(z’)+_nl’ H®(mV- x’)_
2w

4r mV— x

2 <0,2>0

_€(x) 5 (x*) _mt H{(mV=1)

AN (x) = { 2w m mV-x
<0,2<0 /81
_&(x) 8(x*)  im* Ki(mV x)
2m 2mt mVae
L ®>0
and
A (x) = A% (x)*. (62)

The behavior of A(x) and A" (x) near the hight-
cone (x* ~ 0) and large distances away from u
(2 ~ * =) and may be denived from the behavior
of the function Ji(z), Mi(z);, and K,(z) for

|z]| ~ % o respective'y.+ Near the origin

Lu)~§+0uw

2 &z yr_t
Ni(2) 1rz+1'rln2+1r 2ﬂ+...

~—

|
K,(2) -§+-I2-|I’l£2+(y—§

tCourant and Hilbert, loc cu

where vy is the Euler-Mascheroni constant. Thus

|, ~-S2 s - S o +
(83)
2 \/ ?
AN, ~ e R
1\ m?
oD

Thus A(x) has a singularity of the light-cone
with an additional jump discontinuity; A is
likewise singular at the light-cone, but the singu-
larity is much stronger than that of A(x).

For large values of [z!,

cos 2z

2
J1(2) \/;

sin z

Mu)~v%;

e %,

2
K A
i Vnz

Thus, inside the light-cone

2
AV(x) ~ 2’:;::: \"’/_-\;?:,,. =t~ o (86)
while outside the light-cone,
A(x) =0, 2% ~ +x (87)
A (x) ~ m} e 1~ +x. (88)

91/255/2 (m\/x;)”’ '

The 3oundary Value Problems and the
Invariant A-Functions (Continued)

In the preceding section, we discussed the
solution of several boundary value problems for
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the Klein-Gordon equation which gave nse to
four important Green’s functions, ail of which
solved the homogeneous Klein-Gordon equation
themselves. In this section, we <olve severa!
more boundary value problems which give rise
to Green's functions different from those pre-
viously studied and which satisfy not the homo-
geneous Klein-Gordon equation, but a special
version of the inhomogeneous Klein-Gordon
equation, that is, Eq. (1) wherein the right side,
rather than vanishing, is a prescribed function of
space and time.

THE RETARDED A-FUNCTION, Ax(x)

Consider a physical experiment wherein the
experimenter sets up his field function ¢ at the
time t = ¢, in such a way that the functional values
of ¢ and all its first derivatives are known through-
out all three-dimensional space at time ¢ = ¢,.
Since the values of ¢ and its derivatives at previous
times are immaterial, we may require that these
vanish. Since the function ¢ develops in space and
time according to the Klein-Gordon equation, we
may expect to be able to compute the values of ¢
at any later point in space and at any time. We
wish to construct an auxiliary function which we
shall call the retarded A-function and shall
designate by Ax to describe this situation, that
is, 2 function which, when used in conjunction with
Green'’s identiy, wili yield ¢(x) when x is later
than the surface S(¢) and zero when x is earlier
than the surface S(t). Let us try to develop this
function in a manner parallel to that used in the
preceding section.

Consider first the case x later than S{¢y); let
S: be a space-like surface through x such that S,
is tangent to the plane xo = xo at x (Fig. 9), and
that the volume {1 interior to the union of these
two surfaces is finite. From the first two subsections
of the preceding section, the value of ¢ at x is
given by

_ ; -y e
¢(x) jda.u [ A(x~ x') o,
Sleg)
_ . 0A(x — x)
elx') ox ]

ITAYES

S(Xo*Xs)

Figure 9

Thus, if

Aria —2')=A(x—1'), 20 > 2o/ (89)
we shall have achieved part of our goal.

Now suppose x lies earlier than S(¢,). Construct
S: through x in a manner analogous to the con-
struction of S, (Fig. 9).

Let us assume again (as was tacitly done 1n (89))
that Ag obeys the Klein-Gordon equation:

(O—m?) Ar(x) =0, for x € n_s"_q(,u’. (90)

Then in the Green's identity, the volume integral
vanishes as before and we are left with

Jdo ot

=jd0' ['p(x)M-A(x-x) % ]

01“ axu

aAn(x—x) — Anlx—x") _ﬁ]
ax,. Xy

S(ty)

91

But our b()undary conditions of ¢ stated ¢ = 0

for all x prior to S(t); hence ¢(x') = 0= d¢/dx,
on S,. Thus,
dAr(x — x') 9
fda,l [ ') ———— = Ax(x — ') —f } =
1 ax, oxy,

Stte)

which can be satisfied only if
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Ax(x~2') =0, 20 < x¢". (92)
Thus, if we choose Agx(x) for all x to be
Ax(x) = 8(x)A(x), all x, (93)

a form which exhibits invariance under proper
orthochronous Lorentz transformation, then the
boundary value problem posed in the beginning
of this section will be solved. While it is true that
Ar sctishes the Klein-Gordon equation in 2(S,,
S(te)) and (82,5 (%)) (the later by virtue of (92)),
Ag does nnt satisfy the Klein-Gordon equatior
everywhers (Ncte that Az as given by (93) is an
extension of Az outside the original domains (1 of
definition.) Let us determine what equation Ag
does satisfy in its extended domain. It is easy to
show

9,0, Ax(x) = A(x) 9,0,0(x) + 0(x) 3,9,A(x)

+29,6(x) 3,A(x).

Now
0,0(x)=0,if n=1,2,3
900(x) = 8(x0).
Therefore
0,0,0(x) = — 86900(x)
-_9
= 8108(10)
_ &(x0)
=
Therefore
A(I(hr)

A(x) 0,0,0(x) = 5(x4)

Xo

At the point xo = 0, A(x)[J8(x) is undefined: we
shall detine it by a limiting process; therefore

) hm A(xs,r)

lim A(x) 3,8,0(x) = 8(xe) =~

- dA
= §(xo) . {x9,7)

=—8(x0)8(r)
=—§(x)

where 8(x) = 8(x¢)8(x1)8(x2)8(x3). Since ALJO
vanishes elsewhere, we have

A(x) 9,0,8(x) =— 6{x)

and similarly

29,0(x) 3,A(x) =+ 2 8(x).
Thus

OAr(x) = 6(x) OA(x) + 8(x)

and utilizing the fact that A(x) obeys the homo-
geneous Klein-Gordon equation, we get

(O — m*) Ar(x) = &(x); (94)

that is, the invariant function Ag(x) satisfies the
inhomogeneous Klein-Gordon equation. With
this fact, we may recast our treatment of the
boundary value problem of this section in a
manner different from above and in a way that,
as we shall see, cannot possibly be applied to our
previous A-tunctions.

Let 2 be a finite volume in space-time bounded
by two space-like hypersurfaces S, and S;, where
Sy 1s later than S,. Let x be any point interior to
0, i.e., x € ) but x ¢ $,US:. We shall try to find an
auxiliary function ¢,(x') that satisfies

(O —m?) ¢r(x') = 8(x" — x) (95)

and will solve the boundary value problem stated
above; namely, the value of ¢ at x is determined
solelv by its values of S alcne. We shall use
Green's idenuty in the form of Eq. (29) of Chap-
ter 1:
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Id‘x'[q:(x')(D' — mt)(x')
0

=g (x' ) (O —m*e(x')]

[( )8%(1) a_-,p(_ag_’_,\]-

d’.r(xl) '

5,8,

(96)

Using (95), the fact that S, is by hypothesis to
make no contribution, we get, when x € {2,

o(x) = [do'[p(x) 2D
Ss
- *:(I')M .
on'

To assist us in casting the right side in the

fo

form, assume, for the moment, §; is the hyper-

plane x = constant; then do = dxidx.dx; = &Px =
da’o and
9 __9
an’  axd
Then
d .r(x )
e(x) =— !dtfo[w(x ) "'
a ’
—vetx) 222 ]
, a"’.r(x)
fd(fu[w( ) i oxy,
 9e(x’) ]
— o) 222 | @7)

We have indicated all the steps in detail so that the
signatures of various terms have their origins
clearly delineated. Equation (97) is clearly covan-

ant. When x ¢ ], the left side of (96) vanishes and

0= ]dau[w,( ) 26600 _ prry 2te) |
(98)
Comparing (97) with (34), we get
(') =A(x—x"),xe ). (99)

Since S, is arbitrary for this boundary value prob-
lem, (99) implies

¥:(x') =A(x—x'), all x later than S;. (100)

Equation (98) implies

¥:(x') =0, all x earlier than S; . (10))
Since A(x - x') vanishes outside the light-cone,
(100) and (101) may be combined into

Pr(')=0(x—2x') A(x—x') (102)
so that ¢-(x") is identical with Ag{x — x'). [t
remains to show that ¢, (x’) solves (95):

(0494 — m?) ¥ (x')

= (940, — m?) Ap(x —1')

= [(—=d,) (—9,) — m?] Ar{x — x')

= (O - m?) Ag(x— x’)
=8(x—x')

where the last step follows from (94).

This method differs from the first method in two
ways: first, we required the function ¢:(x') to
solve the inhomogeneous Klein-Gordon Eq. (94)
at the very outset, whereas in the first method,
this was derived; second, the point x was not re-
quired to liec on the upper or lower surface as in
the first method.

We conclude this subsection by noting that we
shall derive integral represenmtations for Ax(x)




NRL REPORT 6028 23

in a later subsection, and by summanzing the
boundary value problem in the formula

dAr(x — x') J { ¢{x), z later than S

0, x earlier than S .

(103)

THE Apvancep A-Function, 44(x)

Let us examine the above boundary value prob-

lem as it appears in a reference frame O which is
the inversion of the reference frame in which the
boundary value problem of the preceding sub-
section was formulated; e, if P is a point of
space-time whose coordinates in the above reter-
ence frame, called O, are xo, x1, x2, x5, then in
O the coordinates are Xo, X1, X2, x3, where x,=
—x,. The surface § goes into S and

f do;, — f da,,.
s s

Transforming (103) we get

fdai‘ [Ak(——i+;",ﬁ"('i')

—a%,
_, 0A =%+ x')
—et == |
"

¢(—=x), x earlier than §
{ 0 , x later than S.

Denoting ¢(—x') by ¢(x'), the last equation reads

J'da;.[ A~z +7) )

I e E’)]
- X -
P a5,

0 xlater than § (104)

a { —¢(x) x earlier than E

The function ¢(x) satistes the Klein-Gerdon
equation

(3.9, — m?) ¢(x) = 0.

Thus (104) represents the solution of a new
boundary value problem in the reference frame
of 0, had we solved the boundary value problem
in the preceding subsection in O’s reference frame
and then wansformed to the reference frame O,
we would have denved (104) within the bars
appearing there. Thus, we define

A4(x) = Ax(—=x) (105)

which solves the boundary value probiem sum-
marized by

[ 4o 1 Cn el o, Adx—x)
!doulA,q(x x') oxs ¢p(x)—ax——-—-;‘

s

0 , x later than S

= { ol & i GG, D

Utilizing (93) and the property that A(x) is an
odd function in x, we have
A (x) =—6(—x) A(x). (107)

Integral representations for A (x) will be
developed in a subsequent subsection.

THE INVARIANT FuncTiON A(x)

Define the function E(x) by

Alx) =1/2[ Ax(x) +A (x) ). (108)
It follows immediately that
A(x) = 1/2 e(x)A(x) (109}
and
S ) 20— ey 2B )
Idn,, [ A(x—x") e e(x’) ox. ]

—¢(x), x carlier than §
= { (110)
+¢(x), x later than S
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and that

(@ - m?) A(x) = 8(x). (1)
A subsequent subsection will give integral repre-
sentations of A(x).

THe FevNman, or CAusAL, PROPAGATOR, Ap(x)

We seek to construct the Green’s function which
will yield from the values of ¢ and d¢(dx,) on
some space-like surface S the positive frequency
part of ¢ at the point x when S precedes x. We
could develop this boundary value problem as we
did before directly from Green's identity, but
this is not necessary, for we have enough devel-
oped with the functions A and A or A to ease
our path. For our purpose, we shal take (35)
as our starting point and observe that the Green'’s
function we want, which we {2bel Ar(x), is given by

A¥)N(x),if x>0

—AN 1), if x0 < 0 iz

ar() = {

where for simplicity, we have taken S to be the
hypersurface xg = 0. Equation (112) may be cast
‘nto a form e plicitly covariant by use of the
6-function and thereby broaden its applicability
to ali space-like hypersurfaces:

Ar(x) = 0(x) A (x) — 6(—x) A (x). (113)

This function was introduced by Feynman in
his theory of quantum electrodynamics and
independently by Stuckeiberg and Rivier. The
latter authors designated the function by Ac(x)
and called it the causal propagator. Utilizing (13)
and (57), we may also exoress As(x) by

Br(x) =B(x) = § A(x) (114)

and from (114), it is clear that

(O — m?) s (x) = 8(x). (115)

We summarize the boundary value problem by the
relation

fdtf'u [ Ap(x — x') i%(-Jf—')- e(x') ?A'dx—,_ﬁ
X, ax,

_ | ¢*(x), x later than S o
- 116}

—¢'"Nx), x earlier than S.

Integral representations of A«(x) are derived
in the next subsection.

INTEGRAL REPRESENTATIONS OF THE
INHOMOGENEOUS INVARIANT A-FUNCTION

Let ﬁ(x) be any one of the four functions

Ar, Ay, K. and Ar. From the work of the preceding
subsections we have seen

(O-mt) & (x) =8(x) . (117)
Because these functions al! satisfy the inhomoge-
neous Klein-Gordon equation (117), we call these
functions, collectively, the inhomogeneous invari-
ant A-functions and the other four functions 4,
AM, A% and A- the homogeneous invariant A-
functions. In contrast to the development of the
integral representations of the latter class of func-
tions from derived representations, we shall de-
velop the contour integral representation of the
function & directly from (117), utilizing to the
maximum our knowledge of the integral repre-
sentations of the homogeneous functions.

Let us Fourier analyze the space part of A(x)
and &(x), putting

A 1
A =
(x) (2m)?

J’d:’kf(k.xo)e"‘".

Then (117) places as a condition on f(k,xe) that
for each k it solves

2
(dixﬁ + w’)f(k,xo) = — 8(xo)

where @? = k? + m?. Equations such as these may
be treated by the method of a contour integral*

*See Eo L Ince, “Ordmary Difterennsl bquanons,” Dover Publica-
nons, 1956, csp. Chapier XV
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whercin the function 7'( x0) =f(k,xo) 1s represented
as an integral of the genera! form

e fdk., K (x0,ko) &(ko)
c

where K(xo,ko) is chosen in a way convenient
for the differential equation for f(xo), and Z(ko)
is determined subsequently by the choice of K
and requiring that the differential equation be
satisfied; C is a contour in the complex k, plane
chosen so that f(ze) not only satisfies the differ-
ential equation but so that the initial condition
on f(xe) also are satished. The function Z(k,)
will have, in general, as many singularities in the
complex plane as the order of the ‘ifferential
equation, and the contour integration must al-
ways be chosen so as to avoid these. One will he
able to choose many distinct contours, but there
will be cnly as many contours C as the order of the
differential equation that yield linearly independ-
ent solutions.
For our problem, we naturally choose

c-iko-ro

K(xkaO) - = 21',

Then
1

ko) = ——

Elko) —-kf, + w?

-1

k? -+ m¥

: A
Rather than determine C so as to meet the bound-
ary conditions on f(xo), we shall go directly to the
boundary conditions on 4; that is, 4 is now given
by

elk-.r

K+ mt

ﬁ(x) =(—21"‘)';jd‘k (118)
(o

where 2 is a contcur in the complex ko-plane to
be chosen so as to yield the conditions placed on
ﬁ\(x). The contours U are independent of x, of
course.

We have seen alrezdy that the homogeneous
invanant functions have integral representations
analogous to (118) and that the contours involved
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there wlways lay in the finite ko-plane, or if there
were not so chosen, were always equivalent to
contours in the finite ko-plane. These contours,
of course, were independent uf x. We shall show
that for the homogenreous invariant 4-function,
in particular, A(x), it is possible to choose an
infinite contour, but that this choice will be de-
pendent on x» The importance of this result will
manifest itself in choosing contours for Az and
A,{.

The contour integral for A(x) is shown in Fig. 5.
It is readily seen that two equivalent contour inte-
grals are those shown in Figs. 10 and 11. In Fig. 10,
it is readily seen that if L is allowed to go to infin-
ity, the contour thus obtained will represent C
only if xo > 0; for then the contribution from the
semicircle vanishes, while for xo < 0 the contribu-
tion of the latter integral tends toward infinity
in magnitude. Thus for x > 0 a valid infinite
representation of the contour C for A(x) is any
line from 4% to —= (note direction} above the
real axis, or any contour equivalent to this, and
clearly, for xo < 0 it is any line from —® to +
parallel to the real axis but a finite distance below
it. Call the first of these contours Cg and the sec-
ond —C,.

Evaluate A (x) for €= Cr. We have just seen if
% > 0, A(x) = Alx); if 20 < 0, then A(x) may be
evaluated by closing the contour above. But there
are no poles of the integrand above Cx; hence
A(x) =0 for 2o < 0. Thus,

1 ‘k eik'x A
(21r)‘fd k- mt r(x) (119)
Cr
Imko
4
ko -PLANE
7l
=
ko'rw R.ko

Figure 10
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Imkyo Imko
‘ |
ko-PLANE
L
2 Y, \ ﬁ%
@ —e— - F g &
. ~ - Reko -w Ca +tw Reko
L ]
Figure 11 Figure 2
. . Imko
where Cp is shown in Fig. 12. The contour for )
Cr is clearly infinite, which we could have known
f Il the fini e opted
before because all the finite contours were opte ko PLANE

by the homogeneous tunctions and their linear
combinations. Without further ado, it is clear that

&

(27)4 k*+ m?
Ca

+w
=S *- —
ik-x
A(x) = ] fd"‘ 5 (120) / Re ko

Ca

i L Figure 13
where C, is shown in Fig. 13.
From the definition (108) of A(x) and the
contour integral representations of Ax(x) and N
As(x) we have I"]l °
_ 1 etk r
L P
() = 2m)s i+ mt (11}
=~
s ~w +w Reko
] etk r (122)
=——=— P | dtf ——
(2m)* f £+ m?
| ¢
where € .s shown in Fig 14, Finally, the Feviman higure 1
contour 1s readily seen 10 be that shown i Fig. 15;
hence
By actually perfernung these contour imtegra-
1 etk - nons, and then utiizing Dnac delta funcnons, we
Ar(x)=_— dk . (123) . . her useful represe is .
(2m)* k2 + m? can get otner usetul representalions., For (.\.unpl(,

Oy we take the funcuon Ax(x):
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-PLANE
+ e
-w +w Reko
Ce
Figure 15
—w—e ~wte
au(e) == | d’k(fdko+ [ ko
+o—¢ wte
ik-x
fdk,, fdko+ fdko £ )
-+ w-€ wt+e
1 i elkr 1
__EVTP‘[(N K+ m (2").fdak

(:j}ko I}iko . e )

where P stands for principal part (which can also
be designated by applying P to the integrand in-
stead of the integral, as Eq. (124) below), and
where the last two integrals are clockwise loop
integrals above the singularities. It is straight-
forward to show

e

1 ek m
T (2m)* j‘f"‘ f"”‘“w—ko" 2m*

eitrimrg o Va ek =8 (ko + w)
. - h——
jdﬂl‘ 2w (2mr)* [d‘ 2w
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and

w+e

1 ek m
oy | L""" ok @m
jd‘kdk"s(ko—w!
2w
or
(211')‘."dJ ] f u_j' l
(ko + @) — (ko — @)
(2#)‘ fd‘ a 2w
- ),fd*ke(k)a(kwmz) s,
Thus
Ar(x) = @n) ). Id‘k kT x

[ P k,—jm—, — mie(k)8(k? + m?) ] (124)

Since A4(x) = Agr(—x), in (124) change x to —x
and then k to —k; it follows immediately that

As(x) = f dk etk *

(2m)*

-1 .
[ Pk’ g + i e(k)S(hk2+ m? ) ] (125)

From the dehnition of K(x). its integral repre-
sentation follows from (124) and (125) directly:

Alx) = (126)

-1
2 )‘]d‘l« e““f’k,+
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while from (114), (126), and (54), we get

-1

As(x) = (2 ). fd‘k eik-r [P T+ m

- m 8(k’+m’)]. (127)

Another form of these integral representa-
tions may be constructed by using the positive
frequency and negative frequency parts of the
Dirac delta function. With

=_l 7 ~tal
§(a) 2"Jdkc
we have

f 1
) (a) ='%'I d\ ¢ ““'—"‘6(0) +2TP"‘;

1 [ 1 1 1
(-) T e— QA == e Vo — —
) (a) 3 fd)«e"‘ 3 S(a) o Pa
0
and
\
Ar(x) =
(2 ), fd‘k e(k) 81*N (k? + m?) e'* ¥
Aalx) =
__i__ { 4k —k) §tet k))(kl+ 2 tk x
(2#)’."1 e B > (128)
K(x) =
—i o 0k +m?)—=8 (k2+m?) |, |
(21r,","d : 2 €
Av(x) =
2 '),J'd‘k 8V (k2 4+ m?) etk Z )

ExpPLICIT REPRESENTATIONS OF
THE INHOMOGENOUS INVARIANT
FuNcTiONS; RELATIONS

It 1s quite evident that there are several lin-
car relations among the various homogeneous
and inhomogeneous functions we have cou-
structed. We list these without derivation, for
they are easy to prove beginning with some that
have already been established or defined:

Ar(x) = 60(x) A(a) (129a)
A (x) =—0(—=x) A(x) (129b)
A(x) =1/2[ Ax(x) + Aalx) ] (129¢)

Ar(x) = 0(x) A*)(x) — 8(—x) A'~(x) (129d)

These lewd to

A ,(x) = Ax(—x) (130a)
A(x) =1/2 e(x) Alx) (130b)
Mr(x) =B(x) 5 A0G) (1300
Ax(x) — A (x) = A{x). (130d)

We have alveady obtained an explicit represen-
tation for A(x), te., Eq. (78); from this and (129a)
and (129b) we get, inside the light-cone,

Sa(x) = <200
m8(—2?) J,(mV —x?) ]
5(x2) — A 131
[ o) - PR AEE gy
Aulx) = ——-—‘(")20;"’)
[6(1’) 20(—12)11("1\’ —x?) (Iﬁ?;
2mV —x’

and Ax = A4 = 0 outside the light-cone.
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Fiom Eq. (130b) and Eq. {78), for xo # 0,

m(—x2) J,imV =2?)

_ -8 <0
Axy={ 4 81 (mV =)
0,2 > 0. (133)

By continuation, we define Z(x) by (133) every-
where, and we find that A(x) thus defined obeys
all the requirements placed on it. Finally Ay
may be represented explicitly by (130c), (133),
and (80). We shall not do so here.

THE INHOMOGENEOUS KLEIN-GORDON
EQUATION; INTEGRAL RELATIONSHIPS
OF THE A-FUNCTIONS

Consider the equation

(O-m?)ex) =p(x). (134)

If p(x) = 0, this equation reduces to (1), the
homogeneous Klein-Gordon equation; if p(x) # 0,
it is called, as we have alreadv noted, the in-
homogeneous Klein-Gordon equation. One must
frequently solve (134) in both classical and quan-
tum-field theory, subject to certain boundary
conditions.

Let Q2 be a space-time region bounded by two
space-like surfaces S, and S;, where §, is later
than S, in such a way that Q is finite in volume
and all pertinent integrals are also fimte. Let
A(x) be any of the inhomogeneous invariant
functions; then applving Green's identity to ¢ ()
and ¢y = R, we get, when x € Q,

A
_ , . 0A(x—x")
elx) = fdo.. [ p(x') o
$i
— A —1) a“;f.: )] +

(continued next column)

dx,

AA(x: — x) ’
[da;. [ e{x’) & —A(x' — x) Qfaix ) ]
+ Jd‘x' A(x"—x) p(x’). {135)

Now we cannat specify ¢(x) and d¢/dx, on two
separate surfaces, for we then impose, in general,
too many restrictions on tne problem. We con-
sider, thus, the boundary value problems asso-
ciaicd with Ag and A, If our values of s, and its
derivatives are specified on some surface prior
to x, then

elx) =— f d'x’ Arlx — ') p(x')

+Jda;[MAn(x—x')
ox,

otx) |

while if the surface is S,, then

_ dle(x =)
ax,,

(136)
i) e f &' A (x ~ x')p(x')
-[da,.’[:—:—A,(x—x')

e(x') ]

If we specialize (134} by taking p =0 and ¢

_gx—7x)

ox.

(137)

to be any of the homogeneous invariant functions,
which we indicate by A, then

Alx) =j do';,[ Anx—x') ig;ﬂ—l
Sa

—A(x") (138)

ox,

- aA,(x—z')]
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3A(x) and
Xy 4

=-—fda [A(x—x)

0, >0

~ A (x— 1) —
—A(x')—'A_',—_] 139) 2 2]
ax, ( A(x) =4“’%£-)' [ 6(x?) — e 0(2—1 ! x (143)

where

A=A AW, A or AM il L2t <0.
L B4, A0 or A L v

SUMMARY OF IMPORTANT FORMULAS
The A’ and A'~’ Functions

In this section, we bring together for easy
reference all the pertinent formulas derived in
the body of the text; we make no explanation of
the symbols, since they should all be evident by

now.

f dor’, [ ANz — x') ﬁ‘ﬂ 1)

s

M]:d:)(x) “44)

ax,
The A-Function
- (Jd—m?) A=(x) =0
= "‘ A —_ ' LI
e(x) lda [ (=) oxy A+ (x)* = A (x) (145)

A=)(x) =0,21>0

_ ,. 0A(x — ')
p(x') o ] (140)
(x - cﬁlv*alop
3 80t =% g [
(O-m?) A(x) =0
= I d*k e** (k) 8(k* + m?)
X (21r)’
A(x)=0,2>0 ? (141)
_ 1 clk-.r
- G| R o
9A(x) c.
3 =—38(r)
20 lremo 7 r _
_€(x) 8(x*) . m? Ki(mVzx?)
T = Ry
_ 1 . Sinwx 2t >0
A(x) = _(2")3I(Fk et ____Qw _
o(y—d €0 8G2)  mt K (mV—x') (147
A (g)=<— et i ———om——m\/__x’ , (147)
~ Ton )3fd‘k e*r e(k)S(k*+m?) (142) 22 <0,x >0
_€x) §(»*) _ m H'"(mV —2*)
- 1 elk-r Py . o ,_?_ .
(27 "k m?
pa

. *<0,x,<0.
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The A"-Functio ' '
v n Au(x) =— e____(x;z(x) l 5(x2)
fdo; [ an(x—x') 22— i)
' : _ m'8(—x*))i(mV —x*)
JAW 2mV —x?
I (1—1)]=_w‘ Hx) (148)
Ill
= 6(x)Alx). (154)
(I — m?) AV (x) =0 (149)
The A.-Function
AM(x) = f P et 7 R ( 3¢ Bu(x — %
(2 ) : _n e 88(x—aT)
w Jdou{A..(x ¥) 32— o) =5 }

h)

= Ia“k&(k’ + m?) elk* (150)

3
(2 ) 0, x later than S
elkx = (155)
2 = j 4% = —p(x), x earlier than S
K PN
(O — m*)Aix) = 8(x)
The A-Function
Ad(x) == 0(—x)A(x) (156)
. _ on9¢ o 0Qr(x —x') = A p(—x).
[dom [ Ar(x - 1) o5, e(x) — m ]
1
A = &k T | P —-—o
{ e(x), x later than § 4 (2 )¢ j ¢ [ k + mt
0, x earlier than S (151)
— i €(k) 5(&* + m?) ]
(00— m?)Ar(x) = 8(x) (152)
= d*k % e(—k) & R (k2 + m?)
3 —= ik-x l (2 )8 J’
Bl)== )‘J’d‘ke [P
. 1 ik-x
+ mwie(k)8(k* + m?) ] = (2m)* J’d‘k k’c+ m? (157)
("
l. +x
—(—in_)ifd‘k e* T e(k)SEN(k + m?) e €(x)8(—x) .
- x 211'
J‘ vk: !
(153) 8(=x)J(mV —x?)
(2174) P = ] (158)
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The A-Function

N XY _ 'a_‘P_ ,aA(I—X')
!da,.[.l(x 1)81; ¢(1)__.__ax; ]

" +¢(a), x later than S
= {159)
—p(x), x earlier than S
(O — m?) A(x) = 8(x) wl
A(x) = e(x)A(x)/2 (160)
=[ Ax(z) + A4 (x) }/2
Alx) = -2 )‘J'd‘k e P s
Skt +mt) =8kt +md)
= — (27“ J' dk 2 ek
_ e ik-xr
(2 )¢ .[d‘ m? (161)
0, x>0
K(x) _ (162)
6(1’) ’0(—12\ D (M\/_‘Iz) =0,
- , x2
4w 87 {mV —x?)

The A:-Function

jdoﬁ. [ Ar(x —x' ):—w—y(x )——-—BA'(I'—I )}
4 Xy axy

{ ¢ '(x), x later than S
¢

“Nx), x carlicr than S (163)
(D—m’)A,-(x) =8(I) W

Ar(x) = 0(x)A(x) — B(—x)A"() f (164)
=A(x) — %A‘”(z) J
. ! ik-x 1

) =_-(—2—;7—); .v[ dibic [ Pk’ + m?
i 8(k2 + m?) ]
B )
eik-: (]65)




Chapter 3
The Wave Equation and the Electromagnetic Field

THE WAVE EQUATION AND
THE INVARIANT D-FUNCTIONS

Bv setung m = 0 in the Klein-Gordon equation
we obtain the wave equation

Ue = 0. (hH

The boundary value problems for (1) do not
differ from those of the Klein-Gordon equation
and will therefore not be discussed here; to each
boundary value preblem one may construct the
appropriate Green's function by taking the ap-
propriate invariant functions of the last chapter
in the limit of vanishing mass. Designating the
resultant function by D instead of A, one readily
derives the following:

€(x)5(x?) 3D
2n ' axo

D(x) =— =—§(r).

re=0

D(x)=— o ),fd"ke“” Sin wx,

= — 5 ik-x
G ),fdk €(ko)B(k?)e
elkr

- 1
= (2n)‘f‘”‘ i

o

=—4% (5(r—10) —8(r+ 1)} (2

Vat+ 12+ 2 and w = Vik|2;

where r =

1
2mex?

D”(I) =

- & ),f.rk e =5 (k)

= (2:'.)3 jdsk eik %w_,u' w=VK

eik-.r

——i#)sfd‘kk—’ (3)

(v

Do =g etosen = 5 |

=5 ),fd% 0(= k) 5(k?) e¥s

ci(i 1051'0‘
@) 5

| i
- o | @
c:
= . _1
D(x) = 5 €(x)D(x)

8(x?)
4

-G ),jd'kewp—

(k)

« X

M PRIGE

(2 )

D S (P i
= Gy f k5 (5)
c

Di(x) = 0(x)D(x)

- 8(r-xq)
= -B(z) (‘;ﬂf"

(27_).1.1% et s {P H+m¢(k)8(k’)]

== )3Iwk et x €(k) BN(k2)

1 etk.r
= ‘(i;r_)‘j d*k o (6)
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-6(—x)D(x)

D,(x)

= Dk(“l)

8(r + Io)

— ‘a(‘xo) &mr

~ On )‘f d*k e T [P o m'e(k)&(k’)]

o ),J' d*k % €(—k)-kN(k?)

- 1 &
- oy T “

Dr(x) =— 22— 1

- D) —g D (x)

(2 )‘fd‘k eikr [Pk +1r16(k')]

eik b 4

1
‘(-2—"—):1(1‘/( e (8)
"

If we compare these expressions with those of
Killen*, we hind that our homogeneous {unctions
are identical with his, but the inhomogeneous
functions differ from his by 2 sign change for
Dy, D4, D and by a factor 2i for D;. Correspond-

ingly, his Dg funcuon, for example, satishes
ODx = — 8(x), while 0D, = 2i8(x), in Kallen's
notation.

APPLICATION TO THE
ELECTROMAGNETIC FIELD

The free electromagnetic ficld s deseribed by
the six quantities €. B which satisty the pariial
differential equations

_‘(-> f.!"t"lt Handbuch der Phvaik,” Vol 'V pare 1 Sprmger Verlag,
Berhn, 1958

N
__9H
WK = at
VH=0
\ (9)
_ 9E
qu—a’
e o

where Heaviside units have been used. It is well
known from the theory of relativity that these
equations may be combined into two equations:

aF‘w+aFyA+aFA“

ox, ox, dx, =0 de)
F =0 (sum over ) (10b)
0x,

where the F,, are the components of an anti-
symmetric tensor under Lorentz transformations
and the F,, are given, in the 1,2,3.4 notation, by

0 HZ -H” _iEJ'
"Hz 0 H, _iE,,
(Fu\) =
Hy _HJ' 0 _iEZ
\iE. iE, iE; 0

Equation (10a) 1s solved identically by putting

0A, %
= —A (1l
Fr ax, éx, )
while Eq. (10b) becomes
2
T og- LM (12)
Ay,dx, ax, dx,

We then say that the 4y are determined up o a
gauge funcnon, and changing from A4, 10 4, =
Ay + ax s dalled a gauge transtormation. We
observe that (12) differs from the wave equation
by the of the term adud,: we shall
chminate this rerm by the choice ot gange. Sup-
pose 3,4, does ner vanish idenneallv: then define
4, such that

pl osence

A, =A, v d.x (13)
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where x 15 to be chosen such that

DX == au/‘u- (14)
Then computing 9, 4,., we see it vamshes. FEqua-
uon (12) becomes

O, — .04, = (A4, — 3ux) — 3004 + 3,0x
=[A4,=0.

Thus, with this choice of gauge, the cquations for
the four-vector {4,} read

0A4,=0,u=10,1,23. (15)

A, 1s sull undetermined up to a x such that
Ox and the A4, must satisfy the Lorentz condition,

A
—_— —
=0

(16)

Equation (16) is a subsidiary condition that
guarantees that the four-vector that solves (15)
is also capable, through (11), of describing the
electromagnetic field. This may be put another
way: from the set of all solutions of the wave
equation, construct the set of all ordered quad-
ruplets of funcuons. From this set, select that
subset of quadruplets of functions that transform,
under Lorer:tz transformations, like four-vectors;
from this subset, construct that subset of four-
vectors which sausfies (10); this subset transforms
into a like subset under Lorentz transformations
because (16) 1s Lorentz invariant. Hence this
selection procedure is covariant. This 'ast sub-
set is the subset of all four-vectors that describe
the clectromagnetic  field through Eq. (11).

We now turn to the boundary value problem
for the electromagnetic held. There would be
no problem in applying the techniques of Chap-
ter 2 and the funcuons D of the first secuon of
this chapter directly to each component A, if
it were tot for the Lorentz condition. The Lorentz
condition unplies that the four-compnents are
coupled. Thus we may expect that 4,(2) must be
expressed not only in terms of 4, and dA, on
some surface 8, but also in terms of the values of
the other three components and their derivatives
on & However, we shali see that they may indeed
be handled as it they were independent of one
anothei. Consider the expression

fda," [ D(x—x') a——"‘(f ) —A.(x')——aD(I————_,x ) }
axy, dx,
5

The funcuon @®,(x) transforms under lorentz
transformations like a four-vector; furthermore,
if x €8, then

Di(x) = Ai(x) (18)
which follows directly from the fact that
DI~ 5. (19)
dXo .

The question now is whether or not ®,(x)
may be regarded as an extension of A\(x) off
the surface. To be so, it must solve the wave
equation and satisfy the Lorentz condition. It
1s clear that ®,(x) solves the wave equation, for
D(x — x') does so. Next we must show that 3,®, (x)
vanishes:

b, ,
a.‘h —[dgu[

aD(x + x') A\ (x')

oxa ox,
2D — 1)
—Ax) ox\0x, ]

=fd"5' [ D(x —x) 2 HAlx])

dx, dx
s

ox, ox,

_ oAy aD(x — x") ]

I ,_3[ A
Jd"“ax; D(x—x') —
S5

— Ay(x") aD(x —x') ]

ox;

The hfirst surface integral vanishes  because
A\ meets the Lorentz condition on S by hypothesis.
The second vamishes also, but the arguments are
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much different. We have seen that Py s idepend-
ent of §; choose S 10 be the plane xo = constam
# x9. Then

_ , 0 94,
P, —j &x 3-—11( [ Dix—x") Fy
_ . oD(x—x')

AA(X) axd ]

3
= ‘ i —_ ! ?i
Z[ L ax, [ Dix =) axo

—A(x") a_D(_I__,__’_‘_)]
310
, 9 _ oy 9o
WJ“FI ﬂro[D(x x') dxo

ey Ra= ]
0

The integrals of the form [ &®x’d[...}/ox" may

be integrated over x§ from x’ = — x 10 x' ;= +=
directly and these vanish by boundary vajues on
D(x — x'). The integrand of the last mtegral re-
duces to

b 9240 #?D(x —x')
D(x—1x'") FT Ao o2

which becomes, in licu of the fact that both A4,
and D solve the wave eqnaton,

D(x—x') 33/ Aa(x") — Ao(x")d/d, D(x — x")
=d [ D(x—x")a" Aux") — Au(x’)d Dix — x') }

and the mtegial of this vanishes by the same
argument as above. Thus ay®alx) = 0.

Thus, i) solves the wave equadion, satishies
the Loreny a(x)
on §; hence, @ 0x) may be reganded as an exten-
sion of 4,(x) off S, so we wiite (17) as

condinon, and reduces 10

a. WD (x — x’
f«hf“ [ D(x—2") J—f - Ax') = l)(_-___' el
ox, ox,
4;\(l) (20)

[tas an casy nmatter 1o show that Aax) as
given by (20) is a nnique extension; to do this, let

HAYES

the values of 4, and A4, on S be given by the
tuncnons Uy, and Fy, respectively; then (20) reads

A{x) =fdo,’. [ Dix=x') Faulx')

= Uu(x) 3\ D(x—x") ]. (21)
Suppose AX(x) were another four-vector that
solved the wave equation, satshed the Lorentz
condiion, and reduced to U, on S while its
derivanves reduced 1o V,, on S. We have seen
that Ay and 45 must then be related by a gauge
transformauon,

M) = An(x) + X (22)
X\
where
Ox(x) = 0. (23)

Since Ax(x) = Ax(x) = Ua(x) when x € S, we have

ax ‘v
m’“‘\ = () {21)
and similarly,
x| _ 95
aX“aIA TeN 0. (ZD)
Also,

From (26), dyx 15 a funciion of space-time whose
values at x mav be expressed interms of s
bonndary values, ze.,

ax(x) = [ da, [ Dix — x") dudx

— hxd,. D= ') | (27)

But mn hght ot (24) and (25) the nghe side of (27)
vanishes, and hence A5 (x) Ax) ton
Fhus, Eq. (20) mav be regarded as the umque

Al x.

solution to the bonndary value problem tor the
clectiomagnetic field.
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Chapter 4
The Dirac Equation

This chapter will be devoted prinapally to 2
study of boundary value problems of the Dirac
equation. We begin by a brief study of notation,
followed by plane wave and general solutions.
We then fermulate a “Green's identity” for the
Dirac equation, followed by a study of the various
Green’s functions.

NOTATION; PLANE WAVES;
GENERAL SOLUTIONS

In our notation, the Dirac equation reads
(Yudu +m) ¥(x) =0 (n
where the summation convention is used; the
quantities y,, 4 = 1,2,3,4, are elements of a
noncommutative algebra characterized by
Yu Ve + Y Yu =28 pv=1234. (2)

We define y, by

Yi =iy 3)

sothat, wenote, y, 8, =y -V + y,0,=y -V + v 9.

We take as a representation of the y's,

.
000 i 000 1
_[ 00 i o0 _[o 0-10
” 0—: 00) 7 lo=i oo
- 00 0 1000
> (4)
0 0+i 0 1000
_[ 00 0-i {0100
" l-i 0oo0c¢)™M 0 0-1 0
0+i 0 0 00 0-1/)
We define ¥(x) by
U(x) = P(x)*y, (5)

where ¢* is the conjugate transpose of ¢; then

from (1), (2), and (5), one can show

by,
ox,

- my(x) = 0. (6)

The functions ¢ that solve (1) are four compo-
nent quantities called spinors which transform
according to a particular representation of the
Lorentz groupt. Although we shall not discuss
the transformation properties, we do rote that
if ¢{(x) solves (6), then

¢ (x) yu ¥(x) ] =0 (7

ey

)
ax,

by virtue of (1) and (6). so that the quantity
@ (x) v, ¢(x) transforms like a four-vector.

If we seek plane wave solutions to (1), te,
solutions of the form

¥(x) = u(k) et (8)

we find that there are four linearly independent
solutions for a given space-part of the momentum
vector k; i.e., for given k, there are four solutions.
Without going into any details (see the Dirac ref-
erence) we g:ve the results; we label the four
solutions by

Y(x) = u" (k) e**

where k = (k,ko) is a function of k and w =
V k? + m? will be defined below:

W (x) = mte 1 el kv ~wrg)
\/ 2w 0
—ky_
mtw
_ ki+iks (9a)
m+tw

= u(l)(k"”)(ﬂi v wrg)

tSee P A M Dirac, "1 he Prinaples of Quantum Mechanws,” 3rd ed ,
Oxford University Press, 1947, p. 257
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= "_r.té 0 k'¢-wrg
¥oix) -\/ 2w | - °
_ kiiks
mtw
ks
mtw
= u‘“(k.w)e“"" wrg) (gb)
mtw / k3 i
3) = bl e ik rearg)
¥¥(x) \/ » |. e o ,
kitiky
mtw
\ 1
0/
= y8 ’(k,w)e““"—“’o’ (9¢)
*(l)(z) = J % !‘_ﬂ! et(k-r«r-.ro)
_ ks
m—w
0
1
— u“’(h.w)e‘“‘"*“O’ (gd)
These functions are normalized so that
u(;)* u‘&) = §ro), (10)

a=]

¥V and ¢* correspond to solutions with positive
energy (positive frequency while ¢ and ¢
correspond to solutions with negative energy,
ko = —w < 0 (negative frequency).

Since ¥V, ¢®, ¢ and Y* each solve the
Dirac equation, any superposition of them wll
also solve the Dirac equation; thus, for a given
momentum vector k, we can write the most
general solution of (1) as

w.(x)zi C} uY) (k,w) ek rwro

.
+ 2 Cju)(k,w) elkrrero),
J>3

(1

From Fourier analysis, any square integrable
function in L; 4 may be written as a superposition

of such funcuons as (11); thus, for the most
general solution we have

U(x) =

1 2
&k Ci(k)uY Hk v+ wrg)
(%)J [;2- ARk w) et

4
+ 2 Ci(k)uV (k,w) e'®r-wro

]. (12)
=3

We shall write this expression in a more compact
form; define

bi(k,w) = d4meC(k)u;(k,w), j=12

bj_2(k,~w) = 4mwC;(k)uj(k,w),j=3,4.

Then after some algebra whici» 1s by now quite
familiar, we get

2
¥(x) = _(_2_:?7,_2. f dk 8(k* + m?) bU'(k)e* = (13)

for a plane wave expansion of the general solution
to the Dirac equation for a free electron.

A GREEN'S IDENTITY FOR THE
HOMOGENEOUS DIRAC EQUATION

{et @i(x), @2(x), @s(x), and ¢4(x) be four
disunct solutions of the Dirac equation, Eq. (1);
each is a four-component column vector; thus,
the tetrad ¢(x) = (¢1.02.¢3¢4) is a four-by-four
matrix and has the property that

(Yu0u + m) o(x) =0
(14)

0uPYu — m‘P(I) =0

The quantity @(x)y¥(x) is a four-component
quantity, a column, each of whose components
transforms under lorentz iransformations like
the uth component of a four-vector.




In Gauss' theorem, we put f, = ¢ y.b, where
¢ 1s described above. Then

- _ |
f d's 5 B (') = f do, §(x')y.b(x')
n Sy

- j do, o (x )y, b(x')

Se

(15)

represents four separate equations which hold
simultaneously. Performing the indicated differen-
tiation in the integrand in the left side, we get a
type of Green’s identity for the Dirac equation:

W(x') ]

ox,

[ e [ 285D 00 + 530
n

== j do, 5(x')yub(x’) + ] Pt i ED) )
S s (16)

Equation (10) will hold whether or not (14) does.
Assuming (14) is valid, the left side of (16) van-
ishes; this may be seen by adding and subtracting
me(x')Y(x’) to the integrand and using (1) and
(14). Then (16) reduces to

f dos B(x')yab(x') = f do p(x ) yb(x’). (17)
5

S

Equation (17) is independent of S, and S; because
of (1) and (14). We shall use (17) to construct an
auxiliary matrix ¢,(x’) in order to formulate an
integral representation of the Dirac equation that
includes the boundary values of §(x).

THE INVARIANT HOMOGENEOUS
S-FUNCTIONS

Since (17) s independent of Sy, select Sy 10 be
the space-ike hyperplane xi = x., and lubel the
auxiliary tunction natrin) @ix’) with x as well:
¢, (x). Then (17) reads, noung do,gyd =
—dawpy and do, = —dx’,

f,p,' au')m(x-)=fdo:,-a(x')-yuwm. (18)
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Choose ¢,{(x’) sucn that

>’ @(x")ydix') = P(x), xg = x4

(19)
te., h
er(x') == yob(r —r)
or
er(x')=—1i8(¢ —r). (20)
Then (18) reads
(1)

v(x) = ] do, Blx' — 1) yublx')

where @,(x’) was rewritten in the form &(z' — 1),
taking advantage of the fact that ¢ must be in-
variant under translations. That ¢(x) may be
represented by (21) has yet to be shown; ie,
we must show that g(x’ — x) exists. That it does
is suggested by the fact that the Dirac equation is
equivalent to eight coupled real first-order
equations to which the Cauchy-Kowalewski
theorem nay be applied. Since the latter theorem
exhibits solutions only locally, a global representa-
tion such as (21) is not yet guaranteed. We shall
prove the cxiste..ce of @ by construction. We
could do this, as we constructed A (x), by using
the Fourier expansion of @ as in Eq. (13). Instead
we shall proceed inore directly.
We seek a solution ¢(x' — x) in the form

d
¢(1)=(7um -M)Y.x(x)- (23)
Since ¢(x) solves (1), x(x) must satisfy
(O —m?) x(x) =0. {24)

The boundary condition on ¢ becomes a con-
dition en x; putting x=0and x’ = x, (20) becoms

el(x) =— i5(r)

Ie=0
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or

(y.. 52: = m)y;x r.=0= - i6(r). (25)
Equation (25) will be met if
x(x) =0, 22 >0 (26)
and
X T @)

because if (26) holds, dx/dxi=0 on x,=0 and
(25) reduces to (27). Thus,

x(x) =—A(x) (28)
and
el(x) = —(7,- f“' - rn)yd-\(x)
or
.“()—_+(+a_)A(1)
‘p X)) = ‘Y4 yu ax: m YI
/ 0
= (y“&:'fm) A(I)
or

elx' —x) =(y“ 5;12+ m) A(x' — x)

d \ ,
=(7,.~a?;—m)A(1—x ).

The function @(x' — x) is generally written
S(x — x'); thus, (21) becomes

Y(x) =j do, S(x—x") ya ¥(x') (29)
S
S(x—x')=(y,.5i-’-—m) A(x —x) (30)

From (29) and (30), follows immediately that

¥ix) = [ o Dix vy, S = %), (31)

By utliang Schwinger's procedure to obtain
the positive and negative frequency parts of ¥ (x),
together with (29) and (30), we can readily obtain
the propagators that give ¢ (x), ¢ ', ¢''(x).
and ¥' (x) from the values of ¥ on the surface S;
these 1elations are easily shown to be

#00) = [ doy 375 = x')yab()
S*Nx) = (yud, — m)A*)(x)

Yi(x) = f do, SN x — x')yup(x') ]
S

f (33)

S Nx) = (8, — m)A ) (x)

Y x) = [ doy, U(x')y.S (' — x) (34)
Y
W' H(x) =jdo". U(x' )y, S (x' — x). (35)
Next, define
SNx) = (y,0, — m)A"(x). (36)

To seck the boundary value problem that $%(x)
solves, instead of resorting to Green's theorem,
we simply put

f do, SV(x — x')y(x') = o(x)  (37)

and noting that

_61}

;:(“ - ‘ — ———
SV (x) = (y,0, — m) \/mA(x)
=————f"'—5(1) (38)
V —d? + m?
we get
do

elx) =— —jmﬁg U(x).

Thus, it y(x) has oniy posiuve trequency parts
on S, then ¢(x) has only positive frequency paits
for amv point x not on S, because all Fourier
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components of P(x) propagate independent'y
for the solutions to the Dirac equation. Therefore

) = f o, SV~ 1)y g (x')  (39)

— i x) = fdor,’. Sx =)y M) (40)

From (39) and (40) cne can demonstrate, afier
some calculation, that $ solves the boundaiy

value problem for ¢ summarized in the equation
below:

— W (x) =fdo,1 U(x )y ST — x) (41)
5

+ §Nx) = f doy B (x ) pSUx —x)  (4)
S

Equations (36) through (42) show that §"
15 the Green's function that enables one to con-
struct the positive and negative frequency parts
of a function in terms of its positive and negative
frequency parts on the space-lke surface S. The
point x at which this is done may precede or be
later then §, and indeed, in view of (27) and the
denivation of S(x), x may lie on S.

The results of this section show that the matrix
functions S(x), S*'(x), $(x), and SV (x) play
roles auite analogous 1o then corresponding
A-functions, even though the equations they
solve are quite different. Further, the invariance
of these functions under 1Lorents transformations
is a consequence of the invariance of the A-
tunctions and of the Dirac equation, but we have
not demonstrated this result. It is quite easy to do
and is left to the reader.

The integral representation in terms of a
Fourier analysis of the invariant S-functions is
quite easy to come by. Let §(x) represent any one

of the four invariant S-funcuons above and A be
the corresponding A-function; write

I

alx) = (2m)*

fwk Afk)etr. (43}

Then 1t tcllows that

S(x) = -—)

(2ﬂ).fd‘k (ik-y — m) A(k)ett =, (44)

in general, if £(k) be the four-dimensional
Fourier transform of S{x), then

S (k) = (iky —m) A(k). (45)

THE INVARIANT
INHOMOGENEOUS S-FUNCTIONS

Following the example of our study of the
Klein-Gerdon equation, it is quite natural to try
1o construct propagators which propagate asvin-
metrically about the space-like sinface S. As a
hrst case, let us construct a tunction Sx which
expresses the value of ¢ at x in terms of its values
on § when S is prior to x, but gives zero otherwise.
Such a tuncuon will be called the retarded S-
“uncuon and its effect 1s summanized by

f do, Sa(x — 2 )yublx')

¥(x), x later than S
|

0, x earlier than S.

Because the function S(x) vanishes outside the
light-cone, it is clear that
Sk(x) =6(x)S(x). (47)

A further property of Sg(x) is readily proved,
namely,

(Yu0u + m) S*(x) = 8(x) (48)
where, again, 8(x) 1s the four-dimensional delta
function 8(x0)6(r). Because S (x) saushes an
inhomogeneous Dirac equation, it will be termed
an mhomogencous S-function: turther, because
both S{xj and 8(x) are Lorentz invariant func-
nons, $(x) is Lorentz invariant. Rewriting (47) as

1+ .
Swin) =58 ) (49)
it is then easy to show that
Sulx) = (yudu — m) Aglx). (50)

In a similar fashion to that for defining the
advanced A-function A.(x), we introduce the




12

[
advanced  S-funcuon  S,(x)  whose  detining
properties are
f do, S(x—x") yb(x’)
&
0, x later than §'
= 51
— (x), x earher than §'.
Then
S (x) =—08(—x)S(x)
-1+
2
(yudu + m)Si(x) = 8(x) (53)
and 1t can easily be shown that
Sl(x) = (y,.&,.—m)AJx) (54)

For the Dirac equation, we may introduce a
function §(x) that plays a role andalogous o
that of K(I) for the Klem-Gordon equanon;
define §(x) such that

f do, S(x—1x") Yul(x')

x later than §'

l 1/2¢(x),
(55)

— /2y (x), x earlier than §'.
We sce irimediately that S(x) must be given by

S(x)=1/2 e(x) S(x) (56)
and that

(Yud + m) S(2) =5/x) (57)

while trom (56) one can show that another ex-
pression for S (x) 18
SO = (yuda—m)A(x). (58)

The steps imvolved in the proot of (58) are several
15 number and it is not obvious that (58) is the
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same as (56), but since it 1s not diflicult to show this,
we leave 1t to the reader.

Fmally, we intoduce the Fevnman or causal
propagator S;(x) by defining it as

Sf(1)=§(x)—é 5 (x). (59

It 15 a straightforward demonstraton w show

j do S (x = 1) y,b(x')

¢ilx), x later than §'
_ (60)
~ Y '{x), x earher than §’
and it is obvious that
(v, + m) Sel(x) = d(x). (61)

From (58), (39), and (36) it follows immediatelv
that

Sklx) = (y,0, — m)Ar(x) (62)

If S(x) represents anyone of the four in-
homogenceous invariant S-functions of this section
and z(x) its analogue for the Klein-Gn;dnn
equation, and if the Fourter nanstorm of A(x)
is denoted simply by A(k), then the integral

representation of S(x) (that is, its Fourier trans-
form) s clearly given by

1
(2m)*

§(1) = ]d‘k (iy-k—m) i(k)e"”. (63)

Finally, because all the varant S-functons,
hcemogeneous and inhomogencous, are related
to their analogues for the Klein-Gordon equation
in the same wayv, e,

Si(x) = (yd - mid(x) {64)
relatons between the A-tunctions also
tor the S-tunctons and will theretore
not be repeated here.

all the
obtain
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APPENDIX
Alternative Derivation of the S-Function

In this appendix, we give an alternative deriva-
tion of the function S(x — x") of Chapter 4, Equa-
tion (30) along with an alternative aerivation of
Equation (29) of the same chapter.

Since each component of a Dirac spinor sol s
the Klein-Gordon equation, we may use Equation
(25) to express Yo(x), a typical component, in
terms of Yo(x') and 9¥a(x')/dxe On a given
surface. Of course, for the Dirac equation d¢a(1")/
dxo cannot be specified independently of ¥a(x')
(a=1, 2, 3, 4) on the surface, and that will prove
the key 10 this development of equation (29).
We have

wa(1)=fdo-“"{A(1_x') 3‘1'('1')
s ax,
_%(;_1—'1_') wa(l')}(0=l'2‘ 3‘ 4)' (Al)

The four equations represented by (Al) may be
combined together in a matrix equation for the
column vector @{x):

¢ (x) =fda,; [ A(x—x') E
N’

_A—x) .
A ¥(x )]- (A2)
Choose S’ to be the surface {x'|xo = const.},
then (A2) becomes
. : _n Y
Pix) = fd"x [A(x x') P
_aAG=x) ),
el 0] ST

The quantity 2¢/dx, may be expressec in terms
of ¢ or § and the spaual derivauve of ¢ (e,
the denivauves of ¢ parallel 1o the surface §',
ali of which are known when ¢ i1s known on §')
bv Dirac equation:

aP(x')

ax;

ap(x')
Ixo

Qa; (A4)

—imBy(x').

Inserting (A4) into (A3) and integrating by parts,
we obtain

: , ] ] )
P(2) =—|dx [0;7 = o im)A(x —1')]:1:(1')

+fa’"1'a,% [A(x — ') ¥ (2')]. (A5)

The lasi term of (A5) vanishes because of the
boundary ¢onditions on A(x — x'); using this fact
and the relacions

(A4) then becomes

~ ] :
¥(x) =fd“x'i 'l( = Yu .,—d,'—m)A(l-x')J x

oxy

ye W (x')

=fd0’2 [( + Yu Eg-—m)A(x—x')]x(Aﬁ)

Y4 *(1')

since id*x = do4 and 4/dx, A(x — x') = —d/dx,
A(x — x'); finally a Lorentz transformation that
alters $’' 1o a more general surface yields a relation
of the form

¥ (x) =fd«r;S<x—x') Yo ¥ (x')

Sx—x') = (yudy —m) S(x-x"). (A7)

The nicest part of the derivation of (A7) is
that the method mav be apphied directly to any
relativistic  wave equation for free parucles;
the same technique may be used to develop a
propagator $*) and §' ! as well, and only minor
modifications are necessary to develop in this
manner the other propagators.




Chapter 5
THE ROLE OF THE PROPAGATORS
IN QUANTUM FIELD THEORIES

The invanant functions derived in the previous
three chapters arc of particular significance in the
quantum field theories of the pi mesons, photons,
electrons, and nucleons. In particalar, these
functions arise in the commutators and anti-
commutators of field operators for bosons and fer-
mions respectively, and in the perturbation de-
velopment of the S-matrix. While it is not our
intention here to develop quaritum field theories
in full, or even the field theory of any one such
field, we should iike to do a few simple illustrative
calculations te demonstrate how these functions
enter the theory. For this purpose, we shall
study, in part, a scalar meson field, which is about
the simplest of the theories and yet is quite
analogous in its development to all other fields.
In its simphaity it avoids such complications as the
need for the introduction of an indefinite metric;
hence some modifications have to be made when
extending the results to the clectromagnetic
field, but little or no changes in the general
approach.

Our approach to the subject will be along fairly
“classical” lines. We note first that the field equa-
ton for an unquantized scalar meson field is the
Klein-Gordon equation:

(O-m*)p(x) =0 (1)

We should like to construct a Lagrangian, L,
whose corresponding Euler-Lagrange equation
is (1). This procedure is well treated in many
books*, where one finds for a suitable Lagrangian

4 do \
L=—% 2(—“’) + mip? (2)

2| & \oxu

as one may rcadily venfy by calculating the
Euler-Lagrange equation with (2). The momen-
tum canonically conjugate to ¢ is

*See G Wentzel, “Quantum Theory ot Fields,” Intersaience, 1949

(v 0L _ dp(rt)
) d¢ at 3

Now in the first step of quantizing a field. we re-
gard the field components and the canonically
conjugate momenta no longer simply as functions,
but also as elements, indeed, generators, of a
noncommutative algebra wherein the fundamental
relationship, for our case, is given by

[w(et), ¥(e',t)] = mwlet)ole' ,t) — o(e' 1) m(r,t)

— %5(r—r.). )

We shall again take fi = 1; then with (3), (4) reads

[ i%), e(e,t) ] =id(r—¢') (5)

Lquation (4) or Eq. (5) provides the fundamental
statement about the noncommutativity of the
elements of algebra and has been used in this
form in many treatments.* It suffers from a defect
however in that the time coordinate is singled
out in a manner different from the space co-
ordinate. What we shall show is that this defect
is simple to remove and that we can develop an
expression for the commutator of ¢ at the space-
time point x and for ¢ at x" in a Lorentz invariari
manner.

Let §”' be a space-iike hypersurface on which
the dassical function ¢(x) and its derivatives are
defined. We have seen that from these data we
may obtain ¢ at x' by Eq. (25) of Chapter 2, that
is, by

() =fd0'z [ Ax' —x') X
dxy

Al —x”’
oty SR ]

ax,;/

*Id
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Now even though the ¢'s have been now con-
sidered as clements of a noncommutative algebra,
thes sull sausiy (1), and heice (6) will remain
valid. Thus,

[ otx). o(x') ] =]da;A(x'-x~>

Ow(x")]

axy

[v?(x).

_IMZM [ex), 0(x) ). (7)

Xy
gv

We recognize that §"' is quite arbitrary except
insofar as it is space-like and theretore utilize
this freedom by choosing it so that it is the hyper-
plane 3" = { x'’| ¢" = ¢ } going through the
point t'' = t. Then (7) becomes, according to
Eq. (32) of Chapter I,

[ o(x), 0(x") ] =— f B Ae' — 0", t' — 1)

dp(e''t)
[oten, 22570

+fdax,,6A(r -t —t)
at

[e(e,), o(e ). (8)

Putting (5) into (8), we get an integral equation
for the commutator:

[ o(x), p(x') ] =—iA(x—x')

" f daxu aA(l‘I —_ l'”, l' — l”)

'’ [*P("J)s ¢(l'“.,t”)]-

1=t

9)

Unlizing the method of iteration and the fact
that A(x — x") vamishes for space-like intervals
x — ', 1t is simple to see that the solution to (9)
is simply

[ ¢(x), ¢x’) ] =—1A(x — 1) (1)
which is what we were seeking.
From (10) it follows by simple substitution that

[¢(x—1n), o(x') ] =—iA(x —x" — 7n)
which leads 1o
[¢“*'(x), ¢(x')] = —id(x —x')

and also that
[¢(x), o(x' +7n') ] —id* (x —x' —1n')
which leads finally to

[ ¢*(x), ¢ '(x') ] =— i {x~x') (D

[ ¢(x), ¢*Ux") ] =— i Nx—x"). (12)

Before continuing with this development, it
is interesting to examine some of the assumptions
that have been tacitly made above with respect to
the mathematical formalism that is used. It is
not our purpose to go into a discussion of the
mathematics on a rigorous basis; such a project
would be, without doubt, of great value in under-
standing what we shall be doing and what we can
do but would be too vast a subject to cover ad-
equately here. We choose only to point out two or
three of the major points in field theory that
require some detailed mathematical study and to
give an idea where one may find helpful infor-
mation.

The first point comes up immediately upon
applying the technique of second quantization.
We have asserted that the classical field functions
must no longer be regarded as ordinary functions
but as elements of a noncommutative algebra.
To understand the meaning of this, let us return
to the definition of a function as we ordinarily
encounter. If D = { x|la < x < b }, that is, if D
be the set of all real members on the closed in-
terval between aand b, and if R={ylcs y<d },
and f there is a correspondence between D
and R, that 1s, if to every element in D we asso-
ciate one element of R, then we say that there
is a mapping of D into R; D is called the domain
and R the range of the map. The collection
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of all ordered pairs (x,y) where v is the image of
x under the given map is called the graph ot the
map. The map s also called a funciion. The
usual prescription for specfving the fuactien s
to give a formula for computation oi one or more
of the oidered pairs (x,y): the formula is rep-
resented in general by the equation y = f(x).
Suppressing the independent variable x in the
set of all the ordered pairs (x,y), we see then that
the function is specificed by the totality of s
vzlues in the range R, and an essenual feature of
the function is the clear representation of what its
domain 15 and what its range is. In our simple
example, the domain and range veere hoth sub-
sets of the real line. In the theory of fizactions i
n real varrables, the domain wiil be @ svbset of
E*, the n-dimensional Eucledian space and the
range the real line, or the domain might be an
n-dimensional hypcrsurface inan a+1 dimensional
space with the real fine as the range.

But the range need not be restricted 1o the real
line. If, for example the range of the funcuon
were E™, while D were the veal line, the function

would be described as an n-dimensional vector

ranction on the real line. In the case of our held
theory, the domain of our funcuons is the space-
time continuum, whric the range is soipe subset
of some noncommutative algebra, which has
vet to be specified in greater detail. 1 ¢ symbolizes
one particular such function, I — R and x € D,
then the image element of x under ¢ will be
aenoted simply by ¢(vj, where x = (r,2). It Y15 a
second map ot D into R, D — R, then the image
of x will be denowed by ¢(x), and of course
Y(x) € R.

It becomes necessary to define equality of two
functions. Many definitions are readily available,
hut the two most useful are: (a) ¢ = P if o(x) =
Yix), all x e 2 and (b) ¢ = if ¢(x) = ¢(x), almost
all x € D, where “almost all” ineans ¢(x) = (x)
evervwhere in D except on a set of measure zero.
In the latter case, it is convenient to introduce the

notion of equivalent classes as in the theory of

measurable funcuons, but we shall not go into
this in any more detal. We shall assume hence-
forth that some acceptable definition ot equality
of two maps o1 tuncuons is given.

If ¢ and ¢ are any two maps of D = R, we may
then define a thud map 7 of D —= R, because of
the fact that R is an algebra, by

m(x) =¢(x) + Y(x)

HAYES

and 7 will be symbolically denoted by ¢ + 4.

let A = { Ap,... } be the held over which the
algebra R s defined: because R is an algebra, then
such quantities as Ae(x) + pd(x’) are dehined
and belong to R. Such quantities niust be regarded
as distinct from the suin of twe functions, being
merely the sum of two eiements in the algebr .,

Now an algebra R, though it may contain an
whinite number of elements, when treated within
the framework ot algebia, s studicd only by finite
means; by this we mean only finite sums, dif-
terences, and products are considered. But we
asserted that among the functions ¢ and ¢, etc.,
are those which satisty the Klein-Gordon equation,
or its equivalent integral equation with the desired
boundary conditions. But it is clear that 1o give
meaning to these latter concepts it is necessary to
introduce  concepts  of analvsis such as himnt
points and infnite sums. That such a procedure
will work for our algebra R is intuitively clear,
since 1t can readily be done i the space of all
functions on D onto the real line and since these
notions do not require anv alteration on account
of the noncommutativitn of the algebra. Once
having found a successtul tormu’ation of these
analvtical concepts tor our algebra, ove car then
go on to introduce the analogues of deri-auve,
Riemann integrals, and Lebesgue mtegrals, each
case being a map of sore subset of Rinto R

One would then imagi e that the next step ina
mathematcally nigorous discussion of our field
thecors would be 10 estabhsh the existence of
solutions to the field equations (1) or (6) consistent
with the commutation rules. Indeed, if our algebra
R were specitied in detail beforehand, this would
be the next step. On the other hand, as we have
seen, R s not so specified; indeed, what we must
do is to assert the existence of such solitions and
use these as a basis for constructing. by the
operations allowed in our algebra, the rest of the
algebra.

Once having obtained the structure of our
algebra, we may introduce mappings of the set of
all mappings of D into R into useif. It ¢ and a
be two maps of ) into R such that ¢ is the image
of a under the map F, sav, we shall denote it by
¢ = F(a) svmbohcaliv, which expresses a relation-
ship between all the values ¢(x) and those of
a(y). One used often in field theory s

elx) = f a(k)e'* Tdk

(2m)*



where we now assume that meaning has been given
10 the integral sign. For functons in L,(—x, +x)
the Fourier integral transform is given by just
such a formula and its inversion is well under-
stood. However, the inversion of such a trans-
formation when ¢{(x) and a(4) for each x and &
respectively are elements of our algebra must be
established anew.

The mathematical points touched upon in the
discussion of the above few paragraphs are usuaily
glossed over in most field theory studies, as we
have done in our development. The development
proceeds along the lines dictated by formalism
and intuition. 1t is in this spirit that we proceed
to derive one more result in field theory; namely,
we assume the correctness of a theory of Fourier
transforms for our field quantties which is
formally identical to the theory of the Fourier
transform for generalized functions. Thus we
assume the existence of elements a(k) such that

I = i,
o(x) = (2—”)‘]& alk)es
(13)

a(k) =fd‘x ¢(x)e &=
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Assuming that ¢(x) obeys the Klein-Gordon
equation, these reduce to the form

1 1
el(x) = (2m) f d‘kﬂ [a(ll)f“'""'"

+ c“‘(lx)e"" r—od) ] (14)

where here a*(kj does not mean anything other
than a*(k) is different from a(k). Equations (14)
and (11) together vield a commutation result for
the a's:

| a(k), a*(k) ] =8(k — k’). {(15)

The physical interpretation of (14), (15), and
a(k) and a(k) are too familiar to go into here.
We could go on to show how the T and P products
come about in the theory and are expressible in
terms of the propagators derived in the previous
chapters. This we leave to the interested reader.



