
£^J 
NHL 6028 

The Propagators of Quantum Fieid Theories as 
Green's Functions for Boundary Value 

Problems in Partial Differential Equations 

i   V HAVTS 

and Thmy Branch 
ffaamtim .OIUSMM 

'/,i^& 

May 15. 19&4 

D DC 

JL! 964   f! 

DDCliM   A 

Ü.S. NAVAL RESEARCH LABORATORY 
WfttikaftMi, DC 



.. 

,,, 

THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLYo 



CONTENTS 

Foreword     lii 
Problem Status      1 
Authorization   ...       1 

CHAPTER 1 
RELATIVISTIC CONCEPTS; NOTATIONS 

NOTATION       I 

LORENTZ TRANSFORMATIONS      2 

REPRESENTATIONS OF THE LORENTZ GROUP; 
PARTIAL DIFFERENTIAL EQUATIONS      S 

GAUSS' THEOREM; GREEN'S THEOREM      5 

CHAPTER 2 
THE KLEIN-GORDON EQUATION 

THE HOMOGENEOUS KLEIN-GORDON EQUATION  7 

General Solutions; Positive and Negative Frequency Parts   7 
The Boundary Value Problems and rhe Invariant A-Functions  8 

AU); Integral Representations  8 
A<+)U) and A^Kx); Integral Representations  11 
A(1)(*). Integral Representations  IS 
Relations Among the invariant A-Functions  15 
Explicit Representations of the Invariant A-Functions  15 

The Boundary Value Problems and the Invariant A-Functions (Continued)   19 

The Retarded Function, A*  20 
The Advanced Function, A4  23 
The Invariant Function A(jr)   2S 
The Feynman Propagator, Af(x)  24 
Integral Representations   24 
Explicit Representations of the In homogeneous Invariant Functions  28 

THE INHOMOGENEOUS KLEIN-GORDON EQUATION; 
INTEGRAL RELATIONSHIPS OF THE A-FUNCTIONS  29 

SUMMARY OF IMPORTANT FORMULAS  50 



CHAPTER 3 
THE WAVE EQUATION AND THE ELECTROMAGNETIC FIELD 

THE WAVE EQUATION AND THE INVARIANT O-FUNCTIONS    33 

APPLICATION TO THE ELECTROMAGNETIC FIELD     34 

CHAPTER 4 
THE DIRAC EQUATION 

NOTATION; PLANE WAVES; GENERAL SOLUTION     37 

A GREEN'S IDENTITY FOR THE HOMOGENEOUS DIRAC EQUATION    38 

THE INVARIANT HOMOGENEOUS S-FUNCTIONS    39 

THE INVARIANT INHOMOGENEOUS S-FUNCTIONS AND 
THEIR BOUNDARY VALUE PROBLEMS      41 

APPENDIX - Alternative Derivation of the S-Function    43 

CHAPTER 5 

THE ROLE OF THE PROPAGATORS IN QUANTUM FIELD THEORIES 

n 



FOREWORD 

The mateiiai presented here is taken from lectures ^iven bv the author in an infoimaS semi- 
nar on ({itaimim held theories, held in the Radiation Division of the VJH. Naval Research 
l^aboratorv. The purjjose ^l these lectures was to present a tak ulation ot the propagators, or 
(ireen'j functions, of the different types that appear in quantum field theories within the 
framework of the theory of boundary value problems for linear partial differential equations, 
thereby rendering the Green's functions more amenable to phvsical interpretation. Fun her, 
a t lassical setting of the propagators separates neatly those properties of the propagators which 
may be discussed without recourse to the piocedures of second quantization from those proper- 
ties which do require the latter methods. 

A perusal of the table of contents will give the reader an idea of the nope of the subject 
matter and the direction that is followed. Chapter 1 is devoted primarily to the basic ideas that 
will be needed from the special theory of relativity and geometry, together with a presentation 
of our notation. Chapter 2 introduces the various boundary value problems that may be posed 
in conjunction with the Klein-Gordon equation and the auxiliary functions associated with these 
problems. It will become clear in the course of the development of these auxiliary functions, 
variously called propagators and Green's functions, that their physical interpretations reside 
in the formulation of the specific boundary value problems thev enable us to solve. The propa- 
gators are determined explicitlv, in this chapter, in terms of known higher transcendental 
functions, and are also presented in several integral representations that are useful in quantum 
held theories, or appear often in such theories. Chapter 2 is basic to the rest of the material of 
these lectures in that the formulation of the boundary value problem for the Klein-Gordon 
equation carries over to the wave equation for both scalar and vector fields virtually unchanged, 
and cairies over, in substance, to the Dirac equation. In addition, the detailed results of this 
chapter are used in the calculations of the subsequent chapters. The reader for whom Chapter 2 
has become a part of his own experience will find the subsequent chapters relatively simple 
fare. A summarv of the results of Chapter 2 is presented for easy reference. 

Chapter 3 contains a discussion of the boundary value problems of Chapter 2 but with respect 
to the wave equation. In applying the Green's functions of the wave equation to an integral 
formulation of the field equations of the font-potential for the electromagnetic field, we take 
proper account of the fact that the four-potential must satisfy the Ijorentz condition. The 
boundary value problems of Chapter 2 vis-avis the Dirac equation are discussed in Chapter 4. 

Chapter 5 is a simple introduction to scalar meson field theon with second quantization in 
order to show how a calculation of the propagators is rendered quite simple by the results of 
Chapter 2. Although analogous developments for the electromagnetic and electron fields are 
easv to carry through, they are not done here. Finally, a brief discussion is given, in this chapter, 
of a few o' ie mathematical problems that arise in quantum field theories. The discussion of 
mathematical rigor here is kept brief, for such a discussion in depth would carry us too far 
afield of our original purpose and requires volumes in itself. Finally, mathematical rigor in 
quantum held theory is !>till only little understood. The interested reader will find pertinent 
mathematual detail and development in, for example, Hille and Phillips, "Functional Analysis 
and Semi-groups,   fsp. Chapters l-V 

Finally, we must mention the subject of references. The reader will find an occasional ref- 
erence in footnotes scattered spanely through nit the text. The author made no effort to system- 
atically search the literature to be* complete or to find original source material. The subject 
matter has become generally too well known for this to be necessary in a set of lectures; many 
textbooks will supply such a list of reference material. However the author wants to state his 
indebtedness in particular to the book "Field Theory," Vol. I. by Jan Riewuski (Polish Academv 
of Science, Phvsical Monographs; Hofner Publishing Company, New York) and recommends 
it highly to the reader. 

nt 



The Propagators of Quantum Field Theories as Green's Functions 
for Boundary Value Problems in Partial Differential Equations 

JOHN N. HAYES 

Analysts and Theory Branch 
Radiation Division 

CHAFFER 1 
RELATIVISTIC CONCEPTS; NOTATIONS 

It is not our purpose to develop the sptcial 
theory of relativity, but to present th »se ideas 
from that discipline that are pertinent to the subse- 
quent work of this discussion. This short discus- 
sion also provides the opportunity of presenting 
the notation that will be used. On this latter point, 
the reader will no doubt be aware of the plethora 
of notations that are widely used; the choice that 
one m^^s, of course, is immateriai insofar as 
the piiysics is concerned, so that the selection that 
is iiade is based on personal tastes or is simply 
arbitrary. However, once having made a selec- 
tion, we shall Hnd little difficulty in comparing the 
final results with the conclusion of others using 
different conventions. 

NOTATION 

A point in space-time will be denoted by various 
symbols: jr, (x©, *i, xu *iK (*>, *iK (*>» r), UM); 
a :, time point will also, at times, be referred to 
as an event. The coordinates of a point in space- 
time, xM, will always be given in terms of the covari- 
ant components; on no occasion shall the contra- 
variant components be used. If a = (aM) and 
h — (6M) are two four-vectors, their scalar or inner 
product will be denoted by a • 6 or aM6M which will 
be a symbolic representation of the number 
—OC6O + a\b\ + Qib-t + 0363 — —0060 -f m • k. The 

length of any four-vector a is Va • a; since the 
inner product is clearly indefinite, the number 
a* = a • a may be positive, zero, or negative. If 
a1 < 0, the vector is said to be a time-like vector; 
if a1 > 0, the vector is said to be a space-like vector. 

A set of four-points, S = {JT, y, z, ...} is said to 
be a space-like set if {x — y)2 > 0 for every pair 
(jrf y) of elements, each in S. In particular, if S 

NRl pT.4»lrm H02 22, Projr»! RR-002-OI 41 4908 Th» is a final rrpwl 
on one aspeM <>( ., Mtnimmng pnthlrm   Mtinuviipl submMlrd (ktitbri 
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constitutes a space-like three-dimensional "con- 
tinuum" in four-space, S will be called a space- 
like hypersurface. (For example the set of all 
space-time points for which x* is the same is the 
entire three-dimensional space we ordinarily 
perceive, and this constitutes a space-like hyper- 
surface in i^e space-time continuum.) With the 
exception of the preceding parenthetic remark, 
meaningful definitions arise from this paragraph 
if the term "space-iike" is replaced by "time- 
like" and {x — y)1 > 0 is replaced by (x — y)* < 0. 

The set of four-points Cx = {i*, v, w, ...} such 
that (u — *)* = 0 for all u belonging to Cx is said 
to be the light-cone associated with the point x; 
here, x may be am point of the space-time con- 

tinuum. If each point of Cx is interpreted as a 
physical event, then Cx is that subset of all physical 
events whose occurrence coincides with the arrival 
of a light-signal from the event x or whose sig- 
nals arrive at the event x. 

The set of all time-like points Li— {a, VyW, ...} 
such that K« — *« > 0 lie within the forward light- 
cone associated with poirf x, where again x is any 
point of the space-time continuum; similarly, the 
set Lx = {«,»,»,...} of time-like points such that 
II« - *o < 0 are said to lie within the backward light- 
cone of the event x. 

A geometric representation of the above sets is 
obtained in the usual wav we suppress two of the 
space components of a four-point x in order that 
a point in the space-time continuum may be repre- 
sented by a point in a plane; then a Cartesian 
representation of the remaining pair is used, 
with the remaining space component, say x,, as the 
abscissa and Xo as the ordinate. The union of the 
sets Cj and Co is the light-cone C© associated with 
the point x — 0; the shaded region marked by Li 
is within the forward Sight-cone associated with the 
origin, while the crossbatched area marked by 

I 
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Figure 1 

£• is within the backward light-cone of the origin.* 
The axis x« = 0 is a special and important case of a 
space-like hypersurface S*1*, while SP* is a more 
general space-like hypersurface. always possessing 
the property that its slope nowhere acquires the 
value -hi or —1 and is always between these two 
members. 

Let x be a point in the space-time continuum 
not on, say, the space-like hypersurface S(,), 
but otherwise arbitrary; with x, we associated a 
time-like hypersurface T— (H, V, IV, ...) such that 
Ui Ä Xi, all it in 7. In our geometric represenution 
T is a straight line through x parallel to the xe axis. 
T must intersect S<,> at some point z whose coor- 
dinates are finite. If z« > x«, we shall say that x% 

precedes S<,>, or is prior to S(t), or earlier than S<,); 
if *• < x«, we shall say that xo is later :han S(,). 
Note that x% being earlier than S0* does not imply 
that all events on S*1* occur at a time later than the 
event x occurs, as may be seen from the example 
represented geometrically in Fig. 1. Of course, if 
the hypersurface in question is one for which u% ~ 
constant, all u c 5, such as 5(1) in Fig. I, then x 
indeed is an event which occurs prior to all events 
on S. Similar observations for the case that x is 
later than S(t) may be made. 

LORENTZ TRANSFORMATIONS 

A Lorentz ;ransformation is, by definition, a 
linear transformation on the components of a 
sp?ce-time which is, first, invcrtible, that is, the 

inverse of the transformation exists, and second, 
leaves the form (x — y)1 unchanged in value and 
in form, that is, if x' is the transform of x, and 
y' of y, then (x* — y')* = (x — y)*. A function on 
the space-time continuum ^(x) with the property 
^(x') = fp (x) when x' is the Lorentz transform of 
x is called invariant. Thus, a Lorentz transforma- 
tion is an invertible linear transformation which 
leaves the form {x - y)1 invariant. It follows im- 
mediately then that under Lorentz transforma- 
tions, space-like hypersurfaces transform into 
space-like hypersurfaces, time-like hypersurfaces 
transform into time-like hypersurfaces, and the 
light-cone of any point transforms into the light- 
cone of the transformed point. The forward and 
backward light-cones of a given point must be 
given more consideration, which will be done 
when more detailed study of Lorentz transforma- 
tion is given. 

Let x be a point of the space-time continuum 
whose coordinates are (x«, xi, xt, xs) = (xM). 
The point x', derived from performing a Lorentz 
transformation on x, has components xo, xi, 
xu xi which are related to those of x by the equa- 
tion 

xi = a^x xx + 6M 0) 

where ^t = 0, 1, 2, 3, and the Einstein summation 
convention is used. Equation (1) is linear by our 
definition of the preceding paragraph. The point 
y transforms to the point y' by equations of the 
same form as (1). The condition that (x — y)1 = 
(x' — y')2 leads to the condition 

fl|i*   aMX   —   ölrX 

or 

det(aMA)=±l. 

Let axM be the cofactor of aMx; then 

(2) 

(3) 

(4) 

Comparing Eqs. (4) and (3), we see that ax* = a^', 
Eq. (1) is now readily inverted, by multiplying by 
a»n " aM» an^ summing over fi: 

•(Mirntimr». thr "•ohd ' «rl rrpmenird try «^ union ol Ü and C« 
will hr irfcrrcd to at thr forward lighi-conr Thr . omcx« «-ill usualK 
make clear whrthrr onr n »^raking of pointt on C* ar in L, 

or 

aM^ x^ — aH*aUK 4" 6M a^ — x¥ — ßt> 

x». — aMv xj» + ßy (5) 
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With Fq. (5) and the invariance of U — y)1, we 
conclude 

öAM — ß^A (6) 

The definition of the Loremz group given above 
admits a wider class of transformations than those 
encountered in the usual development of the 
theory of relativity; that is, in applying the prin- 
ciple of relativity to determine the transforma- 
tions of the componevits of a given point in one 
inertia! frame in terms of its components in an- 
other inertia] frame, one obtains that subclass of 
the above transformation that may be developed 
in a continuous manner from the identity trans- 
formation and with the characteristic that a« > 0; 
this class has the property also that det jaMA| = +1; 
this subgroup of the full Lorentz group is called 
the proper orthochronous Lorentz group. (We are 
not attempting to prove the statements of this par- 
agraph, but content ourselves here to accept their 
validity.) It is then clear that if x is a point in the 
forward light-cone of the origin, then U' — 6) is 
also, where 6 is the image of the origin under the 
Lorentz transformation. Thus under l>orentz 
transformations that are proper and orthochro- 
nous, time-like intervals U — y) transform into 
time-like intervals, spact-like into space-like, 
with the sigti of the zero component preserved; 
here it follows that the forward and backward 
light-cones of a given point transform under 
proper orthochronous Lorentz transformations 
into the forward and backward light-cones of the 
transformed point, respectively. It becomes equal- 
ly clear that if x precedes the surface S in one 
inertial frame, under a proper orthochronous 
Ijorentz transformation, x' precedes S'. Finally, 
we observe that li S is, in one inertial frame, the 
hyperplane jr0— constant, then under a proper 
orthochronous transformation, S transforms into 
a hyperplane no longer parallel, in general, to any 
hyperplane of the form xi = constant; and if one 
has a hyperplane of the latter tvpe, there exists a 
Loicnt/ transformation which will transform the 
hyperplane into one patallel to xo = constant in 
some (one) inertial frame. From this, it follows di- 
rectly that if x precedes the hyperplane S in a 
given inertial frame, there exists another iner- 
tial frame wherein x', the image of x under the 
corresponding Ix)rentz transformation, not only 
precedes the transformed surface, but all events 
on the surface will have occurred at a time, in 

this reference frame, later than the event x\ (Thai 
this result is not true for more general hvper- 
surfaces may be seen by considering a point x 
that precedes a non planar hy persurf ace that 
approaches the backward light-cone asymptotical- 
ly. Since we are not concerned uith such cases, 
we shall not dwell any further on this point.) 

An example of a nonorthcx hronous, improper 
Lorentz transformation is 

Xo  ~ — Xi 

Xx =     xt 

> 
Xi = 

Xs = 

Xi 

X:i 

(7) 

If x precedes the hypersurface 5. it is clear that 
under the above transformation the image S' 
would precede x', the image of x under Eq. (7). 
Such transformations are of considerable interest 
in modern field theories but do not play any par- 
ricularly important role for our purposes; there- 
fore, their study will not be pursued further here. 

REPRESENTATIONS OF THE 
LORENTZ GROUP; PARTIAL 
DIFFERENTIAL EQUATIONS 

Let 0 be an observer in a given inertial frame 
studying a system which, he discovers, requires n 
functions/)(JC) = /j(r,xo) to describe it completely. 
According to the principle of relativity, an ob- 
server 0' in a second inertia! frame will also re- 
quire n functions, /*(x') to describe the system. 

The functional values at a point P as observed by 
0' will be related to the functional values at the 
point P as observed by 0; if the coordinates n't P 
are x' and x in the inertial frames of O' and 0 re- 
spectively, then with L denoting the Lorentz trans- 
formation parameters. 

/;u') = Ai (/,(*)./,(*) /.(*)) (8) 

where Af is a general function of fu ft /». ^ul 

one such thai the set {[A^J, [A't'],..} form a 
continuous group; that is, Kq. (8) are required to 
be a realization of the Lorentz group.  Hence, 
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the inverse to AJ, exists: 

/i(Jr) = A|-,(/Ux')t/a*'),..../;(Jt')) • (9) 

Observer C will determine that his sei[{/<}of 
functions are, in general, correlated with one an- 
other through some set of equations which we may 
denote by 

*#(/./* /.)=o. (10) 

Again from the principle of relativity, Eq. (10) may 
be written so that observer O' arrives at the same 
equation except for primes in the appropriate 
places. 

A very important class of fields will be those that 
obey some form of superposition principle; if O 
determines that {/i} and [gx] each satisfy (10) and 
that {/> + gj) satisfies Eq. (10), then O' must ob- 
serve that fl + gl also satisfies his version ot Eq. 
(10). Thus, /-♦- g s {/i + gii is an acceptable field 
configuration and transforms according to Eq. 
(8) also: 

*;U')-A/(/,U) + fi(jr)t/fU) 

+ gl{x) /,U)+ gnix))  . (11) 

In addition 

h'k{S) = rk{x')+g'k{x') (12) 

where/l(jr') and gk{x') are related to the func- 
tions [ft] and {gt} respectively by (8). From Eqs. 
(11), (12), and (8), it then follows that rhe func- 
tions AJ must have the property that they are 
linear in /: 

Ai({/,(S)+*iU)}) 

- AJ({/«(*)}) + A{(Ui(*))). (13) 

If in the function space of the set of all accepta- 
ble vector functions ({/<}) a metric is introduced, 
then the notion of the "nearness" of one function 
{/i} to another, say {#}, may be given definitive- 
ly, and continuity of functions on this function 
space, such as the AJ. may be made precise also. 
Without going into detail, it is intuitively clear 
that if {/,} is near to {fi). in some sense, for 
observer O. then [f]) must be near to {g[) for 

observer O', which is equivalent to requiring that 
the functions AJ be continuous functions of the 
functions {/i}; Eq. (13) requires them to be linear. 
It may be shown that the only continuous solutions 
of the functional equation (13) for AJ have the 
form 

A{({/u)}) = 5;xiJ/<(x).     (i4) 

Thus, for fields described by n functions and 
obeying the principle of superposition, the set of 
functions must transform under Lorentz trans- 
formations according to (14), that is, according 
to some n-dimensional representation of the 
Lorentz group. The physical requirement that the 
functions AJ, for fixed L and k be continuous 
functions of the/'s applies equally well to (8); that 
is to say, this requirement is not related to the 
superposition principle, hence if the system under 
study is a nonlinear system so that the superposi- 
tion of two solutions to (16) is not a solution, then 
the set of functions that describe the system, if the 
description is to be Lorentz invariant, need not 
transform according to a representation of the 
Lorentz group but instead according to some (non- 
linear) realization of the Lorentz group. Unfor- 
tunately, little is known about such systems, but 
for us, the linear problems constitute our main 
concern. 

We here give a resume of the equations of type 
(10) that we shall study. The first equation that will 
occupy our attention in considerable detail will be 
the Klein-Gordo»i equation. Let tp'ix') = <p{x) 
obey the partial differential equation 

Henceforth, we shall take Ä — c = 1 and use the 
notation 

- dMd^ . (16) 

Then (15) reads 

D^ - mV ■ 0 . (17) 

We shall, in Chapter 2, study this equation in 
considerable detail, showing how to extract from 
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a given solution of (17) the positive and negative 
frequency parts, and how to ccnstmct the Green's 
(unctions lor the different boundary value prob- 
lems associated with (17). In addition, we shall con- 
sider not onl\ (17), but the inhomogeneous Klein- 
Gordon equation, and its Green's (unctions to- 
gether with their associated boundary value 
problems. For all these functions, we shall develop 
several different and useful integral representa- 
tions and also explicit representations in terms of 
known functions; further their asymptotic be- 
havior will be made explicit Considerable atten- 
tion to (it-tail is given for the Klein-Gordon equa- 
tion because a thorough understanding of the 
work on that equation will greatly simplify the 
calculations to follow. 

In Chapter 3, wc shall study the wave equation 

D^ = 0f (18) 

developing results analogous to those for the 
Klein-Gordon equation described above; it will 
become clear that the results of Chapter 2 will 
carry over to Chapter 3 by simply putting m = 0 
or taking the limit as m —» 0. We shall then prove 
that the results for (18) may be applied directly 
to the wave equation for the four-potentials 
MM(*)} of ^e electromagnetic field; in (18), the 
function y is again a scalar, but in the equations 
for .4M, 

D/M*) =0. (19) 

The {/*„(*)} transform according to the vector 
transformation law and obey the subsidiary con- 
dition 

hxu 
= 0. (20) 

We shall show that the integral formulatfon of 
(18) will carry over to (19) in spite of (20). 

In Chapter 4, we shall consider the boundary 
value problems analogous to those considered in 
the two previous chapters for the Dirac equation 

(yMdM^m)^U)=0 (21) 

where {'yM} are the Dirac matrices and ^(jf) is a 
four-component function which transforms under 
a Loitntz transformation according to a ceruin 
spinor representation of the I^orentz group, the 
details of which will not concern us here. 

GAUSS* THEOREM; GR££N*s THEOREM 

I^t O be a (four-dimensional) volume in the 
space-time continuum whose boundary is the 
space-like hypersurface S. To each point of S, we 
mav associate a four-vector  (nM(jc))  such that 

IM
71

** — —1 anc^ s,JCh l^at "PC*)^*» — 0 where 
5jrM is the ylh component of an infinitesimal dis- 
placement from the joint x in the surface S. 
The four-v^ tor n will be called the normal to the 
surface S at x; that the requirement n* = —1 may 
be met is guaranteed by the condition that S be a 
space-like hypersurface. It becomes geometrical- 
ly clear that if 5 is space-like at %% then n is time- 
like, so that nMnM < 0; thus, nM may always be 
normalized such that nM/iM = — 1. If at x, 5 has the 
tangent plane equal to x« = constant, then it is 
clear that n = (±1, 0, 0, 0). V.'e shall always select 
that choice of sign for n such that it points in. the 
forward light-cone of the point x. Here in our 
special case, n — (+1, 0, 0, 0). In addition to the 
normal n{x) at the point x, we define the four- 
vector n'{z) at the point x of S, calling it the out- 
ward normal, in the following way: let 6x be a 
displacement from x on S along the direction of 
the normal at x, ii(x). If the point x -f 6x does not 
belong to O for any such fix, then n'(x) — /i(x), 
by definition. If x -♦- fix belongs to the set Q, then 
n'ix) = —n(x)f by definition. It is clear from this 
definition (and assuming 0, contains no points of 5) 
that the outward normal points in the direction of 
r» when il precedes the point x on S,» r., whenever 
any space-like hypersurface through il precedes 
x on S, and that n' (x) = —n(x) when the opposite 
is true. The geometric interpretation is quite 
clear and is best illustrated by Fig. 2. 

Analogous to ordinary geometry, in four-space 
we define the element of area on a surface as the 
pseudovector der» whose magnitude is that of the 
area of the element and whose direction is the out- 
ward normal n»: 

d<r* = n'^da (22) 

and, on a space-like surface, 

da - -n'md<r*,    n«. = -1 . (23) 

If we introduce «4, it is related to n« by* 

*4 - n.li . (24) 

•C  Moilrr.    Ihr Ihn>r\ of Rc-Unviiv.' Oxford. 1952. ^agr 129 
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Figuie 2 

If/M is a four-vector, then, with/« ■ i/9and x 4= ix%, 

»Lm»tL+»tL+»tL^»tt' 
dx*      dxi     8xt     dX)     dxo 

_&.+&+&+&.      (25) 
dxi     dxt     dxs     8x4 

If D is a volume in space-time bounded by the 
hypersurface 5 and /» is a continuous differenti- 
able function in 11 and all ^x-rtinent integrals ex- 
ist, then 

n M     A s 

(sum M= 1.2,3,4) (26) 

where d4x ■ dxodxt dxt dx*. Equaiton (26) is a 
statement of Gauss theorem. We are especially 
interested in the case S ■ S|U5»,* where S, and 
S% are spare-like hypersurfaces and 5, is later 
than 5s; in this case Eq. (26) becomes 

We shall often take the space case Si ■ {x|x# = 
const.};  then 

J dv*f*= \ d<r*mfm 
St A, 

= jd*xf.. (29) 

Equation (29) tells us that dfr« = —J*x\ we shall 
have frequent occasion to recall these results. 
Suppose next that/M — ?(x)dM* — +d*ip't then 

jd*x {ipD* - ♦G^») = 
n 

Si        s. 

which is Green's identity. This may also be written 

W'#-^) (31) 

(d'x^jdatft-jda.f, 
ft M      s; v, 

(27) 

where, now da* is a four-vector always pointing 
in the forward light-cone: 

da* = /iM dtr (M= 1,2,3,4 only).   (28) 

*Si(/St »und» for the wi unmn of .S, and S|. 

where d/dn' = »'M d/dxM is the derivative along the 
outward normal on S. Again, let S = Si USj as de- 
fined above, and Si = {(x)|x« ■ const.}; then 

i^^jt—h^a <32) 

by (24). Thus, if we have an integral of the form 
of the right side of (32), it may be given a covariant 
genei alization by replacing it by the left side of 
(32). 

In the formulation of Gauss* theorem and the 
Green's identity, we required <p and «^ to be con- 
tinuous and twice differ en liable; the continuity 
requirement will now be dropped but the theorem 
retained; this is done to admit as solutions the 
genei lized hinctions or the so-called distribu- 
tions. Though distributions do not always possess 
desirable continuity properties, they are infinite- 
ly differentiable and always integrable; hence we 
can utilize them in our identities. 



CHAPTER 2 
THE KLEIN-GORDON EQUATION 

THE HOMOGENEOUS 
KLEIN-GORDON EQUATION 

Wt* shall consider, in this section, the boundary 
value problem for a function ^(x) which is a scalar 
function under Lorentz transformations that are 
proper and orthochronous and which satisfies the 
homogeneous Klein-Ciordon equation: 

(D-mM^(x) =0, 

satisfied. 1 his condition may l>e met if a{k) 
vanishes identically; but then (4) vanishes identi- 
cally also, and we have the trivial solution to (1). 
Thus, it aik) has the propem 

a{k) = 0, A,, ^ ± w 

a{k) ^ 0, io-±c«; 

(*)    and the integral over k„ of a (Ar) is nonvanishing, 
(4) will acquire meaning. These conditions are met 

The  pertinent boundary  value  problem  is the    by 
determination of the function ^ at x in terms of 
its values and the values of its derivatives on a 
prescribed  space-like surface.  Prior to this, we 
discuss the general solutions. 

a{it)=a(it)8(^>mM 

General Solutions; Positive mod 
Negative Frequency Puts 

Using the standard technique of separation of 
variables in a Cartesian ci*ordinate system, we see 
immediately that <p{x) - exp ik-x solves M) if 

or 
** + m« = 0 

iU = ± « 

(2) 

(3) 

where 

OJ = +VV + m«. 

In general, one may obtain a solution of (I) by a 
superposition of such plane waves. Put 

V(x) "(2^.1 d*k a{k)eikr (4) 

Applying the differential operator D — TO* to both 
sides of (4) and utilizing (1) a condition on aik) 
is seen to IK 

{k* ^ml) aik) =0. (5) 

Now Ar* ^ m* = {—k0* +(0*), which vanishes for 
those two values of k0 given by (3) but not other- 
wise; therefore, in order thai (5) be met for all 
values of A«, a{k)  must vanish when (3) is not 

= ^[6Uo-a>)+6U0 + ü,)]       (6) 

where *{k)  is, as yet, undetermined. With (6), 
(4) becomes 

^l  ;     {2n)4j 2<ü 

*{2nyj*      2ü>        ^ '      (7) 

We define the two functions 

We shall call ^(>, (x) the positive frequencv part 
of ^U) and ^ • (x) the negative frequency part 
of (p(x). The above discussion shows that any 
general solution of the Klein-Ciordon equation 
in a given Lorentz frame mav be decomposed 
into  its  positive  and  negative frequencv parts: 

^(jf)=^ WH-^-» U). (9) 

We  shall  now show  that  this decomposition  is 
invariant  under  proper orthochronous  Lorentz 
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transformations. (x>nsider a given Fourier com- 
ponent of <p{x) characterized by the momentum 
vector k; there are two terms in (7) afüliated with 
this momentum vector, one whose exponential 
part is characterized by the four-vector K| = 
(a», k) and the other by Kj= (—a», k). Now *!•*! = 
Kt'Kt = —m1 < 0; thus each of these four-vectors is 
a lime-like vector, one {KI) lying in the forward 
light-cone and the other (*..) in the backward 
light-cone of the origin in moment urn-energy 
four-space. Under proper orthochronous Lorentz 
transformations K. will transform into a four- 
vector that lies within the forward light-cone 
(see Chapter I) and K* into one which lies in the 
backward light-cone. It is thus clear that if in a 
second inertial frame the transformed function 
ip'{x') is decomposed into its positive and negative 
frequency parts f'1** (*') and^'^ (x')t and if 

then 

^U')-M«). 

*'<*>(*') =1^1*) 

(10) 

(ID 

r- PLANE 

^V 

Figure S 

and 

^J^^(x + rn)=v,'-'(x). 

The calculation is facilitated by the choice n = 
(+1, 0. 0t 0. We shall utilize (13) quite often. 

and the Lorentz invariance of the decomposition 
(9) is established 

If, in Eq. (8b), —k replaces k as the integration 
variable, Eqs. (8) may be written as 

fS *) U) (27r)*  J 
#k*£*Lt^* 

2a> 
(12) 

where 
K= (tu, k). 

A very useful method for extracting the posi- 
tive and negative frequency part of any function 
which shows clearly the invariant character of 
the decomposition is due to Schwinger. To 
develop this method, we first observe that 

2iri J   r [O, a < 0 
p 

where P is the contour in the complex r-plane 
shown in Fig 3. 

Let n be a lime-like foui-\ector pointing in the 
forward light-cone; using (8) and (7) we see that 

_L f^I 
27ri J T 

^U-rn) =^ + )(t) (13) 

The Boundary Value Problems and the 
Invariant A-Functions 

THE INVARIANT FUNCTION AU) AND ITS 

ASSOCIATED BOUNDARY VALUE PROBLEM 

Let S be an arbitrary space-like hypersurface 
in the space-time continuum and let JC be an arbi- 
trary space-time point; x may precede S\ lie on S, 
or be preceded by S. The boundary value problem 
we strive to solve here is the determination of the 
value of ^ at x when ^ and d^/djrM (/i = 0,lt2f3) 
are known at eac h point of S. (This may seem im- 
possible for that case where x precedes S, because 
it would appear that we wish to determine the 
amplitude of the field at a given point in space 
and at a given time bv its values (or events) that 
occur in the future, which is a violation of our 
intuitive notions of causality; but it must be point- 
ed out that the Klein-Gordon equation does not 
contain in it anything that precludes such cases of 
boundary value problems. Said in another way, 
causality, however formulated, is a physical re- 
quirement imposed on those fields ^ of interest 
quite distinctly from the mere solving of the equa- 
tion, which is our purpose here. We shall discuss 
cases later that meet some of our intuitive notions 
of causal relations.) 
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Figurt" 4 

For the present discussion, assume x does not 
lie on S, let 5' be a surface that is space-like and 
such that x I. on S', and let S and S' coincide 
everywhere except in the region of finite diameter; 
let ft be the four-volume enclosed between S and 
S' (see Fig. 4, which shows x later than 5, although 
the relations could as well b«1 reversed). 

Assuming ^(JT) and «Hx) both satisfy the Klein- 
(lordon equation for all x. Green's identity, Fq. 
(30) of Chapter 1, reduces to 

| ^;[ fix') 
Wix') 

dx'u 
- 0U dxl    \- 

114) 

and because the volume integral vanishes for any 
Ü due to the assumption thai ^ and «i* solve the 
Klein-Gordon equation, (14) is independent of S 
and S'. Another way of writing Fq. (14) is 

j diT'J ifix') 
diliix') dipix') 

,   -*{x')    . 
dXp d.vM 

(15) 

We shall ii]qK>sc• conditions on S', S, and ifr in 
order to assist our evaluation of ^ at x on S. Since 
(15) is independent ol S' and S. ( booseS' tolx* the 
hyperplane XQ = xn and S to IK* an\ space-like hy- 
IHismlace preceding S or alter it, but   »iherwise 

meeting the requirements that ft be- finite. Then 
the left side of (15) becomes 

-/*. [.«^-♦«^il.,,« 
x'^-r. 

We shall require of d^(x')fdxo that it be a three- 
dimensional delta function, — 8(r' — r): 

dJC« 

Then (15) reduces to 

= - 6{r- r'). (17) 

V?U)=-        jd'x.'tix') 
dx«r 

-hi^^-^^f] (,8, 

Fquation (18) involves integrals over two 
surfaces still; we wish to reduce it to only that 
integral over the surface S, which means we 
want the integral 

to vanish; this will be so if i|fU') ■ 0 on S'. This 
requirement may be made more general by 
noting that if we want (18) to be Ix)reiuz in- 
variant as it actually is, then ${x') must vanish 
outside the light-cone of the point x. We see that 
this requirement is consistent with the above, 
because under a Foreut/ transformation the sur- 
face to' = x transforms into a hyperplane that is 
space-like and goes through Jt. 

Characterizing the function üix') bv x as well, 
the requirements wc have placed on ^ are 

*,(*') =0, lor ix' -x)* >0 

a«M*') 
dx'n 

= -S (r - r), x'o = to. 

(19a) 

(19b) 

If such a function IMJT') exists then 

^-/^U,^-^)^],*,, 
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We shall see thai $T{X') does no! exist as an 
ordinary function, but as a distribution instead. 
To this end, we decompose «M*') into its positive 
and negative frequency parts just as we did the 
general solution in the preceding section: 

(2ir)4J 2cu 

d{kr-ü>:x) 

(2tr)*J 2(u 
(21) 

We   have   thus   solved   the   boundarv   value 
problem posed: 

,  ,,dA(x'- 
»xi      J 

-j *'[*'-'"> Si 
Impose on (21) the condition (19a) on iMx') in 
the form that ^x(x') vanish on x'o — xo; then be- 
cause  ihe  Fourier transform  of zero vanishes 
we get from (21) and (19a) 

d{k,(D:x) =~d(k,ai;x) e~titsX9 ^2) 

and (21) and (22) combine to yield 

♦xU') = — fd*kd{k%<o;x) f-«-»»** " X 
i2n)4J 

sina>(xo, — xp) 
(23) 

Applying condition (19b) to (23) in order to deter- 
mine d(k,6>;x), we get 

*A'')=-id?h eik{f -r)    X 

sin ^(xp' — xp) 
a» 

(24) 

- 'fix ) - 
\x~x)\ 
Bx'H        J 

where 

A(x)=-     1      fffike*' *nmU 

(25) 

(0 = + Vk* -I- m« (26) 

and it can be readily seen that (25) reduces to an 
identity when S is chosen as x© = xo. The A- 
function with the special value m = 0 was first 
introduced by Jorda.  and Pauli.* 

Expression (26) for A(x) is an integral repre- 
sentation of this function. There are several 
others that are useful and important. Observe that 

sin 

where the contour C in the Ac«-plane is shown in 
Fig. 5. With (27) and (26), we obtain a second 
integral representation of A(x): 

From (24), it is immediately evident that ^r(x') 
is invariant under translations; hence we may 
write it as A(x' — x). It is no/ evidentlv invariant 
under more general proper orthochronous 
Lorentz transformations, although this will be 
established shortly. It ts evident that the integral 
does not exist in the usual sense, since (Pk'no - 
kdkdft', hence A(x' - x) must exist in the sense of 
a distribution {i.e., it may be regarded as a linear 
functional on the linear space of the solutions of 
the Klein-Gordon equation.) 

A(x) (27r)*J d<k 
.ik X 

P + m*' 

To get a third, define 

€(A)  = 
+ 1, if Ao > 0 

0, if Ao = 0 
- 1. if Ac < 0 

•P Jordan and W   Pauli. / Ph* 4! JM (1928) 

(28) 

(29) 



SRI    RIVORI   6028 11 

i™*o er, ihe Jacobian is unity, and because it is ortho- 
\ chronous, €{k') wiW have the same value ascU); 

*o' PLANE because it is a Lorentz transformation, k"1 = Ar*: 
hence 

Rekr 

Figure 5 

and note that 

sin wxo     e^^o —r-»•"o 
ü> 2m 

= — f Ä e-*V« [ 8(^ -h <u) - 6(it« - a») ] 
2m J 

■T\ 
dko€{k)e-ikoro 

I 6{k0 + u*) + h{l<o-<*>) 
2(0 

= i | «tte €(*) c"VP   8(^^ml). 

Then 

AU)=-7TLT!l[rf*iteUf'ca)«(its f m«).   (30) 

The invariante of A(jr) under proper ortho- 
chronous Lorcnt/ transformations, is now easy 
to prove; if x» = G^KXK, then 

AU') = 

Mx') = - j^jt jd<k' e"' ' €{k') 8U'« f- m«) 

= - T^rTl ld4k **** €W W* + m^ (2ff)3 J 

or 

A(Jr')=A(x) . 

The following properties obtain, as is readily 
shown from (26), (28), and (30): 

AU)* =A(x) 

A(-r,Jto) = A(r,jro) 

A(r,-jrc) = -A(r,Jto) 

A(-x) = -AU) (31) 

i>., A(x) is real, an even function of its space co- 
ordinates, and odd in its time coordinate. An 
explicit representation of A(JC) in terms of better 
known functions will be derived in a later sub- 
section. 

THE INVARIANT FUNCTIONS A
(+,

(JC) AND A*"^*) 
AND THEIR ASSC (IATE BOUNDARY 

VALUE PROBLEMS 

We have seen, from Kq. (25), that the values of 
^ al x m.o IK* determined In the values of ^(x) 
k,nd *£*{*) DH some space-like surface S. Know- 
ing fix) over all space, we may construe: by direct 
computation or In Schwingers method, the |K>si- 
tive and negative frequence parts. Hence, one 
should Ix* able to detci mine these functions direct- 
K in terms of ^ and ^M on S. This is now quite 
straightforward: from (25) 

s 

Make a change of  integration va iable from AM 

Uikß = a^xk^. Because the transformation »s prop- 
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Performins the obvious integral 10 be done, ac-     Ai ,,  v       *    fdr 4/ 

cording to Schwingers prescnpnon, we get 2iri J   T 
P 

i    L *'' =-(2^Jrf,*ir2^j7Sinö'^-T) 
p 

^        dx;   '*      X,J (3^    where we have taken n= (1,0,0,0); this immediate- 
ly yields 

where 

2ü> 
(38) 

r 

If we choose the second form of Eq. 25. U,    and (38) and (36) together yield 

,W. + /*;[A(.-.')Ä „-„^.JL.J^eJ^ (39) 

_?M£ZJLL^/Jt'\ j A   second   integral   representation   for   these 
dX|* J (34)    functions   analogous   to   the   second   integral 

representation  for  A(jr)   as   given by Eq.  (28) 
then using Schwingers integral again, is obtained  in  the  manner  that Eq.  (28) was 

obtained: 

^>U)-+filcr;[A^(*-«')g e-,^ !   f t.ik„ 

ax;       M]       ™ 
c 

dA^Oc-*') 
1     /•        c-^co 

"~2SjÄ^TS (40) 
The physical interpretation of Eq. (35) is rela- r+ 

lively straightforward, if we be lax in our ter- 
minology. The functions A< + ) and A(  ^ determine    where C+ is shown in Fig. 6; also 
directly   the   positive   and   negative   frequency 
parts, rcspectivelv, of ^ at x in terms of the 
values of <p and <pß on S. Eq. (35) rather than e**^© 1    r e^^f 
Eq. (32), will be the final form of the bounds IZT""^] * (*o + Ü) (5 - ü>) 
ary   value   problems   solved  bv  A< + )  and  A( K c_ 
Comparing (35) and (32), we see 

A<i)(x'-x)=-A^»(x-x') (36) 

which also obtains from (31). From the defini- 
tion  of positive  and  negative  frequency  parts,     where C- is also shown in Fig. 6. 
we have immediately Applying (40) and (41) to (38) and (39) respec- 

tively, one obtains 
A(x)=A^U)-f A<->U). (37) 

1      f eik' 
Let us compute the integral representations of A(+)U) = I (Pk ^       , (42) 

A->U)andA'->(x): [     *  i. 
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Imko ■fx 

A( + )(x)=- j^  (d4k eik 'e{k)6{k* + m*) 

k0-PLANE 

Reko 

Figure 6 

C- 

For  a  thiid   integral  representation,   we  use 

p-iw0x0 1        /• 

(47) 

+ x 

(48) 

and it follows directly from (47) and (48) that 

A<+>(x)* = A(-)(jr) . (49) 

Also, (47) and (48^ exhibit the Lorentz invariance 
of these functions. 

THE INVARIANT FUNCTION A(I)U) AND ITS 

ASSOCIATED BOUNDARY VALUE PROBLEM 

Define the function A(1)(jr) by 

(50) 

2ü> 
-x 

= 2^j ^oe-,*«"Ö(Ä)[5(ifco-a>) 
-x 

4 8(A:o 4 w)] 

+ x 

=  [ ^o e1*"« Q{k)h{k* f m2) (44) 

where 

A,     Jro>0">j 

d(j) =< 1/2,^0 = 0 > = Ö(xo).     (45) 

Lo,     x« < oj 

In a similar way, 
+ x 

— =  Udk* e ik*x*%{-k)hKk* f m^) .(46) 
X 

l sing (38) and (39) with (44) and (40) respectively, 
we get 

It is clear that A(l)(x) solves the Klein-Cordon 
equation. This function may be related to the 
function A(jt) symbolically by 

A(,)U) =- 
V-d1 + m* 

AU) (51) 

where the symbolic operation — do/V— d? 4- m* is 
interpreted to mean, first, 'xpress A(x) (or any 
function the operation is applied lo) in terms of a 
Fourier integral and, second apply the operation 
to each component; thus 

-a«, 
V -^4m2 

AU) 
(27r)3J 

<Pk 
1 

V - a* 4 m« 

.<* o    sin (tfXp 

ax0    (i> 

= —   .- I <Pk - e^f (os wxo. 
(27r)3j a> 
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Suppose ^U) and d^/dx,. are known on S; let     (fa'J[&ii){x - x')8;v>(±)(x') 
us compute the function j      ML 

f       r -^<*>(*')diA<«>U-*')l 

But 

Here ip{x) may be any function whatsoever; now,    __        do        «***(«)«—        ^o j 
with (51), V-a* + m^' V-df + m* (2ir)* 

V-ef+m« J L öxM J 2<w 

ÖXM J 

Suppose fix) is ^^U), the positive frequency     yjjus 
part of ^(x), where <pix) solves the Klein-Gordon 
equation and tp and d^np are known on 5; the posi- 
tive frequency part propagates independently of      f ,   TA^W   __   f\ d<pi±)(x') 
the negative frequency part. To see this, suppose     J     M[ dx^ 
^(x) = ^+,(JC) with the negative frequency part     s 

identically vanishing for all x; then, A\^1)(   —   '^^ 
-*<»>(«•) ^ iJ-.±^*>(«).     (52) 

The functions Ä(I)U) will "propagate" the posi- 
tive and negative frequency parts of ^ and dipldx* 

— (♦)/  f.dM* — *')] from S to the point x but with a change in phase, 
dxM     J* incontrast to A(x-x'). 

Next, we develop integral represenutions for 
A(l)(x). Expanding cos onto in terms of exponen- 
tial 

Analogously, ii'ipix) = ^Mx) with ^( + )(x) - 0, 
then 

^U).J^[A(,-s')i£i£J 
0 -  [rfi.Slt' + m«) «--'»o'c      (53) 

-^"■>4^11 

2*, 

we get immediately from (50) 

Now any function ^(x) may be decomposed thus- A(1)(x) = J^y J rfU 6^, + mt) '** ' (54) 

ly. Hence we have -■ 
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Utilizing (40) and (41) we get also 

cos wxo _    1     f j.    e***'* 
2u> 

r- 

Let C+ be the contour C+ traversed in the oppo- 
site sense and let C(I) = C.UC'+ ; then 

1      T e1*'* .Ad) (r) = i—       (f4it—^  U;      {2v)4 j k* + m* 
C{i) 

(55) 

Two equivalent contours C(l) are displaved in 
Fig. 7. 

*0'PLAN£ 

/Rt*o 

Figure 7 

RELATIONS AMONG THE INVARIANT A-FUNCTIONS 

That the functions AU). A( + ) (x)f A( > U), 
and A'*' (x) are ail invariant under proper 
orthoc'.ironous Lorentz transformations is evident 
trom their integral representations involving 
integrations over the whole of the A-space; that 
they are not all independent of one another is 
evident from the integral representation over 
contours, if it were not evident before. The 
following relations are easy to verify: 

AU) = A, + ' U) + A(  • U)] 

iAU) = A^  > {%) ~ A,4> (x)| 

A'*' (JT) = [A(t) -iA«11 U)]/2 

A'  • {%) = [AU) + iAm (*)]/2 

(56) 

.   (57) 

It is seen from (56) und (57) that A and Am 

play roles analogous to cos x and sin x functions, 
while A< + ) and A( ' play roles analogous to the 
exponential functions exp (—ix) and exp (-Hx), 
respectively. 

EXPLICIT REPRESENTATIONS OF THE 

INVARIANT DELTA FUNCTIONS 

In this section, we shall evaluate the integrals 
for A< + )(x) and A^^JC) in terms of the higher 
transcendental functions and thereby obtain 
explicit representations not only for A( + ) and 
A^, but, through (56), also for A and A(n. 

In the integral representation (38), we trans- 
form from Cartesian coordinates in it-space to 
polar coordinates in 4-space wherein the A^-axis 
is made parallel to the vector r. It is an easy mat- 
ter to show that (38) reduces to 

A^>(x)=rVf      <M-  
öTT^r dr J w 

(58) 

where we place |r| = r. Put k = m sinh /3; then 
dk ~ m cosh ß dß and w = m cosh ß, and (58) may 
be rewritten as 

Mirror 

where 

+ x 

L( + ) (r,xo) = y"  j  <# exp[-im(r sinh/3 

-hxocosh^)]. (60) 

From the fact that A^U) = Au)(x)*, we have 

4irrdr .      (61) 

^-l(r.Xo)=L^Mr,Xo)* 

We cannot derive all the pertinent results for 
all values of (r,xo) with one development; instead 
we musi consider certain regions of space-time 
separate!). These are labeled in Fig. 8. 

Region  1 

Since 

1 <_J[S. 

W - r«      Vx? - r» 
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Xo 

REGION   l: 4x0>o     V 

Figure 8 

there exists a real ßo such that 

sinh /3 = 
Vij - r« 

cosh ßo = -_*•_ 
Vjr} - r« 

Then 

r sinh ß + x9 cosh /3 = Vx? - r* cosh {ß + /3o) 

and 

= 2~]^ ^-iw^rj -r* Kwhfl (62) 

We note that L^irjU) does not converge in 
the usual sense; however, since cosh ß is always 
positive, if X = Vx«1 — r* is regarded as a complex 
variable and X assumes complex values with neg- 
ative imaginary part, then L^HM convPrges off 
the real X axis and below it. We may thus regard 
D^irjb) as the boundary value of what is clearly 
an analytic function of X.* Instead of ihe param- 
eter X, we put 

•Thi» result is 4 \pmal tasr ul a vnv ^rncral rrsü'i Hrrnrd b\ 
Wightmann (Pkp Rn 101 MMI (1956) In this |>aprt ol Wi^htniann 
it« v ihr tound^iKtn of a drrp Mudv of hrld ihr<>r\ on an axiomalH basis 
in whiih ihr ^ (urntion |»ro|»ritirs ab»*c tome ahoul in a \erv btgHal 

Ha>, dl<'tiK with <>ii,«! impoiiaiii functitHis 

m y/ x**-* = i 

where, in general, 4 may assume complex values 
whose real and imaginary parts we shall designate 
by ^ and TJ respectively. Thus LU){r^o) may be 
regarded as the boundary value of 

(64) 

From the theory of the Hankel functiont, we have 

Ho11 Hz) =^l\dß ete"-h', /m z > 0 (65) 

+ x 

HoiV{z) =-Xidß e-*"***, /m 2 < 0. (66) 

Thus, by analytic continuation, 

L<*)(r,*o) = + 1/2 H'^im V x* - *) 

VHrjo) = + 1/2 HWm \/ x**-?) 
, region 1. 

(67) 

The second of Eqs. (67) follows from the fact 
that //*(,)U)* = HKW{X) when x and X are real. 

Region 2 

Here, r > xo, so we cannot put r — Vr1 — JCO* 

sinh ^o and x = Vr1 — xe2 sinh /So; instead we put 

Vr^-jro1 

*o 

= cosh j3o 

= sinh/3o . 

Then 

m(r sinh ß + Xo cosh P) = 

mVr^-xJ   sinh {ß + ßo) . 

Thus, in region 2, 

tSer   Couiant   and   Hilhrrt.   "Mrthadi  ol   Mathi man« al   Ph\siis, 
Internience, Neu Vo^k. l9ftS, esp chapter VII. V«>l I 
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L<->{r^)--L<+>(r,*.) 

L< + ,(r^o) =- 1/2 Hom im Vxl-f*)" 

(W     ^-'(ivro) = -1/2 //9 «^(m Vx^-r*) 
, region 4. 

(74) 

In Eq. (68), leplace i sinh ß by its equivalent cosh 
(ß + i(ir/2) and then let y = /3 H- i{nj2) ; then 

L< + )(r,*o) = ^ 
•     +x + <( v/S) 

We may combine the results (67) and (70) and 
(71) to get a representation of Lu) and L('k in 
the union of regions 1 and 2 (with the light-cone 
itself omitted): 

wVr»  -  ,r*c<wh y 

-x + »(ir/I) 

(69) L^ir^^ei-x*)^ mV-x*) 

In the step between i'm-y = 0 and I my = ir/2. the 
integrand in (69) has no poles, and it is easily 
seen that the countour integration above is then 
equivalent to an integration on the real >^-axis; 

L^dvro) =^ f dy e***^ t«*h> 

: J_ f ^yfJ« mVr* - xt) c.»h y 

or, using analytic continuation again. 

#+)(r,*o) =- \l2Ho{l){imV r* - xj) (70) 

while L, region ^. 

L<->(rÄ) = + 1/2 Hoil){im N/^^})] (71) 

From (38) and (39), it follows that 

£<*>(-*« ,r)=-A< >(xo ,r) 

A( M-*o, r)=-^*Mxo ,r) 

from which it immediately obtains that 

(72) 

L'^dvto) =- 1/2 Hoa){im VH-xo,)l 
> . region 3 

D '(r^) = + 1/2 //o,n(im vV-jr«)] (73) 

d(^)//o(l)(mV-^a) 

^-)(r^)=^«V)(inV^) 

(75)^ 

(Region 1U2) 

and we may combine (73) and (74): 

L^(r^)-~lfi1,(iiiV=?) 

V-Hrfx<>) -—{ei-x^H^imV^) 

Six^H^imV^A 

(Region 3 U 4) 

From (75) and (76), we get 

AU) - 4~~ J€(x)[/J + >(r,xo)^^->(rtJro) ]) 

(76) 

r w«(«vc?)+Ht("(«v::r«) 

(77) 

ii 

••U») II the «rp runction #(«) - 0 lor « < 0. ${0) - 1/2. and «(a) 
* I lor a > 0; ihm i» drhned when mi*a number (Aintratt this wuh •(«) 
*>hrrr « is <i l«»ur-vctior. *»f «cr #(«) — •(»«). In * »imibr mannrr nr 
«Ichnr <(al   Scr l<).i.iii..n (4.M 
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Using the tact that 

r      dr d,* 

when this operator operates on these functions of 
(—jr,)wc get ft nail v 

*<„-£[ Hx*) 

m*e{-x*) y.cm V-x*)] 
2 mV^^    J' 

(78) 

exists as a regular generalized function and there- 
fore possesses a derivative vhich, as (78) shows, 
is also a generalized function. From (78), it is 
manifest that A(x) vanishes outside the light-cone, 
and for je© = 0 (from the definition of €(x)). It 
is a delightful exercise to verify directly from 
(78) that A(JC) sati ries the Klein-Ciordon equation, 
and ihat 

= -6(r). 
*o = 0 

Turning to the function A^Kx), we see from 
Eq. (50) that 

A(l>(~Xo, r) =A(1>(xo, r) (79) 

Equation  (78)  applies everywhere including the so that it will only be necessary to obtain a repre- 
iight-cone:  the derivative operation implied  in sentation of A(n for regions 1 and 2 and then it 
(77) could not be performed for all points x in will be known for the whole of space-time. From 
classical function theory; but ei-x^JoimV^x*) (56) 

1    d 

or 

iA^U)^^^:^ >(r^o)-L^)(r^o)] 

-^iMF1 TCnV^) -^//^V^i)] 

1r[ 2 J 4irr dr 

1    a 
iirr dr 

A(,Mx) - 

No{m\^) ,       jc« < 0 

mi      NtimV^x*),     x*<0 

^.(mVT8) , x« >0 
27T*V7* 

4ir     mV-x1 

m* KtjmVT*) 
v 2ir« ~^V^ 

~\ 
(x* < 0) 

U« > 0) 
(80) 
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From (80) it is quite ckar that Am(jr) do« not 
vanish identically outside the light-cone. The 
functions iV» and Nt in (80) are the Neumann 
functions of order zero and unity respectively, 
while A.«U) is given by 

iri 

where y is the Euler-Mascheroni constant. Thus 

AU) 
!*• 

€(£) 
2n 

K,U)=^H,<'Hiz). 

For explicit representations of Am(x) and 
A'^JC), one may use Eq. (57) together with 
(78) and (80): 

A(+>U) = < 

€(x)6(^) + mtH^HmV^) 

2ir 4ir       mV^x* 

x4 < 0, x« > 0 

2ir 4ir      m V - x«     * 

*,<0.**<0     (81) 

€U)6(x,)      im^.fmV^?) 

2ir 2«^     mV^ 

x1 > 0 
and 

ü-){x)=tt*>{x)*. (82) 

(83) 

M"{x) 
,.-,      air1*1     4»» 2 

+H)£-- <M> 
Thus A(x)  has a singularity of the light-cone 
with  an  additional jump discontinuity;  A(1>  is 
likewise singular at the light-cone, but the singu- 
larity is much stronger than that of A(x). 

For large values of |zl. 

.Mz) —cos z 
Vnz 

Ni{z) - —7= sin z 
Vwz 

Ktiz) ~ -=e- 
Vnz 

The behavior of A(jr) and A(n(x) near the lighi- 
conc (x* - 0) and large distances away from it 
{x* ~ ± 00) and may be derived from the behavior 
of the function Ji{z), /V,U),, and ^1(2) for 
I2I ^ ± x respectively.t Near the origin 

Mz) ~|+0(*>) 

nz     IT      I      TT    Zn 

Thus, inside the light-cone 

. .   v      fix) cos mV-i2       , 

m* sin m v-x* 
A^Hx) 

27r^(mV-;rl)M 

while outside the light-cone, 

AU) =0,xl ~ -I-« 

+ « 

(85) 

(86) 

(87) 

m\Tt 

A(nU)  xt -_ ^00.     (88) 

K,U)      i + ^|n- + (y-IX|- + 2     2      2V       2/2 

'( .„u.uii Ami Hilhcil, loi   cU 

The Boundary Value Problems and the 
Invariant A-Functions (Continued) 

In   the   preceding  section,  we  discussed   the 
solution of several bonndarv value problems for 
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iht Klein-Gordon equation which gaxv rise to 
four important Green's functions, ail ol which 
solved the homogeneous Klein-Gordon equation 
themselves. In this section, we solve several 
more boundarv value problems which give rise 
to Green's functions different from those pre- 
viously studied and which satisfy not the homo- 
geneous Klein-Gordon equation, but a special 
version of the inhomogeneous Klein-Gordon 
equation, that is, Eq. (1) wherein the right side, 
rather than vanishing, is a prescribed function of 
space and time. 

THE RETARDED A-FUNCTION, AKU) 

Consider a physical experiment wherein the 
experimenter sets up his field function ^ at the 
time t = toin such a way that the functional values 
of ^ and all its first derivatives are known through- 
out all three-dimensional space at time t = to. 
Since the values of <f and its derivative^, at previous 
times are immaterial, we may require that these 
vanish. Since the function if develops in space and 
time according to the Klein-Gordon equation, we 
may expect to be able to compute the values of ^ 
at any later point in space and at anv time. We 
wish to construct an auxiliary function which we 
shall call the retarded A-function and shall 
designate by A« to describe this situation, that 
is, i function which, when used in conjunction with 
Green's identuy, wili yield (f{x) when x is later 
than the surface S{to) and zero when x is earlier 
than the surface S(fo) Let us try to develop this 
function in a manner parallel to that used in the 
preceding section. 

Consider first the case x later than S(<e); let 
Si be a space-like surface through x such that Si 
is tangent to the plane xi = JTO at JT (Fig. 9), and 
that the volume ft interior to the union of these 
two surfaces is finite. From the first two subsections 
of ^he preceding section, the value of ^ at x is 
given by 

tpix) -    JdrJ Mx~ x') 
dtp 

dx'u 
su%) 

~*{x') 
ÖX'a \ 

Figur«* 9 

Thus, if 

AKU - x') = AU - x'), xo > xo' (89) 

we shall have achieved part of our goal. 
Now suppose x lies earlier than S{to). Construct 

Si through x in a manner analogous to the con- 
struction of Si (Fig. 9). 

Let us assume again (as was tacitly done in (89)) 
that A/? obeys the Klein-Ciordon equation: 

(D - m1) AK(X) = 0,/or x € fts.,^,.     (90) 

Then in the Green's identity, the volume integral 
vanishes as before and we are left with 

St 

r      r         aAÄ(x-x') dip i 
~j da^ipix')—^ Mx~x') —J. 

«(»•) 

(91) 

But our boundary conditions of y? stated ^ = 0 
for all x prior to S{to); hence <p{x') =0= dipldx» 
on 52. Thus, 

r        ( aAw(x~x') dip . 
jda^lipix')- -Aft(x-x')- n 

dx« dx'u 
S{ I*) 

which can be satisfied onlv if 
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AÄ(jr- r') = 0, Xo< V. (92) 

Thus, if we choose Aä(X) for all x to be 

AAU) = 0U)AUKallji, (93) 

a form which exhibits in variance under proper 
orthochronous Lorentz transformation, then the 
boundary value problem posed in the beginning 
of this section will be solved. While it is true that 
An satisfies the Klein-Ck)rdon equation in n(Si, 
S{to)) and 0(52^(^0)) (the latu-r by virtue of (92)), 
A« dors not satisfy the K!ein-Gordon equation 
everywhere (Note that AA as given by (93) is an 
extension of A« outside the original domains fi of 
definition.) Let us determine what equation A« 
does satisfy in its extended domain. It is easy to 
show 

d^lfdx) = AU) dMdMÖ(x) + Six) aMdMA(x) 

Now 

+ 2dM0(*) dMA(x). 

a„OU)=0, if/i= 1,2,3 

do0U) =8Uo). 

lim AU) d,dM0U) = dixo) 
lim    A(x^r) 

= oUo) — U9,r) 

= -6(xo)6(r) 

= -6(x) 

where  8(x)  = 8(xo)«(xI)6(x2)8(x3).  Since  ADA 
vanishes elsewhere, we have 

A(x) dMd^(x) =-6(x) 

and similarly 

Thus 

2dMd(x) dMA(x)=4-2 8(x). 

DAff(x)=d(x)DA(x)-f 6(x) 

and utilizing the fact that A(x) obeys the homo- 
geneous Klein-Gordon equation, we get 

(D-m2)A/r(x)=6(x); (94) 

Therefore 

dMdMd(x) =-dodo0(x) 

--f-8(xo) 
dXo 

6(xo) 
Xo 

Therefore 

A(x) fLd^U) -a(xo) 
A(xo,r) 

Xo 

At the point x» - 0, A(x)Dö(x) is undefined; we 
shall dehne  it  bv  a  limiting process;  therefore 

that is, the invariant function Aif(x) satisfies the 
inhomogeneous Klein-Ck>rdon equation. With 
this fact, we may recast our treatment of the 
boundary value problem of this section in a 
manner different from above and in a way that, 
as we shall see, tannot possibly be applied to our 
previous A-tunctions. 

i*X ft be a finite volume in spacr-time bounded 
by two space-like hypersurfaces Si and 5?, where 
Si is later than S*. l,et x be any point interior to 
ft, i.e., x € ft but x ^ SiUS*. We shall try to find an 
auxiliary function iMx') that satisfies 

(D'-m2) iMx')-5(x'-x) (95) 

and will solve the boundary value problem stated 
above; namely, the value of ^ at x is determined 
solely by its values of .S2 alone. We shall use 
(ireen's identity in the form of ¥A\. (29) of Chap- 
ter 1: 
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(d<x'lv{x'){D'~m*HAx') 
n 

(96) 

Using (95), the fact that Si is by hypothesis to 
make no contribution, we get, when x c ft, 

St 

-♦.'"•'^]- 
To assist us in casting the right side in the 

/«Ar. 

form, assume, for the moment, St is the hyper- 
plane xo " constant; then da = dx\dx>dxi = cPx— 
dao and 

dn' dxo 

Then 

?(*)-- fdcriLu') 

,1a!M£') 

-.<■■> ^l- (97) 

We have indicated all the steps in detail so that the 
signatures of various terms have their origins 
clearly delineated. Equation (97) is dearly covari- 

ant. When JT ^ ft, the left side of (96) vanishes and 

s, 

(98) 

(Comparing (97) with (34), we get 

^(x') = A(x-x')tx€ft . (99) 

Since Si is arbitrary for this boundary value prob- 
lem, (99) implies 

iMx') =A(x-x'K       all x later than S2. (100) 

Equation (98) implies 

iMx')=0, all x earlier than S2 . (10J) 

Since A(x - x') vanishes outside the light-cone, 
(100) and (101) may be combined into 

.Mt')=Ö(x-x') A(x-x')        (102) 

so that tyx{x') is identical with Aä(X — x'). It 
remains to show that ^x(x') solves (95): 

(d;a;-mJ) ^(x') 

= (a;d;-m2) Aä(X-X') 

= [(-dM)(-aJ~ml] AÄ(x-x') 

= (D-m») AÄ(x-x') 

= S(x-x') 

where the last step follows from (94). 
This method differs from the first method in two 

ways: hrst, we required the function ^x(x') to 
solve the inhomogeneous Klein-Gordon Eq. (94) 
at the ver> outset, whereas in the first method, 
this was derived; second, the point x was not re- 
quired to lie on the upper or lower surface as in 
the hrst method. 

We conclude this subsection by noting that we 
shall  derive  integral  representations for A«(x) 
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in a later subsection, and bv summarizing the 
boundary value problem in the formula 

s 

-^'>—^—]=lo. 
y>(x), JT later than S 

x earlier than S . 

(103) 

THE ADVANCED A-Function, &<(*) 

Let us examine the above boundary value prob- 

lem as it appears in a reference frame 0 which is 
the inversion of the refeience frame in which the 
boundan value problem of the preceding sub- 
section was formulated; i.e., if P is a point of 
space-time whose coordinates in the above refer- 
ence frame, called 0, are xo, Xu ^2, ^.i, then in 
0 the coordinates are Jo, 5u *2, is,where Xv = 
—*M. The surface S goes into S and 

s s 

Transforming (103) we get 

r    r    - ~ ^(-*') I (/o-;   AÄ(-ac + * ) • 
—dxL 

-<p{-x ) —  
- dx'u       J 

I 0    ,i 
<pi~x), x earlier than S 

later than 5. 

Denoting tp{—x') by (fix'), the last equation reads 

/^-.-D^P-—^tZ) =; (fix 
dxu 

The function ^(1) satishes the Klein-Gordon 
equation 

(äMdM-m2)^(x) =0. 

Thus (104) represents the solution of a new 
boundary value problem in the reference frame 

oi 0, had we solved the boundary value problem 
in the preceding subsection in O's reference frame 
and then transformed to the reference frame 0, 
we would have derived (104) within the bars 
appearing there. Thus, we define 

±Ax)=^{-*) (105) 

which solves the boundary value problem sum- 
marized by 

=1 0   , x later than S 

—ipix), x earlier than 5. 
(106) 

Utilizing (93) and the property that AU) is an 
odd function in x, we have 

*4{x)=-e{-x) Mx). (107) 

Integral   representations   for   l+ix)    will   be 
developed in a subsequent subsection. 

THE INVARIANT FUNCTION A(x) 

Define the function A(x) by 

Äf*) = l/2[ A«U)+A4U) ].        (108) 

It follows immediately that 

AU) = 1/2€U)AU) (109^ 

and 

r      r- B<P aA(jt-jr') 
J dai\ b{x~x')i~  -fix') 

dx» dx'u 

0   x later than S 

—itix) x earlier than S, 
(104) 

~ip(x), x earlier than S 

-♦-^U), jt later than .S 
(110) 
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and that 

(D-ml)A(x) = 6U). (Ill) 
M -t')*^- *>ix-x') 

dxlt 
fix') 

d*f(x ~ ,{x~x') 1 
dx;        J 

A subsequent subsection will j(ive integral repre- 

senlatioiis of A(x). -I = / ^ (x),* later than S 

—iffi-}{x), x earlier than S. 
(116) 

THE FEYNMAN, OR CAUSAL, PROPAGATOR, AAU) 

We seek to construct the Green's function which 
will yield from the values of <f and difidx^) on 
some space-like surface S the positive frequency 
part of tfi at the point x when S precedes x. We 
could develop this boundary value problem as we 
did before directly from Green's identity, bvl 
this is not necessary, for we have enough devel- 

oped with »he functions A,>> and A( * or A to ease 
our path. For our purpose, we shai! take (35) 
as our starting point and observe that the Green's 
function we want, which we ilabel A^(x), is given by 

A^U) 
"l-A(- 

A(^(x),ifxo>0 

A(-)(x).ifxo<0 
(112) 

where for simplicity, we have taken 5 to be the 
hypersurface xo' = 0. Equation (112) may be cast 
;nto a form e? plicitly covariant by use of the 

0-funclion and therebv broaden its applicability 
to all space-like hy persurf aces: 

A,(x) =0(x) ^^(x) -0(-x) ^»(x). (113) 

This function was introduced by Fevnman in 
his theory of quantum electrodynamics and 
independently by Stückelberg and Rivier. The 
latter authors designated ihe function by Ar(x) 
and (ailed it the causal propagator. Utilizing (13; 
and (57). we mav also express AA (x) bv 

A.(x)=A(x)-^A,,»(x) 

and from (114), it is clear that 

(114) 

(D-ml) A,(x) =6(x). (115) 

We summarize the boundary value problem b\ the 
relation 

Integral representations of A»(x) are derived 
in the next subsection. 

INTEGRAL REPRESENTATIONS OF THE 

IN HOMOGENEOUS INVARIANT A-FUNCTION 

Let A(x) be any one of the four functions 

Aä, A^, A, and A^. From the work of the preceding 
subsections we have seen 

(D-m«) ^(x)=6(x) . (117) 

Because these functions all satisfy the inhomoge- 
neous Klein-Gordon equation (117), we call these 
functions, collectively, the inhomogeneous invari- 
ant A-functions and the other four functions A, 
A(l), A( +), and A1^ the homogeneous invariant A- 
functions. In contrast to the development of the 
integral representations of the latter class of func- 
tions from derived representations, we shall de- 
velop the contour integral representation of the 
function A di^ectlv from (117), utilizing to the 
maximum our knowledge of the integral repre- 
sentations of the homogeneous functions. 

Let us Fourier analyze the space part of A(x) 
and 8(xK putting 

&U) ^H'^"- 
Then (117) places as a condition  on /(k,xo) that 
for each k it solves 

(£^ü>J)/(k,x„) =-8(xo) 

where co2 = k2 4- m2. Equations such as these may 
be treated bv the method of a contour integral* 

•%<■«■ I   I    Imr, "Ordinan DiH'ferui.il Kquaikms," Dovci  PuhlKa- 
iH>nv 1956. np. (Jtapiri Will 
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wherein the function /<xo) =f{kfx9) is represented 

as an integral of the general form 

7Uo) = J^o^(jro^o) giko) 
c 

where Kixo.ht) is chosen in a way convenient 
for the differential equation for/Uo), and ^(ito) 
is determined subsequently by the choice of K 
and requiring that the differential equation be 
satisfied; C is a contour in the complex k0 plane 
chosen so that fixo) not only satisfies the differ- 
ential equation but so that the initial condition 
on /(xo) also are satisfied. The function 7r(M 
will have, in general, as many singulanties in the 
complex plane as the order of the ifferential 
equation, and the contour integration must al- 
ways be chosen so as to avoid these. One will he 
able to choose many distinct contours, but there 
will be only as many contours C as the order of the 
differential equation that yield linearly independ- 
ent solutions. 

For our problem, we naturally choose 

KixoM = - 
27T 

Then 

giko) = 
~kl + a>2 

1 
k* + mr 

ihere Jways lay in the finite Aro-plane. or if there 
were not so chosen, were always equivalent to 
contours in the finite Ao-plane. These contours, 
of course, were independent of x. We shall show 
that for the homogeneous invariant 3-function, 
in particular, A(jr), it is possible to choose an 
infinite contour, but that this choice will be de- 

pendent on x* The importance of this result will 
manifest itself in choosing contours for A« and 
A.. 

The contour integral for A(jt) is shown in Fig. 5. 
It is readily seen that two equivalent contour inte- 
grals are those shown in Figs. 10 and 11. In Fig. 10, 
it is readily seen that if L is allowed to go to infin- 
ity, the contour thus obtained will represent C 
only if xo > 0; for then the contribution from the 
semicircle vanishes, while for x© < 0 the contribu- 
tion of the latter integral tends toward infinity 
in magnitude. Thus for x« > 0 a valid infinite 
representation of the contour C for A(x) is any 
line from +« to —« (note direction) above the 
real axis, or any contour equivalent to this, and 
clearly, for x© < 0 it is any line from —« to 4-« 
parallel to the real axis but a finite distance below 
it. Call the first of these contours CR and the sec- 

ond-C 4 • . 
Evaluate A(x) for c = CR. We have just seen if 

Xo > 0, A(x) = A(x); if xo < 0. then A(x) may be 

evaluated by closing the contour above. But there 
are no poles of the mtegrand above C*; hence 
A(x) = 0 for x« < 0. Thus, 

(ä^/^ir^-^W     (119) 
CR 

Rather than determine C so as to meet the bound- 
ary conditions on /(x©), we shall go directly to the 
boundarv conditions on A; that is, A is now given 
by 

Ux) 'ik-h 
„ik j- 

k* + m* (118) 

where C is a contcur in the complex ^©-plane to 
be chosen so as to yield the conditions placed on 
a(x). The contours L are independent of x, of 
course. 

We have seen alreatiy that the homogeneous 
invariant functions have integral representations 
analogous to (118) and that the contours involved 

k0-PLANE 

Figurf 10 
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Re^o 

Figure 11 

Imko 

-a> 

ko-PLANE 

+w        "e^o 

Figure 12 

where C« is shown in Fig. 12. The contour for 
Cjt is clearly infinite, which we could have known 

before because all the finite contours were opted 
by the homogeneous functions and their linear 
combinations. Without further ado, it is clear that 

A.(x) 
12*)*] 

d4k 
0ik x 

k* + m* 
(120) 

CA 

where C* Is shown in Fig. 13. 

From the definition (108) of AU) and the 
contour integral representations of Aä(X) and 

A^U) we have 

AU) = 
1       f eikr 

{2IT)<] P+m 
(121) 

1 f e,k x (122) 

wheie C .s shown in Fig 14 Finally, the Feynman 

contour is readih seen to be thai shown in Fig. 15; 

hence 

A,U) 
~ {2TT)< j 

rW 
A2 + 

123) 

Imko 

k0- PLANE 

*itt 

y 
Figure IS 

Imko 

-4-+-* 

Rpk e"o 

m' 

Kigurr 11 

B\ actualh |x»rformiiig these contour iniegra- 
tions. and then utilizing DII.H delta Intu lions, v\< 

can get other useful represent at inns. Foi example, 

we lake the tunction AK(X): 
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Imko ind 

kn-PLANE 

Figure 15 

-tt-t -*•+« 

dko 

+w-« «•+« 

-<->+« w-t «+« 

x 

/^^ 
2M 

fw     Re ho or 

-i^/« /■-/ 

-•+«        <•-♦■« 

-«-€ «-« 

<          6(^o -f-w)-6(*O-ü») 
rf4* r**'  

(2ir) J 2bi 

+    !*:„+  1*,+  /«^^r^ij Thus 

—00 

where P stands for principal part (which can also 
he designated by applying P to the integrand in- 
stead of the integral, as Eq. (124) below), and 
where the last two integrals are clockwise loop 
integrals above the singularities. It is straight- 
forward to show 

rjfik   Jdfc,-£!-,=-^L. 

+ x 

+ x 

- x 

[^]^^"7ri€(*)6U,^m,)   I" (,24) 

Since &A{X) — A/»(—*), in (124) change x to —x 
and  then   k to —Äc;  it follows immediately that 

+ x 

L     it« -H m« 
-I- TTI eU)8Ul -♦- m' ) 1. (125) 

(2ir) 
From the dehnition of A(JC), its integral repre- 

sentation follows from (124) and (125) directly: 

(Pk (Pk 
J        2ü> 2ir4J 2^ (27r) =/■ ^'»■"      7^ f^^'PTT-r^    (126) k* + ml 
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while from (114), (126), and (54), we get 

- wi8(t» + m«) • 1 (127) 

Another form of these integral representa- 
tions may be constructed by using the positive 
frequency and negative frequency parts of the 
Dirac delta function. With 

Ha) 
+ 71 

hi dke laA 

we have 

27ri     a 

txPLicn REPRLSENTATIONS OF 

THE   INHOMOGENOL'S   INVARIANT 

FUNCTIONS; RELATIONS 

It is quite evident that there are several lin- 
ear relations among the various homogeneous 
and inhomogeneous functions we have con- 
structed. We list these without derivation, for 
they are easy to prove beginning with some that 
have already been established or defined: 

AKU)-0U) AU) (129a) 

A4U)=-0(-*) AU) (129b) 

Ä(x)   = l/2[ AäU)-♦• M«) ] (129c) 

AAU) = Six) *♦>(*) - Bi-x) A'->(x)4l29d) 

These lead to 

A,U) = A«(-%) (IHOa) 

V-Htt).l.jdkei.>.li{a)-±rP1; 

and 

AÄ(*) = 

Tr)sJ {27T 

A.(.t) - 

d*k€{k) 8,•(*', (it»-I- m2) e 2\   „ik I 

l\   *<» x TTTTi UH€(-it)6,'<   ^K^-tm1) e 
(27r)3 J 

A(x)    = 

A(x)   = 1/2 cU) A(x) (130b) 

A,(x)=AU)-^A<»(x) (130c) 

AÄU)-A4(x)=A(x). (130d) 

> (128) 

.„J^A . , 
{2ir 

A,(x) = 

(2Tr)3 j 
c/U «^'(A1 + mM eik' 

We have already obtained an explicit represen- 
tation for A(x), i.e., Eq. (78); from this and (129a) 
and (129b) we get, inside the light-cone, 

■M^-iM^W 

[6un_^-^L^]   (1S1) 
L ^ mV   —T*        J mV —x* 

A^x)- 
€{x)B{-x) 

2rT 

S(r2)_m^-xMy.(mV^)   ^ 

2/nV -x« J 

and A« = A^ = 0 outside the light-cone. 
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Fiorn Eq. (130b) and Eq. (78), for x« * 0, I rfo-;   ^{x') - - A(x - x) -,~ 

>x 

A(x) = 
0,xl>0. (133) 

4 

dx« 

/"■ 

dxL 

A(x-x) pix').      (135) 

_ Now we cannot specify ^(x) and dqp/dx* on iwo 
By continuation, we define A(x) by (133) every- separate surfaces, for we then impose, in general, 
where, and we find that A(x) thus defined obeys too many restrictions on the problem. We con- 
all the requirementi placed oi. it. Finally Af sJder, thus, the boundary value problems asso- 
may be represented explicitly by (130c). (133). ciatcä with AÄ and A,,. If our values of 5, and its 
and (80). We shall not do so here. derivatives are specified on some surface prior 

to x. then 

THE INHOMOGENEOUS KLEIN<€ORDON 
EQUATION; INTEGRAL RELATIONSHIPS 

OF THE A-FUNCTIONS 

Consider the equation 

(D-m2Mx)=p(x). (134) 

If p(x) » 0, this equation reduces to (I), the 
homogeneous Klein-Cfordon equation; if p(x) f 0f 

it is called, as we have alreadv noted, the in- 
homogeneous Klein-Gordon equation. One must 
frequently solve (134) in both classical and quan- 
tum-field theory, subject to certain boundary 
conditions. 

Let ft be a space-time region bounded by two 
space-like surfaces Si and S2, where S! is later 
than Sj, in such a way that ft is finite in volume 
and all pertinent integrals are also finite. Let 
A(x) be any of the inhomogeneous invariant 
functions; then applving Green's identity to ^(x) 
and ^ = A, we get, when x € ft, 

^(x) = - J der; *U') 

^(x)=-|rfVAÄ(x-x')p(x') 

') + w^ AÄ(x-x') 

aAaU-x') 
dxL 

^(x ■•1 (136) 

while if the surface is Si, then 

^(x)=--|^x'A4(x~x')p(x') 

_aAjB(xz^) 
dx; 

(137) 

If we specialize (134) by taking p = 0 and ^ 
to be any of the homogeneous invariant functions, 
which we indicate bv A, then 

-«"-.^1 + A(x) = I </< [ A^x - x') k^1 

v. 

((ontinued next (olumn) 

aAix-i') 
A(x') 

dx^ J 
(138) 
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bM-x') .. 3A(x') and 
fbü 

-AU') 
dA,U-x') 

bxl 
(139) 

0 .       xl > 0 

AU)=<-^r»(^-^^x 
where 

A=A, A«**, A<->,orA(,>. 

(143) 

, xl < 0. 

SUMMARY OF IMPORTANT FORMULAS 

In this section, we bring together for easy 
reference all the pertinent formulas derived in 
the body of the text; we make no explanation of 
the symbols, since they should all be evident by- 
no w. 

The A Function 

v,(x)=j[icr;[A(x-x')^ 

The Au> and A' ' Functions 

^[A^)(X-X')^-^(X') 

dA^^lx -. (144) 

.^a^Q] (140) 

(D-m«) A(x)=0 

A(x) = 0t x» > 0 y 

aA(x) 
dxo 

= -6(r) 

(141) 

(»Xfl i   r ...      **n * 

= - Tr'-Ti f ^ ^ ' €(*)«(*« + m1)      ( (27r)3 j 
142) 

j f fi*x 

(2ir)4 J        *, + ml 

Q-m«) A^Hx)   =0 

A(+»(x)* = A(-)(x)      > (145) 

A(s'(x)   =0. x* >0> 

A(±^äT(2^JÄ-  2=- 

-^—^- f ^e**'ö(±A:) 6(its-hmx) 
(27r)3 J 

(27r)4 J A* -I- m1 

€(x)6(xt) _ . ml jMrnVg) 

xl>0 

A^>(x)~f       27r       ^^       mV^      . 

x2 < 0, xo > 0 

€(x) 6(xl)     ms ///'»(mV/^1?) 
27r ^       mN^11*1 

v. x2<0, x0<0. 
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The A'   Function 

s 

^■{x-x) ]^±i^'{x) 
Bxm J 

(ü-m«) A'l)(x)=0 (149) 

148) 

= 0U)AU). 

The Ai-Function 

(154) 

=     ~^/^ß(^^mM^'(150) 
0, x laier than S 

—if){x)% x earlier than S 
(155) 

The Aff-Function 

{ j  .\ K i '\^L       i   ^bknix- x') 1 

^(jr), x later than S 

0, x earlier than 5 

(a-m«)Aa*)=6(*) 

A,U)=-0(-x)AU]   : in 

= AÄ(-*). 

A.U)=-(^J^e-[/>^ 

(151) 

-m€{k) 6(^ f m«) 1 
in~m*)b*{x)~h(x) (152) 

AwU)=~-i- f ^f*' [^77^-; 
(27r)4J L    ^-hm1 

(27r) 
^—  [ ^ e'*' €(-)t) ^ (-*» (^ + m«) 

f 7ri€()t)6(^ f m«) 1 1      f e1*' 
(2^)'*?+^ (157) 

1       f (Pic e* * 
(2»)»;^*' *(*)«"•*''(*■ <- m«) ^U).lUte.)[6( x2) 

1   f..  <"*J 

(27r4) j ^   ^4 mJ (153) mm-xtMtimV-x*) 
2m V 

(mV-x1)] 
(158) 
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The A-Function 

da»    Mx - x )TXr-^(j: )- 

The A.-Function 

h-l dx' dx? 

-hp{x), x later than S 

[ —if{x)% x earlier than S 

(D-m«) AU) = 5{*) 

Ä(x)=€U)AU)/2 

= [ A«(x) + A. (x) ]/2 

(159) I^'U),* later than S 

^'(x), x earlier than S 
(163) 

(a-m*)A,(x)=8{x) 
(160) 

Mx) = d(x)A^>(x) - d(-x)A(-)(x) (164) 

_i_ f   .. &*Hk*+m*)-&->{k*+m*)     ikx 

'    Kl*)*]™ 2 

= I(x)-^A'I>(t) 

^^-ü-^/^H^ mz 

(27r) ̂ r/^^ri 
f TTI 6(itl t m2 ) ] 

(161) 

A(x)=' 

x2 > 0 

(162) 

S(x?)     m2ö(-x2) ^.(mV^x2) 
zz—, x2 < 0. 

47r 87r        (mV—x2) 

= -J2^)l|^e'*'5^»(it2^m2 ) 
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Chapter 3 
The Wave Equation and the Electromagnetic Field 

THE WAVE EQUATION AND „ .,  . M    ,   v», ,, -    1    I 
THE INVARIANT D-FUNCTIONS 

Bv setting m = 0 in ihe Klein-(iordon equation 
*\c obtain the wave equation ^jj ,<•*•{+*)«(*»)«»' 

Cv = o. (I» 

The boundary value problems for (I) do not 
differ from those of the Klein-Gordon equation 
and will therefore not be discussed here; to each 
boundary value problem one may construct the 
appropriate Green's function by taking the ap- 
propriate invariant functions of the last chapter 
in the limit of vanishing mass. Designating the 
resultant function by D instead of A, one readily 
derives the following: 

Zi,)') 

== idvld4kif 
(' 

D{x)=- 
€{x)6{x*) dD 

2ir     ' ax<, T.-O 
= -8(r). 

D{x) = ±€{x)D{x) 

6(x«) 

1      f *L eikX 

4ir 

(27r)*J 

= -^: {8(r-Xo)-6(r+Xo)} (2) 

= -(2^J^ 2 

1 f ML <"" 

-ff"»**1) 

where r = VxJ + **-fxJ and a> = Vik|'; DR{x)  =     »(«)D(*) 

D»^*)- 27rlxl 
=    -0Uo) 

g(r-xo) 

4irr 

=     (^W'^ 

(4) 

(5) 

(2ir)3 In)* J cu 

= -(2^/</4A$"' 
(3) i        f eikx 
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DAx) = ~e{-x)D{x) 

Dni-x) 

=     -ö(-xo) 
S{r + x0) 

Anr 

= " TST«/ ^ **' [p i" 'r't<*)»(*1)] 

(2ir)»J rf•ie'*■'€(-*)6,«,-*,l(*,) 

y«^' 
DP(X) =- 

(2 

=    D(x)-^1>(x) 

(7) 

■=-fl V x | = 

V M =0 

St 

V-l =0 

(9) 

where Heaviside units have been used. It is well 
known from the theory of relativity that these 
equations may be combined into two equations: 

dr u„ . dFvK , dFift _ 
dXk       Sxu        dXi 

= 0 

dFu 

OXu 
= ö (sum over fi) 

(10a) 

(10b) 

where the F^ are the tomjxments of an anti- 
symmetric tensor under Lorentz transformations 
and the F^K are given, in the 1,2,3,4 notation, by 

eikx 
(8) 

If we compare these expressions with those of 
Kallen*, we find that our homogeneous functions 
are identical with his, but the inhomogeneous 
functions differ from his bv a sign (hange for 
DH, DA, D and bv a factor 2i for D>. Correspond- 
ingly, his DR function, for example, satisfies 
UDH = - b(x), while UDt -- 2/8(x), in Kallens 
notation 

APPLICATION TO THE 
ELECTROMAGNETIC FIELD 

The free eleciromagnetic held is described l)\ 
the six quantities E, H which saiish the partial 
differential equations 

•(.  Kallrn. "Hiirulbuth dn PhvMk," Vul \ .pan I.Spnngn Verlag, 
Brrlin, l9r>M 

(Fpu) = 

0      Hz -Hy -iEs^ 

-H2    0 Hr   -IE,, 

Hu   -H,    0    ~iEz 

IE,    iEu iEz      0 

Equation (l()a) is solved identically by putting 

öAK     BA* 
FUA-^- 

while Eq. (10b) becomes 

d* 
^x^dxn "       öXK f)jrM 

Ak- = 0. 

(M) 

[12) 

We then s.i\ that the AK are determined up to a 
gauge function, and (hanging (mm Ax to 1\ = 
A*. -♦- ^AX 

,S
 «ailed a gauge transformation. We 

observe that (12) differs from the wave equation 
b\ the presence ol the term f^fV4M; ^c shall 
eliminate this term l)\ the choice ol gauge. Snp- 
|H)se ()^4M does n<?i vanish identic-illy; then define 
4'u siuh that 

Al = Aß f dMx 13) 
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where \ is to bt- r hosen sin h that j*>:[ t>(x-jr ) —— Ak{x ) 
dxl 

[x- x') j 

114) 

-      *  A' .       t =^U). (17) 
1 hen computing dM/fM, we see it vanishes, tqua- 
lion (12) becomes r.      r ^ /   i r J      i I he  tunction <P^(t)  transforms under  ix)rentz 

nansformations like a four-vector; furthermore, 
[H„ - d^kAk = DMi - dMx) - M^; + aMDx        if x € S, then 

= D ^: = o. 

Thus, with this choice of gauge, the equations for 
the four-vector {/4M} read 

a^M = 0,M = 0,1.2,3. (15) 

A,,,  is  still  undetermined  up  to a  x  stsch lhat 
Gx and the A^ must satisfy the lorentz condition. 

dAj, 
dxu 

= 0. (16) 

Equation (16) is a subsidiary condition that 
guarantees that the four-vector that solves (15) 
is also capable, through (11), of describing the 
electromagnetic Held. This may be put another 
way: f~om the set of all solutions of the wave 
equation, construct the set of all ordered quad- 
ruplets of functions. From this set, select that 
subset of quadruplets of functions that transform, 
under Ix^rentz transformations, like four-vectors; 
from this subset, construct that subset of four- 
vectors which satisfies (10); this subset transforms 
into a like subset under Lorentz transformations 
because (16) is Lorentz invariant. Hence this 
selection procedure is covariant. This 'ast sub- 
set is the subset of all four-vectors that describe 
the electromagnetic field through Eq. (11). 

We now turn to the boundary value problem 
for the electromagnetic field. There would be 
no problem in applying the techniques of Chap- 
ter 2 and the functions D of the first section of 
this chapter directlv to each component A» if 
it were not lor the Lorentz condition. The Lorentz 
condiiion implies that the four-comp »nents are 
coupled. Thus we may expect that 4MU) must be 
expressed not only in terms of AM and SKA^ on 
some surface S, but also in terms of the values of 
the other three components and their derivatives 
on S. However, we shall see that thev mav indeed 
be handled as if they were independent of one 
another. Consider the expression 

<t>K{x) = AK{X) 

which follows directlv from the fact that 

(18) 

dD 
dXo 

= -6(r). (19) 

'•-o 

The question now is whether or not ^M*) 
mav be regarded as an extension of AK{X) off 
the surface. To be so, it must solve the wave 
equation and satisfy the Lorentz condition. It 
is clear rhat $K{X) solves the wave equation, for 
D{x — x') does so. Next we must show that dx^Mjr) 
vanishes: 

t-W dD{x-rx')dAK{x') 

-AAx) 

dxi 

VDjx- 
dxkdx 

dxü 

PI 
d   d/M*') r J , r n/     ,, a 9Ak{i 

.s 

dAKdD{x-x') 1 
dx'i dxl J 

-     d(T'u--r    D(x- x ) — 
J dxx I «be,* 

Axix) r— ox ̂ 1 
The first surface integral vanishes because 
AK meets the Lorentz condition on S h\ hy|K)thesis. 
The second vanishes also, but the arguments are 
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muth different. We have seen thai I** is iii<it'|)encl- 
ent of S; dumse S Ui he the plane «o - constanl 
9* Xo.  Then 

dK<t>k = ( </V— 
J dxA  L 

/>(jr - x ) —— 

a/Xx-x') 

/- u 
1 = 1 

-/<((x ) 

-i4«U )  —  
^Xo I 

The integrals of the form / ci3x'd[...]/dx'( may 
be integrated over x', from x'i = — « to x',^ +x 

directlv and these vanish bv boundan values on 
D(x — x'). The integrand of the last integral re- 
duces to 

Dix ~ x ) — - Ao 7-r^  
^x„2 Bx*2 

which bet nines, in lieu of the fact that both An 
and D solve the wave equation, 

0(x-x') dld'Mix') -Aoix^dld! Dix-x') 

= d: [Dix - x')H' Aoix') - Ajx^^Dix- x') ] 

and the integral of this vanishes bv the same 
argumenl .is above. I bus riA<tMx) = 0. 

Thus, ^ATI) solves the wave etjua.mu. satisfies 
the l.meni/ (nndiiion. and reduces In -IAU) 

on S; beiue. «tMi) mav lu regarded .is an exten- 
sion of 4AU) ofl S, so we write (17) as 

/ 
M» IH \     x ) •— - AAx )  

= /lA(x). (20) 

the values of .4M and ^A4M on S IK- given bv the 
functions rM and yKtl respectively; then (20) leads 

.4A(X^ = J Jo-; [ O(x-x') rA^(x') 

-f/M(x) diOU-jr') J. (21) 

Suppose Ai{x) were another four-vector that 
solved the wave equation, satisfied the l.orent/ 
condition, and reduced to f/M on S while its 
derivatives reduced to VKll on 5. We have seen 
that AK and A* must then be related by a gauge 
transformation, 

A,Ax)=Ak{x) + KM 
axA 

where 

Dx(x)=0. 

(22) 

(23) 

Since A\{x) = AAx) = UK{X) when x € S, we have 

^XA 
-0 (24) 

and similarlv. 

JZL 
OXU^XK 

= 0. 

Also. 

□^AX = 0. 

(25) 

(26) 

From (26), rt^X 's a function of spate-time whose 
values at x mav be expressed in terms of its 
boundary values, i.e.. 

BxxM = i (hTß [ Dix - x') didix 

-;Kx^ l>ix - x') ]. (27) 

It   is  an  easv   mattet   n»  show   ih.ii   A^ix)   as 
given bv (20) is a unique extension; to do this, let 

But in light of (24) and (25) the right side of (27) 
vanishes,  and   hence  A Ax) fA(x)   foi   all   x. 

I IH,>S, K.q. (20) mav be regaided as the unique 
solution to the boundan value problem foi the 
elei tiomagnelK field 
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This rhapier will be devoted prindpailv to 2 
study of boundary value problems of the Dirac 
equation. We begin by a brief study of notation, 
(oflowed by plane wave and general solutions 
We then formulate a "Green's identity" for the 
Dirac equation, followed by a studv of the various 
Green's functions. 

NOTATION; PLANE WAVES; 
GENERAL SOLUTIONS 

In our notation, the Dirac equation reads 

(TV*,. + m) *(*) = 0 (1) 

where the summation convention is used; the 
quantities yM, fi — lt2,3»4» are elements of a 
noncommutative algebra characterized by 

TM y* + TV TV = 26^ w = lt2,3,4. (2) 

We define y© by 

74 s iyo (3) 

so that, we note, TV 3M = > • *' -I- y< 84 = y • V -I- yo do. 
We take as a representation of the y's, 

yi = 

fo 0 0 r 
,  =   0  0-! 0 

0-i    0 0 
.1    0   0 0> 

A 

> -(4) 

73 = 

0   0 H    0> 
0   0 0-z 

-1    0 0   0 
0-1-/ 0   0> 

yi = 

1    0   0   0^ 
0    10   0 
00-10 

ko 0 0-1 

We dehne ^U) hv 

(5) 

where 4»* is the conjugate transpose of i/»; (hen 
from (1), (2), and (5), one can show 

d0yM 
(6) 

The functions & that solve (1) are four compo- 
nent quantities called spinors which transform 
according to a particular representation of the 
Lorentz groupt. Although we shall not discuss 
the_ transformation properties, we do note that 
it if{x) solves (6), then 

a r_ 1 
^ [*>(*) y^Mx) 1 = 0 (7) 

by  virtue of (1)  and  (6), so thai the quantity 
fix) yM ^(x) transforms like a four-vector. 

If we  seek  plane  wave  solutions  to (1),  i.e., 
solutions of the form 

*(*) = u{k) e*' (8) 

we find that there are four linearly independent 
solutions for a given space-part of the uomentum 
vector k\ i.e., for given k, there are four solutions. 
Without going into any details (see the Dirac ref- 
erence) we gr«/e »he results; we label the four 
solutions by 

Vr){x) = itr){k,v) e*' 

where A = (k,Ao)   is a function of k and a> = 

«•JV 

(9a) 

tSer P   A   VI   I)ira<, -1 hr PiimiplrroK^uanium McihariK«." Srdrd , 
Oxford l'ni\rr*iiv Prr«. 1947. p  Ihl 



38 J    V   HAYES 

,«(,)-^ 
2cu 

gäkw-m*^ 

ii*«>(kf«)e«fc' -'•, 

3)(jr) =   / !ü±^      /^-\ e*k ^-'o) V 2Cü 

tt(3)(kt(ü)<r«,,r--'o) 

¥A){x) = y 2« 
ei(*r+*u-0) 

These functions are normalized so that 

4 

V  I«* U' ,(.) = ^r.). 

(9b) 

(9c) 

(9d) 

(10) 

ifx) and ^(1) correspond to solutions with positive 
energy (positive frequency while tyv and i(/4) 

correspond to solutions with negative energy, 
ko = -to < 0 (negative frequency). 

Since Vl\ Vv, V*\ and ^4) each solve the 
Dirac equation, any superposition of them will 
also solve the Dirac equation; thus, for a given 
momentum vector k, we can write the most 
general solution of (1) as 

of such   functions  as  (11);   thus,  for  the  most 
general solution we have 

*(«) 
(27r)3J 

d*k 2CJ(k)w^,(k,ü>)^k^^o' 

+ ytCjik}uWik,<*)e*k* iMtJ-Qi (12) 

We shall write this expression in a more compact 
form; define 

^(lr,ü;) ^47r^j(k)iiJ(k,cü),   >=U 

6j-t(k,-cü) = 47raiCJ(k)uj(k,(ü),; = 3,4. 

Then after some algebra whicv is by now quite 
familiar, we get 

*(*) (2ir)4j?J rf1* 8(ifc« + m«) W>{k)eikx  (13) 

for a plane wave expansion of the general solution 
to the Dirac equation for a free electron. 

A GREEN'S IDENTITY FOR THE 
HOMOGENEOUS DIRAC EQUATION 

Lei ViU), vA*)* ^:«UK i«nd <pAx) be lour 
distinct solutions of the Dirac equation, Fq. (1); 
each is a four-component column vector; thus, 
the fetrad <p{x) = (<? 1,^2,^3,^4) is a four-by-four 
matrix and has the property that 

(yMdM f m) ip{x) =0 

d^y» - nup{x) =0 

(14) 

The quantity  '<p(x)ytl\li(xf   is a four-componenl 
quantity, a column, each of whose components 

From   Fourier   analysis,   any   square   inlegrable    transforms  under  Ixnent/   transformations  like 
function in L2.4 may be written as a superj)osition    the fith componenl of a four vector. 
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In Gauss' theorem, we pul /M = ^ >*'/'♦ where 
^ is described above. Then 

(Choose tfsix') such ihat 

j A'^xU^Y^U')^^«),^««,        (19) 

Si 

05) 

i.e., 

or 

represents four separate equations which hold 
simultaneously. Performing the indicated differen- 
tiation in the integrand in the left side, we get a 
type of Green's identity for the Dirac equation: 

^r(x')=-ro5(r -r) 

^(x')--i8(r'-r). (20) 

M d^(x') 
^x ■—yM*')+*(*')% 

d^( 
r)x:     J 

= - f ^ ^U'hM^U') + [^^U') rM^(jt'). 

(16) 

Equation (10) will hold whether or not (14) does. 
Assuming (14) is valid, the left side of (16) van- 
ishes; this may be seen by adding and subtracting 

nüp{x')ty{x') to the integrand and using (1) and 
(14). Then (16) reduces to 

J d(T'lllf>{x')yM*')=\ da^lpix'fy^ix').   (17) 

•s. -S 

Equation (17) is independent of Si and S* because 
of (1) and (14). We shall use (17) to construct an 
auxiliary matrix ^x(x') in order to formulate an 
integral representation of the Dirac equation that 
includes the boundary values of 0(jr). 

THE INVARIANT HOMOGENEOUS 
S-FUNCTIONS 

Since (17) is inde|)endenl ol S,, select Si >o be 
the space-like InpeipLme x» - *,„ and label the 
auxiliai) (unction (matrix) v'i »') with x .is well: 
^,(t'). I lun (17) icids. noting da'^y^ - 
-d(T[ify»\b and r/crö - -iPx', 

Then (18) reads 

*{x)=jda*lp(x'-x)ytl*ix') (21) 

St 

where Ifixix) was rewritten in the form ^{x' — JT) , 
taking advantage of the fact that v must be in- 
variant under translations. That ^(x) may be 
represented by (21) has yet to be shown; i.r, 
we must show that Jf{x' — x) exists. That it does 
is suggested by the fact that the Dirac equation is 
equivalent to eight coupled real first-order 
equations to which the Gauchy-Kowalewski 
theorem may be applied. Since the latter theorem 
exhibits solutions only locallv, a global representa- 
tion such as (21) is not yet guaranteed. We shall 
prove the existence of ^ by construction. We 
could do this, as we constructed A(x), by using 
the Fourier expansion of ^ as in Eq. (13). Instead 
we shall proceed more directly. 

We seek a solution if{x' — x) in the form 

Vi*)xly*fo mjy4x{x). (23) 

Since ^(x) solves (1), x(x) must satisfy 

(G-m«) x(x)=0. (24) 

The  boundaiN   condition on tp becomes a con- 
dition on xi putting x = 0 and x' = x, (20) becomes 

4 x 

J rfV ^s{x')y^{x') = j dallfAxh^ix'). (! 8) fix) = -i6(r) 
T00 
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or Bv  utilizing Schwinger's priMredure to obtain 
the j)<)siiive and negative frequenc) parts of ^(x), 
together with (29) and (30), we can readily obtain 

|XM=O ihe propagators   that give ^"U), ^  ». ^^(x), 
and 0*  Hx) from the values of t/» on the surface S\ 

Equation (25) will l* met it these telations are easily shown to be 

(^^r~mW       =-i«(r). (25) 

xU)-0,x«>0 (26)      ^i(l)=|dir;St»)(x-i'h^(I') 

and v y 
5(*'(JC) = (yMdM~m)^ + '(*) 

= S(r) (27) 
xt-0 

^-»(js)=fiÄr;S<->U-x')y^O 

because if (20) holds, dxldx,=0 on   x0=0 and > ^33) 
(25) reduces to (27). Thus, &-){x) = (yMaM ~ m)A( »U) 

xU)--A(jt) (28) 

and «|/^(x)=|^^(jt')yM.9 '(x'-x) (34) 
s 

0Xtl        ' ^ >U)=J rfcr;^U')y^+,U'-jr). (35) 
or 

?U)=-yt(y;5~;-'«)74ÄU) 

or 

Next, dehne 

#'>(*) ^ (y,A-m)A<"U). (36) 

= ("XM T™ "*" m) A(«) To seek the boundary value problem that 5(I)U) 
solves, instead of resorting to Green's theorem, 
we simply put 

?(»'-')-(*. £7 + ")^'-;.) I^S-H«-,')^,')-^)      (37) 
S 

= (>"äi;-'n)A(l-T')- and noiing that 

The  function ^U'  — x)   is generally  written ^(JC) = (y^ — m)    > 0    AU) 
S(x - x'); thus, (21) becomes V "^ + ^ 

0(x)=|jc7(;S(x-x')yM^(x') (29) "v-df + m«SU) (^) 

we get 

^-*) = [y*i^'*)^-^      (30) (jt)=_   ^^u). 
V^d? + m2 

From (29) and (30), follows immediately that 

Thus, if ^x) has only positive frequency parts 
IMJT) = I &** 0(x')yM .S(x' -JC). (31)     on S, then i|»U) h.is onh |>osiiive frequency parts 

^ lot   an\   |K>int   «  not  on S.  Iiecause all  Fourier 
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components  of  0(i)   |}i<>}>agatt>  indejirndent'y        In  general, if 2.{k) be the four-dimensional 
for ihe solutions to the I)ira< equation. Therefore     Fourier transform of 5UK then 

i^+»(jt) - J rfc-M S^ix - x')y^^{x') (39) l(k) = (iky-m) Mk). (45) 

-W 'U) - j da^S^ix-   ir')y^ '(»'). (40) 

From (39) and (40) one tan demonstrate, after 
some calculation, that S111 solves the boundary 
value problem for i/r summarized in the equation 
below: 

- M*>(x) =j da» V*>{x')y£">{x' - x) (41) 
s 

W Kx) = I rfcr; ^ >{x')y^>{x' - JK)      (42) f 

Equations (36) through (42) show that S*11 

is the Green's function that enables one to con- 
struct the positive and negative frequency parts 
of a function in terms of its positive and negative 
frequency parts on the space-like surface S. The 
point x at which this is done may precede or be 
later then S, and indeed, in view of (27) and the 
derivation of .$(*), x may lie on S. 

The results of »his section show that the matrix 
functions S(x), S' + 'U), S( 'UK and $">(«) play 
roles ouite analogous to theii corresponding 
A-functions, even though the equations they 
solve are quite different. Further, the invariance 
of these functions under Lorent/ transformations 
is a consequence of the invariance of the A- 
functions and of the Dirac equation, but we have 
not demonstrated this result. It is quite easy to do 
and is left to the reader. 

The integral representation in terms of a 
Fourier analysis of the invariant S-functions is 
quite easy to come by. Let S(jt) represent any one 

of the four invariant 5-functions above and Abe 
the corresponding A-function; write 

AU) = 
I 

Then it follows that 

-■I d*k Mk)** (43) 

Six) (2*)* j d*k iiky-m) \{k)e*r     (44) 

THE INVARIANT 
INHOMOGENEOUS S-FUNCTIONS 

Following the example of our study of the 
Klein-Gordon equation, it is quite natural to try 
to construct propagators which propagate asvm- 
metrically about the space-like surface S. As a 
first case, let us construcl a function SH which 
expresses the value of I|I at JT in terms of its values 
on S when S is prior to x, but gives zero otherwise. 
Such ä function will be called the retarded S- 
'unciion and its effect is summarized bv 

/ 
da'»SK{x-x')yflilf(x') 

Mx), x later than S 

0,   x earlier than S. 
(46) 

Because the function Six)  vanishes outside the 
light-cone, it is clear that 

S*U) = 0U)5U). (47) 

A further propertv of Snix) is readily proved, 
namely, 

{yhdH f m)S*U)=8U) (48) 

v\here, again, 6(x) is the four-dimensional delta 
function 6(XO)8(T)- Because S^x) satisfies an 
inhomogeneous Dirac equation, it will be termed 
an inhomogeneous S-function: further, because 
f>oth S{x) and 6{x) ate Lorentz invariant func- 
tions, S*(*) is Lorenu invariant. Rewriting (47) as 

e ,   ,      1 + «(x) ..    . 
S*{x) = ^ Six) (49) 

it is then easy to show that 

.S*U) = (-KMaM-m) A*(x). (50) 

In a similar fashion to that for defining the 
advanced   A-function   A.(x),   we  introduce   the 
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/ </ov SA{X - X') y^ix') 

advanced    S-function    S.tix)    whose    defining     same as (56). but sime it is mil difficult to show this, 
properties are we leave it to the reader. 

Finally,  we  introduce the  Fevnnian  or causal 
propagator Srix) h\ defuitiig it as 

C^')     It   is  a  straightforward  demonstration   co show 

I <fcr; Sf{x- x^y^ix') 
Then 

0,       x later than S' 

— ^(x), x earlier than S'. 

s A{x) = ~ e{-x)S{x) 

-1   +€(*)  c/    . 
= 2 S(x) 

iy^ + m)SA{x) =6(x) 

and it tan easily be shown that 

S ^x) = (-yMdM — m)A4(x). 

(52) 

(53)     an^ ll iS obvious that 

|      i/Z^Mjr), x later than S' 

— i^ '(x), x earlier than 5' 
(60) 

(yMdM f m) S^(x) = 6(x). (61) 

(54) From (58), (59). and (36) it follows immediately 
that 

For the Dirac equation, we may introduce a 
function Six) that plays a role analogous to 

that of A(x) for the Klein-Gordon equation; 
define S(x) such that 

SF{X) = (7MdM - rnjA, (x) (62) 

/ 
da» Six-x') y^ix') 

l/2i/>(x),   x later than S' 

- l/2^(x), x earlier than S'. 

If Six) represents anyone of the four in- 
homogeneous invariant S-functions of this section 

and A(x) its analogue for the Klein-Gordon 
equation, and if the Fourier transform of A(x) 

is denoted simply by A(&), then the integral 

^5J representation of Six) (that is, its Fourier trans- 
form) is clearly giv^n bv 

We see inmediateU that .S(x) must be given bv 

S(x)- 1/2 €(x) S{x) (56) 

Six) = 
(27r ./ 

d4k iiyk-m) Mk)eik'. (63) 

and that 

{yuäu f m) .S(x) = 5'x) 
Finally, Ix'tause all the invariant S-functions. 

(57)     homogeneous  and  inhomogeneous,  are related 
to their analogues foi the Klein-Gordon equation 

while from (56) one can show that another ex-     in the same way, i.e., 

pression for Six) is 

S,ix) - (y-a - ni)X(x) (64) 
S(r)-(yA-m)A(x). (58) 

.ill the relations between the A-functions also 
The steps involved in the proof of (58) are several obtain tor the S-functions and will therefore 
m numbei  and it is not obvious that (58) is the     not be repeated here 
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APPENDIX 
Alternative Derivation of the S-Function 

In this ap|>endix, we give an alternative deriva- 
tion of ihe function S(x — x')of Chapter 4, Equa- 
tion (30) along with an alternative cierivation of 
Equation (29) of the same chapter. 

Since each component of a Dirac spinor solws 
the Klein-Gordon equation, we mav use Equation 
(25) to express iM*), a typical component, in 
terms of ^o(x') and d&aix' )!dxo on a given 
surface. Of course, for the Ditac equation di^aU')/ 
dx'o cannot be specified independently of ^a{x) 
(a = 1, 2, 3t 4) on the surface, and that will pro\\o 

the key to this development of equation (29). 
We have 

<M*) 
S' 

A(x-x') 
dxi 

4ßm{x')     (a= 1,2,3,4). (Al) 
dMx-x) 

dxL 

The four equations represented by (Al) may be 
combined together in a matrix equation for the 
column vector ^(jr): 

*(x)= j da^ 
s' 

Mx-x')—: 
dXp 

dMx-x') s-^'l- (A2) 

Choose  S'  to  be  the  surface   {x'\xo — coasr.}; 
then (A2) becomes 

*(x)=-/^{A(,-,')g 

*{x A {A3) 

The quantity ^/f)*© may be expressed in terms 
of «i/ or S* and the spatial derivative of i|f (tf, 
the derivatives of 0 parallel to the surface 5', 
all of which aie known when ^ is known on S') 
bv Dirar equation: 

dxo 
= -a* 

a^(x') 

hx\ 
-imßtix').     (A4) 

Inserting (A4) into (A3) and integrating bv patts, 
we obtain 

tix, =-J^'p'£:-£--"")A(x-x')U(x,) 

+ | rfV a. ~ [Mx - x')*ix')]. (A5) 

The lasi term of (A5) vanishes because of the 
boundarv conditions on A(x — x'); using this fact 
and the relacions 

a,   = - iyryA 

ß =y< 

(A4) then becomes 

*ix)= j (Px'i U -y» ^ -m)A(x-r')|   x 

-S^i i + y* T m)A(x ax -,] x(A6) 

>4iMx') 

since id*x = dcrt and d/dx'M A(x — x') = —d/dxM 

A(x - x'); finally a lx)rentz transformation that 
alters S' to a more general surface yields a relation 
of the form 

^(x)=|cfcT;.S(x-x') yM *(x') 

S{x- x') - iy^d^- m) S(x-x') (A7) 

The nicest part of the derivation of (A7) is 
that the method mav be applied directly to any 
relativistic wave equation for free particles; 
the same technique may be used to develop a 
propagator S**' and vS1 ' as well, and only minor 
modifications are necessary to develop in this 
manner the other propagators. 
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Chapter 5 
THE ROLE OF THE PROPAGATORS 

IN QUANTUM HELD THEORIES 

The invariant functions derived in the previous 
three chapters are of particular significance in the 
quantum field theories of the pi mesons, photons, 
electrons, and nucleons. In particular, these 
functions arise in the commutators and anti- 
commutators of field operators for bosons and fer- 
mions respectively, and in the perturbation de- 
velopment of the S-matrix. While it is not our 
intention here to develop quantum field theories 
in full, or even the field theory of any one such 
field, we should like to do a few simple illustrative 
calculations to demonstrate how these functions 
enter the theory. For this purpose, we shall 
study, in part, a scalar meson field, which is about 
the simplest of the theories and yet is quite 
analogous in its development to all other fields. 
In its simplicitv it avoids such complications as the 
need for the intnxlucnon of an indefinite metric; 
hence some modifications have to be made when 
extending the results to the electromagnetic 
field, but little or no changes in the general 
approach. 

Our approach to the subject will be along fairly 
"classicar lines. We note first that the field equa- 
tion for an unquantized scalar meson field is the 
Klein-Gordon equation: 

(D-m2Mjt)=0 (1) 

We should like to construct a Dtgrangian, L, 
whose corresponding Euler-Lagrange equation 
is (I). This procedure is well treated in many 
books*, where one finds for a suitable Lagrangian 

i = -5 ?.(£)' f mV (2) 

as one may readily verify by calculating ihe 
Euler-Lagrange equation with (2). The momen- 
tum canoriicallv conjugate to y is 

fy dt (3) 

Now in the first step of quantizing a field, we re- 
gard the field components and the canonically 
conjugate momenta no longer simply as functions, 
but also as elements, indeed, generators, of a 
noncommutative algebra wherein the fundamental 
relationship, for our case, is given by 

[7r(MK Wr',/)] = idMMr',*) - v?(r',r)7r(r,f) 

= -6(r-r.). 
i 

(4) 

We shall again lake ^T ^ 1: then with (3), (4) reads 

■^U(M) = i6(r-r') (5) 

Lquation (4) or Eq. (5) provides the fundamental 
statement about the noncommutahvitv of the 
elements of algebra and has been used in this 
form in many treatments.* It suffers from a defect 
however in that the time coordinate is singlevl 
out in a manner different from the space co- 
ordinate. What we shall show is that this defect 
is simple to remove and that we can develop an 
expression for I he commutator of if at the space- 
üime point x and for if at x' in a Lorentz invariant 
manner. 

Let S" be a space-like hypersurface on which 
the classical function ^(x) and its derivatives are 
defined. We have seen that from these data we 
may obtain v? at x' by Fq. (25) of Chapter 2, that 
is, by 

-ipix") 
db{x' - x"] 

dx» (6) 

*Sf< C.   Wcni/tl, "Cfeiantum  Ihmn ol Fields," Inirraiirme, 1949 •IM 
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Now even though the v's have been now ton- [?(*)«?(*') ] = — H{x — x') (10) 
sidered as elements of a nomonmuitative algebra, 
thev  still satisfy (I), and hente (6) will remain     whkh |S whal ^ wcre ^kxn^ 

From (10) it follows bv simple substitution that valid. Thus, 

[?(*).*(*') ]={ da'^Mx'-x") [ »fix - T/l), (fix')   ]   = - il{x - X   - Tfl) 

which leads to 

[^xK^^] W+*{x),<p(x')]=-i^{x-x') 

_ f fa. Wx'-x")  [ ^U)f ^„y ]        (7) 

We recognize that S" is quite arbitrary except 
insofar as it is space-like and theretore utilize 
this freedom by choosing it so that it is the hyper- 
plane S" = { x"\ t" = t } going through the 
point (" = t. Then (7) becomes, according to 
Eq. (32) of Chapter I, 

[ *>(*), ^x') ] = - | <Px" A(r' - r", t' - t) 

r bv{f'\t) 1 

/ 
(Px 

„d\{r' -t'\t'-t) 
dt 

[^(M),v(r",0- (8) 

Putting (5) into (8), we get an integral equation 
for the commutator: 

[<p(x),v{x') ]=-iMx-x') 

I +     cPx 

/"=f 

" Mir' -r'\t' -t") 
dt" [*(M)^(r"/')], 

(9) 

Utilizing the method of iteration and the fact 
that A(x — x') vanishes for space-like intervals 
x — x', it is simple to see that the solution to (9) 
is simply 

and also that 

[ v^'UK Vix' + rn') ] - iA(*>U ~ x'~ rn') 

which leads hnallv to 

[^{x),^*') ]=-iA<^(x-x')        (II) 

[ ^-»UWK*') ]=-iA<->(x-x').       (12) 

Before continuing with this development, it 
is interesting to examine some of the assumptions 
that have been tacitly made above with respect to 
the mathematical formalism that is used. It is 
not our purpose to go into a discussion of the 
mathematics on a rigorous basis; such a project 
would be, without doubt, of great value m under- 
standing what we shall be doing and what we ran 
do but would be too vast a subject to cover ad- 
equately here. We choose only to point out two or 
three of the major points in field theory that 
require some detailed mathematical study and to 
give an idea where one may find helpful infor- 
mation. 

The first point comes up immediately upon 
applying the technique of second quantization. 
We have asserted that the classical field functions 
must no longer be regarded as ordinary functions 
but as elements of a noncommutative algebra. 
To understand the meaning of this, let us return 
to the definition of a function as we ordinarily 
encounter. If D = { Jt|a ^ x «s 6 }, that is. :f D 
be the set of all real members on the closed in- 
terval between a and 6, and if R — { y\c ^ y ^ d}% 

and if there is a correspondence between D 
and R, that is, if to every element in D we asso- 
ciate one element of R, then we sav that there 
is a mapping of D into R, D is called the domain 
and   R   the  range of the  map.  The collection 
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of all oidered pairs (x,>) where v is ihe* image oi 
x uncier (lu- ^iven map is called ihe graph cif the 
map. Ihe map is also tailed a function. Ihe 
usual prescription for s|)etil\if^ ihe function is 
to j^ive a formula for computation oi one or more 
of ihe ordered pairs U,v); the formula is rep- 
resented in general h\ ihe equation y = fix). 
Suppressing ihe independent variable x in ihe 
set of all ihe ordered pairs (Jt,v). \>e see ihen lhal 
the function is specifked b> ihe totality of its 
values in the range R, and an essential feature of 
the function is the clear representation of what its 
domain is and what its range is. In our simple 
example, the domain and range were hoth sub- 
sets of the real line. In the theory of friulions of 
n real variables, the domain will be a subset of 
£", the n-dimensional Fucledian spate and the 
range the real line, or the domain might be an 
n-dimensional hvpei surface in an «+1 dimensional 
space with the real line as the range. 

But the range need not IK
1
 rest ruled to the real 

line. If, for example the range of the function 
were En, while D were ihe real line, the function 
would be described as an n-dimensional sector 
function on the real line. In the case of our field 
theory, the domain of our functions is the space- 
time continuum. whit£ the range is some subset 
of some noncommutalive algebra, which has 
yet to be specified in greater detail. IIV ^ml>oli'es 
one particular such function, D —* R md x € D, 
then the image element of x under fp will be 
cienoted simply by $( O. where x = (r,.f) !f 0 is a 
second map of D into R, D —* R, then the image 
of x will be denoved by I/IU). and of course 
(M*) € A. 

It becomes necessary to define equality of two 
functions. Many definitions are readily available, 
but the two most useful are: {a) if = $ if <f{x) - 
i^U), all x f 0 and (b) <f = Ü ifV(x) = ^(x), almost 
all x c D, where "almost all" means ^(x) = i|<(x) 
everywhere in D except on a set of measure zero. 
In the latter case, it is convenient to introduce the 
notion of equivalent classes as in the theory of 
measurable functions, bin we shall not go into 
this in ans more detail. We shall assume hence- 
forth lhal some acceptable definition of equality 
of two maps oi functions is given. 

If ^ and 0 are any two maps of D —* R, v\e may 
then define a third map n of I) —► R. because of 
the fact lhal R is an algebra, by 

TTix)  =if{x)  + iMx) 

and  TT will be symbolically denoted by if + *li. 
\A'\ \ = { X,/x,... } fn- the field over which the 

algebra R is defined; because R is an algebra, then 
such quantities as .S^(x) + /i0(x') are defined 
and belong to R. Such quantities must be regarded 
as distinct from the sum of iv\o functions, being 
merely ihe sum of two elements in the algebra. 

Now an «Igcbra /?. though it may contain an 
infinite numbei of elements, when treated within 
the framework of algebia, is studied only by finite 
means; bv this we mean only finite sums, dif- 
ferences, and products are considered. But we 
asserted that among the functions if and 0, etc., 
are those which satisfy the Klein-Ciordon equation, 
or its equivalent integral equation with the desired 
boundary conditions. But it is clear that to gi\e 
meaning to these latter concepts it is necessary to 
introduce concepts of analysis such as limit 
|K>ints and infinite sums. That such a procedure 
will work for our algebia R is intuitively clear, 
since it can readily In* done in the space of all 
functions on D onto the real line and since these 
notions do not require am alteration on account 
of the noruommutativiiv of the algebra. Once 
having found a successful formu alion of these 
analytical concepts for our algebra, one can ihcn 
go on to introduce the analogues of derivative, 
Riemann integrals, and I.ebesgue integrals, each 
c ase being a map of some subset of R into R 

One would then imagi .e thai the next step in a 
mathematically rigorous discussion of our field 
theory would be to establish the existence of 
solutions to the field equations (I) or (6) consistent 
with the commutation rules. Indeed, if our algebra 
R were specified in detail beforehand, this would 
be the next step. On the other hand, as we have 
seen, R is not so specified; indeed, what we must 
do is to assert the existence of such solutions and 
use these as a basis for constructing by the 
operations allowed in our algebra, the rest of the 
algebra. 

Once having obtained the structure of our 
algebra, we mav introduce mappings of the set of 
ail mappings of D into R into itself. If if and a 
IK* two maps of D into R such that if is the image 
o( a under the map F, sav, we shall denote it bv 
if ~ hKa) symbolically, which expresses a relation- 
ship between all the values ^(x) and those of 
a(y). One used often in field theory is 

^(x) {kWkIdA\i 



SRL  REPORT   60'2H 47 

where we now assume thai meaning has been given 
10 the integral sign. For functions in £,«(—», 4-«) 
the Fourier integral transform is given by just 
such a formula and its inversion is well under- 
stood. However, the inversion of such a trans- 
formation when tfU) and a{k) for each x and k 
respectivelv are elements of our algebra must be 
established anew. 

The mathematical points touched upon in the 
discussion of the above few paragraphs are usually 
glossed over in most field theory studies, as we 
have done in our development. The development 
proceeds along the lines dictated by formalism 
and intuition. It is in this spirit that we proceed 
to derive one more result in field theory; namely, 
we assume the correctness of a theory of Fourier 
transforms for our field quantities which is 
formally identical to the theory of the Fourier 
transform for generalized functions. Thus we 
assume the existence of elements a{k) such that 

<fix)=-2^-4jd*k7i(k)ei 

ä{k) = ( (PxifixU »' 

(13) 

Assuming   that  if(x)   obeys   the   Klein-Ciordon 
et|uahon, these reduce to the form 

v?U) = 
1 

(2ir) 3.1 /<[• IkJe*1" -" 

+ a*(k)e,,,,r-',') 
(14) 

where here a*{k) does not mean anything other 
than a*(k) is different from a(k). Equations (14) 
and (II) together yield a commutation result for 
the a's: 

I a(k),a*(k) ]=6(k-k') (15) 

The physical interpretation of (14), (15), and 
a(k) and a(k) are too familiar to go into here. 
We could go on to show how the T and P products 
come about in the theory and are expressible in 
terms of the propagators derived in the previous 
chapters. This we leave to the interested reader. 


