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RESISTAMCE CHANGES CAUSED BY VAPORIZATION WAVES IN 

EXPLODING WIRES 

ABSTRACT 

The marked Increase In electrical resistance occurring at temperatures above 

melting can be explained by assuming a vaporizaf on, expansion wave proceeding radi- 

ally inward from the wire surface. This wave reduces the conducting cross section 

of the wire, thereby increasing the resistance. For wires well matched to the 

circuit the resistance rise occurs when the condenser voltage is practically zero 

and can be neglected; oud for thin wires that explode rapidly on the linear portion 

of the current curve, condenser voltage can be taken as constant. Under these 

assumptions the circuit equation can be integrated and explicit expressions ob- 

tained for current, power and deposited energy. The required velocity of the wave, 

deduced from data on copper wires, is about 250 meters per second, an order of 

magnitude smaller than sound speed. A theoretical fluid dynamical model of an 

expansion wave involving a phase change from liquid to wet vapor is investigated; 

this analysis shows the expected velocity of small amplitude waves to be very close 

to the experimental value cited above. The theory predicts both the onset of ■'.he 

wrave and the wave speed as a function of deposited energy up to the critical 

temperature. Beyond critical temperature, where the liquid to vapor expansion 

does not apply, the wave speed should be only a function of deposited specific 

energy. The experimental data for copper wires under a variety of conditions are 

found to correlate to a single curve; thus, the supposed resistance anomaly in high 

temperature copper wires is explained. 
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1.  INTRODUCTION 

For seme time it has been understood that the resistance function of an 

exploding wire is intimately connected with and dependent upon the fluid dynamical 

phenomena encountered during the expansion of the wire. This view was fore- 

shadowed by W. Müller in his application to the cylindrical wire caie of the 

theoretical calculations made by F. Wecken for spherical explosive charges. Further 
2 

semi-quantitative development of the basic ideas was given by E. David who 

estimated the approximate expansion ratio at which electrical conduction in copper 

wires would cease. A more ambitious attempt at a quantitative theoretical d-.s- 
3 

cussion is given by M. Keilhacker who applies to the case of exploding copper 

wires, the one-dimensional theory of the unsteady, centered, simple-wave expansion 

of a perfect gas in an effort to calcu1 vte the decay of mass density on the wire 

axis for different experimental conditions. His asymptotic values for density arc 

too high by at least an order of magnitude when compared with the more exact, 

hydrodynamic, numerical calculations of C. A. Rouse , probably because the one 

dimensional simple wave solutions account for neither the reflection of the ex- 

pansion wave from the axis nor the cylindrical geometry. 

A more complete approximate theory, which provides a clear physical picture 

of the expansion of a cylinder of high temperature, high density gas into a lower 

density surrounding medium, is given by M. P. Friedman who accounts for the non- 

planar geometry by a perturbation treatment based on the planar simple wave. He 

explains the presence of the internal second shock wave and finds its path using 

a method developed by G. B. Whitham based on the requirement that there be only 

a single mapping of the flow region by a given family of characteristic curves. 

The shock in the ambient medium and the contact surface behind it are decrlbed 

using the approximate theory for the motion of shock waves in channels of varying 
7 

cross section, which theory is founded on ideas developed by V. Chester, P. Germain 

and R. M. Gundorsen, R. F. Chisnell, G. B. Whitham  and others. More recently 

the magnetohydrodynamic problem of converging or diverging shock waves, with 

cylindrical or spherical symnetry, in the presence of magnetic fields is solved by 

Qundersen. 

These studies are relevant to various idealizations of the exploding wire 

problem and enable us to form a fairly definite picture of the fluid motions and 

shock wave phenomena to be expected, insofar as theory of the inviscid flow of a 

non-conducting, perfect gas without excitation or nonequilibrium effects can be 

trusted to provide an accurate representation. 

7 



An adequate theory of the exploding wire must regard the energy source, wire 

and ambient medium as a complete system.    The electrical behavior of the circuit 

can be described either in terras of Maxwell's equations with suitable boundary 

conditions or, for the low frequency cases  (f< 20 mc) by means of generalized 

forma of Kirchhoff's laws.    Conservation of energy then requires a balance between 

dissipation of electrical power in the circuit and the thermal heating, conduction, 

radiation and electromagnetic interactions of the wire material.    Given the temper- 

ature history of the wire an attempt can be made to solve the fluid dynamical 

problem posed by the conservation equations for mass, momentum and energy together 

with suitable initial and boundary conditions which specify the transitions from 

solid through liquid to vapor within the wire material. 

There is a very important missing portion in the development of a complete 

theory.    Even assuming that the electromagnetic and hydrodynamic problems can be 

solved, there exists no comprehensive, detailed theory relating the resistance of 

the wire to the phenomena that occur when the metal lattice is heated through its 

transition points, melts,  is further heated, vaporizes and commences to expand. 

At present there appears to be little prospect that such a theory can be readily 

developed   on the basis of existing knowledge of the solid and liquid states. 

Ue attempt here to shed light on the early heating and expansion phases of 

exploding wires by a semi-empirical, heuristic approach which bypasses the  funda- 

mental theoretical questions raised in the preceding paragraph and replaces them 

at the outset by an explicit assumption specifying the resistance as a function of 

time.    When the implications of this assumption for the electrical behavior of the 

circuit and the heating of the wire are understood,  refinements aimed at improving 

the basic hypothesis can be undertaken.    Throughout the remainder of the discussion 

we shall seek the simplest theoretical formulation adequate to represent the 

selected portions of the wire explosion. 

2.    THEORY 

2,1   Energy Conservation. 

Under equilibrium conditions the energy E added to a material can be expressed 

as a StieltJes integral.    For the exploding wire, which we know from the conditions 

of the experiment is not heated under equilibrium conditions, this representation 

nay provide a reasonable starting point.    Accordingly we   write 

8 



J f-Jl if•••/,,-.- E1 
J   ^      ^    m ^J  J (2.1) 

where E = EC!) and absolute temperature, T = T(t), is a function of time only. 

ÄE refers to the energy absorbed at the J   transition where the J « 0, 1, 2 . . 

correspond to crystal structure, melting, boiling and other transition points of 

the material. 

If we assume that between transition temperatures energy is given by 

E ■ mCv(T - T.) + E. where m is mass of wire and C its specific heat, and if we 

neglect radiation, conduction, thermal expansion and other energy losses from the 

wire, then between transition points 

^(mCvT) « Ri2 , (2.2) 

2 
where Ri represents the electrical power dissipated in the wire. 

During a transition, e.g. melting, we can write 

tj ♦ Atj 
Z« - /   Ri2 dt - m H. , (2.3) 

where H. refers to the latent heat at the J  transition. Alternatively, 
J 

"j i ■ Rl2       »j i * < *j * ^j        (2.5.) 

during a phase change or other transition. For the most part we shall be con- 

cerned with exploding wire behavior between transition points even though analysis 

of the data can shed some light on the rate at which mass is transformed, as in 

Equation (2.3a), and ji&y  show departures from equilibrium conditions. 

2.2 Circuit Equation 

For low frequency experiments (f < 20mc) the usual exploding wire circuit 

contains variable resistance, inductance and fixed capacitance. In writing a 

generalized form of Kirchhoff's second lav for the circuit, if we assume the 

magnetic flux to be given by 4) * Li* the possibility of an emf arising from notion 

of the circuit via the i(dL/dt) term must be considered. Since the wire inductance 

is given by a function whose form is like i in(//d) where the length i remains 

fixed but diameter d can vary, and since the circuit inductance will usually be 



an order of magnitude lerger them that of the wire it is easily seen that the 

wire inductance must change by an order of magnitude or more  Ln times like 0.1 

^sec before the motional emf term can become important.    Accordingly we write 

L ^|    + Ri  + q/c = 0  , (2.1») 

where the symbols have their usual meaning.    The inductance    L = L    + L      is 

dominated      by the circuit contribution L ;  thus L      « L   for almost all times. 

Resistance in the circuit is,  after a brief heating period, quickly dominated by 

the resistance of the wire;  so the symbol R can be thought of as representing the 

wire resistance without much error except at early times before heating begins. 

In this paper we shall be interested only in regimes where the condenser 

voltage can be considered constant.    In particular,  around current peak q/C •»   0 

and the decay of current is dominated by R and L very much as if the condenser 

had been crowbarred.    This is the situation for the well-matched wires of an 
12 earlier study.        A second case of interest includes many of the smaller wires 

which explode during a very short interval, usually on the current rise;  and, 

because the condenser voltage remains nearly constant during this interval,  can 

be treated under this approximation. 

2.3    Resistance Function 

Because of the great difficulties involved, we make no attempt here to solve 

either the fluid dynamical problem or that of connecting the internal state of the 

wire with its electrical resistance.    In order to account for both the dynamical 

and thermal phenomena in the wire we assume that wire resistance, R is a function 

of absolute temperature T and dimensionless time TS  ■ t - t    where T is a time 

constant to be determined later.    The form of the function is approximated,  to 

first order In each of the variables, by the simplest possible assumptions  in the 

following way. 

When no fluid motions occur, the resistance of a wire is known to increase, 

over limited ranges, linearly with absolute temperature; thus a product function 

is suggested and we write 

R - R(T,8) (2.5) 

- Ro (s)[l +a(T - To)]. (2.5a) 

10 



If no motions occur the resistance depends on time only through the temperature, 

and 

R = Ro[l+a(T -To)] . (2.5t) 

To account crudely for fluid motions, we note that the head of an expansion 
13 5 wave propagating into undisturbed medium, ' '  travels with constant velocity, 

certainly the simplest possibility; but, more generally, the front characterized 
2 

by a critical density below which conduction ceases may travel with a velocity 

v = v(s) dependent on time. 

We now suppose the wire material to exist in two states only, viz., 1) fully 

conducting material not yet affected by the expansion wave, and 2) expanded, non - 

conducting material. Thus, for a constant velocity wave the radius of the con- 

ducting part diminishes with time as r = r [1 - ■— (t - t ) ], where t is a time 
o 

chosen to represent the start of the expansion. With this model it is clear that 

the conduction process must terminate at the finite time when r = 0. Since wire 

resistance varies inversely as the cross-sectional area, we have from Equation 

(2.5a) 8 

R* (s) = IL/U-J- /  v(x)dx]2 (2.5c) 
0^0 

for the case in which the velocity of the expansion front may vary with time. 

Even to specify the velocity of the front is a formidable task which cannot truly 

be separated from the complete fluid dynamical problem.    To gain insight into the 

implications of these hypotheses we simplify one step further with the assumption 

that the front velocity is constant.    Then, with T = r /v and TS « t - t    we can 

write 

R* = Ro/(l - s)2. (2.5d) 

2.h    Expansion Wave. 

We examine the effects of a constant velocity expansion wa"e «done by assum- 

ing temperature effects are negligible, i.e., a(T - T ) « 1, and the condenser 

voltage sensible constant as explained in 52.2. Then with the definitions 

T = L/R , a » T/T , b • qx/LC we can combine (2.5d) and (2.5a) with (2.1*) to 

obtain 
di .   ai       . /- ^\ 
S + (1 - 8)5 = " b ' (2-6) 

which is a linear, ordinary differential equation of first order. The solution 

is well known and can be written 

11 



as a a 
1-S 1-S     pS 1-x 1-S 1-S     «8 1-X 

l=le -be        /e dx, (2.?) 0 Jo 
with 0 < s < 1 and the understanding that i « i    and t = t    refer to the current 

and time at which the expansion begins. 

The case of greatest interest to us is that for which b = 0.    The resulting 

current function is plotted in Figure 1 for several values of parameter a. Figure 2 

shows the current decay curve for a 5.5 mil    Cu wire (see also Fig.  9 of ref.  12 

which shows similar data for a 5 mil wire).    From about 0.6 ^sec on, the experimental 

curve resembles those for a «^ 0.5 in a striking way.    It is easily seen that 
as 

-2 "Hi 
di/ds » -ai (l-s)' e *  , from which (di/ds) = - ai and (di/ds)i = 0. By a 

process of curve fitting we can deduce an average wuve velocity from the experi- 

mental data. Such fittings yield velocities an order of magnitude smaller than 

the estimated sound velocities in the wire Just prior to expansion and therefore 
13 5 contradict the theoretical expectations of previous authors '  '  based on the 

unconfined expansion of a perfect gas at uniform initial temperature. 

Further information can be obtained by examining the voltage and power 

functions. These are 
as 

VR - Ri = Roio(l - s) %    , (2.8) 

and 2as 

PR = Ri
2- Roio

2(l-s)'2e     . (2.9) 

a 
One finds easily that these curves have maxima at s = i - ^ and a ■ 1 - a 

respectively; thus, the maximum in power always precedes the maximum in voltage 

by ^e ■ a/2. Examination of Figure 1 and the curves of reference 12 show that this 

theory correctly predicts the order of the maxima in every case. For those cases 

in which restrike is absent, a measurement of the peak separation gives an estimate 

of the expansion wave velocity, providing r , L and R are known. The voltage 

peak may occur too early if there is a restrike; but, on the other hand, the 

poasibility exists that because of the rapidity of the expansion, restrike may not 

have noticeable effects until after the voltage peak caused by resistance rise is 

passed. The peak ser at ion is small in any event and the velocity determination 

cannot be of high accuracy. 

12 



We point out a^ain that when b ^ 0 we can, in a similar way, discuss the small 

wires already mentioned in § 2.2; however, for any of the foregoing examples the 

neglect of thei.aal effects is serious because these effects are  not small. During 

the time of the hypothetical wire expansion, estimates show that a(T - T ) ^ 1 - 10 

and consequently ought not to be neglected. 

2.3 Thermal Effects 

The effect of temperature rise on current via the resistance can be examined 
       */ separately from that of any expansion process by letting R (s) » R in Equation 

(2.5a) and combining with Equation (2.4). We examine only the case near current 

maximum, and after wire melting, where q/C • 0. Furthermore, we restrict the 

temperature away from any transition points so that Equation (2.2) may apply. The 

temperature rise may be found by combining Equations (2.2) and (2.k)  to yield 

mCv(T - T0) - | (i0
2 - i2) (2.10) 

As mentioned before, the energy is stored in the magnetic field as shown by 

Equation (2.10). If we let p = 1/TC = R /L and g = a R0/2mCv the equation of the 

circuit. Equation (2.k),  can be written as 

^ i(p + ßlo2) " gi5 ■ 0, (2.11) 

which is converted to a linear equation of first order by the substitution 
2 

w = 1/1 . The solution is 2       1 

..a Ll^io—■* 
L p .^«O* ♦ i lo2 J (2.12) 

2     Uo2/2 
The ratio gi0 /p =  , r        Is the quotient of magnetic stored energy by the 

thermal energy necessary to heat the wire through the interval l/a «• 300 K.  In 
12 2    3 

our typical cases  this ratio is of order 10 - 10 .  It is readily shown that 

the current of Equation (2.12) decays from i0 with the initial slope (di/dt)0 ■ 

.gi2t 
- pi0 and at large times exponentially as e   

0 ; thus it has a form similar 

to shape to that already found for the expansion wave hypothesis except that in 

this case the decay does not terminate at a finite time. 

13 



2.6    Expansion and Thermal Effects Combined. 

An equation can be obtained for both effects Just discussed by using the 

methods and assumptions of the preceding sections.    One has also    to consider that 

the mass being heated as In Equation (2.2) varies like ra ■ m (l - s)    on account 

of the expansion wave.    The circuit equation becoues 

S + TT^ ' TT^ lT°s(8"2) - snr- (C - ^ J-    ^ (1 - s)     (1 - s) O V 

and the term on the right-hand side might be considered a perturbation of 

Equation (2.6) with b » 0 11' a were sufficiently small; however, an exact solution 

can be obtained by use of the variable change w = l/l as before. The result is 

much less transparent analytically than Equations (2.7) and (2.12) and will not be 

quoted here. As will appear in the next sections the hypotheses under which 

Equation (2.13) is derived are probably unrealistic. A combined graphical and 

analytical approach over limited temperature ranges Is found to be more nearly 

correct. 

3. EXI^RIMENTAL 

3.1 Resistance-Time Data. 

The data analyzed here are taken from voltage and current measurements on 
12 

copper wires described in detail previously.   With the assumptions of $2.k,  viz., 

constant velocity wave and negligible temperature variation of resirtivity, plots 
-l/2 

of R  ' vs. time should show a linear portion during the Interval between the 

onset of the expansion wave and before any restrike occurs. After restrike, or 

electrical breakdown in the metal vapor, the resistance drops to low values, and 
-1/2 

consequently R  ' will increase. 

-1/2 
Representative plots of R '  againpt time are shown in Figure 3* where 

nearly linear behavior during an appropriate interval is noted. The slope of the 

linear portion yields directly a value for the wave velocity. Values of the vave 

speed deduced from plots of data from 3 to 5 mil copper wires at different conoenser 

voltages vary between 200 to kO0 meters per second. In one test of a 6.3 mil wire, 

this deduced velocity was only 80 meters per second. 

1»* 



3.2 Exp-rimental Determination of the Wave Speed 

In the preceding sections a model for the expansion Is presented which 

accounts quite well for the rapid resistance Increase of the experimental data. 

On the hasls of this model a more refined analysis of the experimental data Is 

undertaken here in order to acquire detailed Information about the postulated 

expansion wave. With the assumption that the electrical conductivity drops to 

zero behind the expansion wave, and with a simplifying assumption for the temper- 

ature dependence of resistivity in the unexpanded molten metal, it should be 

possible to deduce values of the radius of the conducting core of the wire. 

Knowledge of these values as a function of time then yields the wave speed after 

differentiation. 
2 

With no vaporization wave the resistance would be simply pi/(nr0 ) where p 

is specific resistivity and I  the length.  In what follows, it is assumed that p 
"■ 2 

is only a function of temperature; thus, plots of "scaled resistance", R«r /l, 

versus temperature should give a universal curve, for different wire sizes and con- 

denser voltages, during the interval prior "io onset of the expansion wave. Devi- 

ations from this universal curve are taken as an indication that the conducting 

cross section is decreasing. The wire temperature, which is assumed to be uniform, 

can be deduced from the known energy input, E, and the mass of the wire from the 

relation. 

Cv(iT H • ^ 
So long as the wire does not vaporize, the mass, m, remains constant, equal to m , 

and the right-hand side of Equation (5.1) is Just E/IIIQ. Since the specific heat, 

C , is not very well known at the high temperatures encountered here, it is 

advantageous to plot the scaled resistance versus E/m instead of T.  Plots of 

this kind (Rnr0 // versus E/m ) have been made previously by Webb et al  und by 
l4 ^ 

Tucker.   The data plot of Webb et al shows nearly a single curve for small 

values of E/m , and deviates for larger values, which deviation is taken as evi- 
12 

dence of vaporization of the wire. Data taken at this laboratory ' on copper 

wires, agree well with those of Webb et al on copper. A scaled resistance-energy 

diagram for some of this data 4.s shown in Figure k  where for small values of 

E/m , all data points cluster about a single curve and the scaled resistance 
0 1*5 

values Increase with energy in accord with other experimental results  through 

the heating, melting, and further heating of the liquid copper.  Just after melting, 

the resistivity increases almost linearly with energy up to about 2.5 kilojoules 

15 



per gram. Beyond this energy, the carves for the different wires deviate from 

the linear law and from each other. This suggests that wires have begun to vaporize, 

and that the resistance depends not only on the energy, but also on the radius of 

the conducting core, according to Equation (2.5c). 

In order to find the instantaneous wire radius, and from its derivative the 

wave speed, it is necessary that the dependence of resistivity on temperature be 

known. Unfortunat3ly, no reliable values at high temperatures are available; 

however, from the experimental values up to 2.5 kilojoules/gpam and from theoret- 

ical expectations, a linear increase of resistivity with specific energy is 

suggested. This assumed linear law is therefore used to extrapolate to energies 

higher than the 2.5 kilojoules/cram. Although this extrapolation is romewhat risky, 

it will certainly not be greatly in error for specific energy values Just above 

2.5 kilo Joules/gram, and for higher values, a given error does not have a large 

effect on the evaluation of the wave speed. With the notation e ■ /dE/m, it is 

thus assumed that the resistivity of the liquid copper is represented by 

P = P0 [1 + ß(e - eo)] , (3.2) 

where ß is the slope of the linear part of the scaled resistance curve Just 

beyond melting. The total resistance for energies beyond vaporization is then 

R = R0 [1 + P(« - eo)]/(r/r0)
2 , (5.5) 

from which 

(r/r0)
2 = (Ro/R)(l + ß [e - e0]) . (3A) 

Here e refers to the specific energy of the uniformly heated conducting material 

within radius r. In Figure k  the scaled resistance is graphed as a function of 

E/m rather than e, but in order to evaluate the radius from Equation (5-^), the 

resistance must be compar3d with the resistivity from Equation (5-2) at corre- 

sponding values of e. Although e and.  E/m are identical before vaporization, 

they differ afterwards because the mass m of the conducting core changes. With 

the assumption that the conductivity drops to zero behind the expansion wave, 

the mass of conducting core is given by 

m = iuo(r /ro ) ; (5.5) 

and since the additional energy is added to the conducting core, 

dE » m de = rao(r
2/ro

2)de . (5.6) 

Multiplying Equation (5-6) with (5.5) then gives the differential equation 

RdE - Romo [1 ♦ ß(e - eo) Jde ; (5.?) 

16 



from the g-*aph R is 'iven as a function of — , and hence Equation (5.7) can be 

integrated to obtain 

EQ 0 

Equation (5.8) yields the desired function, E(e), via numerical integration. 

The connection between E and R is given experimentally as in Figure h;  thus, (e,R) 

pairs can  readily be obtained for use in Equation (5.^) to obtain values of (r/r ). 

Finally, through the experimental R(t) relation, (r/r0) can be plotted as a 

function of time and differentiated numericaULy. Wave speeds so obtained are 

plotted versus the specific energy, e, in Figure 5. One sees that data for dif- 

ferent wire explosions, i.e. different wire sizes and condenser voltages, essen- 

tially fall on a single curve. In addition to the specific energy scale on the 

abscissa, a temperature scale is also shown; this scale is computed assuming 

constant specific heat, and must therefore be only approximately true, especially 

for the higher energy. Thus, the wave speed is seen to depend only on the temper- 

ture or equivalently on the specific energy, as might be expected on physical 

grounds. 

For temperatures below I4OOO K, the wave speed is found to be practically 

zero; above kOOO  K, it increases quite rapidly, and then uore slowly reaches 

values of about 200 meters per second for temperatures around I5OOO K. This 

asymptotic value for wave velocity is surprisingly small being less than one-tenth 

the sound speed in the liquid. Thus, the supposition of Keilhacker that the 

expansion wave proceeds with sound speed of liquid copper can be ruled out. 

k.    EXPANSION WAVES IN A TWO-PHASE SYSTEM 

h.l    Thermodynamics of a Vaporization-Expansion Wave. 

We give here a thermodynamic analysis of the vaporization-expansion of a 

liquid. To our knowledge, this approach has not previously been made, but never- 

theless appears suitable for interpretation of a variety of phenomena involving 

superheated liquids.  One interesting result is the prediction of the conditions 

under which relatively slow disturbance waves propagate into the liquid. 

A pressurized liquid can expand only slightly without changing Its phase 

from liquid to vapor when the pressure is released. This small expansion of 

the liquid phase depends on the liquid compressibility, which is ordinarily small. 

17 



Greater expansion then exceeds the ability of the fluid to sustain tension, and 

cavitation occurs which results in some vaporization of the liquid. The fluid 

then becomes a two-phase therraodynamic system where liquid and vapor coexist. For 

the case of exploding wires this damp vapor, a mixture of liquid and vapor, may 

bear a resemblance to the foam suggested ty Chace.   At early times, the damp 

vapor is at its lowest temperature and contains a large percentage of liquid. As 

the vaporization wave proceeds inward, it encounters hotter liquid which has been 

heate-l ".onger by the electrical current. Thus, the luaer portion of the damp 

vapor should contain a relatively smaller fraction of liquid th^.n the outer portion 

and should exist initially at higher temperatures and pressures, thereby producing 

a strong pressure gradient causing the mixture to expand energetically into and 

through the cooler outer parts. 

This model doe.-i not encounter the structure-insensitive nucleatlon problem 

discussed by Chace; for nucleatlon need only take place at the liquld-wet-vapor 

separat on where surface effects predominate and where the boundary conditions 

presuppose em interface. Actual conditions at the wire Interface prior to and 

during expansion may be very complicated; for in addition to irregularities due 

to randomly fluctuating atomic and molecular fields, z*\<l  favored sites for evap- 

oration due to absorbed or dissolved gases, there will be present thermionically 

emitted electrons and ions. One therefore would not expect any considerable 

superheating caused by inability to surmount the energy barrier between the liquid 

and vapor stages. 

A situation closely similar to our proposed model of the exploding wire 

expansion is realized physically in the superheated water shock tube used by 
17 

Temer.   Consider a liquid confined to the driver section of an ordinary shock 

tube, and heated to high temperature and pressure. Upon release of pressure by 

breaking the diaphragm, an expansion wave travels from the low pressure side into 

the liquid. The first part of the expansion wave proceeds with ordinary sound 

speed in the liquid, lowering the pressure to the vapor pressure of the liquid; 

this vapor pressure depends only on the liquid temperature. Subsequent expansion 

will turn part of the liquid into vapor. Thus, the expansion can be thought of 

as accomplished by a vaporization wave, across which occur changes in the liquid - 

vapor ratio and the dynamical variables. If the initial pressure of the liquid 

driver were Just the vapor pr3ssure for that temperature, as it would be if a 

vapor bubble were included, then the first liquid expansion down to the vapor 

18 



pressure would be avoided; only the vaporization-expansion wave would occur. It 

is true that a liquid can sometimes be overexpanded in the liquid state below the 

vapor pressure, Just as condensing gases can be somewhat supersaturated, but 

because the surface is a site of fluctuations that will prevent overexpansion, it 

is assumed that the effect here is small, and equilibrium thermodynamics oan be 

used. The vaporization wave now proceeds with wave speed different from the sound 

speed of the liquid because the adiabatic compressibility of the damp vapor is 

much greater than that of the liquid. 

To express these ideas in mathematical form we proceed as follows. Quite 

generally, the speed of small amplitude disturbances, c, is found from 

=2 ■ 0* ■ M) 
where p is pressure,  p is density,  and the subscript "ad" refers to an adiabatic 

change.    Using the specific volume v = l/p. Equation C+.l) becomes 

=2 ■ -v2 (£).* • (*-2) 
The equation of state is assumed to be 

P ■ p(v,T)  , (M) 

and 

For an adiabatic change, the second law of thermodynamics gives 

TdS = ^ dT 4 (^ + p) dv = 0 , (U.5) 

where e is specific energy; so 

$)ad - -<* * P)/(|)  ' C*.6) 

Setting -Sj^es « -g«    in the first of Equations (4.5) gives 

|F + P-«J' CM) 
and with Equation (k.6)  ve obtain: 

(iU ■ - % (T/0v) • ^8) v 
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With the above relations. Equation (U.2) becomes 

c2 = . v2[ |e - (|£)2 (T/Cv)l (M) 

or, alternatively, 

c2 » ^ + (1/p2)   (^)2   (T/Cv)   . (4.10) 

For a perfect gas where C- - Cy = R and C^/Cv = 7, this yields c2 = yRT, the 

usual form for the small amplitude wave speed;  however, for a two-phase system 

«here the pressure is Just the vapor pressure,  p(T),  independent of v or p. 

Equation (4.10) specializes to 

c « (1/p) jj| [T/(CVT)?  ]  . (4.11) 

In evaluating Equation  (4.11)  for the head of the vaporization wave traveling 

into the liquid, values of p and Cv are Just those for the liquid. 

Most vapor pressure curves can be represented fairly well by 

p = A^expt-d-o/T)]   , (4.12) 

where the constants A, a and T0 can be determined from experimental values. 

For    the present tests with copper,   the following vapor pressure formula was 

adapted from reference (15)* using logarithms to base 10, 

log p - 15.5 -  (17,700/T)  - 1.275 log T, (4.13) 

where pressure is in mm Hg and temperature in degrees Kelvin.    With 

C    »0.12 cal/gm-deg, and p = 5.5 gm/cm , the values for c are found from 

Equation (4.11), and the results plotted as the theoretical curve in Figure 5. 

The curve ends at the critical temperature, about 9000 K for copper. 

Formula (4.11) is no longer applicable at temperatures higher than critical, 

and must be replaced by the more general form. Equation (4.10);  however. Equation 

(4.10) canno- be evaluated before more precise thermodynamic data for copper 

beyond critical temperatures is known.    For these reasons the ability of Equation 

(4.10)  to describe the data above critical terperature cannot be determined at 

present; however, even at these hlrher temperatures the correlation of the data 

to a single curve is striking and strongly suggests that the wave speed is 

uniquely related to specific energy. 
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In the temperature range of its validity, Equation C+.ll) yields results 

agreeing quite well with the experimental values in Figure 5. In particular, 

it predicts astonishingly well the onset of significant velocity of the vapori- 

zation wave at about 1*000 K. The determining factor here is clearly the large 

negative exponent in the vapor pressure law, i.e. the term T (i ^H __/«) which u    vap 
depends on the heat of vaporization of the material. A good estimate of the 

temperature at which the wave velocity becomes appreciable may be obtained as 

follows. 

The exponential contained in dp/dT dominates the expression for c given in 

Equation (U. 11).  It is therefore permissible to regard the various powers of T 

as practically constant in the termperature reuige of interest. One then finds 

the inflection point of the curve, essentially the exponential term only, and 

the slope at that point.  Passing a line through the point of inflection with 

the slope of the tangent there, locates an intercept on tba abscissa which may be 

taken to define the onset of wave velocity. The intercept is T » T0/U, or 

about 10,000OK for copper. As seen from Figure 5 this value agrees well with 

the knee of the data curve and significant velocities occur at temperatures 

lower by a factor of two. Wire materials can now be ranked in ascending order 

of heats of vaporization and the temperatures at which the vaporization wave will 

occur can be predicted with some confidence by use of the inequality T0/8 < T. 

One further observation can le made. For elements with the higher heats of 

vaporization and correspondingly higher temperatures T , the current decay in the 

exploding wire circuit may be dominated by resistance dependence on temperature 

as developed to first approximation in $2.5. Much larger amounts of energy, 

stored in the magnetic field, wouJd be needed to induce a rapid expansion wave, 

and in some experimental arrangements may not be available. The result woul<. be 

a slow, or weak," expansion at the end of the heating process. 

h.2    Discussion. 

It is notable that the temperature where significant vaporization begins is 

considerably higher than the boiling point (for Cu b.p. is 285?0K). Both David 

and Keilhacker attribute this occurrence to the elevation of the boiling temper- 

ature by the magnetic pinch pressure. In analyzing the present data, no correlation 

with magnetic fields was made, nor was any needed. Moreover, tlw i.reaent view 

of the vaporizatlon-expanaion wave is independent of the magnetic : .eld. The 

pressure on a wire carrying uniform jurrent is largest at the center and decreasos 
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parabolically to its lowest value at tne or^ermost radius of the condMctor.    This 

lowest value is a boundary condition, and for negligible vaporization is Just the 

ambient pressure on the conductor surface.    At high temperatures where vapori- 

zation is  significant, the surface of the conductor is inclosed by a nonconducting 

damp vapor.    The lowest pressure at the outer conducting radius is Just the vapor 

pressure of the material appropriate to its temperature; thus, the vaporization- 

expansion occors from a surface whose pressure is  simply the vapor pressure, and 

the magnetic field has no influence in suppressing the onset of significant 

vaporization.    For very rapid exploding wire circuits, where the current distri- 

bution is dominated by skin effects, magnetic pressure may be a controlling 

influence, but this is certainly not the case for most of the experiments  cited. 

The vaporization-expansion wave appears to be capable of accounting in a 

satisfactory way for a great deal of the resistance-time data observed in wire 

explosions;  thus, we may consider that the "resistance anomaly," which has been 

a puzzle for many years,  is now satisfactorily explained.    There remain,  however, 

several areas for further study with regard to resistance anomalies.    For example, 
Ik some of the highest current density data of Tucker      fail to show the expected 

melting-point rise in the early heating period and thus point to the existence of 

possible nonequilibrium effects in the metal interior.    The effects of composite 
18 

structure in an exploding wire as in the experiments of Reithel and Blackburn, 
19 and Bennett,      remain to be explained although here a basic feature will probably 

be the partial suppression and delay of the vaporization-expansion wave by either 

a nonconducting coating or one whose onset temperature T    is higher than that of 
" w 19 the core.    The effects of adsorbed gases, as in the H-Pd system,      will be strong- 

ly felt in the resistivity function, where a negative coefficient can result. 

We emphasize again that the vaporization-expansion characterized here as a 

wave motion, differs radically from the gas-dynamic or hydrodynamic expansion 

waves invoked by other authors.   '  ^  ->*    .   jt8 velocity is a factor of ten smaller 

than the sound velocity in a liquid.    A phase change occurs across the vapori- 

zation ' ave, in contradistinction to the usual fluid dynamic waves where no change 

in state occurs  ;  and the wave velocity deperds not only on the specific energy, 

but also on the heat of vaporization as a parameter. 

¥  
A possible exception would be the condensation shocks encountered in wind 
tunnel nozzles. 
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5.     SUMMARY 

1) A survey of exploding wire  reseerch shows that the  idea of an experiblon 

wave into a hot,   perfect gas has been evident  in the idealizations used to inter- 

pret exploding wire data. 

2) Examination of the conditions  in the R-L-C circuits  used to explode 

wires shows that near current maximum,  and otherwise only during short time inter- 

vals,  a simple mathematical treatment  is possible for an expansion wave that 

converts the wire material behind it into a nonconductor.     The resulting curves 

closely resemble the observed current decay in the circuit  and from them,  or 

equivalently from the assumed resistance law,   curve-fitting to the experimental 

data provides values of velocity for the expansion wave.     These are a factor of 

ten lower than the sound velocity in the metal wire. 

>)    With this background,  a careful analysis  is made of resistance data from 

exploding wires of copper,  and plots  of wire resistivity versus specific energy 

are obtained  from which values of the  expansion front velocity can be deduced by 

numerical methods.    The velocities derived from several different experimented, 

conditions correlate to a single curve as a function of specific energy. 

h)    A thermodynamical analysis of the small disturbance velocity in a two- 

phase,  single component system gives an expression dependent mainly on the equilib- 

rium vapor-pressure function for the wire material.    Theoretical and observed 

values agree quite well up to the critical temper^    ^e beyond which thermodynamical 

data are lacking. 

5) The quantitative agreement obtained between theoretical and experimental 

values of wave velocity, and the correlation of data from many separate experi- 

ments under different conditions to specific energy as independent /ariable, 

support the important conclusion thatthe so-called "resistance anomaly" of 

exploding wires can be understood through the vaporization-expansion wave hypoth- 

esis. 

6) The vaporization-expansion wave characterized here in quantitative terms 

is a phenomenon new to fluid mechanics and can be expected to play an important 

role in the understanding of the dynamics of superheated liquids. 

F.   F    BENNETT G.   D.   KAHL E.   H.   WEDEMEYER 
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Figure 1 

Current function for constant velocity expansion wave 
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Figure 2 

5.5 mil Cu wire exploded at 10.8 lev. I - current, V - voltage 

across the wire, R - wire resistance, P - power, E - energy deposited. 
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Plots of R"1/2 versus time. 
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Vaporization-expansion wave velocity versus specific energy 
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