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PREFACE

The advent of slender high-speed re-entry bodies and particularly
slender lift-producing surtaces re-emphasizes the importance of phe-
nomena occurring near the leading edge. Previous work at The RAND
Corporation already considered such phenomena as the coupling of hy-
person.ic viscous induced pressure and mass addition at the surface =--
typically a lcading~edge problem showing measurable effects on the
aerodynamic force field. However, that analysis was based on an ide~
alized model of the flow, namely, on classical similarity solutions
for binary boundary layers.

This Memorandum explores the problem of the coupling between the
phase change of a sublimating surface and the flow near the leading
edge. The primary value of the results is the establishment of the
nature of this coupling and of ts importance. The results contribute,
for example, to the decision regsrding the conditions under which it
is realistic to proceed with studies of hypersonic induced pressure
interaction with surface blowing without simultaneously including the

coupling of the blowing rate with the flow field.
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SUMMARY

The behavior of the laminar binary boundary layer with blowing
is coupled with the kinetic-evaporation-rate law of the surface wmate-
rial. It is found that the solution of this combined problem exhibits
an asymptotic behavior at large Reynolds number which is identified
with the usual near-equilibrium solution in which the vapor neur the
wall is verv nearly in thermodynamic phase-clLange equilibrium. How-
ever, the near-equilibrium solution is invalid in a region near the
origin of the boundary layer, which is characterized by a length formed
with physical parameters describing the basic flow and the surface
properties. In this region, which is treated here approximately, the
blowing parameter decreases to zero, the wall temperature increases,
and the sublimation rate tends to an upper limit as the origin of the
boundary layer is approached.

The principal result of the analysis is the estimation of the
length of the region of transition to the near-equilibrium solution.
This length is an independent characteristic of the problem and does
not scale as do the boundary-layer properties (that is, with the Rey-
nolds number). This implies that while the transitional length on
typical re-entry vehicles is small and probably negligible unless the
leading edge is very sharp, practical wind-tunnel test models can

easily be affecied over most of their chord.
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LIST OF SYMBOLS

numerical constant (Eq. (27))

speed of sound

blowing parameters

concentrations (mols/mol of mixture)
Stanton number, q/peue(haw - h)
viscosity-temperature law, C0 = pwpw/pepe

specific heat

general functions, defined in the tcxt where convenient
for the discussion

dimensionless parameter, AM /RT

S 8Uo
enthalpy
dimensionless parameter = 1 - T /T

T aw
molecular weight of component i (i = s for sublimating
species, i = A for free-stream air)
free-stream Mach number
mass rate of sublimation
ctatic pressure
Prandt1l number
surface-vaporization (thermodynamic) constant, see Eq. (12)
heat-transfer rate
universal gas counstant
temperature
E-19
adiabatic wall-recovery temperature (Tv for k 2y = 0)
w

dimensionless paraseter, see Eq. (32)

streamwise distance (origin at stagnation point)

constant defining the boundary-layer transfer properties
(Eq. (16))
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B = constant defining the recovery-temperature variation with
blowing (Eq. (17))

[ = the factor ¥ - 1/¥

Y = {sentropic exponent of the gas

o
"

leading-edge effect scale, Eq. (51) (units of length)
¢ = vaporization cocfficient (Eq. (10))

heat-transfer parameter, defined by Eq. (54)

Oy
[ ]

A = effective heat of sublimation
b = coefficient of viscosity

€ = heat-transfer parameter, for reference conditions without
blowing (Eq. (20)) (units of pressure)

T = pressure-gradient parameter (similar solutions of boundary-
layer equation)

p = density of the gas
g = parameter defined in Eq. (36)

T = dimensionless parameter (see Eq. 21))

Subscripts

e * ree-stream conditions
o = reference conditions without blowing
T = stagnation conditions

w = wall conditions

®

conditions exfisting asympiotically for downstrcam
Subscript s pertains ko sublimating soe :fes.

A bar over a symbol <" s average over binary mixture in the bound-
ary layer. '




I. INTRODUCTION

The complete solution of a fiow field over a subliming surface
represents an equilibrium among the rate of heat transfer to the wall,
the rate of phase change of the surface material, and the rate >f dif-
fusion of the vapor evolved at the wall through the boundary layer.
These conditions determine the surface temperature and the blowing
rate.

The problem {s usually treated as follows: The birary boundary-
layer equations are solved with the wall temperature and the blowing
rate treated as independent boundary conditions. The solution yields
the teaperature gradient, that is, the heat-transfer rate, as a rara-
metric function of the wall tcmperature and the blowing rate. Since
the blowing rate and the heat transfer are related by the ef€ective
heat of sublimation of the material, one more relation is needed to
fix uniquely the two free parameters (wall temperature and dlowing
rate). At this point we make the approximation that the phase chsange
occurs at thermodynamic equilibrium; that is, the wall temperature is
the phase-equilibrium temperature at the exiating partial pressure of
the vapor near the wall (which is known from the solution of the bina-
ry boundary-layer equations). This relation suffices to complete the
formulation.

The assumption of thermodynamic phase equilibrium st the aurface
is conceptually incorrect hecause at equilibrium the net aass transfer
between phaces is zero. Therefore, a more complete kinetic relation
among the tempuratur:. concentration, snd rate of phsse change is ac-
tually needed. This has been (iscussed in a number of plpotl,(l.s)
but no solution including such a Lir:tic surface-evaporstion condition
has been obtained, nor have the implicatiur: of this p.enomenon been
fully explored.

The near-equilidrium solution is valid ar sufficiently high Rey-
nolds numbers, vhich cen be illustrated by saying that when "he
Reynolds rumber ig high, the impedance of the boundary layer to Zif-
fusion of vapor is very much higher than the {mpedance to surface
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(4)

phase change, which is in series with it, The latter is then neg-
ligible, and the coupling between the flow and the surface-evaporation
phencaenon is diffusion limited. This statement leads to the question,
What exactly are the lower limits of validity of this approximation?

If the surface-evaporation-rate law is considered, the results
of the near-equilibrium approximation must be interpreted as saying
that the difference between the actual wall temperatuir. and the thermo-
dynamic-equilibrium temperature of the vapor is small everywhere. The
actua. wall temperature is determined by the rate equation so as to
supply the mass flux from the solid to the vapor phase, The equilib-
rium temperature is determined by the pactial pressure whicn must ex-
{st near the wall to drive the mass flux across the boundary layer by
pressure diffusion. Smallness is measured in comparison with the
temperature difference driving the hcat transfer; that is, .he differ-
ence between adiabatic recovery and wall temperature.

The well-known result of near-equilibrium solutions for self-
similar flows, for instance, is that the surface (equilibrium) temper-
ature is constant, while the sublimation rate varies as the inverse
square root of the Reynolds number. We may consider the Reynolds num-
ber as a unique measure of the distance from the origin of the boundary
layer if the frce stream is fixed and the wall temperature is constant
But if the mass flux increases towards the origin of the boundary layer,
then the wall temperature must increase according ¢o the sublimation-
rate law. The wall tempersture cannot be constant, and therefore the
Reynolds number cannot be a unique measure of distance. Also, thw
near-equilibrium approximation must break down a2t some distance to-
wards the origin.

The properties of the boundary layer scale in teras of two param-
eters, the Reynolds number and the wall teaperature (or more ccrrectly,
some ratio of free-strear temperature to wall tesperature). Having
recognized that the wall twperature i{s coupled to the problem through
an independent rate equaition, one concludes that the introduction of
the kinetics of surfac. phase change brings in a new scale parameter.
This scale has the fo & of a distance from the origin of the boundary
layer for fixed free stresm conditions snd given thermodynamic phase-

change constants.




The condition for validity of the near-equilibrium approximation
can now be stated as follows: The approximation is valid when the
Reynolds number is much higher than the Reynolds number formed with
the leading-edge =cale described above. Moreover, the {!lustrative
argument based ¢n the relative magnitude of the impedance to mass
transfer is seen to be incomplete; it does not consider the nonlinear
coupling between the "impedance' and the driving potential. For in-
stance, it implies that when the Reynolds number is verv low the
boundary-layer transfer impedance is low and the coupling between flow
and sublimation {8 dominated by the surface impedance (rate iimited).
This is not true if the Reynolds number is low by virtue of low pres-
sure at a given distance from the origin. It is only truve if the
Reynolds number is low by virtue of small distances from the leading
edge.

The purpose of this study is to investigate the character of the
rate-limited sublimation protlem and, in particular, to determine the
scale of this region. It is proper to make tw remarks at this point.
First, the analysis is bDased entirely on continuum boundary-layer
concepts. This is equivalent to saying that the scale of the rate-
limited region must be larger than some minimum distance required for
validity of continuum boundary-layer concepts for the analysis to be
meaningful. This situation turns out to be practically possible.
Sccond, in regard to practical flows over somewhat tlunted bodies,
the statement "origin of the boundary layer” mi'st be interpreted as
meaning 2 virtuol origin from which the boundary layer would start to
attain a thickness and prefile it has at the point under cons deration
This 1mplies that the distance to this virtual origin oust be larger
than the radius at tF- blunted nose,

The current trend towards finer re-entry shapes and the concemn
with problees such as the interaction between ablative mass addition
and hypersonic visious induced pttssutc(ﬁ)--typically a2 leading-edge
pheronenon--tends to bring the transitional sublimation regime into
the reala of practical problems

Finally, the present solutions for the rate-limited sublimatiosn

regicn involve » number of approximations in the treatwent of the




boundary layer and should be interpreted mainly as & study of whether
or nct the problem is sufficiently sigunificant to deserve z more rig-

oreus and much more difficult analysis.




1I. FORMULATION

The problem requires the simultaneous solution of both the bound-
ary layer and surface phase-change rate equations. Phenomenologically,
these fall into iour groups describing, respectively, the energy and

the mass-transfer properties of the boundary layer and the surface.

BOUNDARY-LAYER HEAT TRANSFER

The first is a solution of the classical binary boundary-layer
equations which we consider to be uncoupled from the mass-diffusion

7)

equation, implying a Lewis number approximately equal to one. We
do no' consider chemical reactions between the interdiffusing species.

The solution has the form

Ch Ms dpe dTw
= = 1-F Bs M ao v (1)
Cho MA dx dx

where B is a normalized blowing parameter

ti‘s
B = — (2)
peuech
o

The subscript o indicates reference conditions (nonablating surface),

and the Stanton number Ch is defined on the basis of the adiabatic

recovery enthalpy (temperature):

q 9q
C = - - - (3)
B peue(haw hw) peuecp('l‘aw - Tw)

Equation (1) formally includes the influence of the pressure gradient,
the temperature gradient, the variation of mean molecular weight, and
gas properties through the boundary layer. This is reflected in the

expression for the function F. Practically, only similarity solutions




are known, and for these the well-known linear approximation for F in
terms of B holds to values of B on the order of 0.3. The numericn?
value of the proportionality constant and its dependence on Prandtl

number, wmass ratio, and pressure gradient (within the similar-flows

family) has been discussed exhaustively in the literature.(1’7-lo)
We propose to write an approximzstion to Eq. (1):
C—h—-zl--zB
Ch Pr
o
(4)
M dT
0 = of =& d2 _w
MA’ dx’ dx

Equation {4) is to be considered as a formal approximate expression of

the behavior of the Stanton number for B sufficiently small, with « an

unspecified function of the indicated parameters. The dependence on

the Prandtl number is suggested by the similar solutions.(g)

It will be seen a posteriori that E goes from 0 when Rex = 0 to
an asymptotic value B_ when Rex - o, In the initial region the wail-
temperature gradient is very strong and local similarity not valid,
but Eq. (4) is then defencable as the first term of an expansion about
B =0. In the region of asymptotic approach, gradients are small* and,
provided B_ < 0.3, Eq. (4) holds as a "local similarity" solution. It
is difficult to imagine a situation in which essential errors in the
trends exhibited in the transition region would result from the use of
Eq. (4).

To the same degrec of approximation the recovery factor for the
binary boundary layer is expressed in terms of the recovery factor for

the reference flow:

*

The external pressure gradient is an ind:pendent parameter. It
is assumed to be such that use of the '"local-similarity" concept can
be justified in regard teo it.
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T =-T
- -3¥ w o -
r T r-T To " Pr® )
Te w

The numerical values of § = p(Pr, dp/dx, dTw/dx, "A/Ms) are less well
defined from available solutions even for self-similar flows. It will
be seen later, however, that the proportionality constants o and B ap-
pear in the solution only as a ratio. Thus, if they both vary in the

same way with Ms/M ; Pr, dp/dx, and dTw/dx to a first approximation,
the effect of this dependence is minimized.

THE HEAT BALANCE AT THE WALL

The thermal coupling between the flow field and the boundary is
specified by

q = @) (6)

where A_ is the heat of sublimation of the wall material. This approx-
imation“neglects radiant and conductive heat losses. It also neglects
the heat needed t¢ bring the sublimating material from its imitial
temperature to sublimation temperature; both are fair approximations
for low-temperature sublimatcrs.

If we define

' ﬁs (haw ~ hw) )
B = = (7
peuech ks
and use the identity
T - T
-B-— = -C—h—- = -—a-w—o-—-_i- (8)
]
B cho (Taw Tw)

we obtain the second well-known relation of simple theories.




BOUNDARY -LAYER MASS-TRANSFER CHARACTERISTIC

The solution of the boundary-layer diffusion equation for the

transfer of the sublimated material away from the wall 13(7)
G~ Cyy . (hy - B) 9
Csw (hTe ) hw)

Thie form is strictly true only for the case where both Le and Pr are
equal to one; in this case the diffusion equation and the equation for
the distribution of total enthalpy in the boundary layer are identical
and concentration and energy profiles are similar. The effect of Pr

(7,10)

on the similarity of the profiles is minor, weaker than its ef-

fect on Ch itself. This justifies the use of Eq. (8) without also
setting Pr = 1 in Eq. (1) and equations derived from it.

Combining Eq. (9) with Fick's law (see Ref. 7), we obtain an
expression for the wall concentration as a function of the rate of

sublimation at the wall:

h =-h

. q < aw w o,
ms 1 Csw Csw hTe - hw Cswpeue hTe - hw ('h (10

PHASE-CHANGE KINETICS

A last equation couples the concentration of the sublimated spe-
cies in the boundary layer to the sublimation phenomenon itself. The

net rate of exchange of surface material across the surface-potential

barrier is
M -
7 S PM
By €V 2mT (Pl equ - Ps ) ¢ /—--——-(Cs ¢qu - Csw) (11)
w w v 1mHsTw
where ¢ is an empirical "vapo:ization coefficient," P and C

s equ s equ
are the equilibrium pirtial pressure and concentration corresponding to

the wall temperature, ard P’ and C' are the actual partial pressure
w W

e B N O R T .




and concentration of the subliming material immediately over the surface
in the boundary layer. For a two-component mixture one has the follow-
ing auxiliary relations between the concentrations and the molecular

weights (ﬁ is the mean molecular weight of the mixture):

-1
E—B-.LC = 1+ .L- M_.-
P M s

e 8 Cs MA
(12)
- Cs 1 Cs !
M = | —4+==.-—=
Ms MA “A
CA + C8 = 1

An important characteristic of the phenomenon is that there is a
maximum rate of escape of surface atoms, which occ.rs when the concen-
tration of the material in the surrounding gas is zero and which de-
pends only on the wall temperature.(z) Several eanalytical expressions

for the value of Ps that determines this maximum can be written

equ
down, depending on the subtlety of the microscopic model. The simplest

one, corresponding to the integral of the Clausius-Clapeyron equation,
is

s
P equ PP~ RT (13)

where p is a constant. This yields for the maximum (forward) vapori-

zation rate the expression

N M2,
o, = &\ 7w %P | - 3 Qs)

v w v
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The set of Egqs. (1), (3), (9), and (13), together with an auxil-

iary caloric equation of state defining .c-p

h -h
N (15)
w

aw
complete the general definition of the problem. We shall assume in
this analysis that Ep can be treated as an a priori (or iteratively)
determined constant, not dependent on the concentrations.(“)

The following dimensionless parameters, which depend only on the
properties of the surface and/or the free-stream conditions, are now

defined:

As”s
H RT (16)
aw
0
R -c-v ¥ -1
r = - = ] e = L= (17)
HAcp cp Y
T. -T
r = - T e B
' T Pr (18)
aw
o

k - 1 - - - (19)
raw 1 + Al 1 r
2 o
1 R .
g . dn " 1‘.“ Deuech Re‘ (20)
[ o o

The function § represents the product chov Re‘ wvhich, at least
for self-similar flows, is & constant. Otherwise this product varies

with x through the streamwise pressure and the wall-temperature
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gradients. While questions must be raised as to its behavior near the

singular point x = 0, which are mentioned in Section IV, at large Rey-

nolds numbers it is certainly a finite, slowly varying quantity.
Eliminating ﬁx’ between Eqs. (2) and (11) and rearrsnging, we write

peuecho ZﬂRTmo Tawo
B -V =2[r - ¥, | (21)
¢ Hs Tw s equ s,

By straight substitutions we transform it into an equation in only one
unknown, which is B:

1/2
1 -2
- Pr
M
VRe A a) o g2
x 1+B(T.Hm-!'r) Pr B
i M
B(T-"Am)°ﬂlz
-H H. Pr
pe exp (R = (22)
A [ ot 2
l+B(’°um'l’r).l’rB
| s
-
M
A o ot .2
k+l(1-nnl-kh)-"

For clarity, a few intermediate steps i{n this trsnsformation are
given in the following. The left-hand sides of Eqs. (21) and (22) in-
volve siaply the definition of §, Eq. (20). The first factor on the
right-hand side follows from Eqs. (8) and (4), which yield

(23)
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Substituting for B' from Eq. (7) one obtains

Tw
.F—ol
B = S (24)
S A (" T
- Pr\T
C aw
p aw

From Eqs. (5) and (18) one has

v Tauo (1 + 1B) (25)

which, introduced intoc Eq. (24) and solved for the temperature ratio,

gives
Bl - rg}gﬁ . 212:
T“ ‘ M Pr
= = 1+ = (26)
aw l1-—8B
o Pr

The firat term in brackets in Eq. (22) is simply bk-. (13) wrictten

in the form (see Eqs. (16) to (19))

aw
e (21)

wvith the te-pirltnre ratio as given by Eq. (26).
The second term in brackets follows from Eqs. (12) and (10).

From Eq. (10) we derive the folloving expression for C.v in terms

of B:




M
B(T--Aﬂi-kg-)+k-g'182

H' Pr Pr
c = 28
sw R HA o HA T "A o 2 (28)
T'- - —— - S ; P - —
RLES T H‘m.ﬂt M‘I‘H o B

This equation, after substitution in Eq. (12), leads to an expression
for P“ which is exactly the second terw in brackets of Eq. (22).
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I1I, ASYMPTOTIC BEHAVIOR DOWNSTREAM

Por large values of Re the left-hand side of Eq. (22) vanishes
and the equation yields a non-zero* value B » B_ given by the solution
of the factor in brackets on the right-hand side.

Note that this corresponds exactly to stating

P - P = 0
s equ sw

The solution is identified with the "equilibrium solution” in which
the partial pressure of the vapor, and consequentiy also its concen-
tration and temperature, are values corresponding to thermodynamic
phasc-change equilibrium.

In the present formulation the solution is given in terms of the
constant p in the analytical expression for P' equ (instead of speci-
fying T" « T separately from thermodynamic tables). A convenieat

¢ equ
graphical procedure is obtained defining

Tw s
xt - ———— l - (29)
Tau 1 - 2 B

ia terms of which the asymptotic solution takes the forw

Pe H X, +k - (R
in ;r' - . i:f:-i + 1n -_-i:f:—:- (30)

This is pisited in Fig. 1 for a particular value of . For any exter-
nal static pressure P. and parsmeters des-riding the properties of
the sublimating smaterisl (p and H), one obtains a unique value for the
wall-temperature function X_. With this value of X_ and further

*
The singularity B = 0 ‘s uninteresting. It corresponds simply
to flov withoutl sublimation.
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parameters pertaining to the reference flow and the sublimating mate-~
rial (o/PrT), Fig. 2, which is a plot of Eq. (29), ylelds the value of
the blowing parameter B_.

Figure 3 is an auxiliary figure giving the variation of a/Prr.
This can be written as

PrT T G
1 -k - =
(-9)-2)

The two proportionality constants o and B (see Eqs. (4) and (5)) ap-

pear as a ratio. Therefore, their dependence on the principal varia-
bles of the binary boundary-layer problem, which are Ms/M , Pr, and
pressure and wall-~-temperature gradient, is winimized. If one makes
the hypothesis that both vary in the same fashion with these parame-
ters, which seems probable, then the combination a/PrT is to a very

good approximation a function only of the free stream.
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1V, BEHAVIOR NEAR THE STAGNATION POINT

Equation (31) has the form

5 . .f.g_"l (32)
‘V Rex

The parameter § appearing on the left-hand side of Eq. (32) rep-
resents the product chg/EZ;. The assumption is made that this product
is a constant, as it is for self-similar boundary-layer solutions.

Now, since ﬁs = A\q is bounded according to the surface-evaporation
equation, the assumption implies that the wall temperature tends to
the recovery temperature towards the leading edge (Rex -~ 0). It fol-
lows that the wall temperature is variable, and Cﬁé/iz;.- constant can
only be good in the sense of '"local similarity."

It is worth noting that the above implies two statements of un-
equal importance to the present analysis. The more important one con-
cerns the behavior of Cho; that is, that Cho grows without bounds to-
wards the leading edge. This leads to the result that B «-ﬁs/Cho tends
to zero there and, thus, that B varies between zerc and B_ over the en-
tire region of interest. The second and less important one concerns
the numerical accuracy of the assumption Ch;vriz;-- constant. It is
undoubtedly poor very near the origin where the wall-temperature gradi-
ents are large, but it is probably satisfactorv in the region of as-
ymptoric approach to the near-equilibrium solution downstream of the
leading edge.

It i{s not pessible to discuss conclusively tie difficult problem
of the singularity at the leading edge. It must be ac:epted on the
basis of heuristic arguments and the analogy with the behavior of or-
dinary boundary layers at the leading edge, which involves similar
difficulties. Physically, the behavior outlined in what preceded {s
quite reascnable. Moving upstream towards the leading edge, the heat
flux to the wall increases, and the wall temperature must rise to

permit an i{ncreased rate of sublimstioun,.
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Returning to Eq. (32), the right-hand side is expressible in the
form of a series in the interval 0 < B < B_. If the :symptotic blow-
ing parameter B_ is reasonably small, which is alrcady implied by the
use of the linear-blockage equation, Eq. (4), a limited number of terus
of the series will represeat the behavior of the function throughout
the range.

The series {is

E/£(0 1 f'gO[ 1 2'102 .
- = 4 + =B + ... (33,
'~ B £(0) 2 £(0)
Rex

with the following expressicns for the function and its derivative
cvaluated at the origin:

-H e
£0) = pe - (34)
M P H
£200 -m-Al3 ee :
£(0) T mus 2T ™ (3%)

The parameter ¢ has the form

H H

+ k(k - [H) [Mpe”

+ k(- 27H) pe ™ 4 kB (1M - k)

¢l pe”
(rwy? pe®

J =

(36)

and it was defined so as to become one when k = 0 (Prandt! number uni-
ty).

It is i{nteresting to record the initial behavior of the pertinent
physical parameters of the problea. First-order expansions are given

telow:




Sw
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(37)

(38)

(39)

(60)

(41)
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V, SCALE OF THE LFADING-EDGE EFFECT

The first two terms of the series expansion, Eq. (33), vary as
Rex -~ o to the asymptotic limit of B = £(0)/£'(0). This limit is not
correct because it does not equal B_ unless B tends to zero. However,
we know B_ independently from the full solution at the asymptotic limit,
Eqs. (29) and (30), or Figs. 1 and 2.

The argument suggests that if one replaces in the two-term ex-

pansicn Eq. (33)

R S () R
£(0) " B_ (42)

one obtains a good approximation to the behavior of B fcr all Rex and
arbitrary values of Bm, provided Bx is sufficiently small to justify
the linear expression for the blockage factor, Eq. (4).

Accordingly, an approximate equation for B is as follows:

5 1 1
2 = = = (43a)
[i;;’ B Bcr
B v ch
= - (43b)
= v Re  +4/_

where . is a dimensionless scale factor

E)
T (&%)
L7€]

The corresponding approximation for the variation of mass-addition rate

is, from Eq. (45)
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For pointed bodies the trends under study are demorstrated more

emphatically if one defines a length - by

“- = v - (46)

which is vxplicitly givea as a function of reference-flow and subl”’
*
moting-natertal parameters by

-2 . 1
R O ~ff$——\- N N TRVAT (47)
x . k-;}{/ D¢ e e M aw \h x
¢ s 0 o
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te the inverse square root of the streamwise distance.

Simi‘ar explicit expressious for the variztion of the other
parcmeters are obtained by substituting B from Eq. (48) into the
first-term expansions, Egs. (37) through (40). We see¢ that the con-
centration and the partial pressure of ih= sublimating species reach
constant values at the ovigin, the magnitude «f which depends only
on k (the Prandt! number) and which are zero for the particular case
of Pr = 1, The wall temperature tends to the adizbatic recovery tem-
perature for zero blowing at the origin; that is, to the stagnation
temperature if Pr = 1. The blowing parameter itself tends to zerc at
the origin of the boundary layer.

The first-term expression, Eq. (42), is plctted ip comparison
with a numerical solution of the full Eg. (22) in Fig. 4 for a partic-
ular set of physical parameters.

It is of irnterest to consider further the parameter A, which de-
termines the scale of the adjustment to the asymptotic solution. Fig-

,

ure 5 shews the variation of this quantity in the form (see Eqs. (44)
and 34))

ip_ B_
—_— = 50)
g B wy L K (

P_ exp (-H) - =Ty

The principal independent parsmeters in Eg. (50Q) are p/Pe sud H
(note k = 0 for Pr = 1). These also cetermine B_ uniquely (see rigs.
1 and 2), provided that the secondary parameters &/Prv and T can be
considered constant, which is in“eed very closely true above a Mach
number of 8 (see Fig. 3).

Equation (50) is plotted in Fig. 5, and values of B are also
shown to bring out the phvsical problem. The domain of practical in-
teresc is at high values of p/Pe and relatively large values of B_.
The maximum of these curves, which occurs when B_ tends to zero, is
not interesting in itself, but it serves to demonstrate the influence
of another parameter of {mportance which is the wass ratio Ms/MA' In-
deed, in this region a simplified explicit solution czn be written.
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Fig. 4— Comparison of full solution with the approximate
modiited first-term expansion
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Fig. 5—Typical variation of the leauing - euge scale parameter,
showing lines of By = constant
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Low values of p/Pe correspond to small values of X _ (see Eq. (30)).

Since k is normally near zero, the approximate form of Eq. (30) is

-H
S+l = e (51)
e

Moreover, when X°° tends to zero, Bw tends to zero also. One can

neglect the quadratic term in Ej. (29) which becomes

-
g o« S (52)
.M
T M
]

=

Solving for B_ in terms of p/Pe from Eqs. (51) and (52), the following
approximate form of Eq. (50) is obtained:

M
s k
WA M, - M /M )IH
( : e . - 1A A s (53)

-
(MA/Ms)m

This relation is plotted in Fig. 6.

Finally, the results can be put into another form which has a
direct physical significance. Recasting the equations in terms of
the length scale ¢ of the leading-edge effect by combining Eqs. (47)

and (50) and using the equation of state, one obtains

£ P¢2 M_s 2
& L A - 2 ._._..“Ape
¢ Taw Pe 3
2el .,/ ¢ 0
o ((“ho Rex) '1‘e Mel| “ee (54)

Pe 2
= }; B_ exp (2H)
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Fig. 6 — Behavior of the maximum of the scale length
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This is plotted in Fig. 7. Note that the three bracketed terms of

the denominatcr on the left-hand side depend only on the basic flow
field, the Mach number, and the free-stream static temperature, re-
spectively. The bracketed term in the numerator depends only on the
properties of the sublimating material. The entire factor on the
left-hand side is independent of pressure. Consequently, Fig. 7 shows
that during the initial re-entry from space (p/Pe = ®) during which
the Mach number is roughly constant (therefore H = constant ard

€ = constant), § increases to a maximum at some altitude fixed by the

value of the parameter p and then decreases.




Fig. 7—Typical variation of the rate - controlled flov
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V1. DISCUSSION

In order to show the magnitudes involved, consider the following

(9)

estimates: Let the model be a slender cone for which

Ch v Rex = (0.512
o

Assume e and a, constant at their value in the tropopause (“eae =
4 x 104 1b/ft). It follows that

aw

2 0 i 3 -4
Zv(Cho,/ Rex) Te M "ol == 1.3M x 10 ib/ft (55)

e

The constant p can be obtained from vapor-pressure data. Reference 12
(pp. 1751 - 1755) gives a table for selected organic and inorganic
substances from which it is evident that a representative value is

p = 109 lb/ftz.* (The value p varies around this average by one order
of magnitude for almost all the substances listed.) The vaporizatiouu
coefficient € is poorly known. For solid sublimators it is doubtful

o}
that it should exceed 0.1,(‘)

and it can be less than that by two or-
ders of magnitude. Finally, the ratio HS/HA can be taken as unity for
the purpose of this estimate.

It follows that, quite generally,

0 107 g (56)

M

The magnitude of ° is seen to depend very strongly on the value
of H. Since it increases rapidly with H, let us illustrate the prob-
lem for a large value of H: Data typical of graphite (« = 25,000 Btu/lbd,
M- 12) at a flight Mach number of 15 yield approximately

*
In the notation of the reference, p = 10b vhere b is tabulated.
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The value of p = 109 lb/ft2 used in the preceding estimates represents
grapnite quite well--well enough considering the uncertainty in the
evaporation coefficient ¢. Since > increases with pressure, let us
consider relatively low altitudes consistent with the assumed Mach
number and high-speed re-entries, say 30,000 ft. Consider a 20-deg
cone for which the surface pressure is approximately 300 P_. It fol-
lows that

10« 5 < 107! tn.

Had an altitude of 25,000 ft been ascmed, £ would be larger by an or-
der of magnitude. Had data typical of teflon been used (. ~ 1000 Btu/lb,
Hs = 100), H would have been in the order of 5, and : would be entirely
negligible.

It is interesting to note that the maximum  for a given H occurs
at values of p/Pe which correspond to Pe considerabiy higher than !
atm. While pressures ab~ve atmospheric can occur, because Po and/ké
are values outside the beoundary laver behind the leading shock, they
would not normally be as "~ igh as indicated for : max.

The rate-contrelled region can be taken to exteind over a distance
from the origin equal to 100 £; that is, for points on the surfacu
lying beyond this limit the error incurred by using the equilibriwm
solution for B, és, TH, etc., is less than 10 per cent (see, for ex-
amp.., Fig. & or Eq. (48)). The sketch on the following page shows
the behavior of the rate of sublimation indicated by both the equi-
lihr{um approximation and the full solutiorn and illustrates the
present srgument.

The preceding estimates of the scale of the ieading-edge effect

indicate clearly (hat, in comparison w.!' reasvnablie man-wade re-entry-

vehicle sizes, the region of transitional sublimation is very snall,

indeed normally negligible. However, : is au independeni piramecter
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/-Ethbnum solution, m, ~J—l'

Present solution, Mg ~
/-"g +1

Equitibrium approximation
vahgd within (O per cent

Rate-controlled
region

x = 1008

x (distance from the ieading edge)

which does not scale with the body geometry. Th _ul.imation of small

models in wind iunnels or reteorites in the -~t.osp..cre may be totally

domindted by transitional effects.

This scaling problem can best be demonstrated by using a concrete
example. Consider the w.nd-tunnel experiments reported in Ref. 3 using
camphor in a Mach 5 wind tunnel. For camphor tle materials data at
aciual test conditions can be given quite accurately, except for ¢:

R4
A l09 1b/ft”. Estimate ¢ 2a* 0 1 as

= 330 )/gm, MS = 152, p = 1.
before.

g 5

®With the tunnel frecov ry temperature at 350K and the static

pressure of 10 e Hg, one tinds o= 17 0 and p/F = 6 % x 10"
L

b

-~ 1.6 x 10 in.

Considering that the transitional subli-ation region extends 2o a dir-
tance of the order i0i:. (sve Fip. &), one ¢oncludes that the entire

vind-tunnei model 15 affected by transitional effectx urder these test

condittors.

- e e e e o — . —
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One other aspect of the aerodynami ; of subliming bodies can be
atffected by the present resul:s in ar important manner. It is the
problem of surface recession and terminal shape. Brieily, the shape
of a slender body 7(x,t) at any instant t is given by the solution

(with proper boundary conditions) of

aygx,tz ~ - K B RS
dt s — = A
(x,t) \,/—xl +“/O- X - w‘,t) +8 G

\

. L1 . .
where X is = constant, X the distance to the point (x,y) from the
ileading edge, which is ifself receding relative to fixed coor-inates
at an unkpown rate . ..
(L)
The nature of this problem is such that

Lim £y
AN (AN

and the analytical solution for the terminal shape of peinted bodies

using the near-cjui’ “rium form of the local sublimaticn rate is not
*
correct.

*
A study of this prctlem is in progress at The RAKD Corporation.
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