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PREFACE

The advent of slender high-speed re-entry bodies and particularly

slender lift-producing surfaces re-emphasizes the importance of phe-
numena occurring near the leading edge. Previous work at The RAND

Corporation already considered such phenomena as the coupling of hy-
personlc viscous induced pressure and mass addition at the surface --

typically a leading-edge problew showing measurable effects on the
aerodynamic force field. However, that analysis was based on an ide-
alized model of the flow, namely, on classical similarity solutions

for binary boundary layers.

This Memorandum explores the problem of the coupling between the
phase change of a sublimating surface and the flow near the leading

edge. The primary value of the results is the establishment of the
nature of this coupling and of .ts importance. The results contribute,

for example, to the decision regarding the conditions under which it
is realistic to proceed with studies of hypersonic induced pressure

interaction with surface blowing without simultaneously including the

coupling of the blowing rate with the flow field.



SUMMARY

The behavior of the laminar binary boundary layer with blowing

is coupled with the kinetic-evaporation-rate law of the surface mate-

rial. It is found that the solution of this combined problem exhibits

an asymptotic behavior at large Reynolds number which is identified

with the usual near-equilibrium solution in which the vapor neer the

wall is very nearly in thermodynamic phase-change equilibrium. How-

ever, the near-equilibrium solution is invalid in a region near the

origin of the boundary l~yer, which is characterized by a length formed

with physical parameters describing the basic flow and the surface

properties. In this region, which is treated here approximately, the

blowing parameter decreases to zero, the wall temperature increases,

and the sublimation rate tends to an upper limit as the origin of the

boundary layer is approached.

The principal result of the analysis is the estimation of the

length of the region of transition to the near-equilibrium solution.

This length is an independent characteristic of the problem and does

not scale as do the boundary-layer properties (that is, with the Rey-

nolds number). This implies that while the tranuitional length on

typical re-entry vehicles is small and probably negligible unless the

leading edge is very sharp, practical wind-tunnel test models can

easily be affecced over most of their chord.
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LIST OF SYMBOLS

A - numerical constant (Eq. (27))

a - speed of sound

B', B - blowing parameters

C - concentrations (mols/mol of mixture)

Ch = Stanton number, q/Peue (haw- hw)

C 0 viscosity-temperature law, Co a PWw/Pe e

c = specific heatP

F = general functions, defined in the taxt where convenient

for the discussion

H = dimensionless parameter, XM s/RTaw
0

h = enthalpy

k - dimensionless parameter - 1 - T /Taw
0

Mi = molecular weight of component i (i a a for sublimating

species, i - A for free-stream air)

- free-stream Mach number

i = mass rate of sublimation
s

P a static pressure

Pr a Prandtl number

p - surface-vaporization (thermodynamic) constant, see Eq. (12)

q a heat-transfer rate

R - universal gas constant

T a temperature

T a adiabatic wall-recovery temperature (Tw for k (y) 0)

X * dimensionless paraseter, see Eq. (31)

Y a streamwise distance (origin at stagnation point)

of - constant defining the boundary-layer transfer properties
(Eq. (16))
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a constant defining the recovery-temperature variation with

blowing (Eq. (17))

r = the factor y - 1/7

N isentropic exponent of the gas

leading-eige effect scale, Lq. (51) (units of length)

5 a vaporization coefficient (Eq. (10))

= heat-transfer parameter, defined by Eq. (54)

= * effective heat of sublimation

a coefficient of viscosity

- heat-transfer parameter, for reference conditions without
blowing (Eq. (20)) (units of pressure)

TT = pressure-gradient parameter (similar solutions of boundary-
layer equation)

0 - density of the gas

a parameter defined in Eq. (36)

T - dimensionless parameter (see Eq. 21))

_.Lubscr ipt s

e - tree-stream conditions

o - reference conditions without blowing

T a stagnation conditions

w = wall conditions

fa a conditions existing asympLotically for downstream

Subscript a pertains to sublimating 'Di.Aes.

A bar over a symbol • . average over binary mixture in the bound-
ary layer.
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I. INTRODUCTION

The complete solution of a flow field over a subliming surface

represents an equilibrium among the rate of heat trnnbfer to the wall,

the rate of phase change of the surface material, and the rate if dif-

fusion of the vapor evolved at the wall through the boundary layer.

These conditions determine the surface temperature and the blowing

rate.

The problem is usually treated as follows: The bivary boundiry-

layer equations are solved with the wall temperatstre and the blowing

rate treated as independent boundary conditions. The solution yields

the temperature gradient, that i3, the heat-transfer rate, as a p3ra-

metric function of the wall temperature and the blowing rate. Since

the blowing rate and the heat transfer are related by the effective

heat of sublimation of the material, one more relation is needed to

fix uniquely the two free paraseters (wall temperature and blowing

rate). At this ;icit we make the approximation that the phase chance

occurs at thermodynamic equilibrium; that is, the wall temperature is

the phase-equilibrium temperature at the existing partial pressure of

the vapor near the wall (which is known from the solutvon of the bina-

ry boundary-layer equations). This relation suffices to complete the

formulation.

The assumption of thermodynamic phase equilibrium at the Aurface

is conceptually incorrect hecause at equilibrium the net mass transfer

between phases is zero. Therefore, a more coWlete kinetic relation

among the teptraturt.. concentration, and rate of phase change is ac-

tually needed. This has been 4iscussed in a number of papers(1"5)

i-*," no solution including such a kititic surface-evaporation condition

has been obtained, nor have the isplicatx.u3 of this p.eaomnon been

fully explored.

The near-equilibrium solution is valid at sufk|ctontly high Rey-

nolds numbers, which can be illustrated by saying that when .he

Reýnolds number is high, the impedance of the boundary layer to dif-

fusion of vapor is very much higher than the impedance to surface
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phase change, which is in series with it. (4) The latter is then neg-

ligible, and the coupling between the flow and the surface-evaporation

phenomenon is diffusion limited. This statement leads to the question,

What exactly are the lower limits of validity of this approximation?

If the surface-evaporation-rate law is considered, the tesults

of the near-equilibrium approximation must be interpreted as saying

that the difference between the actual wall temperatuL: and the thermo-

dynamic-equilibrium temperature of the vapor is small everywhere. The

actual wall temperature is determined by the rate equation so as to

supply the mass flux from the solid to the vapor phase. The equilib-

rium temperature is determined by the pa:tial pressure whicn must ex-

ist near the wall to drive the mass flux across the boundary layer by

pressure diffusion. Smallness is measured in comparison with the

teumperature difference driving the hcst transfer; that is, •he differ-

ence between adiabatic recovery and wall temperature.

The well-known result of near-equilibrium solutions for self-

siatilar flows, for instance, is that the surface (equilibrium) temper-

ature is constant, while the sublimation rate varies as the inverse

square root of the Reynolds number. We may consider the Reynolds num-

ber as a unique measure of the distance from the origin of the boundary

layer if the frce stream is fixed and the wall temperature is constant

But if the mass flux increases towards the origin of the boundary layer,

then the wall temperature must increase according co the sublimation-

rate law. T.w wall temperature cannot be constant, and therefore the

Reynolds number cannot be a unique measure of distance. Also, ttw

near-equilibrium approximation must break down at some distance to-

wards the origin.

The properties of the boundary layer scale in terms of two param-

eters, the Reynolds numbet and the wall temperature 'or more ccrrectly,

some ratio of free-strear temperature to wall temperature). Having

recognised that the wall tusperature is coupled to the problem through

an independent rate eq. tion, one concludes that the introduction of

the kinetics of surfac, phase change brings in * new scale parameter

This scale has the fe a of a distance from the origin of the boundary

layer for fixed free-strema conditions and given thermodynamic phase-

cb€ngle coastants.
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The condition for validity of the near-equilibrium approximation

can now be stated as follows: The approximation is valid when the

Reynolds number is much higher than the Reynolds number formed with

the leading-edge scale described above. Moreover, the illustrative

argument based ,i the relative magnitude of the impedarnce to mass

transfer is seen to be incomplete; it does not consider the nonlinear

coupling between tbe "impedance" and the driving potential. for in-

stance, it implies that when the Reynolds number is very low the

boundary-layer transfer impedance is low and the coupling between flow

and sublimation is dominated by the surface impedance (rate Limited).

This is not true if the Reynolds number is low by virtue of low pres-

sure at a given distance from the origin. It is only tree if the

Reynolds number is low by virtue of small distances from the leading

edge.

The purpose of this study is to investigate the character of the

rate-limited sublimation problem and, in partfcular, to determine the

scale of this region. It is proper to make two remarks at this point.

First, the analysis is xased entirely on continuum bourdary-layer

concepts. This is equivalent to saying that the scale of tht rate-

limited region must be larger than some minimum distance required for

validitv of continuum boundary-layer concepts for the analysis to be

meaningiul. This situation turns out to be practically poesible.

Second, in regard to practical flows over s0mewhat b*unted bodies,

the statemcnt "origin of the boundary lai,'r" uw't be interpreted as

meaning ., virtu.il origin from which the boundary layer would start to

.'ttain a thickness ind profile it has at the point under cons'deration

this implies that the distance to this virtual origin ast be larger

than the raJius at th' blunted nose.

The current trend towards finer re-entry shapes and the concern

with problems such as the interaction between ablative mass addition

And hypersonic viscous induced pressure ()--typically a leading-edge

pheo-enon--tends to bring tVe tt,nsitional sublimation regime into

the reialm of practical problems

Finally, the present solutions for the rate-limited oublimatiot.

regien involve a number of approximations in the treatment of the
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boundary layer and should be interpreted mainly as a study of whether

or nct the problem is sufficiently significant to deserve i more rig-

oreus and much more difficult analysis.
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II. FORMULATION

The problem requires the simultaneous solution of both the bound-

ary layer and surface phase-change rate equations. Phenomenologically,

these fall into four groups describing, respectively, the energy and

the mass-transfer properties of the boundary layer and the surface.

BOUNDARY-LAYER HFAT TRANSFER

The first is a solution of the classical binary boundary-layer

equations which we consider to be uncoupled from the mass-diffusion

equation,(7) implying a Lewis number approximately equal to one. We

do not consider chemical reactions between the interdiffusing species.

The solution has the form

I - F

where B is a normalized blowing parameter

d,
B - s (2)

0

The subscript o indicates reference conditions (nonablating surface),

and the Stanton numbEr Ch is defined on the basis of the adiabatic

recovery enthalpy (temperature):

Ch a .u(h q "h q - (3)
ee ae h " Pe ueeeC-p (Taw - Tw

Equation (1) formally includes the influence of the pressure gradient,

the temperature gradient, the variation of mean molecular weight, and

gas properties through the boundary layer. This is reflected in the

expression for the function F. Practically, only similarity solutions



-6-

are known, and for these the well-known linear approximation for F in

terms of B holds to values of B on the order of 0.3. The numeric' 1

value of the proportionality constant and its dependence on Prandtl

number, mass ratio, and pressure gradient (within the similar-flows

family) has been discussed exhaustively in the literature.(1'7- 1 0)

We propose to write an approximation to Eq. (1):

¢ h - B

Ch Pr
0

(4)

M AR dT

M A dx' dx

Equation (4) is to be considered as a formal approximate expression of

the behavior of the Stanton number for B sufficiently small, with u an

unspecified function of the indicated parameters. The dependence on

the Prandtl number is suggested by the similar solutions.i 9

It will be seen a posteriori that E goes from 0 when Re x 0 tox

an asymptotic value B when Re - -. In the initial region the wail-

temperature gradient is very strong and local similarity not valid;

but Eq. (4) is then defencable as the first term of an expansion about

B - 0. In the region of asymptotic approach, gradients are small and,

provided B < 0.3, Eq. (4) holds as a "local similarity" solution. It

is difficult to imagine a situation in which essential errors in the

trends exhibited in the transition region would result from the use of

Eq. (4).

To the same degree of approximation the recovery factor for the

binary boundary layer is expressed in terms of the recovery factor for

the reference flow:

The external pressure gradient is an indapendent parameter. It
is assumed to be such that use of the "local-similarity" concept can
be justified in regard to it.
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T -Trw - rB B (5)
T T-T PrT w

e

The numerical values of ý • (Pr, dp/dx, dTw/dx, MA/MS) are less well

defined from available solutions even for self-similar flows. It will

be seen later, however, that the proportionality constants o and B ap-

pear in the solution only as a ratio. Thus, if they both vary in the

same way with Ms/M., Pr, dp/dx, and dT w/dx to a first approximation,

the effect of this dependence is minimized.

THE HEAT BALANCE AT THE WALL

The thermal coupling between the flow field and the boundary is

specified by

q - f X (6)

where X is the heat of sublimation of the wall material. This approx-

imation neglects radiant and conductive heat losses. It also neglects

the heat needed to bring the sublimating material from its initial

temperature to sublimation temperature; both are fair approximations

for low-temperature sublimaters.

If we define

s (h aw " W)
B' - U •h (7)

PeUeCh s

and use the identity

BT--T
B Ch aw( w

h (Taw w
0

we obtain the second well-known relation of simple theories.
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BOUNDARY-LAYER MASS-TRANSFER CHARACTERISTIC

The solution of the boundary-layer diffusion equation for the

transfer of the sublimated material away from the wall is ()

Cs - Csw (hl - h)

C sw (re - hw (9)

T'1s form is strictly true only for the case where both Le and Pr are

equal to one;. in this case the diffusion equation and the equation for

the distribution of total enthalpy in the boundary layer are identical

and concentration and energy profiles are similar. The effect of Pr

on the similarity of the profiles is minor, (710) weaker than its ef-

fect on Ch itself. This justifies the use of Eq. (8) without also

setting Pr - 1 in Eq. (1) and equations derived from it.

Combining Eq. (9) with Fick's law (see Ref. 7), we obtain an

expression for the wall concentration as a function of the rate of

sublimation at the wall:

rh8 1 sw aCq Cweu haw -hw C (0s - sw hTe - h C Ue hTe - hw Ch (10)

PHASE-CH ANGE KINETICS

A last equation couples the concentration of the sublimated spe-

cies in the boundary layer to the sublimation phenomenon itself. The

net rate of exchange of surface material across the surface-potential

barrier is

S2?RT s equ ( w I T =(a equ 8 W,)

where c is an empirical "vapo:ization coefficient," P and C
s equ s equ

are the equilibrium p~rtial pressure and concentration corresponding to

the wall temperature, and P and C are the actual partial pressure
w w

V !
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and concentration of the subliming material immediately over the surface

in the boundary layer. For a two-component mixture one has the follow-

ing auxiliary relations between the concentrations and the molecular

weights (M is the mean molecular weight of the mixture):

P ~
{lM MslW_ -C .

P M
Ps = s = + - A
Pe a +

(12)

CA + Cs 1

An important characteristic of the phenomenon is that there Is a

maximum rate of escape of surface atoms, which occ-:rs when the concen-

tration of the material in the surrounding gas is zero and which de-

pends only on the wall temperature.(2) Several analytical expressions

for the value of P that determines this maximum can be writtens equ
down, depending on the subtlety of the microscopic model. The simplest

one, corresponding to the integral of the Clausius-Clapeyron equation,

is

P p exp. RT(13)
asequ ( R

where p is a constant. This yields for the maximum (forward) vapori-

zation rate the expression

v - A
1ma4%ep J_ (14.)

'~ 2'~RTRT/
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The set of Eqs. (1), (3), (9), and (13), together with an auxil-

iary caloric equation of state defining c

h -h
S8W (15)Taw w

p - w T

complete the general definition of the problem. We shall assume in

this analysis that c can be treated as an a priori (or iteratively)

determined constant, not dependent on the concentrations.l(11)

The following dimensionless parameters, which depend only on the

properties of the surface and/or the free-stream conditions, are now

defined:

AM
H 3 (16)

RTaw

r - - I - ' _ (17)
M c c IVAp p

TT T Te (18)
T Pr

aw
0

k- - 1 * 2" (r (19)

o 2 Of 0
Tawo - + 2- tlk ro

* " Tw OeUeCh (20)

5 0 0'Re

The function • represents the product Cho eý'v which, at least

for self-similar flows, is a constant. Otherwise this product varies

with x through the streauwise pressure and the wall-temperature
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gradients. While questions must be raised as to its behavior near the

singular point x - 0, which are mentioned in Section IV, at large Rey-

nolds numbers it is certainly a finite, slowly varying quantity.

Eliminating i between Eqs. (2) and (11) and rearranging, we write

P uC 2rIMIT T
e e heuaw w

.-.-- ~~ B my "~~*P gPl (21)M S Tw Iaeu 9wI

By straight substitutions we transform it into an equation in only one

unknown, which is B:

I -- -I- B .1/BtPr B1/

pe exp H " " N (22)

L+ r M Pr Pr

/ B4 T - !A M -k 1 ) -= B
° Pr Pr

e'k + B(T ?. MA PH- ' k 1 52 + r (" _S_ a I
M\ Pr)T~f - Pr (P

For clarity, a few IntermedLate steps in this transformation are

given in the folloving. The left-hand sides of Eqs. (21) and (22) in-

volve simply the definition of C, Eq. (20). The first factor on the

right-hand side follows from Eqs. (8) and (4), which yield

B' - u(23)
Pr
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Substituting for B' from Eq. (7) one obtains

B I T

B aw (24)

cT r\T & /
p aw

From Eqs. (5) and (18) one has

T - T (1 + rB) (25)SW aW
0

which, introduced into Eq. (24) and solved for the temperature ratio,

gives

BT MA Pr/T )

T T 1 + S (26)
T1 0

a w I - a B
0 Pr

The firat term in brackets in Eq. (22) in simply hi. (13) written

in the form (see Eqs. (16) to (19))

T
w

T aw

P -HH -......... (27)
0 equ T T

Taw
0

with the tonperat.ire ratio as given by Eq. (26).

The second tern in brackets follows from Eq.. (12) and (10).

From Eq. (10) we derive the follovtnS expression for C s, in term

of 5:
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-r Pr . (28)

B (k - A H i + k - M - B2
S r m a j ia Pr

This equation, after substitution in Eq. (12), leads to an expression

for Ps which is exactly the second term in brackets of Eq. (22).
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III. ASYMPTOTIC BEHAVIOR DOWNSTREAM

For large values of Re the left-hand side of Eq. (22) vanishes

and the equation yields a non-zero value B - BC given by the solution

of the factor in btackets on the right-hand side.

Note that this corresponds exactly to stating

S equ - P sj 0

The solution is identified with the "equilibrium solution" in which

the partial pressure of the vapor, and consequentty also its concen-

tration and temperature, are values corresponding to thermodynamic

phase-change equilibrium.

In the present formulation the solution is given in terms of the

constant p in the analytical expression for P equ (instead of speci-

fying T - Ts equ separately from thermodynamic tables). A convenient

graphical procedure is obtained defining

B(, -H M± B 2 a~

T M
x T o- 1 - (29)

awB0 Pr

in terms of which the asymptotic solution takes the form

P e H ____+ _

In•- a . - + In (30)P0+ I X= + kI

This is plotted in Fig. I for a particular value of 4. For anv exter-
nal static pressure Pe and parameters des-ribing the properties of

the subliemting material (p and H), one obtains a unique value for the

wall-teaperature function X.. With this value of X. and further

*The singularity B a 0 is uninteresting. It corresponds simply

to flow vithout subliemtion.
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parameters pertaining to the reference flow and the sublimating mate-

rial (Of/PrT), Fig. 2, which is a plot of Eq. (29), yields the value of

the blowing parameter B .

Figure 3 is an auxiliary figure giving the variation of a/PrT.

This can be written as

. , ,- (31'

1 - k)( -

The two proportionality constants o and • (see Eqs. (4) and (5)) ap-

pear as a ratio. Therefore, their dependence on the principal varia-

bles of the binary boundary-layer problem, which are M /M Pr, and
a A'

pressure and wall-temperature gradient, is minimized. If one makes

the hypothesis that both vary in the same fashion with these parame-

ters, which seems probable, then the combination c/PrT is to a very

good approximation a function only of the free stream.
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IV, BEHAVIOR NEAR ThE STAGNATION POINT

Equation (31) has the form

§ f(B) (32)
-R B

The parameter ý appearing on the left-hand side of Eq. (32) rep-

resents the product ChVR¶e. The assumption is made that this product
0 X

is a constant, as it is for self-similar boundary-layer solutions.

Now, since ian e Xq is bounded according to the surface-evaporation

equation, the assumption implies that the wall temperature tends to

the recovery temperature towards the leading edge (Re - 0). It fol-x

lows that the wall temperature is variable, and ChV =- constant can

only be good in the sense of "local similarity."

It is worth noting that the above implies two statements of un-

equal importance to the present analysis. The more important one con-

cerns the behavior of Ch ; that is, that Cho grows without bounds to-

wards the leading edge. This leads to the result that B , is /Ch tends

to zero there and, thus, that B varies between zero and B over the en-

tire region of interest. The second and less important one concerns

the numerical accuracy of the assumption Ch_'IVRe- constant. It is

undoubtedly poor very near the origin where the wall-temperature gradi-

ents are large, but it is probably satisfjctory in the region of as-

ymptotic approach to the near-equilibrium solution downstream of the

leading edge.

It is not possible to discuss conclusively t;,e difficult problem

of the singularity at the leading edge. It must be aczepted on the

basis of heuristic arguments and the analogy with the behavior of or-

dinary boundary layers at the leading edge, which involves similar

difficulties. Physically, the behavior outlined in what preceded is

quite reasonable. Moving upstream towards the leading edge, the heat

flux to the wall increases, and the wall temperature must rise to

permit an increased rate of sublimstion.
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Returning to Eq. (32), the right-hand side is expressible in the

form of a series in the interval 0 < 1 < B . If the zsymptotic blow-

ing parameter B is reasonably small, which iF already implied by the

use of the linear-blockage equation, Eq. (4), a limited number of terms

of the series will represent the behavior of the function throughout

the range.

The series is

F/f(o) + f'(o) + 1 B ' + (33,
Vie- B f(O) 2 f(0) +

with the following expressions for the function and its derivative

evaluated at the origin:

kP
"-H e

f(O) - pe k- e (34)

~~~~ - T- + -Hee-

f(0 MA)F + PEeH]
M - (35)f(O) P rH (3[)

The parameter a has the form

S= (•'.H)2 Pe." + k(k - I'H) p-
J a - (36)

(FH)) pe + k(k - 27H) pe + kP e(i - k)

and it was defined so as to become one when k a 0 (Prandtl nuwber uni-

ty).

It is interesting to record the initial behavior of the pertinent

physical parameters of the problem. First-order expansions are given

t elow:
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mA MA)

k - 7"H '-k k - 'H -

P - I -B+..(7

MSS

Pk -" - F' k l k(k • •H) B + (38)

Pequ pe + H -H )- B (39)

T w 1 - M a + (40)

aw

s -- B +. (41)

0

V _=

V/,2, - T R~x
H aw

S 0
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V, SCALE OF THE LF'flING-EDGE EFFECT

The first two tems of the series expansion, Eq. (33), vary as

Re - w to the asymptotic limit of B - f(O)/f'(O). This limit is notx

correct because it does not equal B unless B tends to zero. However,

we know B independently from the full solution at the asymptotic limit,

Eqs. (29) and (30), or Figs. I and 2.

The argument suggests that if one replaces in the two-term ex-

pansicn Eq. (33)

f'(o) _ 1 (42)
"f(O) B-

one obtains a good approximation to the behavior of B fe'r all Re andx

arbitrary values of B., provided B is sufficiently small to justify

the linear expression for the blockage factor, Eq. (4).

Accordingly, an approximate eqktation for B is as follows:

tIf(O) I I (43a)
lke B Bx

X

B X (43b)
P , -, -

R ,~

where L is a dimensionltss scale factor

f (04

The corresponding approximat.ion for the vartition of mass-addition rate

ii, from Eq. (145)
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to the inverse square root of the streamwise distance.

Similar explicit exp:-essions for the vari._tion of the other

parý'meters are obtained by substituting B from Eq. (48) into the

first-term expansions, Eqs. (37) through (40). We see that the con-

centration and the partial pressure of Th9 sublimating species reach

constant values at the origin, the magnitude •f which depends only

on k (the Prandtl number) and which are zero for the particular case

of Pr = I1 The wall temperature tends to the adiabatic recovery tem-

perature for zero blowing at the origin; that is, to the stagnation

temperature if Pr = 1. The blowing parameter itself tends to zero at

the origin of the boundary layer.

The first-term expression, Eq. (48), is plctted in comparison

with a numerical solution of the full Eq. (22) irL Fig. 4 for a partic-

ular set of physical parameters.

It is of interest to consider further the parameter A, which de-

termines the scale of the adjustment to the asymptotic solution, Fig-

ure 5 shows the variation of this quantity in the form (see Eqs. (44)

and 34))

-2- exp (-H) k (50)
P k- De

The principal independent parameters in Eq. (50) are p/Pe a3ld H

(note k - 0 for Pr = 1). These also &dtermine B uniquely (see "igs.

1 and 2), provided that the secondary parameters -x/Prr and r can be

considered constant, which is indeed very closely true above a Mach

numbei of 8 (see Fig. 3).

Equation (50) is plotted in Fig. 5, and values of B are also

shown to bring out the physical problem. The domain of practical in-

tefesc is at high values of p/P and relatively largcs valu,:s of B ,e

The maximum of these curves, which occurs when B tends to zero, is

not interesting in itself, but it serves to demonstrate the influence

of another paramaeter of importance which is the mass ratio M s/M In-

deed, in this region a simplified explicit solution can he written.



BB

E I q. (50's. 
NA I

B Bw 0.295

04 1 4 5 6 91

Fig. 4-Comparison of full solution with the approximate
ifnodiliea first- termi expansion
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H=5

7 ,0 H10\r0.287 (air)
k=O

MA

-a -9.64
Prr

_ -_ 0 . 9 5 1

-5 0 5 10 15

In -Pe

Fig. 5-Typical variation of the leaoing-euge scale parameter,
showing lines of B D-constant
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Low values of p/P correspond to small values of X. (see Eq. (30)).

Since k is normally near zero, the approximate form of Eq. (30) is

-(Xo + k) (["H - k)peH (51)
e

Moreover, when X tends to zero, B tends to zero also. One can

neglect the quadratic term in Eq. (29) which becomes

SB ~Pr-- X¶
ar B Hr (52)

T M
S

Solving for B., in terms of p/Pe from Eqs. (51) and (52), the following

approximate form of Eq. (50) is obtained:

(_•) ~MA /Ms)• ,,

max - MA [ (53)ma 1 - (MAIM.,)r 
U

This relation is plotted in Fig. 6.

Finally, the results can be put into another form which has a

direct physical significance. Recasting the equations in terms of

the length scale t, of the leading-edge effect by combining Eqs. (47)

and (50) and using the equition of state, one obtains

F /MA e e-(4

[ 2 ATawo J aw

2- h Rexp ]a (5()2---H--54

P--£ B2 exp (2H)
p CD
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Fig. 6 -Behavior of the maximum of the scale length
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This is plotted in Fig. 7. Note that the three bracketed terms of

the denominator on the left-hand side depend only on the basic flow

field, the Mach number, and the free-stream static temperature, re-

spectively. The bracketed term in the numerator depends only on the

properties of the sublimating material. The entire factor on the

left-hand side is independent of pressure. Consequently, Fig. 7 shows

that during the initial re-entry from space (p/Pe a -) during which

the Mach number is roughly constant (therefore H - constant and

C - constant), 6 increases to a maximum at some altitude fixed by the

value of the parameter p and then decreases.
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Fig. 7 - Typical variation of the rate - controlled floi
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VI. DISCUSSION

In order to show the magnitudes involved, consider the following

estimates: Let the model be a slender cone for which 9)

Ch / - 0.512
o

0

Assume e and ae constant at their value in the tropopause (ie ae

4 x 10-4 lb/ft). It follows that

2.3M 3 x 10 lb/ft (55)

The constant p can be obtained from vapor-pressure data. Reference 12

(pp. 1751 - 1755) gives a table for selected organic and inorganic

substances from which it is evident that a representative value is

-10lb/ft . (The value p varies around this average by one order

of magnitude for almost all the substances listed.) The vaporizatiu;,

coefficient £ is poorly known. For solid sublimators it is doubtful

that it should exceed 0.1,(2) and it can be less than that by two or-

ders of magnitude. Finally, the ratio Ms/MA can be taken as unity for

the purpose of this estimate.

It follows that, quite generally,

10it1 1 -9
10 C < I0" ft (56)

The magnitude of - is seen to depend very strongly on the value

of H. Since it increases rapidly with H, let us illustrate the prob-

lem for a large value of H: Data typical of graphite (- a 25,000 Btu/Ib,

M - 12) at a flight Mach number of 15 yield approximately
I

* Ib
In the notation of the. reference, p - 1 where b is tabulated.
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"kM kXM
H 5 R- (1 + ) :- 16.7

RT RT 2"''f
aw e

0

The value of p 109 lb/ft2 used in the preceding estimates represents

graphit- quite well--well enough considering the uncertainty in the

evaporation coefficient €. Since 5 increases with pressure, let us

consider relatively low altitudes consistent with the assumed Mach

number and high-speed re-entries, say 30,000 ft. Consider a 20-deg

cone for which the surface pressure is approximately 300 P,. It fol-

lows that

-3 -l
10' 3 < 10 in.

Had an altitude of 25,000 ft been as•in-i d. w ould be larger by an or-

der of magnitude. Had data typical of teflon been used ('. - WOO0 Btu/Ib,

M - 100), H would have been in the order of 5, and t would be entirely$

negligible.

It is interesting to note that the maximum • f.,r a given H occurs

at values of p/P which correspond to P considerabiy higher th;An I
e eate. While pressures above atmospheric can occur, because peand/Mf

are values outside the boundary layer behind the leading shock, they

would not normally be as igh as indicated for ' max.

The rate-controlled region can be taken to extend over a distance

from the origin equal to 100 t; that is, for points on the surfa~.c

lying beyond this limit the error incurred by using the equilibrium

solution for B, 6,s Tw etc., is less than 10 per cent (see, for ex-

ample, Fig. 4 or Eq. (48)). The sketch on the follouing page shows

the behaviL)r o0 the rate of sublimation indicated by both the ejut-

librium approximatiorn ind the full solutiorn and illustrates the

present argument.

The preceding estimatts of the scale ol the leading-edge efft4tt

indicate clearly Lhat, in comparison witt reasonable man-;aadr re-entry-

vehicle sizes, the region of transitional sublimation is very sr•ill,

indeed normally negligible. However, . is an independet p:araocter
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Equilibrium Solution, m,

Present solution, ir,

, Equilibrium approximation
valid within 10 per cent

Rote-controlled %%

reg ion

I 1008

i (distance from the loding edge)

which does not scale with the body geometry. Th .u. imation of smal'I

models in wind tunnels or reteorites in the +tý.sI,..cre may be totally

dominated by transitional effects.

This scaling problem can best be demonstrated by using a concretr

example. Consider the w-nd-tunnel experiments reported in Ref. 3 using

camphor in a Mach S wind tunnel. For camphor tUe materials data at

aL.Lual test conditions can be given quite accurately, except for c:
09 1

330 I/grn, M s 52, p - 1.74 x 13 lb'ft'. Estimate C ;.0 0 1 as

beforv..

With thk tunr.l rucov rv tempvr.iturt. at 3SO°K and the static

pressurt, of 10 -x- Hg, one tink • - 2 .. i p/p t 't X 107

: .6 x 140 in

Considering that thc transitional subli-ation reg:on extends tr. a dif-

tanct- of tht, order 1(,- (sve Fig. _.), one concludes that tt,' entire+

wind-tunnt-il ,t.l Is :eftfd t;v transitional Pfftct, U:jier th test

c ond i T i or s.
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One other aspect of the aerodynaml i of subli-ning bodies can be

affected by the present resub]cs in• an important manner. It is the

probleni of surface recession and terminal shape. Brieily, the shape

of a slender body "(x,t) at any instant t is given by the solution

(with proper boundary conditions) of

•Yixt) -, 1 K= K
bt s- - - --

wher is % constant, X tne distance to the point (x,y) from the

iedin( __, wi-ich is itself receding relative to fixed coordinates

at an unknown rate (L)"

The nature of this problem is such that

Lm Y(x t, (x,t,6=0)6-40 ' ' °

and the analytical solution for the terminal shape of pointed bodies

using the near-C ;ui' ".rium form of the local sublimation rate is not

correct.

A study of this prctlem is in ;'roress at The RAND Corporation.
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