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ABSTRACT 

A vehicle waiting at an Intersection of a major road forces an 

entry Into the aaln-streaa traffic by requiring the oncoming traffic 

to slow down.  Assuming that the main-stream traffic can be described 

as a renewal process, this paper examines tLe resulting disturbance 

which the forced entry creates In the main stream.  After shoving 

that It Is formally equivalent to a busy period problem, explicit 

results are obtained In the case of Polsson traffic.  It Is shewn 

that there Is a minimal main-stream headway which should be forced 

In order to maximize the rate of entry Into the major road by many 

waiting vehicles. Finally, two measures of accident potential are 

discussed. 



FORCED MERGING IN TRAFFIC 

The situation In which a vehicle on a secondary road at an 

uncontrolled Intersection must valt for a large-enough gap In the 

mejor road traffic stream before entering has been extensively 

analyzed in the literature (See, for example, [6], [7], [11]). 

The purpose of this paper Is to examine the effects of a forced 

merge or entry into the main stream. Attention will be focused 

on the resulting "compression" of the main stream as the entry 

disturbance propagates, rather than on the transient mechanism 

of the merge.  A rule for deciding how small a headway should be 

forced Is given, based on maximizing the efflux rate fron the side 

road.  Finally, some implications about necessary driver behavior 

will be given, and two simple measure» of accident potential are 

discussed. 

1.  The Model 

Consider a single lane road with vehicles traveling at a 

constant velocity,  such that their successive headways  (time 

spacings) are the Intervals  of a renewal process;   I.e.,  the head- 

th / \St way between the    1        and    (1  +1)        vehicle,     -t   ,   is an inde- 

pendent sample from the d.   f.   A(t)     (t ^ 0)  (i =   ...,   -2,   -1, 0, 

X, c,. . . / . 

th 
Suppose that at time zero, the 0   vehicle passes a secondary 

road where there is a waiting vehicle.  Just after passage, the 

secondary vehicle immediately begins to force a merger Into the main 

stream, accelerating until he has reached the common velocity, and 



th 
is folloving the 0   vehicle at headway a0 . This will of course 

st 
force the 1   vehicle to slow down, and after some transient period, 

we assume that it will again be traveling at the common velocity, 

choosing to follow the merged vehicle at some headway a, . Clearly 

this effect may propagate upstream for many vehicles, as the 2 , 

5 ,... vehicles are forced to slow down, choosing to follow the 1 , 

2 ,... vehicles at some minimal spacing c , c ,... 

The assumptions of the model are shown in Figure 1, where the 

merged vehicle ''dashed line) forces a "compression'' of the first four 

vehicles.  The trajectory of t':^ 5   vehicle la unchanged, although 

. th 
its headway following the 4   vehicle has diminished, since it is 

still larger than some minimal spacing, a^ , at which it would choose 

to follow.  We shall not attempt to model the actual forcing mechanism, 

nor the transient period during which each of the drivers slows his 

vehicle and then readjusts his velocity and headway; some preliminary 

[21 results on the first problem have been obtained by Bisbee and Conan  . 

Instead, we shall concentrate on the nature of the interaction between 

the arriving vehicles and those which have slowed down, and examine 

the behavior of this interaction as a function of the o. (i = 0, 1,,..). 

The a. (l = 1, 2,...) may be thought of as "Jam" headways, or 

minimal time spacings which the drivers would choose ir such a maneuver. 

We shall make the assumption that theoe compressed headways are inde- 

pendent samples from the same d. f. ,  B(t) (t ^ 0).  The spacing 

generated by the merged vehicle,  an , could possibly be obtained 

from the geometry of the Intersection, and the acceleration charac- 

teristics of the vehicle; we shall assume that it is a random variable 
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with d.f. C(t) (t ^ 0) . 

From the assumptions, vehicle 1 is delayed if T
T£ 

öo + ai * 
i \ st and vehicle n (n = 2, 3,...; is delayed if the 1  through the 

(r - l)8t vehicles are delayed, and Z^" T, < zj"55^ o. .  If a total 

of ND vehicles are delayed hy the merging disturbance, then the 

i=N +1     i=N +1 
(ND + 1)   vehicle must have 2. ^ ^ > Zis0 Q^   • 

In the analysis to follow, ve shall be interested in the number 

of vehicles delayed by the forced merge, N , and the duration of 
i=N +1 

the merging disturbance, T_ , which we define as T » 2    o, . 

The reason for the latter definition will become apparent in the next 

section. 

2.    Busy Period Analogy 

Upon examination, the problem Just posed can also be thought of 

as a queueing problem.    The headways,    T.   , are Just the interarrival 

spacings  of customers approaching a service facility:     8n = an + a, 

is the service time of the    0      (or the merged) arrival, and    s= 0-   , 

st      nd s0 = a,,...,  s    = a    ......  are the service times of the    1    .2    .... c   .p      n   n+i. —^-_^^_—^_^ r        r 
th 

n ,. .. customers. The first customer must wait in queue if T, ^ s  , 

and n   customer (n = 2, 5, ... ) must wait in queue if the 1  through 

the  (n - l)   customer waited in queue, and 2. ,T. < 2^  " s, . 1=1 i •*■ 1=0  1 

We see that the duration of the merging disturbance,  Tn , as 

defined, is identical with the length of a busy period geneiated in 

the queueing model; N  is one less than the total number of customers 

served in a busy period.  Thus, the problem reduces to the analysis of 

the busy period of a queue with: interarrival d.f.  A(t); a special 

service-time d.f.  for the customer who arrives when the service facility 
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is empty, D(t) ■ C(t)*B(t)j and a regular service-time d.f. for 

the other customers (if any) in a busy period, B(t) . 

The analysis of the busy period when D(t) ■ B(t) has been 

carried out by many authors, including Borel, Kendall, Takacs, 

Benes, and Pollaczek (For discussion, see for example Cox   ). 

The most general case of arbitrary A(t) and B(t) was theoretically 

[01 
solved by Politiczek   , but the contour integration formulae he gives 

are extremely difficult to compute; the simplest formulae seem to re- 

sult when either A(t) or B(t) Is the negative exponential d.f. 

(See Takacs ^:L0^). 

Accordingly, we shall examine only the case where A(t) is a 

negative exponential (Poisson mainstream traffic) in order not to 

obscure the main presentation. In this case, the analysis of the busy 

period has been made when the initial service of the busy period is 

from a different d.f. D(t) by Finch ' •' and Yeo ^    *t  using a 

/  [9J method of Takacs    . Because these papers are not easily accessible, 

we shall sketch in their results, as well as developing some additional 

formulae needed when selecting a headway to be forced. 

In the case where B(t) is a constant (Poisson traffic), the 

merging problem is also analogous to a problem of "overflows" at a 

[5] 
signalized intersection x. Formulae for this case were first de- 

veloped by Borel   . 

3. Poisson Traffic 

The assumption of Poisson mainstream traffic,  (A(t) = l-e*p(-Xt), 

t ^ 0), allows us to treat the input in any interval of time as n 

homogeneous process. 
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First, assume that all of the customers have the same service- 

time d.f. B(t), and define G(t) = Pr (T 1 t | D(t) - B(t)) .  Sup- 

th 
pose exactly J additional customer" arrive during the 0   service 

interval; i.e., Z^T, < s^ , and 2^"^ T^ > s. ,  If the queue dis- 

cipline is rearranged to be UTO, instead cf FIFO, the last of the 

new arrivals will generate his own "descendants" during his service 

time, who must be served before the other "first generation" arrivals; 

this will alter the individual waiting times, but can not affect the 

distribution of the total additional busy period, which must be the 

J-fold convolution of G(t), denoted by 0° (t) . 

th 
But, if the 0   service time were of length y , then the 

probability of j additional first generation arrivals would be 

fie Poisson probability, (>yy) expC-XyVj.' Since the total busy period 

is the sum of y and the total additional period described above, we 

must have 

(1)     G(t) = ^ /  e"7^ iMi 0J*(t - y) dB(y)  (t >> 0)   T, 

J=0 0 

A similar argument can then be made for the case where the 0 

service-time d.f. is D(t), instead of B(t).  Letting H(t) = Pr (T ^ t) 

in this case, we obtain: 

The above formulae can be put into simpler form if we use (laPlace- 

Stieltjes) transforms with the notation: 

•5- 



IM  = / ^e"8* dG(t) 
0- 

and similarly for the other distribution functions. From (l) and (2) 

ve get the implicit relations 

(3)      ß(8) = b(s + 7v - X g(8}) 

and 

(4) i(s) . a(s + x - x i(s)) 

which are mostly useful for obtaining moments, although they can be 

inverted in special cases. In the forced merge example, of course, 

we will set d(s) = b(s) c(8) . 

Denote the first moment of a d.f. B(t) by v_ and its variance 

2 -12-2 by a , and similarly for the other distributions (v. = X " , a = X ). 

Then by differentiating (3) and (k),  we find after some algebra: 

VB       „2 4 *  ^VB)VB 

IM       „      VD     . ^   ^-^4* ^M * VB] (6;    v = 1 . ^  ; o   m —  
H  1 ^B    

H       (i - MO5 
V 

Of «ovirse, in the traffic example: 

(7)     vD = vB + vc ; a* - (^ ♦ oj; 

Thus, the average duration of the disturbance period depends only 
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on > , vB , and vc . 

Similar arguments can be used to find the distribution of the 

additional number of vehicles delayed. N-, .  Let G » Pr (N^ ■ n I D        n      D    ' 
D(t) = B(t)) , and H = Pr (N = n) in general.  Then 

n 

(8)     Gn * I if ''* ^ Cj ***> (n - 0, 1,...) 

1* where Gr,    is the J-fold convolution of G . Also: 
K. K. 

n 

(9)      H 

By the use of generating functions, defined as 

S(z) •X 20 an 
n=0 

we find the Implicit relations 

(10) G(z) = b(X - ?v zG(z)) 

(11) H(z) = d(X - > zG(2)) 

2 
Denote the mean and variance of    G      by    m      and   v    , respectively. 

n G G 
Then: 

no) ^B  2      ^4 I »B (12) m     — ———^     :     v    ~ • 
1 ^     1 - ^B    '      G      (1 - XVB)5 

-7- 



M > ^VD 2   (1 -AVB) ^ t UVD)(1 ^
gg|) 

and of course (7) holds in the traffic problem. 

It is important to note that in this model T  may be large 

enough so that no mainstream vehicles are delayed. 

4. A Condition for Stability 

It is a veil known result that for the solution of (5) to give 

an honest distribution for G(t), that as s approaches zero, the 

smallest root of x = b(^-^x; must be unity; one can easily show 

that this means that TvV^ < 1 . This is not surprising, since this 

is Just the utilization ratio of importance in queueing theory. Thus, 

(1) If >V_ > 1 , with probability 1 - x > 0 , the merging 

disturbance period will never terminate. 

(2) If >V_ = 1 , the disturbance period will terminate with 

probability one, but from (12) and (13), it will have in- 

finite mean length. 

(3) If M'-n < 1 , the disturbance period has finite mean 

length. 

More simply stated, our model of driver behavior requires that, when 

a forced entry is made, the delayed cars must "compress," on the 

average, in order for the disturbance to eventually die out. 

^. Selecting a Minimial Headway to Force 

Suppose there are many vehicles on the secondary road. If the 

first driver forces a very small headway, this may hinder the subse- 

quent merging of the next vehicle in line (assuming he cannot force 
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his way out during the disturbance interval).  On the other hand, waiting 

until a large headway comes along will also delay cars behind him.  In 

this section, we shall examine the question as to what choice of T , 

the minimal size headway to be forcsl, will maximize the rate at which 

merges are made from the secondary road.  Successive drivers are sup- 

posed to have the same initial service-time d.f. D(t) . 

We require that:  (1) an + a. > T , so that all merges will be 

forceu, and (2) no entries are made during the disturbance interval, 

either because T>a. (i = l, 2,...)or because of driver concern 

for accidents. 

Let F(t) = Fr (T ^ t j T, > T)  and note that the previous ar- 

gument still applies, except there are new arrivals only during the interval 

(T, y] . Remembering assumption (l) above, it is not difficult to 

show that: 

(14)     f(s) = h(s) exp (XT - MgCs)) 

and 

Defining    F    = Pr (N    = n | T. > T)   , we obtain 

(16) F(z)  = H(z)  exp   (XT - ?vTzG(z)) 

with: 

XV    -XT 2 X2aT
2 

(17)      mF = r^7   '  VF = VH-^ 

AgB j 



Equation (15) gives the mean length of the disturbance interval 

when a secondary vehicle forces some headway > T . Hovever, the next 

vehicle in line must wait an additional time past the end of this 

interval until a headway > T appears (he may wait zero time if the 

st 
(N + l) " main-stream vehicle arrives at an instant > Tn + T) . 

This additional wait is Just the problem of "waiting for a gap" 

which has been previously analyzed in great detail [6], (7], [11] . 

The mean wait in Poisson traffic for a gap greater than T is: 

(16)    vw(T) = i'[e^
T - 1 - XT] 

Thus the total mean spacing L(T) between successive forced 

merges is: 

(19) L(T) = VF(T) + VW(T). 

Since the instants of merging constitute an imbedded renewal process, 

the mean rate of merging, 0 (T) , is Just L(T)  . Figure 2 shows 

XL(T) versus XT for M^ = 0.8, and M^ = k.O    (n^ = 20 ; v| = 500). 

For small T the length of the disturbance interval keeps the merge 

rate low, and for large T the wait for a gap dominates. 

An optimal choice of T can be found by calculus to be: 

(20) XT* = - ln(l- ?vVB) 

which gives the unique maximum p(T ), provided that the assumption 

of T < a„ + a. (and certainly < v_. + v^)  is satisfied. Note that 
U    1 .b    L 

♦ 
the optimal T  does not depend upon V- , so that the choice of minimal 

headways to force is independent of the acceleration characteristics 
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of the merging vehicle. For the example of Figure 2, ^T = 1.61, 

indicating that headvays at least 61^ greater than the average head- 

way should he forced. 

Figure 3 shows T /v_ versus ^v., . For sparse traffic, T 

is very close to v_ ; as the main-stream traffic increase the optl- 

mal minimal headway to force also increases, limited only by assump- 

tion (l) above. If oQ    and the 0,(1 ■ 1, 2,...) are fixed numberSj 

* 
this limit Is just T = v« + vc , the point at which a secordary 

vehicle would cnoose to wait for a gap without attempting to force a 

merge. 

6. Measures of Accident Potential 

One of the reasons for not allowing a forced merge is the possi- 

bility of accidents caused by the "chain reaction" of vehicles which 

must deaccelerate suddenly in the nkiin-stream.  The actual causes of 

such accidents are very difficult to model until more is known about 

driver reactions under sudden stress. However, as a rough measure of 

accident potential with a forced merge, we shall consider two simple 

ideas which probably bound the possible damage. Assume that the 

probability tüat any successive pair of cars (including the merged 

vehicle) has an accident during a merging disturbance is a known con- 

stant , p , a function of X , the velocity of the main-stream, the 

visibility, etc. 

First let ua assume that accidents are Independent of one 

another, or, roughly speaking, that each following vehicle has an 

equal cnance of avoiding a collision. The mean number of vehicles 

in a collision, M^ , is twice the mean number of pairs colliding in 
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a disturbance period,  or: 

(21) ^ = 2 fflpp 

Another assumption might be that once the j   and (j + 1) 

(j = 0, 1, 2,...) vehicles have an accident, then all of the cars 

J ♦ 2, J ♦ 3, ...,ND will also be involved; this is the familiar 

"chain reaction" in poor visibility.  In this case: 

<22)       Mc = I rj Z ^ - ^J+1'k ■ Hr* [^ - p) - ij ^ 
J=0   k^2 

For very small p , 

(25)     Mc = [| ny . -L_I P + 0(p2) 

Under either assumption, the probability of at least one collision is: 

(24)     P ^ 1 = 1 - F(l - p) = nij-.p + 0(p2) 

The reader may easily modify the distribution if it is known that a 

headway of exactly T.  units was forced (instead of only knowing it 

was > T) . 

Y.  Extensions 

The formulas developed for optimal choice of a minimal headway 

do not, of course, take the delays in the main stream into account. 

This delay is just the usual waiting time in the system (queue + service) 

of the queueing model; by finding the average wait of those who wait 

(except the initial customer), one can then weight the total main-stream 
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delay in any desired combination vlth (19)* Thle analysis has been 

carried out by the author, and will be reported In a subsequent paper. 

One new feature of Interest Is that it may be worthwhile to force a 

merge for several secondary vehicles. 

Although the analysis has been carried through for Poisson 

traffic, it can also be done for other specific cases of interest, 

by simple recursive computations on the delay distributions of the 

th 
J   vehicle.  In particular, the case of shifted-eaponentlal headway 

distributions, and the case of deterministic a  and a    (i = 1, 2,...) 

recommend themselves as subjects for further study. 
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Figure 1.  Trajectories of vehicles during a forced merge. 
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ilgure 2.    Total mean spacing between forced merges as a function of 
the minimal size headway which is  forced. 
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Figure 5.  Optimal minimal size headvay to be forced as a function 
of a function of main-stream flow rate. 
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