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FORMULAS OFT1 E 'ISORi'WAVI'. ASYMt 01''I IC

IN A PROBLEM OF I)IFFRAC1l ION BY GANVEX BOI)I'K:;

by

V. S. 1•uiliv

§ 1. INTRODIJUC'I.ON

1. Formnulas are derived in 111i, , iiic fur l' tI 5Ii r'twaVtc

asymptotic of Green's function G(x. x'; k) of thk, cxt c rnal Dirichlct

problenm for the Heclmholtz cquiltioln in d pl l.i i. G r ckt'W, ifiction

satisfies the equation

(-'-vk-)G(x, x'; k) •(. ~-.x) tx', .,'(L, K >0) (1.1)

and the boundary conditions

6(x, x'; k) -0 ik(. (, ,; k)i'" 0

L je 1 (1.2)

Region D, in which the vq,,atiun is t xc-imincd, is outsidt: a

finite closed conivex contour L. it is , 5-i ,l-t.,u that the radius of

curvature o(s, of this contour, as a funt f ion ,f thc arc length s,

has tWo continuous derivatives -md p(s) -, pu > 0.

Ri

/,

$-L

Figurt'1.



The following definitions will be used in connection with the

geometric characteristics of the shortwave asymptotic (the asymp-

totic when k -= + co). Relative to point x', region D is divided into

two parts: the illuminated part (light) R(x') and the shadow part

S(x'). The tangents H+T+ and H T_ to the contour L (figure 1).

whose extensions pass through the point x' are the boundaries (geo-

metric) of these regions.

2. Many papers have been written on the derivation of formulas

of the shortwave asymptotic in which asymptotic formulas are obtain-

ed for a considerable part of the characteristic locations of the points

x and x' in the region D. However, even in the simplest cases, there

is no exact justification of these formulas. In an attempt to make

such a justification, by using a certain procedure, it was necessary

to refine the asymptotic formulas in specific respects. This refine-

ment is also described in this article.

Keep the following system of justification in mind:

Let the asymptotic Q(x. x'; k) of Green's function G(x, xl;k), which

satisfies the conditions (1. 2), be known from any non-rigorous argu-

ments with any x and x'(x, xI E D). This residual is

K (x, x', k) .2 x , - -- a (x e- (1. 3)

and the relationship

Q(x', x; k)=G(x', x; Ak)+-.dy(i(x', y; k)K(y. x; k)
,(1.4)



is considered as Jit ,qk t,•.lh r 101 111 U tiOni G(x', x; k) (x' being

fixed). If the asymptUtiC Q(x, Y'; k) is siich that the corresponding

residual K(x, x'; k) generates the operator K with a norm which

approaches zero as k --. in soniv proper functional space, equa-

tion (1.4) gives an estimate of the er-or in the asymptotic Q(x, x'; k).

Familiar asymptotic formulas, which can be found, e.g., in

[1] and [2-5], indicate well the overall structure of an asymptotic

but we have been unable to construct that functional space in which

the residual corresponding to these formulas generates an operator

with a small norm (the asymp'otic Q(x, x; k) should also belong to

this space).

Section 2 of this work gives a construction of the asymptotic

Q~x, x'; k), with the following properties:

a) Q(x. x'; k) satisfies conditions (1.2);

b) O,(x, x'; k) T Q~x', x; k);

c) Q(x, x'; k) is a continuous function of the arguments x and

x', except at the point x : x', where it has a singularity

characteristic for Green's function;

d) Q(x, x'; k) has continuous second order derivatives with

respect to the variable x, except at the geometric light-

shadow boundary, where the derivative may have discon-

tinuities of the first kind.

These properties make it possible to consider equation (1. 4)

in some space of continuous functions. A total estimate of the norm
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o0 the operator K will be treated in another work; here we restrict

ourselves only to a partial study of the properties of the residual

K(x, x'; k): let us estimate its order when k - + a . In section 3

it is shown that the main terms of the residual for the obtained

asymptotic formulas are reduced when k -- + ao.

The formulas given in section 2 are directly connected with the

results in works [2-5]. These results are characterized by a special

type of contour integrals by which the asymptotic is described. V. A.

Fok was the first to introduce and investigate such integrals.

5 2. CONSTRUCTION OF THE ASYMPTOTICS

1. Formulas which are known in diW%:1ne1t canes (for special

contours, admitting the separation of variables) indicate that the

asymptotic has the form of series M E r (o), to each of whose terms

corresponds a specific phase 0. The phases can be described as

the lengths of certain extremum lines, connecting the points x, x'

and lying in region D. If the points x and x' are located in the

shadow relative to each other, they are the shortest curves, envelop-

ing the contour L (figure 1) and an infinite number of smooth curves,

which differ from those shown by additional turns around the contour L.

All these curves, the corresponding phases and components in the

asymptotic, are calledenvelopingrays, phases and waves. When the

point x approaches the geometric light-shadow boundary and passes

into the illuminated part, one of the enveloping phases ceases to have
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meaning and is replaced by two phases (figure 2): *4 0 Ix - xfl and

+R which is the length of the broken line, reflected from the contour,

according to the laws of geometric optics (the angle of reflection is

equal to the angle of incidence). The remaining enveloping phases,

including those which were obtained from the phases "having been split"

by the additional terms, are now preserved. Here, the designations

direct (for * 0) and reflected (for iR) rays (phases, waves) are used.

Thus, there are three kinds of waves: Qne direct, one reflected, defined

for x E R(x') and an infinite number of enveloping waves. For contrast

to + 0 and 0R any of the enveloping phases will be designated by 4S.

All phases introduced satisfy the equation of the eikonal (x E D)

(vAC(X, x0I-WI , (2.1)

The component r m•) in the asymptotic has the following struc-

ture:

HO) (z) is the Hankel function [ 6]. U(') (x, x'; k) is assumed to be
0

a slowly varying function in the following sense when k -- + :

A HO) (ko) : k .H(°)kO) has an order of growth kHoI) (kO), when
X0 V 0 0xk -. + ao the gradient V 00U(x, x'; k) has an order less than

kUML(x, x'; k) as k-- + .

Let us axtssume

IP"" x, xk) 1



Alt tIhdt tilt dJ rt1-c WL.Vc ill tllcý Iightl Ig :rck. b it "'Ilk b..fl

solution of 1vi(attiun (I. I).

Vigure 2

Let us designate U (R) (x, x'; k) u(R)(x, x'; k) and

U(S) (x# x'; k) a U(Os) (x, x'; k).

Considering the described structure of the asymptotic as the

assumption, let us look for the functions U (R) (x. x'; k) and

U(S) (x, x'; k). Taking into account that the phase#, which generate

the rapidly variable factors, are diflvrent, it will be required that

each of the components r(n) asymptotically satisfy the Helmholtz

equation (for those values of x and x' when the corresponding com-

ponents are defined). From those same considerations let us require

that each component satisfy the boundary condition (1. 2) on the contour,

with the exception of the direct and reflected %,tves (on the contour

., * 0 " +R ) for which we require that their sum satisfy the boundary

condition



8i

~.~lii;t III ch l~ Ii.u I'll tt ) I- I to I (4t) is usec. And
4 o

. tci thte lunctiun U(x, x', k) is i.sumed to change slowly, in

Obtcitining t1it' Usyzliptotic equationi for U (x, x'; k), we should use the

,1symiptotic furin of the Hankt.l function when ký-- + •0; therefore it

is natural to preserve asymptotically only the second component in

the last expression (2. 6), since both components in the brackets con-

tain the factors t (k',) - iIIl," (lq,). C),,/A) ) and tl,(k,) ( q,)

respectively. In this section, let us agree not to differentiate between

the asymptotic and exact equalities in the notations. This difference

will be obvious each time for the text. Asymptotically we have

VWU+ ik [2vcIvUl ( 1i- 1;) Uj'1z0. (Z. 7)

If only the term in the brackets containing the factor k remains

in equation (2. 7) and if it required that the solution of the obtained

equation satisfy the boundary conditions (2. 4). the functions U(R) (x. x'; k)

and U(S) (x, x'; k) are determined uniquely (explicit expressions are

in paragraphs "2" and " 3" of this section). It is evident from the

explicit expressions that U(R) and U(S) do not satisfy condition (2. 5)

of continuous merger at the light-shadow boundary. In addition, the

derivative of the function U(R) with respect to the normal to this bound-

ary thus obtained reverts to infinity at the boundary. Due to these

singularities no meaning can be given to the operator K in equation

(1. 4), which generates such an asymptotic. This indicates that some
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componcnt. of the "1,apiacian operator should be retained asymptotically

in equation (Z. 7), It is natural to expect that in the vicinity of the

geometric light-shadow boundary, there should be the second order

derivatives with respect to some direction orthogonal to the boundary.

We will arrive at such a conclusion by relying on the analogy with

constructions of the boundary-layer type and by taking into account

that the derivative with respect to the tangent to the boundary is already

contained in the brackets with the factor k. From these considerations,

only the second order derivative with respect to the direction orotho-

gonal to the contour should be retained from v ZU in the shadow in the

vicinity of the contour L.

In the future, instead of the function U (x, x'; k) it will be more

convenient to consider

A (x, x'; k) =--=( U U(x, .'; k). (2.8)

By distinguishing the reflected and enveloping waves, we will write

A (R) (x, x'; u) and A(S) (x, x'; k).

The terms with second derivatives in equation (2. 7) should be

preserved only if the derivativeý' are of a higher order than the function
_1

U (x, x'; k) itself when k - + oo. Then V V A is of principal order

in the expression V 2 U; therefore instead of (2.7) we can write asymp-

totically

V"A -- ik I2V4)VA + V4'AI =0. (2.9)

The radiation conditions will be used in the form



- 10 -

(x, x; k) 0, R (x.10)

Here, ER (•) is the arc of the circle I X• a R, lying in the region

where the phase * is defined. By using the asymptotics of the Hankel

function when -. oo and the Cauchy-Schwarz-Buniakowski inequality,

we can prove that the radiation condition in the form (1. 2) follows from

condition (2.10) for each component of r ().

2. Let us examine equation (2. 9) for the enveloping wave.

For definiteness, we will consider that a ray, directed from point

x' to x, envelops contour L in a clockwise direction. We will also

agree to measure the arc length clockwise.

Let us use two orthogonal coordinate systems: (s, ýS) and

(a, n) (figure 3).

to 
So

t

Figure 3

Let t be the length of a segment of the tangent of Hx and s the

length of the arc at the point of tangency H. The quantities t' and s',

associated with the point x', are introduced in a symmetrical manner.

+S 3 t' + (a- s') + t. The Lame coefficients of the system(s, *s3are

h -- :=: ,. (2.11)
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For the second coordinate system, n is the length of the nor-

mal to the contour L, drawn through the point x, w is the arc length,

corresponding to the point where the normal and contour intersect.

n' and w' are defined analogously. The Lame coefficients are

h.=+". A. -. (2.12)+ _n) a hn 1.

Using the system of coordinates [in, Os,}we get

, L, •-"(2.13)

and equation (2. 9) takes the form

V(S)-- ik[2V VA=0. (2.14)

If we retain here only the term in brackets containing the factor

k, we will arrive at the equation

-s +,"A-". (21.

with the boundary condition (2.4):

0o• 0. -,- +, -- o.ý

Solution of this problem is:

A 0s (x, x1,. 4) -0. (2 .16)

This geometric optics approximation is inadequate for our

purposes. To construct a more exact asymptotic of the enveloping

wave, let us examine equation (2.14), at first in the vicinity of con-
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tour L (the size of this neighborhood will be defined below). Taking

account of remarks made in the preceding paragraph. we have

asymptotically:

as+ ik [2VsVA(S) + :- A") O. (2.17)

Here A (S) represents the second derivative with respect to the

am rpsn

variable n, for fixed w. Similar notations are used later.

Exa•tining equation (2.17) near the contour, let uo use the

method first used by M. A. Leontovitch and V. A. Fok [ 7] in diffrac-

tion problems in which the radius of curvature was constant. This

is called the parabolic equation method. V. I. Ivanov [ 3] used this

method for contours of a general form. We will refine the results

of the work [3] somewhat.

In the equations, the differential operations and coefficients

will be represented by the variables n and 4 in the vicinity of the

contour. Let us use the formulas

, - i'+(o-s')+. 1.. __ ,-- f (2.18)+±l ) (a)nn +O (n

Let us retain the following terms in equation (2.17):

.. ,,,~s) 1" I 2[ '.. I nfAs '• ° .ts
A$ + Jt (S*) 2 -- 7f"" A. z

I 2A
+n- A(S + A' s,)_ = 0.
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IN we consider this equation in the variables n, a k4 n and #& k+ we

it Is easy to see that terms of the two higher orders with respect

to the variable k (of the orders A and k) are retained in equation

(2.17) and the discarded terms are of an order not exceeding k+.

Equation (2.19) should be considered. therefore. when

nz=k n j. (2. n0)

Later, when analysing (2. 19)s we will not discard anything.

Let us rewrite (2.19) in the variables

0' (2.214)

It assumes the form

A-s) 1 [2p (S + (2.22)

T)310 A = ~) ] --0.

If we define V(S) by means of

31 p)(2.23)

we get

+v fVe, +"+ Vr',+ . v- qso (4
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Finally, let

1'. ,t')=e 0(, , &). (2. 25)

where

fa (&, p') = -•- K, • -i -- l'

(2. 26)

then

Ps.

(2.27)

In definitions (2.23) and (2.25), the symmetric dependence of

A (S) (x. x'; k) on the points x and x' is explicitly taken into account,

where the point x' was assumed to be located in the vicinity of the

contour n' a k3 n' << 1. Solutions of (2.27) satisfying the condition

*1 0(S, O. o,) =o (2.28)

and which have a derivative V(S) quite rapidly approaching zero

when A -- wo (which corresponds to the radiation condition, since

the point x recedes from the contour along the normal when 1L -a. )

can be represented by the contour integral (when ji .< ý')

0tt•'•, P'. 0) ''"(, d,. l,) -- _ d:-(r,) ,.,k X

- [. (2.29)X L'[ ]IjC

Here w• (C) and w,& (•) are Airy functions as defined by V. A. Fok [8].

They satisfy the equation w" (c) - .w (c,) and are entire functions of
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the argurnunt itself. 'I he zeros ul the function wj(ý) are located
IT

in the ray arg ý = - and have a p,;itive imaginary part. Further

proprti Us of theCst functions cani b, found in [ 8]. The integration

contour in (2. 29) c:nC ios,,' the zcrob of the function w, (;); the fac-

tor u cxnure8 convurgcncc of the integral. An arbitrary analy-

tical function '(j,) Nrill bC dftermined later from the conditions of

merging with the asyimptotic in the light.

The for"iulis., containing the integrals (2.29), were obtained

first by Fok (sec, e. g. (2]), in the case when p (a) x const. Later,

they were examinvd for other contours admitting separation of

variables, e. g., for the ellipse in [4], for the parabola in [9] and

in other works.

Formulas (2. 23) - (2. 29) give the asymptotic in the vicinity

of contour L. It can be assumed that during a suitable change of

the arguments X, and ji, this hki-mula will also give the aisymptotic

far from the contour. Lvt us expruss the variables X and pi in

terms of t and s, which are more riatural from the viewpoint of

the geometry of the problem. Near the contour

d3 * ( ) .d . ,(.)+ (2. 30)

-p " (S)t r "(•)t'-f 0(,).

In (2. 25), let us :'s\bAh'ute the new variables
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In~~~~~z (2 3) e u usttt
.X==~.f-'~+?, z.ds~;(2.31)

Al(.,) =~

In (2. 23), let us subititute

•(o) -- p(s). (2. 32)

In the vicinity of the contour. the old and new variables, by virtue

of (2. 30), agree to an accuracy of a lower order of magnitude with

respect to n(n -- 0).

It in easy to prove that equation (2. 24) for the function

V(S) (X, YO Y')

""•C0 2Y "("2. 33)

can be written as

• I ' • v . -i. . .. 2.] ,, V('1 --0. (2.34)

Here, V(S) represents the second derivative with respect to Y forYY
fixed X and Y', and the gradient is calculated with respect to x for

fixed x'. Since the factor, separated out by relationship (2. 23) (with

the change o -), is carried along by the differential operator

Tx+SVx into equation (2. 34), then (2. 34) means that in the initial
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,. ,... . ., t) biht Ulid cullipullunt is retained co n-

*' I

st b j.i ý- tct L I d I t,! 1,,t, ' " au l tit, ia p ) )' k A (V)

Wilt-V 1 |) (h) : k•)wit, tilt' Jilstdit A ' X llciU'llb that const; in

this case th, W pitt 'e t is i1 5 ,quti to tilt, •,•ou d d1 i rivativ, of the

function A(S) "ung tilt' c• ir•, - coliIt. Th'e cur\,c)ve const

intersects the g.onet ri c light- shAdow btuiMd1,1y, and the contour L

normally; thercfore equation (2.. H4) mket, it possible to assume

that in the variable (2. 31), the asymptotic formulas will cancel the

principal terms of the residual (1. 3) evvrywhere inl the shadow. When

the radius of curvature is variablv tht, written term does not entirely

correspond to the derivatives with respect to the direction orthogonal

to the boundary. It will be shown in section 3, however, that the

constructed expression nevertheless cancels the principal component

of the residual when k - + 10. It should be noted that in the vicinity of

contour L, expression (Z.23) in the variables X and 1A more accurate-

ly describes the asymptotic since it cancels the two higher terms in

the residuals K (x, x'; k) (1. 3).

3. Let us turn to the construction of an asymptotic expression

for U (R) (x. x'; k).

An orthogonal system of coordinates ( s, 10R) is used in the

light; s is the length of the arc at the point of reflection P (figure Z),



tR IV t t is the' |Itlgthl ot thei se'ginlit.it l)x, t' thi lt'ngth ofi s•gn• ent
x' l). l'hc I l.nie.•'c ,ffjcicit~zzt ,,r

0 the angle of ref , utiui, v-.. ) - (' 36)

It is easy to see that

VA; '.'y, -- / , -1, - , (2. 37)

where on the right side of this etquttion. L is understood ais a function

of a and ý R" Let us write the geometric optics approximl.htioii

(114-1A'0 ") which i, usually uscd far from the shadow, It

is determined from the equation

"-2VA,1,A.VAQ"') +-V¢•," :' , ,o , "
j . .... ... A "--0 (2. 38)

(compare with (2. 9)) and the boundary condition

A •' ('-" - -'i c..2 ,) 2. 39)

h{ence we got

- - (2. 40)

However, using (2. 40) in the light, we were Hot able W telect

the function F(ý) in the expression for A (S) (see (2.29)), so as to

obtain condition (?. 5) of continuity of the asynmptotic at the boundary
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()=0. (2.44)

'rhe subscripts of the function V(R) denote derivatives with respect

to the corresponding arguments; V Z4 R is given by formula (2. 37).

The coefficients of the derivatives in relationship (2. 44) can be ex-

pressed in terms of the variables X, Y and Y'.

Let us put

V ) e-k "•tl? , (2.45)

where

3FR-=FR(X, Y., Y') =QCX+-(Y-.-.). +
S3 3

"3 ( )0Y -C(2.46)

tR is determined from the equation

X-(Y--C•) ,--) - + 2( )- 0. (2.47)

If X, Y and Y' are defined by the formula (2.41), then

-,) '!- = .()Co 6 2.48)

Nk (R) is considered as a function of those same arguments as is V (R):

IQ(R) .•(R) (X, Y, Y', s; k). Equation (2.44) takes the form

" I - (2.49)
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The last relationship, which agrees exactly with (2. 27), can be con-

sidered as the equation for the function T,(R) of the variables X and

Y; Y' and s can be considered fixed, the region of variation of the

variables X and Y in the plane {X, YJ is included between the two

parabolas.

[I/Y+ Al (s) -- (s) I + 1V' rS" i . - At (s)! .

-1 + Y' (2. 50)

(see (2. 47)). It is necessary that the function ' (R) (X, Y, Y', s; k)

be symmetric with respect to Y, Y'; then the solution of (2. 49) can

be written in the form of a contour integral with three coefficient-

functions of the variable of integration, of the variables a and k.

The radiation conditions (2. 10), the boundary condition (2. 4) on the
R iF ½1

contour: T (R),RX IY -0 1 ,and the requirement that the

function V(R) = eiFR 'P(R) be slowly changing (in the same sense as

applied to this term in paragraph 1 of the paper), are all used to

determine these functions. The function k(R) of such a type (it is

written when Y' > Y) satisfies both the radiation and boundary con-

ditions:

* . - A;, ~ c )')(2. 51)



The secund integral in (2. 51) with the arbitrary function F (ý) vanishes

on the contour L. The first integral satisfies boundary condition (2.4),

which is easily proven, by using the formula

where
db~b(~I ' / I * 8))

- -- +v ,,-,"" (2. 53)

V. A. Fok's work [ 10] contains a proof of formula (2. 52).

Under certain general assumptions about the function F 1 (n), the

second integral in (2. 51) can be computed asymptotically when R'-go

according to the saddle-point method (e. g., [ 2] ). The corresponding

component in the function V(R) in this case will have a rapidly chang-

ing factor. Therefore, F 1 (,) a 0 should be proposed.

It is seen from (2. 51) that @(R) depends only on X, Y and Y1, so

that later, we will write ,1 1(R) = ,(R) (X, Y, Y') and V(R) = V(R) (X, Y, Y').

Let us determine the coefficient F(Q| in (2. 29) for the enveloping

wave so that the continuity condition (2. 5) of the asymptotic in the geo-

metric light-shadow boundary will be fulfilled. Beforehand, let us

transform the expression for V(R) (X, Y. YI) by using (2. 52)

010A Y, Y')= e-'"A(\ " 'i'• (, ', V") f,._ -- - ";'u'-A•) (2. 54)



Here, the function %k(S) (2. 29) is represented by a(S) FF 3 , when

F(L) -- 1. The difference II(X, Y, Y')- FR(X. Y, Y') can be re-

presented in the form

F(,) S 1. (2. 56)

follows from formula (2. 54) and the merger condition (2. 5).

4. Let us present final asymptotic expressions for the slowly

changing coefficients u(R) (x, x', k) and U(S) (x, x'; k)

U•') (x, ' . ) -- l, •(X, •;• (Z. 57 )

' 1 V") (X, I'. Y') _ " , . ), ),),dA,(y y, },),

where

x , r ) Z v i G) ( 2 . 5 8 )

The function FR (X, Y, Y') and the variables X, Y, Y' are

determined by formulas (2.46), (2.47) and (2.41).

For the enveloping waves,

UI" (x, X'; k) - U("(x', X; k) 's -(s)(x, x';/f )

i (('p (-, , ( 2 . 5 9g )

wher hST VY. Y. r).

where, when Y' > Y
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V(S) (X, Y, Y') -! 3 d4e'"'w1 ( - Y') X
2x:

X [ - Y - + (2. 60)

The contour of integration encompasses the zeros of w1 (c). The

expressions for FS (Y Y') and the arguments X, Y, Y' are given by

formulas (2. 26) and (2. 31).

The exponential decrease when Z -. + u0 is an important property

of the function + y' 3 + Z, Y, Y this decrease is ob-

tained easily by drawing the contour of integration such that Im ý > r >0.

If the errors of the asymptotic formulas are estimated by the absolute

value, the exponential decrease makes it possible to be limited to a

finite number of enveloping phases.

Let us consider the asymptotic Q (x, x'; k) which includes only

such phases. When the points x and x' are in the shadow, there are

the two smallest enveloping phases (figure 1). When x and x' are in

the light relative to each other, the phases are: direct, reflected and

one least enveloping.

The asymptotic Q(x, x'; k) has properties a, b, c and d, enumer-

ated in section 1. Only c and d require discussion. Property c

follows readily from the uniform continuity of the functions X ! (X, Y, Y')

and Xa *)(X, Y, Y') in the octant X, Y, Y' > 0. The functions

S(S) (X, Y, Y') due to the exponential convergence of the integral (2. 60),

and *%R) (X, Y, Y') due to (2. 54) are infinitely differentiable functions



of their arguments when X > 0. Thurefore with fixud x', the functions

U (R) (x, x'; k) and U(S) (x, x'; k) are twice-continuously diffi rentiable

with respect to x up to the boundary OS aR . This means that the

singularities of the derivatives of the function Q(x, x'; k) agree with

those listed in condition d. It should be noted here that the component

in the asymptotic which corresponds to the smallest enveloping phase

in the light can introduce in the derivatives discontinuities of the first

type along the line on which the smallest enveloping phase is determined

non-uniquely. The enveloping wave on this line is exponentially small

when k - + go; therefore it can be corrected such that the derivatives

become continuous, and the error admitted with such a correction will
-k3A

yield a contribution to the residual of the order of e , where

A> A 0 > 0 and A 0 is not a function of x and x'. Later such a correc-

tion will be implied without explicit mention of it.

§ 3. AN ESTIMATE OF THE ORDER OF THE RESIDUAL

I. The residual K (x, x'; k) (1. 3) for the constructed asymptotic

Q (x, x'; k) will not be uniformly small when k -+ oo. For equation

(1.4), however, it will be sufficient to restrict ourselves to a certain

integral estimate of the residual, for example to the following: for

any continuous function p (a) (a > 0) such that p (a)a_.O = 0 (Im a) and

p (I1)'_. o0 = 0 M$

,V (111,. -1 (3.1I)
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The complete estimate (3. 1) will be given elsewhere; here we

restrict ourselves to an estimate of the order of the residual with

respect to the variable k. We will estimate individually the expressions

(-- v7-A-k)-,- 2(/,,) U2"(x. x'; k) and (--v'. - k-) jl 1
1 )(k4',.) U')(x, '; k),

and also the contribution to the residual, which comes from the dis-

continuity of the derivative of the asymptotic Q (x, x'; k) on the geo-

metric light-shadow boundary. These expressions can be estimated

by functions such as Mi (s) f (X, Y, Y') (i : 0. 1, Z) (see (Z. 31) and

(2.41)). Such estimates separate the dependence on the variables k

and X, Y, Y'. With respect to the properties of the functions f(X, Y, Y'),

let us note only that they are bounded for large values of their arguments.

All estimates will be made when X > X a > 0; this restriction is not

,-ssential for integral estimates such as (3. 1).

2. Let us consider the contribution to the residual from the

Iveloping wave:

(V2. + /?1)r(,,) (v -. k1' 0J, fl (kc,) U (". . k)
1 S

- ' . q v( 2•- ,1 ) (U( ) " 4,U, s) .
tt 4 1g ot t n

, I f( l'I,,') tk .•, j,.( ')_+*

-4 (' AI()AI(Yh)) , 1 f)'. "- Vts ,A

where

I ,) (3.3)

+ ~• (k .... . "'
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The derivative with respect to t will be taken partially relative to

s, and with respect to s, partially relative to 40., Formula (.3. 2)

is obtained from the last expression of (2. 6), if the orthogonal system

coordinates (as, OS is used and if, instead of the partial derivative

"h 1h respect to *St the derivative with respect to t is computed:

for • * const zs a ' Let us note that k S : 2M 2 (s) x 0 (8) X,

where c(s) > 0 is uniformly bounded from above and below. Writing

the differential operations in (3.2) in terms of the variables X and Y.

we will find that the first and second components in (3. 2) are estimated

by an expression such as M (a) f I (X, Y, Y') when k - + a0. The last

component seems more complex

6 P

X 1 (k5 V M + -n L _ A

( /"',. (",.;.))) 1. S.41 A )

F"o P t.'*) .

Here L(S), L(S) and L(IS) are universal (independent of the contour)

operators no higher than the second order with respect to the variables

X. Y and Y'; the coefficients of the operators also depend only on

these variables. The first term in (3.4), of a higher order when k- + Co.

is equal to zero in view of differential equation (2. 33). Since all

terms of lower order are proportional to the derivative of the radius

of curvature p (s), expression (3.4) vanishes in the case of a circle.

Generally. the last component of discrepancy (3. 2) is estimated by a

function such as MI (s)f 2 (X# Y. Y').
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Let us note again here the estimate

(v) ,') [ (,) dx.1; - f3 ' ) dXd'Y, (3. 5)

which uses the expression
1 01 CS•)

,ix . .111i f-.),Xd Y. (3.6)

for the volume element. The right side in (3. 5) approaches zero as

k" 4 when k -P + 10, if the volume element dXdY does not depend on

k.

3. The residual (vj -- k:)l'(d!),) I'( i" xI:'),, ' (k'A,) I' "•(x ; k),

which it is also convenient to write as the sum of three components

(in order to separate k and X, Y. Y'):

(v'• -f-,") !'"(J))/,,),- t- (kI ,,) - iltl• (kc~y)J .,,

kr A•)( (b~. ±t" : M (k%)~t / '
V W) + I I),. ((. 7)

is estimated analogously, where
' '(3.8)

The derivative with respect to t is taken when s = corst and with

respect to s when CR:conat. When deriving (3. 7) from (2. 6), the

system of coordinates (ly .RI is used, and the derivative with re-

spect to OR is replaced by the derivative with respect to t: : ".VR-tr



- 29 -

(when s : const). The relation kPR = ZM' (a) X is exact. The first

two components of (3.7) hitve an estimate M(s) f4 (X, Y, Y') (2.41).

The last component is such:

-/,( , " . - + sk ,,' ) ~ ~2j

+ 2-A'i7 f " -Wy OL -oI'6) '' + (- '1  r'(S)"sill() L[')V(•-- f(3.9)

------- I-•, I- Uaf: ~ ~ ~ " W• •,. •,) At 1,2 O L]) }
+ '-5 ,(S)) " P (S- P (5) V• I'•

L(R), L.(R) and L(R) are the differential operators of an order no

higher than the second with respect to the variables X, Y, Y'. In

contrast to the previous case, the derivative is also taken with re-

spect to Y'. The higher order terms are cancelled as before. For

a circle, only the third and fourth components are preserved in the

braces, and the last component of (3. 7) is of the same order as the

first two. For a general contour, the estimate is M2 (s) f4 (X, Y, Y').

Similarly to (3. 5)

1 ()(3. 10)

4. The discontinuities of the first order derivative of the

function Q(x, x'; k) in the geon-imtric light-shadow boundary reduce

the singularities of the 6-function type in the residual K(x, x'; k).

The coefficients of these singularities arc proportional to the jumps

VxQ(x, x'; k). In the operator K, applied on bounded, continuous

functions by the expression
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(WDW) (x)f- y (y) K(y, A; 1-), S(3.11I)

the last component corresponds to the just indicated singularities

' adlf((yl) IQ• (y,, x; k)- " x;/:)J, (3. 12)

The integral is takes along the geometric light-shadow boundary;

Q(S) (y,, x; k) and Q(R) (y,, x; k) are the limiting values of the

derivatives at the boundary in a direction normal to it from the shadow

S (x) and from the light R (x) (positive direction of the normal into

S (x)). Instead of the derivatives with respect to the normal, we can

compute the derivative with respect to the lines OS = tonet and

Oi : const.

Fu'r this component, (3.1) denotes

,!!i' (1:' x - y)J I Q;,' ()',, x; k) - Q0,, (y,, .; k)I -,., -. + w. (3.13)

k 1t1I1dr in more detail the jump in the normal derivative.

i a•,kes it possible to write an expression for the sum

i ld rcflected waves in the light in the form

,~(3. 14)

The variables X, Y and Y' have the value (4.41). The difference

1i - FR (see (2. 55)) and its first d1crivdtivv with retipect to the normal
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~1~

The right side, as before, will be of the order k 3 with dY in-

dependent of k.

The author thanks 0. A. Ladyzhenekaia and L. D. Faddeeva

for their assistance and remarks.
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