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FORMULAS OF THE SHORTWAVE ASYMPTOTIC
IN A PROBLEM OF DIFFRACTION Y CONVEX BODIKS

by

V. S. Buslaev

§ 1. INTRODUCTION

I. Formulas are derived in this article for the shortwave
asymptotic of Green's function G(x, x'; k) of the external Dirichlet
problem for the Helmholtz equation in o planc, Green's function

satisfies the equation

(—vi—#)G(x, x5 k)G X)X CD, £ 2>0) (1.1)

and the boundary conditions
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Region D, in which the equation is «xamined, is outside a
finite closed convex contour L. It 1s assumed that the radius of
curvature ofs) of this contour, as a tunction of the arce length s,

has two continuous derivatives and p{s) > py > 0.
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The following definitions will be used in connection with the
geometric characteristics of the shortwave asymptotic (the asymp-
totic when k - + ®), Relative to point x', region D is divided into
two parts: the illuminated part (light) R(x') and the shadow part
S{x'). The tangents H.T, and H_T_ to the contour L (figurel),
whose extensions pass through the point x' are the boundaries (geo-
metric) of these regions,

2. Many papers have been written on the derivation of formulas
of the shortwave asymptotic in which asymptotic formulas are obtain-
ed for a considerable part of the characteristic locations of the points
x and x' in the region D. However, even in the simplest cases, there
is no exact justification of these formulas. In an attempt to make
such a justification, by using a certain procedure, it was necessary
to refine the asymptotic formulas in specific respects. This refine-
ment is also described in this article,

Keep the following system of justification in mind:

Let the asymptotic Q(x, x'; k) of Green's function G(x, x';k), which
satisfies the conditions (1.2), be known from any non-rigorous argu-

ments with any x and x'(x, x' ¢ D). This residual is
K(x, x; k) esa(— 93 =) Q(x, x'; k) —&(x— ) (1. 3)
and the relationship

Q' x; A)=G(x, x; k)-+ [ dyG(x\ yi DK (y, x; k)
D (1. 4)



is considered as ho cquation tor the function G(x', x; k) (x' being
fixed), If the asymptotic Q(x, x'; k) is such that the corresponding
residual K(x, x'; k) generstes the operator K with a norm which
approach'es zero as k - « in some proper functicnal space, equa-
tion (L. 4) gives an estimate of the crror in the asymptotic Q(x, x'; k).

Familiar asymptotic formulas, which can be found, e, 8¢, in
[1) and [2-5], indicate well the overall structure of an asymptotic
but we have been unable to construct that functional space in which
the residual corresponding to these formulas generates an operator
with a small norm (the asymp‘otic Q(x, x; k) should also belong to
this space),

Section 2 of this work gives a construction of the asymptotic

Q(x, x'; k), with the following properties:

a) Q(x, x'; k) satisfies conditions (1, 2);

b) Qfx, x'; k) = Q(x', x; k);

¢) Q(x, x'; k) is a continuous function of the arguments x and
x', except at the point x = x', where it has a singularity
characteristic for Green's function;

d) Qx, x'; k) has continuous second order derivatives with
respect to the variable x, except at the geometric light-
shadow boundary, where the derivative may have discon-
tinuities of the first kind,

These properties make it possible to consider equation (1, 4)

in some space of continuous functions. A total estimate of the norm




ot the operator K will be treated in another work; here we restrict
ourselves only to a partial study of the propertics of the residual
K(x, x'; k): let us estimate its order when k =+ + @, In section 3
it is shown that the main terms of the residual for the obtained
asymptotic formulas are reduced when k - + »,

The formulas given in section 2 arec directly connected with the
results in works [2-5]. These results are characterized by a special
type of contour integrals by which the asymptotic is described, V. A,

Fok was the first to introduce and investigate such integrals,

§ 2, CONSTRUCTION OF THE ASYMPTOTICS

1, Formulas which are known in difii:rent canes (for special
contours, admitting the separation of variables) indicate that the

asymptotic has the form of series T I (¢), to each of whose termaes

$
corresponds a specific phase ¢. The phases can be described as

the lengths of certain extremum lines, connecting the points x, x'

and lying in region D, If the points x and x' are located in the

shadow relative to each other, they are the shortest curves, envelop-
ing the contour L (figure 1) and an infinite number of smooth curves,
which differ from those shown by additicnal turns around the contour L,
All these curves, the corresponding phases and components in the
asymptotic, are calledenvelopingrays, phases and waves. When the

point x approaches the geometric light-shadow boundary and passes

into the illuminated part, one of the enveloping phases ceases to have




meaning and is replaced by two phases (figure 2): ¢0 s lx - x'l and

’R which is the length of the broken line, reflected from the contour,
according to the laws of geometric optics (the angle of reflection ise

equal to the angle of incidence). The remaining enveloping phases,
including those which were obtained from the phases ""having been split"
by the additional terms, are now preserved, Here, the designations
direct (for ¢°) and reflected (for ¢R) rays (phases, waves) are used,
Thus, there are three kinds of waves: one direct, one reflected, defined
for x € R(x') and an infinite number of enveloping waves., For contrast
to ¢° and ¢R any of the enveloping phases will be designated by ¢g-

All phases introduced satisfy the equation of the eikonal (x ¢ D)

(Vb (x, XN =<1, (2.1)

The component I' (¢) in the asymptotic has the following struc-

ture:

I (d) = -:~ HO (kD) U™ (x, &' k). (2.2)

Hil)(z) is the Hankel function [ 6]. UM) (x, x'; k) is assumed to be
a slowly varying function in the following sense when k = + e
Axﬂf)l) (k) = l}v.¢H£l"(k ¢) has an order of growth kHil) (k¢), when
k = + o the grad?em va(¢)(x. x'; k) has an order leas than
kUw)(x. x'; k) as k =+ o,

Let us assume

UMY (x, x5 k) =:1, (e.3)
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80 that the dircaet wave in the light agreces with the bo<ic singular

solution of cquation (1.1),

Figure 2

Let us designate U(R) (x, x'; k) = U(¢R)(x. x'; k) and
U(s) (x, x'; k) = U(¢S) (x, x'; k).

Considering the described structure of the asymptotic as the
assumption, let us look for the functions U(R) (x, x'; k) and
U(S) (x, x'; k). Taking into account that the phascs, which generate
the rapidly variable factore, are different, it will be required that
each of the components I'(¢) asymptotically satisfy the Helmholte
equation (for those values of x and x' when the corresponding com-
ponents are defined). From those same considerations let us require
that each component satisfy the boundary condition (1, 2) on the contour,
with the exception of the direct and reflected waves (on the contour
L, ¢o * ¢R). for which we require that their sum satisfy the boundary

condition




e qoictien tor the Hankel tunction % llf)l) (k¢) is usca and
cyquation (2.1),

oince the tunction U(x, x', k) is assumed to change slowly, in
obtaining the asymptotic cquation tor U (x, x'; k), we should use the
asymptotic form of the Hankel function when k¢—-+ 0; therefore it
is natural to prescrve asymptotically only the second component in
the last expression (2. 6), since both components in the brackets con-

: N

tain the factors # (kd)— (HY (k) = O \Jalr) ) and #7{V (kd) =20 ((kd')A l)
respectively, In this section, let us agree not to differentiate between

the asymptotic and exact equalitics in the notations. This difference

will be obvious each time for the text. Asymptotically we have
VU ik (20070 i (i) U |=0. 2.7)

If only the term in the brackets containing the factor k remains
in equation (2.7) and if it required that the solution of the obtained
equation satisfy the boundary conditions (2.4), the functions U(R) (x, x'; k)
and U(S) (x, x'; k) are determined uniquely (explicit expressions are
in paragraphs "2'" and ''3" of this section). It is evident from the
explicit expressions that U(R) and U(S) do not satisfy condition (2. 5)
of continuous merger at the light-shadow boundary. In addition, the
derivative of the function U(R) with respect to the normal to this bound-
ary thus obtained reverts to infinity at the boundary, Due to these
singularities no meaning can be given to the operator K in equation

(1.4), which generates such an asymptotic. This indicates that some



componeunts of the wiaplacian operator should be retained asymptotically
in equation (¢.7). It is natural to expect that in the vicinity of the
geometric light-shadow boundary, there should be the second order
derivatives with respect to some direction orthogonal to the boundary,
We will arrive at such a conclusion by relying on the analogy with
constructions of the boundary-layer type and by taking into account
that the derivative with respect to the tangent to the boundary is already .
contained in the brackets with the factor k. From these considerations,
only the second order derivative with respect to the direction orotho-
gonal to the contour should be retained from tv2U in the shadow in the
vicinity of the contour L.

In the future, instead of the function U (x, x'; k) it will be more

convenient to consider

—l ’
[ A(x, X'y R)==p ? Ux, & 4). (2.8)

By distinguishing the reflected and enveloping waves, we will write
A (R) (x, x'; u) and A(S) {(x, x'; k).

The terms with second derivatives in equation (2. 7) should be
preserved only if the derivative. are of a higher order than the function
U (x, x'; k) itself when k -+ ©, Then ¢%v‘ A 18 of principal order
in the expression y 2U; therefore instead of (2. 7‘) we can write asymp-

totically

VA - ik 29Dy A 4 vi0A] =0, l(z 9)

The radiation conditiona will be used in the form
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de'o‘i“‘)\_“ A(lm (X, .\"; k)r - O. R::],r!-r ™,

o (2.10)

Here, 2‘?(4)) is the arc of the circle |x| = R, lying in the region
where the phase ¢ is defined, By using the asymptotics of the Hankel
function when ¢ -» © and the Cauchy-Schwarz-Buniakowski inequality,
we can prove that the radiation condition in the form (l.2) follows from
condition (2.10) for each component of I (¢).

2. Let us examine equation (2, 9) for the enveloping wave,
For definiteness, we will consider that a ray, directed from point
x' to x, envelops contour L in a clockwise direction. We will also
agree to measure the arc length clockwise.

Let us use two orthogonal coordinate systems: (s, ¢S} and

{e¢, n} (figure 3).

Figure 3 _

Let t be the length of a segment of the tangent of Hx and s the
length of the arc at the point of tangency H. The quantities t' and s',
associated with the point x', are introduced in a symmetrical manner.

¢S t' +(s-8')+t. The Lam€ coefficients of the system(s, ¢S}are

— ! : 2.1
,l‘-—- P(&) R /Iq, by l' ( )
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For the second coordinate system, n is the length of the nor-
mal to the contour L, drawn through the point x, ¢ is the arc length,
corresponding to the point where the normal and contour intersect.

n' and ¢' are defined analogously, The Lame coefficients are

— n \
”c-—-l+‘"(°‘). hn‘—:‘-l. (2.12’

Using the system of coordinates {s, ¢s.}we get
)
v’d’s=‘—- (2.13)
and equation (2, 9) takes the form

vu"’-;-ik[zvq:s va® 4 LA =0, (2.14)

If we retain here only the term in brackets containing the factor

k, we will arrive at the equation

20 A9 LA ~ (2.15)

04’5 v =V,

with the boundary condition (2. 4):

(5) -
Ao |os —u-syer =0

Solution of this problem is:

AP (x, X k)=0. (2.16)

This geometric optics approximation is inadequate for our
purposes. To construct a more exact asymptotic of the enveloping

wave, let us examine equation (2.14), at first in the vicinity of con-
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tour L (the size of this neighborhood will be defined below). Taking

account of remarks made in the preceding paragraph, we have

auymptoticdly:
A k[ *) m]_.
AT iR[20Qs QAT + - A (2.17)
Here ASL represents the second derivative with respect to the

variable n, for fixed o, Similar notations are used later,

Examining equation (2.17) near the contour, let uc use the
method first used by M. A. Leontovitch and V. A, Fok [?7] in diffrac-
tion problems in which the radius of curvature was constant. This
is called the parabolic equation method. V. I, Ivanov [ 3] used this

| method for contours of a general form, We will refine the results
of the work [ 3] somewhat,

In the equations, the differential operations and coefficients
will be represented by the variables n and ¢ in the vicinity of the

contour, Let us use the formulas

LR ) 2
t=V2E)n’ — 5 () n+0("~")»

g

—— %

Os = O @—s)+-5 Voyn't (2.18)

+—:T-fé-=-:—:— n"-}-O(n").

Let us retain the following terms in equation (2.17):

) '
A,..-Hk[ ( “) n*A“”-!- LD g7l 4 oal9 (2.19)

1 ’ .
+(2’ (c)) n A(8)+ .I___p_(al- A(.\')J =0,
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If we consider this equation in the variables n; = k" nande; ® k“' v,
it li easy to see that terms of the two higher orders with respect

to the variable k (of the orders k% and k) are retained in equation
(2.17) and the discarded terms are of an order not exceeding k* .
Equation (2.19) aﬁould be considered, therefore, when

ny=h*n L. (2. 20)

Later, when analysing (2.19), we will not discard anything.

Let us rewrite (2.19) in the variables

p=2 (-;-):p- : (cs)n, w=2 ('3“):.?-}(() L%

v (2.21)
\=(4) [ a0,
It assumes the form
. . '
a2 41 [pt A s Ly hamy o
.o o o - 2.2
+( 3) L & '] =0.
If we define VAL by means of
(2. 23)

]
A . )
A“’B[mw,]‘ 'V(‘)(l. “0 ")o

we got

: H '
v&"“"%‘ V(:)_’_ V.{” ++P-:. V(n]-o. . ‘zo 2"
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Finally, let

VEM b w)y=e S50 o),

(2.25)
where
Fs(u, w)=-p-p' -,
4 4 (2. 26)
then
Vol + sl 4 W =0.
(2.27)

In definitions (2.23) and (2.25), the symumetric dependence of
A (S) (x, x'; k) on the points x and x' is explicitly taken into account,
where the point x' was assumed to be located in the vicinity of the

4
contour n‘l = k3 n' << 1. Solutions of (2.27) satisfying the condition

P TG, 0, w)=0 (2. 28)

and which have a derivative VLS) quite rapidly approaching zero
when p - ® (which corresponds to the radiation condition, since
the point x recedes from the contour along the ncrmal when p - )

can be represented by the contour integral (when p & p')

‘!

OO, ) =10 s )= —"-fd’l'(')c"‘ X
"" (2.29)
( )Ul (( ") ]

«'y

X ) 6= 1) =) -~ 54

Here w; (§) and w; ({) are Airy functions as defined by V. A, Fok [8].

They satisfy the equation " ({) = { w ({) and are entire functions of




the argumecnt itself, The zeros of the function wy({) are located
in the ray arg { = g- and have a positive imaginary part, Further
propertics of these functions can be found in [ 8], The integration
contour in (2.29) cnclosces the zeros of the function w, (§): the fac-
tor LY cnsures convergence of the integral, An arbitrary analy-
tical function }(,) will be determined later from the conditions of
merging with the asymptotic in the light,

The formulas, containing the integrals (2.29), were obtained
first by Fok (sec, ¢,g. [2]), in the case when p (8) *= const, Later,
they were examinced for other contours admitting separation of
variables, e.g., for the ellipse in [ 4], for the parabola in[9] and
in other works,

Formulas (2.23) - (2,29) give the asymptotic in the vicinity
of contour L, It can be assumed that during a suitable change of
the arguments A and p, this formula will also give the asymptotic
far from the contour, Lt us express the variables N and p in

terms of t and s, which are more natural from the viewpoint of

the geometry of the problem. Near the contour

“19) p)r O (H')
3
Q(s)u :l'-'-,‘»O(a");

L}

Jase oy fuase 24 (2.30)

'f'f‘“" ()t p T ()0 O(n).

In (2.25), let us 8ubstitute the new variables
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M'-‘(.s)

IO
= AMR(N) L,

V oer Yo

W P )‘

)\ )r..)" '3 = | gs M),
~ H'+//j' e,

n— Y=

l..

(2. 31)
Ap(\)

/H(\)._( . ) _

In (2.23), let us subastitute
g(e) —=p () (2, 32)

In the vicinity of the contour, the old and new variables, by virtue
of (2.30), agree to an accuracy of a lower order of magnitude with
respect to n(n - 0).

It is easy to prove that equation (2.24) for the function

vi® (x, v. v

‘ ! \
.l/(,'.\}, - " [2)1'.‘ v()-,\') _f_. ‘/.1\\)_,* __!- );h;." V(.\)J 7:-;0 (z. 33)
can be written as

1 .1:«((:)\ VO o “‘ Op s v VY - vl s VY -0, (2. 34)

Here, V(Ys,’! represents the second derivative with respect to Y for
fixed X and Y', and the gradient is calculated with respect to x for
fixed x'. Since the factor, separated out by relationship (2, 23) (with
the change ¢ -»g), is carried along by the differential operator

vx¢svx into equation (2, 34), then (2. 34) means that in the initial
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e 0 e s s ) the second component is retained come-

v o \n\\
' [N ! AN v
. . : S
is scpavated out of the Lapladian operatur v 3\ .\( )
When p (s) = const, the constancy ol X moeans that (bs = const; in
this casce the written term is cqual to the sccond derivative of the

. . S .
functjon -\( ) along the curve 9 = const, The curve d_)s T const

S5
intersects the geometric light-shadow boundary, and the contour L
normally; thercfore cquation (2, 34) makes it possible to assume
that in the variable (2, 31), the asymptotic formulas will cancel the
principal terms of the residual (1. 3) everywhere in the shadow, When
the radius of curvaturce is variable the written term does not entirely
correspond to the derivatives with respect to the direction orthogonal
to the boundary., It will be shown in scection 3, however, that the
constructed expression nevertheless cancels the principal component
of the residual when k -+ w0, It should be noted that in the vicinity of
contour L., expression (2.23) in the variables N and p more accurate-
ly describes the asymptotic since it cancels the two higher terms in
the residuals K (x, x'; k) (1. 3).

3. Let us turn to the construction of an asymptotic expression
for U(R) (x, x'; k).

An orthogonal system of coordinates (s, 4>R} is used in the

light; 8 is the length of the arc at the point of reflection P (figure 2),
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¢R 4t ©ods the length of the segment Px, t' the length of sepgment

X', The Lamd coucfficients are

by SN0 ko, (2. 35)

et

0 the angle of reflection, 7._¢ ¢ ¢ 1 PYRIEE (2. 36)
It is casy to sce that
R S (2.37)

[ J\.

where on the right side of this cquation, 1 is understood as a function
of s and ¢R. Let us write the geometric optics approximation

' 1

A&"’(.\""L«z.;"-"(ﬁ'\") » Which is usually used far from the shadow, It
is determined from the cquation

[ (R & \ ] ) 3 - ) v \
2p.abep AL - v-«x»,;,\a”-::-u»‘;,; AN - ‘;)‘;,-;-,1 Af"==0 (2. 38)

(compare with (2.9)) and the boundary condition

-1
AfMp =z~ % | (o 2,0). (2.39)
Hence we got
n
4\:,,":;: — : . (2. 40)

However, using (2,40) in the light, we were Hot able to sclect
the function F (L) in the expression for A (S) (sce (2.29)), sov as to

obtain condition (2. 5) of continuity of the asymptotic at the boundary
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USSRV Ry M(s) ! 2
Vi [V 21 P (Etp@cost)+ - L vion V] =0, (2, 44)

‘The subscripts of the function V(R) denote derivatives with respect
to the corresponding arguments; qu’R is given by formula (2. 37).
The coefficients of the derivatives in relationship (2. 44) can be ex-
pressed in terms of the variables X, Y and Y',

L.et us put
V(R) :__,e-;r‘,‘, ‘F(R)‘ (Z. 45)

where
a 3
FR:FR(X. Y; Y'):CRX—}-—;—()'_ CR)'.' +

2 > 3
P (=) — A (g, (2. 46)

QR is determined from the cquation

1 ) 1

X— (¥ =) — (V' =)} -k 2(— ) =0, (2. 47)

If X, Y and Y' are defined by the formula (2. 4l), then

(""CI\'):!:-‘—/W (s)cos®. (2.48)

4(R)

. . . . R
is considered as a function of those same arguments as is V( ):

W(R) = \II(R) (X, Y, Y', s; k). Eguation (2.44) takes the form

W g gy (2. 49)
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The last relationship, which agrces exactly with (2.27), can be con-

(R) of the variables X and

sidered as the equation for the function ¥
Y; Y' and s can be considered fixed, the region of variation of the
variables X and Y in the plane{X, Y} is included between the two

parabolas,

WVYFAE - M) ]+ LT =M@ -2 X <

:g }/LT_}_ Y/'2 (2. 50)

(see (2.47)). It is necessary that the function \P(R) (X, Y, Y', s; k)
be symmetric with respect to Y, Y'; then the solution of (2.49) can
be written in the form of a contour integral with three coefficient-
functions of the variable of integration, of the variables s and k.
The radiation conditions (2.10), the boundary condition (2. 4) on the
\I,(R)q/‘iF R ?

contour: X Y-0=-1, and the requirement that the

function V(R) = e-iFR \If(R) be slowly changing (in the same sense as
applied to this term in paragraph 1l of the paper), are all used to
determine these functions, The function \II(R) of such a type (it is
written when Y' 2 Y) satisfies both the radiation and boundary con-

ditions:

PN e g O L Y T o
\ \ Joeh oy -~))&.;*(;)-~-1(--—) ) -

e ) [ ) - (2.50)

N S X
Wy (s : )]




The second integral in (2, 51) with the arbitrary function F () vanishes
on the contour L., The first integral satisfies boundary condition (2. 4),
which is casily proven, by using the formula

.
- .

St -
e W = V) - Y e, (2.52)
)
where
'..!;_;.:'..'(,\” )'. )") e }l: .\'J.:'_ ; .'\'(}'-%.. }"),*- ():;:\)’).‘ (2. 53)

V. A. Fok's work [10] contains a proof of formula (2, 52).

Under certain general assumptions about the function F, (1), the
second integral in (2. 51) can be computed asymptotically when QR—- - 00
according to the saddle-point method {(e.g., [2])). The corresponding
component in the function V(R) in this case will have a rapidly chang-
ing factor, Therefore, F, (L) = 0 should be proposed.

It s seen from (2. 51) that \I!(R) depends only on X, Y and Y', so
that later, we will write ¥(®) = ¥RV (x v, v') ana VIR - v(R(x, v, v,

Let us determine the coefficient F({) in (2.29) for the enveloping
wave so that the continuity condition (2. 5) of the asymptotic in the geo-
metric light-shadow boundary will be fulfilled, Beforehand, let us

transform the expression for V(R) (X, Y, Y') by using (2. 52)

’ 1
VX, ¥, 1)ma o B0 ey | Vet (2054)
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Here, the function \P(S) (2.29) is represented by W(S) l F s ; When
F () = 1. The difference Q(X, Y, Y') - FR(X. Y, Y') can be re-
presented in the form

4.~:(.'\) f"
piv) L~ &

Qo fr i (2. 55)

ST () cos )2,

F(L) = 1, (2.56)

foilows from formula (2. 54) and the merger condition (2. 5).
4, Let us present final asymptotic expressions for the slowly

changing coefficients U(R)(x. x', k) and U(S) (x, x'; k)

U“‘"(\ X L)--U A""(x. X'

: (2.57)
____XJ V(’\) (‘\o }p }/,) - f-.“c—ll-‘i‘.(.\', Y, )")\If(l\‘)(‘\’. Y, }u>’
where
LI
(K) ¢ y» e . e e )
T ()\, Y. Y’) == — ‘*"1:‘ (.d.c“'\u’l (‘\"‘ s ) 'v'*\'(:‘) Wy (k -Y ) (2 58)
“.\ Q )

bl

The function FR (X, Y, Y') and the variables X, Y, Y' are
determined by formulas (2.46), (2.47) and (2.4l).

For the enveloping waves,

\ .
s B N AR '
U ’(x,a-k)-~U“’(r’ X5 }:) <Oy A (ke x7p k) ==

" 'f(«\ ‘I(\’)

M) EUINT i oy edSy e o n
= ("mau e,y

where, when Y' > Y
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[}
(X, Y, V)= 2
'.’u-

- ‘]l

"3
j e w, (C = V) %

»,

(2. 60)

w, (%)

X [w,(:- Y)y— 200 r)].

The contour of integration encompasses the zeros of w,;(f). The
expressions for FS (Y, Y') and the arguments X, Y, Y' are given by
formulas (2. 26) and (2. 31).

The exponential decrease when Z -+ @ is an important property
of the function W(S) (X = Y% + Y'% +2,Y Y ); this decrease is ob-
tained easily by drawing the contour of integration such thatIm { > 7t >0,
If the errors of the asymptotic formulas are estimated by the absolute
value, the exponential decrease makes it possible to be limited to a
finite number of enveloping phases.

Let us consider the asymptotic Q(x, x'; k) which includes only
s\;ch phases, When the points x and x' are in the shadow, there :are
the two smallest enveloping phases (figurel). When x and x' are in
the light relative to each other, the phases are: direct, reflected and
one least enveloping.

The asymptotic Q(x, x'; k) has properties a, b, c and d, enumer-
ated in sectionl, Only ¢ and d require discussion. Property c
follows readily from the uniform continuity of the functions X% \l’(s) (X, Y, Y')
and X% \P(R) (X, Y, Y') in the octant X, Y, Y' > 0. The functions
‘L(s) (X, Y, Y') due to the exponential convergence of the integral (2. 60),

and W(R) (X, Y, Y') due to (2.54) are infinitely differentiable functions



of their argunients when X > 0, Therefore with fixed x', the functions
U(R) (x, x'; k) and U(S) (x, x'; k) are twice-continuously diffcerentiable
with respect to x up to the boundary ¢S * ¢p- This mcans that the
singularitics of the derivatives of the function Q(x, x'; k) agree with
those listed in condition d. It should be noted here that the component
in the asymptotic which corresponds to the smallest enveloping phase

in the light can introduce in the derivatives discontinuities of the first
type along the linc on which the smallest enveloping phase is determined
non-uniquely, The enveloping wave on this line is exponentially small
when k —+ 1 ; therefore it can be corrected such that the derivatives
become continuous, and the error admitted with such a-.lcorrection will

3
k A. where

yield a contribution to the residual of the order of e~
A>Ay >0 and A, is not a function of x and x', Later such a correc-

tion will be implied without explicit mention of it,

§ 3. AN ESTIMATE OF THE ORDER OF THE RESIDUAL

1. The residual K (x, x'; k) (1. 3) for the constructed asbymptotic
Q (x, x'; k) will not be uniformly small when k -+ ®, For equation
(1. 4), however, it will be sufficient to restrict ourselves to a certain
integral estimate of the residual, for example to the following: for

any continuous function p(a) (a > 0) such that p(a)a_’0 = 0 (Im a) and
p (Q)a_,eo = 0 (1),

v l:‘m')x (' dyp (e X — VIR, X ) =0, & o> - oo, (3.1)
Al b
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The complete estimate (3.1) will be given elsewhere; here we
restrict ourselves to an estimate of thc order of the residual with
respect to the variable k., We will estimate individually the expressions
(= V3 — k)5 HO (kb ) Uk, ¥ 8)  and (— 2 — &%) & M (ko) U (x, &5 k),
and also the contribution to the residual, which comes from the dis-
continuity of the derivative of the asymptotic Q (x, x'; k) on the geo-
metric light-shadow boundary. These expressions can be estimated
by functions such as M’ (s) £ (X, Y, Y') (i = 0, 1, 2) (see (2.31) and
(2.41)). Such estimates separate the dependence on the variables k
and X, Y, Y'. With respect to the properties of the functions f(X, Y, Y'),
let us note only that they are bounded for large values of their arguments,
All estimates will be made when X > X 5 > 0; this restriction is not
28sential for integral estimates such as (3.1).

2. Let us consider the contribution to the residual from the

veloping wave:
(Ve E)U(D) 2=(0] 4 &%) - 1 (kb ) U™ (x, x5 1) wm

| | 1 cron L
== Y o) — 09 (kb)) o] (AHOLEOD)T o

_ ?()e )
aC vy Ly Yon 10,0 s
x(.zmv ! )-r-_‘. HP (k) + 02 U 4
_ ] 1 (3.2)
4 )3 2f ML) M) )
+ 1 k) 2 lD.\(—»-( L s)—)* VoL

where

(3.3)
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The derivative with respect to t will be taken partially relative to

8, and with respect to s, partially relative to q;s. Formula (3.2)

is obtained frowm the last expression of (2. 6), if the orthogonal system
+ coordinates (s, ¢S] is used and if, instead of the partial derivative
w ‘h respect to ¢b' the derivative with respect to t is computed:

for > * const va— 3- . Let us note that k¢s 2M? (8)x ¢ (s) X,
where ¢(s) >0 is uniformly bounded from above and below. Writing
the differential operations in (3.2) in terms of the variables X and Y,
we will find that the first and second components in (3, 2) are estimated
by an expression such as M (s) f, (X, Y, Y') when k-t ®, The last

component seems more complex

1
MO Dy g, \'( A () A M)rl M)

eeyen) ) ey N
oas T . S s
x[vww(zr Vv T )], TOEEI (3.4)
(S) 1 y(8) , M3¥~ Ay,
X L v +:-(a)( (P L1 H(s, ()Im‘(aﬂ

Here Lgs). L(zs) and L(,S) are universal (independent of the contour)
operators no higher than the second order with respect to the variables
X, Y and Y'; the coefficients of the operators also depend only on
these var‘iables. The first term in (3.4), of a higher order when k = + »,
is equal to zero in view of differential equation (2.33). Since all
terms of lower order are proportional to the derivative of the radiué
of curvature p(s), expression (3.4) vanishes in the case of a circle,
Generally, the last compone_nt of discrepancy (3.2) is estimated by a

function such as M2 (s8)f, (X, Y, Y').
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Let us note again here the estimate
i(vl+l\’)l(!’)'d\ ” IARE ))d\"“ (3.5)

which uses the expression

R (\)
dx o ”‘ !\‘!Y (3. 6)

for the volume element. The right side in (3, 5) approaches zero as
k” 3 when k - + w0, if the volume element dXd¥Y does not depend on
k,

3. The residual (v} - &) (D) — (v - &) CHO () U e, x5 k),
which it is also convenient to write as the sum of three components

(in order to separate k and X, Y, Y'):

(V3K () == (M (ki) — EH (keb, )] N

M ;
Xkb (“(:)))- [)‘;: | FALL }-I 'o LM»] : '”(N» yp vt .
- 2 pin B ) & ’D Al () 2(R) Al(s) 3.7
g 7 ki) 4 \ 1, ( )) Vi ( m) X
Y 3 J 'I\_ ' 1 0
X “["ui v vl
is estimated analogously, where
r  a
De=ravia- (3.8)

The derivative with respect to t is taken when s = corst and with
respect to s when ¢R * const, When deriving (3.7) from (2. 6), the
system of coordinates {s. ¢R) is used, and the derivati_ve w,ith} re-

spect to ¢R ie replaced by the derivative with respect to t: g-r =-38T-
R
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(when s = const). The relation k¢R = 2M? (8) X is exact, The first
two components of (3.7) have an estimate M(s) f, (X, Y, Y') (2. 41).

The last component is such:

1
{ )y, ) A (s) \ e )
?Ilt‘» )(/s(')l‘,)A { ‘;-('-;- V‘,,‘, - A[ ; (R)+, ‘w‘ V(M]'f-

A(sy (Y ") A(v) 0
0Ll T e) Ry A (s) o () p(R
T2 M) AL Wiy oy eV F G 0)sin0 LV (5 )

M (s)

P ()) ( ()) I(’)V(/\ + /” (‘) u( )I.M)V(/)}

£(s)

L(,R). L(ZR) and L(,R) are the differential operators of an order no
higher than the second with respect to the variables X, Y, Y'. In
contrast to the previous case, the derivative is also taken with re-
spectto Y', The higher order terms are cancelled as before, For
a circle, only the third and fourth components are preserved in the
braces, and the last component of (3,7) is of the same order as the

first two, For a general contour, the estimate is M2 (8) £, (X, Y, Y').

Similarly to (3. 5)

(6 )T () [dx o2 3 /o (X, ¥, V) dXay, (3.10)

4. The discontinuities of the first order derivative of the
function Q(x, x'; k) in the geomectric light-shadow boundary reduce
the singularities of the 6-function type in the residual K(x, x'; k),
The coefficients of these singularities are proportional to the jumps
va(x, x'; k). In the operator K, applied on bounded, continuous

functions by the expression
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(KSf) (x) == zf dyf (D) K(y, x; k), (3.11)

the last component corresponds to the just indicated singularities

§ af () 1QW0 (e, x3 k) = Q2 (o, 3 1), (3.12)

The integral is takea along the geometric light-shadow boundary;

Qi\s) (y‘. x; k) and Q(s) (yl. x; k) are the limiting values of the
derivatives at the boundary in a direction normal to it from the shadow
S (x) and from the light R {x) (positive direction of the normal into

S (x)). Instead of the derivatives with respect to the normal, we can
compute the derivative with respect to the lines ¢S = const and

¢R * const,

For this component, (3.1) denotces
o S ik x — y‘|)l Q("l\') Vo X A) — Q;'.\)(}.p X /;)] -+0, A~ -} oo, (3. 13)

. onsider in more detail the jump in the normal derivative,
1) miakes it possible to write an expression for the sum

.

ot T oot and reflected waves in the light in the form

I q o t t{a -
[ 4 ey == 5 1oy o o]+
) (3.14)

4 : H&”(/ﬂl’,\.) A\ v RECINES )‘.r',,‘.m(-\.. Y, }).

The variables X, Y and Y' have the value (2.41)., The difference

a- FR (see (2.55)) and ity first derivative with respect to the normal
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-4
The right side, as before, will be of the order k 3 with dY in-
dependent of k.,
The author thanks O. A, Ladyzhenskaia and L. D. Faddceva

for their assistance and remarks,
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