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PREFACE 

Project scheduling using networks has become increasingly 

popular in the last few years.  This Memorandum discusses 

three scheduling problems of this variety. 

This paper will appear in the Proceedings of the 

IBM Scientific Computing Symposium on Combinatorial 

Problems. 
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SUWARY 

Problems  that Involve a schedule or timetable of 

projected operations or Jobs occur frequently in operations 

research.    Three such Echeduling problems are discussed in 

this survey.     Each of these problems poses a question about 

a finite partially ordered set of Jobs,  a question that can. 

in each case,  be reformulated in terms of flows in acyclic 

directed networks.    Solution procedures  for each problem 

are described. 



SCHEDULING  IN  PROJECT NETWORKS 

1.     INTRODUCTION 

Problems   that  involve a schedule or timetable of 

projected operations  or jobs  occur very frequently in 

operations  research.     Such scheduling problems  usually 

involve optimization in some   form or another,   and,   more 

often than not,   turn out to have  the unpleasant  features 

of being both combinatorially huge and seemingly lacking 

in structure.     On  the one hand,   the combinatorial magni- 

tude of the problem precludes exhaustive enumerative 

methods  of solution,   while on  the other hand,   the  lack 

of structure makes  useful analysis  difficult.     Faced with 

this situation,   the operations researcher frequently 

resorts  to  "solution" by computer simulation,   rules-of- 

thumb,   incomplete enumerative schemes,   heuristic computer 

programs,   or like devices which distress  the mathematician. 

But the  three scheduling problems  discussed in this  survey 

do not fall in this category of "bad" problems-     Each of 

these problems poses  a question about a finite partially 

ordered set of jobs,   a question that can,   in each case, 

be rephrased in terms of flows  in networks.     Consequently 

there are good algorithms available  for solving these 

problems. 

Section 2 below reviews relevant material concerning 

flows in networks   (9].    The specific  scheduling problems 

are then discussed in Sees.   3,  4,   and 5.    The problem of 

Sec   3 was  proposed several  years  ago by Tompkins   [20]. 
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A method of solution (though not the one described in 

Sec. 3) was later given by Dantzig and Fulkerson [2).  The 

problems of Sees. 4 and 5 have been written about exten- 

sively in operations research journals, newspapers, and 

popular magazines, and are frequently identified by such 

names as PERT ^Program Evaluation and Review Technique), 

CPM (Critical Path Method), and others too numerous to 

list.  The basic model of Sec. 4 was formulated and studied 

by Malcolm, Roseboom, Clark, and Fazar (18], and independently 

by Kelley and Walker [15], as a means of scheduling large, 

complicated projects composed of many individual jobs, each 

of which has a known duration time.  The problem of Sec. 5 

was formulated by Kelley and Walker [15]; it deals with the 

same basic model, but introduces further complications 

concerning cost-time relations for the jobs.  Network 

flow methods of solution for this class of problems have 

been given by Kelley [16] and Fulkerson [10].  A related 

solution method, using longest chains, is described in 

Sec. 5.  These models have had widespread industrial Impact 

in the last few years, and are currently in extensive use. 

2.  FLOWS IN NETWORKS 

A directed network (graph) G « [N; £] consists of a 

finite collection N of elements 1, 2, ..., n, together with 

a subset Ci  of the ordered pairs (i,j) of distinct elements 

of N.  The elements of N will be called nodes: members of 

OL  are arcs.  Figure 2-1 shows a directed network having 
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four nodes and six «res   (1,2),   (1,3),   (2,3),   (2,4),   (3,2), 

and  (3,4). 

Fig.   21 

Suppose  that eaeh are   (i,j)  of a direeted network has 

assoelated with it a nonnegative number c^.,   the capacity 

of (i,j),   which may be  thought of as representing the maximal 

amount of some commodity that can arrive at J   from i along 

(i,j)  per unit time in a steady-state situation.     Then a 

natural  question is:    What is  the maximal amount of com- 

modity flow from some node  to another via  the entire network? 

(For example,   one might  think of a network of city streets, 

the commodity being cars,   and ask for a maximal  traffic 

flow from some point to another.)    We may formulate  the 

question mathematically as   follows.    Let  1  and n be  the 

two nodes  in  question.     A flow,   of amount v,   from 1  to n 

iß G -   [N; C?]  is a function x from CL to real numbers 



(a vector x having components x, .   for  (i,j)  in d)  that 

satisfies  the  linear equations and inequalities 

(2.1) Z x,. - I x 
ij J ji J 

(2.2) 0 < x^  < c^. 

v. i -  1, 
-v. i - n. 

0, ol :herwise. 

(i,j) in a. 

In (2.1) the sums are of course over those nodes for which 

x is defined.  We call 1 the source, n the sink.  A maximal 

flow from source to sink is one that maximizes the variable 

v subject to (2.1), (2.2). 

Figure 2.2 shows a flow from source node 1 to sink 

node 6 of amount 7.  In Fig. 2.2, the first number of each 

pair beside an arc is the arc capacity, the second number 

the arc flow. 

2  6,3   4 

3  8,7   5 

Fig. 2.2 
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To state the  fundamental   theorem about maximal  flow, 

we need one other notion,   that of a cut.     A cut separating 

1 and n is  a partition of the nodes into two complementary 

sets,   I and J, with 1   in   I,   say,  and n in J.    The capacity 

of the cut  is  then 

(2.3) Z cii   . 
i in I    1J 

j  in J 

(For  instance,   if I - {1,3,4}   in Fig.   2.2,   the cut has 

capacity c,« + c35 + CA6 "17-)    A cut separating source 

and sink of minimum capacity is a minimal cut,   relative to 

the given source and sink. 

Summing the equations   (2.1) over i  in the source-set 

I of a cut and using  (2.2), we see that 

(2.4) v -      Z       (x14    - x..)  <      2        c..   . 
i in I    1J J1        i in I    ^ 
j   in J j  in J 

In wordi, for an arbitrary flow and arbitrary cut, the net 

flow across the cut is the flew amount v, which is conse- 

quently bounded above by the cut capacity.  Theorem 2.1 below 

asserts that equality holds in (2.4) for some flow and 

some cut, and hence the flow is maximal, the cut minimal [6]. 
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'fheorem 2.1.     For any network the maximal  flow amount 

from source to sink is equal to the minimal cut capacity 

relative to the source and sink. 

Theorem 2*1 is a kind of combinatorial counterpart, 

for the special case of the maximal   flow problem,   of the 

duality theorem for linear programs,   and can be deduced 

from it  [3].     But  the most revealing proof of Theorem 2.1 

uses a simple "marking" or "labeling" process   [7]  for 

constructing a maximal flow,  which also yields  the  following 

theorem. 

Theorem 2.2«     A flow x from source  to sink is maximal 

if and only if there is no flow augmenting path with respect 

to x. 

Here we need  to say what an x-augmenting path is. 

First of all,  a path  from one node to another is a sequence 

of distinct end-to-end arcs  that starts at the first node 

and terminates at the second;  arcs  traversed with their 

direction in going along the path are forward arcs of the 

path, while arcs traversed against their direction are 

ravarse area of the path.    A path fro« source to sink is 

x-aufpnenting provided that z < c on forward area and x > 0 

on reverse arcs.     For example,  the path (1,2),   (2,4),   (5,4), 

(5,6)  in Fig.  2.2 is  an aupnenting path for the flow shown 

there.    Figure 2.3 below indicates how such a path can be 

used to increase  the amount of flow from source to sink. 
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3  8,7 

Fig. 2.3 

Taking the flow change c along the path as large as 

possible in Fig. 2.3, namely € ■ 2, produces a maximal flow, 

since the cut I - {1,2,4}, J - {3,5,6} is then "saturated." 

3     8. 7 5 

Fig.   2.4 

The  labeling process of   [7]  is a systematic  and 

efficient search,   fanning out  from the source,   for a flow 

augmenting path.     If none such exists,   the process ends 

by locating a minimal cut. 
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The following theorem,  of special significance  for 

combinatorial applications,   is also a consequence of the 

procedure sketched above  for constructing maximal  flow. 

Theorem 2.3»     If all arc capacities are integers, 

there is an integral maximal  flow. 

It is sometimes convenient  to alter the constraints 

(2.2)  of the maximal  flow problem  to 

(2.5) t^  < x^  < c^   . 

Here t is a given lower bound function satisfying I < c. 

The analogue of Theo-em 2.1 is then 

Theorem 2.4.  If there is a function x satisfying (2.1) 

and (2.5) for some number v, then the maximum v subject to 

these constraints is equal to the minimum of 

(2.6,, Z  (c,. - I  .) 
i in I 1J   J1 

J in J 

taken over all cuts I, J separating source and sink.  On 

the other hand, the minimum v is equal to the maximum of 

(2.7) Z  (l      -  c..) 
i in I 1J   J1 

j in J 

taken over all cuts I, J separating source and sink 



Appropriate analogues of Theorem 2.2 are also valid 

for  the  construction of maximal  or minimal   flows  satisfying 

lower and upper bounds  on arcs.     Hence if all IJ*  and c^, 

are  integral, there   exist  integral maximal  anJ minimal   flows, 

provided  feasible  flows  exist. 

One of the most practical problem areas  involving 

network  flows  is  that of constructing flows  satisfying 

constraints of various  kinds  and minimizing cost.     The 

standard linear programming transportation proolem,  which 

has  an extensive literature,   is  in this category. 

We put  the problem as  follows       Each  arc   (i,j)  of a 

network G -  [N; £Z] has  a capacity c..   and a cost a.,.     It 

is desired to construct a  flow x from source  to sink of 

specified amount v that minimizes  the total  flow cost 

(2.8) 2 ai\ xi\ 
(i,j)  in a   iJ    1J 

over all  flows  that send v units  from source  to sink.     In 

many applications one has  supplies of a commodity at certain 

points  in a transportation network,   demands at others,   and 

the objective is  to satisfy the demands  from the supplies 

at minimum cost.     It is  easy to convert such a problem to 

the  form described above. 

By treating v as a parameter,  the method for construc- 

ting maximal flows can be used to construct minimal cost 

flows   throughout the feasible range of v.     Indeed,   the 
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solution procedure can be viewed as one of solving a sequence 

of maximal   flow problems,   each on a subnetwork of  the original 

one   [8].    Another,   not essentially different,  viewpoint is 

provided by  the  following  theorem   [1,   13]. 

Theorem 2.5.     Let x be a minimal cost flow from sour:e 

to sink of amount v.    Then the  flow obtained from x by 

adding e > 0  to the flow in forward arcs of a minimal cost 

x-augmenting path,   and subtracting e   from the  flow in 

reverse arcs of this path,   is  a minimal cost flow of amount 

v + €. 

Here the cost of a path is   the sum of arc costs over 

forward arcs minus  the corresponding sum over reverse arcs, 

i.e.,   the cost of "sending an additional unit" via the path. 

Thus,   if all arc costs a..   are nonnegative,   fox  example, 

one can start with the zero  flow and apply Theorem 2.5  to 

obtain minimal cost flows .tor increasing v.     (The cost 

profile thereby generated is piecewise linear and convex.) 

All  that is  needed to make this  an explicit algorithm is a 

method of searching for a minimal cost flow augmenting path. 

Various ways of doing this can be described.     One such will 

be given below. 

These methods produce integral  flows in case  the arc 

capacities   (and lower bounds)  are integers.     Theoretical 

upper bounds on the computing  task,   ones  that are  quite 

good,  are easily obtained in each case.    This may be 

contrasted with the situation for general linear programs. 
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where decent upper bounds on solution methods are unknown. 

In order to describe a procedure  for locating minimum 

cost  flow augmenting paths,  we begin with  the following 

problem.    Consider a directed network  in which each arc 

(i,j)  has  associated with it a positive number a.^.  which 

may be  thought of as  the length of the arc,  or the cos- of 

traversing the arc.     How does one determine a shortest 

chain from some node  to another?    Here we have used chain 

to mean a path containing only forward arcs,   the length of 

the chain being obtained by adding its  arc lengths. 

Many ways of locating shortest chains efficiently 

have been suggested.     We describe one   [5].    Like others, 

it simultaneously finds shortest chains  from the first 

node  to all others reachable by chains. 

In this method each node i will  initially be assigned 

a number TN .    These node numbers,  which we shall refer to 

as potentials,  will  then be revised in an iterative  fashion. 

Let 1 be  the first node.     To start,   take TT,   - 0, TT^ "» • 

for i + 1.    Then search  the list of arcs  for an arc   (i,j) 

whose end potentials  satisfy 

(2.9) T^ + a^  < rr.   . 

(Here •»+«■•).  If such an arc is found, change n. to 

TT! " ff-i + aiv an^ search again for an arc satisfying (2-9), 

using the new node potentials.  Stop the process when the 
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node potentials satisfy 

(2.10) "i + alj ^ "j 

for all arcs. 

It Is not hard to show that the process  terminates, 

and that when this happens,   the potential n*   is  the length 

of a shortest chain from 1  to j.     (Here TT.   - • at termina- 

tion means  there is no chain from 1  to j.)    A shortest 

chain  from 1  to j  can be  found by tracing back from j  to 

1 along arcs  satisfying  (2-10) with equality  (see Fig.   2.5) 

Fig.   2.5 
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While we have assumed positive  lengths  for  the method 

described above,   this  assumption can be weakened.     Call a 

chain of arcs   leading from a node  to itself a directed 

cycle.    Then it is enough to suppose  that all directed 

cycle lengths  are nonnegative.* 

If directed cycle costs are nonnegative,   the minimum 

cost  flow problem can be solved by repeatedly finding 

cheapest chains  in suitable networks.     Because of the 

assumption on  the cost function a,  we may start with  the 

zero  flow.     Thus,  using Theorem 2.5,   it is enough  to reduce 

the problem of finding a cheapest  flow augmenting path 

with respect to a minimal  cost  flow x of amount v  to  that 

of finding a cheapest chain.     Define a new network G'   -  [N;^1 ] 

from the given one G ■   [N; ö ]  and  the  flow x as  follows. 

First note  that we may assume x. .-x..   ■ 0,  since a^*   + a.^  > 0 

Now put  (i,j)   in   CZ*   if either x. .   < c^.  or x.^ > 0,   and 

define a'   by 

(2.11)        a'j 
if x..  < c. .    and    x..  ■ 0, 

This  assumption appears  essential  in the sense  that 
the problem of finding a shortest   (simple) chain from one 
node  to another in a network whose arcs may have arbitrary 
lengths can be  shown to be equivalent to the  traveling 
salesman problem,   for which no simple methods are known. 
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Thus  a chain from source  to sink in the new network cor- 

responds  to an x augmenting path in the old,   and these have 

the same cost.     Moreover,   since x is a minimal cost  flow, 

the  function a'   satisfies  the nonnegative directed cycle 

condition.     Hence  the method described above can be used 

to construct minimal  cost flows of successively larger 

amounts■ 

If the network  is  acyclic  (contains no directed cycles), 

the shortest chain method can be modified  in such a way 

that    once a potential  is assigned a node,   it remains 

unchanged.     One can begin by numbering  the nodes so that 

if  (i,j)  is an arc,   then i < j.    Such a numbering can be 

obtained as  follows.     Since  the  network is  acyclic,   there 

are nodes having no  inward-pointing arcs.     Number these 

nodes  1,   2,   ...,  k  in any order.     Next delete  these nodes 

and all   their arcs,   search the new network  for nodes having 

no  inward pointing arcs,   and number  these,   starting with 

k+1.     Repetition of  this process  leads   to  the desired kind 

of numbering  (see Fig.   2.6). 

Fig.   2.6 
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If we wish to find shortest chains  from node k to 

all other nodes reachable  from k by chains,   the calculation 

is now trivial.     Simply define n. ,  :Tic+l>   ''''  nn recursively 

by 

(2.12)       J    ... 

nk-0J 

TT.   -    min    (TT,   + a. .),   j 
k<i<j J 

k+1,   ...,  n  . 

Here  the minimum is of course  taken over i such that 

(i,j)  is an arc. 

Longest chains in acyclic  networks can be computed 

by replacing "min" by "max"  in  (2.12). 

3.     MINIMUM NUMBER OF MACHINES  TO MEET A FIXED JOB SCHEDULE 

Suppose  there are n jobs  1,   2,   ...,   n with specified 

start and  finish times  a,,   a«,   .•«,   a    and b,,   b«,   •..,  b  , 

with a.  < b..     In other words,   the schedule of starting 

times   for  the various  jobs   is   fixed in advance,   and the 

duration  times  t.   - b.  - a.   of  the jobs are known.     Assume 

that we have a number of (identical) machines,   each of which 

can perform any job in the specified time,   and  that  the 

reassignment or set-up  time required for a machine to go 

from job  i   to job j  is r..  > 0,   l,j  ■ I,   2,   ...,  n.     What 

is  the minimum number of machines required to meet the given 

job schedule?    For a concrete example,   think of an airline, 

say,  which wants  to meet a  fixed flight schedule with the 
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minimum number of planes^ all of the same type.  Start and 

finish times are known for each flight, and the times r^,. 

to return from the destination point of flight i to the 

origin point of flight j are also known. 

Making the reasonable assumption that the reassignment 

times satisfy 

(3.1) rij ^ rik + rkj 

for all 1«  j,   k,   it is easy to check that the jobs can be 

partially ordered by saying that i precedes j   if 

(3.2) bi + rij ^ aj   ' 

We may depict the order relations among the jobs by means 

of an acyclic directed network whose arcs represent jobs. 

To take a simple case, suppose there are five jobs with 

the ordering:  1 precedes 3, 1 and 2 precede 4, and 1, 2, 

3, 4 precede 5.  This may be pictured by the network shown 

in Fig. 3.1 below. 

Fig. 3.1 
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Notice  that we hare added a "dummy" job,   the dotted arc of 

Fig.   3.1,   to maintain the proper order relations  among the 

Jobs.     It  is not difficult  to show that  the use of dummies 

permits  a network representation of this kind  for any finite 

partially ordered set. 

Since a chain of arcs  in this network represents a 

possible  assignment of jobs  to one machine,   the problem is 

to cover  all non dummy arcs with the minimum number of chains. 

Using  the  integrity theorem,   this can be made  into a flow 

problem as  follows.    Add a node to the network, the source 

for flow,   and direct dummy arcs  from this node  to all nodes 

of the network that have only outward-pointing arcs. 

Similarly add a sink node,   dir*1 Jting dummy arcs  into this 

from all nodes having only inward-pointing arcs.     Now 

place a lower bound of 1 on each non-dumroy arc,  a lower 

bound of 0 on each dummy arc,   and take all  arc capacities 

infinite.     Then ar  integral   flow through  the  enlarged net- 

work of amount v picks  out v chains   (not necessarily distinct) 

that  cover all  non-dummy arcs,   and consequently we wish to 

minimize  v subject to   (2.1)   and  (2.5).     This  can be done 

by    a suitable  labeling process which locates   flow decreasing 

paths. 

It can  also be seen that  the second half of Theorem 2.4 

implies  the  following  theorem  for acyclic  directed networks. 

This   theorem is closely related to a theorem of Dilworth on 

chain decompositions of partially ordered sets   [4J. 
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Theorem 3.1.    The minimum number of chains in an acyclic 

directed network required to cover a subset of arcs  is equal 

to  the maximum number of arcs of the subset having the property 

that no two belong to any chain. 

In terms of the job scheduling problem.   Theorem 3.1 

asserts  that the minimum number of machines required is 

equal   to  the maximum number of jobs,   no  two of which can 

be done by one machine.     For example,  in the network of 

Fig.   3.2 below,   three chains are required  to cover  the 

solid arcs   (as  Indicated by the  flow shown in the figure), 

and jobs  2,   3,  4,   for example,  constitute a maximal set of 

jobs,   no two of which can be done by one machine. 

Fig.   3.2 
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Problems of this nature become considerably more 

complicated  if the assumption of a fixed schedule  is dropped. 

For  instance,   suppose  the times  a,   and b,   are at our dis- 

posal  subject  to the restrictions  tha^ b.  - a^ > t^,  with 

the  duration  times   t.   known,   as  well as   the reassignment 

times  r,..     The problem might then be  to arrange a schedule 

which  finishes  all jobs  by a  given time and requires   the 

minimum number of machines,   or  to  finish  all jobs   at the 

earliest possible  time with a  fixed number of machines. 

For such scheduling problems  there is very little known in 

the way of general  theoretical results or good computational 

procedures.     However,   some special results have been deduced, 

notably by Johnson   [14]  and by Hu  [12]. 

The problem of this section can also be viewed in 

terms of matrices of zeros and ones   [9].     For instance, 

we may form an n by n  (0,l)-matrix A ■ (a^) by setting 

a..   - 1 if job i precedes job j,   and a^.   - 0 otherwise. 

If we let  P(A)  denote the term rank of A  (the maximum number 

of 1's of A such that no two  lie in the same row or column 

[19]),   then it can be shown that  the minimum number of 

machines required is equal  to n - P(A).     Since  the calcula- 

tion of term rank can also be posed as a flow problem, 

this  provides  another  flow formulation of the minimum 

mac' *ne scheduling problem. 
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4.     PROJECT  SCHEDULING 

As noted in Sec.   1,  one of the most popular combina- 

torial applications  involving networks  deals with the 

planning and scheduling of large complicated projects. 

Suppose  that such a project  (the construction of a bridge, 

for example)  is broken down into many hundreds or  thousands 

of individual jobs.     Certain of these jobs will have  to be 

finished before others can be started.     Again we depict  the 

partial ordering of jobs by an acyclic  directed network, 

some of whose arcs correspond  to actual jobs,  «as  in Sec.   3. 

Assuming that each job has  a known duration time 

(dummies have zero duration times),   and  that the only 

scheduling restriction is  that all  inward-pointing jobs  at 

a node must be finished before any outward-pointing job 

can be started,   it  follows  that the minimum time  to  complete 

the entire project is equal  to  the  length of a longest 

chain of jobs.     Hence  the minimum project time can be 

calculated easily by the recursive method described at  the 

end of Sec.   2. 

Figure 4.1 below provides  an example of such a cal- 

culation.    The number recorded beside each arc  is  the job 

duration time,  and  the number beside a node is  the length 

of a longest chain from the starting node to the node in 

question. 
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Fig. 4.1 

The heavy arcs in Fig. 4.1 pick out a longest chain 

from node 1 to node 9.  Such a chain is called critical, 

and the jobs which constitute a critical chain are called 

critical lobs.  Some critical job must be expedited if 

total project time is to be shortened. The  nodes of the 

project network are usually called events, and the times 

recorded by them are event times.  For example, node 7 

is the "event" of finishing its inward-pointing jobs, 

which event can occur at time 16.  The event times provide 

a schedule for all jobs in the project. 

The PERT model of a project usually assumes independent 

random variables for job times, instead of deterministic 

times as we have assumed above.  But the usual practice 

has been to replace these random variables by their expected 

values, thereby obtaining a deterministic problem.  The 
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solution of this deterministic problem always provides an 

optimistic estimate of the expected length of the project. 

One method for computing a better  lower bound on expected 

project  time has been given in   [11].     It appears difficult 

to obcain very explicit information about the distribution 

of project duration time  from known distributions of job 

times.     In a practical situation,   if such information is 

deemed desirable,  one can always Monte Carlo  the project 

on a computer.     We refer  the reader to  [17,   21]   for a 

fuller discussion of this. 

Although  the analysis  of a PERT model,   with fixed job 

times,   is  trivial  from the mathematical point of view,   the 

model  itself appears  to be a useful one,  judging from its 

widespread acceptance and use  throughout industry today. 

But it should be added that it is  difficult  to assess  the 

usefulness of PERT on this basis  alone,   since  the model 

has been the subject of much hard-sell advertising and 

exaggerated claims. 

5.     PROJECT COST CURVES 

The PERT model can be complicated in various ways. 

One of the more  interesting of these is  to assume  that a 

job can be expedited by spending more money on it,   thereby 

raising  the  question:    Which jobs  should money be spent on, 

and how much,   in order that the project be  finished by a 

given date at minimum cost?    In this  section we shall 

assume  that  the time-cost relation for each job   (i,j)  is 
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llnear.  Specifically,we suppose that each arc (i,j) of 

the project network has associated with it three nonnegative 

integers. 

(5.1)        aiy  biy  c^ 

with a.. < b.., the interpretation being that a^, is the 

crash time for (i,j), b.. the normal completion time, while 

c., is the decrease in cost of doing (i,j) per unit increase 

in time from a., to b...  In other words, the cost of doing 

(i,j) in tji  units of time is given by the known linear 

function 

(5.2)        ky - c^ t^ 

over the interval 

(5.3)        a^ < t^ < b^ . 

Then, given X units of time in which to finish the project, 

the problem is to choose Job times t. . and event times t. 

satisfying 

(5.4) ^ + ^ - tj < 0 . 

tn - *! < X  . 

•lj ^ 'ij ^ blJ   ' 
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and maximizing 

(5.5) Zcti   tti   . 

For dummy jobs we may take a^^  " ^n   " cii   " 0 ^n 

this  linear program.     We may also assume t,   - 0,   of course. 

After some simplification,   the dual of this   linear 

program can be phrased as  the  following network flow 

problem.     Find nonnegative numbers x..,   one  for each arc 

of the project network,   and a nonnegative v,  which satisfy 

the  flow constraints   (2.1)  and minimize  the nonlinear 

function 

(5.6) Xv +    2   [b..  max(0,   c..  - x..)   - a..  max(0,  x.. -  c..)] 
ij 

£.    IUOAVV/,    ^JJ •^i4/ aii    'uo^K^r    A^. ^. , 

The  function in brackets  in (5.6)   is  sketched in 

Fig.   5.1.     Since it is  piecewise linear and convex,   the 

theory outlined in Sec.   2 can be applied.     That is,   the 

program  (2.1),   (5.6)  can be solved parametrically in v 

(and the dual problem  (5.4),   (5.5) parametrically in X) 

either as a sequence of maximal  flow problems  or as a 

sequence of extremal chain problems  in appropriate networks. 

Maximal  flow approaches have been described in   [10,   16]. 

Here we shall sketch a longest chain approach,   using a 

small numerical example for illustration. 
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-   X 

oU-c) 

Fig.   5.1 

Consider  the project network and job data shown in 

Fig.   5.2,  where we have recorded  the data  for arc   (i,j) 

in the order b..,   ci*>   a\y     The  first step in the compu- 

tational procedure is  to take job times  at their upper 

bounds b.,   and  find  the corresponding event times   t^ and 

critical chain,   as  shown in Fig.   5.3.     This constitutes 

an optimal  solution  for X ■ t/   - 11. 

b=3,c = 3,o=i 

Fig.   5.2 
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Fig.   5.3 

We next Impose  flow along the critical chain,   treating 

the c..   as arc capacities  at this step.     Here we take a 

flow of one unit,   the bind occurring on arc   (2,3).     Using 

the resulting flow and  the problem data,   we now form a new 

network.     Corresponding to arc   (i,j)  of the project network, 

we consider the  following possibilities: 

(a) xij   " 0 ' 
(b) 0 < x^  < c^  , 

(c) Xij   " Cij   ' 
(d) C1J  < Xij   * 

In case  (a),   put in an arc   (i,j) with length b..;   in case 

(b),  put in an arc   (i,j)  with length b^.   and an arc   (j,i) 

with length _b. .;   in case  (c),  put in an arc   (i,j)  with 

length a.,   and an arc   (j,i) with length _b^.;   in case   (d), 

put in an arc   (i,j) with length a.,   and an arc   (j,i) with 
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length    a<i«     i^r  the  example we have  the network shown 

in Fig.   5.4.     Although this network contains 

Fig.   5.4 

directed cycles,   such cycles have nonpositive  lengths  and 

consequently we can easily compute a longest chain from 

source  to sink by an iterative procedure analogous  to  th t 

of Sec.   2 for shortest chains  in networks having nonnegative 

directed cycle  lengths.     This has been done  for  the example 

in Fig.   5.4,  where the node potentials pick out  the longest 

chain 1,   3,  4, shown in heavy arcs.     This chain corresponds 

to a flow augmenting path,   and we increase the  flow along 

this path as described below.     First note that arcs of 

Fig.   5.4 which have the same orientation as arcs  of the 

project network correspond to possible    forward arcs of the 

desired flow augmenting path,  whereas arcs having opposite 

orientations correspond to possible reverse arcs of the 

flow augmenting path.    Consequently if flow in an arc of 

the project network is  to be increased, we treat c. .   as 
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a capacity if (i,j) is in state (a) or (b), and take 

infinite capacity for arcs in states (c) or (d).  On the 

other hand, if flow in arc (i,j) is to be decreased, we 

take zero as a lower bound if (i,j) is in states (b) or 

(c), and take c^. as a lower bound if (i,j) is in state 

(d) .  This means in the example that we send one unit of 

flow along the chain I, 3. 4, thereby obtaining the flow 

shown in Fig. 5.5- 

Fig.   5.5 

The potentials  of Fig.   5.4 constitute optimal  event  times 

corresponding to X  ■ t,   ■ 10.     Optimal job times  are given 

by 

(5.7) r.^  - minCb^,   tj ~ tj.)   • 

The procedure outlined above is   then repeated,  using 

the  flow shown in Fig.   5.5.    We obtain successively the 

results shown in Fig.   5.6 below. 
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3 

Fig.   5.6 
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In the last  flow network of Fig-   5.6,   there  is no 

bound on  the  flow change e.     This   signals   termination of 

the computation.     The complete minimum cost curve  P(X.) 

for  the project has  now been determined over   the  range of 

feasible X,   3 < X.  <  11,   the  function P(X)  being piecewise 

linear,   with breakpoints at the successive values of X  ■  t, 

generated in the computation.     Optimal event  times  for 

values of X between  two successive breakpoints ar^ given by 

taking appropriate convex combinations of those corresponding 

to the two breakpoints,   and optimal job times are  then 

determined from  (5.7). 

Note that optimal  times  for a job  (i,j)  are not 

necessarily monotone  in X.     For instance,   the optimal job 

times  for (2,3)   in  the example are 

2,   1,   0,   0,  0,  0,   1 

corresponding to X-^alues of 

11,   10,   9,   8,   7,   4,   3 

respectively.  In other words, compressing the project 

time optimally can increase certain job times. 

The method of this section can also be applied if 

job costs are piecewise linear and convex between crash 

and normal completion times.  Such a job cost merely 

introduces other breakpoints in the function shown in 

Fig. 5.1, and the solution process is changed only in 

details. 
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