

MEMORANDUM

RM 4137 PR
JUNE 1004

SCHEDULING IN PROJECT NETWORKS

D. R. Fulkerson

Thi- rr*r«r< h i» >p<iri«orrd hy iht- I nitrd Sl»l«^ Air Your undrr Project RAND-
contrart No. AF W(6.'i81-700 moriltorrd liy thr Dirrrtonte of Drvflopmrnt Planninpt.
I)«,>uly i.hiff of Staff. Kesearrh and D^rlopnirnt. Hq ISAF. Vir%»» or comlu»ion»
i oni.ntit i) m thi» Mrmorandum should nut \- mtrrprrtrd a» rrprrvnting thr offi« tal
opinion or policy of thr I nitrd Statr« Air Forte.

DDC AVAILABILITY NOTICE
Hu 1I1I1..I rrqui-trr» ma\ "hlam <<>|.II- <>(thi- r«|K)rl from thr Drfrnv |)<M timrntation
Ontrr tDDC»

mwx lit Y\W I ! I ' (?*tß»%*ti*m

-HI-

PREFACE

Project scheduling using networks has become increasingly

popular in the last few years. This Memorandum discusses

three scheduling problems of this variety.

This paper will appear in the Proceedings of the

IBM Scientific Computing Symposium on Combinatorial

Problems.

-V-

SUWARY

Problems that Involve a schedule or timetable of

projected operations or Jobs occur frequently in operations

research. Three such Echeduling problems are discussed in

this survey. Each of these problems poses a question about

a finite partially ordered set of Jobs, a question that can.

in each case, be reformulated in terms of flows in acyclic

directed networks. Solution procedures for each problem

are described.

SCHEDULING IN PROJECT NETWORKS

1. INTRODUCTION

Problems that involve a schedule or timetable of

projected operations or jobs occur very frequently in

operations research. Such scheduling problems usually

involve optimization in some form or another, and, more

often than not, turn out to have the unpleasant features

of being both combinatorially huge and seemingly lacking

in structure. On the one hand, the combinatorial magni-

tude of the problem precludes exhaustive enumerative

methods of solution, while on the other hand, the lack

of structure makes useful analysis difficult. Faced with

this situation, the operations researcher frequently

resorts to "solution" by computer simulation, rules-of-

thumb, incomplete enumerative schemes, heuristic computer

programs, or like devices which distress the mathematician.

But the three scheduling problems discussed in this survey

do not fall in this category of "bad" problems- Each of

these problems poses a question about a finite partially

ordered set of jobs, a question that can, in each case,

be rephrased in terms of flows in networks. Consequently

there are good algorithms available for solving these

problems.

Section 2 below reviews relevant material concerning

flows in networks (9]. The specific scheduling problems

are then discussed in Sees. 3, 4, and 5. The problem of

Sec 3 was proposed several years ago by Tompkins [20].

-2-

A method of solution (though not the one described in

Sec. 3) was later given by Dantzig and Fulkerson [2). The

problems of Sees. 4 and 5 have been written about exten-

sively in operations research journals, newspapers, and

popular magazines, and are frequently identified by such

names as PERT ^Program Evaluation and Review Technique),

CPM (Critical Path Method), and others too numerous to

list. The basic model of Sec. 4 was formulated and studied

by Malcolm, Roseboom, Clark, and Fazar (18], and independently

by Kelley and Walker [15], as a means of scheduling large,

complicated projects composed of many individual jobs, each

of which has a known duration time. The problem of Sec. 5

was formulated by Kelley and Walker [15]; it deals with the

same basic model, but introduces further complications

concerning cost-time relations for the jobs. Network

flow methods of solution for this class of problems have

been given by Kelley [16] and Fulkerson [10]. A related

solution method, using longest chains, is described in

Sec. 5. These models have had widespread industrial Impact

in the last few years, and are currently in extensive use.

2. FLOWS IN NETWORKS

A directed network (graph) G « [N; £] consists of a

finite collection N of elements 1, 2, ..., n, together with

a subset Ci of the ordered pairs (i,j) of distinct elements

of N. The elements of N will be called nodes: members of

OL are arcs. Figure 2-1 shows a directed network having

-3-

four nodes and six «res (1,2), (1,3), (2,3), (2,4), (3,2),

and (3,4).

Fig. 21

Suppose that eaeh are (i,j) of a direeted network has

assoelated with it a nonnegative number c^., the capacity

of (i,j), which may be thought of as representing the maximal

amount of some commodity that can arrive at J from i along

(i,j) per unit time in a steady-state situation. Then a

natural question is: What is the maximal amount of com-

modity flow from some node to another via the entire network?

(For example, one might think of a network of city streets,

the commodity being cars, and ask for a maximal traffic

flow from some point to another.) We may formulate the

question mathematically as follows. Let 1 and n be the

two nodes in question. A flow, of amount v, from 1 to n

iß G - [N; C?] is a function x from CL to real numbers

(a vector x having components x, . for (i,j) in d) that

satisfies the linear equations and inequalities

(2.1) Z x,. - I x
ij J ji J

(2.2) 0 < x^ < c^.

v. i - 1,
-v. i - n.

0, ol :herwise.

(i,j) in a.

In (2.1) the sums are of course over those nodes for which

x is defined. We call 1 the source, n the sink. A maximal

flow from source to sink is one that maximizes the variable

v subject to (2.1), (2.2).

Figure 2.2 shows a flow from source node 1 to sink

node 6 of amount 7. In Fig. 2.2, the first number of each

pair beside an arc is the arc capacity, the second number

the arc flow.

2 6,3 4

3 8,7 5

Fig. 2.2

-5-

To state the fundamental theorem about maximal flow,

we need one other notion, that of a cut. A cut separating

1 and n is a partition of the nodes into two complementary

sets, I and J, with 1 in I, say, and n in J. The capacity

of the cut is then

(2.3) Z cii .
i in I 1J

j in J

(For instance, if I - {1,3,4} in Fig. 2.2, the cut has

capacity c,« + c35 + CA6 "17-) A cut separating source

and sink of minimum capacity is a minimal cut, relative to

the given source and sink.

Summing the equations (2.1) over i in the source-set

I of a cut and using (2.2), we see that

(2.4) v - Z (x14 - x..) < 2 c.. .
i in I 1J J1 i in I ^
j in J j in J

In wordi, for an arbitrary flow and arbitrary cut, the net

flow across the cut is the flew amount v, which is conse-

quently bounded above by the cut capacity. Theorem 2.1 below

asserts that equality holds in (2.4) for some flow and

some cut, and hence the flow is maximal, the cut minimal [6].

-6-

'fheorem 2.1. For any network the maximal flow amount

from source to sink is equal to the minimal cut capacity

relative to the source and sink.

Theorem 2*1 is a kind of combinatorial counterpart,

for the special case of the maximal flow problem, of the

duality theorem for linear programs, and can be deduced

from it [3]. But the most revealing proof of Theorem 2.1

uses a simple "marking" or "labeling" process [7] for

constructing a maximal flow, which also yields the following

theorem.

Theorem 2.2« A flow x from source to sink is maximal

if and only if there is no flow augmenting path with respect

to x.

Here we need to say what an x-augmenting path is.

First of all, a path from one node to another is a sequence

of distinct end-to-end arcs that starts at the first node

and terminates at the second; arcs traversed with their

direction in going along the path are forward arcs of the

path, while arcs traversed against their direction are

ravarse area of the path. A path fro« source to sink is

x-aufpnenting provided that z < c on forward area and x > 0

on reverse arcs. For example, the path (1,2), (2,4), (5,4),

(5,6) in Fig. 2.2 is an aupnenting path for the flow shown

there. Figure 2.3 below indicates how such a path can be

used to increase the amount of flow from source to sink.

-7-

3 8,7

Fig. 2.3

Taking the flow change c along the path as large as

possible in Fig. 2.3, namely € ■ 2, produces a maximal flow,

since the cut I - {1,2,4}, J - {3,5,6} is then "saturated."

3 8. 7 5

Fig. 2.4

The labeling process of [7] is a systematic and

efficient search, fanning out from the source, for a flow

augmenting path. If none such exists, the process ends

by locating a minimal cut.

-0-

The following theorem, of special significance for

combinatorial applications, is also a consequence of the

procedure sketched above for constructing maximal flow.

Theorem 2.3» If all arc capacities are integers,

there is an integral maximal flow.

It is sometimes convenient to alter the constraints

(2.2) of the maximal flow problem to

(2.5) t^ < x^ < c^ .

Here t is a given lower bound function satisfying I < c.

The analogue of Theo-em 2.1 is then

Theorem 2.4. If there is a function x satisfying (2.1)

and (2.5) for some number v, then the maximum v subject to

these constraints is equal to the minimum of

(2.6,, Z (c,. - I .)
i in I 1J J1

J in J

taken over all cuts I, J separating source and sink. On

the other hand, the minimum v is equal to the maximum of

(2.7) Z (l - c..)
i in I 1J J1

j in J

taken over all cuts I, J separating source and sink

Appropriate analogues of Theorem 2.2 are also valid

for the construction of maximal or minimal flows satisfying

lower and upper bounds on arcs. Hence if all IJ* and c^,

are integral, there exist integral maximal anJ minimal flows,

provided feasible flows exist.

One of the most practical problem areas involving

network flows is that of constructing flows satisfying

constraints of various kinds and minimizing cost. The

standard linear programming transportation proolem, which

has an extensive literature, is in this category.

We put the problem as follows Each arc (i,j) of a

network G - [N; £Z] has a capacity c.. and a cost a.,. It

is desired to construct a flow x from source to sink of

specified amount v that minimizes the total flow cost

(2.8) 2 ai\ xi\
(i,j) in a iJ 1J

over all flows that send v units from source to sink. In

many applications one has supplies of a commodity at certain

points in a transportation network, demands at others, and

the objective is to satisfy the demands from the supplies

at minimum cost. It is easy to convert such a problem to

the form described above.

By treating v as a parameter, the method for construc-

ting maximal flows can be used to construct minimal cost

flows throughout the feasible range of v. Indeed, the

-la-

solution procedure can be viewed as one of solving a sequence

of maximal flow problems, each on a subnetwork of the original

one [8]. Another, not essentially different, viewpoint is

provided by the following theorem [1, 13].

Theorem 2.5. Let x be a minimal cost flow from sour:e

to sink of amount v. Then the flow obtained from x by

adding e > 0 to the flow in forward arcs of a minimal cost

x-augmenting path, and subtracting e from the flow in

reverse arcs of this path, is a minimal cost flow of amount

v + €.

Here the cost of a path is the sum of arc costs over

forward arcs minus the corresponding sum over reverse arcs,

i.e., the cost of "sending an additional unit" via the path.

Thus, if all arc costs a.. are nonnegative, fox example,

one can start with the zero flow and apply Theorem 2.5 to

obtain minimal cost flows .tor increasing v. (The cost

profile thereby generated is piecewise linear and convex.)

All that is needed to make this an explicit algorithm is a

method of searching for a minimal cost flow augmenting path.

Various ways of doing this can be described. One such will

be given below.

These methods produce integral flows in case the arc

capacities (and lower bounds) are integers. Theoretical

upper bounds on the computing task, ones that are quite

good, are easily obtained in each case. This may be

contrasted with the situation for general linear programs.

-11-

where decent upper bounds on solution methods are unknown.

In order to describe a procedure for locating minimum

cost flow augmenting paths, we begin with the following

problem. Consider a directed network in which each arc

(i,j) has associated with it a positive number a.^. which

may be thought of as the length of the arc, or the cos- of

traversing the arc. How does one determine a shortest

chain from some node to another? Here we have used chain

to mean a path containing only forward arcs, the length of

the chain being obtained by adding its arc lengths.

Many ways of locating shortest chains efficiently

have been suggested. We describe one [5]. Like others,

it simultaneously finds shortest chains from the first

node to all others reachable by chains.

In this method each node i will initially be assigned

a number TN . These node numbers, which we shall refer to

as potentials, will then be revised in an iterative fashion.

Let 1 be the first node. To start, take TT, - 0, TT^ "» •

for i + 1. Then search the list of arcs for an arc (i,j)

whose end potentials satisfy

(2.9) T^ + a^ < rr. .

(Here •»+«■•). If such an arc is found, change n. to

TT! " ff-i + aiv an^ search again for an arc satisfying (2-9),

using the new node potentials. Stop the process when the

-12-

node potentials satisfy

(2.10) "i + alj ^ "j

for all arcs.

It Is not hard to show that the process terminates,

and that when this happens, the potential n* is the length

of a shortest chain from 1 to j. (Here TT. - • at termina-

tion means there is no chain from 1 to j.) A shortest

chain from 1 to j can be found by tracing back from j to

1 along arcs satisfying (2-10) with equality (see Fig. 2.5)

Fig. 2.5

-13-

While we have assumed positive lengths for the method

described above, this assumption can be weakened. Call a

chain of arcs leading from a node to itself a directed

cycle. Then it is enough to suppose that all directed

cycle lengths are nonnegative.*

If directed cycle costs are nonnegative, the minimum

cost flow problem can be solved by repeatedly finding

cheapest chains in suitable networks. Because of the

assumption on the cost function a, we may start with the

zero flow. Thus, using Theorem 2.5, it is enough to reduce

the problem of finding a cheapest flow augmenting path

with respect to a minimal cost flow x of amount v to that

of finding a cheapest chain. Define a new network G' - [N;^1]

from the given one G ■ [N; ö] and the flow x as follows.

First note that we may assume x. .-x.. ■ 0, since a^* + a.^ > 0

Now put (i,j) in CZ* if either x. . < c^. or x.^ > 0, and

define a' by

(2.11) a'j
if x.. < c. . and x.. ■ 0,

This assumption appears essential in the sense that
the problem of finding a shortest (simple) chain from one
node to another in a network whose arcs may have arbitrary
lengths can be shown to be equivalent to the traveling
salesman problem, for which no simple methods are known.

-14-

Thus a chain from source to sink in the new network cor-

responds to an x augmenting path in the old, and these have

the same cost. Moreover, since x is a minimal cost flow,

the function a' satisfies the nonnegative directed cycle

condition. Hence the method described above can be used

to construct minimal cost flows of successively larger

amounts■

If the network is acyclic (contains no directed cycles),

the shortest chain method can be modified in such a way

that once a potential is assigned a node, it remains

unchanged. One can begin by numbering the nodes so that

if (i,j) is an arc, then i < j. Such a numbering can be

obtained as follows. Since the network is acyclic, there

are nodes having no inward-pointing arcs. Number these

nodes 1, 2, ..., k in any order. Next delete these nodes

and all their arcs, search the new network for nodes having

no inward pointing arcs, and number these, starting with

k+1. Repetition of this process leads to the desired kind

of numbering (see Fig. 2.6).

Fig. 2.6

-15-

If we wish to find shortest chains from node k to

all other nodes reachable from k by chains, the calculation

is now trivial. Simply define n. , :Tic+l> '''' nn recursively

by

(2.12) J ...

nk-0J

TT. - min (TT, + a. .), j
k<i<j J

k+1, ..., n .

Here the minimum is of course taken over i such that

(i,j) is an arc.

Longest chains in acyclic networks can be computed

by replacing "min" by "max" in (2.12).

3. MINIMUM NUMBER OF MACHINES TO MEET A FIXED JOB SCHEDULE

Suppose there are n jobs 1, 2, ..., n with specified

start and finish times a,, a«, .•«, a and b,, b«, •.., b ,

with a. < b.. In other words, the schedule of starting

times for the various jobs is fixed in advance, and the

duration times t. - b. - a. of the jobs are known. Assume

that we have a number of (identical) machines, each of which

can perform any job in the specified time, and that the

reassignment or set-up time required for a machine to go

from job i to job j is r.. > 0, l,j ■ I, 2, ..., n. What

is the minimum number of machines required to meet the given

job schedule? For a concrete example, think of an airline,

say, which wants to meet a fixed flight schedule with the

-16-

minimum number of planes^ all of the same type. Start and

finish times are known for each flight, and the times r^,.

to return from the destination point of flight i to the

origin point of flight j are also known.

Making the reasonable assumption that the reassignment

times satisfy

(3.1) rij ^ rik + rkj

for all 1« j, k, it is easy to check that the jobs can be

partially ordered by saying that i precedes j if

(3.2) bi + rij ^ aj '

We may depict the order relations among the jobs by means

of an acyclic directed network whose arcs represent jobs.

To take a simple case, suppose there are five jobs with

the ordering: 1 precedes 3, 1 and 2 precede 4, and 1, 2,

3, 4 precede 5. This may be pictured by the network shown

in Fig. 3.1 below.

Fig. 3.1

-17-

Notice that we hare added a "dummy" job, the dotted arc of

Fig. 3.1, to maintain the proper order relations among the

Jobs. It is not difficult to show that the use of dummies

permits a network representation of this kind for any finite

partially ordered set.

Since a chain of arcs in this network represents a

possible assignment of jobs to one machine, the problem is

to cover all non dummy arcs with the minimum number of chains.

Using the integrity theorem, this can be made into a flow

problem as follows. Add a node to the network, the source

for flow, and direct dummy arcs from this node to all nodes

of the network that have only outward-pointing arcs.

Similarly add a sink node, dir*1 Jting dummy arcs into this

from all nodes having only inward-pointing arcs. Now

place a lower bound of 1 on each non-dumroy arc, a lower

bound of 0 on each dummy arc, and take all arc capacities

infinite. Then ar integral flow through the enlarged net-

work of amount v picks out v chains (not necessarily distinct)

that cover all non-dummy arcs, and consequently we wish to

minimize v subject to (2.1) and (2.5). This can be done

by a suitable labeling process which locates flow decreasing

paths.

It can also be seen that the second half of Theorem 2.4

implies the following theorem for acyclic directed networks.

This theorem is closely related to a theorem of Dilworth on

chain decompositions of partially ordered sets [4J.

-18-

Theorem 3.1. The minimum number of chains in an acyclic

directed network required to cover a subset of arcs is equal

to the maximum number of arcs of the subset having the property

that no two belong to any chain.

In terms of the job scheduling problem. Theorem 3.1

asserts that the minimum number of machines required is

equal to the maximum number of jobs, no two of which can

be done by one machine. For example, in the network of

Fig. 3.2 below, three chains are required to cover the

solid arcs (as Indicated by the flow shown in the figure),

and jobs 2, 3, 4, for example, constitute a maximal set of

jobs, no two of which can be done by one machine.

Fig. 3.2

-19-

Problems of this nature become considerably more

complicated if the assumption of a fixed schedule is dropped.

For instance, suppose the times a, and b, are at our dis-

posal subject to the restrictions tha^ b. - a^ > t^, with

the duration times t. known, as well as the reassignment

times r,.. The problem might then be to arrange a schedule

which finishes all jobs by a given time and requires the

minimum number of machines, or to finish all jobs at the

earliest possible time with a fixed number of machines.

For such scheduling problems there is very little known in

the way of general theoretical results or good computational

procedures. However, some special results have been deduced,

notably by Johnson [14] and by Hu [12].

The problem of this section can also be viewed in

terms of matrices of zeros and ones [9]. For instance,

we may form an n by n (0,l)-matrix A ■ (a^) by setting

a.. - 1 if job i precedes job j, and a^. - 0 otherwise.

If we let P(A) denote the term rank of A (the maximum number

of 1's of A such that no two lie in the same row or column

[19]), then it can be shown that the minimum number of

machines required is equal to n - P(A). Since the calcula-

tion of term rank can also be posed as a flow problem,

this provides another flow formulation of the minimum

mac' *ne scheduling problem.

-20-

4. PROJECT SCHEDULING

As noted in Sec. 1, one of the most popular combina-

torial applications involving networks deals with the

planning and scheduling of large complicated projects.

Suppose that such a project (the construction of a bridge,

for example) is broken down into many hundreds or thousands

of individual jobs. Certain of these jobs will have to be

finished before others can be started. Again we depict the

partial ordering of jobs by an acyclic directed network,

some of whose arcs correspond to actual jobs, «as in Sec. 3.

Assuming that each job has a known duration time

(dummies have zero duration times), and that the only

scheduling restriction is that all inward-pointing jobs at

a node must be finished before any outward-pointing job

can be started, it follows that the minimum time to complete

the entire project is equal to the length of a longest

chain of jobs. Hence the minimum project time can be

calculated easily by the recursive method described at the

end of Sec. 2.

Figure 4.1 below provides an example of such a cal-

culation. The number recorded beside each arc is the job

duration time, and the number beside a node is the length

of a longest chain from the starting node to the node in

question.

-21-

Fig. 4.1

The heavy arcs in Fig. 4.1 pick out a longest chain

from node 1 to node 9. Such a chain is called critical,

and the jobs which constitute a critical chain are called

critical lobs. Some critical job must be expedited if

total project time is to be shortened. The nodes of the

project network are usually called events, and the times

recorded by them are event times. For example, node 7

is the "event" of finishing its inward-pointing jobs,

which event can occur at time 16. The event times provide

a schedule for all jobs in the project.

The PERT model of a project usually assumes independent

random variables for job times, instead of deterministic

times as we have assumed above. But the usual practice

has been to replace these random variables by their expected

values, thereby obtaining a deterministic problem. The

-22-

solution of this deterministic problem always provides an

optimistic estimate of the expected length of the project.

One method for computing a better lower bound on expected

project time has been given in [11]. It appears difficult

to obcain very explicit information about the distribution

of project duration time from known distributions of job

times. In a practical situation, if such information is

deemed desirable, one can always Monte Carlo the project

on a computer. We refer the reader to [17, 21] for a

fuller discussion of this.

Although the analysis of a PERT model, with fixed job

times, is trivial from the mathematical point of view, the

model itself appears to be a useful one, judging from its

widespread acceptance and use throughout industry today.

But it should be added that it is difficult to assess the

usefulness of PERT on this basis alone, since the model

has been the subject of much hard-sell advertising and

exaggerated claims.

5. PROJECT COST CURVES

The PERT model can be complicated in various ways.

One of the more interesting of these is to assume that a

job can be expedited by spending more money on it, thereby

raising the question: Which jobs should money be spent on,

and how much, in order that the project be finished by a

given date at minimum cost? In this section we shall

assume that the time-cost relation for each job (i,j) is

-23-

llnear. Specifically,we suppose that each arc (i,j) of

the project network has associated with it three nonnegative

integers.

(5.1) aiy biy c^

with a.. < b.., the interpretation being that a^, is the

crash time for (i,j), b.. the normal completion time, while

c., is the decrease in cost of doing (i,j) per unit increase

in time from a., to b... In other words, the cost of doing

(i,j) in tji units of time is given by the known linear

function

(5.2) ky - c^ t^

over the interval

(5.3) a^ < t^ < b^ .

Then, given X units of time in which to finish the project,

the problem is to choose Job times t. . and event times t.

satisfying

(5.4) ^ + ^ - tj < 0 .

tn - *! < X .

•lj ^ 'ij ^ blJ '

-24-

and maximizing

(5.5) Zcti tti .

For dummy jobs we may take a^^ " ^n " cii " 0 ^n

this linear program. We may also assume t, - 0, of course.

After some simplification, the dual of this linear

program can be phrased as the following network flow

problem. Find nonnegative numbers x.., one for each arc

of the project network, and a nonnegative v, which satisfy

the flow constraints (2.1) and minimize the nonlinear

function

(5.6) Xv + 2 [b.. max(0, c.. - x..) - a.. max(0, x.. - c..)]
ij

£. IUOAVV/, ^JJ •^i4/ aii 'uo^K^r A^. ^. ,

The function in brackets in (5.6) is sketched in

Fig. 5.1. Since it is piecewise linear and convex, the

theory outlined in Sec. 2 can be applied. That is, the

program (2.1), (5.6) can be solved parametrically in v

(and the dual problem (5.4), (5.5) parametrically in X)

either as a sequence of maximal flow problems or as a

sequence of extremal chain problems in appropriate networks.

Maximal flow approaches have been described in [10, 16].

Here we shall sketch a longest chain approach, using a

small numerical example for illustration.

-25-

- X

oU-c)

Fig. 5.1

Consider the project network and job data shown in

Fig. 5.2, where we have recorded the data for arc (i,j)

in the order b.., ci*> a\y The first step in the compu-

tational procedure is to take job times at their upper

bounds b., and find the corresponding event times t^ and

critical chain, as shown in Fig. 5.3. This constitutes

an optimal solution for X ■ t/ - 11.

b=3,c = 3,o=i

Fig. 5.2

-26-

Fig. 5.3

We next Impose flow along the critical chain, treating

the c.. as arc capacities at this step. Here we take a

flow of one unit, the bind occurring on arc (2,3). Using

the resulting flow and the problem data, we now form a new

network. Corresponding to arc (i,j) of the project network,

we consider the following possibilities:

(a) xij " 0 '
(b) 0 < x^ < c^ ,

(c) Xij " Cij '
(d) C1J < Xij *

In case (a), put in an arc (i,j) with length b..; in case

(b), put in an arc (i,j) with length b^. and an arc (j,i)

with length _b. .; in case (c), put in an arc (i,j) with

length a., and an arc (j,i) with length _b^.; in case (d),

put in an arc (i,j) with length a., and an arc (j,i) with

-27-

length a<i« i^r the example we have the network shown

in Fig. 5.4. Although this network contains

Fig. 5.4

directed cycles, such cycles have nonpositive lengths and

consequently we can easily compute a longest chain from

source to sink by an iterative procedure analogous to th t

of Sec. 2 for shortest chains in networks having nonnegative

directed cycle lengths. This has been done for the example

in Fig. 5.4, where the node potentials pick out the longest

chain 1, 3, 4, shown in heavy arcs. This chain corresponds

to a flow augmenting path, and we increase the flow along

this path as described below. First note that arcs of

Fig. 5.4 which have the same orientation as arcs of the

project network correspond to possible forward arcs of the

desired flow augmenting path, whereas arcs having opposite

orientations correspond to possible reverse arcs of the

flow augmenting path. Consequently if flow in an arc of

the project network is to be increased, we treat c. . as

-28-

a capacity if (i,j) is in state (a) or (b), and take

infinite capacity for arcs in states (c) or (d). On the

other hand, if flow in arc (i,j) is to be decreased, we

take zero as a lower bound if (i,j) is in states (b) or

(c), and take c^. as a lower bound if (i,j) is in state

(d) . This means in the example that we send one unit of

flow along the chain I, 3. 4, thereby obtaining the flow

shown in Fig. 5.5-

Fig. 5.5

The potentials of Fig. 5.4 constitute optimal event times

corresponding to X ■ t, ■ 10. Optimal job times are given

by

(5.7) r.^ - minCb^, tj ~ tj.) •

The procedure outlined above is then repeated, using

the flow shown in Fig. 5.5. We obtain successively the

results shown in Fig. 5.6 below.

-29-

3

Fig. 5.6

-30-

In the last flow network of Fig- 5.6, there is no

bound on the flow change e. This signals termination of

the computation. The complete minimum cost curve P(X.)

for the project has now been determined over the range of

feasible X, 3 < X. < 11, the function P(X) being piecewise

linear, with breakpoints at the successive values of X ■ t,

generated in the computation. Optimal event times for

values of X between two successive breakpoints ar^ given by

taking appropriate convex combinations of those corresponding

to the two breakpoints, and optimal job times are then

determined from (5.7).

Note that optimal times for a job (i,j) are not

necessarily monotone in X. For instance, the optimal job

times for (2,3) in the example are

2, 1, 0, 0, 0, 0, 1

corresponding to X-^alues of

11, 10, 9, 8, 7, 4, 3

respectively. In other words, compressing the project

time optimally can increase certain job times.

The method of this section can also be applied if

job costs are piecewise linear and convex between crash

and normal completion times. Such a job cost merely

introduces other breakpoints in the function shown in

Fig. 5.1, and the solution process is changed only in

details.

-31-

REFERENCES

1. Busacker, R. G., and P. J. Gowen, MA Procedure for
Determining a Family of Minimal Cost Network Flow
Patterns," O.R.Q. Technical Paper 15, 1961.

2. Dantzig, G. B., and D. R. Fulkerson, "Minimizing the
Number of Tankers to Meet a Fixed Schedule," Nav.
Res. Log. Q., Vol. 1, 1954, pp. 217 222.

3. 1 "on the Max Flow Min^ Cut Theorem of
Networks," Linear Inequalities and Related Systems,
Annals of Math. Study 357 Princeton Üniv. Press,
Princeton, New Jersey 1956, pp. 215 221.

4. Dilworth
Ordered

, R. P.. "A Decomposition Theorem for Partially
d Sets, Annals of Math., Vol. 51, 1950, pp. 161 166.

5. Ford, L. R., Jr., Network Flow Theory, The RAND
Corporation P-923,'"1956.

6. Ford, L. R., Jr., and D. R. Fulkerson, "Maximal Flow
Through a Network," Can. J. Math., Vol. 8, 1956, pp. 399-404

7. , "A Simple Algorithm for Finding Maximal
Network Flow and an Application to the Hitchcock
Problem," Can. J. Math., Vol. 9, 1957, pp. 210 218.

8. , "Constructing Maximal Dynamic Flows from
Static Flows," Op. Res., Vol. 6, 1958, pp. 419-433.

9. , Flows in Networks, Princeton Univ. Press,
Princeton, New Jersey, 1962.

10. Fulkerson, D. R., "A Network Flow Computation for
Project Cost Curves," Man. Sei., Vol. 7, 1961, pp.
167 178.

11. , "Expected Critical Path Lengths in PERT
Networks," Op. Res., Vol. 10, 1962, pp. 808-817.

12. Hu, T. C, "Parallel Sequencing and Assembly Line
Problems," Op. Res., Vol. 9, 1961, pp. 841-849.

13. Jewell, W. S., "Optimal Flow Through Networks with Gains,"
Proc. Second International Conference_on_ Operations
Research, Aix^en-Provence, France, 1960.

14. Johnson, S. M., "Optimal Two- and Three-Stage Production
Schedules with Setup Times Included," Nav. Res. Log. Q.,
Vol. 1, 1954, pp. 61-68.

-32-

15. Kelley, J. E., Jr., and M. R. Walker, "Critical Path
Planning and Scheduling," Proc. Eastern Joint Computer
Conference, Boston, Mass., 1959.

16. Kelley, J. E., "Critical Path Planning and Scheduling:
Mathematical Basis," Op. Res., Vol. 9, 1961, pp. 296-321

17. MacCrimmon, K. R., and C A. Ryavec, "An Analytical
Study of the PERT Assumptions," Op. Res., Vol. 12, 1964,
pp. 16-38.

18. Malcolm, D. G., J. H. Roseboom, C E. Clark, and W. Fazar,
"Application of a Technique for Research and Development
Program Evaluation," Op. Res., Vol. 7, 1959, pp. 646-669

19. Ryser, H. J., Combinatorial Mathematics, Carus Math.
Monograph No. 14, John Wiley and Sons,Inc., New York,
1963.

20. Tompkins, C B., "Discrete Problems and Computers,M

I.N.A. - S3-5, Nov. 17, 1952.

21. Van Slyke, R. M., "Monte Carlo Methods and the PERT
Problem," Op. Res.. Vol. 11, 1963, pp. 839-860.

