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ABSTRACT

Three boundary value problems involving discontinuities in a parallel

plate waveguide are solved. The three kinds of waveguide discontinuities

studted are: 1) the metallic step discontinuity, 2) the inhomogeneous E-plane

bifurcation, and 3) the trifurcatior. The generalized scattering matrix tech-

nique, introduced by Mittra and Pace, is applied to solve these problems. The

solutions obtained are formally exact and in jeries form. No restriction is

made on the operating frequexcy of the waveguide. The solutions are equally

valid for oversized waveguides, in which several modes are allowed to propagate

down the guide at once. The results of numerical computations of the reflection

coefficient for the dominant mode in the waveguide are reported. T:ie compu-

tations were performed on a digital computer. Where possible, the author's

results are compared with those published by Marcuvitz, Williams, and Cronson.

Close agreement between the author's results and LiLuse of the above authors is

noted.
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1. INTRODUCTION

Relatively few boundary value problems with applications in microwive or

antenna engineering can be solved exactly. Broadly speaking, boundary value

problems which are amenable to exact solution fall into one of two groups.

With the first of these, the. boundary conditions conform to one of the co-

ordinate systems in which the scalar Helmholtz equation is separable. In

this case, the partial differential equation is reduced to a set of ordinary

differential equations, the solution of which is usually quite straightfor-

ward. A sizable volume of literature concerning the separation of variables

technique is available. Morse and FeshbachI provides a comprehensive treat-

ment of the topic.

There exists a second group of problems which can be solved exactly by

means of integral transforms such as the Fourier and two-sided Laplace trans-

forms. Often, problems of this sort may be formulated as an integral equation

of the Wiener-Hopf type, or alternately in terms of certain special systems

of infinite order linear algebraic equations. A Wiener-Hopf 1.ntegral equation

can be solved by the application of the Fourier transform and certain function-

theoretic techniques. This method for solving a Wiener-Hopf integral equation

is called the 'Wiener-Hopf technique'. Many papers on the application of the

Wiener-Hopf technique are available in the literature. Noble2 has published

an excellent text concerned with both the theory and application of the tech-

nique. The exact solution of systems of infinite order linear algebraic
34

equations by function-theoretic methods is discussed by Brillouin 3 Whitehead 4

5 6 7
Agronovich et, al.5 Adonina et al. . and Hurd and Gruenberg

Generally, however, the solution of a problem can only be formulated in

terms of a differential or integral equation, or system of equations, which
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can be sclved only by approximate methods Approximate methods are many and

varied.. They include variaLional and perturbational technique3, as well as

finite-dif-4t-ercc methods and the various iteration procedures commonly used

to solve irtegral equations. Again, the volume of literature on the subject
89

is enormous. Hartree and Householder9 have published well-kn -vn texts on

.10
numerical analysis° Goertzel and Tralli is representative of the general

references available on mathematical physics. A wide range of topics is

covered., including chapters on perturbation of eigenvalues, variational esti-

mates, etc.

A rew technique for solving a class of boundary value problems is dis-

cussed in this thesis. It will be referred to hereafter as the generalized

scattering matrix '.echnique for reasons which will be made clear in the sub-

sequen, discussion. The application of this technique makes it possible to

derive a formally exact solqtion, in series form, to problems for which only

approxim*te solutions have been possible before.

It is believed that the generalized scattering matrix technique should

have a broad range of applicability. The purpose of this thesis, however,

is to demonstrate its usefulness for solving certain boundary value problems

assoclzted with discontinui.ics in a parallel plate waveguide. Specifically,

three distinct problems are discussed. They are the E-plane metallic step

discortinuity (Figure 1), the inhomogeneous F-plane bifurcation (Figure 2),

and the trifurzated waveguide (Figurc- 3). The inhomogeneous E-plane bifur-

cat~on is an ordinary bifurcated waveguide modified by placing a dielectric

in one if the ý-mal•cr ducts of the waveguide, i.e., with r-ference to Figure 2,

the dielectric is placed in region B.

lewir 1, Collin 12, Ghose 1 Durrani , and Harvey 1 5 provide a survey of

waveguide theoi-y and existing techniques for solving waveguide discontinuity
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Figure 1. The 9-plane metallic step discontinuity.
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Figure 2. The inhomogeneous H-plane bifurcation.
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Figure 3. The trifurcated waveguide.
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problems. Some papers of note specifically corcerned with the three wave-

guide discontinuities discussed in this thesis have bEen published. They arE

discussed inChapters 4, 5, and 6 in which the problems themselves ire dis-

cussed.

This concludes the introduction. In the next chapter, the generalized

scattering matrix technique is discussed0
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2. THE GENERALIZED SCATTERING MATRIX TECHNIQUE

16
In this section of the paper, a new technique for the solution of a

class of boundary value problems arising in electromagnetic theory is pre-

sented. Although the technique should be applicable to other kinds of prob-

lems, tooJ the generalized scattering matrix technique is explained here by

relating it to problems involving a class of waveguide discontinuities. In

particular, the technique will be applied to three boundary value problems

involving a parallel plate waveguide configuration. They are the inhomogene-

ous E-plane bifurcation, the metallic step discontinuity, and the trifurcated

waveguide. Only brief mention of these problems is made in this section,

however. The detailed solutions follow in later sections.

The key to the technique is the identification of an auxiliary problem

associated with the particular problem to be solved. Each of the three prob-

lems discussed in detail in this thesis has a common auxiliary problem. This

is the boundary value problem associated with a semi-infinite bifurcation in

a parallel plate waveguide (refer to Figure 4). The geometry of the auxil-

iary problem is such that it can be moJified in a straightforward manner so

as to be made identical with the geometry of the original protlem. For in-

stance, if region B of the bifurcation is filled with dielectric. then the

resulting configuration is just that of the inhomogeneous E-plane bifurcated

waveguide. The dielectric can be regarded as a termination or load placed in

region B. Likewise, the appropriate modification in the case of the metallic

step discontinuity is made by placing a perfectly reflecting wall in region B

flush with the plane of the junction (z , 0). In the case of the trifurca-

tion., the auxiliary problem is modified by placing a second bifurcation in

region B.
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The auxiliary problem is characterized by the fact that it can be solved

exactly. The problem of the semi-infinite bifurcation can be solved exactly

by any one of several methods. For instance, it can be handled by the

17 7
Wiener-Hopf or function-theoretic technique , or the direct solution of an

18
infinite set of linear algebraic equations

rhe way in which the auxiliary problem is used to solve the three above

mentioned problems will be discussed next.

2.1 Development of the Series Expansion

It is common practice to think of the bifurcated waveguide in terms of a

transmission line analogy. If only the dominart mode of the guide is allowed

to propagate. as usually is the case. the bifurcated waveguide is regarded as

a 3-port network. One port of the network is associated with the propagating

mode in each of the three regions A, P; and C, A port may be regarded as the

terminals of a transmission line, It the problem of multi-mode propagation is

under consideration, then the network is regardeo as an V-port system. N

being the total of tht. propagating modes in the three regions,

In the neighborhood of the edge of the discontinuity, an infinite number

of evanescent modes are excited by the diffraction of an incident plane wave.

The effect of these evanescent modes can be represented in terms of lumped

reactances in the equivalent circuit As these modes in physical terms repre-

sent stored energy. Of course the numerical values of thesc lumped re-

actances must be determined by solving the boundary value problem.

The network of lumped reactances and transmissior lines can be concisely

described in mathematical terms by mears ef a- impedance admittance, or

scatterin- matrix° The order of any of these matrices will be N where N is

the total number of propagating modes in the three regions A, B, and C.
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In the technique introduced in the thesis the bifurcalea guide is re-

garded as a 3N-port "etwork, v beig i"iinitclv large0  A port of the network

is assigned to each of the propagating and Evanescent modes If the ports of

the network are termi-ated with the proper cet of ref'ectances, a network

corresponding to either the step discontinuity, the irhomogeneous bifurcated

waveguide, or the trifurcation is achieved,

"rhe concept of a scattering matrix of infinite order is introduced.

While the mechanism of its applicatio- is conventional-, it differs from the

scattering matrices ordinarily cefined ir the literature.. For one thing., the

concept of the scattering coefficient is extenaed to cover evanescent modes.

The following discussion is concerned with the derivation of the generalized

scattering matri; of infinite order As applied to waveguide discontinuity

problems of the kind discussed ir this thesis,

With reference to Figure 4. let SQ a A, P, or C represent the self-

scattering matrices of the ,uxiliary problem. Let SMP a A B or C and

-• A, B, or C but a j P2 be the mutual-scattering matrices,

The interpretation of the scatteri-g m-ttrices is as follows. Consider

that regions P and C are termirated i- reflectioness loads. Then, if the

th
n transverse magnetic mode is i"ciaeCt iP region A. fields will be reflected

in region A and transmitted to regions B and C, These f:elds can be deter-

mined by solving the auxiliary problewn' the resultant electromagnetic fields

are expressible entirely in terms of trjniverse magnetic modes. Thus) the

total electric field is expressible in terms of the total H field. rr turn,
y

H can be written in "erms of eigenfurctio" expinsions with constant co-Y

efficients appropriate to regions A, P a'd C. Ir this thesis, the H corn-
n oy

ponent of the trar'sverse tn~gnetic field is expa'ded i- each of the three
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regions A, B and C ir terms of Fourier cosine series of the form Z dn(n
n7T nx 7T - (X - aN

where in r..•gion A, 4) cos - in rcgion E 4ýn cos -nd in

linx h
region C, --C cos The mode coefficient of the mi mode referred to

c

the plane of the junction (z 0), appearing in the expansion of H willy
th

be defined as the 'amplitude' of the mode.. If the amplitude of the n mode

incident in region A is one or in other words, the incident H field isy

given by cos -D the total H field reflected in region A at z 0 is given
a ' y

00 AA lrmx
by -Z S cos - The total H field transmitted say to region B at

m:ýO mn a y
0 BA 71 m(x- a) th

z 0 is given by ZO S cos T o hus) if the amplitude of the n
m.0 mr. b

mode incident in region A is one, the amplitude of the m mode scattered in
AA th

region A will be -SAA and the amplitude of the mi mode transmitted to region
mn

B will be S BA S and SBA are the general matrix elements of SAA and SBA
mn mn mn'

respectively0 The other matrices are defined in a similar manner.

Note the scattering coefficients are defined in this thesis ir a manner

consistent with the sign convention followed in electromagnetic theory when

defining the reflection and transmission coefficients in terms of the voltage

or transverse electric field rather than ir terms of the current or trans-

verse magnetic field. Since the coefficients of the cigenfunction expansion

of H are used directly to define the various scattering coefflcierts, carey

must be taken to assign the proper sign to the ratio of the amplitude of the

scattered mode to the amplitude of the incident mode if the definitions are

to be consistent with this sign convention. Thus, the amplitude of the mth

AA AA
mode comprising H in region A is given by -SA, and not by just SAAny ramrn

It should be noted that ordinarily the mode amplitudes are normalized so

that a propagating mode' carries unit power. Hcwever, since the scattering

matrix has been generalized to include evanescent modes, it is inappropriate
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to normalize the mode amplitudes in tOl usu-0 mA-nev 7- +his thesis the

scattcring coefficier.s are detinec -; the ratio cf tne amplitude. of a scat-

tered mode tc the amplitude of tPx incide-t mode which ii taken to be unity.

One consequence of this defirition ý'owever is t-•t the various scattering

matrices arc non-symmetric.

Suppose. now that region B is mooified by placi-g a- obstacle in it such

as a perfectly reflecting wall., I- cTrms of the v-po-t retwork representa-

tion. the load in region 8 c.•, be represe'tea by i reflectance matrix rBand

a transmission matrix O The meaning of ý'aO cin be interpreted as

follows, Let t be a vector associated with tlc field aistribution of a wave

progressing toward positive z Ir reg~or P. rhe e-eme-ts of the vector t, of

course) are the amplitudes of the modes of the eige•'function expansion of the

arbitrary field in regior P. The ampl:tuaes are referred to the pla--e z 0,

tB-- B--.
If this is so, then r I gives the reflected field a-d t t gives the trans-

mitted field, both refe-red to the plhne of tOe :u-ctior at z (o FVB is

progressing in rEgior B foward regitive z awav from the lo-Ado The e~eme•ts

1-B-
of 1 t 3re. the amplitudes of the rrdt-s in thE reflected fielad SimilArly,

OPT is progressing in region P toxard positive z a'd "he elEme'ts of •it are

the amplitudes of the modes comp-ising thE trd5'.zitted fieldo As an example,

if a perfectly reflct]'zg wall in region B is flub= w:t, *he plane of the

uB L,junctionsU - I wterB is the ide"titv trtrix a"o L .

With Vand e dellr'eo considcr th(e situation shown ir Figure 5. The

usual boundary vAIue probhe-i associtt-d with this kjPd of geometry involves

a moriochrom.ntic sigral extited ir, smc, E region of -iE gulde 4,nd propagating

toward the ounction 0(- is irtvr-eted i, det-rmi-'rg ,hc fields diffracted

by the- junctior or -.t !e,-t some part of them To' exor..ple, t0 reflection
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R OREGION B

LOAD rB
REGION A

REGION C

Figure 5. Auxiliary problem modified by a load
placed in region B.
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and transmission coefficients for the dominant mode are often sought. One way

to express the desired fields is in terms of their eigenfunction expansions

with constant coefficients. The generalized scattering matrix technique en-

ables one to write the coefficients of the eigenfunction expansion in terms of

the scattering coefficients of the auxiliary problem and the load in region B.

The derivation of the relationship between the eigenfunction coefficients and

the scattering matrices follows.

Suppose region A is excited by a TEN mode. SOppose also that region B is

B
terminated by a load characterized by the reflectance matrix rB The TEN mode

will be scattered and reflected first by the bifurcation in the waveguide. The

field reflected into region A can be characterized by the vector r where0

r; = Sa. By definition a (1; 0 0 O . T where T means the transpose.
0

(Actually, in this particular case r0  0). Furthermore, a wave will be trans-

- BA -
mitted to region B. Let t chartcterize this wave where t :S a. The waveO 0

will be reflected by the load in region B. The reflected wave is character-

ized by rBT . The reflected wave progresses toward the junction in the nega-

tive z direction where it is diffracted by the edge of the bifurcation. A
A1= f~t° -. sBBB s

field r S1 = S 0 is transmitted to region A and a field t1 rB7B0 is

reflected in region B. This field will also be reflected back by the termi-

nation and this process of multiple reflection will be continued. All of the

contributions in region A due to this process can be written symbolically as

Go

2; r sABB B SABr B sBBr BT(
S-in =n=O n L:.o o 0 oo0 (1)

This is recognized as a Neumanr type series. The Neumann series can be sum-

red in the usual manner, and Equation (1) can be written as

sMAA - SAB 1 B SBB B B- sBA- 2)
S a - S r(I -In.
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Sin is given by (RA) -Ali -A2)T where RA is the voltage reflection co-

efficient for the dominant mode and the A 's are the coefficients of the
n

Fourier series expansion of H in region A. Note that the difference in they

signs between RA and the A ns above is due to the aforementioned definitions

of the scattering coefficients. The convergence of the Neumann series is

discussed in Section 2.2.

The discussion of the derivation of Equation (2) in the preceding para-

graph depends on an intuitive understanding of the physical processes involved

in the chain of multiple reflections0 In order to provide a lucid explanation,

it was tacitly assumed that the load in region B was recessed some arbitrary

distance 6 into region B and away from the edge of the bifurcation. Refer to

Figure 6. If indeed this is the case, then the proof of the convergence of

Equation (1) is very much simplified since all of the higher order evanescent

modes would be damped out quite rapidly. However, this crutch is not neces-

sary. In the limit) 6 can be zero and it will be shown that the series even

then is convergent. Indeed, convergence is proven without reference to the

specific expressions for the various scattering coefficients.

Using reasoning similar to that employed in deriving Equations (1) and

(2), an expression for the fields in say region C can be written as

-- CA- C B BB B-i BA -
SCA a (IS S a (3)

T
where S CA : (TCA' CIV C2) T CA is the transmission coefficient for the

dominant mode from region A to region C and the C 's are the higher order co-n

efficients of the Fourier series expansion for the solution field in region C.

In a similar manner, the mode coefficients of the eigenfunction expan-

sion of H in region B can be written asY

B _ _ BB rB B B
SBA 4Z .)I-S S BA(4
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INCIDENT FIELD a.
.. _LOAD IN REGION 8

TOTAL REFLECTED FIELD' gi,.

REGION A
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Figure 6. Multiple scattering by load in region B.
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SIn 0a s a' +I- S )S a
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where SBA ;', (TBA' BT TBA is the transmission coefficient for the

dominant mode from region A to region B and the P '3 are the higher order

mode coefficients of the Fourier series expansion for H Y.in region B.y

Equations (2), (3); and (4) apply to the specific case of a signal ex-

citing region A and a load placed in region B. However., similar equations

can easily be derived for other situations. Also, note that loads can be

placed in two regions in the same problem. For instance, the problem of the

capacitive diaphragm in a waveguide can be solved through the device of plac-

ing a magnetic wall in region C and an electric wall in region B. The method

of multiple scattering has been applied to this problem•19 for the case of a

semi-septum. The solution was shown to be quite straightforward.

2.2 The Proof of the Convergence of the Neumann Series Exp.ansion

In this section, the convergence of the Neumarn series expansion given

by

BB PBB - BB B BB -B
(I- S rs- I SB r + S rS 1. (5)

is proven. First, the convergence of the series

BB1 1 BE S BB S(B6(I- ) I 4S & (6)

is demonstrated. Next, it is demonstrated that if series (6) is convergent.,

series (5) is also convergent.

th
Let a and b be the amplitudes of the n mode incident and reflectedn n

in regior'n B., defined at the plane of the junction (z :: 0), Furthermore,, let

th
en and i be the voltage and current for the n mode in region B. defined atn

the plane of the junction (z :, 0). For propagating modes, and b 0 0. , i
n

I (p) () 2 7Z
7A where Z k .j - Similarly, for evanescent modes,

0 
2

also With bn 0., ont. hgs e i -.Jz ~aj 2 where Z e) b ()k2
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For Propagating modes, en and in can, in general, be expressed in terms of

a and b as

e n -_ n (P) (a n + b n (7)

and

in (an - b ) (8)

For evanescent modes, en and in can be expressed as

n r_en =-JZne (an + bn) (9)

and

i (an - bn) (10)

With the reference ,pl-ne chosen in region B at the planel z 07, regions

A and C can be grouped together and regarded as a termiination. A relation-

ship between the tetminal voltages and currents, the stored energy, and the

power delivered to, the termination is derived by Oontgomery, et al. 2 0

__11

no0 n n H E

where V . average magnetic energy stored in the termination

E =average electric energy stored in the termination

P average power delivered, to the termination0

To simpii~y the following discussion, assume that only the TEM mode

propagates in region B. Substituting (7), (8), (9) and (10) into Equation

(11), one obtains

0(p) * b z (e) (a + b *

o "b)(ao b0 ) Jn, n a n n n

= 4jw (W H -W E) . 2P (12)
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Equating the real parts of Equation (12), one obtains

o(p) (j[2 _ 12) j o 0• •

(ao - )- n2l Zn(e)(an bn - a b ) - 2P (13)0 101 ao'~i n n n

Equating the imaginary parts of Equation (12), one derives the equation

Z(P) (ae) o 12 2 bn

-(ab a b0 ) + , nl Zn(e) (ja b 2 )4J (WE -WH) (14)0 0 0 0 0 nlnn In

BB- BB
Now let b S a where a is an eigenvector of S , so that if X is an

eigenvalue

b = Xa (15)

and

b • X a (16)
n n

Substituting Equation (16) into Equations (13) and (14)1 one obtains

z P ja 12  12)~ + *0 (e) ja 12 2P(7

and
00

P - ) 0- (nl1 (1 - J 12) Zn(e) a 12  4 jw(W. - WH) (18)0ZoJ (1 n an -

Equations (17) and (18) can be treated as two equations in the two un-

knowns (X - )) and (1 - Ix 12o Solving for (1 - Ix )1 one gets

o0

X12 2PZ 4z (WE H- n 1 zn (e) a) n 2

12 n 2 ( (19)(Zo(P) [ao ) 2; (nP)Z an 12

NoethtZ(p) (e)
Note that Z and Z are positive real quantities and WE > WH foro nE H

the case of T7 modes.o rhus,

JkJ • 1 (20)
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A necessary and sufficient condition for the convergence of the Neumann series

I + M + ,2 + ... is that the eigenvalues of V satisfy the inequality Ix 1< 1.

Th-, the convergence of (I + S BB) is proved.
SBB 8DBsB

The proof of the convergence of I + S + S B ... for the case of TE

modes is formally the same as the proof given above for TM modes. In this

th
case WV > W habut the voltage en for the n non-propagating voltage is nor-

= e)(e)

malized differently. In this case, en = j Zn(e) (an + bn); Zn > 0.

There is an alternate condition, necessary and sufficient, for the con-

21
vergence of a Neumann series (see, for instance, Friedman1). If a' is an

-? - 2
arbitrary vector iond b' = Mal' then the Neumann series I + K + M+ con-

verges absolutely if 1311 < 11;j where I-i'1 is finite. Thus, from the proof
SBB SB SBB

of the convergence of I + S BB+ S B S + BB.+ one already knows that if

55B a', then fb'J < la' 1  Now, let ,' 1 a Thea, if a'

< Ir" I
Now., one can follow the same argument for rB as was used for SBB to de-

rive Equation (19), again. In this case, however, it is possible that P = 0

and W W as would be the case if I B*+. Hence, If n is any elgenvalueS H I I ec•J is an Jgvau

of r ' 1, and it follows that Ir" ati a Thus, I"I < 1a ,

showing that the Neumann series I + S55r 8 + SWrB Se5V + ... is absolutely

convergent and can be summed to (I - SBB _'J"1o The proof is essentially the

same if the case of several modes propagating is considered.

In Chapters 4, 5, and 6, (I - sBBpB) is truncated and then inverted. The

Neumann series expansion was used in computing the inverse. For all cases

considered, it was found that the Neumann series can be truncated after 20 to

30 terms. The computation of the inverse of (I - SBBI-B) using the Neumann

series expansion is straightforward even when the rank of the truncated matrix
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is relatively large, Of course, if the rank of the truncated matrix (i - sBBIrB

is sufficiently small, then the matrix can be inverted directly.

2.3 General Comments on the Technique

The introduction of an auxiliary problem of the kind discussed above as

an aid to the solution of certain kinds of boundary value problems is rather

new. A search of the literature has uncovered only one piper in which the

22
author uses a similar device. W, E. Williams uses the Laplace transform in

the formulation of the step discontinuity problem. He applies the Wiener-Hopf

technique and derives an associated set of infinite order linear algebraic

equations. The auxiliary problem is introduced by Williams as a preliminary

step to solving the infinite set of equations, This is to be contrasted with

the use of the auxiliary problem as discussed in this thesis. UJsing the

generalized scattering matrix techrique• the solution to the problem is ex-

pressed in terms of the scattering coefficients of the auxiliary problem as

a rapidly convergent series.

Also, the applicability of the generalized scattering matrix technique

should be rather broad, The method is not necessarily restricted to wave-

guide problems. For example, it is suggested that the poblem of the dif-

fraction of a plane wave by a thick. conducting half-plane may be solved by

means of the new technique The auxiliary problem suggested is the boundary

value problem associated with a pair of pArallel, semi-infirite plates in,

free space (Figure 7).

A brief list of problemF suggested for future s'udy is giver in Chapter

7 of the thesis.
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A

INCIDENT PLANE WAVE

(a)
Figure 7a. Diffraction of plane wave by a thick half-plane.

(b)
Figure 7b. The proposed auxiliary problem: parallel-plate

waveguide in space.
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3. DERIVATION OF THE SGATrEP:VG CoEFFICIENrs

The elements of the self-scatterintg mr~ices S • a A P, or C., and the

mutual-scattering matrices SaL, a A ?, or C and P A, P., or C but a / P.,

are determined by solving the boundary value problem associated with a semi-

infinite bifurcation in a parallel plate waveguide, The problem must be

solved for an arbitrary TM mode incident from one of the three regions A.no

B, or C.

It may be shown for the problem under consideration that the only modes

excited by the discontinuity with an arbitrary T M mode incident are. the TM.•o no

modes 0 The non-vanishing field components can be derived from a single scalar

function J6 (x z) which is identical to the y-component of the H-fieldo Using

the coordinate system illustrated in Figure 4 the three components of the

field can be written as

H JD (21)y

E. -(22)
0

and

E -1 -- (23)
Z j(A 0x

A harmonic time variation of the type Cj~t is assumed throughout The scalar

function $(x~z) must satisfy the two-dimensional Helmholtz equation

/ 2  a2  : 22r
Z x t E 0, k (24)

gx 2 hz 2er w t

together with

P ;x-0-a all z nd x .z'-0 (25)



24

and the edge condition

V V4) -- 0 (d-:2), d0o (26)

where d =[2 + (x - c)]12

Initially, it is assumed that the waveguide is excited from each of the three

regions A, B) and C by an arbitrary transverse magnetic mode of order 1, q;

and r., respectively. It is assumed that the waveguide dimensions are such

that each of the incident modes is a propagating mode. Thus, in general,

there will be several prupagating modes in each of the three regions of the

waveguide. Each of the propagating modes must satisfy the radiation condition

at infinity.

3.1 Derivation of the Infinite Sets of Equations

In each of the three regions labeled A. B. and C the function . (xz) can

be written in terms of the appropriate eigenfunction expansion, in this case

a cosine series. Thus, in region A

cos VIX e-jCL I z 00 Ix"n

2;A co s e(27)

where

2 n

k~ -• k a r

aa

•y)2 k n > k

a an

In region B,

Igslx-a) JPr q(x-a) jPn

B= B cos b n 2; ) B r. cos e (28)

where

nT
V.n2 2r

(>ikF'b
1
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In region C.

0rx r- i0

bC .- C os -- e J rz C co 9 29)C c i' '9

where

.V k2  (ln)2  k >f
n c c

!n 2 2 n

C C

Ay B. and C are the amplitudes of the modes in'cident in regions A, B. and C,

respectively. The integers 1, q, and r are arbitrary.

The coefficients A n B n and Cn are related through the requirement that

the transverse E-field and H-field must be contiruous across the plane of the

discontinuity (z 0)Y. Matching the transverse F-field and H-field across

the boundary yields four sets of equations,

fcos luxnx Gocos - 7Tn(x-a)

A s A B CosiB CosB (30)
0 -J n b

and

a CsIBL cos .a) (31)tA a n.--cos( . -q cos(bnn-nb' b(

valid in the interval c < x < a

and also

A cos A An s co C cos( -n) C cos (9 (32)

and

"00ao C co i- ,7 0 CXos (33)
hiAch S( 4r i in' nh= int a ) - r - co( co

which areo valid in the interval o ,x -'c
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For the present, it shall be assumed that a/b is not an integer. If
rs (x-u)

both sides of Equations (30) and (31) are multiplied by cos "' b . where

a is an arbitrary positive integer, and both sides of the equations are then

integrated between the limits c to a, two sets of infinite equations can be

derived. Theme are:

/A
b(A6 0  Ao)60 +(l) r A _ ) 1 A-

0 o - (-1)2 a n=l 2 2
1 sa an a

=bB 6. _+bB (1-60) +,_8 6o,0 + bB6 q (1 - 6o) (34)
ss 2s s qs 2 s q

and

bpo(A6" - Ao'6o+ (-1) 2 2 (1 - 6) + (..1)s+1• ; n n

0 a a- 6 Ps an U Ps

b 8.60 +k P A. (1 -60) - bPB6060 - b P B6. ( - 6 0) (35)
9aa 2 as8 a s qas8

(a = CIS 1., 2 o...

By definition, An/ = nA sin and A1  lAsin
n n a a

The Kronecker Delta 6b is defined as
a

8b = 1 if a = b
a

= 0 if a o b

A si,,lar result can be derived from Equations (32) and (33). Thus,

#4 A'c(A6 + Ao 60 (-1)+1' A1 (1 - 60) ( 1 )s+l n

1 0 s Q M2 _ Y2 I an 2 _ 2
I a n a

Ccc 60 +C ( - 60) + c, C6 0 6 + c 6 r (160) (36)
as 2. 99 a rst s r

If a/b is a rational number, some of the terms in Equations (34) and (35)
will become indeterminate. The equations are correct, however, if the in-
determinate forms are replaced by their limits as a/b approaches a rational
value.
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and 0
aciA /

_(A0 6n A )5 (-1) S ) t (-1)
0 1 o's a 2 2(an1 a v

=cY C 60 +-C yc (1 60)~ cy 5o5o -c c~ 6 :r o - ) (37)
S ss s ns r 2 s s r

( s:- 0, 1s 21

Now refer to Equations (34) and (35). if each line of set Equation (34)

is multiplied by PS and then sets (34) and (35) are added and subtracted,

two alternate sets of infinite equations are derived. Thus, these can be

written as

/ ~ A"
00- V l2 A s0 5 7T n

bP A6 6 + (-I) as (1 - 6a0n) (-. Mo s a n

n o

_b B (l 0 60) -. b B 6o (38)
2S s s oos

and

-bP A 60 ( 1)s+1 IT A (1 - 6 ( 1 - n÷~ - • *. (3 - n-nl -
o a n s

b P B 6 q (1- 6) -bP B6 0 6 0  
(39)

2s s q" o qs

(s O, 1, 2, 1oo.

Similarly, from the sets of Equations (36) and (37), arother two sets of

equations can be derived, They are.

cv A6°60  (- 1 )s A (I - 60) (- 1 1 _ n
o s aa -y I a ni n

c 60 6o s-- Ys s S1 0s 0~ Cos 0
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and
SA/ A/

-cV A 60 + A' 61 + (.1)s+l oo n
005a a~ +Y a an n - V

_- N C6r(1 6) -cy c6°6 (41)

2 a r a r s

(a = 0, 1, 2, ... )

3.2 The Solution of the Systems of Equations

In this section, the scattering coefficients are derived. This involves

the solution of the systems of equations derived in Section 3.1. Two separate

cases are considered. They are a) A = C = 0 but B ; 0; and b) B = C = 0 but

A i 0. Recall that A, B, and C are the mode amplitudes of the arbitrary modes

incident in the three regions as defined in Section 3.1. The solution of the

systems of Equations (35) and (37) with A r C = 0 gives the elements of the
sBB SB A

scattering matrices S S CB and S in terms of the mode amplitudes B , Ca

BB CB ADand A . Explicitly, these are- Sn a B m/B S - C /B. and SAn = A /B.

The electric field or voltage sign convention is followed when defining the

scattering coefficients as explained in the previous section. Similarly, the

solution of the systems of Equations (35) and (37), with B = C = 0 gives the

elements of 8 AA S BA, and SCA in terms of the mode amplitudes of that problem.

These are expressible as: S A BA = / and S C /A.

an a n A

It is not necessary to go through the formal solution of a system of

equations to find the elemcnts of S cc S BC , and SAC since they follow by a

simple transformation from the elements of S BB sCB. and 8 ADBJ respectively.

If the dimensions b and c are interchanged in the expressions for SBB and SCB
an an)

then the resulting expressions are identical to Scc and S BC respectively.
an an

Similarly, it the dimensions b and c are interchanged in the expression for
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ABm

SAB and then the total expression is multiplied by a factor of (- 1 ) m, the re-
mn

Ac
sulting expression is identical with SAC°

3.2.1 Derivation of the Elements of S BB S CB and SAB

With A and C set equai to zero, Equations (35) and (37) can be written

as
00 A/ abP

n sab 6q6° + 0. (A -B6 0 )6° 0 (n 2; a + -) s s q o- (42)

n s

and

O0 acY
in °A-60 0

n7;IC T 0 s(s :0• 1; 2, ...) (43)

where q can be any integer.

The above set of equations can be solved by the function-theoretic

technique. A general discussion of the function theoretic-technique is given

12
by Collin o A meromorphic function f(w) is constructed in such a manner

that it will generate an infinite set of eqvations which is formally identical

with the original set of equations when it is integrated around the correct

contour. The form of f(w) depends on whether q is zero or non-zero To

simplify the discussion., consider first that q 0z i0e., a UEM mode is used

to excite region B.

A f( M) is desired such that

1 f(') dw 00 r(a n)
lir 7 y1 f - Ps an : f(P -)6 (44)

L -4 oo n1n s
n n

where r(a ) is the residue of f(wi) at the pole w an' and

abP

f(P 7 2 . (A - B) (45)o •7 o
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and also,

li ),- + f(yo)60 (46)
L ----* fw-n0

n L

where
acY

f( = - A (47)

The contour L is illustrated in Figure 8. The function f(w) is a function

with simple poles located at

W n -. n , 2, ..1 (48)

and simple zeroes at

W = Yn. n = 1, 2, ... (49)

w = P n n 1, 2, ... (50)

Furthermore, by comparing Equations (44) and (46) with Equations (42) and (43),

it is observed that

A = r( n)/n sin Inc ()

n n a

The function f(w) is now determined to within some integral function

p(w). The function p(w) can be determined by examining the asymptotic be-

haviour of f(w) as w---PO0. It can be shown that in order for the edge condi-

tion4 to be satisfied,

f(W) =0(w-1/2), (52)

excluding the poles and zeroes on the negative imaginary axis.
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complex w-plans,
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From the above, one result is immediate. Noting that P0 0 = 1.

Equations (45) and (47) yield Ao / = b/a. By definition) one can write

00SAB D (53)

The function f(w) can be constructed in the following manner. A function

f(wa) with the necessary poles and zeroes can be written as

f(w) = P f(w a) (54)

where, for instance,

riwnP)= l (P In e

7P23 4

The notation is that used by Hurd7 ' 2 3 and Whitehead4. The inclusion of the

exponential terms in the infinite product assures the uniform convergence of

the individual products. The function p(w), of course, is the integral

function mentioned above.

lIn In
Observe that asymptotically for large n, P n - -" p-nc, and

In
CL-n j--a It can be shown that if K(MO) is a slowly varying function of w.

then one can write

W C w

f(w) = K(w)p(w) nl(1- I)e nl( n (5)e
a .(55)

(i - j an J

The function f(w) can be written in terms of the Gamma function. First recall

the identity
2 4

u n e (6
1'[ (1 +-) e (56)

n•Zl n Un(u)

where u is a complex variable, excluding the negative integers, Y is "Euler's
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Constant") and f(u) is the Gaimma function of argument u With the aid of

this identity, Equation (55) can be written as

p(W)K(w) VTa F(-j--)

f(w) J - bc C We (57)
w b c 1'(-j• 7rr(- J-I-

The function f(w) is now written in a form convenient for the examination

of its asymptotic behaviour for large values of "0

"1 24
Stirling's formula for the asymptotic behaviour of the Gamma function

for large argument is given by

u (27)1/2 (u - 1.2)In u - u(8l'(u) - (2r e - - 0 (58)

This is valid everywhere ia the complex u-plane except in the vicinity of the

negative real axis. Using Stirling's formula, the asymptotic behaviour of

f(w) can be found to be

_. 
f ia 1 / 2 pa in b -

La_ p(W) 7T ~b/ a 1c (9
f(W ) ) 21/2 fc a (59)

excluding the poles and zeros of K Thus, in order for 1(W) to exhibit alge-

braic growth at infinity

Wa (a

p(W) C e (60)

The constant of proportionality is determined by setting f(1) 1-

The relationship follows from Equations (50) and (51) Finally, f(L-) can bt:

written

bcP I1(wp) [wI, y) [1(10 a) -j 0 In 1.
-0 B0 a c 61

fr ------- 0 et¢•,• i fl(•o•-) (o)n(
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C and BS can be found from f(w). Note that f(w) satisfies

I (w dw r(a M)
Its - ; f(11 (62)

n n
n

and

_II f(,) n ao r(a)

!in j + 2 n + f(-Ys) (63)
L--o L an

nL n

Ln is the same contour as befor . Equations (62) and (63) are forzpally iden-

tical with Equations (37) and (39). It follows that

B - (-1)* Vab f(-Ps) (64)
S C ab s

and

Ca= - f(1)s) (65)

21s fa0

where C =
S lif s 0O

It can be shown that for other modes of excitation, Equations (64) and (63)

are valid providing, of course. the )roper f(w) is used in the calculations.

8 E CB, and S A follow immediately from Equations (61). (64), and (65)pU PoI po"

and the deftnittons of the scattering coefficients. Thus, for all p,

(P +P )
BB (-.1)P2j3 fl -(fp, ) l(-Op Y). fl(•oo- ) e-J _° -Z- aL

S -PP------- - pa e (66)

and

9CoPrl2P b fl(- P) M l.(-jpy) i0(0O,) -jI aL

--- (.. . ...- . e (67)
iY a Hl(PP3) n•o ) a"'--*y *2-01 .
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and for p greater than zero,

BA -bcP 0 [](a PP) (a py) l(o po o0) P aL
SBA o pP C% (P) ___ e (68)

~0 Irp sin P noP) no y)fl(P01 (aj P(cia)

Here the superscript p in the infinite product means delete the term (a n-pa

n p, from the product. By definition, aL a ( ,. b In c

Consider now the case of a higher order Tu ode in regionused to ex-

cite the bifurcated waveguide. The procedure for the solution of Equations

(42) and (43) is essentially the same as before. differing only in its details.

First another meromorphic function of the complex variable W is constructed.

Call this function fI (w). This is a function with simple poles located at

-a n, D -1 2.4 ... (69)
1"

and simple zeros at

S"y'nu 1, 2j , o (70)

and

• )-Pn 0n 1.0 2, ,oo (71)

except at P q Furthermore.,q

f( ) ab P3 B (72)
q 27T q

Again, the asymptotic behaviour of the function at infinity must be studied

and in order to sdtisfy the edge condition, f1 (W)) O(W -1,'2 as --- *-oo,

Vote tha* in this case) fI (wh) has a zero at w Po This is because a

TIEM mode is "ot excited in region A by a higher order TM excited in region B)

i *e., A 0 0 rhis follows immediAtely if the concept of reciprocity is

applied. :i - TEM mode is (xcitei in region A, no higher ord(-r modes will be
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scattered or reflected by the bifurcation. This is because the incident TEN

mode is already a normal mode of the system. Hence, if no higher order mode

is excited in region B by an incident TEN mode in region A, by reciprocity,

no TEE mode will be excited in region A by an incident higher order mode in

region B. By definition, for q > 0,

SAB = 0 (73)
oq

The proper f (W) can be shown to be

(-l)qba P# 0 (-P) () [i(c.,Y) no .a) -j q aL
f I(W) = q - ) .[.. e (74)

29Pq -. J Aq -O PqPo q yq nwa

From Squations (64), (65), and (74) and the definiticons of the scattering co-

efficients, one finds for q > 0,

(-,I)P+q+1 p (1 +10 ) II(-1P ,P) n(-p3 Y) no(1 ,,a) _j (pp p

8 BB q p o p( e" 2 L (75)

MQ E P (p +p )(P -P.) n (A)( ,1 (P) ,n ) f(-p .a~)

arad

(-1)P+ibP (Y P÷ ) l(-y ,1P) n(-y ,y) no(P ,c) _ 'p+q
CS 2o pp _qL

pq C8 (Y p W P ) a (q)(p . P) no .Y) -y a) e%76)

p p pq qo, q q q

and for p > 0, q 7 1,"

q ~(a]p_P q
S(_l) cop (a -P ) noc ,P) fl~i )Y) noeJ a)IISA - "po _R p p (77)

pq 29p sin(!P.5d (Pq -a)(Pq-P )fl(q)(pqP)nl(pqy)n(P)(Opc)a)

Note that at the beginning of this section, it was assumed that the mode

inaident in any of the t hree regions was a propagating mode. The derivation
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oi the expressions for the scattering coefficients was based on this assump-

tion. It is necessary, also, that the scattering coefficients be defined if

the incident mode is evanescent- To do this, it is only necessary in the ex-

pressions for the scattering coefficients to replace the appropriate real

propagation constants representing the propagating modes by the corresponding

imaginary propagation constants representing evanescent modes. The expressions

derived above are tabulated in Table 1.

3.2.2 Derivation of the Elements of S AA SBA and SCA

With B and C set equal to zero, Equations (39) and (41) can be written

as / A1
5° .÷1 7T A_1A/

bPAA 60 + _1)s+1 A (1- nl) + ' 73n2l 0 (78)
0 9 a C-I *aPs (I n:= I-0 a7n ps

and
Go A/

0os 7T A s+l IT n
cY A 6 . ) (1 - 60) - (-1) - fl 0 (9
oos CL +I a n.l 0

(s OR I> 2) 0o)

As already noted in Se ion 3.2oI, a TEM mode excited in region A will

not be reflected by the bifurcation nor will any higher order modes be ex-

cited. Hence, for all p, one can write

SAA 0 (80)po

and for q .', 0,

S 0 (81)
oq

Furthermore,

SBA (82)
00



TASLE I

s B.[BB SDA

(-I)p 2P0 c fl(-P ,P) rl(-P,, Y) 11(p 0 9 a ei ý0 .2 1~) n s

(-I) p~q I(pP + P0 ) I1(-p ,G) Q) b p pq)a In +E/j
pp qp pqlb a

s Pq Ep(p + p )(Pq - PO) fl(q)( no) f( ,y) fl(-P,,*G) ()
[S CB CS~

(PO + yV )a r c b

p0 - ep'p IL no~op0 ) nlp 0,,Y fl(-Y~, G)

S(-1)P~ b 0 Qy I.e Pa n fl1.vP +l.. ,y) InP

pq p c y p(Y p + p q )(P q - PO 1 f(q) (Vq) I*(Pq Y) l(-Yp ,a)

r8sAD s ASi
s AS b/ 5 AS 0  s AB . 00 oC1
00 oqsA sASAJB

AS -bcp, nhcL,,P) fl(o ,y) n(po,c) (0 71P I

vp ... V1Dc n(ppp) n(pop,'v) nl(P)(a, 0)

AD (,)q cP (a~ il(a P~) 1(a ,P) no( a0) CL

a q p q q P,



sAB

-e b + n
4n a Cf

L)

a! \ c

--- i T +-taRini

In I

.ypP n + c In)

b

PŽ.In ( +)-+ In

(P ,.)a I

" 4Y) (P)l(p, a)7
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and

sCA *1 (83)
00

Only if a higher order TM mode in region A excites the waveguide, does the

system of Equations (78) and (79) have non-trivial solutions.

Again, the function-theoretic technique is called upon to solve the

above equations. A function, say f 2 ( ), is constructed such that when it is

integrated along contour L n it generates a system of equations which are

formally identical with Equations (78) and (79), 1 5/ 0 f (2) is found to be

/ (•+44!)

-A 2 e -•L (84)

Ap/ is the residue of f2 (w) at v) cp so that

q sin , (a -a3 ) 1( p)1 n(a ,y) II(-a )a) , L
SpA sina _q P q1 L (85)

Pq p sin pc q o)(a -a )[l(-aq 4)fl(-a q-y)[l(P)( /Pa)
Ia q o p q q q p

for p,, q > O0

furthermore, using Equations (64) and (65), one finds for p, q > 0)

P+ 1 I~c( P)jP P*~l-B .- 1) 2lTq sin a( +P ) (-0 ,P)11(-P ,y)fl(.C o) PaL
sBA "a p p (86)

pq ab(a 4.- )(La _p )1(-C" j)HI((-a ,y)rl(-p a)
q o q p q q" p

and.
a(f -i

(-l)P2'/lq sinl7-qc (0•3 )(p(-, ) V)U(-CL q p a
sAC ac•3)Q~ •aJ p o" pP' q) Le87

pq ac-(C q )(a q -Y p (-a q[)[(-_ ,Y)[1(-V a)

qo qp q' q p"

*rhe elements of sAA sBA and SCA arc tabulated in Table 2 As before,

to get the scattering co, l icients for cvanevsccrt incident modus, simply re.-



TABLE 2

Bumafs o 3AA IB A )ADSCA

BL3M- S AAr S ,A;D"

SA = 0 SA ;z 0 SA =0 SA 0
00 PO oqAA 8A

AA q M M Sp (Q + a)a{Il±+~£1

sinES ~ -p f "P,~) fl~l .v) f(-a 'pa)a

SAa p- _o L?: P qe
pq p sn 1. (Q + p )(a + a ) fI(-, ,P) uL(-4 ,') 1 i(P)(a ,Q)

S a q 0 p q q q p

-SBA SBA7

B A I SBA 0SBA 00 oq

00 PO BA SBA

po pqq

2Wj q sin ME (p~ + p ) nl-p ,P rl-p )Y) fl(-a .Q coq p){n (a) + I In)
BA p 0 p p e

S CA SCAC

CA CA CA 00 oq
8 00 =1 S o:.;0 S LC CA

(-l) P± 2,ff q sin US (Y~ + PO) II(-,Yp, p) fl(-vy [I naa CL) jq -'Y p)a() + In

p CA 0 a p q q p Tn(!) a (



TABLE 2

ELEKU(TS OF S A pS B AND SC

po~ ~( 
-q P Q +)aa 

aP, I(-P q) (I(-) ,clc

A CA sm-1

(a q p ) a)y) (-,a ct)In +S I
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place the appropriate imaginary propagation constants by the corresponding

real propagation constants in the given expressions.

3.3 A rotc or the NJumerical CwputdLtions

The exact exprezsions for the various scattering coefficients are listed

in Tables 1 and 2. However, as the expressions stand, they are not in a form

convenient for purposes of calculation, even using a digital computer. An

-j blip
pb (2T~b) p k2 2

infinite product such as n1 IP. (ITŽ where Pn..l n p 1Vbb

is very slowly convergent, especially for large p. However. it is possible

to express the various scattering coefficients in a form suitable for calcu-

lations, using a digital computer.
SBE

As an example, consider S (see Equation (75)), Assume that the dimen-
pq

sions of the guide are such as to allow only the dominant mode to propagate

in each of the thre, regions A, B, and C, It was indicated in Section 3.1

that it is posqible to write SBB in terms of the Gamma Function° To explain
pq

more fully, consider the produt above, which is a term in the expression for

B3
S Bo It is possible to write

bP P~b P pbb
p (- ---- n -.Ppp

oo pb ej J-rq 00 f G pb -

RI . n- (88)
r-1 n p iTr \1: r

U'sing Equation (56' i" Equation (88), one gets

n1 n -bb pp

go (G) Ip(n ~ b ~
Ti (P .-P HL -nT -T (89)

n n 1) p bp 7 l

It ca- be shown 25 that the infinite product on the right side of Equation

(89) is convergcrto Furthermore, it converges much more rapidly than the
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original product. The Gamma Function ca- be calculated on the digital com-

puter probably using an already available library subroutine-

It follows that SB can be writter aspq
;(Pqj

S .WI L( 9 0 )

pq P1 .. a

where P is given by

fn±+1~fb lc r~a
•nb 'i bFnI Ii IP1 rPPa

- 11 a nI (times) (9)
IP::- b rp a a PI

Wn Ir In I:! ]

Jq -n a I a

1- lT ! \ In In

InnI~n 7rm lTn

llere tepie 
(n b Iq 1b)

Here the prime means omit the factor n n - n q, from the

infinite product.
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4 rHL "•HOMOGPVE.Ot'S F,-PIAVL BIFURCATTON IN A PAPALLEL PLATE. WAV1Gt'-DE

"P- ,iQ chiaper, thtu gtnitr-lizcd sca!tering matt tech'niqut is ustd to

d-riv, ' he solution to the first of the three bounuary value, problems dis-

cussed ir this thesis, viz , the inhomoguncous E-plr' bifurcation in a

parallel plate waveguide Reler to Figur(- 2 The auxiliary problem is the

boundary value problem associated with the bifurcation in a parallel plate

waveguiae. The bifurcated waveguide is modified by introducing a dielectric

slab with a relative dielectric constant in region B The slab completely

fills region B.

With reference to Figure 2, let a TEN mode be inciaent from region A.

The scattered and reflected fields can be represented in terms of TM modes.no

As in the previous section, the non-zero field components can be derived from

a scalar function identical to H Call this function t44x z) The non-zero
y

field components can be written as

H 4 (92)
y

Ex 7 (93)

a! C

F z • x(94)

wlEre f E ir regions A and C filled with air andE C 0 in region B filled
o o

with dielectric, In regions A and C, 4 satisfies

( .. .. . 2 0 k (A (95)

x2 igaz2
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In regio- B, 4' satisfies

2 2  /2 k'

(k k ~ (96)ax2 1 z2 .k0

SAlso satisfies the boundary conditions

S0,x 0, a, all z and x -- c. z > 0 (97)

and at the dielectric-air interface,

'(0") 41(0+)., z -- 0,, c < x < a (98)

4•(0') 4(oi'
3Z ":K ft z.-0, c x < a (99)

Salso satisfies the edge condition at the edge of the bifurcation, i.e.,

SQ 1/2 )0 d-- 0 (100)

2 2.1/2
where d ([z -( x - C)j

One recognizes that the e"ge condition stated above is the same as the edge

condition for a bifurcation without the dielectric present in region Bo

Figure 9 illustrates the general case of a metallic wedge with a dielectric

wedge situa+ed next to it. Using the condition that the electromagnetic

26
energy density must be integrable over any finite domain, Meixner shows that

an admissible singularity in IV4)1 at the edge of the composite wedge is

given by IV4'I O(d-1/2) as d---•0, where - 0 , f 01 1/2.

It is possible to show that each individual term in the multiple scat-

tering process as expressed by Equation (1) of Section 2.1 satisfies the

above stated edge cordition, i.e., the n th par'ial wave transmitted to
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X

DIELETRIC

WEDGE (K)

METALLIC WEDGE

/ /Z

Figure 9. Wedge composed of dielectric and
Metallic sections.
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region A satisfies the edge condition giver by Equation (100) The mode co-

th
efficients cf the eigenfunc.,:on expansiorn of the n partial wave in region A

sAP B B nBA

are giver by the elements of the vector -F (SBBI SBA A The vector S in

associAted with the total field reflected in region A is the sum of the in-

finite number of multiple reflections That the order of the singularity at

the edge of the bifurcation remains unaltered by the addition of the infinite

number of terms in the series given by Equation (1) has nct beer formally

proved, However) the convergence of the series given by (1) was proved in

Section 2.20

It should be noted that the usefulness of a solution to a problem is not

necessarily dependent on whether or not the edge condition or any of the

2.
boundary conditions are exactly satisfied Schelkunoff has noted that

nearly correct calculations are sometimes possible from solutions which only

to a crude approximation satisfy the boundary condition, of the problem,

Without any loss of generality, it can be assumed that the amplitude of

the incident TE mode-is unity. Then the total field 4 in region A. denoted

by y A. can be written as

-RA e R e n n;l Ano (101)

and, denoting the total field in region C by 4'C,

T e 1 ;CCs! c-(102)

•C T÷,cos(~

c CA n!l n (

The propagation constants an and Y n are defined in Section 3.1. RA is the

voltage reflection coefficient for the dominant mode and T is the trans-
CA

missior coefficien~t from region A to region C. The total field in region B,
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denoted by B can Le written as

4B TBA B os n (103)

where

Kk (IT)>
n /k b

f 2 2 n
- Kk - > k.

7' b

TBA is the transmission coefficient for the TEM from region A to region B,

The reflectance and transmission matrices which characterize the dielec-

tric load can be derived by appealing to simple waveguide theory. They are

both diagonal matrices, The diagonal elewnts of the reflectance matrix are

given by

/
B g n "n (104)
Pn gfn g n

where g is the wave impedance of the TM mode in a parallel plate wave-
no

guide, height b. filled with dielectric and gn is the wave impedance of the

TM mode in the same waveguide filled with air. Specifically,no

o n
g- (105)

0
arnd

n

Call this reflection matrix UB" The transmission matrix is simply related to
D

the reflectance matrix rB. Let the tr.asmission matrix be denoted by 0Be
D D
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Then

q•B , B
" 11071

The general diagonal elerent of 0 is given by
D

"2g /108)
n

g' g I -gn

Using Equation (2) it is now possible to write the mode coefficients ip

Equations (101) in terms of known quantities. Le4 Sý- be defined as the

r
vector (RA-- AI# -A 2 ,0 Then

sAB B sBB DB)1 5 BA(S FD (I S r-) (109)
inD D

sBA •BB sAB
The elements of the scattering matrices S B B and S are tabulated in

Tables I and 2. Equations (101) and (109) completely determine the fields in

region A,

/
Let SCA be defined as the vector (TCA' CI, C 2-- Then,

/ s Aa CB rB (I - SBB.B )-I sPA- (110)
s a S a(10

Equations (102) and (110) describe the fields in region Co

I
Let S 1 be defined as the vector (T B B Then

E~t BA' 1` 2'

B BB BA-I

•PA D D

Equatiori (103) and (111) describe the fields in region B-

Note, however, that the order of the matrix ( - S BBI-is infinite, and

no method is now krown to invwrt this matrix exactly. Tt will be shown that

accurate calculations of such desirable quantities as the reflection co-
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cfficiept R A' using Equation (109), arc possible by working with finite order

matrices, i e , by including in the calculation a finite numbcr of elemer's in

the matrix (I - SBB B ) The rapid convcrgence of the solution with an in-vreasc*
D

in the trurcation size is demonstrated in the following discussion

Consider Equation (109)- Let the matrix (I - S BB1 ) be truncated to a
D

millrx of fipnie order N., N "- 1. This means that only the first N rows aad

c lum"s of the truncated matrix (0 - SBB 0) are included in the calculation-
D

Let the determinant of the truncated matrix be denoted by A Let the deter-

minant of the minor of the truncated matrix obtained by striking out the ,irst

row ard column be denoted by 'l1 (N-i)- Then it can be shown that RA is

give." approximately by

b B All (N-I)
P A ;- Po -A(0) (112)

Of courfe, if V 1, they Equation (109) reduces te a scalar equation for AA

which cart be written as

B
R b Po 03

a BB B

where SB is given by
CO

c L o1n -1tan

2 Z tan- tan

0o a/ IT 1 '~

- tan 0<aX' 005 al,\4

BPo as definea above is giver by

B 1I - _ 
l-

1 I
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!t was demonstrated numerically that the approximate expression for P A

given by Equation (1121 rapidly converges to a limix as the order v of the

truncated matrix is increased- The results for a particular example are shown

in Table 3 below. The choice ot parameters for this set of calculations are

. , 2.5, a/X z .339, and c/a - .5. Polystyrene has a relative dielectric con-

stant %round 2.5 and is a commonly used dielectric. The actual values, of the

elements comprising the first five rows and colum-s of the matrix (I - SBBIB)

for this set of parameters used in this calculation are shown in Table 4.

The results of the calculations indicate that [he major contribution to

the value of the reflection coefficient R comes from the .erm given by

Equation (113),, i.e., the term due to the TEN mode alone. The contribution

to the value of RA due to the higher order TV o modes is small. indeed, for

aik «< .5, Equation (113) is an accurate expression for RA

TABLE 3

Reflection Coefficient RA for Inhomogeneous E-Plane

Bifurcation (K 2.5, a/X - .339, c/a : o5)

Rank N of the
Truncated Matrix Reflection Coefficient

(I - sJE ) F
, | A

1 -o 105e 5 °1°

2 - 107e• 5 40

3 
- 107e. 5 4

4 - 107e 5j 4

A system of iifinite order linear algebraic equations can be derived for

the inhomoge"eous bifurc-,tion0 Thn derivation of this sys*em of equations,

16giver by lit tra and Pace , is esse'.tiallv the same aa the deriva,.ion of the



TABLE 4

ELEMENTS OF FIRST FIVE ROWS AND COUMNS OF (I - sBBD)

(K = 2.5, aik X .339, c/a = .5)

N 1 N 2 N 3 N 4

9436 + J073 .1133 - j.o668 -. 0762 + j.0447 .0626 - J.0368 -.05

.0226 + 3.0386 .9685 - J.0260 .0307 i- 3.0174 -. 0289 - J.0143 02

(I -sBBB)_ -. 0077 - 3.0131 .0157 + j.0089 .9833 - 3.0059 .0167 + j.0049 -01

.0042 + J.0071 -. 0097 - J.0048 .0111 + J.0032 .9885 - j.0026 .01

-. 0027 - J.0046 .0068 + J.0031 -. 0080 - j.0021 .0086 + J.0017 .99

t



TABLE 4

IVE RONS AND COLUMNS OF (I - SBBI-n)

5, aiA.7 .339, c/a .5)

N-2 N=3 N-4

- j.0668 -. 0762 + j-0447 .0626 - j.0368 -. 0538 + j.0316

- J.0260 °0307 + j 0174 -. 0289 - j-o0143 .0268 +- jo0123

+ J.0089 .9833 - j.0059 .0167 + j.0049 -O0161 - j.0042

- J.0048 .0111 +I j0032 .9885 - j.0026 o0114 + j.0023

+ J.0031 -. 0080 - J.0021 .0086 + j.0017 .9914 - j30015

urn
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system of equations corresponding to the homogeneous bifurcation (see Section

3,1). However, unlike the equations derived ir Section 3.1, the set of equa-

tions for the Inhomogeneous bifurcation cannot be solved exactly. An iter-

ation technique must be used for its solution. A relationship has been shown

between the iterative solution of the system of equations pertaining to the

inhomogeneous bifurcation and the scattering matrix formulatior of the sane

problem. The Iterative solution of the above-mentior.ed system of equations

is not nearly as convenient for purposes of calculation as say Equation (109).

Crosson28 in the only known paper that deals specifically with the problem

of the Inhomogeneous E-plane bifurcation has derived an equivalent circuit for

the Junction. Refer to Figure 10. Cronson expresses the equivalent Junction

capacitance CA in terms of an infinite series of sine terms with constant co-

efficients. The coefficients are the solutions to a system of infinite order

linear algebraic equ_ Aons. Cronson finds that it is not possible to solve his

system of equations exactly. A method of approximation is employed. He re-

sorts to solving a truncated set of equations. Specifically, he solves a

stSte of equations of rank 6. The use of a digital computer is required to

carry out all of the computations, including the computations of the elements

of the sixth order matrix to be Inverted.

Cronson checks the validity of his approximations by comparing his results

for the case 9 1 with the results given by Marcuvitz in the "Waveguide Hand-

book 917 for the homogeneous bifurcation. Working with the normalized capaci-

tance Cv(Cv -. - CA/wto), Cronson finds the following percent errors in his

calculations: c/a -: .5, a/k .: .5, 2.209i c/a _ .5, a/- .3., 3.460/; c/a - .51

9/= .5, s8.50"0.

The percentage error in computing RA from Cv is less than the percentage

error in Cv itself. For instance, for the set of parameters &/X - .339,
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"ZCCS CC_ -CA- Zo9

ZOA T c

CCS---CA Zoc

Figure 10. Equivalent circuit for inhomogeneous
E-plane bifurcation.*

*ZoA, ZoB, and Zoc are the characteristic impedances of Regions A,

B, and C, respectively.
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c/a = .5 and K = 2.5, Cronson computed CV - .31. From this value for Cy. one

J5.50
calculates RA = -. 108e ". This is to be compared with the results shown in

Table 3. Using a matrix (I ?80) of fourth order, R& .107e j54was

calculated.
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5. THE E-PLANE METALLIC STEP DISCONTINUITY

Much has been written in recent years about the problem of the step dis-

continuity in a waveguide. Refer to Figure 1. The inclusion here of a dis-

cussion of the step discontinuity problem is justified on two counts. First,

from the viewpoint of studying the generalized scattering matrix formulation,

the step discontinuity is particularly interesting because it represents a

'worst possible case'. The configuration of the auxiliary problem is modified

by placing a perfectly conducting wall in region B flush with the plane of the

junction, which implies rB= -I. It is expected that the effect of the higher

order modes is greater in this case than in the preceding problem of the in-

homogeneous bifurcation. It is desirable to show that even in an extreme case,

important quantities such as the reflection coefficient RA can be computed

easily because cf the rapid convergence of the matrix series expansion.

The second point is that the step discontinuity problem warrants atten-

tion for its own sake. It is a classic problem, studied by a number of authors

using more established methods. Macfarlane29 and Marcuvitz17 have found quasi-

static solutions to the step discontinuity problem. Their methods differ in

the exact details, but essentially are the same. The equivalent susceptance

of the waveguide junction is formulated in terms of an integral equation. the

exact solution of which is not possible in general. The equation is solvable

for the case of k (2,j/k) = 0. The static field problem is solved by simpli-

fying the original problem through conformal transformations. Extensive re-

sults are tabulated in the "Waveguide Handbook'. Only the case of single mode

propagation is considered. In this frequency range +he 'equivalent static

method yields very accurate answers. However, the method becomes quite in-

volved for the case when the dimensions of the guide are such that several
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modes propagate ie., a multi-mode waveguide. The multi-mode problem is

assuming increased importance. It has applications in the field of milli-
30 31

me4 ;er wave propagation30 and the study of VLF propagation 3

32
Schwinger has solved the above-mentioned integral equation for the

equivalent susceptance by means of a variational technique, However, the

accuracy of the variational technique is dependent upon the choice of the trial

function and, in this sense, is not a deterministic method. Furthermore, the

choice of the trial function in the variational technique is not at all straight-

forward for multi-mode propagation.

22
As previously discussed in Section 2.3., Williams has applied the Wiener-

Hopf technique to the step discontinuity problem. Williams' method was out-

lined I.n Section 2.3 and the differences between his approach to the step

discontinuity problem and the approach based on the generalized scattering

matrix technique were discussed. Williams also includes some numerical results

in his paper. For the case of a/k < .5, his numerical results are in close

agreement with Marcuvitz's results. Williams also discusses the situation when

two modes are allowed to propagate in the larger channel of the guide (region A),

including numerical values of the square of the magnitude of the reflection

coefficient R A. Williams' results will be used for comparison with the results

reported in the section.

There is still active interest in the step discontinuity problem as

33evidenced by the most recent paper on the subject by Magnus and Fox33 In

ai:.a. paper, the problem is treated as an infini#e set of inhomogeneous linear

equations. They are solved formally by a perturbation technique.

With this brief introduction, now consider the problem of the step dis-

continuity in terms of the generalized scattering matrix formulation. With
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reference to Figure 1, assume that a TEM mode of unit amplitude is incident in

region A. traveling in the positive z direction,. As in Section 4, the non-

zero field components Hy., E x, and Ez can be derived from a scalar function

4)(x z). In this case, 4 satisfies the homogeneous Helmholtz equation to-

gether with the boundary conditions

0 = , x _- Oa, all z and x = c, z > 0. (116)

and

0 0., z - 0, c x < a (117)

Salso satisfies the edge condition given by

11 Q (d- 1i 3 ), d-40 (118)

2 2,1/2
where d = T(x -c) 0z+

Let the fields in region A be expanded in the cosine series given by

Equation (101). The mode coefficients of the refiected field are given by

l/ SAB (I sBB)-1 SBA --S..-S (- ) S a (119)
in

where Si is the column vector defined in Section 4. Here, IB -_T. where Iin

is the identity matrix.

Similarly, let the fields in region C be expanded in the cosine series

given by Equation (101). Then the mode coefficients expressed by the column

vector SCA are given by

_1 CA-- sCB -sBB)-I sBA--
S CA a- (IS ) S a (120)

CA
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The fields in region B of course, are identicilly zero.

That the solution expressed by Equations (119) ard (120) satisfies the

edge coudition given by Equation (118) has not beer shown. In order to do this,

one should examine the asymptotic behaviour of the higher order mode co-

efficients, i.e., the higher order elements of the vectors Sin or S CA In

this section, only the reflection coefficient RA is computed, However, the

proof of the convergence of the Neumann series I +. SBB + aBBSBB + .. is

given in Section 2.2. Also, it is demonstrated in this section that for

0 < a/k < 1.0) the computed values for RA are in close agreement with figures

computed from the expression given in the "Waveguide Handbook", or alternately,

with figures reported by Williams 2 2

SBB
Now in Equation (119), let the matrix (I tS ) be truncated to a matrix

of order N, N > 1. As in Section 4., let the determinant of the truncated matrix

be denoted by A (N) and let the determinant of the minor of the truncated mat-

rix obtained by striking out the first row and column be denoted by "I(NI)O

Then RA is given approximately by

R~~ - ! ll (n-I) (2
A a )

If N - 1. then

R b 1. (122)
A - a S sBB

00

where SBB is given by Equation (114) for 0 _ a,\ 05,5
00

Even in this case, it was demonstrated numerically that the approximate

Equation (121) for RA converges rapidly to a limit as the order N of the
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truncated matrix (I + S ) increases. The results of two sets of calculations

are shown in Tables 5 and 6. The results of the calculations indicate that in

the range 0 < a/k < .5, a truncated matrix (I - S BB) of order four or five is

sufficient for purposes of accurate computation.

For c/a =.5 and aiX •- .339, RA -°393eJ 2 0 "6 °
= was calculated from the eA-

pression for the equivalent susceptance of the junction given by Marcuvitz in

the "Wavyguide Handbook". Compare this with the value RA • .392ej 2 1 .3 calcu-

lated from Equation (121) with N = 5. The actual values of the elements com-

prising the first five rows and columns of the matrix (I f S BB) for this set

of parameters used in the calculations are shown in Table 7, In the second

example with c/a .326 and a/X :T .3; RA -. 215eJ 2 0 9 was computed from

Marcuvitzts figures. RA :-: -. 215ej 2 0 . 3 was calculated from Equat.3n (121)

with N 4.

TABLE 5

Reflection Coefficient RA for Step Discontinuity

(a/k .: .339, c/a = .5)

Rank N of
Truncated Matrix Reflection Coefficient

(I S BB) RA

1 
-379eJ18.80

2 
o388ej

2 0 . 7 °

3 
- 391ej 2 1 ol

4 -. 392ej21 2 20

5 
.392e 32 1 o
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rAPU. 6

Reflection Coefficent PA for Step Discontinuity

(a/X -3, c/a -- .326)

Rank of Truncated

Matrix (I 4 SBB) Reflection Coefficient
R A

1 
- ,2 1 0 e J 19 "6 °

2 .214e 19.8

3 -.215c32 0 .e

4 
- .21 5 eJ 2 0 • 3

Next, consider the situation when the TEM and TM modes are allowed to

propagate in region A. but only the TEN mode propagates in region C. The re-

flection coefficient RA was computed using Equation (121) and Equation (122).

The results of the numerical calculations for two examples are listed in

Tables 8 and 9. One can compare these results with those published by Williams,

For a/k 0 0.7 and cia -: 0.5, Williams computes IRAl 2 : .28. Using Equation

(121) with N = 5, one computes IRAl 2 .29. The values of the elements of the

first five rows and columns of (I + S BB) for this set of parameters are shown

in Table 1o. r.r a/k _ 0.9 and c/a = 0.5., Williams computes A, .25. Again

using Equation (121). N - 5. one can compute I R A 2-. .25. Thus) there is close

agreement between the results reported by the author and Williams' results even

when more than one mode is allowed to propagate in region A- The dominant

contribution to R comes fror Equatio- (122) with SBB given by
A 00

"Li -k-2ka
BB c I al-k - k L 00aI k.7T - 2 A~ tan 1

(123)

n 1 V:f n n• nI• +tn



TABLE 7

ELEMENTS OF FIRST FIVE ROWS AND COLUMNS OF (I + SBB)

(a•X = .339, c/a = .5)

N 1 N 2 N =_ 3 N 4

1.2508 - J.4326 - 2411 +f j.1416 .1736 - j.1019 -. 1445 + J-0849 e

-. 1006 - j.1714 1.0667 + j.0551 -. 0698 - j.0396 .0667 - j.0329
BBl

(I + S BB) .0342 + j.0 5 8 3  -. 0332 - j0188 1.038 1- j.0135 -. 0386 - j-0112

-. 0186 - j.0316 .0206 -- j.0102 -. 0252 - j.0073 10265 + j.0061 -A

.0121 + j.0205 -. 0144 - J.0066 .0183 + j-0048 -. 0198 - j-0040 1.(



TABLE 7

OF FIRST FIVE ROS AND COLUMNS OF (I + SBB)

(a/k = .339) c/a = .5)

1 N 2 N "3 N: 4

-. 02411 .- J.1416 .1736 - j.1019 -. 1445 + j.0849 .1249 - jo0733

1.0667 + j.0551 -. 0698 - j.0396 .0667 - j.0329 -. 0622 - j.0286

-. 0332 - j.0188 1.038 -- j.0135 -. 0386 - j.0112 .0373 + j.0097

.0206 + j.0102 -. 0252 - j.0073 1.0265 + j.0061 -. 0263 - j.0053

-. 0144 - j.0066 .0183 + j.0048 -. 0198 - j.0040 1.0200 + j.0034

o-a
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TABLE 8

REFLECTION COEFFICIIXT RA FOR STEP DISCONTINUITY

TWO MODES PROPAGATING IN REGION A

(a/^ = 0.7, c/a = 0.5)

Rank N of Truncated Reflection Coefficient
BB

Matrix (I + S ) RA

1 - .52eJ 4 .60

2 -. 52eJ 2 .80

3 -. 52eJ2 .20

4 -. 52eJ2 .20

5 - .52ej 2 .20

TABLE 9

REFLECTION COEFFICIENT RA FOR STEP DISCONTINUITY

TWO MODES PROPAGATING IN REGION A

(a/k - 0.9, c/a = 0.5)

Rank N of Truncated Reflection Coefficient
SBB)

Matrix (I + S R A

1 
- .50ej2 .60

2 - .50e3 .70

3 - .50ej1.70

4 - .50eJ1.70

5 - .50e J1.7°



TABLE 10

ELEMENTS OF FIRST FIVE R(OS AND COLUMNS OF (I + S BB)

TWO MODES PROPAGATING IN REGION A

(a/X = 0.7, c/a = .5)

N =1 N =2 N 3 N= 4

.9553 - j.0762 j .0164 + j.1499 .0218 - j.0906 -. 0236 + j.O0702

-. 2849 + j.0312 1.2251 + j.0817 -. 1591 - j-0450 .1359 + j.0337

(I S ) .0671 + j.0161 -. 0615 - j.0174 1.0539 + j.0087 -. 0505 - j.0087

-. 0332 - J.0112 .0337 + j.0083 -. 0323 - j.0056 1.0317 + j.0044

.0206 + J.0079 -. 0222 - j.0051 .0225 + j.0034 -. 0228 - j.0028 1



TABLE 10

SBe
rs OF FIRST FIVE ROWS AND COLAMNS OF (I + S )

TWO MODES PROPAGATING IN REGION A

(a/k = 0.7, c/a = .5)

N=2 N 3 N 4

2J .0164 + j.1499 .0218 - j.0906 -. 0236 + j.0702 .0228 - jo093

"2 1.2251 + J.0817 -. 1591 - j.0450 .1359 + j.0337 -. 1215 - j.0280

1 -. 0615 - j.0174 1.0539 + j.0087 -. 0505 - j.0087 .0476 + j.0074

2 .0337 + J.0083 -. 0323 - J.0056 1.0317 + j.0044 -. 0309 - j.0038

9 -. 0222 - j.0051 .0225 + j.0034 -. 0228 - j.0028 1o0226 + j.0024
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6. THE TRIFURCATED WAVEGUIDE

This section is concerned with the boundary vilue problem associated with

two somi-infinite plates in a parallel plate waveguide. Refer to Figure 3.

Let a TEN mode be incident in region C. Let 4; (x, z) be a scalar funct:ion

such that 4' = H . Then) E and E can be derived from + using Equations (93)

and (94) with C = 4o. satisfies the homogeneous Helmholtz equation together0

with the boundary conditions

3 = 0. x - 01 a for all z and x :: c, h for z > 0 (124)

and the edge conditions

k 0 w 1 2 .l/2 d d 1 2 -- O (125)

-. 2 .2 1:/2

where d 1  [(x -c) 2 0 +z

and d2 [(x - 2+

4)(xz) can be expanded in region C in the cosine series given by

-jYoz jiY 0 n 0. J nz

e -R + n;l cos e (126)

CC n :1 n (T

where RC is the voltage reflectance coefficient for the TEM mode. The ampli-

tude of the incident TEN mode in region C is assumed to be one.

An expression for the coefficients of the Fourier series expansion given

by Equation (126) can be written in terms of the scattering coefficients of

the auxiliary problem and the load in region B. rhus, one can show that

-- 7 Sc c-S r (I - S (127)
in
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wher S (-.Cr - )T

where Sn (-R2 C C and c - (1, 0, 0, .... The elements of

in this case are Known. As mentioned before, the bifurcated waveguide is modi-

fied by placing a second semi-infinite plate in region B. Thus, the derivation

of the elements of Bfor this problem is the same as the one followed in

solving fcr the elements of S AA in Section 2. To derive the elements of

from the expressions for SAA given in Table 2, simply repLace a by bp b by h - c.
mfl

and b by a - h.

Note the semi-infinite plate in region B is coupled electro-magnetically

to region C by the higher order TVMno modes. A TEX mode scattered in region B,

traveling in the positive z direction, will not be reflected by the septum in

that region. The higher order TM will be reflected, however, and will con-no

tribute some to the final value of the reflection coefficient R The dominant

C'C
term in the series expansion for R is given by S since as shown by actual

C 00

calculation, the contribution of the higher order TM modes is numerically
no

small compared to S 00 This is to say that the second plate can be introduced00

in region B without appreciably affecting the reflection coefficient R C

The reflection coefficient RC can be computed from Equation (127) if first

each of the matrices appearing in the equation are replaced by a matrix of

order N. It was demonstrated by means of actual calculations that in the case

of both the step discontinuity and the inhomogeneous bifurcation, the ex-

pression for the reflection coifficient rapidly converges to a limit as the

order N of the truncated matrices increases. As examplcs, the numerical re-

sults of two sets of calculations are cited in Tables 11 and 12. The parameters

used in the first example are h/a .5, c/h .5, and a/k = .4. In the second

example) they are hia-- .326, c/h .326, and a/\ ,3. In both of these

examples, the two plates are asymmetrically situated with respect to the center
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TABLU 11

REFLECTION COEFF:CIENT C POP TWFVJ'RCATED WAVEGUIDE

(h/a .5, c/h .5, a/k - .4)

No. of Modes (M) Peflection Coefficient

Included in Calculations Rc

1 | i-,,ii500e 
-J75 . 05

2 
.470ej

7 8 "40

3 . 4 7 0c-j78 09

4 
.475e "J7 . 0

6 
.474e-J

7 8 1 01

TABLE 12

REFLECTION COEFFICIENT R. FOR TRIFURCATED WAVEGUIDE

(h/a = .326, c/h .326, a/X = .3)

No. of Modes (N) Reflection Coefficient

Included in Calculations RC

1 .326e-J 4 6 90

2 .327e-j 4 8 .00

3 .324e-j 4 7 50

4 .324e-J 4 7 50

6 0324e-J 4 7 40
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line of the waveguide described by x a/2. It is s)!own below that a simple

expression can be derived for R if the two plxtEs are symmetrically placed
C

with respect to x = a/2.

It is possible to formulate the problem of the trifurcý±ted waveguide in

34
terms of a system of Wiener-Hopf integral equations, A, E. Heins aiscusses

the special case of an arbitrary number of equally spaced semi-infinite plates

in a waveguideo The set of integral equations can be formulated in terms of

the unknown current densities on each of the semi-infinite platesý For the

case of the trifurcated waveguidE. the system ol integral equations are of the

form 00
f K. (z - z/) J, (z/) dz/ :. (z) 0 (128)

0 3 i

/
for z > 0 and i -. 1$ 2. K. (z - z ) are linear combinations of the Green's

functions used in formulating the integral equations and F (z) is the form of3
th

the propagating modes in the j duct. The solution of Equatior (128) is com-

plicated, lb solve the above set of equations, the Wiener-Hopf technique must be

generalized. It is necessary to factorize the determinant of the matrix whose

elements are the Fourier transforms of the kernels K. (z). In this instancecii

one must factorize a determinant of order two. Heins has discussed this pro-

blem in general terms, but he has not, as far as it is known, published the

actual solution to the problem. Wu and Wu35 in a paper publishca much later

than Heins state that in the case of coupled Wiener-Hopf i-tegral equations,

solutions are not known except for the cases where rediction ÷o A single

equation is possible

The exact solution to the trifurcated wavxtguioe is possible when the

plates are symmetrically spaced with respect to the center line x - a,2 as
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mentioned above. This is discussed, next.

It is desired to find the reflection coefficient R C for the dominant mode

incident in region C. Refer again to Figure 3. This mode of excitation can

be broken into two separate cases of even and oda excitation. Consider

Figure 11. The area of the three smaller ducts to the right of the plane of

the junction are labeled B'. B" and C. In the case of even excitation

(Figure Ila), regions B' and C are excited in the TEN mode so that the incident

fields are in phase. In the case of odd excitation (Figure hlb), regions B'

and C are excited in the TEN mode so that the incident mode in region B' is

out of phase with the incident mode in region C. Each of these problems can

be solved individually for the reflection coefficient of the TEN mode in

region C. Let R be the voltage reflection coefficient of the TEN mode ine

region C for the case of even excitation, Similarly, let R be the voltage0

reflection coefficient for the TEN mode in region C for the case of odd exci-

tation. Then by super-position,

1-1• (Re P.o (129)
2

R and R can be found quite simply. Consider first the case of evene o

excitation. Refer to Figure 12a. Only symmetric transverse magnetic modes

will be excited in region A) i.e., the T1n modes where n O, 2, 4) ...no

Because of the symmetry involvedd it is possible to place an electric wall at

x - a/2 and solve the boundary value problem associated with the reduced

geometry. This problemm,of courseJ was solved in Section 3. As a matter of
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REGION B'

REGION A
| E INCIDENT

XZO-C
REGION B"

I 2

E INCIDENTREGION 

C

Figure Ila. Even mode of excitation.

REGION A REGION B'
SE INCIDENT

i, ~X : -C

REGION B"

X= a

I ,X " C

1 REGION C

E INCIDENT

Figure lib. Odd mode of excitation.
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2

REGION A

REGION C

I E INCIDENT

x=O

Figure 12a. Problem associated with e-'en ex•A*ationo

MAGNETIC WALL

REGION A

REGION C

E INCIDENT

X:O

(b)
Figure 12b. Problem associated with ,,id uxtitation.
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convenience, one can define the propagation constant ;n for region B' by

(n -- )2n 7Tn

n a - 2c a 2c

= - a - 2c

:-J (a - " 2c - 2 a - 2c k

Then, after making the appropriate substitutions in the known expressions for

S cc one can write
00

R e (130)e a

where

X -k- In -- ý-c in 2- a 2c a (a -2c)J

00

+ 2 n . tar. tan (131)

2n 2

Consider next the odd mode of excitation Pefer to Figure 12b. Only

asymmetric transverse magnetic modes will bc excited in region A. i e , the

TV no modes where n --- 1 3, 5 - A simpler but equivalent boundary value

problem is obtained by placing a magnetic wall at x - a/2 The solution of

this problem is quite straight forward In the marmer illustrated in

Section 3, a system of infinite order lincar algebraic equations arc durived

which can be solved by means of the function-theoretic technique The solu-

tion of this problem yields

- e (132)
0
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where

In (~a-& I + (I-2c n IVs o t n 1 + t - I k I a -il kL

n2n

As an example of the application of Equation (129), consider the problem

of two equally spaced semi-infinite plates situation in a waveguide. Let

sA = .3. Using Equation (129), one computes RC = .646 ej 4 9 ' 0  For v..rposes

of comparison, RC was also computed from Equation (127). With N = 4j

RC = .643e-j49"0 was calculated, which is in very close agreement.

It should be stressed again that Equation (129) is valid only for the

special case of symaetrically spaced plates. No simple expression can be

found for the more general problem of arbitrarily spaced plates.
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7. CONCLUS'QONS AND SUGGEsrVoNS OF FITTI'iE WORK

The generalized scattering matrix technique has becr intfoauced ar'd

applied to three waveguide discontinuity problems They are the E-plane

metallic step discontiruity, the inhomogeneous E.-plane bifurcation, and the

trifurcated waveguide. The solutions obtained arc formally exact, though in

series form.

To the best of the author's knowledge, the general triturcation problem

has not been discussed elsewhere. The solutions to the other two problems,

viz 0. the metallic step discontinuity and inhomogercous bifurcated guide have

been derived,, at least approximately, by other authors using conventional

methods of analysis.

Numerical calculations have been carried out for each of the three pro-.,

blems described aboveý The results of the numerical calculatiQns help to

demonstrate the utility and potential accuracy of the generalized.scatering-e

matrix technique applied to waveguide discortinuity problems. ht. is. shown,

that the series expression for the reflection coefficient: of the .omin ni.t •

mode in the frequency range 0 a a/k 1 1.0 is rapidly convergent. Ith.jrerby:"

making calculations convenient, Moreover, the numerical results, WhOr,: .

possible are compared with published results of other authors and they are•-! ,

found 'to be in close agreement with one another.

The su,:cessful application of the gf.neralized scat ttering re-at rix techniqu,

to waveguide discontinuity problems is a first slep in showing its applicabil-

ity to a broader range of problems:. A list of suggested problems for future

study togethvr with the corresponding auxiliary problems is given bvlow.,

1. Dile',ctric step discontinuity in a wavtuguide..

2. 'The diffraction of a plane wave by a dicluctic grtting.

The suggested auxiliary problem for 1. and 2 Is a scmi-iniinite
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impedance wall bifurcating a waveguide. The impedance wall is char-

acterized by an impedance matrix Z.

3. The diffraction of a plane wave by a thick half-plane.

4. The diffraction of a plane wave by a solid, circularly shaped, metallic

bar.

The auxiliary problem is a semi-infinite, tubular waveguide in free space.

5. The asymmetrical inductive and capacitive diaphragms in a waveguide as

well as the corresponding strip grating problems.

The suggested auxiliary problem is the bifurcated waveguide already dis-

" •upsed in this thesis. Refer to Figure 4.

6. Thoe tudy of the electromagnetic properties of certain types of grating

structures. These:struct~ures have applications as surface or leaky wave

, antennoss 1

"The auxiliary problems for this kind of problei is discupsed in detail by

19
,M,'tttra and Pace.,
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