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ABSTRACT

Three boundary value problems involving discontinuities in a parallel
plate waveguide are solved. The three kinds of waveguide discontinuities
studied are: 1) the metallic step discontinuity, 2) the inhomogeneous E-plane
bifurcation, and 3) the trifurcatior. The generalized scattering matrix tech-
nique, introduced by Mittra and Pace, is applied to solve these problems. The
solutions obtained are formally exact and in series form. No restriction is
made on the operating frequercy of the waveguide. The solutions are equally
valid for oversized waveguides, in which several modes are allowed to propagate
down the guide at once. The results of numerical computations of the reflection
coefficient for the dominant mode in the waveguide are reported. The compu-
tations were performed on a digital computer. Where possible, the author's
results are compared with those published by Marcuvitz, Williams, and Cronson.
Close agreemenrit between the author's results and tuuse of the above authors is

noted.



iii

ACKNOWLEDGEMENT
The author is indebted to Professor Raj Mittra, his advisor, and
to Professor G. A. Deschamps for their advice and guidance. The autho:
also wishes to thank Professor Y. T. Lo for reading the manuscript.
The work described in this report was sponsored in part by the Air
Force Cambridge Research Laboratories, Office of Aerospace Research,
under contract AF 19(628)-3819, and in part by the Aeronautical Systems

Division, Wright-Patterson Air Force Base, under contract AF 33(657)~-10474.




TABLE OF CONTENTS
1. Introduction
2. The Generalized Scattering Matrix Technique
2.1 Development of the Series Expansion
2.2 The Proof of the Convergence of the Neumann
Series Expansion
2.3 General Comments on the Technique
3. Derivation of the Scattering Coefficients
3.1 Derivation of the InfiniteSets of Equations

3.2 The Solution of the Systems of Equations

BB CB

3.2.1 Derivation of the Elements of S, S, and S

3.2.2 Derivation of the Elements of SAA, SBA, and S
3.3 A Note on the Numerical Computations

4. The Inhomogeneous E-Plane Bifurcation in a Parallel
Plate Waveguide

5. The E-Plane Metallic Step Discontinuity

6. The Trifurcated Waveguide

7. Conclusions and Suggestions for Future Work
Bibliography

Vita

AB

CA

Page

17
21

23

24
28

37

41

43

55

64

73

75

78

iv



LIST OF ILLUSTRATIONS

Figure

1.

6.

The E-plane metallic step discontinuity.

The inhomogeneous E-plane bifurcation.

The trifurcated waveguide.

The auxiliary problem

Auxiliary problem modified by a load placed in region B.

Nultiple scattering by load in region B.

7a. Diffraction of plane wave by a thick half-plane.

7b.

109

lla.

11b.

12a.

12b.

The proposed auxiliary problem: parallel-plate wave-
guide in space.

Location of poles of f(w) and the contour Ln in the
complex w-plane.

Wedge composed of dielectric and metallic sections.
Equivalent circuit for inhomogeneous E-plane bifurcation.
Even mode of excitation.

Odd mode of excitation.

Problem associated with even excitation.

Probleimn associated with odd excitation.

16

22

22

31

45

53

69

69

70

70



Tablc

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table 1

Table

10

12

LIST OF TABLES

Page No.

38

40

50

51

59

60

61

62

62

63

66

66

vi



1. INTRODUCTION

Relatively few boundary value problems with applications in microwive or
antenna engineering can be solved exactly. Broadly speaking; boundary value
problems which are amenable to exact solution fall into one of two groups.
Witii the first of these, the boundary conditions conform to one of the co-
ordinate systems in which the scalar Helmholtz equation is separable. 1In
this case, the partial differential equation is reduced to a set of ordinary
differential equations, the solution of which is usually quite straightfor-
ward. A sizable volume of literature concerning the separation of variables
technique is available. Morse and Feshbach1 provides a comprehensive treat-
ment of the topic.

There exists a second group of problems which can be sclved exactly by
means of integral transforms such as the Fourier and two-sided Laplace trans-
forms. Often, problems of this sort may be formulated as an integral equation
of the Wiener-Hopf type, or alternately in terms of certain special systems
of infinite order linear algebraic equations. A Wiener-Hopf integral equation
can be solved by the application of the Fourier transform and certain function-
theoretic techniques. This method for solving a Wiener-Hopf integral equation
is called the 'Wiener-Hopf technique'. Many papers on the application of the
Wiener-Hopf technique are available in the literature. Noble2 has published
an excellent text concerned with both the theory and application of the tech-
nique. The exact solution of systems of infinite order linear algebraic
equations by function-theoretic methods is discussed by BrillouinB, Whitehead4,
Agronovich et alos, Adonina et a1.6, and Hurd and Gruenberg7
Generally, however, the solution of a problem can only be formulated in

terms of a differential or integral equation, or system of equations, which




can be sclved only by approximate methods. Approximate methods are many and
varied. They include variational and perturbational techaiques, as well as
finite-diffeience methods and the various 1teration procedures commonly used
to solve integral equations. Again; the volume of literature on the subject
is enormous. Hartree8 and Householder9 have published well-kn vn texts on
numerical anralysis. Goertzel and Trallilo is representative of the general
references available on mathematical physics. A wide range of topics is
covered, including chapters on perturbation of eigenvalues; variational esti-
mates; etc.

A new techninque for solving a class of boundary value preblems is dis-
cussed in this thesis. It will be referred to hereafter as the generalized
scattering matrix lechnique for reasons which will be made clear in the sub-
sequen’ discussion. The application of this technique makes it possible to
derive a formally exact soiution, invser1es form, to problems for which only
approximate solutions have been possible before.

It is believed that the generalized scattering matrix technique should
have 1 broad range of applicability. The purpose of this thesis, however,
is to dexonstrate its usefulness for solving certain boundary value problems
associated with disconrtinuitics in a parallel plate waveguide  Specifically,;
three distinct problems are discussed. They are the E-plane metallic step
discortinuity (figure 1), tne inhomogeneous F-plane bifurcation (Figure 2),
and the trifurcated waveguide (Figurc 3). The inhomogeneous E-plane bifur-
cat.on is an ordinary bkifurcated waveguide modified by placing a dielectric
in one uf the #malicr ducts of the waveguide, i.e., with reference to Figure 2,

’

the dielectric is placed in region B.

11 2 1
lewin Collin’ , Ghose 3, Durranil4, and Harvev15 provide a survey of

waveguide theosy and existing techniques for solving waveguide discontinuity
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Pigure 1. The E-plane metallic step discontinuity.
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problems. Some papers of note specifically corcerned with the three wave-

guide discontinuities discussed in this thesis have been published. They are

discussed inChapters 4, 5, and 6 in which the problems themselves are dis-

cussed.

This concludes the introduction. In the next chapter, the generalized

scattering matrix technique is discussed.



2. THE GENERALIZED SCATTERING MATRIX TECHNIQUE

In this section of the paper, a new technique16 for the solution of a
class of boundary value problems arising in electromagnetic theory is pre-
sented. Although the technique should be applicable to other kinds of prob-
lems, too, the generalized scattering matrix technique is explained here by
relating it to problems involving a class of waveguide discontinuities. In
particular, the technique will be applied to three boundary value problems
involving a parallel plate waveguide configuration. They are the inhomogene-
ous E-plane bifurcation, the metallic step discontinuity, and the trifurcated
waveguide. Only brief mention of these problems is made in this section,
however. The detailed solutions follow in later sections.

The key to the technique is the identification of an auxiliary problem
associated with the particular problem to be solved. Each of the three prob-
lems discussed in detail in this thesis has a common auxiliary problem. This
is the boundary value problem associated with a semi~infinite bifurcation in
a parallel plate waveguide (refer to Figure 4). The geometry of the auxil-
iary problem is such that it can be modified in a straightforward manner so
as to be made identical with the geometryy of the original protlem. For in-
stance, if region B of the bifurcation is filled with dielectric; then the
resulting configuration is just that of the inhomogencous E-plane bifurcated
waveguide. The dielectric can be regarded as a termination or load placed in
region B. Likewise; the appropriate modification in the case of the metallic
step discontinuity is made by placing a perfectly reflecting wall in region B
flush with the plane of the junction (z - 0). In the case of the trifurca-
tion; the auxiliary problem is modified by placing a second bifurcation in

region B.
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The auxiliary problem is characterized by the fact that it can be solved
exactly. The problem of the semi-infinite bifurcation can be solved exactly
by any one of several methods. For instance, it can be handled by the

. 17 . . . 7
Wiener-Hopf or function-theoretic technique ; or the direct solution of an
. . .18
infinite set of linear algebraic equations .

The way in which the auxiliary problem is used to solve the three above
mentioned problems will be discussed next.

2.1 Development of the Series Expansion

It is common practice to think of the bifurcated waveguide in terms of a
transmission line analogy. If only the dominart mode of the guide is allowed
to propagate; as usually is the case, the bifurcated waveguide is regarded as
a 3-port network. One port of the network is associated with the propagating
mode in each of the three regions A, B, and C. A port may be regarded as the
terminals of a transmission line. It the problem of multi-mode propagation is
under consideration; then the network is regardec as an NV-port system, N
being the total of the propagating modes in the three regions.

In the neighborhood of the edge of the discontinuity, ar infinite number
of evanescent modes are excited by the diffraction of an incident plane wave.
The effect of these evanescent modes can be represented in terms of lumped
reactances in the equivalent circuit as these modes in physical terms repre-
sent stored energy. Of course, the numerical values of these lumped re-
actances must be determined by solving the boundary value problem.

The network of lumped reactances and transmissior lines can be concisely
described in mathematical terms by mears cf ar impedance; admittance, or
scatterin~ matrix. The order of any of these matrices will be N where N is

the total number of propagating modes 1n the three regions A, B, and C.
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In the technique introduced 1n the thesis rhe bifurca*ed guide is re-
garded as a 3N-port network, 6 ~ beirg 1=finirely large. A port of the network
is assigned to each of the propagaring and evanescent modes 1f the ports of
the network are termi~ated with the proper set of reflectances, a network
corresponding to e€ither the step disconrinuity the irhomogeneous bifurcated
waveguide, or the trifurcation is achieved.

The concept of a scattering marrix of infinite order is introduced.
While the mechanism of its applicatio» 1s conventional, it differs from the
scattering matrices ordinarily cefined in the literature. For one thing, the
concept of the scattering coefficient is extenaded to cover evanescent modes.
The following discussion is concerned with the derivation of the generalized
scattering matri: of infinite order as applied to waveguide discontinuity
problems of the kind discussed ir this thesis .

With reference to Figure 4, let SQ“ a A, B or C represent the self-
scattering matrices of the auxiliary problem. Let qaﬁ’ a - A B or C and
B <A, B, or C but a / B, be the mutual-scattering matrices,

The interpretation of the scattering matrices is as follows. Consider
that regions P and C are termirated 1~ reflectionless loads. Then, if the
nth transverse magnetic mode is inrcident in region A, fields will be reflected
in region A and transmitted to regions B ano (. These f:elds can be deter-
mined by solving the auxiliary problem. The resultant electromagnetic fields
are expressible entirely in terms of trainsverse magnetic modes. Thus, the
total electric field is expressible in terms of the total Hy field. Ir turn,
Hy can be written in *erms of eigenfurction expansions with constant co-
efficients appropriate to regions AL R and €. Ir *his thesis 6 the Hy com-

ponent of the trarsverse magnetic field is expanded in each of the three
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regions AL B and € in terms of Fourier cosine series of the form Z dn¢n

Tnx , . Mrn(x-2)
in rcgion B $p oS —= and 1n

where in region A, 9, cos
. Tnx o *h

region C, ¢p - Cos —— The mode coefficient of the m mode referred to

the plane of the junction (z - 0),6 appearing in the expansion of Hy will

be defined as the 'amplitude' of the mode. If the amplitude of the nth mode

incidert in region A 1s one, or in other words, the incident Hy tield is

?

Tn
given by cos -;1 the total Hy field reflected in region A at 2z . 0 is given

00
T
by - X SAA cos —= . The total H field transmitted say to region B at
m=0 mn 2 y
)
BA Tm(x-2) t
z ~ 0 is given by mZb Smr cos —Eiﬁ—ila Thus, if the amplitude of the n h

th
mode incident in region A is one, the amplitude of the m mode scattered in
, _ AA , th . :
region A will be -Smn and the amplitude of the m mode transmitted to region
BA BA _ AA BA
B will be S__ . SAA and S are the general matrix elements of S and S
mn mn mn ,
respectively. The other matrices are defined in a similar manner .

Note the scattering coefficients are defined in this thesis 1n a manner
consistent with the sign convention followed in electromagnetic theory when
defining the reflection and transmission coefficients in terms of the voltage
or transverse electric field rather than i» terms of the current or trans-
verse magnetic field. Since the coefficients of the eigenfunction expansion
of Hy are used directly to define the various scattering coefficierts care
must be taken to assign the proper sign to the ratio of the amplitude of the
scattered mode to the amplitude of the incident mode if the definitions are

t
to be consistent with this sign conventior. Thus, the amplitude of the m

K

AA AA
mode comprising Hy 1p region A is given by -Sm and not by just Smnu
It should be noted that ordinarily the mode amplitudes are normalized so

that a propigating mode carries unit power. Hcwever K since the scattering

matrix has been generalized to 1nclude evanescent modes, 1t is i1nappropriate
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to normalize the mode amplitudes 1nr the usual marmmev » *his thesis the
scattering coefficiernts are definec a:- the ratio cf tae amrplitude of a scat-
tered mode t¢ the amplitude of tne incide~t mode which 15 taken to be unity.
One consequence of this definirion, however 1s t~at the various scattering
matrices are non-symmetric.

Supposc now that regior B 1s modified by placivg a= obstacle in it such
as a perfectly reflecting wall. I~ terms of the V-port network representa-

B
tion, the load in region B ca~ be representea by 1 reflectance matrix I'” and
, , ¢p B B , )
a transmission matrix ¥ . The meaning of I'" im0 @ cin be interpreted as
follows. Let t be a vector associated with the field aistribution of a wave
progressing toward positive z 1ir reg:o” B. The e'eme~ts of the vector ?} of
course, are the amplitudes of the modes of the eigenfunctior expansion of the
arbitrary field in regiom P. Tne ampl:itudes are referred to the piaze z . 0,
B - . B

If this i3 so, then I "t gives the reflected fieid and ¥t gives the trans-
mitted field, both referred to the plane of the -unction at 2z n, TW0 is
Progressing in region B toward regative z away from the load. The €leme=:s

B~ : . . . A .
of ' 't are the amplitudes of the mndcs in the reflected fielad. Similarly,

t is progressing in region B toviara positive z ard *he elemerts of €t are
the amplitudes of the modes comprising the transmitted field. As an example,
if a4 perfectly reflecting wall 1n region B 15 flus* w:i:tk *he plane of the

B .
Junction, [ - 1 wheére * 15 the 1denr1ty watrix amo @ 0.
B B ,

With I and ® defirea consider the situition shown 1» Figure 5. The
usual boundary value problem associasted with this khird of geometry involves
a monochromatic sigal excited in some region of *1e€ guide 3nd propagating
towarc the junction O-¢ 1s 1rrerested 1 determinivrg the fields diffracted

by the¢ junctior or a2t l€a:t some part of them Fov example,6 the reflection
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and transmission coefficients for the dominant mode are often sought. One way
to express the desired fields is in terms of their eigenfunction expansions
with constant coefficients. The generalized scattering matrix technique en-
ables one to write the coefficients of the eigenfunction expansion in terms of
the scattering coefficients of the auxiliary problem and the load in region B.
The derivation of the relationship between the eigenfunction coefficients and
the scattering matrices follows.

Suppose region A is excited by a TEM mode. Sﬂppose also that region B is
terminated by a load characterized by the reflectance matrix ITB . The TEM mode
will be scattered and reflected first by the bifurcation in the waveguide. The
field reflected into region A can be characterized by the vector ;; where
;; = SAA a. By definition a = (1, 0, O, o,e)T where T means the transpose.
(Actually, in this particular case ;6 ~: 0). Furthermore, a wave will be trans-
mitted to region B. Let ?; characterize this wave where T; = SBA';. The wave
will be reflected by the load ir region B. The reflected wave is character-
ized by I"B;;. The reflected wave progresses toward the junction in the nega-
tive z direction where it is diffracted by the edge of the bifurcation. A '
field ;1 = SABIB;; is transmitted to region A and a field ?1 2 SBBIJ;?; is

reflected in region B. This field will also be reflected back by the termi-

nation and this process of multiple reflection will be continued. All of the

contributions in region A due to this process can be written symbolically as

0
- - AA — _AB_B-— AB_B BB_B-
Sin -—n§0 rn - S a 4+ S r to b 4 S r S r tO " o o 0 (1)

This is recognized as a Neumanr type series. The Neumann series can be sum-
med in the usual manner; and Equation (1) can be written as
s AA

_sM ;A B .
in

BB rB )-1 SBA: 2)
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T
.».) where R, is the voltage reflection co-

S is given by (RA’ -A1, -Az, A

in
efficient for the dominant mode and the An's are the coefficients of the
Fourier series expansion of Hy in region A. Note that the difference in the
signs between RA and the An's above is due to the aforementioned definitions
of the scattering coefficients. The convergence of the Neumann series is
discussed in Section 2.2.

The discussion of the derivation of Equation (2) in the preceding para-
graph depends on an intuitive understanding of the physical processes involved
in the chain of multiple reflections. In order to provide a lucid explanation,
it was tacitiy assumed that the load in region B was recessed some arbitrary
distance & into region B and away from the edge of the bifurcation. Refer to
Figure 6. If indeed this is the case; then the proof of the convergence of
Equation (1) is very much simplified since all of the higher order evanescent
modes would be damped out quite rapidly. However; this crutch is not neces-
sary. In the limit, 8 can be zero and it will be shown that the series even
then is convergent. Indeed; convergence is proven without reference to the
specific expressions for the various scattering coefficients.

Using reasoning similar to that employed in deriving Equations (1) and

(2), an expression for the fields in say region C can be written as

S5, =53+ g -s"rP)t My (3)
r T ‘ e aa s .
where SCA = (TCA’ Cl’ C2, S I TCA is the travsmission coefficient for the

dominant mode from region A to region C and the Cn's are the higher order co-
efficients of the Fourier series expansion for the solution field in region C.
In a similar manner, the mode coefficients of the eigenfunction expan-

sion of Hy in region B can be written as

S -aB (1 -gBBrB,1gBAZ

BA (4)
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= : T
where §__ = (TBA’ 81, Bz, vee) o T

BA is the transmission coefficient for the

BA

dominant mode from region A to region B and the Bﬁ's are the higher order

mode coefficients of the Fourier series expansion for Hy in region B.
Equations (2), (3); and (4) apply to the specific case of a signal ex-

citing region A and a load placed in region B. However, similar equations

can easily be derived for other situations. Also, note that loads can be

placed in two regions in the same problem. For instance; the problem of the

capacitive diaphragm in a waveguide c#n be solved through the device of plac-

ing a magnetic wall in region C and an electric wall in region B. The method

of multiple scattering has been applied to this problem19 for the case of a

semi-septum. The solution was shown to be quite straightforward.

2.2 The Proof of the Convergence of the Neumann Series Expansion

In this section. the convergence of the Neumarn series expansion given
by

(1 -sPBrByt 1. gPPrR PR BSPRLR L (5)

is proven. First; the convergence of the series

(I - SBB)-I I ‘i' SBB ‘A SBB SBB ‘.' o0 o . (6)

is demons;rated° Next, it is demonstrated that if series (6) is convergent,
series (5) is alsc convergent.

Let a and bn be the amplitudes of the nth mode incident and reflected
in region B, defined at the plane of the junction (z = 0). Furthermore,; let

€n and in be the voltage and current for the nth mode in region B, defined at

‘ ! »
the plane of the junction (z = 0). For propagating modes, and bn . O,E “n in -
1, (p)_ 2 (® b 2 |[m|?

- ¢ —— et : r e 3 modes
2 Zn 'an| ; where Zn 2“‘0 k b Similarly, for evanescent ’

(e) 2 (e
also with bn = 0, on¢ hgs 1 e 1‘::-12 € an| , where Z,1 ) =

2 nn 2n
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For Propagating modes, €. and 1n can, in general; be expressed in terms of
& and bn as
e =2 ® @ +1b) (7)
n n n
and

in 2 (an - bn) (8)

For evanescent modes, e and 1n can be expressed as

e, = -3z (a_+ B) (9)
and
1= (a = b)) (10}
With the tefefehcgbplﬁée chosen in regiou B at the plane z = 0, regions
A and C can be groupedtﬁogether and regarged~as a termination. ‘A relation-

ship between the térﬁinal'voltdges and currédta, the stored energy, and the

o B R 2
powver delivered to the termination is derived by Montgomery, et al. ©

” . .
1 * w |
5 néb ety = 2jw (wH wE) + P (11)

where-',wH . gverage magnetic energy stored in the temination

i

N ﬂE = average electric energy stored in the termination

P - average power delivered to the termiration.
To simpiify the following discussion, assume that only the TEM mode
propagates in region B. Substituting (7), (8), (9) and (10) into Equation

(11), one obtains

2 (p) e)

b . * % ( ) . .
o (a, + b)) (a, -b, )~ InZ % (a, + b)) (&, =-b )

= 4w (W, - W) + 2P (12)
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Equating the real parts of Equation (12), one obtains

(p)

ot » *
z0 (Ia(),z - ,bO '2) - n§1 zn(e)

(a'1 bn - a bn ) = 2P (13)

Equating the imaginary parts of Equation (12), one derives the equation

(p) * . 2«
zP Gqvo*-a'vbr+y z 2
[o 2 o) O O n-= n

. (|an|2 - lbn'z’ =43 O - W) (4)

Now let b = SBB a where a is an eigenvector of SBB, so that if \ is an
eigenvalue
b=\a (15)
and
b -\ a, (16)

Substituting EQuation (16) into Equations (13) and (14), one obtains
(p) 2 2 g () 2
2, a P a- Pres g ot -0z 2] = 27 an

and -

Z
o

o0
® |, 12 o . 2, (e) | |2
O O NS VIR N N PR lanl =4 00 - W) (18)

Equations (17) and (18) can be treated as two equations in the two un-
* 2 . 2
knowns (A - \) and (1 =~ lxl ). Solving for (1 - ,X, ), one gets
(p) 2 - . (&) 2
a 2Pz P | | s 4WW_ - W) Z Z ° ,a '

o o E H nl1 n n ,

1 - N - ' (19)
(p) 2 2 g (p) 2 2

@, o[>+ Z 2,9 o,

(p)

Note that ZO and Zn(e) are positive real quantities and WE > WH for

the case of T modes. Thus,

In] < (20)



20

A necessary and sufficient condition for the convergence of the Neumann series
I + M+ l2 + ... is that the eigenvalues of M satisfy the inequality lx |< 1.
Th », the convergence of (I + SBB) is proved.

BB BB_BB

The proof of the convergence of I + 8 + 8 8 ... for the case of TE

modes is formally the same as the proof given above for TM modes. In this

case 'll > 'B’ but the voltage e, for the ntb non-propagating voltage is nor-
(e) (e)
malized differently. In thic case, e = J 2 (a, + b)), z, > 0.

There is an alternate condition, necessary and sufficient, for the con-

vergence of a Neumann series (see, for instance, rriednann). If a' is an

arbitrary vector «nd b = l:', then the Neumann series I + M + lz 4 se. CON=

verges absolutely if 3" < !:'l where ':'I is finite. Thus; from the proof

of the convergence of I + sBB + SBB SBB

+ ...; one already knows that if

' =S

, then ,'5' < I;" . Now, let a' :: rB. Thez, if b' = sBBr a';
IB‘NI < 'ra:nl
B BB
Now, one can follow the same argument for I' as was used for § to de-
rive Equation (19), again. In this case; however, it is possible that P = 0

B
and W_ = W._ as would be the case if I = + 1. Hence, if M is any eigenvalue

E H
<‘a|,

ot T°, "l' <1, ard it follows that |r® :, < |;| Thus, |'5"
BB
showing that the Neumann series I + SBBI“B+ S I‘B SBBI'B + ... is absolutely

convergent and can be summed to (I - SBBI"E)'I. The proof is essentially the
same if the case of several modes propagating is considered.

In Chapters 4, 5, and 6, (I - SBBI‘B) is truncated and then inverted. The
Neumann series expansion was used in computing the inverse. For all cases
considered, it was found that the Neumann series can be truncated after 20 to

BBI.B
30 terms. The computation of the inverse of (I - S ) using the Neumann

series expansion is straightforward even when the rank of the truncated matrix
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is relatively large. Of course; if the rank of the truncated matrix (I - SBBFB)
is sufficiently small; then the matrix can be inverted directly.

2.3 General Comments on the Technique

The introduction of an auxiliary problem of the kind discussed above as
an aid to the solution of certain kinds of boundary value problems is rather
new. A search of the literature has uncovered only one paper in which the
author uses a similar device. W. E. Williamszz uses the Laplace transform in
the formulation of the step discontinuity problem. He applies the Wiener-~Hopf
technique and derives an associated set of infinite order linear algebraic
equations. The auxiliary problem is introduced by Williams as a preliminary
step to solving the infinite set of equations. This is to be contrasted with
the use of the auxiliary problem as discussed in this thesis. 7"sing the
generalized scattering matrix technique, the solution to the problem is ex-
pressed in terms of the scattering coefficients of the auxiliary problem as
a rapidly convergent series.

Also, the applicability of the generalized scattering matrix technique
should be rather broad. The method is not necessarily restricted to wave-
guide problems. For example, 1t is suggested tha* the rroblem of the dif-
fraction of a plane wave by a thick, conducting half-plane may be solved by
means of the new technique. The auxiliary problem suggested is the boundary
value problem associated with a pair of parallel semi-infinite plates in
free space (Figure 7).

A brief list of problems suggested for future s*udy is giver in Chapter

7 of the thesis.
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M
INCIDENT PLANE WAVE

(a)

Pigure 7a. Diffraction of plane wave by a thick half-plane.

(b)

Pigure 7b. The proposed auxiliary problem: parallel-plate
waveguide in space.
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3. DERIVATION OF THE SCATTERING COEFPFICIENTS

The elements of the self-scattering matrices Saa, a A, B, or ¢, and the
mutual-scattering matrices SaB‘ a A P orCandpP A, B. or Cburt a / 3,
are determined by solving the boundary value problem associated with a semi-
infinite bifurcation in a parallel plate waveguide. The problem must be
solved for an arbitrary Tuno moce incident from one of the three regions A,

B, or C.

It may be shown for the problem under consideration that the only modes
excited by the discontinuity with an arbitrary TMno mode incident are the Tuno
modes . The non-vanishing field components can be derived from a single scalar
functior @ (x, z) which is identical to the y-component of the H-field. Using
the coordinate system illustrated in Figure 4 the three components of the

field can be written as

H - (21)
v p
1 0 .
E.x Ju 5% 22)
o
and
-1 9d¢
} bt (2
EZ Sk ox 3)
o
Jwt

A harmonic time variation of the type ¢ is assumed throughout The scalar

function @(x,z) must satisfy the two-dimensional Helmholtz equation

2r Zk d)'()/ k . — (24)

together with

g% -0, x : 0. a 2ll zand x - ¢ 2z >0 (25)
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and the edge condition

Iv o] Ow@¥?, a0 (26)

where d = z2 + (x - c)2 1/2

Initially, it is assumed that the waveguide is excited from each of the three
regions A, B, and C by an arbitrary transverse magnetic mode of order {, q,
and r; respectively. It is assumed that the waveguide dimensions are such
that each of the incident modes is a propagating mode. Thus; in general,
there will be several prupagating modes in each of the three regions of the
waveguide. Each of the propagating modes must satisfy the radiation condition
at infinity.

3.1 Derivation of the Infinite Sets of Equations

In each of the three regions labeled A; B, and C the function ,h (x,z) can
be written in terms of the appropriate eigenfunction expansion; in this case

a cosine series. Thus, in region A

- o0 Ja z
Tex Jnz Tnx n
¢, = A cos ( 5 )e * nZo Ap <08 | e (27)
where
2
2 Tn . n
a - k - — . k m—
n a ; a

In region B,

vhere 2
2 Tn Tn
- -} S —
Bn b/(‘ {b ) » Kk b
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In region C,

129)

where

[2
n 7
. -J (-(.:ﬂ) - kz ; __,1>}‘

A, B, and C are the amplitudes of the modes ircident in regions A, B, and C,
respectively. The integers f; q, and r are arbitrary.

The cocefficients An’ Bn’ and Cn are related through the requirement that
the transverse E-field and H-field must be continuous across the plane of the
discontinuity (z = 0). Matching the transverse E-field and H-field across

the boundary yields four sets of equations:

o0 (- o]
A cos Eﬂ‘- - 2 A cos 1-’-25 B cos M:L)- + & B cos M (30)
a nO n a b 10 n b

and

Ta(x-a)

o0
. rnZo BB, cos(—s———) (31)

zf_) 5 (m__)
a q b

00
Tix
a.A cos( " ) -ngb “nAn cos

valid in the interval c < x f a

and also

00
m T T x
A cos (—15) - X A cos (—25) - C cos(——-
a n O n a c

00 Tn
. Z C_ cos (——’-‘- (32)
n:0 n C
and
1y *® m m 0 7
x <« nx rx nx .
— |- — Y ) G| —= vy C i {
QIA cos( 2 ) n<0 anAn cos( 3 ) ' C co“ = );an ‘nCn cos( p 33)

which are valid in the interval o - x < c¢.
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*
For the present;, it shall be assumed that a/b is not an integer. 1If

w -
~£é5—5l, where

s is an arbitrary positive integer, and both sides of the equations are then

both sides of Equations (30) and (31) are multiplied by cos

integrated between the limits c to a; two sets of infinite equations can be

derived. These are:

o o s W A‘/ ‘ L] A/
T _A _8% _ (_\®7¥ n
b(A 6! * A0)63 + 1) a 2 3 ( 6!? - =1 an=l 2 3
Cl p. i Cn ﬂ.
_ o b _8% . 0g0 b _.q _ &°
= bB.G’ + 3B, (1 6') + bB5q6. +3 85’ Q 5q) (34)
and
/ /
o o s “IA o s+1 7 %n An
hﬂo(Aﬁl - Ao)5s + (-1) T 7T 3 Q- 5‘) + (-1) anfl 33
o, - Py e, ~ Py
_ o b _ 8% . 040 _‘3 q _ §°
=bp,B5 +7PB, (1-5D)-bBBES -2 BB (1-05) (35

(s =0, 1, 2, ...)

' n
By definition, An/-= nAn sin —%E and A7 - fAsin E%S .

The Kronecker Delta 6: is defined as

Gb

lifa=0>»
a

0if a £Db

A similar result can be derived from Equations (32) and (33). Thus,

/
/ A
5° §° - (- s+1 W A _ 8° 1481 T n
c(A 1 + Ao) s (-1) Qa Qz - Y2 a 61) + (<D a nga a? - Y2
1 8 n s
N o c _ 8%y 4 oc8°8° . C r _ §0
= cC.5' + 3 C.(l 63) 4 ccbrﬁ’ +g3 C 6' a 6r) (36)

» If a/b is a rational number, some of the termes in Equations (34) and (3%)
will become indeterminate. The equations are correct, however, if the in-
determinate forms are replaced by their limits as a/b approaches a rational
value.
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and
/ /
17 GIA o s 7T & anAn
60 - 60 . (- S~ r_x - & . (- L
cV (A8, - A )6 + (-1) R (1 -6+ (-1 = 2 73
4 s n ‘s
- 60 -(.,'- ; - o - 6060 - E 6'1‘ - o]
cY C O + 3 Y .C (1 68) cy O 8 - = Y CO (1 6r) (37)

(S = 0,’ 1) 2} ouo)

Now refer to Equations (34) and (35). If each line of set Equation (34)
is multiplied by ﬁs and then sets (34) and (35) are added and subtracted,
two alternate sets of infinite equations are derived. Thus, these can be

written as

/
/ ) A
0.0 s+1 T A o s T n
) - - -6 .+ (- -
bﬁoAﬁs ¢t (-1) a E;—:-B; 1 e -1 " nzﬁ an - Bs
- b B B (1 - 60) + bB B 6° (38)
2 s s S 0o0s
and
o s+1 T A, o s T X A;
- 6 - a— - - - !
bP A (-1) " 3;":‘3;” Qa 61) v (=17 = Z 3;~:—3;
- - 28881 (1 -8 -bp BES (39)
s s q o q s

(s = 0, 1, 2 o o)

Similarly, from the sets of Equations (36) and (37), arother two sets of

equations can be derived. They are.

cv A8%8° . (-DF
o s |{

wi

(1 - 6?) ;-1

£yec -58% . ¢v ¢ 68° (40)
2 8 s S o O s
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and
/ 00 A’
_ ° _s[_A__ _ &0 _1\8*1 T n
chAos+(1)a“‘+Y'(l §) + -1 n‘Elan-Ys
c r o 0,0
=-3 ysc6' Q - 6r) - cy'c6r6. (41)

(. = 0, 1, 2, .la)

3.2 The Solution of the Systems of Equations

In this section, the scattering coefficients are derived. This involves
the solution of the systems of equations derived in Section 3.1. Two separate
cases are considered. They are a) A =C = 0O but B # 0; and b) B = C = 0 but
A £ 0. Recall that A, B, and C are the mode amplitudes of the arbitrary modes
incident in the three regions as defined in Section 3.1. The solution of the

systems of Equations (35) and (37) with A —~ C = 0 gives the elements of the

scattering matrices SBB, SCB, and SAB in terms of the mode amplitudes Bm’ Cm,
BB CB , AB
and Am' Explicitly, these are: Sllln = - Bm/B’ Smn = - Cm/B, and smn = Am/B.

The electric field or voltage sign convention is followed when defining the
scattering coefficients as explained in the previous section. Similarly, the

solution of the systems of Equations (35) and (37), with B = C = 0 gives the

elements of BAA, SBA, and SCA in terms of the mode amplitudes of that problem.

AA BA CA
These are expressible as: snn = - Am/A, shn = Bm/A, and S = cm/A.
It is not necessary to go through the formal solution of a system of
equations to find the elemcnts of sCCi SBC, and SAC since they follow by a

BB _CB

simple transformation from the elements of S , 8 , and SAB, respectively.

If the dimensions b and c are interchanged in the eapressions for S:: and S::,
then the resulting expressions are identical to Sgﬁ and S:ﬁ, respectively.

Similarly, if the dimensions b and c¢ are interchanged in the expression for
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Szﬁ and then the total expression is multiplied by a factor of (-l)m, the re-

AC
sulting expression is identical with Smn»

B CB AB

B
3.2.1 Derivation of the Elements of S . 8  and S

With A and C set equal to zero, Equations (35) and (37) can be written

as

® Ag s ab g0 abﬁo 0,0

e - S——t 66 d g -6 6 -

n§1'a‘;T‘B;*‘1)zﬂﬁsBsq* 7 (A,-BS )6 = 0 (42)

and
/

oy An aCYO (o)

2 Q - A6 b 0

- m

n=l S - Y © s (s = 0, 1, 2, ...) (43)

where q can be any integer.

The above set of equations can be solved by the function-theoretic
technique. A general discussion of the function theoretic-technique is given
by Collinlzu A meromorphic function f(w) is constructed in such a manner
that it will generate an infinite set of equations which is formally identical
with the original set of equations when it is integrated around the correct
contour. The form of f(w) depends on whether q is zero or non-zero. To

simplify the discussica; consider first that q = O, i.e., a TEM mode is used

X

to excite region B.

A f(w) is desired such that

r(a )

1 f (W) dw x n o
lim —— : > + f(B O (44)

- B a - B T

Ln—)oo 2"y Ln @ s n:1l n s ° s

where r(ﬂn) is the residue of f(w) at the pole w'an’ and
abﬁo
t(PH - (A - B) (45)
o T o)
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and also,
c)
(W) dw ™ n 5°
L:}:‘o Jﬁw_y “n§1nn-y””“o’s (46)
where
ach
1Y) = ~ 55— A, (47)

The contour Ln is illustrated in Figure 8. The function f(w) is a function

with simple poles located at

w:n n-“‘l, 2, LX) (48)

and simple zeroes at

[ Yn’ n= 1, 2, L ) (49)
w:ﬁn, n::‘l, 2’ LI (50)

Furthermore, by comparing Equations (44) and (46) with Equations (42) and (43),

it is observed that

A, = 1(8 )/n sin -"—:3 (51)

The function f(w) is now determined to within some integrai function
p(w). The function p(w) can be determined by examining the asymptotic be-
haviour of f(w) as Ww—poo, It can be shown that in order for the edge condi-

tion4 to be satisfied,

£ (W) :(:)(u'l/z), Wm0 (52)

excluding the poles and zeroes on the negative imaginary axis.
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CONTOUR L,

Pigure 8. Location of poles of £(w) and the conterur l‘n in the
complex W-plane.
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=Y°=k,

Equations (45) and (47) yield AO/B = b/a. By definition, one can write

Prom the above, one result is immediate. Noting that B

S :: b/a

00 (53)

The function f(W) can be constructed in the following manner. A function

£(w) with the necessary poles and zeroes can be written as

o (54)

where, for instance,
bw
- - Jbl o
Nw,p) = B B -w ( db| ol
7,23 4
The notation is that used by Hurd and Whitehead . The inclusion of the

exponential terms in the infinite product assures the uniform convergence of

the individual products. The function p(W), of course, is the integral

function mentioned above.

m U
Observe that asymptotically for large n, ﬁn ~ -jj?, ﬂn ~ '3133 and
m
On ~ -31?. It can be shown that if K(w) is a slowly varying function of W,

then one can write

e )
0 Q0
Ma-j539e” 0a-j3ze™
1) = K@p) = S (55)
o0 ——
Wa nh
nh -

The function f(w) can be written in terms of the Gamma function. PFirst recall

the 1dent1ty24
Pt u, % e YU
I - -
ne1 (1 + n) e T (56)

where u is a complex variable, excluding the negative integers, Y is "Euler's
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Constant", and I'(u) is the Gamma function of argument u With the aid of
this identity, Equation (35) can be written as

P(RK (W) Ta n-;‘-;’,i)
f(w) . j

(57)
wb W
wbec I(-3% IY-Jig)
The function f(w) is now written in a form convenient for the examination
of its asymptotic behaviour for large values of w

. 24

Stirling's formula for the asymptotic behaviour of the Gamma function

for large argument is given by

Cu) - (zn)1/2 e(u - 1,2Mn u - uj Uy 00 (58)

This is valid everywhere in the complex u-plane except in the vicinity of the
negative real axis. Using Stirling's formula. the asymptotic behaviour of

f{w) can be found to be

wWa a C bn
[Ja p(Wwx 7 (b) a c}”
W o~ A LSS — : | [T U 5
f(w) (Zbc) wl/z C ). )00 (59)

excluding the poles and zeros of K Thus, in order for f(w) to exhibit alge-

braic growth at infinity

Wa a C b
A S 1 IR I
p{w) x e (60)
. . cb
The constant of proportionality 1s determined by setting f(ﬁo) - - ;rﬁoB

The relationship follows from Equations (50) and (51) Finally, f(«) can be

written

f(w) -

(ﬁo-w)a a C b
bcﬁo 5 M, By Mw,v) H(ﬁoia) -) —— ln(g .2 ld(f’ .
T “(ﬁoiﬁ)“(ﬁo,") @, D) € 61)
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C‘ and Bs can be found from f(w). Note that f(W) satisfies
w r(2 )
1l I(w) gw n
iIim = X + £(~B) (62)
“a
Lo mj y wﬁn n=1 @+ Bs 8
n
and
a )
1 fw) aqw T
lim z X ———y f(eY ) (63)
Ln""’““mJL ‘-9+Ys n:lnni-Ys 8
n

Ln is the same contour as befor . Equations (62) and (63) are formally iden-

tical with Equations (37) and (39). It follows that

s 2N
Bs = (=1) E:;—ﬁ f(-ﬁs) (64)
and
e.1 2T
Cs = (=1) Csac f(-Ys) (65)
2if 8 = 0
wvhere € =
8 1ifs£0

It can bc shown that for other modes of excitation, Equations (64) and (65)

are valid providing, of course, the proper f(w) is used in the calculations.

BB _CB AB .
spu’ spo’ and Spo follow immediately from Equations (61), (64), and (65)
and the definitions of the scattering coefficientz. Thus, for all p,
p (B +B )
s” . (-1) 23(: n(*ﬁp, 8) ﬂ('ﬁp,,Y) n(po,“) e-J "——B-u - ap 66)
po ‘pﬁp o NG, P NG,V B-B,0)
and
prl . (50‘«2)
ac -V 2ﬂob ﬂ(-vp, 8) ﬂ(wp,v) ﬂ(ﬁo,ﬂ) =) —F a
SW - - e (67)

€y, s B, B N _,v) -y, 20
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and for p greater than zero,

(3 -9 >
-bd3 Il(a B n(a Y B 3) -y —2_P_ ,
BA = L
S o (p) € (68)
P Tp sanLi) ﬂ(ﬁ ﬁ)fuﬁ Yy 1P (a ~a)

Here the superscript p in the infinite product means delete the term (an-ap),
n from the product By definition, a adtn|2 . ln's
Py P -y e lc]  a b °
Consider now the case of a higher order TH hode in region used to ex-
cite the bifurcated waveguide. The procedure for the solution of Equations
(i2) and (43) is essentially the same as before, differing only in its details.
First another meromorphic function of the complex variable W is constructed.

Call this function fl(w)" This is a function with simple poles located at

w - 2 n - 1 2 a0 o (69‘
and simple zeros at

, 2, ... (70)

and

, sen (71)

except at W ﬁqp Furtheruwore,

f(Bq) -n° gg ﬁqa (72)

Again, the asymptotic behaviour of the function at infinity must be studied,
and ir order to satisfy the edge condition, fl(w) O(wﬁl‘lz) as W =P c0.
Note tha' in this case, f («) has a zero at w ﬁoc This is because a
TEM mode is “ot excited in region A by a higher order TM e€xcited in region B,
i-e., Ao 0 Mis follows immediately if the concept of reciprocity is

applied. [f a TEM mode 1s excited in region A no higher order modes will be
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scattered or reflected by the bifurcation. This is because the incident TEM
mode is already a normal mode of the system. Hence, if no higher order mode
is excited in region B by an incident TEM mode in region A, by reciprocity,
no TEM mode will be excited in region A by an incident higher order mode in

region B. By definition, for q > 0,

s =0 (73)

The proper flﬂﬂ) can be shown to be

(B -w)
(-1)%a B B (w-B ) N(w,B) N(w,y) N(B ,a) -3 —3— 4
2, @) = 9 o _ ‘ " T L gy

(q)
ﬂ(ﬁq-ﬁ’)(ﬁq-ﬂo) n (ﬂq,ﬁ) H(ﬂq,V) M(w,a)

Prom Equations (64), (65), and (74) and the definiticns of the scattering co-

efficients, cone finds for q > 0,

1 B +8)
(-1)PHe+ig (B +B ) n(-ﬂ B MR ,V) MR, -3
gBf 9 7 ) e T L (25)
s P (B +P ) (B B ) I 9 (BB B ,¥) N(-B,%)
and
p+q (Y 4B )
- - - Q -
oCB _ (-1)7BP (V+P,) n(_zr,)ﬂ) -y, v) TP ,®) . e ¥ 76)
Pq - a's I Na a
€ oY (Y +P )P =P (PP IR ,y) -y ,9)
and for p >0, q "
UcaB B ) MNca,pyn ne, -t
(-1)%caP (3 -B ) Ti(a_,P) N(a ,yy NP ,3) -
ghB _ P’ T an

P g .m(-l’— (8,0 )(B -8 n“"(ﬂ NOLTCR ,v)n"’(a Oy

Note that at the beginning of this section, it was assumed that the mode

incident in any of the three regions was a propagating mode. The derivation
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oi{ the expressions for the scattering coefficients was based on {his assump-
tion. It is necessary, also, that the scattering coefficients be defined if
the incident mode is evanescent. To do this, 1t is only necessary in the ex-
pressions for the scattering coefficients to replace the appropriate real
propagation constants representing the propagating modes by the corresponding
imagirary propagation constants representing evanescent modes. The expressions

derived above are tabulated in Table 1.

BA

<

A

3.2.2 Derivation of the Elements of SAAJ S and SC

With B and C set equal to zero, Equations (39) and (41) can be written

as ,
A
o s+1 7 A s 7% n
bﬂoA ¥ {=1) a—lrﬂ— (1 - 51) + (=1) ;n§1 En—q—-g;' 0 (78)
and
yig / T x© A/
o s O s<1 n
chAoés + (=1) ;.al F Y, (1 - 61) (-1) T8 T o Y, 0 (79)

As already noted in Se ion 3.2.1, a TEM mode excited in region A will
not be reflected by the bifurcaticn nor will any higher order modes be ex-

cited. Hence, for all p, one can write

AA

S -0 (80)
po
and for q > O,
SAA - 0 (81)
oq
Furthermore,
sPA (82)

00



ELEMENTS OF s“, scs, anp s'B
-
4BB [ssa gB
po Pa

B + B)a
-1)P 2B ¢ N(-p_,B) N(-B_,Yy) N(B_,0) -3—2>—P {ln(3) +S tn (3)}

S " TP M B M e o ¢
po Ep P a ( o’ ) ( O’Y) (- p,u)

pra+l ’ . . (ﬂp +BIa T b
- - - a - - - -
DPYL R B4 B) NGB B N(-B ) B @) B S iln(b) rem(Y)

Sm = e L4 c
] - Q) _
epﬁp(ﬂp + ﬂq)(ﬂq B, M (Bq,ﬁ) n(ﬁq,v) n¢ ﬁp,u)
<CB _ [scn sca]
po Pq
B + Y)a
p+l o P 2\ < _l_)
4GB _ (~-1) 2P b ﬂ(-vp,ﬁ) ﬂ(-vp,v) H(Bq,u) e-J——T—{rn (b/ +< In (c)}
po .
€Y, 8 1Ry, M NB,,¥) A=Y, @)
B +Y)a
-1)PHd . - - et P a2 £ b
4CB (-1) b ﬁiq(h + B,) I %,B) n( Yo ¥) ﬂ(ﬁq,n) . —= {tn (b) 45 In (c}
pq " - Q) _
€, e Vv + BB - B ENB B MR, v) M-Y,,9)
""SAB GAB
A2 « b/a s::.o ghB _ | °° oq
shB  gAB
po P
(50 - a)a . c b
GAB | -bcﬂo "‘fn’p’ n(up,y) n(ao,n) ‘-J—————L—” ~<in (-5) + 4 In (E)

po fipc 1(P)
wp sin B2, P 1B, v) 1P 0)

(B -a)a Y
R . ) |k
gho | 17 e ¥ Py - By) Ty, P T, B By S {‘“ (3) - 2 ()

Pa e @ . _ @ )
an p oo ZBS (B - o> B - B) NV .8 nep v 1P )
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and

CA

S =1 (83)
00

Only if a higher order TM mode in region A excites the waveguide, does the
system of Equations (78) and (79) have non-trivizl solutions.

Again; the function-theoretic technique is called upon to solve the
above equations. A function; say fz(w), is constructed such that when it is
integrated along contour Ln’ it generates a system of equations which are

formally identical with Equations (78) and (79), { £ 0. fz(w) is found to be

/ (w+°*1)
A (w-B ) H(w,ﬁ) [I(w,y) (-0, a) J ~—————a
£, (@) = 2 L e T L (84)
2% TSPy e )y Me-a Py M-8, V) 1w, )
Ap/ is the residue of fz(w) at w - Gp so that
Tqc (ap,u )
=3¢ - -a _a 2 q_

-~ €
]
pPq p sin -PC J(a .p )(a .a)l(-a PHli(-a ,y)n(p)(u , Q)
\ a q © P q q q p
for p, q > 0.

Purthermore, using Equations (64) and (65), one finds for p, q > O,

(@ - )
p+l Tqc + - - -a .a ;
sBA {=1)" "2Mq sin " (ﬁp+ﬁo)ﬂ( ﬁp,ﬁ)n( ﬁP,Y)n( “1f ) . T4y 86)
“ab(@ «8 )y(a ~PHll(-a [ Bil(-a y)i(-p ,a
pa a q#ﬁo.( a p) ( a MI( qJY ( b’ )
and
P T \ (Qq-yp)
-1nPz sin (=38 (v .B - 2)1(- -a _aj . N
SAC _ (-1)720q sin( a:%(yp f%xg( Yp,F)?( Yp,v)n( " ) eJ = ap (87)
" ac(a a -y (-2 (-a [(-y a
pq ac( qfﬁé)( q Yp q") ( q,Y) ( Yp~ )
The elements of SAA/ SBA_ and s arc tabulated in Table 2 As before,

to get the scattering cocfficients for cvancescent incident modes, simply re-



ghh M
Moo Moo Moo st s:: .
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place the appropriate imaginary propagation constants by the corresponding
real propagation constants in the given expressions.

3.3 A Notc or the Numerical Cowputalions

The exact exprecsions for the various scattering coefficients are listed
in Tables 1 and 2. However, as the expressions stand, they are not in a form

convenient for purposes of calculation, e¢ven using a digital computer. An

bfp

00 -J‘.—.—

. b n? /7p.2 2
; : n - ) -L - -t i -
infinite product such as 1 (ﬁn ﬁp ‘ﬂn) e where 6p J (b ) k

is very slowly convergent,6 especially for large p. However; it is possible
to express the various scattering coefficients in a form suitable for cglcu—
lations; using a digital computer.

As an example; consider 822 (see Equation (75)). Assume that the dimen-
sions of the guide are such as to allow only the dominant mode to propagate
ir each of the three regions A; B, and C. It was indicated in Section 3.1
that it is possible to write Ssg 1n terms of the Gamma Function. To explain
more fully, consider the produ %t above, which is a term in the expression for

BB

S . It is possible to write
P4

bﬁp B b B b B b
:I) (B ‘-ﬁ)J—beJ n -°r‘1’ T " | g 1 + Elﬁ e-J n (88)
nl V'n'p W n=1 Pb |'n-1 " I
1 o=
n

Using Equation (56) in Equation (88), one gets

ﬁ b ﬂ b _JV@ b

13
P
@ - J J
B (28} 0T T ____B_.
nnl (Bn ﬁb‘ ("n) € nul B b ‘ ‘ (89)

J—-

2
It ca~ be shown 5 that the infinite product on the right side of kEquation

(89) 1s convergent. Furthermore, it converges much more rapidly than the
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original product. The Gamma Function ca»n be calculated on the digital com-
puter probably using an already available library subroutine .

B
It follows that Sp: can be writter as

BB (‘l)pw+IQ|Bq'2(ﬁo-J lﬂpj )P.'.‘(;::q c)r(:.li;'l_?_)r(.l_d_a) -(I‘j ' lﬁ |‘
’ lpplz( !ﬁp!*',ﬁql G I‘Bql )r(_EELC) r’fz—t:)r{. -}L)

(90)

S

where P 18 given by

1
Tn fin fin n ™o
R | | ’
P 1 B To B lc g a ]ﬁ;la (times) (91)
1 : 1l - . P x
n ’ T /\ Tn °~ 7n
p lb |B Ic a P |a
wl l] - _I..g__ 1 - Pnl - I 1
n n Tn Tn Tin
n-:1 b b c \
_“n - II ;' 'Yn' - 'Bglc 1 - |Bq:
in Tn Tn n n
/ lﬁnlb |? lb
Here the prime means omit the factor o - ﬂ: , h = q, from the

infinite product.
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4. THL “~VHOMOGINELO''S E~PI1ANEL BIFURCATYON IN A PAPALLEL PLATE WAVIGUIDL
"~ oekiz chapter, the gencralized scarttering matr’ technique 1s used to
derive *he solution to the first of the three bounuary value problems dis-
cussed ir this thesis, viz , the inhomogeneous E-planc bifurcation in a
parallel plate waveguide Refer to Figure 2 The auxiliary problem is the
boundary value problem associated with the bifurcation in a parallel plate
waveguide . The bifurcated waveguide 1s modified by introducing a dielectric
slab with a relative dielectric constant i1n region B The slab completely
fills region B.

With reference to Figure 2, let a TEM mode be incident from region A.

’
The scattered and reflected fields can be represented in terms of Tnno modes .
As in the previous section; the non-zero field components can be derived from

a2 scalar function identical to Hy, Call this function Y(x 2) The non-zero

field components can be written as

H W (92)
y
E 1 o
X juf Oz (93)
a4rC
-1 o
EZ 3;-;.'8; (94)

where € fo iv regions A and (C filled with air and € K€O 1n region B filled

with cielectric. In regions A and G, ¥ satisfics

o2 C K2 N7 K AVh € ) (95)
2 3.2 0. “YHS o
ax 2
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In vegior B, ¥ satisfies

2 2
0 d / ,
/__2.,_3,1‘2 V-0, k' - kK (96)
ox oz
/

¥ also satisfies the boundary conditions

3% 0 x 0, a, all zand x - c, z>0 (97)

’

and at the dielectric-air interface,

Y0 d0),z <0, c<x<a (98)

éb—é—g—-)— -:%(%é—), 2 20, c-x<a (99)

¢ also satisfies the edge condition at the edge of the bifurcation, i.e.,

I - O @¥?, a—s o (100)

where d - [z2 o - c)2:1/2

One recognizes that the edge condition stated above is the same as the edge
condition for a bifurcation without the dielectric present in region B.
Figure 9 illustrates the general case of a metallic wedge with a dielectric
wedge si*tuated next to it. Using the condition that the electromagnetic
energy density must be integrable over any finite domain; Ieixner26 shows that
an admissible singularity in |V44 at the edge of the composite wedge is
given by |V~b| .O(d‘l/Z) as d—> 0, where M = %-—_—g-e- . If§ -0, M= 1/2.
It is possible to show that each individual term in the multiple scat-
tering process as expressed by Equation (1) of Section 2.1 satisfies the

th
above stated edge cordition, i.e., the n  par-:.ial wave transmitted to
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Figure 9. Wedge composed of dielectric and

Metallic sections.
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region A satisfies the edge condition giver by Fquation (100) The mode co-
efficients cf the eigenfunc.:on expansior of the nth partial wave in region A
are giver by the elements of the vector SAB TJBISBBY'qn SBA; The vector §1n
associated with the total field reflected ir region A 1s the sum of the 1in-
finite number of multiple reflections That the order of the singularity at
the edge of the bifurcation remains unaltered by the addition of the infinite
number of terms in the series given by Equation (1) has nct beer formally
proved. However, the convergence of the series given by (1) was proved in
Section 2.2.

It should be noted that the usefulness of a solution to a problem is not
necessarily dependent on whether or not the edge condition or any of the
boundary conditions are exactly satisfied Schelkunoff27 has noted that
nearly correct calculations are sometimes possible from solutions which only
to a crude approximation satisfy the boundary condition: of the problem.

Without any loss of generality, it can be assumed that the amplitude of

the incident TEM mode -is unity. Then the total field ¥ in region A, denoted

by ¥,, can be written as

A
-32 .z J2 2 o 12 z
Yo o Tnx n
¢A s RA e + nEﬁ An cos(—;—)e (101)
and, denoting the total field in region C by 4%)
J: z o0 -3V z
o Tnx n
- ! . ———
4& A © 3 nEﬁ c cos( ~ ) € (102)

The propagation constants Qn and Yn are defined in Section 3.1. RA is the

voltage reflection coefficient for the domirant mode and 1&A‘1s the trans-

mission coefficient from region A to region C. The total field in region B,
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denoted by ¥_, can Le written as

B)

(103)

where

TBA is the transmission coefficient for the TEM from region A to region B.
The reflectance and transmission matrices which characterize the dielec-

tric load can be derived by appealing to simple waveguide theory. They are

both diagonal matrices. The diagonal elemgnts of the reflectance matrix are

given by
/ -
B €& (104)
pn ) g7n & g,

/

where 8, is the wave impedance of the Tuno mode in a parallel plate wave-
guide, height b, filléd with dielectric and gn is the wave impedance of the

Tuno mode 1n the same waveguide filled with air. Specifically,

a/
gl = =% (105)
’ o
and
Bn
gn = w€ (106)
o

Call this reflection matrix»qf. The transmission matrix is simply related to

B
the reflectance matrix rs, Let the tr..asmission matrix be denoted by Qb,
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Then
B B
@b ST Ib (197)

B
The general diagonal elerent of ¢b is given by

2g/
B
. T n {108)
"By By

Usizng Equation (2) it is now possible to write the mode coefficients ip

Equations (101) in terms of known quantities. Le? s’ = be defined as the

1in
T
vector (RA,— Al’ -Az, »<-) . Then
/ AB B BB -1 _BA -~
: - r ;
Sin S I"D (1 -8 :) s i (109)

B AB
The elements of the scattering matrices S Aj SBB; and S are tabulated in

Tables 1 and 2. Eguations (101) and (109) completely determine the fields in

region A.
Let S/ be defined as the vector (T C C )T Then
CA 4 € n a v . .1‘ 2 ¢ 5o P € Y,
/ CA- CB . B B3, B -1 Pa—
. - I - . ) S (
S S a + S D (1 S D S a 110)

Equations (102) and (110) describe the fields in region C.

Let S;“ be defined as the vector (TBA’ Bl’ B2' »~+). Then
/ B BB-B -1 _BA-
S - )
Spa Qb ( S 1y S a (111

Equartiors (103) and {111) describe the fields in region B.

. A . BB l{ e

Note, however, that the order of the matrix (7 - S I ) is infinite, and
no method is now kvown to invert this matrix exactly. 't will be shown that

accurate calculatione of such desirable quantities as the reflection co-
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efficiept RA’ using Equation (109) arc possible by working with finite order
matrices, i € , by including 1n the calculation a finite number of elemen's in

BB..B .
the matrix (1 - S ID‘ The rapid convergence of the solution with an in.reasc
in the trurcation size is demonstrated in the following discussion
. . A . BB,-R

Consider Equztion (109). Let the matrix (i - S Ib) be truncated to a
ma*rix of firite order N, N > 1. This means that only the first N rows aad
¢ lum~s of the truncated matrix (I - S D) are included in the calculation.
Let the determinant of the truncated matrix be denoted byzﬁ(v)c Let the deter-
minant of the minor of the truncated matrix obtained by striking out the .irst

row ard column be denoted by Aﬁl (N- Then, it can be shown that R, is

1) A
given approximately by
b B =11 (N-1)
RA::.—po'—_zf___- (112)
a (N)

0 course, if ¥ 1, ther Equation (109) reduces tc a scalar equation for R

A

which car be written as

pB
b o
.. Db .
PA— BB B (113)
1 -8 P
oo Yo
BB .
where Soo is given by
<BB < - 21”1' - 2 ; ta'x-1 L - tan~ K
"oo0 a n 1 1 B
n n
- tan”t R , 0<aX< 05 (114
n

pz as definea above is giver by

B 1 -VK

o (115)
° K
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1t was demonstrated numerically that the approximate expression for BA
given by Equation (112) rapidly converges to a limiy as the order ¥V of the
trurcated matrix is increased. The results for a particuvlar example are shown
in Table 3 below. The choice of parameters for this set of calculations are
K . 2.5, a/N = .339, and c¢/a - .5. Polystyrene has a relative dielectric con-
gtant around 2.5 and is a commonly used diclectric. The actual values of the
elements comprising the first five rows anrd colum=s of the =matrix (I - SBBI:5
for this set of parameters used in this calculation are shown ir Table 4.

The results of the calculations indicate that che major contribution to
the value of the reflection coefficient RA comes from the ‘erm given by
Equation (113), i.e., the term due to the TEM mocde alone. The contribution
to the value of RA due to the higher order T'xo modes is small. Indeed; for
a/\ << .5, Equation (113) is an accurate expression for RAC

TABLE 3

Reflection Coefficient R‘ for Inhomogeneous E-Plane

Bifurcation (X . 2.5, a/\ = .339; c/a : .5)

Fank N of the
Truncated Matrix Reflection Coefficient
BB B
(t-8Tp R,
O
1 -.105¢92°1
(o]
2 -.107e7° 4
(]
3 -.107e9%°4
) (o]
4 - .107¢9% 4

A system of irfinite order linear algebraic equations can be derived for
the inhomogeneous bifurc-:tion. Th:¢ derivation of this system of equatiorns,

16
giver by Mittra and Pace , is essentially the same as the derivartion of the



BB
(a-s Iﬁ):.

ELEMENTS OF FIRST FIVE ROWS AND COLUMNS OF (I - 888115

TABLE 4

K =2.5, a/\ = .339, c/a = .5) ?
N=1 N=2 N =3 N -
9436 + j.0973 .1133 - 3.0668 ~.0762 + j.0447 0626 - j.0368
.0226 + j.0386 .9685 - }.0260 .0307 + 3.0174 .0289 - j.0143
-.0077 - 3.0131 .0157 + j.0089 .9833 - 3.0059 .0167 + j.0049
.0042 + 3.0071 -.0097 - 3.0048 0111 + j.0032 .9885 - j.0026
-.0027 - j.0046 .0068 + j.0031 -.0080 - j.0021 .0086 + j.0017

-.05

.02

.01

.99




TABLE 4

IVE ROWS AND COLUMNS OF (I - SBBr:)
5, a/\ = .339, c/a = .5)

N =2 N =3 N 4
- j.0668 | -.0762 + j.0447 .0626 - j.0368 |-.0538
- 3.0260 0307 + j.0174 |}-.0289 - j.0143 .0268
+ j.0089 .9833 - ;.0059 .0167 + j.0049 |-.0161
- j.0048 .0111 + j.0032 .9885 - j.0026 .0114
+ 3.0031 -.0080 - j.0021 .0086 + j.0017 .9914

+ 3.0316

+

3.0123

J -0042

+ 3j.0023

3-0015

1¢

dSeadng o
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system of equations corresponding to the homogeneous bifurcation (see Section
3.1). However, unlike the equations derived ir Section 3.1, the set of equa-
tions for the inhomogeneous bifurcation cannot be solved exacily. An iter-
ation technique must be used for its solution. A relatiomship has been shown
between the iterative sclution of the system of equations pertaining to the
inhomogeneous bifurcation and the scattering matrix formulatior of the same
problem. The iterative solution of the above-mentiorned system of equations
is not nearly as convenient for purposes of calculation as say Equation (109).

Cronlon28 in the only known paper that deals specifically with the problem
of the inhomogeneous E-plane bifurcation has derived an equivalent circuit for
the junction. Refer to Figure 10. Cronson expresses the equivalent junction
capacitance CA in terms of an infinite series of sine terms with constant co-
efficients. The coefficients are the solutions to a system of infinite order
' I}near algébr.lc equ. .ions. Cronson finds that it is not possible to solve his
syﬁte- of equations exactly. A method of approximation is employed. He re-
sorts to solving a truncated set of equations. Specifically, he solves a
'%Cyﬁtel of-equ(tioni=of rank 6. The use of a digital computer is required to
;;;iy out all of the computations, including the computations of the elements
of the lixthAbrder matrix to be inverted.

cronlbn checks the validity of his approximations by comparing his results
for the case K = 1 with the results given by Marcuvitz in the "Waveguide Hand-
book"17 for the ho-ogéneous bifurcation. Working with the normalized capaci-
tance CV(CV = - CA/wCO), Cronson finds the following percent errors in his
calculations: c/a = .5, a/\ .- .5, 2.3¢%; c/a .- .5, a/\ - .3, 3.46%; c/a - .5,
/N = .5, 8.53%.

The percentage error in computing R, from C_ is less than the percentage

A \J
error in C, itself. For instance, for the set of parameters a/\ - .339,
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A

-0
#CC""ECA Zoc

’| 4

Figure 10. Equivalent circuit for inhomogeneous
*
E~-plane bifurcation.

*Z zoB’ and Z are the characteristic impedances of Regions A,

oA’ oC
B, and C, respectively.
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c/a = .5 and K = 2.5, Cronson computed Cv = .31. From this value for CV’ one
o
calculates RA = -.108e‘js'5 . This is to be compared with the results shown in
e A0
Table 3. Using a matrix (I - SBBI:) of fourth crder, RA = -,1076J5°4 was

calculated.



5. THE E-PLANE METALLIC STEP DISCONTINUITY

Much has been written in recent years about the problem of the step dis-
continuity in a waveguide. Refer to Figure 1. The inclusion here of a dis-
cussion of the step discontinuity problem is justified on two counts. First,
from the viewpoint of studying the generalized scattering matrix formulation,
the step discontinuity is particularly interesting because it represents a
'worst possible case'. The configuration of the auxiliary problem is modified
by placing a perfectly conducting wall in region B flush with the plane of the
Junction, which impliesiFB = =1, It is expected that the effect of the higher
order modes is greater in this case than in the preceding problem of the in-
homogeneous bifurcation. It is desirable to show that even in an extreme case,

important quantities such as the reflection coefficient R

A can be computed

easily because cf the rapid convergence of the matrix series expansion.

The second point is that the step discontinuity problem warrants atten-
tion for its own sake. It is a classic problem, studied by a number of authors
using more established methods. Ilacfarlane29 and larcuvitz17 have found quasi-
static solutions to the step discontinuity problem. Their methods differ in
the exact details; but essentially are the same. The equivalent susceptance
of the waveguide junction is formulated in terms of an integral equation; the
exact solution of which is not possible in general. The equation is solvable
for the case of k (27/\) = 0. The static field problem is solved by simpli-
fying the original problem through conformal transformations. Extensive re-
sults are tabuluted in the "Waveguide Handbook”. Only the case of single mode
propagation is considered. In this frequency range *he ‘equivalent static’
method yields very accurate answers. However, the method becomes quite in-

volved for the case when the dimensions of the guide are such that several
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modes propagate, i.e. a multi-mode waveguide. The multi-mode problem is
assuming increased importance. It has applications in the field of milli-
me.er wave prop.gationao and the study of VLF propagation31

Schwinger32 has solved the above-mentioned integral equation for the
equivalent susceptance by means of a variational technique. However, the
accuracy of the variational technique is dependent upon the choice of the trial
function and; in this sense;, is not a deterministic method. Furthermore; the
choice of the trial function in the variational technique is not at all straight-
forward for multi-mode propagation.

As previously discussed in Section 2.3, Williansz2 has applied the Wiener-
Hopf technique to the step discontinuity problem. Williams' method was out-
lined in Section 2.3 and the differences between his approach to the step
discontinuity problem and the approach based on the generalized scattering
matrix technique were discussed. Williams also includes some numerical results
in his paper. For the case of a/\ < .5, his numerical results are in close
agreement with Marcuvitz's results. Williams also discusses the situation when
two modes are allowed to propagate in the larger channel of the guide (region A),
including numerical values of the square of the magnitude of the reflection
coefficient RA' Williams' results will be used for comparison with the results
reported in the section.

There is still active interest in the step discontinuity problem as
evidenced by the most recent paper on the subject by Magnus and Fox33° In
«i} paper, the problem is treated as an infinite set of inhomogeneous linear
equations. They are solved formally by a perturbation technique.

With this brief introduction; now consider the problem of the step dis-

continuity in terms of the generalized scattering matrix formulation. With
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reference to Figure 'li assume that a TEM mode of unit amplitude is incident in
region A, traveling in the positive z direction. As in Section 4, the non-
zero field components Hy, Ex, and Ez can be derived from a scalar function
¢(x, z). In this case, ¥ satisfies the homogeneous Helmholtz equation to-

gether with the boundary conditions

0, x = 0,a, all z and x = ¢, z > 0. (116)

e

and

=0,2:0, ¢c<x< a (117)

s - -

s
Jz

¢ also satisfies the edge condition given by

Iv ~Pi - Q@Y a—o0 (118)

where d = [(x - c)2 + 22}1/2

Let the fields in region A be expanded in the cosine series given by
Equation (101). The mode coefficients of the refiected field are given by

Ei’n - - shB (1 . gBBy1 gBA S (119)

i
]

where Sin is the column vector defined in Section 4. Here, r®. -7 where I
is the identity matrix.

Similarly, let the fields in region C be expanded in the cosine series
given by Equation (101). Then the mode coefficients expressed by the column

s are given b
vector SCA giv y

=/ - CB B - -
S ‘:SCAa-S (1 9-SB)ISBAa (120)
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The fields in region B, of course. are identically zero.
That the solution expressed by Equations (119) ard (120) sarisfies the
edge condition given by Equation (118) has not beer shown. In order to do this,

one should examine the asymptotic behaviour of the higher order mode co-

—/ —
efficients, i.e., the higher order elements of the vectors sin or SCA° In

this section, only the reflection coefficient RA is computed. However; the

BB BB_BB
+4-

proof of the convergence of the Neumann series I + S +8 S coo 18

given in Section 2.2. Also, it is demonstrated in this section that for

0 < a/N< 1.0, the computed values for RA are in close agreement with figures

computed from the expression given in the 'Waveguide Handbook'', or alternately,
) 22
with figures reported by Williams.
BB
Now in Equation (119), let the matrix (I + S ) be truncated to a matrix
of order N, N > 1. As in Section 4, let the determinant of the truncated matrix

be denoted by A and let the determinant of the minor of the truncated mat-

(N)

rix obtained by striking out the first row and column be denoted by4411(N_1),

Then RA is given approximately by

b A11v-1)

R ~ - (121)
A a AKN)
If N = 1, then
b 1
R ~ - — (122)
A - a 1 . sBB
00

BB
where Soo is given by Equation (114) for 0 < a,\ < 0.5.
Even in this case, it was demonstrated numerically that the approximate

Fquation (121) for R

A converges rapidly to a limit as the order N of the
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BB
truncated matrix (I + 8 ) increases. The results of two sets of calculations
are shown in Tables 5 and 6. The results of the calculations indicate that in
BB

the range 0 < a/\ < .5, a truncated matrix (I - S ') of order four or five is

sufficient for purposes of accurate computation.

o
)20.
For c/a = .5 and a/\ = .339, RA = -03936J 6 was calculated from the ea-
pression for the equivalent susceptance of the junction given by Marcuvitz in
)21 .3°
the "Wavaguide Handbook". Compare this with the value R, = .392¢7°° "% calcu-

lated from Equation (121) with N - 5. The actual values of the elements com-
prising the first five rows and columns of the matrix (I + SBB) for this set

of parameters used in the calculations are shown in Table 7. In the second

‘ o
example with c/a = .326 and a/\ = .3, RA = -.215e‘320"9 was computed trom
i20.3°
Marcuvitz's figures. RA = =.215e7°"° was calculated from Equation (121)

With N = 40

TABLE 5

Reflection Coefficient RA for Step Discontinuity
(a/\ = .339, c/a = .5)

Rank N of
Truncated Matrix Reflection Coefficient
(a - sBB Ry
0]
1 -.379¢718°8
O
20.7
2 - .388¢"
(6]
3 - .391¢9%10!
Q
21.2
4 -.392¢9%1
5 - .392¢321°3
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TABLIL 6

Reflection Coefficent FA for Step Discontihuity

(a/\ . .3, c/a - .326)

Rank of Truncated
Matrix (I + SBB) Reflection Coefficient
R
A
‘ o
1 - ,210e712"6
A 0
2 - 2147198
. o
3 - .215¢720°0
o
4 - .215¢920°3

Next, consider the situation when the TEM and Tllo modes are allowed to

propagate in region A; but only the TEM mode propagates in region C. The re-
flection coefficient RA was computed using Equation (121) and Equation (122).

The results of the numerical calculations for two examples are listed in

Tables 8 and 9. One can comparc these results with those published by Williams.

For a/\ = 0.7 and c/a : 0.5, Williams computes RA .28. Using Equation
(121) with N = 5, one computes RA 2 .29. The values of the elements of the

first five rows and columns of (I + SBB) for this set of parameters are shown

in Table 10. TFor a/\ = 0.9 and c/a = 0.5, Williams computes RAlz = .25. Again

using Equation (121); N - 5, one can compute

2
RAI ~ .25, TYhus, there is close
agreement between the results reported by the author and Williams' results even
when more than one mode is allowed to propagate in region A. The dominant

B
contribution to RA comes from Equatio~ (122) with Sgo given by

A |- @0
sBB__glll K ) ?‘kaL_z can~d | K
oo a Ia |+ k T nzé a ll
1 n
(123)
-1 k ~1 k
v 2 n=1 tan l Y + tan -B—I

n
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BB

)

TABLE 7

BB

ELEMENTS OF FIRST FIVE ROWS AND COLUMNS OF (I + S )
(a/\ = .339, c/a = .5)

N =1 N = 2 N - 3 N
1.2508 - j.4326 | -.2411 + j.1416 | .1736 - j.1019 -.1445 + j.0849
-.1006 - j.1714  1.0667 + j.0551 | -.0698 - j.0396 .0667 - j.0329
.0342 + j.0583 -.0332 - ;.0188 1.038 + j.0135 -.0386 - j.0112
-.0186 - 3.0316 .0206 + 3.0102 -.0252 - j.0073 1.0265 + j.0061
0121 + j.0205 -.0144 - j.0066 .0183 + j.0048 -.0198 - j.0040




TABLE 7

BB

OF FIRST FIVE ROWS AND COLUMNS OF (I + S )
(a/\ = .339, c/a = .5)

=1 N = 2 N -3 N
_I -.2411 + j.1416 | .1736 - j.1019 -.1445 + j.0849
1.0667 + j.0551 | -.0698 - j.0396 .0667 - j.0329
-.0332 - ;.0188 1.038 + j.0135 -.0386 - j.0112
.0206 + 3.0102 -.0252 - j.0073 1.0265 + j.0061
0144 - j -0066 .0183 + j.0048 -.0198 - j.0040

-1249

-0622

.0373

.0263

02060

) 0733

) -0286

0097

) 0053

j 0034
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TABLE 8

REFLECTION COEFFICIENT R.A FOR STEP DISCONTINUITY

TWO MODES PROPAGATING IN REGION A
(m - 007’ C/a = 005)

Rank N of Truncated Reflection Coefficient
Matrix (I + SBB) RA

(o]

1 -.52¢74°6

O

2 - .52e9%8

(o)

3 -.52¢032

(o]

4 - .52¢92°2

3 O

5 -.52e9%2

TABLE 9

REPLECTION COEFFICIENT RA FOR STEP DISCONTINUITY

TWO MODES PROPAGATING IN REGION A
(a/\ = 009, C/a = 005)

Rank N of Truncated Reflection Coefficient
BB
Matrix (I + 8 ) EA
(o]
1 - .50eJ2'6
(o]
7
2 -.50e93"
(o]
1.7
3 -.50e!
O
4 -.50e91"7
(o]
5 -.50e91°7
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(I + SBB)

TABLE 10

ELEMENTS OF FIRST FIVE ROWS AND COLUMNS OF (I + SBB)
TWO MODES PROPAGATING IN REGION A

N=1 N =2 N =3 N

«9553 - 3.0762 .0164 + j.1499 .0218 - j.0906 -.0236 + j.0702
-.2849 + j.0312 1.2251 + j.0817 -.1591 - j.0450 .1359 + j.0337
0671 + ).0161 -.0615 - j.0174 1.0539 + j.0087 -.0505 - j.0087
-.0332 -~ j.0112 .0337 + j.0083 -.0323 - j.0056 1.0317 + j.0044
.0206 + j.0079 -.0222 - j.0051 .0225 + j.0034 -.0228 - j.0028




TABLE 10

TS OF FIRST FIVE ROWS AND COLUMNS OF (I + SBB)
TWO MODES PROPAGATING IN REGION A
(a/\ = 0.7, c/a = .5)
N=1 N =2 N=3 N
3_J .0164 + j.1499 .0218 - j.0906 | -.0236 + j.0702
2 1.2251 + j.0817 -.1591 - j.0450 .1359 + 3 .0337
1 -.0615 - j.0174 1.0539 + j.0087 | -.0505 - j.0087
2 .0337 + j.0083 -.0323 - j.0056 1.0317 + 3.0044
9 -.0222 - j.0051 .0225 + j.0034 -.,0228 - j.0028

0228

-.1215

,0476

-.0309

1.0226

J -0593
J-0280
J.0074
J -0038

3.0024

£9
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6. THE TRIFURCATED WAVEGUIDE
This section is concerned with the boundary vailue problem associated with
twvo semi-infinite plates in a parallel plate waveguide. Refer to Figure 3.
Let a TEM mode be incident in region C. Let ¥ (x, z) be a scalar funct:ion
such that ¢ = By. Then, Ex and Ey can be derived from ¥ using Equations (93)
and (94) with € = €°. ¥ satisfies the homogeneous Helmholtz equation together
with the boundary conditions

By

- O, x = 0, a for all z and x = ¢, h for z > 0 (124)

and the edge conditions

\“ = a d 0 5)
I EYeY 1,2 )2 9,27 (125

where d, = [(x - 0?2+ 22 1/2

and d, ==[(x-h)2+z2 1/2

Y(x,z) can be expanded in region C in the cosine series given by

(126)

-JYOZ nx JYnz
C C c €

JY, 2 %
Y = e -R_ e + X C_ cos GL—-
n. :1 n

where RC is the voltage reflectance coefficient for the TEM mode. The ampli-
tude of the incident TEM mode in region C is assumed to be one.

An expression for the coefficients of the Fourier series expansion given
by Equation (126) can be written in terms of the scattering coefficients of
the auxiliary problem and the load inr region B. Thus, one can show that

-/ -— - -
31: - 8% T . s®BrB (1 . BB gBC T (127)
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4 T -
where S : (=R, C_;, C ».+) and ¢ - (1, O, O, .oo)T. The e¢lements of B

in c’ 1 2’

in th.s case are known. As mentioned before; the bifurcated wiveguide is modi-
fied by placing a second semi-infinite plate in region B. Thus; the derivation
of the elements of I“Bfor this problem is the same as the one followed in
solving fcr the eclements of SAA in Section 2. To derive the elements of IB
from the expressions for S:: given in Table 2, simply repiace a by b, b by h - ¢,
and b by a - h.

Note the semi-infinite plate in region B is coupled electro-magnetically
to region C by the higher order rlno modes. A TEM mode scattered in region B,
traveling in the positive z direction; will not be reflected by the septum in
that region. The higher order Tlno will be reflected, however; and will con-
tribute some to the final value of the reflection coefficient RC° The dominant
term in the series expansion for R.c is given by Sgg since as shown by actual
calculation, the contribution of the higher order Tuno modes is numerically
small compared to Sgga This is to say that the second plate can be introduced
in region B without appreciably affecting the reflection coefficient RC°

The reflection coefficient RC can be computed from Equation (127) if first
each of the matrices appearing in the equation are replaced by a matrix of
order N. It was demonstrated by means of actual calculations that in the case
of both the step discontinuity and the inhomogeneous bifurcation;, the ex-
pression for the reflection coofficient rapidly converges to a limit as the
order N of the truncated matrices increases. As examples; the numerical re-
sults of two sets of calculations are cited in Tables 11 and 12. The parameters
used in the first example are h/a . .5, ¢/h = .5, and a/\ = 4. In the second

example, they are h/a - .326; ¢/h - .326, and a/\ 3. In both of these

examples, the two plates are asymmetrically situated with respect to the center



TABLE 11

REFLECTION COEFFICIENT B.C FOR TR’FURCATED WAVEGU!DE

(h/a = .5, ¢/h .5, a/\ : .4)

No. of Modes (N) Peflection Coefficient
Included in Calculations RC
o
-17 .
1 500e 3793
(o)
2 .470e378°4
(o]
3 .470¢" 3789
(o]
- ‘7‘?°
4 475 9779
[o]
6 .474 378.1
TABLE 12

REFLECTION COEFFICIENT RC FOR TRIFURCATED WAVEGUIDE

(h/a = .326, c/h = .326, a/\ = .3)

No. of Modes (N) Reflection Coefficient
Included in Calculations Rc
1 .326¢-746-9"
2 327¢-748-0°
3 32407947+8°
4 324¢~947 5"
6 .324e'347°40
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line of the waveguide described by x asz2. It is shown below that a simple
expression can be derived for RC 1f the two p.ate€s are symmetrically placed
with respect to x - a/2.

It is possible to formulate the problem of the trifurcated waveguide in
terms of a system of Wiener-Hopf integral equations. A E. He1n534 di1scusses
the special case of an arbitrary number of equally spaced semi-infinite plates
in a waveguide. The set of integral equations car be formulated in terms of
the unknown current densities on each of the semi-infinite plates. For the
case of the trifurcated waveguide, the system of 1n*tegral equations are of the

form

/

[+ o]
2 / ,
P K. (z-2")J, (z2)dz" - F (z) - 0 (128)
=1 1 J

for z >0and i - 1, 2. K (z - 2z ) are linear combinations of the Green's

I iJ
functions used in formulating the integral equations and F _(z) 1s the form of
J
the propagating modes in the Jth duct. The soiution of Equation (128) is com-
plicated, To solve the above set of equations, the Wiener-Hopf technique must be
generalized. It is necessary to factorize the determirant of the matrix whose
elements are the Fourier transforms of the kernels KiJ(z\o Ir this instancc,
one must factorize a determinant of order two. Heins has discussed this pro-
blem in general terms, but he has not, as far as it is kncwn published the
. 35 |
actual solution to the problem. Wu and Wu in a paper published much later
than Heins state that in the case of coupled Wiener-Hopf integral equations,
solutions are not known except for the cases where reduction *c a single
equation 1s possible.
The exact solution to the trifurcated waveguloe 1s possible when the

plates are symmetrically spaced with respect to the center line x - a,2 as
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mentioned above. This is discussed. next.

It is desired to find the reflection coefficient R(:for the dominant mode
incident in region C. Refer again to Figure 3. This mode of excitation can
be broken into two separate cases of even and odd excitation. Consider
Figure 11. The area of the three smaller ducts to the right of the plane of
the junction are labeled B', B", and C. In the case of even excitation
(Figure 11a), regions B' and C are excited in the TEM mode so that the incident
fields are in phase. In the case of odd excitation (Figure 11lb), regions B'
and C are excited in the TEM mode so that the incident mode in region B' is
out of phese with the incident mode in region C. Each of these problems can
be solved individually for the reflection coefficient of the TEM mode in
region C. Let Re be the voltage reflection coefficient of the TEM mode in
region C for the case of even excitation. Similarly, let Ro be the voltage

reflection coefficient for the TEM mode in region C for the case of odd exci-

tation. Then by super-position,

1
e ¢ ,‘
R 3 (Re + Po, (129)
Re and Ro can be found quite simply. Consider first the case of even
excitation. Refer to Figure 12a. Only symmetric transverse magnetic modes
will be excited in region A, i.e.; the Tlno modes where n - 0, 2, 4, ...
Because of the symmetry involved, it is possible to place an e€lectric wall at

x - a/2 and solve the boundary value problem associated with the reduced

geometry. This problem,of course, was solved in Section 3. As a matter of
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Figure lla. Even mode of excitation.
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Figure 11b. 0Odd mode of excitation.
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Pigure 12a. Problem associated with even exc.-ation.
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Pigure 12b. Problem asscciated with odd excitation,
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convenience, one can define the propagation constant Qn for region B ' by

Then, after making the appropriate substitutions in the known expressions for

CC .
S one can write
00

R = =—mmce¢ (130)

where

T a - 2c a \ 2c
* 1]k 1| k 1] k
+ 2 ngb tan E—- + tar ‘;rw- t T l (131D
2n n 2n

Consider next the odd mode of excitation Pefer to Figure 12b. Only

asymmetric transverse magnetic modes will be excited in region A, 1 e the

2

Tuno modes where n - 1, 3, § A simpler but equivalent boundary value

problem is obtained by placing a magnetic wall at x - a/2 The solution of
this problem is quite straight forward In the manner 1llustrated in
Section 3, a system of infinite order lincar algebraic cquations are derived

which can be solved by means of the function-theoretic technique The solu-

tion of this problem yvields

JXO
R - e (132)



72

where

x, - - 20 (%) (522) o ()

)
-1 k -1 k -1 k
+ 2 L (tan ,n—l+ tan I;-—-l-tnn I-—-I
n§&< n 2n Yn
-
- tan? Cs'l - t.n'1| = (133)
3n an

As an example of the application of Equation (129); consider the problem

of two equally spaced semi-infinite plates situation in a waveguide. Let

0
a/A = .3. Using Equation (129), one computes Rc = .646 e-‘j‘w'0 . PFor . _rposes

of comparison, R, was also computed from Equation (127). With N = 4,
-349.0°
%C = .643e : was calculated, which is in very close agreement.
It should be atressed again that Equation (129) is valid only for the

special case of symaetrically spaced plates. No simple expression can be

found for the more general problem of arbitrarily spaced plates.
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7. CONCLUSTONS AND SUGGEST'ONS POF FUTVRE WORK
The generalized scattering matrix technique has bec¢r 1ntroduced ard
applied to three waveguide discontinuity problems They are the E-plane
metallic step discontiruity the inhomogeneous E-plare bifurcation, and the
trifurcated waveguide. The solutions obtained arc formally exact, though in

series form.

b3
To the best of the author's knowledge, the general trifurcation problem

has not been discussed e¢lsewhere. The solutions to the other two problems,
viz., the metallic step discontinuity and inhomogereous bifurcated guide have
been derived; at least approximate¢ly, by other authors using conventional
methods of analysis.

Numerical calculations have been carried out for each of the three pro-.

blems described above. The results of the numerical calculaticns help ;o'ﬁa~;"'

demonstrate the utility and potential accuracy of the generaliéaduséitrwriqgf*'

, T T A
matrix technique applied to waveguide discortinuity problems . Kt;iQ;SRmeﬂiﬁ<“

that the series expression for the reflectior coefficient of the QQMiﬂ§n¥“ g

i
[P B .
al b S
I

“
—

mode in the frequency range 0 < a/\ < 1.0 is rapidly convergéﬁi;ffhéf&ﬁ&f?“J”'
making calculations convenient. Moreover, the numerical resulgsﬁ‘Whﬂféfﬂg
e !

possible, are compared with published results of other authors|ahd'fhe&?arm?ﬂh~*a'7 g

A s
found to be in close agreement with one arother. '

The successful application of the geéneralized scartering matrix téch@iqUﬁ

to waveguide discontinuity problems is a first step in showing its applicabil-

ity to a broader range of problems. A list of suggested problems for future
study together with the corresponding auxiliary problems 1s given below.

1. Dielectric step discontinuity in a waveguide.

2. The diffraction of a plane wave by a dielectric gratang.

The suggested auxiliary problem for 1. and 2 15 a scmi=1nfingte
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impedance wall bifurcating a waveguide. The impedance wall is char-
acterized by an impedance matrix Z.

The diffraction of a plane wave by a thick half-plane.

The diffraction of a plane wave by a solid; circularly shaped, metallic
bar.

The auxiliary problem is a semi-infinite, tubular waveguide in free space.
The asymmetrical inductive and capacitive diaphragms in a waveguide as
well as the corresponding strip grating problems.

The suggeéted auxiliary problem is the bifurcated waveguide already dis-
dﬁb‘edfin this thesis. Refer to Figure 4.

The dtudy of the electromngnetic properties of certain types of grating

: 'a;st;uctures. These structures have applications as surtace or leaky wave

.ﬂ

mantenpaa.

\C"

!A‘.

: ”The auxiliary problema for this kind of probleJ is disrussed in detail by

Mittra and Pace.19

1
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