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ABSTRACT

In the search for extremely reliable electromagnetic

communication to submerged submarines, the question arose,

* "What is the effect of the roughness and irregularity of

the sea surface on the propagation of electromagnetic waves?"

The purpose of this investigation is to obtain an engineering

-understanding of the effect of the rough air-sea interface

on electromagnetic signals used in communication to sub-

merged submarines.

The frequency of the electromagnetic wave is restricted

to the3 ELF or VLF range. In the initial part of the investi-

gaticin, the sea surface is assumed to .be a two-dimensional

(constant in one variable or direction) sinusoidal surface;

later a doubly,(three.-dimensional) sinusoidal surface is

considered. The source of electromagnetic energy is assumed

-to be a plane wave with arbitrary direction of propagation

and: polarization.

The fields on the air side of the sea surface are com-

pited.with the aid of the assumptions that the sea is a

p- ect .electric conductor and that the sea surface is only

-sg+Eghtly-rough (,i.e., the maximum slope of the sea surface

q-tis uch less than 1). The integral equations governing the

tangential magnetic fields are formulated and solved. These

-solutions show a variation of the tangential magnetic field

'(of the otder of 2 db. frn the flat surface case) depending

'7 .i
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on polarization and direction of propagation of the incident

plane wave.

The fields in the sea are computed by assuming the tan-

gential magnetic field is continuous through the air-sea

interface. The method used in these calculations is a numeri-

cal one based on finite differences.

Both from the numerical solutions and a heuristic theory

of propagation in the sea, it is seen that the perturbation

of the fields caused by the roughness of the sea surface

decays rapidly with depth if the sea wave wavelength is less

than or the order of magnitude of the skin depth of the sea

at the frequency considered; if the sea wave wavelength is

many orders of magnitude larger than the skin depth, there

is little decay (at the depths considered) of the perturbation,

so that the phase and amplitude of the fields in the sea vary

with the height of the sea vert±cally above them.
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PREFACE

This report is concerned with a problem that arises in

the theory of communication to submarines. in the search

for extremely reliable radio communication to submerged sub-

marines, the question arose, "What is zhe effect of the

roughness and irregularity of the sea surface on the propa-

gation of radio waves?" Within the content of the submarine

communication problem this report will attempt to answer

that question.

The effe.t that nonuniform or rough surfaces have on

electromagnetic propagation is not completely known. The

interaction of such surfaces with incident electromagnetic

energy is a particularly difficult problem. No attempt to

solve the above problem (where the rough surface is taken

to be the sea surface) for all frequencies and classes of

surfaces appears feasible at present. However, for restricted

irequency intervals and classes of surfaces, detailed solu-

tions may be obtained.

The radio wave propagation problem associated with

long range conmunication to submerged antennas is necessarily

concerned with "low frequencies." This follows in part from

consideration of the attenuation of an electromagnetic wave

as it propagates through a conducting medium. For propaga-

tion through sea water, the attenuation is approximately

proportional to e-  , where d is the depth belca the sea

1
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surface and 6 is the skin depth of the sea water at a fre-

quency of the radio wave (6 , f-i/2 for the frequencies

considered here). The above implies the need only to

consider a restricted frequency range for the submarine

communication problem.

With this in mind, a study of the electromagnetic

fields caused by incident VLF and ELF1 plane waves on the

rough air-sea interface has been made and is presented in

this report. Main attention is given to the fields in the

sea, somewhat near the air-sea interface (i.e., within

twenty-five meters or so of the sea surface), as these

are the electromagnetic fields presently in use in communi-

cation systems. In the VLF range, 6 for sea water is a few

meters; this implies the fields at a depth of tens of meters

(a few skin depths) are orders of magnitude less than the

fields at the sea surface. For moderate sea states, the

sea wave heights are the same order of magnitude as the

skin depth in the VLF range; the above implies the radio

signal is greatly changed as it propagates downward through

the rough sea, as compared to the signal under the flat

sea surface condition. For radio waves in the ELF range,

1VLF (very low frequency) is usually taken to be the
range from 3 to 30 kc/s; ELF (extremely low frequency) is
from about 1 cps to 3 kc/s. (James R. Wait, Electromagnetic
Waves in Stratified Media [Pergamon Press, New York, 1962],
p. 1).
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the skin depth is the order of ten to one hundred meters

so that the effect of sea roughness will be somewhat less
2

than in the VLF range.

It is clear then that an effect of the rough air-sea

interface is to change or distort the radio signal as it

propagates to a submerged antenna. That is, the rough

air-sea interface has the effect of introducing noise

into the radio signal. One of the major problems in com-

munication systems is to preserve as good a signal to noise

ratio as necessary for detection of the signal. In some

cases, as possibly (under certain conditions) the one

considered here, the noise properties of the communication

channel are determined primarily by the propagation proper-

ties of the time-varying signal path used in the system;

that is, the noise created by the time-varying path is

greater than the other noise created in the system; e.g.,

atmospheric noise, and the noise created by the time-

varying path is the limiting factor in the communication

system. Part of the propagation path to a submerged

antenna is through the time-varying rough air-sea interface.

One of the objec-ives of this study is to gain an engineer-

ing understanding of the distortion of the electromagnetic

signal by the rough air-sea interface, so that ways of

alleviating this condition may be found.

2In sea water at a depth of ten meters the attenuation
of an electromagnetic wave at 18.6 kc/s is approximately
47 db., while the attenuation at 3 cps is approximately
.6 db. A curve of skin depth vs. frequency is given on
page 55.
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There are two major difficulties in the solution of

the electromagnetic wave sea surface interaction problem.

The first is the solution of the electromagnetic boundary

value problem for a particular, completely specified rough

surface. In what follows, as is true in most discussions

of boundary value problems involving rough surfaces, only

an approximate solution is obtained for the particular

rough surface considered.

The second, and in many respects a more difficult

problem, is the mathematical description of the sea surface.
3

The description of the sea surface is statistical, and this

implies that the solution to the "sea surface-radio wave"

problem would be given in statistical terms. However, as

discussed later in this study, statistical results such as

average field strengths are not very meaningful for this

problem.

In the initial part of the following investigation,

the sea surface will be assumed to be two-dimensional

(constant in one variable or direction). The "basically

spherical" earth is replaced by a "basically flat" earth.

This approximation is made often in "low frequency" propa-

gation problems, particularly when only local fields are

considered.

3 The mathematical descriptions of the sea surface
are considered in Appendix A.

4Anderson, W. L., "The Fields of Electric Dipoles in
Sea Water -- The Earth-Air-Ionosphere Problem," Technical
Report EE-88, Engineering Experiment Station, University of
New Mexico, Albuquerque, N. M., May, 1963, P. 3.
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The theoretical foundation for the two-dimensional problem

is presented in Chapter 1, starting directly from Maxwell's

equations (a set of vector partial differential equations,

boundary and/or interface conditions, and source conditions).

It is shown that for the problem considered, Maxwell's

equations may be approximated by a linear and time invari-

ant operator, in which case it is convenient to consider

only monochromatic electromagnetic fields. The concept of

vector potentials is then given, along with a brief outline

of their theory for the monochromatic case. In the two-

dimensional problem the vector electromagnetic boundary

value problem may be reduced to a set of scalar boundary

value problems by use of the vector potentials. The scalars

used in this reduction are the rectangular components of

the vector potentials.

The formulation of the scalar boundary value problem

in terms of integral equations is given. The starting point

in this formulation is Green's theorem, involving two arbi-

trary functions. One of the functions is restricted until

it is the desired solution of the boundary value problem;

the second function is chosen to facilitate interpretation

of the mathematical formulation in physical terms. An

unfortunate result of considering a plane wave as the source

term and an infinite rough plane as the scatterer is that

Sommerfeld's radiation condition is not sufficient to render

the solution unique.
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To render the problem "well-set," a detailed discussion

of the boundary value problem in terms of integral equations

is given. The plane wave source condition is obtained as

a limit of the usual source condition with a finite source.

Also, because the virtual sources which are assumed to

exist on the scattering surface are of unbounded extent

as the scattering surface is unbounded, the radiation con-

dition is imposed again by way of a limiting process. With

the above mathematical formulation, the problem is then

"well-set" and the solution unique.

To compute the fields in the air and on the sea surface,

the sea is assumed to be a perfect electric conductor.

Later, when considering the fields in the sea, the electri-

cal properties of the sea are assumed to be:
5

i) er = 81--relative permittivity,

ii) a = 4 mhos/m--electric conductivity of the sea,

iii) Pr = 1--relative permeability.

The above assumption of a surface impedance of zero is a

usual approximation made in discussing the rough surface

problem;6 its validity is discussed somewhat later in this

5Stratton, .7. A., Electroma~netic Theory, McGraw-Hill
Book Company, Inc., New York, 1941, p. 606.

"Sea Water" in McGraw-Hill Encyclopedia of Science
Technology, Vol. 12 (Mc-Graw-Hill, New York, 1960), p. 106.

6Much of the work on "electromagnetic rough surface"
problems uses the assumption that the surface. impedance is
zero; however, this assumption is not usually verified.
(See Lerner and Max, "Very Low Frequency and Low Frequency
Fields Propagating Near and Into a Rough Sea," a paper
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report. The two-dimensional vector electromagnetic problem

may then be reduced to a set of uncoupled scalar problems

for the rectangular components of the vector potentials.

The problem subdivides into two parts, depending on the

polarization of the incident electromagnetic wave. For

different polarizations, different vector potentials are

used in the formulation of the integral equations (i.e.,

scalar boundary value problems) and this is reflected in

the different boundary conditions applied to the scalar

field considered.

As stated above, the interaction of electromagnetic

waves and rough surfaces still remains an unsolved problem.

The theoretical treatment of "rough surface problems" was

begun by Rayleigh in his classic Theory of Sound. 7 A review

of major theoretical investigations is given in Appendix B.

An extensive bibliography may be found in Lysanov's review

work8 on Bechmann and Spizzichino's monograph on scattering

presented to the URSI Spring 1963 Meeting; A. E. Hiatt,
T. B. A. Senior, and V. H. Weston, "Surface Roughness and
Impedance Boundary Conditions," in "Studies in Radar Cross
Section XL," Ann Arbor, Michigan, The University of Michigan
Research Institute, July 1960, an unpublished report;
S. P. Morgan, "Effect of Surface Roughness on Eddy Current
Losses at Microwave Frequencies," Journal of Applied Physics,
Vol. 20, 1949 , p. 352.)

7 Rayleigh, J. W. S., The Theory of Sound, Vol. II,
Dover Publications, New York, 1945, pP. 59-96.

8 Lysanov, Y. P., "Theory of the Scattering of Waves at
Periodically Uneven Surfaces," Soviet Physics Acoustics,
Vol. 4, No. 1 (Jan.--March, 195J, pp. 1-8.
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of waves.9 It may be stated that there exists no theoreti-

cal solution for the "rough surface problem." However,

under certain assumptions about the rough surface, there

have been developed methods for ap3proximate calculation of

the fields. In the problem conside!red, the sea surface is

assumed to be sinusoidal which is a particular realization

of the sea surface (for brief mathematical discussion of

the sea surface, see Appendix A), with wavelength L much

less than X, the wavelength of the eleztromagnetic wave in

free space. The technique used in the calculation of the

vector potential on the sea surface is an, "integral equation"

type method. The physical parameters or constants of the

sea surface and electromagnetic wave are such as to permit

accurate calculation of the vector potential and hence the

electromagnetic fields by this method.

The solution of the integral equations for the fields

or potential in the air, but on the sea surface, is considered

in Chapter Two. In the TM case, 10 the approximate method

of degenerate kernels is used. Because of the relative

magnitude of the physical parameters involved, the integral

9Beckmann, Peter and Andre Spizzichino, The Scatterin.
of Electromagnetic Waves from Rough Surfaces, Pergamon Press,
New York, 1963, pp. 476-491.

10TM--transverse magnetic (the magnetic field is perpen-

dicular to a fixed direction); TE--transverse electric (the
electric field is perpendicular to a fixed direction). This
notation is explained in Harrington, Time-Harmonic Electro-
magnetic Fields, (McGraw-Hill Book Company, Inc., New York,
1961), p. 219, and is used in Section 1.2.
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equations with the degenerate kernel accurately approximate

the complete integral equation. (This result is due to

Lysanov 11 and Meecham. 12) The approximate integral equation

can be solved by classical Fourier methods. The solution

shows a change or perturbation in the "worst case" for the

physical parameters considered of about thirty-five per cent

from the flat interface case.13 This is in basic agreement

14with Lerner and Max, who obtain a similar result by a

completely different method. The above result is also

shown to be independent of incident angle (except glancing

angle, which is not directly considered). Lerner and Max

considered only glancing angles.

In the TE case, the vector potential and the magnetic

field are unperturbed, which again is in agreement with

W 15 ad16Lerner and Max, Wait and Morgan. Both Wait and Morgan

llLysanov, Y. P., "An Approximate Solution of the
Problem of Scattering of Sound Waves from an Irregular
Surface," Soviet Physics Acoustics, Vol. 2, 1956, p. 190.

12Meecham, W. C., "Fourier Transform Method for the
Treatment of the Problem of Reflections of Radiation from
Irregular Surfaces," J. Acoust. Soc. Amer., Vol. 28 (May,
1956), p. 370.

13The tangential magnetic field has a variation of
approximately 2.8 db. compared to its constant value in
the flat interface case.

14Lerner, R. M. and J. Max, op. cit., p. 19.

15 Wait, J. R., "The Calculation of the Field in a
Homogeneous Conductor with a Wavy Interface," Proc. IRE,
Vol. 47, No. 6 (June, 1960), p. 1155.

16Mg,.. .c.p3
Morgan, S. PO, op. cit., p. 353.
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assumed this result based on physical principles. Wait

assumed the field was unperturbed in both cases, TE and TM;

Morgan, however, solved the TM case, just as Lerner and

Max, by conformal mapping of the static (w = 0, where c is

the radian frequency of the radio wave) problem. It is

interesting that Morgan was considering losses in "rough

wave guides" in the microwave frequency range, which shows

that the above results depend only on the ratio of relative

physical parameters, basically the ratio of L to 6, assum-

ing ,N .> L, and not necessarily on their absolute values.

To consider the fields in the sea, the integral equa-

tions for the vector potential in the sea but on the sea

surface is given. In the VLF range for the physical

parameters considered, this integral equation yields an

"impedance type" relation for the vector potential much

like Leontovich's impedance boundary condition for the

17fields. However, as this relationship applies to any

wave function, it also may be applied directly to the

electromagnetic fields. The major phenomenon leading to

this result is the great attenuation of radio waves in sea

water. In the ELF range the attenuation is not as great in

terms of physical distances and the "local impedance condi-

tions" need not hold.

17 Leontovich, M. A., "Approximate Boundary Conditions,"
Investigations on Radio Wave Propagation, Part II, Moscow:
Printing House of Academy of Sciences, 1948, pp. 5-12.
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By use of the impedance boundary condition the effect

of the finite conductivity of the sea on the fields may be

estimated. The solution originally obtained (under the

assumption of infinite conductivity) is seen to approxi-

mately satisfy the "complete" integral equation (where (

and n are assumed to be related by the impedance boundary

condition -- T being the solution to the boundary value

problem under consideration and Tn the normal derivative

of T on the surface) which, implying no basic change, is

necessary in the solutions.

The next section of Chapter Two is concerned with the

use of quasi-stationary kernels and solutions. It is shown

that p SI the "scattered field," may be considered a quasi-

stationary field, while Ti; the incident field, and Tr'

the reflected field (the field reflected if the rough sea

surface were assumed to be flat), may not. The use of

stationary kernel is valid in the computation of Ts, but

not for Ti and Tr.

Now knowing the fields on the surface, we wish to

obtain the fields in the sea. This is then a Dirichlet

type boundary value problem for the rectangular components

of the fields. In some cases the complete field may be

generated by the use of only one component of the field and

its derivatives, In this case, we may again simply use a

scalar component of the vector potential. In general, the

vector potential cannot be used to go through the rough

interface correctly as there are too many requirements on
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the potential at a rough interface. In this case, each com-

ponent of a field vector may be calculated separately.

In Chapter Three, the method used to compute the fields

in the sea is given. First, a general discussion of classi-

cal methods, separation of variables, is given along with

the results to be expected from such considerations.

Basically, the above method implies that if the varia-

tion of the electromagnetic field with respect to the x

variable is "too great," the wave will be attenuated as it

travels downward in the y-direction. In order t- see if a

particular "mode" will be attenuated significantly more

than the n = 0 mode (plane wave propagating approximately

in the y-direction, with propagation constant y), a crude

breakpoint is chosen. This is if

L < IT-- 7rn6

the mode will be attenuated significantly more than the

n = 0 mode. L is the sea wave wavelength for the sinusoidal

sea wave considered, and n is the index of the mode. The

larger the n is, the greater the variation of the field in

the x-direction and the greater the attenuation. The above

implies that the asymptotic fields in the sea (i.e., the

far fields) tend to a plane wave propagating basically in

the y-direction with propagation constant y. Asymptotically

the major perturbation is the n = 1 mode. This result is

independent of the shape of the sea surface; that is, Wait's

conclusion 1 8 with respect to this result is correct, but the

Wait, loc. cit.
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asymptotic perturbation does not have the same shape as

the sea surface; the latter is true only for sinusoidally

shaped surfaces.

For the fields near the sea strface, if the lower

order modes are not attenuated r ch more than the n = 0

mode, there should be littl. difference between the fields

pred .ed by Wait's approximations and the actual fields.

If the lower order modes are attenuated, there will be a

great difference and the field will "rapidly" become

approximately a plane wave. Practically, the large sea

waves have wavelengths so long that for much of the ELF

and all of the VLA" range, the lower order modes are "un-

attenuated" ana Wait's prediction is "r'latively accurate."

The smaller sea waves superimposed on the large ones may

have small enough wavelengths so that the field perturba-

tions caused by them will be greatly changed by attenuation.

However, the perturbations caused by the smaller waves are

relatively small and their effect on the total field is

further reduced by their additional attenuation (over the

attenuation of the n = 0 mode).

The above theory gives a good ba~i.c -nderstanding of

the effect of the roughness of the sea surface on electro-

magnetic propagation used in communication to submerged

antennas. However, to place a more precise meaning on the

term "little change" in the fields, the numerical solution

to the propagation problem in the sea was obtained. When
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the numerical solutions are compared with theory, a good

understanding of the propagation problem results.

The method used for numerical solution of the Dirichlet

boundary value problem is the "method of lines." This is

a modification of the classical separation of variables.

One of the reasons it was chosen is its close correlation

with the physical processes involved in the problem.

A finite difference approximation is used in the x-direction,

basically in the direction along the surface, to determine

the "propagation constant" in that direction. This "propa-

gation constant" should be somewhat smaller than the

"propagation constant" in the y-direction. The partial

differential equations then become a differential equation

in y which is basically normal to the surface with the

"propagation constant" determined. The differential

equation is then solved. Here again the rough surface

causes problems. Below the surface, that is, below a plane

tangent to the surface at the lowest point (trough) of the

surface, the radiation condition may be applied and the

computation is straightforward. However, above this the

radiation condition does not apply and the solution is by

iteration.

The results of the calculations are given in Chapter

Four, along with interpretation of the calculations. The

results agree with what is intuitively expected by use of

the classical arguments given above.
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In part two of this study, the three-dimensional elec-

tromagnetic wave ruegh sea surface interaction problem is

considered. The method used for the three-dimensional

problem parallels that used in the two-dimensional problem;

for this reason the development given in part two is brief

and refers to the parallel development used in part one.

The mathematical model of the rough sea surface is a three-

dimensional extension of the model used in the two-dimensional

problem.

The vector potentials are no longer useful and the prob-

lem is formulated directly in terms of the electromagnetic

fields themselves. The Stratton-Chu equations are used to

represent the solutions of Maxwell's Partial Differential

Equations. The boundary conditions (assuming the sea surface

is a perfect electric conductor) are placed in the Stratton-

Chu equations yielding the integral equations (or vector

integral equation) to be solved.

In Chapter 7, the integral equations are solved. The

kernel of the integral equations is assumed to be the static

(x = 0) kernel and the kernel is further approximated by a

simpler kernel, permitting solution by the Fourier Method,

as was done in part one. The solution yields the tangential

magnetic field on the sea surface which, as the surface

becomes constant in one variable, tends to the solution

obtained in the two-dimensional problem. No numerical solu-

tions are obtained in the sea as the propagation properties

of the fields in the sea are basically unchanged for the two

or three-dimensional problem.
__________________________________ ___ ___ __ _ ___ ___ ____ ___ ___ ---



1.0 THE BASIC THEORY FOR THE TWO-DIMENSIONAL PROBLEM

1.1 Introduction

The purpose of this chapter is to present the basic theory,

assumptions, restrictions, and approximations involved in the

treatment to be given below of the question "What is the effect

of the roughness and irregularity of the sea surface on the

propagation of VLF and ELF electromagnetic waves?"

The starting point in the mathematical description of

macroscopic electromagnetic phenomenon is Maxwell's equations.

Maxwell's equations are a set of partial differential equations,

boundary and/or interface conditions which the electromagnetic

fields must satisfy. A general review of Maxwell's equations

is presented. Then the electromagnetic fields are restricted

to be monochromatic along with the assumption that the sea

surface is stationary. In a later chapter, after the boundary

value problem has been solved for a stationary sea surface,

the effect of the motion of the sea surface is considered.

The vector potential method is introducted, and it is

shown that some electromagnetic boundary value problems may

be formulated in terms of the vector potential.

iThe concern here is only with "large-scale" phenomena
and in the past it has been confirmed that solution of Maxwell's
equations does represent the actual measurable quantities. (See
Stratton, op. cit., p.viiand Harrington, op. cit., p. 1)

16
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A mathematical model of the physical situation involving

the rough sea surface is given, along with a brief comment on

the validity of the assumptions and approximations involved in

the construction of this model. Later, some of these assumptions

are again reviewed to give a further estimation of the accuracy

of the solution.

Using as a basis the mathematical model just described,

the electromagnetic boundary value problem is formulated in

terms of integral equations. Starting with Green's theorem

for two relatively arbitrary functions, restrictions are placed

on one of the functions so that it represents the solution of

the boundary value problem considered. The other is an aux-

iliary function arbitrarily chosen as the "free-space Green's

function" which permits immediate interpretation of the integrals

in terms of physical processes. The two-dimensional electro-

magnetic boundary value problem is formulated in terms of

scalar components of the vector potentials, yielding the inte-

gral equations to be solved in the next chapter.

1.2 Review of Maxwell's Equations an3 Monochromatic Fields

In a source-free region, the set of partial differential

equations included in Maxwell's equations2 is

curl e (a)

curl + (b)

div p

div = 0 (d)

2In rationalized m.k.s.c. units which are used throughout
the remainder of this paper unless specifically stated otherwise.
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The constitutive relations which characterize the electro-

magnetic properties of the medium in which the electromagnetic

phenomena occur are

=h (a)
= (b) (1.2.2)

j ce (c)

For the problem considered here, it is sufficient to assume

, e, a are scalars and are constant with respect to variations

in position and electromagnetic fields (i.e., the medium is

linear, homogen,ous, and isotropic, which is assumed to hold

throughout the remainder). The changes in media will be re-

flecte6 in the application of boundary or interface conditions.

Also, for the moment, it will be assumed pL, e, a may be con-

sidered time invariant, and the problem solved for this "static"

condition and later correction is made for the time variation.

Under the above assumptions and the assumption (see below) that

the boundary or interface conditions are linear and time in-

variant, Maxwell's equations become a linear and time invariant

operator.

In the case where Maxwell's equations are linear and time

invariant, it is convenient to use monochromatic fields. Let

all the electromagnetic fields have a time variation of the

form cos(0t + 0), where wn is the radian frequency for all the

fields. The vector time functions can then be obtained from

the complex vectors by the relation

_e>(r,t) = Re{!(r,i.)e i Dt} (1.2.5)

where r = (x,y,z) -- the ordered triple of the rectangular

I _____ ___________________________
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coordinates of position, i.e., (rt) = (x,y,z,t) . Similar

equations hold for the other electromagnetic fields.

For monochromatic electromagnetic fields, in a linear,

homogeneous, isotropic, source-free region, the (complex)

partial differential equations that the electromagnetic

fields must satisfy become

curl i = -Z9 (a)
curl I = Y (b) (1.2.4)

div i = 0 div A = 0 (c)

where

Z Y= +, . (1.2.5)

Another set of requirements the electromagnetic fields

must satisfy are the boundary or interface conditions.

These reflect the electromagnetic properties of the different

media. It can be shown from the set of partial differential

equations,3 that at the interface between two different media

i) tangential electric and magnetic fields are continuous

[+()- () = 0

x- -( ) ] 0 (1,2.6)

where

= lim r

S -- surface (interface) bounding volume V+

3This approach that the boundary conditions are derivable
from the partial differential equations is taken by H. Bremmer
in his "Propagation of Electromagnetic Waves," in Handbuch der
Physik Band XVI Elektrische Felder und Wellen (Berlin:
Springer, 195b, pp. 424-42 .
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n -- outward normal to S (pointing out of V+)

Similarily

= lir
r- S

reV~

ii) normal electric and magnetic displacements

•i - ]= 0
•i [ +(£) - -(£] = 0 . (1.2.7)

Equations (1.2.6) and (1.2.7) are the interface conditions.

As stated above, the interface conditions are linear and

time invariant,

There are also sets of boundary conditions; they may

be applied only under somewhat idealized conditions (for

Maxwell's equations the interface conditions always apply).

A convenient though somewhat idealized model of some real

materials is that of a perfect electric conductor.5 A dis-

cussion of the boun-dary conditions at a perfect electric con-

ductor is given by Stratton;6 they are limiting cases of the

interface conditions.

i) tangential electric field is zero.

nx =0 (1.2.8)

4For the definition of outward normal, see J. W. Gibbs
(The Scientific Papers of J. W. Gibbs, Vol. Two (New York:
Dover, 1961), p. 32).

5A perfect electric conductor is a material in which the
electric field is zero.

6 Stratton, op. cit. pp. 483-484. In this case, it 4s not
assumed that the surf acc current is zero; however, this is not
a physically realizable problem.
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ii) normal magnetic field is zero.

n 0 (1.2.9)

The above set of boundary conditions is considerably more

convenient than the general interface conditions of equations

(1.2.6) and (1.2.7).

Unfortunately, the above sets of conditions (partial

differential equations and interface conditions) may still

not be sufficient to completely determine the electromagnetic

fields. A "boundary" condition may be necessary in the "far

field" if the medium is unbounded.7  That is to say, even

though in the "far field" there may be no change in the medium,

it may still be necessary to restrict the electromagnetic

fields by placing added requ;rements on them. Intuitively,

if the sources and virtual sources are bounded in extent, the

fields far from these sources (i.e., far fields) must be

"outward traveling waves." In fact, it can be shown in the

far field that the electromagnetic waves are approximately

outward traveling plane waves.

Mathematically, Sommerfeld' s radiation condition8 (for

two-dimensional space)- is

him AT { + ik} = 0 (1.2.10)
p c1 mp -- x + ki

where p =

7Ibid, pp. 485-486.

8 Sommerfeld, Arnold, Partial Differential Equations in
Physics (New York: Academic Press, 1964), pp. 169-190.

Jones, D. S., The Theory of Electromagnetism,(Oxford:
Pergamon Press, 1964), p. 93.
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and (1.2.10) holds uniformly in direction. Equation (1.2.10)

holds for a solution to the scalar wave equation and there-

fore holds for each rectangular component of the vector elec-

tromagnetic fields. The Sommerield radiation condition suf-

fices when the sources (both real and virtual) are of finite

extent. Unfortunately, in the problem considered here, both

the sources and virtual sources are not of finite extent. In

this somewhat more complex problem, the equations are obtained

as limiting cases (the computations are given below in the sec-

tion 1.4). Toward this end, a second, somewhat more general

"radiation condition" is used. It is assumed that the medium

has some losses (a > 0; k = k1 - ik2 ; kl, k 2 : 0); later the

limit as a tends to zero is taken to obtain the solution for

a lossless medium.9 The last requirement on the fields is

that they must satisfy the source condition. This require-

ment is considered in detail in the section on integral equa-

tions. The problem of satisfying the partial differential

equations, interface conditions, source conditions, and pos-.

sibly some form of the radiation condition (i.e., finding

fields that satisfy Maxwell's equations) is a mathematically

well-set problem, the solution of which is unique,

As the use of monochromatic fields simplified the elec-

tromagnetic boundary value problem, so the use of vector po-

tentials in many cases further simplifies the boundary value

problem. ITe great power of the vector potential method

9This view is taken by Baker and Copson, (Baker, B. B.,
and E. T. Couson, Mathematical Theory of Huygen's Principle,
Second Edition (oxford: clarendon Press, 1M5, P.154.
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(along with cividing the electromagnetic fields into TE and TM

modes) ±s given by SchelkunoffI0 although the method is con-

siderably older. Mathematically, the starting point for ob-

taining the vector potentials is the equations for linear,

homogeneous, isotropic and time invariant media (which is as-

sumed below).

div i = 0 - = curl 3dv = 0 ->q = curl X (1.2.11)

12
The general realtion, in a source-free region, is:

curl +I curl curl

curl + I curl curl? (1.2.12)z

However, an additional problem involved in the use of the vec-

tor potentials is the interface condition. In some cases the

simplicity gained by having to consider only a single scalar

component of the vector potential may be lost when the inter-

face conditions are applied. In general, interface conditions

are difficult to apply to potential functions (this can be

done only in certain coordinate systems and only if the inter-

face is a surface generated by one of the variables equal to

a constant); even in the many problems where the interface can

1 0 Schelkunoff, S. A., Electromagnetic Waves (New York,

D. Van Nostrand, 1943), pp. 127-129.
1 1 Browich, T. S. " Electromagnetic Wdves," Phil. Mag.,

Vol. 38, 1919, pp. 144-164.
12Harrington, Op. cit., p. 129.
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be satisfied, "ew components of the vector potential are

needed to satisfy these conditions.
1 3

In the two-dimensional problem, the vector potentials

are used to compute the fields on the sea surface which, for

the frequency considered, is assumed to be a perEect elec-

tric conductor. There is no cross-coupling between modes (TE

and TM) and a single scalar fiel may be used to generate the

complete electromagnetic fields of the mode. This can be seen

from the equntions given below which may be obtained from

equation (1.2.12).

TM Case (TM to z) 14

2
E x  1 2 - CP Hx  = "

y Y~c 3H7___-

1 2 2E Y ( i_,. + k) cp H = 0 (1.2.13)
z Y z/z

where

(v 2 + k) = 0

k =- JYZ

in particular k =co c

3Smerfeld, op. cit., pp. 246-65.
14Harrington, op. cit., p. 129. In the simplest terms

TM to z means Hz = TE to z means Ez = 0.
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TE Case (TE to z)

17x: = y x = f TX z

E ac) 2Ey =-.- y Y 7Y z q

E =0 H= 1 ( - + 2 ) cp (1.2.14)z

where

(V2 + k2 m = .

The solutions to Maxwell's equation may then be generated by

considering solutions of:

('2 + k2 ) O = 0

with the appropriate boundary and source conditions.

1.3 Physical Model for the Two-Dimensional Problem

In this section a more detailed description of the two-

dimensional problem is given, The problem considered may be

stated as determining the electromagnetic fields in the sea

when a VLF or ELF electromagnetic plane wave is incident on

the sea surface. We shall restrict ourselves to the computa-

tion of the electromagnetic fields in the sea relatively near

the sea surface (within about twenty-five meters or seventy-

five feet) along with a discussion of the asymptotic behavior

of the fields far from the sea surface. The electromagnetic

fields near the interface are the fie1as of greatest interest

in communication systems involving submerged antennas.

~ _NM_
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The first consideration in setting up the model for the

above electromagnetic boundary value problem is to define or

at least characterize the term "sea surface" mathematically.

A discussion of the sea surface is given in Appendix A.

As the mathematical model of the electromagnetic boun-

dary value problem with the rough sea surface it will be as-

sumed here that:

1. The "basically spherical" earth may be replaced by a

"basically flat" earth. This is an often made approximation in

"low frequency" propagation problems and it reduces the compli-

cated spherical geometry to a plane surface geometry. In the

problem considered, only the local fields are of interest,
15

and the above approximation is quite good; however, it does

introduce some mathematical complexity as now the virtual

sources which represent the scattering effect of the sea sur-

face are no longer bounded in extent.

2. We shall take as a deterministic mathematical des-

cription of the sea surface

y(x,z) = A cos ksx = 9(x).1)

This is a surface that varies sinusoidally in the x-direction

and is constant in the z-direction (see Figure 1). As dis-

cussed in Appendix A, this is a particular realization of a

random process, Consideration of the statistical signifi-

cances of this fact is postponed until Chapter 7. The

1 5Anderson, loc. cit.
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relative magnitudes of the physical parameters is of great im-

portance in the solution of the integral equations governing

the fields on the air side of the sea surface. The relation-

ships are
1 6

ksA < 1/7 usually ksA << 1

L << 1 and k << 1s

? >> L and k A <<< 1.
0

Where L is wave length of sea wwve,

ks =-- -- wave number of the sea surface

k ° = 2 -- wave number of the radio wave in the air

? is wave length of the radio wave in air.1 7 We note that the

assumed shape of the wave is time invariant (i.e., the sea sur-

face is represented as a standing wave). In practice, sea

waves are actually traveling waves that even change their shape

with time. However, the velocity of the electromagnetic waves

in air is so much greater than the sea wave velocity that as

far as electromagnetic fields are concerned. the sea waves can

be considered stationary. However, the velocity of electro-

16See Appendix A for these relations.

17For the problem considered here, typical values of the
parameters are: 108are:~ ~ 10 0 meters

103  L > 10 meters

25> A 0 meters
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magnetic radiation is considerably less in sea than in air,

and as a result the effect of the sea wave velocity is more

pronou,2ed in the sea than in the air. In Section 2.9, the

effect of the sea wave velocity on electromagnetic fields in

the sea is considered.

3. The source of the electromagnetic fields is a plane

wave incident on the sea surface. One of the reasons for such

dn assumption is that in the theory of ELF and VLF radio wave

propagation, plane waves play a major role, In both ray theory

for VLF and mode theory for ELF, a general feature is the local

fields are represented approximately as a sum of plane waves.

The incident plane wave propagating in an arbitrary direc-

tion above the rough sea surface may be resolved into two com-

ponent plane waves; one propagating in the direction in which

the surface varies and the other propagating in the direction

in which the surface is constant A second resolution of the

problem is made on the basis of the polarization of the incident

field (see Figure 1). To solve completely the plane wave two-

dimensional surface problem at a fixed frequency and for a

fixed or given surface, four boundary value problems must be

solved with arbitrary angles of incident for the source waves.

lbThe sky wave in ray theory is represented as a sum of
rays which are approximately plane waves [see H. Bremmer,
Terrestrial Radio Waves (New York: Elsevier, 1949), p. 89).
In mode theory, the modes are TE or TM plane waves. The
ground wave is also usually represented as a plane wave.
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It is to be noted that the use of plane waves as the

sources introduces some mathematical complexity over the simple

line source. The source condition for the plane wave source is
9

computed as a limit of the source condition of a line source.

4. To compute the fields on the air side of the sea sur-

face, the sea is assumed to be a perfect electric conductor.

The sea is a very good conductor at the frequencies considered

here.19 The assumption that the surface impedance of the sea

is negligible does not greatly effect the tangential magnetic

fields which are used to compute the fields in the sea. With-

out this assumption the use of vector potentials would be

greatly limited and a somewhat more complex problem would re-

sult. The justification of letting the surface impedance be

negligible is considered later.

After computing the fields on the air side of the sea sur-

face, the fields in the sea are considered on the basis that

the tangential magnetic fields are continuous. The electro-

magnetic properties of the sea are assumed to be:

19 0= 577 -- "impedance" of air.

- = c I+- "impedance" of sea.

- = =(l+j) (.17) f = 30 kc/s a =4

as nc -

c cI <<< -o f < 30 kc/s
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4 nihos/meterl
mJ

= 4vlo-Fhefnry/meter]
L4

E = [farad/meter

14r

Using assumptions one through four, the physical problem

of the electromagnetic wave-rough sea surface interaction may

be given a rigorous mathematical formulation.

1,4 Formulation of the Electromagnetic Boundary Value

Problem in Terms of Integral Equations

In the past few decades there have appeared numerous works

in which important results relating to the solutions of boundary

value problems were obtained by techniques involving the use of
20

integral equations. Integral equations have been used exten-

sively in the theoretical analysis of boundary value problems
21

(e.g., proofs of theorems of existence, 
uniqueness, etc.).

However, integral equation techniques have only mor. recently

been applied with success to the practical solution of

20Mikhlin, S. G., Linear Integral Equations (Delhi: Hin-
dustan Publishing Corp., 1960), pp. 175-213 .

I Integral Equations (New York: Pergamon
Press, 1957), PP. 137-333.

Courant, R., Methods of Matbematical Physics, Vol. II,
Partial Differential EquatT-ons (New York: Interscience, 1-62),
pp. 240-320.

21See Mikhlin and Cournt references directly above

(footnote 21.
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boundary value problems (e.g., the work on static elasticity).22

These recent successes in the use of integral equation tech-

niques have led to their application to problems which cannot

be solved readi.y by other methods.

The same story basically holds true in electromagnetic

theory. For electromagnetic fields, the usual integral formula-

tion is in terms of the well-known formula of Stratton-Chu (in-

tegral representation of the solution to Maxwell's equations in

terms of the boundary values). 23 However, only recently has

the Stratton-Chu formula and the integral formulation of the

reciprocity theorem24 been used for the practical solution of

electromagnetic boundary value problems.

One of the major advantages of the integral equation ap-

proach is that the boundary and/or interface conditions along

with the source conditions are immediately considered at the be-

ginning of the problem. Also, because the integral equations

represent actual processes involved in the physical problem,

i 7Muskbelishvilli, N. I-, Singular Integral Eqations
(Netherlands, Groningen: Erven VLY oor3.

, Some Basic Problems in the
Mathematical Theo-r of Elasticit (Netherlands, GroIngen:
Erven V. Noordhof L955).

23Stratton, op. cit., pp. 464-468.
24GodziwskiZ., "The Surface Impedance Concept and the

Structure of Radio Waves Over Real Earth (IEE, 1961).

Feinberg, E. L., "Propagation of Radio Waves Along an
Inhomogeneous Surface," Nuovo Cinento, Series 10, Vol. .1,
no. 1 Suppl., 1959, p. 66.

Harrington, op. cit., pp. 116-120, 517-338, 340-365.
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the integral equations permit direct interpretation in terms

of virtual sources. -, The use of the concept of virtual

sources is very useful in the mathematical formulation of the
26

electromagnetic boundary value problem. Further, by inter-

preting the integral equations in terms of actual physical pro-

cesses, the problem of obtaining valid approximations is con-

siderably reduced. Generally it is easier to see valid ap-

proximations in physical terms rather than in mathematical

terms.

In a very practical vein, the integral equation method in-

volves a reduction of "dimensionality," that is, a two-dimen-

sional boundary value problem can be represented as an integ-

ral over a one-dimensional space; similarly, a three-dimen-

sional boundary value problem leads to an integral in two di-

mensions. From the area of pure mathematical analysis, though

it has great practical implications, integral operators are

considerably easier to handle than differential operators, par-

ticularly when approximations are necessary.

The above reasons of course are not necessarily suffi-

cient to cause all electromagnetic boundary value problems

75Stratton, op. cit.., p. 467.
Baker, B. B. and E. T. Copson, op. cit., p. 114.

2 6Waterman. P. C., "Scattering of Electromagnetic Waves
by Conducting Surfaces," Wilmington, Mass.: Research and Ad-
vanced Development Division Avco corpo.ation, Dec. 1962, an
unpublished report.
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to be formulated and solved in terms of integral equations.

A major disadvantage of the integral formulation is that often

to compute the fields at any point an integration is necessary.

If only the far fields are neJed, asymptotic expansion of the

integral may be used to obtain the fields in closed form which

does exhibit directly the variation of the field with respect

to position. In the near field, an integration of an integral

with a very complex kernel is needed for each point at which

the field is to be computed; this is very laborious even with

high speed computers.

For the rough surface problem considered, the integral

methods of formulation are relatively convenient. The classi-

cal methods applied to differential operators (such as sepa-

ration of variables) is extremely inconvenient, particularly

in that the unknowns in this case are not susceptible to a

physical interpretation that permits approximation. However,

some gen,'al qualitative results can be obtained by argxments

based '-A the separation of variables.

5.he usual starting point for the study of electromagnetic

boundary value problems by use of integral equations is

Green's theorem.27  In two-dimensional space, Green's theorem

takes the form
JfcP() P 72 -P v 2 cp( )}dS =fc()~~

7 X;aplan, Wilfred, Advanced Calculus (Reading, Mass.:
Addison-Wesley, ±953), P.275.
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where

= (x,y) -- ordered pair of rectangular position

coordinates in two-dimensional space.

cnP) = • grad cp( ) -- normal derivative.

cp. ' are two arbitrary scalar functions of position wi.th some

requirements cn their derivatives.

Surface S is bounded by a closed curve C.

The function will be used as an auxiliary function and

restrictions will be placed on cp such that it will be the
28

solution of a scalar boundary value problem. As a first

step in the above process, let

2 2(v2+ k ) *(, ) - )
(V 2 +k2 c(P, e- 8(p-p") (1.4.2)29

where

p =X x + y y -- the position vector; i.e., cp and

satisfy the Helmholtz equation.

Placing restrictions (1.4.2) into (1.4.1)

0 - j 0
0+ , ' (su -(, n ,')d

c (1.4.3)

2bThe solution of Maxwell's ec.. tions (i.e., the
electromagnetic fields) is obtained from the solution of
the scalar boundary value problem.

29The 6( -_P) symbol represents a source term. The use

of this notation is given in Friedman, Principles and Techniques
of Applied Mathematics (New York: John-TT1^ey, 975F, pp. 134-
rb,__ Where the mathematical properties of the "6 - function"
are given.

.. -



where

SUC denotes the union of the sets S an C (i.e.,o, the points

belorainq to ei.ther S or C or both);

oCS denotes 5 is an element of S (i.e., is a point in S.

Now to form an integral equation, let p'- C. The I is aC
"singular" or "discontinuous" integral. In Appendix C it

is shown that

p,'-c 'c (1.4.4)P'es 1"zs
p" eS

l1im cnp , ) P, )C a (.
n' , 0 0 "P c

6" es P's (..5)
p' CS

Applying (1.4.4) to (1.4.3)

Equanion(}(1.4.6)

Equation (1.4.6) is the bas -ic integral equation used below

4n the mathematical formvlation of the ej.ctromagnetic boinda:r

value problem. It holds only for closea carve C.

Equation (1.4.6) may be rewritten -,,ith ((,0') = G(P,5')

(this is a restriction of the general equation), where G(o_,')

is the :free-space Green's function."

i 4( ), 
(1

C"(0' 0) 2C(G(, + n7'n, , ')-
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Cp given by (1.4.8) satisfied the Helmholtz equation (1.4.2);

a further requirement of the electromagnetic fields is that

they must satisfy a source condition. In (1.4.8) the source

condition is represented by the term with e as a factor.

e is the strength of the source, e G(, ,") represents the

incident field, i.e., the field at p' due to source Ce at P"

if no scatterer were present { i(0',p") = E:G(P", ')} . The

field represented by the integral then has the physical in-

terpretation as the effect of the scatterer. The scattering

term is immediately interpreted in terms of virtual sources

on the scattering sur ace (or curve).

For the boundary value problem considered here the

scattering surface (or curve) is of unbounded extent. The

closed curve C representing the scatterer is composed of two

parts:

i) f-- curve (surface) which is the mathematical

representation of the sea surface,

ii) Cm -- the infinite semicircle (hemisphere) which

closes C.

For purposes of analysis, the field cp under consideration

is divided into three parts.

=" Ti + C r + CPS (1.4.9)

where

c. -- the incident field la plane wave in the problem

consiC-red here; however, the source condition for the plane

wave will be obtained as a limit of source conditions for

finite sources, i.e., the incident field considered just
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below is a cylindrical wave resulting from a finite line

source).

(r -- the reflected field (a plane wave in the problem

considered here. It is the reflected wave if the scatterer

were a plane, i.e., the specularly reflected field basically).

PS -- the diffused scattered field (which represents

the effect of the roughness of the scattering surface). It

satisfies the Sommerfeld radiation condition.

The integral equation (1.4.8) will now be applied to

each term of the sum on the right-hand side of (1.4.9).

For the incident field cpi

C~~i(L +j Pin
C

- Gn(.,p')p.( , ")}dC] (a
(1.4.10)

- 2[ i( , ") + JF i(,"G )

C
- G n(F,')CPi(PP" )}dt] (b)

as

[C Gn CP }dt] =0 (1.4.11)
Co

by Sommerfeld's radiation condition.

(1.4.11) need only hold if the sources are of finite

extent. To obtain the equivalent integrals (i.e., the integral

representing the incident field) to (1.4.10 and 1.4.11) when

the sources are unbounded in extent (i.e., the source or

incident field is a plane wave), a limiting process is neces-

sary.



'9

To start the limiting process, let

i(  I ') = {- k eikg (2){k( i'- i (:L.4.12)

p

where i. is to be the unit vector in the direction of propa-1

gation of the incident plane wave, and g is a parameter used

in the limiting process.

Equation (1.4.12) represents the field caused by a line source

_> ik9
at P" of strength iV/7k e . As intuitively expected, the

source point distance from the observation point must become

unbounded (tend toward infinity) and the source strength also

becomes unbounded to obtain a plane wave at the observation

point. Both the above occur as g - w.

Applying the limit g -> to equation (1.4.11) for the CP.1

given by equation (1.4.12)

o0 lim [f {~cin( _P)G(kj_>_> 1') - G kpp )PIt

(1.4.13)
-i~i• S+ik~i" Gk .

heIp-p' I) - Gn(k o-P l ik)e

(1.4,14)

as +ik1 . .p2

lim e(i') =e 1
9->00 a plane wave.
lim CP (') in' • L ke+ikfi' '

Equation (1.4.14) represents the relation

0 = i i(5)G n(-,5') - in( )G(,'dt (1.4.15)

which implies

0 cp(') + 2F{CPi( )G n(,P') - cjn(P)G(P,P')}dt (1.4.16)

where o. is a plane wave.
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Then (1.4.10) holds even if the source is unbounded in extent,

i.e., (pi is a plane-wave.

For the reflected field cr

( r(5) = 2S cPrn,(5')G(F, ') - Gn,(U,Fs)CPr(')dtL' (a)
C

= 2S {Prn,(F')G(p, ') - Gn, P,5')Cr(p ) d4' (b)

C (1.4.17)
as

-f Gnt(PP~ ( 0 (1.4.18)

by second radiation condition.

For the scattered field ps

Cs( ) = 2 1sn,( t)G(nCP) - nd (a)

2f - Gnt(F., PC)s(p')}dd' (b)

Z(1.4.±9)

as

a . ( G( , 'n) -G , , ')(Ps(F')}dt' 0 0 (1.4.20)

by Sommerfeld's radiation condition.

Adding equations (1.4.16), (1.4.17), and (1.4.19),

@r( ) + CP(P) = Pi(5) + 2 {Cn
C

- no(F, ,)C(N')dl, (a)

c0( ) = 2{cpi(5) + L n,(P)G( , ') - n

Lc (b)

(1.4.21)
Equation (1.4.21) is the integral equation for the

field T such that

1. CP satisfies the Helmholtz equation (1.4.2) with C = 0.

2. p satisfies the source conditio-n (i.e., the incident
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field is a plane wave).

3. Cp satisfies the necessary radiations (as seen above).

To compute the mathematical formulation of the boundary

value problem, it remains only to apply the necessary boundary

or interface conditions required of cp on the interface C.

While the complete boundary value problem may be formulated

by setting up the integral equations on each side of the

interface and applying the interface conditions; it is very

convenient to assume the lower half-space bounded by d is a

perfect conductor. The effect of this approximation is given

below. The above assumption changes the interface condition

to a boundary condition. It is also convenient to consider

the field divided into two parts:

1. TE to z.

2. TM to z.

The TM to z part may be generated by a single component

of the vector potential X. For the basic equations, see

Harrington30 or Section 2.3. The boundary condition is Cp = 0.

This yields Etan =0 and H =0. Cn is related to the
tnnormal n

tangential H field.

The TE to z part may be generated by a single component

of the vector potential . The boundary condition is C0n = 0;

this again implies Et H = 0
tan normal

The boundary value problem may then be formulated in

terms of a single scalar.

The TM case, the integ 1 equation is:

Harrington, op. cit., p. 129.
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Cn )Gk0 11 -t 1 p( (1.4.22)

The TE case, the integral equation is:

cp() 2cpiL() + 2fG (k ' cp( 'd-t' (1.4.235)

* (1.4.22) and (1.4.23) are the integral equations to be solved

in the next chapter.

4F



2.0 SOLUTION OF THE INTEGRAL EQUATIONS

2.1 Introduction.

In this chapter, integral equations (1.4.22) and

(1.4.23) will be solved. From these solutions, the fields

on the air-side of the sea surface can be found, Also

considered are the integral equations in the sea. From

the approximate solution of the integral equations in the

sea comes an impedance type relation between c and cn which

holds in a restricted frequency range and for a restricted

class of surfaces. Using this impedance relation, a simpli-

fied integral representation in the sea is given. Then a

brief comparison of the solutions obtained here with those

obtained by other methods is presented (a more detailed

discussion of other methods used to solve "rough surface"

problems is given in Appendix B). The following sections

are devoted to the question of the validity of some of the

assumptions used (such as, if the sea can be considered a

perfect electric conductor in determining the fields in

the air). Lastly considered is the effect of the motion

of the sea surface on the fields in the sea. Wait's

approximate solution is used in this discussion, as the use

of the more accurate numerical solution would only compli-

cate the discussion without adding any new information.

'Wait, loc. cit.

43
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A recent review work 2 considering the practical solu-

tions of integral equations gives as two of the nine or so

available methods

1. Methods of finite differences and sums.

2. Method of degenerate kernel.

Although numerical computations using finite differ-

ence methods have recently been shown to be a useful tool

in the solution of integral equations, such computations

proved to be impractical for the sulution of integral

equations considered here. The main reasons for the

difficulty were:

1. The curve C is unbounded. The integral equations

solved by the finite difference method have had a finite

interval for the range of integration.

2. The kernel of the integral equations does not

decrease rapidly enough with distance from the source point

to allow useful approximations (i.e., cutting off the range

of integration to a small interval about the source point).

The computations therefore could not be made sufficiently

detailed to yield a useful solution.

2Walther, A., "General Report on the Numerical Treat-
ment of Integral and Integro-Differential Equations,"
Symposium on the Numerical Treatment of Ordinary Differen-
tial Equations, Integral and Integro-Differential
Equations -- Proceedings of the Rome Symposium, 1960,
Organized by the PICC (Basel, Berkhauser, 1960), p. 649.

______ _____ ______ 4 - -. -
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For the solution of one of the integral equations

(1.4.22), however, a modified form of the method of degen-

erate kernel was found to be the most practical.. The

general solution, using the degenerate kernel method,

is to expand (and approximate) the kernel of the integral

equation as follows:

NK(x, ) ui(x)vi(g) (2.1.1)
i=1

y(x) - t(x) + X K(x, )y(Z)d(

(2.1.2) is the integral equation to be solved.

N

y(x) = t(x) + ciu (x) (2.1.3)
i=l

(2.1.3) is the solution of integral equation (2.1.2) with

the approximation (2.1.1) where c. is the solution of a1

system of N linear equations. In the problem considered

below, this approximation is modified and takes the form

K(x,g) ,j K(x-g). (2.1.14)

With the aid of this approximation, the resulting integral

equations may be solved by classical methods (using Fourier

Series).4 The approximation is valid because of the relative

values of the physical parameters of the problem.

3 1bid, p. 654.

4Morse, Philip 14. and Herman Feshbach, Methods of
Theoretical Physics, McGraw-Hill, New York, 1953, Part 1,
pp. 960-962.
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The solution of (1.4.23) is approximately the unper-

turbed m, as is easily verified.

The solution to the integral equations in the sea is

based on the high rate of attenuation for el-ctromagnetic

waves in sea water.

2.2 TM Case.

The integral equation to be solved in the TM case is

Tpn(p') G(k 0  - 'Ild,' = ci(E) ' (2.2.1)

C

where: k - wave number of the electromagnetic wave (in air),

i zG(klxl) = o )o2(k Ix) - the free space (two-

dimensional) Green's function.

It can be shown that if
2

(g')2 << 1 (kog) << 1
max 0max

where: 9(x) is the equation of the sea surface,

g'(x) is the derivative of 9 (i.e., the slope of the

sea surface) with respect to x.

Then
(Pn' .(') G(ko0 1 -' P)d' I% (Pn (' )Gf (koI - P' I)d-t',

C C

(2.2.2)

where:

G/kol;_ , H x = eo2 + (g(x) - g 2(,)12)

f 1--, _ (2)Of (ko- I) = HO )(ko[X-X' 1)"
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The argument leading to this result is presented in the dis-

cussion on the three-dimensional problem.
5

The integral equation then becomesI -' ) Gf(kol 'l)dt' = (2.2.3)

C

This equation may then be solved by Fourier Series.

To solve the integral equations for T not let

C -iknx -ikx inkx ikx
= a3 e n e x. ane s e i

n=- CO n=- COi

(2.2.4)

( O m ikx -ikx C -iksx -ik x
=i ( =bme e bme e

(2.2.5)

where k 2r/L
s

cc.

The validity of equations (2.2.4) and (2.2.5) is estab-

lished by considering the motivation behind such expansiors.
-ik x

The factor e - is present because the incident field

(source) has such a factor. The sum expresses the fact that

the periodic surface implies a periodic virtual source

-ik .x
(besides the factor e x1 ) which in turn implies a periodic

field. The expansions (2.2.4 and 2.2.5) are the most general

mathematical statement of this periodicity of the fields.

5See page 121. This argument is given for the two-
dimensional problem by Meecham, loc. cit., and Lysanov,
loc. cit.
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It should be noted that

SGfko e e-i(nk + kxi)X I )ikx x

C 2I~nK5 +I~c)2_ k2

(2.2.6)6

Then substituting equations (2.2.4) and (2.2.5) into the

integral equation (2.2.3) and using formula (2.2.6), the rela-

tions between the sets of an s and bn Is may be found by

equating the coefficients of like terms in the series.

Equation (2.,2.6) is obtained from the relations given

above.C W x

H (2) (ko~xI)& i" dx = 2 H( )(kx) cos kx dx
J- ~10

0<k<k o

(k x) cos kx dx =
ok= 

kO

0 k0 <k<

(Bateman Manuscript Project, Vol. I, McGraw-Hill, New York,
1954; p. 43, equation No. 1.)

0 0<k<k 0Jo N0 (kx) cos dx = -1

Jk k 0 < k<
0I

(Bateman Manuscript Project, Vol. I, McGraw-Hill, New York,

1954; p. 47, equation No. 28.)

Therefore, equation (2.2.6) is obtained
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The relation be'-ween the a 's and b 's is
n n

= (2(nk + i)2 k ) (a)an  b n ((ns kx -o

a = 2ikyb
0 yio0

a a =a +2nk b- n- n s n

= e (e k y Y g  ) g(x) A cos (ksX)

b = 1  -(kyiA)2 + ... ) +2ky.

bl = b_ A .A (kA3 +kyiA1 U kyi) + "'"
bi b lk.)n

bn = n  (yiA

a -2ik i  (b) (2.2.7)
o yi

a_ =a - ik s k yiA (c)

a n(k ,A)n n > 1 which may be neglected because
of the factors (kyiA) <<< 1.

-2i

S/k2 k2 k k
S (2)(kolXl)e-i = - 0

~0
Sk= k

0

It is assumed that kxi + nks i k ° for any integer n (note this

assumes kxi / k for n = 0). This assumption is useful in

avoiding the question of the convergence of the integrals

above. The physical phenomena occurring when ks = kxi leads

to a "resonance" in the fields. This "resonance" is a physical

occurrence; however, in some mathematical formulations the

fields become infinite, which is not a physical possibility.
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-ik .x

2ik (1 + k cos k x)e xl 2qni(X)f

{1 + k 9(x)} (2.2.8)

where ni(x)f is the normal derivative of 9i on the flat

surface. The perturbation compared to the flat interface

i s S A whi- Ir, than about thirty per cent.7

2.3 TZE Case.

In this case, the integral equation becomes:

() 2c'i( ) + 2f 9(3)Gn (2.3.1)

C

in the flat interface case, the solution is

(p) = 2(pi ( ) . (2.3.2)

Using the static kernel (Green's function) and placing

the above approximation (equation 2.3.2) into the integral,

the integiral becomes zero. Therefore, no correction is

necessary. The justification of the use of the static kernel
is considered in Section (2.8). In this case, the solution

is

() = 2i() - (2.3.3)

This is equivalent to the condition Htan 2(H tan)i.

7As ,tan P , the perturbation (maximum derivation) in

Htan is 2ksA or about 28% for ksA g 1/7.



51

2.4 Integral Equations in the Sea.

For the fields in the sea, the integral equation (1.4.21)

still holds only with = 0.

, qP() -2rp ,(') G(ko0-P I) )- )
C

'" (2.4.1)

where k c  the complex wave nimube- in the sea for

electromagnetic waves.

In the VLF range, for usual sea water (a = =

JkcI 0< This implies G and Gn tend rapidly to zero for

Ip-p' > 0. In thi.. order of 10 meters G and Gn become

81
negligible. If ( and pn are relatively constant on the

sea surface (i.e., Q and 9n are relatively constant for

distances of the order of ten meters or so (36) along the

sea surface) and the sea surface is relatively constant over

these distances; then:

To es-mate the accuracy of neglecting G and Gn after

a distance of about ? /2 from the "source point" the asymp-
c

totic approximations to G and Gn will be used (the errors

in the asymptotic approximations are sufficiently small to

be neglected here).

i* -ikcPi* G~ . 1  2 e
G. - -1 (-ic) e cP

Gn*4p(

0
f G(kxdx --

S-------i~-- -- '
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fq(') G, (k q02(I d (2.4.3
i P n c (P 2k .R 3

G (kj c x)k~ Sx f x)dx - (.0062)
A c 2 21 cl 77-F21k c

(X) I ex 2 /2 _ normal

j207 distribution

S0G (k Cx ) d%-c:g l G(k Cx)dxjC c1  .003

Gf G(kcx)dxI

1 fo

I 'c/2G~k~dx ~ f zO(x)dx :5 .006 << 1

I ihc2 (k x)dxI C2  SG(k xdxI

For many cases 02 may be the order of 1 or greater; this

occurs as R r*While the important contribution to the

ittegra1 no longer occurs near the "source point" the result

is the same; that is

which is all that is required for the impedance boundary con-

dition.
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where R - radius of the curve.9

For IkcIR >> 1 which holds in the VLF range and for the

sea states considered:
i
- n "(2.4.4)

* c

This is an impedance type relation between q and qn on the

sea surface.

To estimate cp( ') Gn , (k c t - 'l) dt', again (p')

is assumed constant over the meaningful range of integration.

For small H4-*'I (i.e-.J. 'a < < 1) the static Green's function
c

may be used.

41. +Pn = x

then for p 0

G1' -Cox +
jl+ (%')7 (x2 C 2)

The Taylor series expansions of g(x) may be used for x small

. "x 2
: Gn,(kcP) y-, ... -R

(1j+(g,)2 x 2 (1+(g,) 2 )

, )21)3/2
R - radius of curvature of +he curve

(surface).
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As the frequency decreases into the lcrzr ELF range,

IkcI decreases and for some sea surfaceQ t:e relation IkcI

R >> I no longer holds. The impedance relationship between

(p and Tn however, may still be an excellent approximation.

This relationship (2.4.4) is a Leontovich type of

10boundary condition, and may be expressed in terms of the

Using the above result and the assumption g" is relatively

constant over the meaningful range of integration (i.e.,

L >> Xc) for the problem considered here:

( ') Gn  (klPI-I)dt = T(G 2S (2)(k )kn dt,

C (5 R x H( )(k x) d

of c/2 or so along the surface, ,then:

C -~ -

Gnu ~ ~~2k R

--- n' c

10Leontovich, loc. cit.

Brekhovskikh, Leonid M., Waves in Lavered Media, trans-
lated by David Liberman, Academic Press, New York, 1960, pp.
14 15.

S ,-!~~Leonov1 h Ilc. ci.11 l~l l l!-
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fields as:

E H 2.
tan = c Htan (24.5)

This is true for the fields in the sea ,owever, as the

tangential fields are continuous at a-, n-.erface (2.4.5),

it also holds for the fields in the air.

2.5 Simplified Integral Representation in the Sea.

The usual integral representation of a wave function

(with .= 0) is

= Sc G(kcIp-''H ) G(kc il-p ~ft

(2.5.1)

which includes terms representing virtual sources of two

types:

Pl( ' C {G(kcl -'I) Cn( ) }dt represents the fields

of a "single layer" source, (2.5.2)

T2 ( P) = {Gn(kcI P -P'I) CD() } dt represents the fields

C

of a "double layer" source (dipole). (2.5.3)

In electromagnetic problems, these types of sources are
11

the electric current and the magnetic current sources.

It would be of interest if a simplified integral representa-

tion of the wave function could be found, particularly if the

fields were to be evaluated by numerical calculation of the

llStratton, op. cit., p. 467-.

im A
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integral. The fields of a "double layer" dre particularly

troublesome, because the calculation of the norwal deriva-

tives involves use of the derivative of the equation for the

curve C. If there exists some reason to believe the fields

are relatively insensitive to changes in the surface, a

simplified representation would be possible; however, if

the field depended greatly on the shape of the surface, no

appreciable simplification would be possible. In the problem

considered, the fact that the electromagnetic wave is attenu-

ated rapidly in sea leads- to the belief that a simplified

represeitation should be possibl.

Consider representing T(P') using sources of a single

layer only,

£() f() G (kcI'- d (2o5.4)
C

If, in the sea, f can be considered reasonably constant the

I is given approximately by

C
() GP f--- G )  (2°5°5)

c

or 2k

f c(G) (2-5.6)

Equation (2.5.6) yields the function f needed such that the

representation of equation (2.5.4) tends to correct boundary

value on-C. However, this does not mean (2.5.4) is a correct

representation of the solution to the boundary value problem.

Cn(-') has yet to be considered.



58

n (o') = f ()G n(kc1'P-"I)dt

i 2k k
m'-~ ~ f~' -(-) q() G _C q(, )25.7)

2 2 1

Equation (2.5.7) represents the impedance boundary condition of

Section 2.4,

then

p p 2- - - (2.5.8)
P ~ 1

Equation (2.5.8) is an accurate solution to the boundary value

problem in the sea only under restricted conditions; the condi-

tions are basically those assumed in Section 2.4.

2.6 Comparison with Other Theories.

The basic results from the solution of the integral equa-

tions in the air are:

TM Case

%n(x) s 2ikyi(l + ksA cos ksx)e-ikxiX = 2%ni(x)f(l + ks (x)).

(2.6. 1)
TE Case

cp(x) s 2e-i(kXix + kyig) 2cpi(x)f. (2.6.2)

In the TM Case, Lerner and Max and Morgan use conformal

mapping of the static (W = 0) problem to obtain the tangential

magnetic field; 1 he justification of such a procedure is con-

sidered in Section 2.8. The results of Lerner and Max basical-

ly agree with the result given above. The agreement is not com-

plete, however, as Lerner and Max consider only grazing inci-
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dence, and the above solution includes all except grazing inci-

denc-e. The tarngential magnetic field is obtained from equation

(2.6.1) by simply setting Htan = n Morgan's physical model

includes ' !c, which is excluded from the model of the problem

* used here. Morgan states, however, that there will be a change

in the fields in the TM case. Wait assumes that the fields on

the surface are relatively unchanged. This is of course ap-

proximately true even in the TM case (at least as far as the or-

der of magnitude of the fields is concerned) for the usual set

of physical parameters considered here.

In the TE case, Wait and Morgan again assume on physical

grounds that the fields are unchanged. Lerner and Max obtain a

similar result by solution of the static problem.

Another general method used to solve the "rough surface"

problem is the perturbation theory (see Appendix B). Winter12

used the simplest form of this technique to obtain the fields

on the sea surface. The method used by Winter is applied below

to the scalar functions to learn if the results agree.

"Since the roughness scales of the sea surface

are extremely small compared with the wavelength,

the electromagnetic fields in free space are

scarcely altered by the surface irregularities.

12Winter, D. F., "Low Frequency Radio Propagation into a
Moderately Rough Sea," Radio Propagation--Section D, Journal
of Research, National Bureau of Standards, Vol. 67, no. 5,
Sept.-Oct. 1963, p. 551.
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Hence, the derivatives of q,(z) can be calculated

from the solution to the smooth sea problem with

little error

This, as stated in the appendix, is not necessarily true.

The above quotation is probably true in the far field; however,

there is some question as to its correctne-s in the near field.

TM Case:

(p (x, o) =0 cp(x, y) = 2 i s in kyjY e ik xi x

(P (X,) g (P (X,o0) + (P (x, 0) g + -~q (X,o)g2 + 0

=(2ikyi 0 -2ik- (kj 2 + e- .i ikxi x

yi Y2 y

(P(,g q)(,0 + (P (X, 0)g+(X,O)g 2 + 0x xxy o)y

=(0 + 2i-~iki + 0 + e. .k . x

y:k xxik

cPn (X,) F~ 2ikyi(l + k i g)e-kxX 2ik ieikxiX

94 2ikyi(l + k5 g) e- i x

The perturbation method yi4elIS, as assumed, an "unperturbed

field;" unfortunately, this is not necessarily correct in this

case.
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Perturbation theory: H y 2iky9x (- ikxC

Results above: H y pt 2iky x

TE Case:

C y(X,O) = 0 p(x,y) = 2 cos kyiY e-ikxix

--(,Y)=( (,0 + ( X0)9+I Xo9 2 +y y

= (2 + 0 + -(-k 2)C 2 + ... ) e-ikxi x

- ik .x
2 e xi.

which is the unperturbed field and which agrees with the

result obtained in this investigation.

2.7 Estimates of the Effect of the Finite Conductivity of

the Sea on the Fields in the Air.

As was noted in the section describing the physical

model (1.3), the fields on the sea surface have been com-

puted under the assumption that the sea was a perfect

electrical conductor (i.e., surface impedance was zero).

In this section, the effect of finite conductivity on the

solutions is considered. The impedance boundary condition

obtained in Section 2.4 may be used to estimate the effect

of the finite conductivity of the sea water (and therefore

non-zero surface impedance) on the solutions.

The integral equation that the wave functions must

satisfy is

p( )= 2 pi(p ) + 21 {P(p') Gn,(kol P-0I)

C

-n' (P') G(k0I- uI)}d' (2.7.1)

I
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In the TM case, q represents a rectangular component of

the vector potential A and H tan is directly proportional

to qn" The boundary condition T = 0 on C was applied and

the solution

p(x) 2 ikyi(1 + kA cos k x) (2.7.2)

was obtained.

Applying the impedance boundary condition to equation

(2.7.2) implies that

2(x) k (1 + k A cos ksx) (2.7.>)

then
qD(P') G n'(-')d: 0 P k I (ksA2 (2.7.4)

Cc

where G, P-P- = i-p ', the static two-dimensional

Green's function (the approximation of the dynamic Green's

function by the static Green's function is considered in

Section 2.8).

As

Gn Id << i"0 (2.7.5)

C

j<< I i (2.7.6)

the original approximation of T = 0 in C yields an accurate

integral equation and the original solution (2.7.2) is

verified. In this case there is Jittle change due to the

introduction of the non-zero surface impedance.
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In the TE case, T represents a rectangular component

of the vector potential . n was assumed to be zero on

Z and the solution

(P(x)t 2(Pi~x) (2.7.7)

was obtained. The impedance boundary condition gives

kc (2.7.8)qn 1 "

Again using the static kernel,

n  d () 22 -ik y c

IS n GdI << 1 (2.7.10)

Again, the solution is basically unchanged from the zero

surface impedance case. There is, however, a small correc-

tion term in the TE case.

2.8 The Justification of the Use of the Static Kernel in Some

Lntegral Equations.

In general, electromagnetic fields are generated by and

support nonstationary currents, that is, currents that oscil-

late at such frequencies as to make the interaction between

current elements in different parts of space significantly

affected by the finiteness of the velocity of propagation of

electromagnetic effects. The quasi-stationary state is a

special case of the general nonstationary state in which the

velocity of propagation may be treated as being infinite.

In the quasi-stationary state the currents oscillate slowly

enough so that the approximation that all significant
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interactions between currents are effectively instantaneous

is accurate. As instantaneous interaction between two

separate elements is the same as the continuing or constant

interaction in the stationary state (in the stationary or

steady state, the electromagnetic fields and currents do

not vary with time; therefore, the interactions are unaffected

by the finite velocity of electromagnetic interactions).

For monochromatic fields of radian frequency w, the condition

for the quasi-stationary state is that:13

<(2.8.1)Wtmax << V t max << Tr

where

V -- velocity of propagation of electromagnetic radiation

in the medium (3.108 meters/sec. in free space).

tmax -- maximum distance between currents which signifi-

cantly interact.

For the electromagnetic fields in the air, it is not clear

that an 'max satisfying the requirements (2.8.1) can be found.

In fact, it is clear for Ti and qr the quasi-stationary state

does not hold as:

7 (2 i'n +, 2e- ikx

=H2) (k Ix-x'j) ei(nk s + k x )x d.- ICO (nks  + k _ k2

(2.8.2)

13King, R. W. P., "Quasi-Stationary and Nonstationary

Currents in Electric Circuits," in Handbuch der Physics,
Band XVI, Elektrische Felder und Wellen (Berlin, Springer,
195b), p. 165.
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9i and are involved in the n = 0 term in which k°

may not be neglected, which clearly implies that for these

fields the quasi-stationary approximation does not hold.

However, the scattered fields ps are quasi-stationary.

The approximation involved may be seen in the integral

£ equation (2.8.2) (k s >> k so that v(nks + kx) 2 k nk)s 0 S X0S

for terms Inl > 0.

The more accurate general result that the solution of

2 =(P s = 0 yields an accurate solution to (v2 + k o)s

may be seen from the boundary value problem.

(v 2 + k2) (P(X,y) = 0

ps(X,y) = ps(x + L,y) boundary conditions (2.8.3)

2 s2n 2

-2n 2v
c q(x,y) -. s (a(x,y)

~ pxy--(L--) - (2-) } qs(X,y) (a)

= 2nv 2 L2
(--:-- )  (1 - (n-) ) (Ps (b) (2.8.4)

B 2 (2nr 2
if L << N _ Ps (p -)- s or

by T,

V 2s = 0 (2.8.5)

then solutions of V (s= 0 closely approximate the solutions

of (V2 + k2 )s = 0, as long as L << X. As = 0, by the
0

use of Green's theorem:

-(p) = f(ps(-') Gn,(pp') - sn,(p' ) G(,-') )d

C (2.8.6)
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where

is the "static" Green's function.

As shown above, the stationary state should be used

only to compute the "static" part of the field (i.e., Ts),

and the Ti and 9r should be removed before using static

approximations.

The use of periodic boundary conditions played a major

role in determining that T s could be computed accurately

by use of quasi-stationary equations. It therefore seems

wise to investigate the correctness of the assumption of

a periodic surface. For L << N, the periodic assumption

woul& not seem to effect the fields in any major way (i.e.,

a small change in the surface some distance from where the

fields are computed will have little effect on the fields).

in general, the above statement is not true; particularly

when X p L, the periodic assumption may lead to a great

change in the fields.

2.9 The Effect of Motion of the Sea Surface.

It was previously assumed that the sea surface was

stationary. This approximation seemed to be reasonable,

because the velocity of the electromagnetic wave in air

is many times the velocity of the sea wave. However,

even with the. great difference in velocities, there still

is some effect on the electromagnetic fields in the air

due to the motion of the sea surface. This effect is
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greatly multiplied in the sea as the velocity of the elec-

tromagnetic radiation is much less in the sea than in the

air. However, it is sufficiently accurate to solve the

boundary value problem for a stationary surface and then

assume the computed field moves with a velocity related

to the velocity of the surface.

In many cases, o a stationary observer in the sea,

it may appear that the sea surface is flat, but that the

source of the electromagnetic wave is approximately moving

up and down in the sea. If the wave were to propagate

into the sea as e-yD, where D is thie depth below the sea

surface, this analysis would be correct; however, as will

be shown later, this is not exactly true. The difficulty

with the general case (i.e., using the actual solution to

the boundary value problem) is the "equivalent velocity

of propagation" can be obtained only numerically, so no

general result can be stated.

If it is assumed that the fields propagate approxi-

mately as e-YD, then from the usual doppler theory
f

fo 1-v/c (2.9.1)

where

f is the frequency of the electromagnetic wave

f the observed frequency (to a stationary observer

in the sea)

v the assumed phase velocity of the electromagnetic

field as a whole (the equivalent velocity that the
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sources of the field would have) and carries a

plus sign if the source is approaching the observer

and negative sign if the source is moving away from

the observer

c phase velocity of electromagnetic radiatior in the

sea.

v may be obtained as follows:

The velocity that an equivalent source (that is, a source

that would yield the same fields), moving up and down in the

sea, is given by:

d- D = d- A cos -Ak

v= dt (kvt) = - Akv sin (kvst) (2.9.2)

v 5 k sA v
lvio 4k

c =fNc = f(26C) = f 6 0---0 - 1600 -f = 5 -10 -fkc (2.9.3)

For f = 1 kc/s

c = 5.104 meters/sec., a decrease by a factor of approxi-

mately 104 from the phase velocity in free space.

v s' 30 meters/sec., even for high sea states.

!vi < 1 30 = 4.3 meters/sec.7

999.9 < fo 1000.1 cps. (2.9.4)

This amount of doppler shift may not a,. r to be too large;

and this is a "worst case" calculation. The "largeness" of

this effect is due to the shortening of the wave length in

he sea.



3.0 COMPUTATION OF THE FIELDS IN THE SEA.

3.1 Introduction.

In the two-dimensional case the problem of calculating

the fields in the sea reduces to the solution of a Dirichlet

1
type boundary value problem. Unfortunately, again because of

the rough sea surface, the classical method of separation of

variables can not be eirectly applied. 2 However, once the

fields are below the lowest point of the rough sea surface,

separation of variables can be used directly to compute the

fields. The method of separation of variables is used below

to obtain some interesting and general results.

To compute the fields in the sea. the integral representa-

tion of the wave functions may be used. The integrals would

then be numerically evaluated to obtain the fields. The major

reasons why such an approach was not taken are:

1. As the fields near the surface were to be computed,

the kernel of the integral would have to be evaluated for

small, intermediate and later large arguments. The evaluation

of the Hankel function of complex argument is a somewhat in-

volved though straightforward problem, involving large amounts

of computation.

1A Dirichlet boundary value problem is to find cp such
that

(V2 +k) ( = 0
lir cp() f(p) a given "relatively" arbitrary function.

pcV

2See Appendix B.

69
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2. The amount of computation is greatly increased

by the fact that the integral must be evaluated for each point

at which the field is computed, or at least for points in the

near field(i.e., near the sea surface)

Basically, for the above reasons, even though the numeri-

cal evaluation of the integral representation has been effec-

tively used previously, the method was not used here.

There still remains a wide selection of methods that may

be used to compute the fields in the sea. The most general of

these is the method of finite differences as used to obtain a

solution to certain boundary value problems. The finite dif-

ference method is a widely used technique for the numerical

solution of boundary value problems.
4

Briefly, this method consists of replacing the partial

differential equation with a partial difference equation. This

approximation involves an error, usually called discretization

3Banaugh, Robert P., "Scattering of Acoustic and Elastic
Waves by Surfaces of Arbitrary Shape," (Ph. D. Thesis, Univer-
sity of Wisconsin) , 1962.

Mei, Kenneth Kwan-hsiang, "Scattering of Radio Waves
by Rectangular Cylinders," (Ph. D. Thesis, University of
Wisconsin), 1963.

Lerner and Max, loc. cit.

42Tllatz L, The Numerical Treatment of Differential
Equations, (Berlin:Sp-ringer, 19b0).

Kantorovich., L. V., and V. I. Krylov, Approximate Meth-
ods of Higher Analysis, (New York: Intersddence, 1953).

Forsythe, G. E., and W. R. Wasow, Finite-Difference
Methods for Partial Differential Equations, (New York: John
Wiley and Sons, 1960).
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error. The problem then becomes one of solving a set of dif-

ference equations. Because of the accuracy needed, the number

of equations may become quite large, on the order of 100 or

more. The technique usually used to solve this set of equa-

tions is by interation procedures, though it should be noted

that 100 x 100 matrices may be directly inverted on computers

available today.5 In what follows the general results obtain-

able by the classical method of separation of variables are

first discussed. This approach should give some insight use-

ful in considering the computation of the fields in the sea.

The technique used, the so-called "method of lines," is a

modification of the finite difference method. The partial

differential equation is approximated by a difference differ-

ential equation. The finite difference approximation is used

in the direction approximately parallel to the rough surface to

obtain the "propagation" or separation constant to be used in

the differential equation which characterizes the fields in a

direction approximately normal to the sea surface.

z( -0 x direction approximately parallel to sea surface.

t y direction approximately normal to sea surface.

Figure 3.1. Grids for Computing the Fields in the Sea.

5 Banaugh, op. cit., p. 18.
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3.2 Classical Separation of Variables.

The boundary value problem for the fields in the sea may

be stated as to find cp (a rectangular component of the field

vectors) such that it satisfies the Helmholtz equation

(V2 + k2 ) CP = 0 (3.2.1)

and

cp(x,y) = p(x + T.,y) eikxiL ;zp(x + L,y) (3.2.2)

Equation (3.2.2) is a periodic boundary condition (i.e., it

requires p to be periodic with a period L within a constant

factor eixi L ) . This follows directly from the physical prob-

lem, as discussed in section 2.2. The factor e-ikxi L may be

neglected as koL << 1.

tp must satisfy the radiation condition in the (+y) direc-

tion below the lowest point (trough) of the sea surface. Above

the trough of the sea wave, both "inward" and "outward" waves

may exist.6 As the sea is a "highly" conducting medium, the

second radiation condition holds and the fields decay exponen-

tially.

ep must take on the correct boundary value on surface g(x)

lim cp(xy) = f(x)

(x,y) -> C

(x,y) e S (3.2.3)

bSee Appendix B.
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Separation of variables may be applied to the boundary

value problem in the region below the lowest point (trough) of

the sea surface; this is possible there because the radiation

condition applies4 In the region above the trough of the sea

surface but below the crest separation of variables applies;

howew-r, there are too many constants to determine by classi-

cal methods.7  It is nevertheless possible to obtain very gene-

r.l qualitative results by this method.

From the boundary condition

cpp(x,y) - p(x + L,y) (3.2.4)

Cy i i k 7  (nk s + kxi ) 2  yCP(X,y) [a n a e c

n=-ca 'nk' .k >i(nk s+ k xi) X

-i(Ak - (nk 5 + kxi)) y] e+a- e s +x y] e

n

(3.2.5)

The qualitative results follow from a discussion of the pro-

perties of k . Since kxi and ky i are negligible compared to

k and k:

k(nk) n > 0 (a)

k n = o (b) (5.2.6)

TSee Appendix B.
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For n = 0, k y k ; the field is approximately constant in the

x-direction resulting in a plane wave propagating approximately

straight down into the sea as in the flat interface case.

If the field is not approximately a constant in the x-

direction, the propagation constant becomes

yy .y 2- 2 Y2 + y k 2-
= - x +x

2i
_= _ - - ( (3 .2.7)

As the term added to Y2 increases in magnitude, Re Fy

increases and the particular mode characterized by this pro-

pagation constant decreases more rapidly with depth than the

n = 0 mode. This implies that as y -> = the electromagnetic

fields become a plane wave with propagation constant Y.8

Asymptotically, (y -> m) the major perturbation in the n = 1

mode; this is independent of the shape of the sea surface.

The major perturbation near the sea surface will depend on

the shape of the sea surface, and will be attenuated with

depth, the fields tending towards a plane wave propagating

downward (the n = 0 mode).

Intuitively, a reasonable breakpoint in these types of

propagation is when Re LYy] for n = 1 is 1.85 ReY= 1.85* .

As ReL > ReLY the modes n > 0 are attenuated more
than the n -- mode (pl~ne wave). Asymptotically (y-=) the
higher order modes become zero more rapidly than the n = 0
mode (i.e., the ratio of the amplitude of the higher order
modes to the n = 0 mode approaches zero asymptoticrlly).
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2i 7a A/-J

Re [Y] 1.85 - a = 1 L /7 7rn6 (3.2.8)• 8

For L then n = 1 mode is considerably more attenua-

* ted as it propagates down into the sea than the n = 0 mode and

the higher order modes are even more rapidly attenuated. A

qualitative idea of what this means is given in the chart below:

f = 3 cps 8 = 145 meters I = 650 meters

3 kc/s 4.6 20

18.6 kc/s 1.85 8

30 kc/s 1.45 6.5

For L = L the added attenuation of the lower order modes

should "rapidly" bring the field into a plane wave. In the VLF

range, for L = 107, the effect of the added attenuation on the

mode solution should be evident, even at the depths considered.

If L i00-L, at the depths considered in this report little de-

cay in the perturbation due to the rough sea surface would be

expected.

3.3 Method of lines

In one method of numerical solution of partial differen-

tial equations (the method of lines), one of the variables,

say x, is discretized, while the other variable y is left

continuous. After the finite difference approximations are

substituted for the x derivatives, the partial differential
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equations become a coupled system of ordinary differential

equations, i.e., difference differential equations.9

Usually when the method of lines is used on an automatic

digital computer, the problem is discretized in the y-direc-

tion also as a finite difference method is used to solve the
10

system of ordinary differential equations. In the modifica-

tion of the method of lines used below, the problem is discre-

tized in the y-direction; however, the differerce differential

equations are solved by a method closely akin to separation of

variables and Euler's method. In this problem, as is usual

in the method of lines, the number of subdivisions in the y-

direction greatly exceeds the number of such divisions in the

x-direction, i.e., the discretization distance in the x-direc-

tion is larger than the discretization distance in the y-direc

tion. The problem is then concerned with a rectangular net

with relatively long rectangles. This is very useful in sat-

isfying the boundary condition at the sea surface (which is a

slightly rough surface, i.e., almost flat surface with rela-

tively large variation in x, resulting in only small varia-

tions in y = 9(x) ).

The boundary value problem was stated mathematically in

in equations (3.2.1), (3.2.2) and (3.2.3).

9Forsythe, op. cit., p. 178.
1 0 Ibid.
1 1Scarborough,Numerical Mathematical Analysis, fourth

ed., (Baltimore: Johns Hopkins Press, 19b3).
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As shown in the preceding section, some general qualita-

tive results may be stated, based on the relative values of

physical parameters. Using the numerical results obtained

by the use of the method given in this section, quantitative

values will be placed on the terms "relatively little

change," etc., by comparison of the theory to solutions of

some representative problems.

The method used discretizes the x variable by replacing

the x-derivatives by a finite-difference approximation

2 (x,y) 1 D.. p(xy) + E (3.3.1)yx (X,( x,y) (3o.3-1,

where D.O. is a difference operator and E an error term.

The D.O. depends on y, and will be given explicitly along

with the error term E later. The partial differential

equation then becomes a set of ordinary differential equa-

tions; the coupling of the equations is through the y 2 term.
x

Letting

q(x,y) = X(x) Y(y) as in the separation of variables

method

{77 + (Y 2  y 2 )} Y(y) = o (3.3.2)
dyX

2 y 2
Yy Yx

Intuitively, because the sea surface is only slightly

rough and because of the relative values of the physical

parameters of the problem, the propagation should be basically

in the y-direction (approximately normal to the sea surface),
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so that;

IYl >> IYx -Yy Y (33.4)

Equation (3.3.4) holds true asymptotically (i.e., y

and in most cases is approximately true near the sea surface.

For the physical parameters used in the examples given here,

the correction should be relatively small.

The solution to the ordinary differential equation

d2  2d 2 +  Y2) Y  (y )  = 0 (3.3 5)
dy y

is well-known to be:

Y(Y) = C 1e-YY + C2 eY -. (3.3.6)

In the computer program, it proved convenient to choose yy

such that Re [Yy] < 0, as the propagation is in the +y direc-

tion; the radiation condition then takes the form Cl = 0.

Below the lowest point (trough) of the sea surface,

the radiation condition must be applied, in which case the

method of separation of variables could be used in its

classical form. However, to obtain numerical results, the

use of the classical method of separation of variables does

not prove convenient.
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The boundary value problem is best solved numerically,

even in this case, where the separation of variables could

be used. The problem is a marching type problem.12 If

*p(x,y) is known at the lattice points for y = yI

(x,yI + 6y) can be computed from the equations

2 1 D. 0 q(x, y) (a)
Yx -- x,y 1 )  0 0

Y /y - y2 (b) (3.3.7)

qp(xy, + 6y) = q(x,y,) eYy ( 6 y ) (c)

This process is repeated until the depth y, the great-

est depth at which the fields are to be computed, is attained.

Sea Surface Crest

Region 2

Figure 3.2 Regions of Solution.

To compute the fields between the crest of the sur-

face and the trough of the surface, the problem is consid-

erably more complicated. The radiation condition does

12A marching type boundary value problem is a prob-
lam in which the knowledge of boundary conditions may be
used directly to compute numerically the field near the
boundary; this may, in turn, be used to extend the field
further in a step-by-step fashion.
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not apply in this region and the method of separation of

variables, at least its classical form, cannot be used.

The method used is, of course, based on the same

difference-differential equat'ions assuming some value is

given to (x,y) for all x,y in the region considerLd. To

compute a new set of values for p(x,y), let

Yy = v/y2 - y (a)
y x

2 1 .o. (p(xy) (b)
x P (x,y)

(3.3.8)
P(x,y - 6y) = C1 + C2  (c)

(x,y + 6y) = C1 e-y2y + C2 e y (d)

The above two equations are solved for C1 and C2 ;

then a new value of p(xy) is computed:

p(x,y) = C1 e-Y y6y + c2ey8Y (3-3-9)

This process is repeated for each x,y in the region con-

sidered until the process has been repeated for the whole

region. The process is stopped when there is very little

difference between the old values of ; and the newly com-

puted values of 9.

3.4 Error Estimates.

When using nunerical methods, the qucestion of error
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estimates is of primary importance. If no reasonable

error bounds can be found the method used and the results

obtained may be useless. In this section, the error es-

timates for the numerical process described in the pre-

vious se-tion are given. Because a large digital computer

was used carrying many extra significant figures, round

off error may be neglected. The major error term then

arises fro., the discretization process.

As different finite difference approximations were

used in the different regions of the problem, two sets of

estimates are gi,'Bn.

Region 1. (Between the crest and trough of the sea

wave.)

D(x + hxyy) + q(x - h . - 2qK ,y)D.O0. (p(x, y)=h

x (3.4.1)

where h x is the discretion constant in the x variable

pxx(x,y) = D.O. cp(x,y) + E

where E is an error term

E I , y) h2TE12 9xx '  x

if hx is sufficiently small and T smoot.i enough (it is

assumed this is true in the remainder of this section-

this is easily verified)

Exxxx h2 1 2 h x 2
S I-- C I h (xyxhx) =)cxx xx x

--- ~~ ~~~ ~~ W - n -l mmn | uianlnmn; P Ml |n llm n I U



where, Yx - the effective propagation constant for propa-

gation in the x-direction.

6xp -
Yx

-- a relative error term

Let ^2 2Yx -- the computed value of Yx

2 ~2 2
Yx Yx Yx

2 <1 hx2cYx  6x )

2 2
Cy -- the relative error in y
x

From the above, it is clear that the less the variation of

the field in the x-direction, the larger hx may be made

and still have sufficient accuracy in the calculations.

However, the main question of accuracy involves y and,

of course, (p(x,y) not y
o2

x

As IY12 > IY21 under most sets of conditions for the

problem considered here,

/2 2 y/ YxY -, - -N 'X)  L + 
yy 2 y

where y -- the effective propagation constant for propa-

gation in the y-direction

Y'
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2
1 2x!5x 1'Yx '

Y <2 -- - x
y y

1C 2 uneer most conditions<T yx

For h <4x x

y2 < .01 and e .0001
yx y

The final error estimates involve the field c(xfy) which

of course is the estimate desired.

e cp e YY~ YY (1 -e.)h~ -y h ' cI ( Yfe Yy y e Y 1 %t IYy le y

2
Yy Y

For the condition above, if h < 56y

Undex most conditicns, c is considerably less.

Region 2. (Below the bottom of the sea wave.)

D.O° @(xy) 12h2
x

+ 6{jp(x + hx,y) + q(x- hxy)} - 30q(x,y)
+ 12h 2

x (3.4.2)

"xx= D.o. (x,y) + E;

with E xxxxxxx

For h x < 26 x

2 .003

Yx

e .0003 .Yy
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For h < 506Y y

C < .015.

-- relative error in the field.

In this region, the first derivative is also calcu-

lated. This allows taking the curl of the field vectors.

cP(x + 3h x , y) - cix - 3hx , Y)
D.O. cp = 4,

60hx
I

-9{cp(x + 2hx) Y) - Wx- 2hx.,Y)} + 45{cp(x + h ,)- cp(x - hxy)}

60hx (3.4.3)

cx =D,O. cp + E

CE 3xxxxxx x
1 . xxI I h 4 h 1 4x

D ( cx hx- )

For h < 28x x

D < .01.
x

Similarly, for Dy

C 1 (h)4
y y

For h < 26y y

D  < 01.
y



Based on these rough error estimates, all calculations are

sufficiently accurate (within 1%). Nearly all calculations

are more accurate, as the conditions given above are the

extremes of those encountered. It should be noted, how-

ever, based on the calculations made, the error in each

computation usually took on the maximum value computed for

it (i.e., the error was very nearly equal to its bound

given above).

3.5 Some Conclusions and Verifications Based on the Com-

puter Calculation

In the next chapter the numerical results of the com-

puter calculations are given; the errors and the verifi-

cation of approximations made in the computer program are

briefly discussed in light of the experience of the compu-

ter runs.

The first question considered in numerical solution

of differential equations is: how fine must the grid be

made to obtain accurate results? This is usually deter-

mined in the finite difference calculations by subdividing

the finite difference interval until no changes occur in

the solution. The "subdividing" method was used in the

computer calculations. The accuracy required was three

significant places. This method was applied to both in-

tervals in the x and in the y variables. The effect of

interval change in the x variable is somewhat small as

long as the finite difference formulas are reasonably
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accurate. However, the changes in th.. interval in the y

variable could greatly effect the numrerical result. This

sensitivity occurred only in problems where the lower order

modes were decaying rapidly. The reason for this pheno-

menon is that if a large interval is chosen in the y vari-

able and if the decay rate is rapid and not "corrected" in

the large interval, it causes the field to "overshoot".

This effect may be cumulative, in which case the compu-

ted field rapidly becomes zero, or if the interval is small

enough the computed field appears to "hunt" after reaching

equilibrium (i.e., plane wave). In either case, the errors

are easily seen in the computed values.

An assumption that is verified in the computed re-

sults is that IY.1 << I., even where relatively rapid

decay of lower order modes occur ( IyxI is largest there,

lyx' < 10 1yyj, however it should be noted that this is

for ksA < 1/7, if ksA was not restricted in any way, the

above conclusion would not hold).

It would seem reasonable, that the computer program

would accurately compute the field, as the program is

based directly on the physical processes involved in the

propagation of the wave. However, it is also clear, that

if the original assumptions and restrictions on the para-

meters considered do not hold, the program may yield in-

accurate results.

j _ _ __ _ _ _ _ _ _ _
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4.0 SELECTED RESULTS OF COMPUTER CALCULATIONS.

4.1 Introduction.

The purpose of this chapter is to present numerical cal-

culations of the electromagnetic fields in the sea. From

these calculations, a correlation between what the theory pre-

dicts for the basic mode of propagation in the sea (see Section

3.2) and the computed electromagnetic fields in the sea may be

found. Selected results are presented, and these should be

sufficient to see the basic propagation pattern in the sea.

As stated previously, the sea surface was assumed to be

described by the equation (x) = A cos (ksx). For the calcu-

lation given in this chapter, A was chosen such that the maxi-

mum slope df the wave was 1/7.1 These calculations should then

bound the electromagnetic fields in the sea produced in an ac-

tual physical situation (i.e., the difference in propagation

patterns caused by the changes in the fields due to the rough

surface is maximum).

First, to see the correlation between the "propagation

theory" and the actual propagation effects, a set of curves

presenting the numerical solution of the scalar boundary value

problem at the lowest level (trough) of the sea wave is given.

Secondly, a set of results presenting the electromagnetic

fields in the sea at different depths is presented. These

See Appendix A.
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fields are normalized to see the deviation from a plane wave.

Lastly, some comments on the numerical results are given.

4.2 Scalar Fields at the Lowest Level (Trough) of the Sea Wave

The symbol a is used to connote attenuation (in db):

a1 -- Relative ratio of the field at the point considered

to the field on the sea surface vertically above it in the TE

case.

a2 -- Relative ratio of the field at the point considered

to the field on the sea surface vertically above it in the TM

case; this is basically to present the propagation effects.

a3 -- The "corrected" value of a 2 , that is, the relative

ratio of the field at the point considered to a fixed normali-

zation value; this is to account for the difference in the

field on the sea surface in the TM case (then a 1 and a3 on the

same scale).
ac -- The computed relative ratio of the field at the

point considered to the field on the sea surface vertically

above it assuming the wave propagates straight downward with

the propagation constant of sea water at the frequency of the

electromagnetic wave and that the field on the sea surface is

a constant (the same normalization constant used to compute

a1 and a 3).

is used to connote phase shift (in degrees):

e-- Rlative phase of the field at the point considered

to the field on the sea surtace vertically above it in the TE

case.
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A2 -- Relative phase of the ie'6 at the p:int :on-der:;

to the field on the sea surface verfically abve ft "n. the 1'M

case.

PC -- The computed relative pbha.e of the i_'d at thn

point considered to the field on the - surfa.z.e .

above it, assuming the wave propagatez =t:2t dc.,nwarf with

the propagation constant o. sea water it tt .-7: cf the

radio wave and that the on the a has .tant

(zero) phase.

The curves presented are for:

f = 18.6 kc/s

A = .3 meters L 12 meters

A = 1.5 -64

A = 4.3 L 180

f = 3 cps

A = 15 L 62Cr

For sea water at 18°5 kc/s, 6 1.85 -et=.- -; th r....ore

based on the "propagation theory," the fields under the s..rrace

with L = 12 should show a T.arked de nreaie in the perturbat-ins

caused by the rough sea surface and it5eez th> this - .
For L > 6 , there should be litt'e :re. n the pet.rbati'n

and the calculated change is very sma.-r a , .a r-e -1-en on the

graphs, even for the 4.3 meter waves.

For sea water at 3 cps, 6 145 met:rs and sar-r

in the perturbation for the 15 meter wave ic r.ote.",
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a L =64 meters

f =18.6 kc/s
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Figuire 4.2~ ,scalar Field at the Trough Level of the Sea wave
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4..3 The Electromagnetic Fields in the Sea.

Due to the vector nature of the electromagnetic fields

a set of curves is necessary to describe the electromagnetic

fields at a fixed depth, The description of the fields is

presented in terms of E or H Z depending on the polarization

and direction of propagation of the incident field.

Again, a is used to connote attenuation (in db).

c! -- Relative ratio of the field (in this case E or

H z) at the point considered to a normalization value.

ac -- The computed relative ratio of the field at the

point considered to the field on the sea surface vertically

anove it assuming the wave propagates straight downward

with the propagation constant of sea water at the frequency

of the radio wave and that the field on the sea surface is

a constant.

again is used to connote phase shift (in degrees).

-- Relative phase of the field at the point considered

to the field on the sea surface vertically above it in the

TE case.

PC -- The computed relative phase of the field at the

point considered to the field on the sea surface vertically

above it, assuming the wave propagates straight downward

with the propagation constant of sea water at the frequency

of the radio wave and that the field on the sea surface has

a constant (zero) phase.

A second set of curves is presented to represent the

other field components, These are normalized by the factor
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(plus sign if E was considered; negative sign if Hz)
TIc zpu sinifE

20 log

20 log x

CLC

20 log

F phase(Hx) + 45' - phase E

phase(Ex) - 450 - phase Hz

phase(H y) + 45' - phase E z - 900

phase(Ex) - 45 0 - phase Hz - 900

where phase Hx is the phase of Hx.

i denotes the deviation of the ratio of the horizontal fields

from the plane wave (flat interface) case (in db). a denotes

the ratio of the vertical field to the horizontal field (in

db).

Similarly, 7 and F are measures of the phase deviation

from the plane wave case for the horizontal and vertical

fields, respectively.

On each set of curves in this section a complete des-

cription of the sea surface (A and L) is given, along with

the frequency, polarization and direction of propagation of

the incident electromagnetic wave. The depth D (below the

trough) at which the fields are computed is also given on

each set of curves.
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The curves presented in this section are all for the

direction of propagation of the incident plane wave in the

x-y plane. The sets of curves differ with respect to

polarization. To obtain the fields due to an incident

plane wave with propagation vector in the y-z plane the

"dual" of the solutions is taken (i.e., for a vertically-

polarized wave, the curve for the horizontally-polarized

wave must be used). Rather than belabor the discussion,

a very simple procedure will be given in Section 4.4 for

using the curves to compute the horizontal fields in the

sea.
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Figure 4.5 Electromagnetic Fields in the sea.
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Figure 4.6. Electromagnetic Fields in the Sea.
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Vertical Polarization E
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Figure 4.9. Electromagnetic Fields in the Sea.
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Vertical Polarization
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Figure 4.8. Electromagnetic Fields in the Sea.
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Figure L. 9 , Electromagnetic Fields in the sea
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Figure .l2, Electromagnetic Fields in the Sea
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Fiuure 4.13. Electromagnetic Fields in the Sea.
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Figure 4.15. Electromagnetic Fields in the sea,
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Vertical Polarization
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Figure 4.16. Electromagnetic Fields in the Sea.
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Figure 4.17. Electromagnetic Fields in the Sea.
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Figure 4.18. Ele ,:omagnetic Fields in the Sea.
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Figure 4.20. Electromagnetic Fields in the Sea.
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4.4 Interpretation of Numerical Calculations.

From. the curves of Section 4.2, there is a clear indi-

cation even at these relatively small depths that the basic

theory of propagation (Section 3.2) is qualitatively correct.

The field for L - 12 meters at f = 18.6 kc/s (L = 12,

=6 8) and L 640 meters at f - -5 cps. (L = 640,

AZ/6 = 650) shows the decay of the higher order modes.

The other curves (L = 64, 180, 640 at f = 18.6 kc/s,

.17 7r6 = 8) show the perturbation caused by the roughness

of the sea surface is "relatively unchanged." The small

changes (decaying of the perturbation) that do occur,

occur slowly and are only beginning to become evident.

The curves of Section 4.3, which describe the elect-o-

magnetic fields present the picture of a plane wave propagat-

ing downward. As Yy Y, the relationships for the horizontal

fields are basically that of a plane wave (i.e., Eh = ch ) ;

the deviation from this condition is the order of tenth of a

db and one degree at the depth considered. As IY x << M,

the vertical fields should be relatively small; they usually

are at least 20 db below the horizontal fields.

The practical interest is then in computing the hori-

zontal fields, the vertical fields being so small. As the

horizontal fields are basically related by nc (neglecting

a small factor) the electric field may be computed from the

magnetic field and vice versa. A very simple procedure for

computing the fields in the sea from the curves of Section

4. 3 is:

.. . .. - --- , KM6IU
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1. Calculate the tangential field assuming a flat sea

surface (the tangential electric field, for example).

2. E at depth D is related to the E computed on the

flat surface by the al and A, for the horizontal polarized

wave given in Section 4.3 (this is independent of the polari-

zation of the actual incident wave).

3. Similarly, Ex at depth D is related to the Ex on

the flat surface by the and d for the vertically

polarized wave.



5.0 THE BASIC THEORY FOR THE THREE-DIMENSIONAL PROBLEM

5.1 Introduction to the Three-Dimensional Problem.

It would seem clear that the three-dimensional elec-

tromagnetic boundary value problem will be considerably

more complex and complicated than the two-dimensional

electromagnetic boundary value problem treated previously.

Comparing the two problems, some striking differences and

similarities appear.

In the two-dimensional problem, the TE and TM modes

can be completely decoupled. With this convenience, the

two-dimensional electromagnetic boundary value problem can

be reduced to a set of considerably simpler uncoupled

scalar boundary value prob.ems. In the three-dimensional

electromagnetic problem, the TE and TM modes can no lnger

be decoupled. Coupling occurs thrcugh the application of

boundary conditions on the rough surface. The three-dimen-

sional problem must then be solved "all at once". However,

the coupling between the components of the field is "weak".

The dominant magnetic field component is virtually inde-

pendent of the other field components. Therefore, the

dominant component of the magnetic field may be computed

by assuming the other magnetic field components are zero.

The field pattern is basically one nf a "dominantly" TM

mode or at least it can be considered as such.

115
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A difference in the mathematical formulation of the two

problems is that the use of vector potentials, which proved

quite useful in simolifying the two-dimensional electromagnetic

problem, no longer provides a clear means of simplification in

the three-dimensional problem. The major reason for this is the

effect of the boundary conditions at a rough surface,

Other difficulties in the three-dimensional electromagnetic

problem are:

i. The solution is now represented as an integral over a

two-dimensional space, so that two integrations are necessary,

not just one as previously needed for the two-dimensional case.

ii. The solution is a vector and a function of two space

variables making the solution more complicated and therefore
somewhat more difficult to interpret.

As a result of the above difficulties, relatively little
1

work has been done on the three-dimensional problem. The work

done usually involves the use of a perturbation technique which,

as previously pointed out, may not be "accurate" in the near

field.
2

The basic approach is based on integral equation techniques.

Many of the assumptions used in the three-dimensional problem

were discussed in the two-dimensional problem and therefore a

iLysanov, Y. P., "Theory of the Scattering of Waves at
Periodically Uneven Surfaces," Soviet Physics Acoustics, Vol. 49
no. 1 (Jan.-March, 1958)9 pp. 1-7.

2Hiatt, loc. cit.

Winter, loc. cit.



"17

somewhat abbreviated discussion is given below.

The mathematical description of the physical model is ba-

sically an extension of the two-dimensional model to three di-

mensions. It is assumed that:

1. The "basically spherical" earth is replaced by a "basi-

cally flat" earth.

2. The sea surface .(x,y) is given by:

(x,y) = A cos ksxx cos k ,,

3. The source of electromagnetic energy is a plane wave

incident on the rough surface.

4. For the computation of the electromagnetic fields in

the air but on the sea surface, the sea is assumed to be a per-

fect electric conductor (a = O, zs = 0).

5.2 Formulation of the Electromagnetic Boundary Value Problem

in Terms of Integral Equations

A convenient starting point in formulating the integral

equations for the three-dimensional problem is the vector form

of the Helmholtz's formula.

= JI {u G, r-r'"I) -n ,(r') G(kJ -' )}ds() (r)G n (kj G k r'-r11 )Ids'
S n'n

(5.2.1)

(r) J {(.£') G n(kJ r-') n(r G(kJ -r )} ds,
S

(5.2.2)
where

S is closed surface bounding volume V

' S
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r e V

A
n -- outward normal as previously defined.

E and H are given in terms of their rectangular compo-

nents.

Again dividing the surface S into two parts, T and S., 7

represents the rough sea surface and S. "infinite" hemisphere.

Following the method used in Section 1.4, ecudtions

(5.2.1) and (5.2.2) become

n) i() + r') G (kn r-r' )0 1(r' G r -r'I ) ds'

(5.203)

= i + fJi') Gn,(kJ -'I )-n,(r') G(kJ - ' )}ds'

(5.2.4)

where r e V, r' e S.

Equations (5.2.3) and (5.2.4) may be shown to be equiva-

lent to the Stratton-Chu type equations.

f - ([Z(' x i)G+( n' x ) x grad G+('-n ) grad G]ds

(5.2.5)

=i+ [Y(n' x !)G-(i' x ) x grad G-(n '.) grad G]ds

(5.2.6)r r
The are "singular" integrams (as were the in the two-

dimensional problem), the details are available in Appendix C.

Applying the results of Appendix C to (5.2.5) and (5.2.6)

= 2[i - nZ(f' x i)G+(n' x ') x grad G+(n'.*)gradG}ds]

(5.2.7)

=2 + f n' x )G-(n' x i) x grad G+(n-''i)gradG ds]

(5.2.8)

_______________ _____________________
____ ____ ___ ____ ____ _ a
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where r and r' e So

The ? and q gi,,en by, (5.2.7) and (5.2.8) satisfy the vec-

tor partial differentiai equati.ons, radiation and source con-

ditions of Maxwell's equations; there remains only the boun-

dary cor,"ition T-

The boundary condition at a perfect electric conductor

are:

i) the tangential electric field is zero: nx = 0 (5.2.9)

ii) the normal magnetic field is zero: n.i+ = 0 (5.2.10)

where the + sian o, r+ and q+ denote a limiting process (see

Section 1.2).

Applying (5.2.9) and (5.2.10) to (5.2.7) and (5.2.8),

the following integral equations are obtained:

= 2K - (Z(' x ) G + (n. * grad Gds] (5.2.11)

= 2[ + - (n' x i x grad G ) ds] (5.2.12)

i

f_
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6.0 THE SOLUTION OF THE INTEGRAL EQUATIONS

6.1 Introduction

In this chapter, integral equation (5.2.12) will be

solved; this solution gives the tangential magnetic field

on the air-side o2' the sea surface. The technic-a- used

is similar to that used in the two-dimensional problem.

The integral equation in the sea again yields an impedance

type boundary condition on the sea surface.

6.2 The Integral Equal:ions in the Air

To compute the tangential magnetic field on the sea

surface, equation (5.2.12) i.s considered (note that the

electric field is absent from this equation, yielding an

integral equation in only the ma'gnetic field).

- I{(n'x i (r'))x grad G(ko _-r' I)}dS]

(5.2.12)

where -ik r-r
G~ ek

For the scattered field k°0 equal to zero (ioe., w = 0 and

the Green's Function becomes the static or stationary

Green's Function) is a valid approximation (see Section

2.8). In this case, the integrals that must be evaluated

(in 5.2.12) take the form:

120



121 'IC O I C Of ( )d d
2Ef(XY)f/2 dy (6.2.1). [x 2 + f2+(x,y)]

Following the method used for the two-dimensional problem

(6.2.1) is approximated by

J= f f(xy) ddy (6.2.2)
O 'O (x 2 + y2)3/2 d

I
This approximation is valid as:

_ _ (x 2 + y2 + Pg)2 (x2 + jdydy

<, f(x,y) 2 dxdyl
U_ (O'-xO2  2 /y(2 + Y2)3/2

( x2 + 2+;

(x + y +

c 1 - -3/2 suP( ,9y

sup (g2 , g /,,50

.97 C 1.03

To simplify the computations, the problem is subdivided

into two parts depending on the polarization of the incident

wave.

i. Vertical polarization. Without loss of generality

it may be assumed that the incident magnetic field is in the

x direction and that the propagation vector 1i is in the

y-z plane. The incident field is a TM to y electromagnetic

wave. As the currents flowing on the sea surface produce

C magnetic field mainly in the x-z plane, the y component

of the magnetic field is small and the total wave remains
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basically TM to y. In this case, the integral equation

(5.2.12) "simplifies" to

H1 H.

H = 2 +

Z. Lo

-G (n z Hx -nH) + G (-n H +n HSyx x y
2 ~ G ( - n H +n CO G) (- nyH+n) x ds'

-G G(-n H+n H) + G (nzHx-n HZ )

y y yZ x y x xy-Gy(-nyH+H G n - H

(6.2.3)

where

n, , ny, n z are the rectangular components of the outward

normal.

similar equations hold for n and n .yz

Gx , Gy, Gz are the rectangular components of grad G.

G (x-x')z
x (xx)2+(yy,)2+(g(xy) _g(xy,))2}3/2

similar equations hold for Gy and Gz .

Following the method used previously, let

hx,m,n
h hys , 1 e-i(k sxmX + k SYny) e-ikyiY (6-2.4)

y,m,n
mnh

z,m,n



h.
x 1, 111

= i(k mx +k ny) -ik(.2-5
h. mn e sx xy e yi-Y (625

m,ri h

(x,y) = A cos ksxx cos ksy = A~ {e' sxx. ksyy +

e i(kSXx-k syy) + e' (-ksx x + ksyy) + ei (ksxx - ks yy)} (6.2.6)

Placing equations (6.2.4J), (6.2.5) and (6.2.6) into

(6.2."5) with the use of the formula

K K - - ) e GsxX '+yy')dx'dy*
ca J_ co ( (x-x,)2 + yy )2

2iv k sx ei(k k

'To obtain equation (6.2.7) consider

CO( (x-x'+ y,)

=e- i(k sxx+ksyY) r~ Pcx e -s '+siy') dx'dy'

j e ,ik sx'dx' = Si- s Sii, ksxx'_ dx.

2 i 1 11h.k kgK)( Rery'] > 0

(Bateman Manuscript Project, Vol. I, McGraw-.Hill,
New York, 195 4j; p. 69, equation No. 11.)
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e- ikz'i x'Y)1

for 0 e-ikyiy

0

the following results are obtained.

k 2A
H x  2 2{I + ksx 2A cos k sxx cos k }yye iyjy ()

k ++ 2 (a)
sx sy

(6.2.8)
k k A

H 2 sx sy sin k 5 x sin ks Y e- kyiY (b)

H (-2k sxA sin k x cos k y) e-ikyiY (c)

X' sin k x'

Noting the Jo 2 sx xdx is an even func-
((X, 2 + (y,)2)3 /2

tion of y' for real y'
,ik x'

O x,'e sx dx' = 2iksx K0 (ksxl I'I)
ic ((x2 ±(y.)2 )3 /2

y- real y' # 0

where K is a modified Bessel function.
0

CK0o(k sxlJy1l)e iks y ' = 2 I K (ksxy') cos k y' dv'

1]2E
k s~x+ (k 2)

sx sy

(Bateman Manuscript Project, Vol. I, McGraw-Hill,
New York, 1954; p. 49, equation No. 40.)

r _ ___ ___ __-__'___ -ik x' - X
p O -O (y, ) e sx xe isy' dx'dy'

2irk sx ei(ksxx + k Y)

,(k sx)2 
+ (k s, )2
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2. Horizontal polarization.

Again without loss of generality, it may be assumed

that the incident magnetic field is in the x-z plane and

the propagation is in the x-z plane. In this case the inci-

dent field is TM to y and the total field is basically

TM to y. The integral equation becomes

H xH xi

H = 2 0x +

Hz ) nHz +G
I - -G Z( nzH x -n nx H + G y (- ny H x+n xH y )

2 fc Gz  nH+n H) + G (-n H +nxHy dS'
yOz y y z

-Gy(-n zH y+n yHz ) + G x (nzHx-nxHz )

(6.2.9)

k zi eilkig(x,y)

0 e- ikxix

H0 e X (6.2.10)
k ie- ik zig ,y

k
0

Placing (6.2.5), (6.2.6), (6.2.7) and (6.2.11) into (6.2.10:

the following results are obtained:

k k 2A
H ;2 l+ sx cos k x cos k ikyiY (a)

S 2 + 2 ssYe-I
sx sy

H y z i  sx ksy  Fin k x sin kyy}e-ikyiY (b)

sx sy (6.2.11)

-2-zifk A cos k y sin k X)}eike (C)
z 0 xy s x yi y
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The tangential magnetic field is basically the same for

horizontal and vertical polarization (neglecting the
k.

factor -zi); the basic difference is in the direction of
k
0

the fields (relative to the direction of propagation).

Vertical polarization:

tangential magnetic field z

k 2A

2{i + sx _ + 2 ksx cos ksyY e-ikyjy  (6.2.12)
Jks+
sx sy

Horizontal polarization:

tangential magnetic field s

k - _2A
9zi {x -1k 2A csxo

s1 + c k x cosk yY eikxix (6.2,13)kk 2 sx
sx sy

At this point there is an obvious need to check these

results with the results of the two-.dimensional problem.

There are two cases:

1. k = 0,k ±0
sy sx

Hx perpendicular to the direction of surface variation

Htan = On (two-dimensional case)

2(1+ k A cos ,k x)e- ik
sx ;As- . Yi

which agrees with the results for the limiting case (ksy=0)

in equation (6.2.12).

2. = 0, k #0
x 0 sy

H parallel to the direction of surface variationx

"tan 2ci

whicl. again agrees with the three-dimensional result.

M I.. W1.
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A major difference caused by polarization is in the
k .

factor k- present in the horizontally polarized case.
0

This factor is present in the flat surface or unperturbed

case.

As the basic modes of propagation in the sea are

the same for the two or three-dimensional problem, no

numerical computations are given in the three-dimensional

case.

6.3 The Integral Equations in the Sea.

The same integral equations (5.2.3) and (5.2.4) hold

for the electromagnetic fields in the sea as well as in

the air; in the sea, E. and I. are equal to zero and k = k'.c

The development of this section parallels that of Section 2.4,

only is somewhat more complicated because of the vector

nature of the fields and the fact that the integrals are

now over a two-dimensional space. However, the scalar prob-

lem in the sea may be treated first.

The integral equation for the scalar wave function

T(r) in terms of its boundary values is

q(i) = 2, (') Gn,(kcr-r') - c( }' ) G ( k c -  ds'

S (6o3o1)

for r and r'eS.

Using the same assumptions as in Section 3.4

tn'( ') G(k c r'-r")ds' se T( )n d - e, P pdp

2ik reS (6-3.2)
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G' Gn , (k c r-' l)ds' s

s

2 d O1 - (-ik _ _P pn ,Pdp

0 0

CP(1 c(-ik i) pe-ikcPd (6.3.3)1

~ cP()( -1 -) (6.3.4)
2ikRC

Pn -(x-x')t x - (y-y')ty + g(xy) C(x',)

P (x-x) 2  + (yy,) 2  +(g(x,y) -g(x,,y,)) 2

For x-x' and y-y' sufficiently small

9(x,y) = 9(x',y,) + gx(X-X,) + y(y-y')

+ lfx(X_ x , )2 + g (x-x,)(y-y') + (y-y') 2 }

yy yy

x xy

where

R - radius of curvature of the section of the surface

(i.e. curve) in the x plane.

R - radius of curvature of the section of the sur-xy

face (i.e. curve) in the .x=y p1ane.
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For Ik cj << 1, the "impedance" type boundary condition is

again encountered:
r- Cn (r) C (n

q() 2{-2i-k = kcs (6.3.5)
c

or

n) (r)i (6.3.6)
• C

Equation (6-3.5) appears to be a direct "carry over" from

the two-dimensional problem where the same equation was

derived. In the three-dimensional problem, however, equation

(6.3.6) does not directly imply Etan =lc Htan as

4nxH= nx- curl - E
Z Bn tan

Then, to obtain the impedance type relationship between the

electromagnetic quantities directly, the Stratton-Chu equa-

tions are used. Only one of the two vector Stratton-Chu

integral equations is necessary.

= 2$ {Y(n'xf(')) G(k cir-r'l) -

S

(n'xH(i')) x grad G(kcl'--'I) - (A'.H(r'))grad G}ds'

(6.3.7)

(n-) x grad G = (n.grad G)f - (grad G- f)n . (6.3.8)

The relation obtained directly involves only the tan-

gential fields, so the second term on the right-hand side

of equation (6.5.8) may be neglected. Also, using the

boundary condition at a perfect electric conductor n-f = 0

so the third term on the right-hand side of equation (6.3.7)

is taken to be zero.

2 This follows from (curl - B 0.

fb
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19(1r) =2f{Y~x(i')) G(k,,Ir-r'I1)
s

(n .arad G(k cl r-rI' )l') de' (6.3.9)

n( xE( G1 (kcl 1 ds e~ ~kl- 1

Ix( ci-r j o .

1

S S

n-x(p ) (6-3-10)
2ik

c

tn

for IkciR >> 1 (see discussion Section 2.14)

HY E1 E(6-3o13)
tan 'T Etan 7c tan "."

as

kc = jw cl 2  7 .

Equation (6.3.13) yields an estimate on the tangential elec-

tric field at a good electric conductor i;n terms of the

tangential magnetic field there.



7.0 CONCLUSION

From the solutions given in Chapters 2 and 6 for the

tangential magnetic field on the rough sea surface, the

perturbation of this field due to the roughness of the sea

surface is less than 3 db for most sea conditions. The

perturbation depends both on the polarization of the incident

field and the direction of propagation of the incident field.

From both the numerical solutions (Chapter 4) and the

heuristic theory of propagation in the sea (Chapter 3), it is

seen that the perturbation of the fields in the sea caused

by the roughness of the sea surface decays rapidly with depth

if the sea wave wavelength is less than or the order of mag-

nitude of the skin depth of the sea at the frequency considered;

if the sea wave wavelength is many orders of magnitude larger

than the skin depth, there is little decay (at the. depths

considered) of the perturbation, so that the phase and

amplitude of the fields in the sea vary directly with the

height of the sea vertically above them. These results are
1

in agreement with the work of Lerner and Max.

iLerner, R. M., and J. Max, "Very Low Frequency and Low
Frequency Fields Propagating near and into a Rough Sea," a
paper presented to the URSI Spring 1963 Meeting.
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The above results are also in agreement with the work of
2

Winter. Winter used a statistical description of the electro-

magnetic fields in the sea, obtaining the basic conclusion

that the fields in the sea are "on the average" greatly per-

turbed by the rough sea surface (from the curves of Chapter 4,

the perturbation may be 40 db or greater) The statistical

description of the electromagnetic fields in the sea, in

this case, do not convey very much information. This is

particularly true in light of the fact that the sea surface

varies so slowly (the sea wave velocity is very small compared

to the velocity of the electromagnetic wave in the sea),

permitting the observer to follow the variation of the

sea wave by observing the changes in the electromagnetic

field.

For VLF signals, the perturbation of the fields in the

sea due to large sea waves is relatively unchanged (within

a few db) at depths of ten meters or so. The large perturba-

tion in the signal due to the rough sea surface could then be

"corrected" in part by monitoring the sea surface height above

the receiving antenna.

No "correction" is necessary for the perturbation due to

small sea waves as these perturbations are small (a few db).

For ELF signals, even the perturbation due to large sea waves

is small, so no "correction" is needed.

ZWinter, D. F,, "Low-Frequc cv Radio Propagation into a
Moderately Rough Sea," Radio ropag~ation, Vol. 67D, No. 5,
Sept.-Oct. 1963, PP. 551-562.



APPENDIX A

GENERAL NATURE OF THE SEA SURFACE WITH A DISCUSSION

OF THE MATHEMATICAL DESCRIPTION OF THE SEA SURFACE

In this appendix, the nature of the sea surface is discussed.

The present state of knowledge about the soa surface is given;

particular attention is given the statistical nature of the

mathematical description of the sea surface. Also, at the end

of the appendix is presented a brief list of useful formulas

pertaining to the mathematical description of the sea surface

and some tables giving pertinent data.

Even casual observation shows the great irregularity of

the sea surface; no single wave retains its identity long; the

period, form, etc., vary greatly even for consecutive waves.

Indeed, the sea surface, in a rough sea, seems to vary almost

randomly in both time and space.

The study of the sea surface can, for purposes of the dis-

cussion below, be placed into three general categories:

i. The study of the sea surface by classical hydrodyna-

mics.

ii. The study of the sea surface by probabilistic methods.

In this category only the linearized problem will be consi-

dered as this allows us to obtain general results. By assum-

ing a linearized free-surface boundary condition, the problem

becomes linear and the sea surface can then be described by a

known random process (a stationary Gaussian process).

133
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iii. Other theories which consider the non-linear effects

of the sea surface, methods of generating the sea surface, etc.

In this case the results obtained are far less useful for a

description of the sea surface than the results of Category ii.

However, such results place the limitations of the theory of

Category ii in the correct perspective.

Before going into a more detailed study of the sea surface

a few general comments are appropriate. First, the present

theories assume a fixed meteorological condition. Then the

description of the sea surface given by the theory holds as

long as this assumption is approximately true. A theory based

on the correlation of the changes in meteorological conditions

with changes in the sea surface could be used but would be

somewhat complex. This may, however, be necessary in some

cases. Second, the presently known theories consider only the

gross meteorological conditions (e.g., average wind velocity,

average fetch, etc.). In practice, this is all that can be

assumed without making the problem inordinately complex. Third,

no theory at present is complete in the description of the sea

surfaces. Under certain meteorological conditions one theory

may be approximately correct; however, it fails when the meteoro-

logical conditions change. It should be noted that no theory

now available gives the complete description of the detailed

properties of the sea surface; only the gross features can be

mathematically described. A brief discussion of the three

general categories follows:

___________________________
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i. Classical Hydrodynamics. When the depth of the sea is

large, a solution of the hydrodynamic equations which represent
1

the sea surface is a trochcidal wave. The parametric equation

of the trochoid is:

x = rO - a sin

z(x) = r - a cos 0 (A.1)

where

r a-- fixed parameters for a given trochoid.

9 -- parameter that varies (i.e., generates the cuzve),

The trochoid is a two-dimensional wave which "could exist"

in a swell.

A more general deterministic model (as opposed to a sta-

tistical model) of the sea state would include the irregularity

of the sea; however, such a formulation is too complex for prac-

tic_, ... a. The deterministic model is considered below. Leav-

ing out details, the following equation of a simple harmonic

progressive wave is a solution to the linearized hydrodynamic

equations:

(xyt) (x cos e + y sin 0) - t + ] (A.2)

where

-- sea surface

A -- amplitude of the simple harmonic progressive wave

1Lamb, H., Hydrodynamics, Dover Publications, Inc., New
York, .945, P. 43.

Kerr, D. E., Propagation of Short Radio Waves, McYraw-
Hill, New York, 191, p. 487.
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T -- period of the simple harmonic progressive wave

L -- wavelength of the simple harmonic progressive wave

c -- velocity of the simple harmonic progressive wave

o -- direction of propagation measured with respect ot

the +x axis

-- phase at x = y = t = 0 (arbitzary)

If

p = xx + yy-- position vector in the horizontal plane

= k + k y -- propagation vector in the horizontal plane

2

ks =  --st I = _ 2f wave number of the sea surface
2

g -- acceleration due to gravity

z= 2 _ radian frequency of the wave
T

then

=( ,t) A cos (i. - Wt + e) (A.3)

= (x,y) in the ordered pair notation used previously.

If we assume the waves are progressing iii the +x direction

(i.e., kx z 0) which is reasonable if the wind is in the +x

direction, the general solution is
3

=Pt f [a(u, 9) cos(it-I>-wt) A- b(w, 8) sin(it- --wt)]dw dO
-'ir/2 0 (A.4)

.Longuet-Higgins, M. S., "The Directional Spectrum of Ocean
Waves, and Processes of Wave Generation," Proceedings of the
Royal Society, Vol 265, no. 1322, Jan. 30, 1962, p. 286.

3 pierson, w. * ., Jr., "Wind Generated Gravity Waves,"
Advances in Geophysics, Vol. II, 1955, Academic Press, New
York, p. 107.
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where

a(w,e) and b(w,e) are the spectra of ( ,t)

If (O,y,t) is known, a(ow,t) and b(w,t) can be obtained

and from them 9(s,yt). However, it is clear that the deter-

ministic model of the sea surface as given above is not prac-

tical. As has been the case with many problems whose complexity

defies deterministic solution, one next attempts to formulate

the problem in probabilistic terms. We will now consider such

an attempt.

ii. Probabilistic Description of the Sea Surface. In the

past few years there has been an increased tendency to treat

many natural phenomena as random processes. The main feat-Are

of such a process is an indeterminacy in the expected behavior

of a single occurrence coupled with strong statistical proper-

ties for a large number of occurrences. The "indeterminacy" in

the sea surface comes from the complexity of its mathematical

description [e.g., finding '(0,y,t) 1

Chronologically, experimental data first led to the asser-

tion that the sea surface could be represented approximately as

a stationary multivariate Gaussian process. From a theore-

tical view, it can be shown by using equation (A.-) with the

assumption that the random v6-iable e(ce) has a uniform dis-
.4

tribution, that the general solution for .,e sea surface is:

=FJ'cos (U-.wt + ew Vw)ddO(A.5
0 -"

4 .1
4Ibid., p. 122.



138

This expression is a multivariate Gaussian process where

A 2 (0,) is the energy density spectrum. This [as does (A.3)]

assumes linearized equations and boundary conditions; if these

assumptions hole, the surface is given by (A.5). However, as

stated above, the experimental data implies that the surface is

only approximately Gaussian, the error being due in large meas-

ure to the nonlinear effects neglected by this theory.

The same results can be given in the form:
7O

'= j' A(D.9) cos ( W' - o~t + e(w0,9) 0 d9 (A.6)

- 0

where

Z1 A2 (w,O) = ](w,O) is the energy density spectrum.

Using this Gaussian model of the sea surface, many of the

general properties of the "sea state" have been calculated.5

The basic question to be resolved is: Can the multivariate

Gaussian process describe accurately the real sea surface? If

not, from what standpoint is it deficient?

To answer this cra3stion, we consider a specific model of

the sea surface (i,e., a given spectrum E(u,O)) and then compare

5Ibid., P,, 93.

Longuet-Higgins, M. S., "The Statistical Analysis of a
Random Movin9 Surface," Trans. Royal Society of London, Series
A, Vol. 249, 19-6-57, P. 321.

Longue -Higgins, M. S., "Statistical Properties of an
Isotropic Random Surface," Trans. Royal Society of London,
Series A, Vol. 250, 1957-587757.
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this random process with the known properties (experimental

data) of the sea surface. Naturally, for a different spectrum

the properties of the sea predicted by the random process will

be different. The best known spectrum of the "sea surface" is

a semi-empirical expression given by Neumann for a fully devel-

oped sea:
6

E(w)c -2g2/v 2 d (A.7)

where:

v is the velocity of the wind "generating" the "sea,"

and c is a constant.

The total energy E for this spectrum then becomes:

E = G(.) dc = 2 -_-7 2 --5  3v (A.8)
Vg

This seems to be in agreement with some experimental data if

c = 3.05 m2 /sec 5. To study in detail what this model predicts,

we will consider the shape of the spectrum and some of its re-

sults.

Neumann's spectrum rises rapidly at w. = g and has a1.6v

maximum at a = fT g/v. For large w, w(w) W -6 and for small

?,22
, E(wn) ;:e -2 /,, v (i.e., the exponential predominates), and

therefore, there is very little energy in the low frequency

(long wavelength) part of the spectrum.

Neumann's spectrum is for a fully developed sea only. In

actuality, of course, the sea may not be fully developed. The

Pierson, op. cit., p. 148.
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growth of the sea waves depends upon the fetch (distance over

which the wind blows), the duration (length of time the wind

has been blowing) and naturally, the wind velocity. There are

methods that consider the problem of duration-limited and

fetch-limited seas (but only approximately).

From empirical data an approximate directed spectrum

(which depends on the direction relative to the wind as well

as on the duration and fetch of the wave) is:7

22E( x,8) =c 2cos 2 0 for - < 0< .co i < 00<

(A.g)
0 otherwise

where

0 -- polar angle with reference to the x axis (the wind

is blowing in the +x direction).

0. - intersection radian frequency (a function of duration

and fetch).

The above model is at best a good approximation to the

sea surface under certain conditions. There are better

models; 8 however, they are more complex concerning the direc-

tional part of the :formula and other errors have been noted.

71bid., p. 155.

8Longuet-Higgins, M. S., "The Directional Spectrum of
Ocean Waves, and Processes of Wave Generation," Proceedings
of the Royal Society, Vol. 265, no. 1322, Jan. 30. 1962, p. 286.

Pierson, W. J.: Jr. (Ed.), "The Directional Spectrum of a
Wind Generated Sea as Determined from Data Obtained by the
Stereo Wave Observation Project," New York University Meteoro-
logical Papers, Vol. 2, no. 6, June, 19b0 (unpublished).

'1
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I
This is particularly true for high sea states where the sea may

not be fully developed. Other empirical formulas are available

to represent this case,9 It is still not known conclusively

how well the statistical results of this model hold for actual

sea waves. This model of the sea surface contains some energy

in the high frequency part of the spectrum and predicts the sea

to be "completely covered by short wavelength ripples." Physic-

ally this seems reasonable even though the above spectrum is

known to be deficient in the high frequency range. The error in

the high frequency part of the spectrum is due to the fact that

non-linear effects are prevalent at these frequencies; we con-

sider this effect in the next section.

iii) The Generation of the Sea Surface and Non-Linear

Effects.
10

Phillips has described the generation of the sea surface

by considering turbulent fluctuation of the air (wind) above

the air-sea interface. At present this theory seems to be ac-

cepted as correct for the "original" formation of the sea sur-

face. However, once the waves have been formed, their growth

occurs through other mechanisms.

9 Pierson, W. J., Jr., "A Study of Wave Forecasting Methods
and of the H6ight of a Fully Developed Sea," Deutsche
Hydrographische Zeitschrift, Vol. 12, no. 6, 1959, p. 244.

10 Phillips, 0. M., "On the Generation of Waves by Turbulent
Wind." Journal of Fluid Mechanics, Vol. 2, 1957, p. 417.

vI

fA
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At present there are two principal theories on the growth

of waves:

(a) Phillips' resonance theory. 1 1
12

(b) Miles' sheer-flow instability theory.

These two theories do not agree in many respects (e.g.,

Phillips' theory gives a "growth rate" proportional to time and

Miles' gives a "growth rate" exponential with time). While

both mechanisms play a role in the growth of waves, Phillips has

recently given a description of the domains of dominance of

each mechanism. These theories, while they do give some under-

standing of the sea surface, are unfortunately of no qualita-

tive help at present in describing the sea surface.

We will consider only one other mechanism of energy trans-

fer, the breaking of the waves. Under sufficiently high winds,

the energy transfer from the breaking of waves reaches an equi-

librium; then for that range of frequencies where the nonlinear

(breaking) effects are important the energy spectrum is given

by:

E(c) = ag2 o- where a = 7.4 10-3 (empirical constant).

The same basic conclusions (under basically the same restric-

tions) were obtained by Mikhailov,I3 who used the theory of

Phillips, . M., "Resonance Phenomena in Gravity Waves,"
Proc. of Symposia in Applies Math., Vol. XIII, Amer. Math.
Society, McGraw-Hill, New York, 1962, p. 91.

1 2Miles, J. W., "Generation of Surface Waves by Shear
Flows,"1 Proc. of Symposia in Applied Math., Vol XIII, Amer.
Math. Society, McGraw-Hill, New York, 1962, p. 79.

lMikhailov, V. I., "On the Theory of Scatterinc of Elec-
tromagnetic Waves on the Sea-Surface," Bulletin, Academy of
Science, U.S.S.R., Geophysics Series, 1960, p. 818.

:1
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turbulence. There is close agreement between these theories

[Phillips has E(w) -- -5, Mikhailov cites experimental work
-4 -6

which gives E(M )_4 to 6 ; both theories are within these

bounds. Note Neumann in this range has E(W) (j)-6j.

Tick14 has considered the problem of non-linear effects

from a perturbation point of view. He adds to the "linear

(4Gaussian) spectrum" a correction spectrum due to the non-

linear effects. However, the statistics of the "non-linear"

spectrum are not unknown.

All theories (as those above) which do not directly con-

sider capillary waves (waves of very short wavelength) do not

hold for frequencies in the "capillary" range. While much work

on capillaries has been done, at present there is nothing avail-

able on correlating this theory with the overall sea surface.

And there is no correct information available on the "capillary"

range of the energy density spectrum. Work on radar return and

light reflection from the sea surface has shown that the slopes

of the sea surface are nearly Gaussian and that the sea surface

curvature is highly non-Gaussian. The usual experimental data.,

taken for description of the sea surface does not include fre-

quencies in the "capillary" range.

14Tick, L. J., "A Non-Linear Random Model of Gravity Waves
I," Journal Math. and Mech., Vol. 8, 1959, p. 643.

Pierson, W. J., Jr., "A Note on the Growth of the Spec-
trum of Wind-Generated Gravity Waves as Determined by Non-
Linear Considerations," Journ. Geophysical Research, Vol. 64,
no. 8, August 1959, p. 1007.
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The review of the past work done on the mathematical des-

cription of the sea surface indicates the point of departure

for the study of propagation of electromagnetic waves near the

air-sea interface. The complexity of the air-sea interface

alone is enough to make one resort to statistical analysis;

however, the fact that both the linear model and the experi-

mental data give a Gaussian process for the gross feature of

the sea surface implies that a useful model would be a satis-

tical one.

If one is willing to neglect the non-linear effects of

the sea surface and use the Gaussian model, the Ergodic theo-

rem 1 5 implies that the ensemble analysis of statistical pro-

perties is the same as space (or time) analysis of the statis-

tical properties (note that this requires a stationary process,

i.e., equilibrium state). There are questions as to the vali-

dity of the Gaussian model as regards the statistical proper-

ties of the sea surface. However, if one is only interested

in the gross statistical features, then the Gaussian descrip-

tion may be adequate. However, such description will give only

the "smooth average" shape of the sea without any details such

as ripples of minor variations. The experimental data on sea

surface variation is meagre; the processing of such data for

meaningful results is long and costly; therefore, it is doubt-

ful if an accurate description of the sea surface can be

1 5 Leel Y. W., Statistical Theory of C(cmunication, John
Wiley, New York, 19b0. p. 207.
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readily obtained. The shape of the surface of the sea depends

upon past as well as upon present conditions; however, to a de-

gree of approximation, past effects though still significant

may a discounted. Also, by describing the sea condition by

means of only a few average parameters, the sea surface will

not be represented accurately in every detail, but from the

practical approach, this may be all that can be done.

16For an excellent review of mugh of the spectral ana-

lyses of the sea surface, see Proceedings of a Conference on
Ocean Wave Spectra (Englewood, N. J., Prentice-Hall, 1963).



146

Some Useful Formulae

For reference, some useful relations pertaining to the sea

surface are given below.

If 9(r) = A cos -03t) is a solution to the linearized

hydrodynamic equations, then:

02 = gk s tanh ksh

for k sh >> 1 (large depth)

2
W2 =gks  (1)

where

k 2vs L

CD 2r
T

We then have for a single harmonic wave in deep water:

L wuv = g= T -- phase velocity of the sea wave.

Vg = p =g7 T -- group velocity of the sea wave.

L =9T
2

For relatively "regular" seas (after they have consolida-

ted into a "regular" series of connected troughs and crests).

Hheight\ 1 H <
Llength' 1 < <

1 H 1 1

(some references give < E <  where I is the theoretical

limit for stability (greater slopes will "break")).
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For a swell: 1 <H <1

Using Neumnann's spectrum for a. fully developed sea:17

E 2 .242( v)5 v--knots

T =v .285 v T -- sec.

ave v

17Pierson, W. J., G. Neumann and R. W. James, Observing
and Forecasting Ocean Waves, Hydrographic Office Publi-cation
no. 6035, 1958, pp. 45, 47, 50.
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APPENDIX B

REVIEW OF THE THEORY OF ROUGH SURFACE PROBLEMS

In this appendix, a review of the present theory of

boundary value problems involving a rough surface is pre-

sented. Particular attention is given to the accuracy and

applicability of the metho& presented to the electromag-

netic wave-rough surface interaction problem considered

in the main sections of this report.

"In the mathematical sense the problem at hand is

extremely complex, since it is impossible to use the method

of separation of variables to obtain a solution of the wave

equation which satisfies the boundary conditions specified

on the uneven surface. The methods for obtaining an

accurate solution of this problem in general form has

(sic) not yet been found. However, there are a number of

theoretical papers (which have appeared essentially during

the last five to six years) in which a number of approxi-

mate methods for computing the field have been developed."

The above is a quotation from a survey paper, "Theory of

the Scattering of Waves at Periodically Uneven Surfaces,"

1
by Iu. P. Lysanov. This paper treats for the most part

the problem of a scalar field in the presence of a periodi-

cally uneven (rough) surface with "natural" boundary

1Lysanov, Iu. P., 'Theory of the Scattering of Waves
at Periodically Uneven Surfaces," Soviet Physics Acoustics,
Vol. 4, No. 1, Jan.--March, 1958, p. 1.
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conditions. When the boundary conditions of the actual

problem are not the "natural" ones, the "natural" boundary

conditions are used as an approximation. The "interface"

boundary conditions are not considered. The problem

treated is then the simplest problem considering a rough

surface; even then this problem is not solvable us-ng

known techniques. Although work on this problem has

continued since 1958, little advancement has been imade

and no basically new methods or theories have resulted.

The investigation has generally been confined to refine-

ment of techniques given in Lysanov's paper and experi-

mental work.

Basically, Lysanov's approach will be followed. He

considers six general classifications or techniques:

1. Rayleigh Method. This is the oldest approach

and due to Rayleigh. Rayleigh assutied that the reflected

(scattered). field could be represented as a sum of outward

(from the surface) directed plane waves. However, this is

only true for the field above the highest point of the

surface. Lippmann slcwed that the assumption of Rayleigh

was not quite correct. Unfortunately, he could not obtain

an "accurate" solution to the problem by the use of his

variational technique. Barantsev2 has also obtained the

2Barantsev, R. G., "Plane Wave Scattering by a Double
Periodic Surface of Arbitrary Shape," Soviet Physics
Acoustics, Vol. 7, No. 2, Oct.-Dec., 1961, p. 123.
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same result by use of Laplace transforms. In Barantsev's

approach to the problem, as in Rayleigh's, an infinite

number of algebraic equations must be solved. In the case

where the irreg ,larities are small (the ma imum height of

the surface wave is much smaller .han a 'ave lergth of the

radiation field), Rayleigh obtainea a solution for the

first mode ( 3cular reflection). It agrees quite well

with experimental data ir' the "far field;" however, near

the interface many evanescent (surface) waves are present

and an accurate so-.tion is not pract-icable (even if

Rayleigh's assumption was considered correct).
3

2. The Method of Small Perturbations. The boundary

conditions are specified on the uneven surfa e, z =

and then are transferred to the plane z = 0 by means of

an expans 4 ,n into powez series wi-Fh respect to . It has

been shown by Lysanov that this method leads to solutions

identical to Rayleigh's results. This method has been

used by Feinberg for solving the problem of propagation

3 La Casce, E. 0., "Some Notes -n the Reflection of
Sound from a Rigid Corrugated Surface," Jourr-l --f
Acoustical Society of America, Vol. 33, No. 12, Dec.,
1961, p. 1772.

La Casce, E. 0., B. D. McCombe, R. L. Thomas,
"Measurements of Sound Reflection from a Rigid Corruga.ed
Surface," Journal of Accoustical Society of America,
Vol. 33, No. 12, Dec., 1961, p. 1768.

Senior, T. B. A., "The Scattering of Electromagnetic
Waves by a Corrugated Sheet," Canadian Journal of Physics,
Vol. 37, 1959 P. 787 (Au 238 Wo).



,-., -E

151

of electromagnetic waves along the earth's surface and

more recently by Senior who considered the effect of

surface roughness on the reflection of electromagnetic

waves, Senior is able to replace surface roughness by a

change in the impedance at the boundary. The surface

impedance is then a function of position. Hessel5 and

others have also considered the problem of varying surface

impedance; Hessel seems to account for Wood's anomaly this

way. However, this method is useful only in the far field.

Bass 6 also uses the method of perturbations to obtain

results parallel to Senior, and they again ar valid only

in the far field. It should be stressed here that the

method of small perturbations may be in error in the near

4Senior, T. B. A., "Impedance Bouindary Conditions for
Imperfectly Conducting Surfaces," Applied Science Research,
Section B., Vol. 8, 1960, p. 48.

Senior, T. B. A., "Impedance Boundary Conditions for
Statistically Rough Surfaces," Applied Science Research,
Section B., Vol. 8, 1960, p. 437.

Hiatt, R. E., T. B. A. Senior, and V. H. Weston,
"Studies in Radar Cross Sections XL," -- "Surface Roughness
and Impedance Boundary Conditions," University of Michigan
Research Institute, Ann Arbor, Michigan, July 1960 (un-
published).

5Hessel, A., A. A. Oliver, "On the Theory of Wood's
Anomalies, in Progress Report No. 19," R. 452.1961,
Polytechni? Institute of Brooklyn (unpublished),
AD 256 809.

6Bass, F. G., V, G. Bocharov, "On the Theory of Scatter-
ing of Electromagnetic Waves from a Statistically Uneven
Surface," Radiotekhnika Elektronika, Vol. 3, No. 2, 1958,
p. 180.



152

field and is valid only in the far field.7 Therefore,
3

Winter, who applied the method of small perturbation to

compute the fields on the rough sea surface, could be in

error in his calculations. The results obtained by

Winter's method were compared with the results cbtained

in this report and there was a difference (see Section 2.6).

Lysanov9 has extended the theory of small perturba-

tions to include point sources.

3. The Method of L. M. Brelhovskikh. This could

better be called the method of geometric optics. Basically,

it uses Kirchhoff's principle (or approximations). For

the frequency range we are interested in, the use of

Kirchhoff's principle could well be in error. In any

case, for the solution to the problem on the interface

this method would assume away the problem. The problem

becomes one of evaluation of an integral which cannot be

done in closed form near the surface.

7Bass, F. G., "On the Theory of Combination Scattering
of Waves on a Rough Surface," izvestia VUZ, Radiofizika,
Vol. 4, No. 1, 1961, AD 262 4ff.

Lysanov, OP. cit., p. 3.

8Winter, D. F., "Low Frequency Radio Propagation into
a Moderately Rough Sea," Rajio Propagation -- Secticn D,
Journal of Research, National Bureau of Standards, Vol. 67D,
No. 5, Sept.-Out. 1963, p. 551.

9Lysanov, Iu. P., "On the Field of a Point Radiator
in a Laminar-Inhomogeneous Medium Bounded by an Uneven
Surface," Soviet Physics Acoustics, Vol. 7, No. 3,
Jan.-March, l962, p. 255.
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i4. The Integral Equation Method. The problem of the

scalar boundary value problem with "natural" boundary

conditions can, by use of Green's theorem, be formulated

cnnveniently as an integral equation. This equation is

exact; however, it cannot be solved without making some

approximations. If the rough surface satisfies certain

conditions (is not too rough), an approximate integral

equation is obtained which can be solved. There is a

difference in the field assumed on the surface by geometric

optics (Kirchhoff's approximation) and the field on the

surface obtained by the integral equation method. This

has led Meecham10 to question the use of Kirchhoff's

approximation. This criticism could also be extended

to the method of small perturbations in the near field.

A variation of the integral equation method was used in

the main part of this paper.

Recently, a paper solving the exact integral equation
11

for a sinusoidal surface was presented; the numerical

results involved approximate solutions to an infinite set

of algebraic equations.

10Meecham, W., "On the Use of the Kirchhoff Approxima-
tion for the Solution of Reflection Problems," J. Rational
Mech. Analysis, Vol. 5, 1956, p. 323.

lUretsky, Jack L., "Reflection of a Plane Sound Wave
from a Sinusoidal Surface," submitted as a Letter to the
Editor, J. Acoust. Soc. Am., March 1963.
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5- The MethGd of Images. The method of images can

be used to investigate the fields in the presence of an

uneven surface with a sufficiently simple shape; this has

been done by Twersky for a perfectly reflecting plane

covered with half-cylinders or hemispheres (with little

interaction between scatterers). Blot12 considered the

perfect conduction plane covered by hemispheres with

strong interaction (as there would be in the case of the

sea surface). Twersky also has considered multiple

scattering in a very general way. This method could be

used to find the fields on the surface assumed to be a

plane covered with hemispheres. However, to obtain a

more realistic model of the sea surface would involve

higher multi-pole expansions and does not seem practical

(although Biot thought this method could be used for the

air-sea interface problem). It does give a good idea of

what is happening to the electromagnetic field in the air

near the air-sea interface (Biot uses a static (wn = 0)

solution).

12Biot, M. A., "Some New Aspects of the Reflection

of Electromagnetic Waves on a Rough Surface," Journal
Applied Physics, Vol. 28, December 1957, P. 1k55.

Blot, M. A., "On the Reflection of Electromagnetic
Waves on a Rough Surface," Journal Applied Physics,
Vol. 29, June 1958, p. 998.
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6. Method of Matching Fields. This method can be

used only in the case where the rough surface is such that

the space may be separated into regions in which the wave

equation allows solution by the method of separation of

variables (when the wave equation is written in an appro-

priate coordinate system). As this is not possible for the

air-sea interface, we will not consider this methoi further.

Lysanov also references some experimental papers.

Since 1958 other experimental papers have been published

which seem co imply that Rayleigh's theory (including the

second mode) is correct for the low frequency problem

except near X r = N w (Nr' wavelength of radiations;

Xw, wavelength of the surface). 13 Since 1958 many papers

on the statistical analysis of the reflection of sound

from the rough sea surface have been published; these use

either Rayleigh's assumption or Kirchhoff's approximation

for the solution of the boundary value problem and as such
14

are only useful in the far field.

13 La Casce, loc. cit.

14 Proud, J. M., Jr., R. T. Beyer, and Paul Tamarkin,

"Reflection of Sound from Randomly Rough Surfaces," Journal
of Applied Physics, Vol. 31, No. 3, March 1960, p. 573.

Marsh, H. W., "Exact Solution of Wave Scattering by
Irregular Surfaces," Journal of the Acoustical Society of
America, Vol. 33, No. 3, March 1961, p. 330.

Marsh, H. W., M. Schulkin and S. G. Kneale, "Scatter-
ing of Underwater Sound by the Sea Surface," Journal of the
Acoust. Soc. of Amer., Vol. 33, No. 3, March 1961, p. 334.

Beckmann, Petr, and Andre Spizzichino, The Scatter-
ing of Electromagnetic Waves from Rough Surfaces, Pergamon
Press Ltd., London, 1963.
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One of the few papers considering "interface" boundary

conditions on an irregular surface was oublished by Wait
15

in 1959; this paper has been used to calculate the effect

of the rough surface on the electromagnetic fields in the

sea. Wait's basic approach is the work of Leontovich on

approximate boundary conditions for a good conductor.

Wait obtains the field on a plane in the sea, and solves

the wave equation in the sea with this as a boundary condi-

tion. A short discussion of this work is given in a paper

by Whalen. Some comment on the accuracy of Wait's

assumption is given in the main part of this paper. Other

work directly considering the rough sea suzface-VLF radio

wave interaction are: Lerner and Max I 7 and Winter. ].8 Winter

used the method of small perturbation to compute the fields

on the sea surface and the stochastic Stratton-Chu integral

equations to obtain statistical results for the fields in

the sea. The use of the method of small perturbation is

l 5 Wait, J. R., "The Calculation of the Field in a Homo-
geneous Conductor with a Wavy Interface," Proc. IRE, Vol. 47,
No. 6, June 1960, p. 1155.

16Whalen, J. L., "Measured Effects of Ocean Waves on

the Phase and Amplitude of VLF Electromagnetic Radiation
Received Below the Waves," USL Tech. Memorandum No. 941.1-
67-61, 3 August 1961 (unpublished).

'Lerner, R. M. and J. Max, "Very Low Frequency and Low
Frequency Fields Propagating Near and Into a Rough Sea,"
a paper presented to the URSI Spring 1963 Meeting.

l 8 Winter, loc. cit.
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discussed in Section 2 of this appendix and Winter's statis-

tical results are considered in the conclusion chapter of the

main part of this report. The basic method of Lerner and

Max was outlined in Section 2.6 of this report, and their

results are considered in the conclusion part of this report.



APPENDIX C

SINGULAR INTEGRALS

Although the results given in this appendix are avail-

able in the literature, it seems useful to make readily

available to the reader the basic theory and results per-

taining to "singular" integral equations. These results

have been used in the body of the paper to obtain the inte-

gral equations of Sections 1.4 and 5.2.

The starting point in considering "singular" integrals

1
is the concept of improper integral. By "singular" inte-

gral is meant an integral whose value changes discontinu-

ously (i.e., a "discontinuous integral").

The field of a single layer is:

F (r Fcp(r') G(klr- ' I )dS' (c.1)
5 s

rv. ' S

V. - interior volume bounded by closed surface S.

V - exterior volume bounded by closed surface S.

(r) - strength of the single layer sources.

F s(r) - field of the single layer sources.

'Mikhlin, S. G., Integral Equations, Pergamon Press,
London, 1957, p. 113.
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lrn F (r) = im F ' P(r') G(klr-r'l)dS-
r- S r -6 LS

N C-.0

cp Gkr4 (C.2)

N -neighborhood of point r in S (in this neighbor-

hood G(kjri4-r'I) becomes unbounded and the integral is improper).

-_ "7JS Jpr' ~Lr- r2  j~ = p p(r')G (kI r r*' I )dS
r-.S U

N -0

rn, I p(-r' ) G (k Ir- r') dS' =lim. () Gk' dS'

N.0 q N e.-_0

urn, q)(i) G(!') dSI 0

as G is an even function.

N CI- neighborhood of point r ' in S.

G(r) - static Green's function (the approximation

G(r ') pd G(kr') is valid for kir' << 1), wich

holds in N 1

lirn F ( ) = jp>(r' ) G (k I r--r') dS' (c-3)
1-S S

r EV or r CV N) E:S

The field of a double layer is represented by a singu-

lar integral.

c p(-r') -L, G(kjlr-r'I) dS' (c.4~)



t - -.

16o

cp(r) -strength of double layer sources.

n -outward normal to S.

F d(') -field ot double layer.

lim Fd) = p(i'-ji G(klr-r') dSI +

ieim d()~ fs GB')d

lim GiI dS' =lim dS'

lim - d() -_ C5 2

O - "solid angle" of surface S - (for smooth surface

0 = 2v)

lrn FdI q) ~G (krrI dS' - 1/2 q(p)

reV i d bn(c.6) 3

r' --S

lirn F, (.- = Gr' G(k Ir-- r'I dS' + 1/2 cp~r
reV 

(C7

2Courant, R. and D. Hilbert, Methods of Mathematical
Physics, Vol. 2, Interscience, Neil York, 196-2-,p. 253.

3Mikhlin, S. G., Linear integral Equations, Delhi-
Hindustan, 1960, P. 156.



Srn ( = !im 'P. (-r + jim {P1 i)G (k~rrl
reVi r EV, r EV.i
r-S r -4S r-S

r' eS

(P(i) cp.(l) + s~cpn (i' )G (k I-' -r-.

(c.-8)

XUy eq.uaLAEJ-1 C .A * 7z

Equation (C.8) is the equation used in Sectios 1.4

and 5.2.

The extension of these results to the coupled electro-

magnetic equations (Stratton-Chu) is straightforward. 4

4Honi, H., A. W. Maue, and K. Westpfah., "Theorie of
Beugung," in Handbuch DrPhysik, Band XXV/1. (Berlin:
Springer, 196fT)T-p--i5.



0 0

LIST OF REFERENCES

Anderson, W. L., "The Fields of Electric Dipoles in Sea
Water -- The Earth-Air-Ionosphere Problem," Technical
Report EE-88, Engineering Experiment Station, University
of New Mexico, Albuquerque, . .,

Baker, B. B., and E. T. Copson, The Mathematical Theory of
Huygen's Principle, 'nd Edition (oxfor, Claredn Press,

Banaugh, Robert P., "Scatterirr of Acoustic and Elastic Waves
by Surfaces of Arbitrary Shape," (Ph.D. Thesi- , University
of Wisconsin), i-)62.

Barantsev, R. G., "Plane Wave Scattering by a Douhle Periodic
Surface of Arbitrary Shape," Soviet Physics Acoustics,
Vol. 7, No. 2, Oct.-Dec., 1961, p. 123.

Bass, F. G., "On 'he Theory of Combination Scattering of Waves
on a Rough 8urface," Izvestia VUZ, Radiofizika, Vol. 4,
No. 1, 1961, AD 262 417.

Bass, F. G., V. G. Bocharov, "On the Theory of Scattering
of Electromagnetic Waves from a Statistically Uneven
Surface," Radiotekhnika Eiektronika, Vol. 3, No. 2,
1958, p. I8O.

Beckmann, P., and Andre Spiziichino, The Scattering of Electro-
magnetic Waves from Rough Surfaces, New York, Pergamon
Press, 1963.

Boit, M. A., "Some New Aspects of the Reflection of Electro-
magnetic Waves on a Rough Surface," Journal Applied
Physics, Vol. 28, Dec. 1957, 1455.

Boit, M. A., "On the Reflection of Electrcmagnetic Waves on
a Rough Surface," Journal Applied Physics, Vol. 29,
June 1958, p. 998.

Brekhovskikh, L. M., Waves in Layered Media, translated by
David Liberman, New York, Academic Press, 1960.

Bremmer, H., "Propagation of Electromagnetic Waves,"
Handbuch der Physik, Band XVI, Elektrische Felder und
Wellen, Berlin, Springer, 1958.

Browich, T. S., "Electromagnetic Waves," Phil. Mag., Vol. 38,
1919, pp. 144-164.

162



163

Collatz, L., The Numerical Treatment of Differential Equations,
(Berlin, Springerl-b).

Courant, R., Methods of Mahhematical Physics, Vol. II, Partial
Differentfai Equations (New York, Interscience, 9

Er~elyi; A., et al, Tables of Integral Transforms, Vol. I,
New York, McGraw-Hill, 1954.

Feinberg, E. L., "Propagation of Radio Waves Along an Inhomo-
geneous Surface," Nuovo Cinento, Series 10, Vol. 11,
No. 1 Suppl., 1959, P. b.

Forsythe, G. E., and W. R Wason, Finite-Difference Methods
for Partial Differential Equations, New York, John Wiley,1:960.

Friedman, B., Principles and Techniques of Applied Mathematics
(New York, John Wiley, 1956).

GodzLwski, Z., "The Surface Impedance Concept and the Structure
of Radio Waves over a Real Earth," Proceedings IEE,
Part E, Vol. 108, 1961, pp. 362-373.

Godziwski, Z., "The Use of Equivalent Secondary Sources in the
Theory of Ground Wave Propagation over an Inhomogeneous
Earth," Proceedings IEE, Part C, Vol. 105, 1958, pp. 08-
464 .

Harrington, R., Time-Harmonic Electromagnetic Fields, New York,
McGraw-Hil. 1--961

Hessel, A., and A. A. Oliver, "On the Theory of Wood's
Anomalies, in Progress Report No. 19," R. 452.19 61,
Polytechnic Institute of Brooklyn (unpublished), AD
256 809.

Hiatt, R. E., T.B.A. Senior, and V. H. Weston, Studies in
Radar Cross Sections XL" -- Surface Roughness and
Impedance Boundary Conditions," University of Michigan
Research Institute, Ann Arbor, Mich., July 1960
(unpublished) .

Honl, H., A. W. Maue, and K. Westpfahl, Theorie of Beugung,"
in Handbuch Der Physik, Band XXV/l. (Berlin, Springer,
1961), p. 21S.

Jones, D. S., The Theory of Electromagnetism (Oxford, Pergamon
Press, 1964), p. 93.

Kaplan, Wilfred, Advanced Calculus (Reading, Mass., Addison-
Wesley, 19537 P. 275.



164

Kantorovich, L. V., and V. I. Krylov, Approximate Methods of
Higher Analysis (New York, Interscience, 1953).

Kerr, D. E., Propagation of Short Radio Waves, McGraw-Hill,
New York, 1951, p. 487.

King, R. W. P., "Quasi-Stationary and Nonstationary Currents
in Electric Circuits," in Handbuch Der Physics,
Band XVI, Elektriscbe Felder und Wellen ('Berlin,
Springer, 1958), P. 165.

La Casce, E. 0., "Some Notes on the Reflection of Sound from
a Rigid Corrugated Surface," Journal of Acoustical
Society of America, Vol. 33, No. 12, Dec. 191i, p. 1772.

La Casce, E. 0., B. D. McCombe, and R. L. Thomas, "Measure-
ments of Sound Reflection from a Rigid Corrugated
Surface," Journal of Acoustical Society of America,
Vol. 33, No. 12, Dec. 1961, p. 1768.

Lamb, H., Hydrodynamics, Dover Publications, Inc., New York,
1945.

Lee, Y. W., Statistical Theory of Communication, John Wiley,
New York, 1960, p. 207.

Leontovich, M. A., "Approximate Boundary Conditions,"
Investigations on Radio Wave Propagation, PartI TI

Moscow, Printing House of Academy of Sciences, 198,
pp. 5-12.

Lerner and Max, "Very Low Frequency and Low Frequency Fields
Propagating near and into a Rough Sea," a paper presented
to the URSI Spring 1963 Meeting.

Longuet-Higgins, M. S., "The Statistical Analysis of a

Random Moving Surface," Trans. Royal Society of London,
Series A, Vol. 2±19, 1956-57, P. 321.

Longuet-Higgins, M. S., "Statistical Properties of an
Isotropic Random Surface," Trans. Royal Society of
London, Series A; Vol. 250,-i957-56, p. 157.

Longuet-Higgins, M. S., "The Directional Spectrum of Ocean
Waves, and Processes of Wave Generation," Proceedings
of the Royal Society, Vol. 265, No. 1322, Jan. 30,
1962, p. 286.

Lysanov, Y. P., "An Approximate Solution of the Problem of
Scattering of Sound Waves from an Irregular Surface,"
Soviet Physics Acoustics, Vol. 2, 1956, p. 190.



165

Lysanov, Y. P., "Theory of the Scattering of Waves at
Periodically Uneven Surfaces," Soviet Physics Acoustics,
Vol. 4, No. 1, January-March, 1958, PP. 1-6.

Lysanov, Iu. P., "On the Field of a Point Radiator in a
Laminar-Inhomogeneous Medium Bounded by an Uneven
Surface," Soviet Physics Acoustics, Vol.7 , No. 3,
January-March, 1962, p. 255.

Marsh, H. W., "Exact Solution of Wave Scattering by Irregular

Surfaces," Journal of the Acoustical Society of America,
Vol. 33, No. 3, March 1961, p. 330.

Marsh, H. W., M. Schulkin and S. G. Kneale, "Scattering of
Underwater Sound by the Sea Surface," Journal of
the Acoustical Society of America, Vol. 33, No. 3,
E' arch, 1961, p. 334.

Meecham, W., "On the Use of the Kirchhoff Approximation for
the Solution of Reflection Problems," J. Rational Mech.
Analysis, Vol. 5, 1956, p. 323.

Meecham, W.., "Fourier Transform Method for the Treatment of
the Problem of Reflections of Radiation from Irregular
Surfaces," J. Acoust. Soc. Amer., Vol. 28, 1956, p. 370.

Mei, Kenneth Kwan-hsiang, "Scattering of Radio Waves by
Rectangular Cylinders," (Ph.D. Thesis, University of
Wisconsin), 1963.

Mikhailov, V. I., "On the Theory of Scattering of Electro-
magnetic Waves on the Sea Surface," Bulletin, Academy
of Science, USSR, Geophysics Series, 1960, p. 818.

Mikhlin, S. G., Linear Integral Equations, Delhi, Hindustan
Publishing Corp., 19b0.

Mikhlin, S. G., Integral Equations, New York, Pergamon Press,
1957.

Miles, J. W., "Generation of Surface Waves by Shear Flows,"
Proc. of Symposia in Applied Math., Vol. XI'II, Amer.
Math. Society, McGraw-Hill, New York, 162, p. 79.

Morgan, S. I., "Effect of Surface Roughness on Eddy Current
Losses at Microwave Frequencies," Journal of Applied
Physics, Vol. 20, 1949, p. 352.

Morse, Philip M., and Herman Feshbach, Methods of Theoretical
Physics, McGraw-Hill, New York, 1953.

Muskbelishvilli, N. I., Singular Integral Equations, Groninger,
Netherlands, Erven P. Noordhoff, 1953.

Muskbelishvilla, N. I., Some Basic Problems in the Mathematical
Theory of Elasticity, Groninger, Netherlands, Erven P.
1 Ioor lff . 9 ..............



166

Phillips, 0. M., "On the Generation of Waves by Turbulent
Wind," Journal of Fluid Mechanics, Vol. 2, 1957, p. 417.

Phillips, 0. M., "Resonance Phenomena in Gravity Waves,"
Proc. of Symposia in Applied Math., Vol. XIII, Amer.
Math. Society, McGraw--Hill, New York, 1962, p. 91.

Pierson, W. J., Jr. (Ed.), "The Directional Sectrum of a
Wind Generated Sea as Determined from Data Obtained
by the Stereo Wave Observation Project," New York
University Meteorological Papers, Vol. 2, No. 6,
June 1960 (unpublished).

Pierson, W. J., Jr., "A Study of Wave Forecasting Methods
and of the Height of a Fully Developed Sea," Deutsche
Hydrographische Zeitschrift, Vol. 12, No. o, 1759,
p. 244.

Pierson, W. J., Jr., "A Note on the Growth of the Spectrum
of Wind-.Generated Gravity Waves as Determined by
Non-Linear Considerations ," Journal of Geophysical
Research, Vol. 64, No. 8, August 1959, p. 1007.

Pierson, W. J., Jr., "Wind Generated Gravity Waves,"
Advances in Geophysics, Vol. II, 1955, Academic Press,
New York, p. 107.

Pierson, W. J., G. Neumann and R. W. James, Observing and
Forecasting Ocean Waves Hydrographic Office Publication
No-o601, 195b, pp. 45, 47, 50.

Proud, J. M., Jr., R. T. Beyer, and Paul Tamarkin,
"Reflection of Sound from Randomly Rough Surfaces,"
Journal of Applied Physics, Vol. 31, No. 3, March, 1960,
P 543.

Rayleigh, J. W. S., The Theory of Sound, Vol. II New York,
Dover, 1945.

Scarborough, Numerical Mathematical Analysis, fourth ed.,
(Baltimore, Johns Hopkins Press, 19b3).

Schelkunoff, S. A., Electromagnetic Waves, New York, D. Van
Nostrand, 1943.

Senior, T. B. A., "The Scattering of Electromagnetic Waves
by a Corrugated Sheet ," Canadian Journal of Physics,
Vol. 37, 1959, p. 787, AD 235 810.

Senior, T. B. A., "Impedance Boundary Conditions for Imper-
fectly Conducting Surfaces," Applied Science Research,
Section B., Vol. 8, 1960, p. 415.



167

Senior, T. B. A., "Impedance Boundary Conditions for
Statistically Rough Surfaces," Applied Science Research,
Section B., Vol. 8, 1960, p. 437.

Sommerfeld, A., Partial Differential Equations in Physics,
New York, Academic Press, 1964.

Stratton, J. A., Electromagnetic Theory, New York, McGraw-
Hill, 1941.

Tick, L. J.,"A Non-Linear Random Model of Gravity Waves I,"
Journal Math. and Mech., Vol. 8, 1959, P. 643.

Wait, J. R0, "The Calculation of the Field in a Homogeneous
Conductor with a Wavy Interface," Proc. In, Vol. 47,
No. 6 (June, 1960), p. 1155.

Wait, J. R., Electromagnetic Waves in Stratified Media,
Pergamon Press, New York, 1967, p. 1.

Walther, A., "General Report on the Numerical Treatment of
Integral and Integro-Differential Equations," Symposium
on the Numerical Treatment of Ordinary Differential
Equations -- Proceedings ofthe Rome Symposium, 190,
Organized by the PICC, Basel, Berkhauser, 1960.

Waterman, P. C., "Scattering of Electromagnetic Waves by
Conducting Surfaces," Wilmington, Mass., Research and
Advanced Development Division AVCO Corporation,
Dec. 1962, an unpublished report.

Whalen, J% L., "Measured Effects of Ocean Waves on the Phase
and Amplitude of VLF Electromagnetic Radiation Received
Below the Waves," USL Tech. Memorandum No. 941.1-67-61,
3 August, 1961, unpublished.

Winter, D. F., "Low-Frequency Radio Propagation into a
Moderately Rouqh Sea," Radio Propagation, Vol. 67D,
No. 5, Sept..-Oct. 1903, PP. 551-5b1.

Proceedings of a Conference on Ocean Wave Spectra (Englewood,
N. J., Prentice-Hall, 1963).

"Sea Water" in McGraw-Hill Encyclopedia of Science and Tech-
nology, Vol. 12 (McGraw-Hill, New York, 1960), p. 106.


