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ABSTRACT

In the search for extremely reliable electromagnetic
comﬁunication to submerged submarines, the question arose,
"What is the effect of the roughness and irregularity of
the sea surfacg on the propagation of eslectromagnetic waves?"
The purpose of this investigaticn is to obtain an engineering
understanding of the effect of the rough air-sea interface
on electromagnetic signals used in communication to sub-
-merged submaiines.

The frequency of the electromagnetic wave is restricted
to the ELF or VLF range. In the initial part of the investi-
gation, the sea surface is assumed to be.a two-dimensional

ﬁ(égnstqnt-in'one variable or direction) sinusoidal surface;
Jater a doubly (three-dimensional) sinusoidal surface is
qonsidered. The source of electromagnetié energy is assumed
+t0 be a plane wave with arbitrary direction of propagation
and: polarization,

The fields on the air side of the sea surface are com-
pﬁ;edfwifh the aid of the assumptions that: the sea is a
Eg;gépg,electric conductor and that the sea surface is only
',sliéhtly—rqugh (i.e., the maximum slope of the sea surface
‘ds.much less than 1), The integral equations governing the
tangential magnetic fields are formulated and solved, These
'goiﬁtgqns show a variation of the tangential magnetic field

‘(of the o¥der of 2 db. from the flat surface case) depending




-

o

on polarization and direction of propagation of the incident
plane wave,

The fields in the sea are computed by assuming the tan-
gential magnetic field is continuous through the air-sea
interface, The method used in these calculations is a numeri-
cal one based on finite differences.

Both from the numerical soclutions and a heuristic theory
of propagation in the sea, it is seen that the pertuﬁggtien
of the fields caused by the roughness of the sea surface
decays rapidly with depth if the sea wave wavelength is less
than or the order of magnitude of the skin depth of the sea
at the frequency considered; if the sea wave wavelength is
many orders of magnitude larger than the skin depth, there
is little decay (at the depths considered) of the perturbation,
so that the phase and amplitude of the fields in the sea vary

with the height of the sea vertuically above them.
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PREFACE

This report is concernad with a problem that arises in
the theory of communication to submarines. In the search - :
for extremely reliable radio communication to submerged sub-
marines, the question arose, "What is che effect of the
roughness and irregularity of the sea surface on the propa-
gation of radio waves?" Within the content of the submarine
communication problem this report will attempt to answer :
that question.

The effe:t that nonuniform or rough surfaces have on
electromagnetic propagation is not completely known. The
interaction of such surfaces with incident electromagnetic
energy is a particularly difficult problem. No attempt to
solve the ahove problem (where the rough surface is taken
to be the sea surface) for all frequencies and classes of
surfaces appears feasible at present. However, for restricted
freguency intervals and classes of surfaces, detailed solu-
tions may be obtained.’

The radio wave propagation problem associated with
long range conmunication to submerged antennas is necessarily
concerned with "low frequencies." This follows in part from %
consideration of the attenuation of an electfomagnetic wave
as it propagates through a conducting medium. For propaga-

tion tkrcugh sea water, the attenuation is approximately
a/s

B O P

proportional to e~ , where d is the depth belcwv the sea

1 f




surface and § is the skin depth of the sea water at a fre-

quency of the radio wave (6 ~ f-l/2

for the frequencies
considered here). The above implies the need only to
consider a restricted frequency range for the submarine
communication problem.

With this in mind, a study of the electromagnetic
fields caused by incident VLF and ELFT plane waves on the
rough air-sea interface has been made and is presented in
this report. Main attention is given to the fields in the
sea, somewhat near the air-sea interface (i.e., within
twenty-five meters or so of the sea surface), as these
are the electromagnetic fields presently in use in communi-
cation systems. In the VLF range, 8 for sea water is a few
meters; this implies the fields at =2 depth of tens of meters
(2 few skin depths) are orders of magnitude less than the
fields at the sea surface. For moderate sea states, the
sea wave heights are the same order of magnitude as the
skin depth in the VLF range:; the above implies the radio
signal is greatly changed as it propagates downward through
the rough sea, as comparzd to the signal under the flat

sea surface condition. For radio waves in the ELF range,

Yir (very low frequency) is usually taken to be the
range from 3 to 30 kc/s; ELF (extremely low freguency) is
from about 1 cps to 3 kc/s. James R. Wait, Electromagnetic
Waves in Stratified Media [Pergamon Press, New York, 1962 ],

p. 1).




the skin depth is the order of ten to one hundred meters
so that the effect of sea roughness will be somewhat less
than in the VLF range.2

It is clear then that an effect of the rough air-sea
interface is to change or distort the radio signal as it
propagates to a submerged antenna. That is, the rough
air-sea interface has the effect of introducing noise
into the radio signal. One of the major problems in com-
munication systems is to preserve as good a signal to noise
ratio as necessary for detection of the signal. In some
cases, as possibly (under certain conditions) the one
considered here, the noise properties of the communication
channel are determined primarily by the propagation proper-
ties of the time-varying signal path used in the system;
that is, the noise created by the time-varying path is
greater than the other noise created in the system; e.g.,
atmospheric noise, and the noise created by the time-
varying path is the limiting factor in the communication
system. Fart of the propagation path to a submerged
antenna is through the time-varying rough air-sea interface.
One of the cbjecctives of this study is to gain an engineer-
ing understanding of the distortion of the electromagnetic
signal by the rough air-sea interface, so that ways of

alleviating this condition may be found.

2In sea water at a depth of ten meters the attenuation
of an electromagnetic wave at 18.6 kc/s is approximately
47 db., while the attenuation at 3 cps is approximately
.6 db. A curve of skin depth vs. frequency is given on

page 55.
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There are two major difficulties in the solution of
the electromagnetic wave sea surface interaction problem.
The first is the solution of the electromagnetic boundary
value problem for a particular, completely specified rough
surface. In what follows, as is true in most discussions
of boundary value problems invelving rough surfaces, only
an approximate solution is obtained for the particular
rough surface considered.

The second, and in many respects a more difficult
problem, is the mathematical description of the sea surface.3
The description of the sea surface is statistical, and this
implies that the solution to the "sea surface-radio wave"
problem would be given in statistical terms. However, as
discussed later in this study, statistical results such as
average field strengths are not very meaningful for this
problem.

In the initial part of the following investigation,
the sea surface will be assumed to be two-dimensional
(constant in one variable or direction). The "basically
spherical" earth is replaced by a "basically flat" earth.
This approximation is made often in "low frequency" prépa-

gation problems, particularly when only local fields are

i

considered.

j'I'he mathematical descriptions of the sea surface
are considered in Appendix A.

qAnderson, W. L., "The Fields of Electric Dipoles in
Sea Water -- The Earth-Air-Ionosphere Problem," Technical
Report EE-88, Engineering Experiment Station, University of
New Mexico, Albuquerque, M. M., May, 1963, p. 3.




The theoretical foundation for the two-dimensional problem
is presented jin Chapter 1, starting directly from Maxwell's
equations (a set of vector partial differential equations,
boundary and/or interface conditions, and source conditions).
It is shown that for the problem considered, Maxwell's
equations may be approximated by a linear and time invari-
ant operator, in which case it is convenient to consider
only monochromatic electromagnetic fields. The concept of
vector potentizls is then given, along with a brief outline
of their theory for the monochromatic case. In the two-
dimensional problem the vector electromagnetic boundary
value problem may be reduced to a set of scalar boundary
value problems by use of the vector potentials. The scalars
used in this reduction are the rectangular components of
the vector potentials.

The formulation of the scalar boundary value problem
in terms of integral equations is given. The starting point
in this formulation is Green's theorem, involving two arbi-
trary functions. One of the functions is restricted until
it is the desired solution of the boundary value problem;
the second function is chosen to facilitate interpretation
of the mathematical formulation in physical terms. An
unfortunate result of considering a plane wave as the source
term and an infinite rough plane as the scatterer is that
Sommerfeld's radiation condition is not sufficient to render

the solution unique.
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To render the problem "well-set," a dstailed discussion
of the boundary value problem in terms of integral eguations
is given. The plane wave source condition is obtained as
a limit of the usual source condition with a £inite source.
Also, because the virtual sources which are assumed to
exist on the scattering surface are of unbounded extent
as the scattering surface is unbounded, the radiation con-
dition is imposed again by way of a limiting process. With
the above mathematical formulation, the problem is then
"well-set" and the solution unique.

To compute the fields in the air and on the sea surface,
the sea is assumed to be a perfect electric conductor.

ILater, when considering the fields in the sea, the electri-
cal properties of the sea are assumed to be:5
i) O 8l--relative permittivity,

ii) o = 4 mhos/m--electric conductivity of the sea,
iii) M, = l--relative permeability. ‘
The above assumption of a surface impedance of zero is a

usual approximation made in discussing the rough surface

prdblem;6 its validity is discussed somewhat later in this

5Stratton, J. A., Electromagnetic Theory, McGraw-Hill
Book Company, Inc., New York, 1941, p. 006.

"Sea Water" in McGraw-Hill Encyclopedia of Science &
Technology, Vol. 12 (Mc-Graw~-Hill, New York, 1960), p. 106.

6Much of the work on "electromagnestic rough surface"
problems uses the assumption that the suxrfacr. impedance is
zero; however, this assumption is not usually verified.
(See Lerner and Max, "Very Low Frequency and Low Frequency
Fields Propagating Near and Into a Rough Sea," a paper




report. The two-dimensional vector electromagnetic problem
may then be reduced to a set of uncoupled scalar problems
for the rectangular components of the vector potentials.
The problem subdivides into two parcs, depen?ing on the
polarization of the incident electromagnetic wave. For
different polarizations, different vector potentials are
used in the formulation of the integral equations (i.e.,
scalar boundary value problems) and this is reflected in
the different boundary conditions applied to the scalar
field considered.

As stated above, the interaction of electromagnetic
waves and rough surfaces still remains an unsolved problem.
The theoretical treatment of "rough surface problems" was

begun by Rayleigh in his classic Theory of Sound.7 A review

of major theoretical investigations is given in Appendix B.

An extensive bibliography may be found in Lysanov's review

8

work™ on Bechmann and Spizzichino's monograph on scattering

presented to the URSI Spring 1963 Meeting; R. E. Hiatt,

T. B. A, Senior, and V. H. Weston, "Surface Roughness and
Impedance Boundary Conditions," in "Studies in Radar Cross
Section XL," Ann Arbor, Michigan, The University of Michigan
Research Institute, July 1960, an unpublished report;

S. P. Morgan, "Effect of Surface Roughness on Eddy Current
Losses at Microwave Frequencies," Journal of Applied Physics,

Vol. 20, 1949, p. 352.)

7Rayleigh, J. W. S., The Theory of Sound, Vol. II,
Dover Publications, New York, 1945, pp. 89-96.

8Lysanov, Y. P., "Theory of the Scattering of Waves at
Periodically Uneven Surfaces," Soviet Physics Acoustics,
Voi. 4, No. 1 (Jan.--March, 1958), pp. 1-8.

o N
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of waves. It may be stated that there exists no theoreti-~
cal solution for the "rough surface problem." However,
under certain assumptions about the rough surface, there
have been developed methods for approximate calculation of
the fields. 1In the problem considered, the sea surface is
assumed to be sinusoidal which is a particular realization
of the sea surface (for brief mathematical discussion of
the sea surface, see Appendix A), with wavelength L much
less than A, the wavelength of the electromagnetic wave in
free space. The technique used in the =alculation of the
vector potential on the sea surface is an "integral equation"”
type method. The physical parameters or constants of the
sea surface and electromagnetic wave are such as to permit
accurate calculation of the vector potential and hence the
electromagnetic fields by this method.

The solution of the integral equations for the fields
or potential in the air, but on the sea surface, is considered

10 the approximate method

in Chapter Two. In the T case,
of degenerate kernels is used. Because of the relative

magnitude of the physical parameters involved, the integral

9Beckm.ann, Peter and Andre Spizzichino, The Scattering
of Electromagnetic Waves from Rough Surfaces, Pergamon Press,

New York, 1963, pp. 470-491.

lOTM---transverse magnetic (the magnetic field is perpen-
dicular to a fixed direction); TE--transverse electric (the
electric field is perpendicular to a fixed direction). This
notation is explained in Harrington, Time-Harmonic Electro-
magnetic Fields, (McGraw-Hill Book Company, Inc., New York,

1961 ), p. 219, and is used in Section 1.2.




equations with the degenerate kernel accurately approximate
the complete integral equation. (This result is due to

Lysanovll and Meecham.lz)
can be solved by classical Fourier methods. The solution

shows a change or perturbation in the "worst case" for the

physical parameters considered of about thirty-five per cent

from the flat interface case.13 This is in basic agreement
with Lerner and Max,]'LL who obtain a similar result by a
completely different method. The above result is also
shown to be independent of incident angle (except glancing
angle, which is not directly considered). Lerner and Max
considered only glancing angles.

In the TE case, the vector potential and the magnetic
field are unperturbed, which again is in agreement with

16

Lerner and Max, Waitl5 and Morgan. Both Wait and Morgan

llLysanov, Y. P., "An Approximate Solution of the

Problem of Scattering of Sound Waves from an Irregular
Surface," Soviet Physics Acoustics, Vol. 2, 1956, p. 190.

12Meecham, W. C., "Fourier Transform Method for the
Treatment of the Problem of Reflections of Radiation from
Irreqular Surfaces,"” J. Acoust. Soc. Amer., Vol. 28 (May,

1956), p- 370.

l)'ZL"he tangential magnetic field has a variation of
approximately 2.8 db. compared to its constant value in
the flat interface case.

lL‘Lerner, R. M. and J. Max, op. cit., p. 19.

15Wait, J. R., "The Calculation of the Field in a
Homogeneous Conductor with a Wavy Interface," Proc. IRE,
Vol. 47, No. 6 (June, 1960), p. l155.

16Morgan, S.P., op. cit., p. 353.

The approximate integral equation
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assumed this result based on physical principles. Wait
assumed the field was unperturbed in both cases, TE and TM:
Morgan, however, solved the TM case, just as Lerner and
Max, by conformal mapping of the static (w = 0, where w is
the radian frequency of the radio wave) problem. It is
interesting that Morgan was considering losses in "rough
wave guides" in the microwave frequency range, which shows
that the above results depend only on the ratio of relative
physical parameters, basically the ratio of L to 6§, assum-
ing A >> L, and not necessarily on their absolute values.
To consider the fields in the sea, the integral equa-
tions for the vector potential in the sea but on the sea
surface is given. In the VLF range for the physical
varameters considered, this integral equation yields an
"impedance type" relation for the vector potential much
like Leontovich's impedance boundary condition for the
fields.17 However, as this relationship applies to any
wave function, it also may be applied directly to the
electromagnetic fields. The major phenomenon leading to
this result is the great attenuation of radio waves in sea
w;;er. In the ELF range the attenuation is not as great in
terms of physical distances and the "local impedance condi-

tions" need not hold.

17Leontovich, M. A., "Approximate Boundary Conditions,"
Investigatinns on Radic Wave Propagation, Part II, Moscow:

iy

Printing House of Academy of Sciences, 1948, pp. 5-12.







11

By use of the impedance boundary condition the effect
of the finite conductivity of the sea on the fields may be
estimated; The solution originally obtained (under the
assumption of infinite conductivity) is seen to approxi-
mately satisfy the "complete" integral equation (where o
and ¢, are assumed to be related by the impedance boundary
condition -- @ being the solution to the boundary value
problem under consideration and Py the normal derivative
of ¢ on the surface) which, implying no basic change, is
necessary in the solutions.

The next section of Chapter Two is concerned with the
use of quasi-stationary kernels and solutions. It is shown
that Pe s the "scattered field," may be considered a quasi-
stationary field, while P the incident field, and P,
the reflected field (the field reflected if the rough sea
surface were assumed to be flat), may not. The use of
stationary kernel is valid in the computation of P/ but
not for ?; and P

Now knowing the fields on the surface, we wish to
obtain the fields in the sea. This is then a Dirichlet
type boundary value problem for the rectangular components
of the fields. 1In some cases the complete field may be
generated by the use of only one component of the field and
its derivatives, In this case, we may againr simply use a
scalar component of the vector potential. 1In general, the
vector potential cannot be used to go through the rough

interface correctly as there are too many requirements on
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the potential at a rough interface., In this case, each com-
ponent of a field vector may be calculated separately.

In Chapter Three, the method used to compute the fields
in the sea is given. First, a general discussion cf classi-
cal methods, separation of variables, is given along with
the results to be expected from such considerations.

Basically, the above method implies that if the varia-
tion of the electromagnetic field with respect to the x
variable is "too great," the wave will be attenuated as it
travels downward in the y-direction. In order t~ see if a
particular "mode"” will be attenuated significantly more
than the n = 0 mode (plane wave propagating approximately
in the y-direction, with propagation constant y), a crude

breakpoint is chosen. This is if

L < .J2 wnd

the mode will be attenuated significantly more than the

n =0 mode. L is the sea wave wavelength for the sinusoidal
sea wave considered, and n is the index of the mode. The
larger the n is, the greater the variation of the field in
the x~direction and the greater the attenuation. The above
implies that the asymptotic fields in the sea (i.e., the

far fields) tend to a plane wave propagating basically in
the y«directién with propagation constant y. Asymptotically
the major perturbation is the n = 1 mode. This result is
independent of the shape of the sea surface; that is, Wait's

18

conclusion™ with respect to this result is correct, but the

1S

"“Wait, loc. cit.
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asymptotic perturbation does not have the same shape as
the sea surface; the latter is true only for sinusoidally
shaped surfaces.

For the fields near the sea strface, if the lower
order modes are not attenvated n.ch more than the n = O
mode, there should be little¢ difference between the fields
pred .ed by Wait's approximations and the actual fields.
If the lower order modes are attenuated, there will be a
great difference and the field will "rapidly" become
approximately a plane wave., Practically, the large sea
waves have wavelengths so long that for much of the ELF
and all of the VLI range, the lower order modes are "un-
attenuated" ana Wait's prediction is "relatively accurate."
The smaller sea waves superimposed on the larye ones may
have small enough wavelengths so that the field perturba-
tions caused by them will be greatly changed by attenuation.
However, the perturbations caused by the smaller waves are
relatively small and their effect on the total field is
further reduced by their additional attenuation (over the
attenuation of the n = 0 mode).

The above theory gives a good baric :'nderstanding of
the effect of the roughness of the sea surface on electro-
magnetic propagation used in communication to submerged
antennas. However, to place a more precise meaning on the

term "little change" in the fields, the numerical solution

to the propagation problem in the sea was obtained. When
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the numerical solutions are compared with theory, a good
understanding of the propagation problem results.

The method used for numerical solution of the Dirichlet
boundary value problem is the "method of lines." This is
a modification of the classical separation of variables.
One of the reasons it was chosen is its close correlation
with the physical processes involved in the problem.
A finite difference approximation is used in the x-direction,
basically in the direction along the surface, to determine
the "propagation constant" in that direction. This "propa-
gation ccnstant" should be somewhat smaller than the
"propagation constant" in the y-directior.. The partial
differential equations then become a differential equation
in y which is basically normal to the surface with the
"propagation constant" determined. The differential
equation is then solved. Here again the rough surrace
causes problems. Below the surface, that is, below a plane
tangent to the surface at the lowest point (trough) of the
surface, the radiation condition may be applied and the
computation is straightforward. However, above this the
radiation condition does not apply and the solution is by
iteration.

The results of the calculations are given in Chapter
Four, along with interpretation of the calculations. The
results agree with what is intuitively expected by use of

the classical arguments given above.

ALY
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In part two of this study, the three-dimensional elec-
tromagnetic wave rwugh sea surface interaction proklem is
considered. The method used for the three-dimensional
problem parallels that used in the two-dimensional problem;
for this reason the development given in part two is brief
and refers to the parallel development used in part one.

The mathematical model of the rough sea surface is a three-

dimensional extension of the model used in the two-dimensional

problem.

The vector potentials are no longer useful and the prob-
lem is formulated directly in terms of the electromagnetic
fields themselves. The Stratton-Chu equations are used to
represent the solutions of Maxwell's Partial Differential
Equations. The boundary conditions (assuming the sea surface
is a perfect electric conductor) are placed in the Stratton-
Chu equations yielding the integral equations (or vector
integral equation) to be solved.

In Chapter 7, the integral equations are solved. The
kernel of the integral equations is assumed to be the static
(¢ = 0) kernel and the kernel is further approximated by a
simplexr kernel, permitting solution by the Fourier Method,
as was done in part one. The solution yields the tangential
magnetic field on the sea surface which, as the surface
becomes constant in one variable, tends to the solution
obtained in the two-dimensional problem. No numerical solu-
tions are obtained in the sea as the propagation properties
of the fields in the sea are basically unchanged for the two

or three-dimensional problem.

PRIV



1.0 THE BASIC THECRY FOR THE TWO-DIMENSICONAL PROBLEM

(N

1.1 Introduction

The purpose of this chapter is to present the basic theory,
assumptions, restrictions, and approximations involved in the
trzatment to be given below of the question "What is the effect
of the roughness and irregularity of the sea surface on the
propagation of VILF and ELF electromagnetic waves?"

The starting point in the mathematical description of
macroscopic electromagnetic phenomenon is Maxwell's equations.l
Maxwell's equations are a set of partial differential equations,
boundary and/or interface conditions which the electromagnetic ,"§
fields must satisfy. A general review of Maxwell's equations
is presented. Then the electromagnetic fields are restricted
to be monochromatic along with the assumption that the sea
surface is stationary. In a later chapter, after the boundary
value problem has been solved for a stationary sea surface,
the effect of the motion of the sea surface is considered.

The vector potential method is introducted, and it is
shown that some electromagnetic boundary value problems may

be formulated in terms of the vector potential.

lThe concern here is only with "large-scale" phenomena
and in the past it has been confirmed that solution of Maxwell's
equations does represent the actual measurable quantities. (See
Stratton, op. cit., p.viiand Harrington, op. cit., p.1)

16
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A mathematical model of the physical situation involving
the rough sea surface is given, along with a brief comment on
the validity of the assumptions and approximations involved in
the construction of this model., Later, some of these assumptions
are again reviewed to give a further estimation of the accuracy
of the solution,

Using as a basis the mathematical model just described,
the electromagnetic boundary value problem is formulated in
terms of integral equations., Starting with Green's theorem
for two relatively arbitrary functions, restrictions are placed
on one of the functions so that it represents the solution of
the boundary value problem considered. The other is an aux-
iliary function arbitrarily chosen as the "free-space Green's

4

function" which permits immediate interpretation of the integrals
in terms of physical processes. The two-dimensional electro-
magnetic boundary value problem is formulated in terms of
scalar components of the vector potentials, yielding the inte-

gral equations to be solved in the next chapter.

1.2 Review of Maxwell's Equations and Monochromatic Fields
In a source-free region, the set of partial differential

equations included in Maxwell's equations2 is

curl € = - %E'% (a)

curl R = g% d+7 {b) (1.2.1)
div d = p (<) o
div B = 0 (d)

ZIn rationalized m.k.s.c. units which are used throughout
the remainder of this paper unless specifically stated otherwise,.
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The constitutive relations which characterize the electro-

magnetic properties of the medium in which the electromagnetic

phenomena occur are

b = uﬁ (a)
3 -2 (b) (1.2.2)
7 =08 (c) .

For the problem considered here, it is sufficient to assume

W, €, 0 are scalars and are constant with respect to variations
in position and electromagnetic fields (i.e., the medium is
linear, homogenzous, and isotropic, which is assumed to hold
throughout the remainder). The changes in media will be re-
flected in the application of boundary or interface conditions.
Also, for the moment, it will be assumed p, €, 6 may be con-
sidered time invariant, and the problem solved for this “"static"
condition and later correction is made for the time variation.
Under the above assumptions and the assumption (see below) that
the boundary or interface conditions are linear and time in-
variant, Maxwell's equations become a linear and time invariant
operator,

In the case where Maxwell's equations are Jinear and time
invariant, it is convenient to use monochromatic fields. Let
all the electromagnetic fields have a time variation of the
form cos(wt + B), where o is the radian frequency for all the

fields. The vector time functions can then be obtained from

the complex vectors by the relation

3(E,t) = Re{B(F, i) @t} (1.2.3)

where r = (X,y,2) -- the ordered triple of the rectangular
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coordinates of position,i.e., o(T,t) = 3(x,y,z,t). Similar
equations held for the other electromagnetic fields.

For monochromatic electromagnetic fields, in a linear,
homcgeneous, isotropic, source-free region, the (complex)
partial differential equations that the electromagnetic

fields must satisfy become

curl B = -ZB (a)
curl B = VB (b) (1.2.4)
div B = 0 diviB =0 (c) )
where
Z = imy Y =0 + iwe . (1.2.5)

Another set of requirements the electromagnetic fields
must satisfy are the boundary or interface conditions.
These reflect the electromagnetic properties of the different
media, It can be shown from the set of partial differential
equations,3 that at the interface between two different media
i) tangential electric and magnetic fields are continuous
axlBR(E) - E(®)] =0
ax(BH(Z) - B ()] =0 (1.2.6)

where
BHE) = 1im B(E)
g-—>S+
rev
S -- surface (interface) bounding volume V'

3This approach that the houndary conditions are derivable
from the partial differential equations is taken by H, Bremmer
in his "Propagation of Electromagnetic Waves," in Handbuch der
Physik Band XVI Elektrische, Felder und Wellen (Berlin:
Springer, 1956, pp. 4Z4-425).

e 5 Y = e it b =

- - ke e b




n -- outward normal to S (pointing out of V+)u.
Similarily
E7(%) = lim B(¥)
r->S_
rev

ii) normal electric and magnetic displacements
hoo (BYE) -B(E)] =0
Ao [B%%) -B(E))=0. (1.2.7)
Equations (1.2.6) and (1.2.7) are the interface conditions,
As stated above, the interface conditions are linear and
time invariant,
There are also sets of boundary conditions; they may
be applied only under somewhat idealized conditions (for
Maxwell's equations the interface conditions always apply) .
A convenient though somewhat idealized model of some real
materials is that of a perfect electric conductor.5 A dis-
cussion of the boundary corditions at a perfect electric con-
ductor is given by Stratton;6 they are limiting cases of the
interface conditioms.

i) tangential electric field is zero.

AxBt=0 (1.2.8)

4For the definition of outward normal, see J. W. Gibbs
(The Scientific Papers of J. W. Gibbs, Vol. Two (New York:
Dover, 190Ll), p. 3Z).

5A perfect electric conductor is a material in which the
electric field is zero,

6Stratton, op. cit., pp. 483-484, 1In this case, it is not
assumed that the surface current is zero; however, this is not
a nhysically realizable problem.
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ii) normal magnetic field is zero.
A-HBE =0 . (1.2.9)

The above set of boundary conditions is considerably more
convenient than the general interface conditions of equaticns
(1.2.6) and (1.2.7).

Unfortunately, the above sets of conditions (partial
differential equations and interface conditions) may still
not be sufficient to completely determine the electromagnetic
fields., A “"boundary" condition may be naecessary in the "far
field*® if the medium is unbounded.7 That is to say, even
though in the "far field" there may be no change in the medium,
it may still be necessary to restrict the electrcmagnetic
fields by placing added requ:rements on them. Intuitively,
if the sources and virtual sources are bounded in extent, the
fields far from these sources (i.e,, far fields) must be
" outward traveling waves," 1In fact, it can be shown in the
far field that the electromagnetic waves are approximately
outward traveling plane waves,

Mathematically, Sommerfeld's radiation condition8 (for

two-dimensional space). is

; el
in 5 {0 + 1} ( )
where p = /x +y

I1pid, pp. 485-486.

BSommerfeld, Arnold, Partial Differential Equations in
Physics (New York: Academic Press, 1964), pp. 189-190.

Jones, D, S., The Theory of Electromagnetism,(Oxford:
Pergamon Press, 19647, p. 93.
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and (1.2.10) holds uniformly in direction. Equation (1.2.10)
holds for a solution to the scalar wave equation and there-
fore holds for each rectangular component of the vector elec-

tromagnetic fields. The Sommerield radiation condition suf-

fices when the sources (both real and virtual) are of finite
extent. Unfortunately, in the problem considered here, both
the sources and virtual sources are not of finite extent. 1In
this somewhat more complex problem, the equations are obtained
as limiting cases (the computations are given below in the sec-
tion 1.4)., Toward this end, a second, somewhat more general
"radiation condition" is used, It is assumed that the medium
has some losses (0 > 0; k = ky - iky: ky, ky 2 0); later the
limit as ¢ tends to zero is taken to obtain the solution for
a lossless medium.9 The last requirement on the fields is
that they must satisfy the source condition, This require-
ment is considered in detail in the section on integral equa-
tions. The problem of satisfying the partial differential
equations, interface conditinons, scurce conditions, and pos-.
sibly some form of the radiation condition (i.e., finding
fields that satisfy Maxwell's equations) is a mathematically
well-set problem, the solution of which is unique,

As the use of monochromatic fields simplified the elec-
tromagnetic boundary vaiue problem, so the use of vector po-

tentials in many cases further simplifies the boundary value

problem. The great power of the vector potential method

OThis view is taken by Baker and Copson, (Baker, B. B.,
and E, T. Cogson, Mathematical Theory of Huygen's Principle,
Second Edition (0xford: Clarendon Press, 1¢53), pP. 154.
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(along with aividing the electromagnetic fields into TE and TM

modes) .s given by SchelkunofflO although the method is con-

siderably older.ll

Mathematically, the starting point for ob-
taining the vector potentials is the equations for linear,
homogeneous, isotropic and time invariant media (which is as-

sumed below) .

qivE =0>B =curl ¥ divE =0>H® = curl £ (1.2.11)

The general realtion, in & source-free region,12 is:
B =-curl F +-%-curl curl X
H= ocurl X+ %-curl curl ¥ (1.2.12)

However, an additional problem involved in the use of the vec-
tor potentials is the interface condition, In some cases the
simplicity gained by having to consider only a single scalar
component of the vector potential may be lost when the inter-
face conditions are applied, In genexral, interface conditions
are difficult to apply to potential functions (this can be
Gone only in certain coordinate systems and only if the inter-
face is a surface generated by one of the variables equal to

a constant); even in the many problems where the interface can

10Schelkunoff, S. A., Electromagnetic Waves (New York,
D, Van Nostrand, 1943), pp. 127-129,

llBrowich, T, S "Electromagnetic Waves," Phil. MAaqg.,

vol. 38, 1019, pp. 14h-164,
o]
l‘Haxringtorx, Op. cit., p. 129,
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be satisfied, ~ew components of the vector potential are
needed to satisfy these conditions.13

In the two-dimensional problem, the vector potentials
are used to compute the fields on the sea surface which, for
the frequency considered, is assumed to be a per‘fect elec-
tric conductor. There is no cross—céupling between modes (TE
and TM) and a single scalar fiel¥ may be used to generate the
complete electromagnetic fields of the mode. This can be seen
from the equations given below which may be obtained from

equation (1,2,12).

T™ Case {TM to z)lu

N L o 29
X Y x5z X 3y
1
E =% 2 _ _ 99
Y Y335z By =~ 5%
2

_ 1 P} .2 _ \

B, =1 (azk' tk7) e H =0 (1.2.13)
where
(72 +x%) 9 =0
XK = - /Y2
in particular k= <
o c

13Sommerfeld, op, cit., pp. 246-65.

14Harrington, op. cit., p. 129, In the simplest terms
TM to z means H, = 0, TE to z means E, = 0.
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TE case (TE to z)
o= . 0% q = X 3 o
x Ay x 7 J%oz
Ty ox v Z JY0z
2
1 2
E, =0 H =2 (<% +%%) o (7.2.14)
Jdz
where
(V2 +-k2) ® =0,

The solutions to Maxwell's equation may then be generated by

considering solutions of:

(v2 +x%) @ =0

with the appropriate boundary and source conditions.,

1.3 Physical Model for the Two-Dimensicnal Problem

In this section a more detailed description of the two-
dimensional problem is given. The problem considered may be
stated as determining the electromagnetic fields in the sea
when a VLF or ELF electromagnetic plane wave is incident on
the sea surface., We shall restrict ourselves to the computa-
tion of the electromagnetic fields in the sea relatively near
the sea surface (within about twenty-five meters or seventy-
five feet) along with a discussion of the asymptotic behavior
of the fields far from the sea surface. The electromagnetic

fields near the interface are the fields of greatest interest

in communication systems involving submerged antennas,
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The first consideration in setting up the model for the
above electromagnetic boundary value problem is to define or
at least characterize the term "sea surface" mathematically.

7. discussion of the sea surface is given in Appendix A,

As the mathematical model of the electromagnetic boun-
dary value problem with the rough sea surface it will be as-
sumed here that:

1. The “"basically spherical" earth may be replaced by a
"basically flat" earth., This is an often made approximation in
"low frequency" propagation problems and i% reduces the compli-
cated spherical geometry to a plane surface geometry. In the
problem considered, only the local fields are of interest,
and the above approximation is quite good:15 however, it does
introduce some mathematical complexity as now the virtual
sources which represent the scattering effect of the sea sur-
face are no longer bounded in extent.

2. We shall take as a deterministic mathematical des-

cription of the sea surface
v(x,z) = A cos kX = §(x) (1.3.1)

This is a surface that varies sinusoidally in the x-direction
and is constant in the z-direction (see Figure 1), As dis-
cussed in Appendix A, this is a particular realization of a
random process. Consideration of the statistical signifi-

cances of this fact is postponed until Chapter 7. The

15Anderson, loc. cit.
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relative magnitudes of the physical parameters is of great im-
portance in the solution of the integral equations governing
the fields on the air side of the sea surface, The relation-

16

ships are
kA = 1/7 usually k_A << 1
L K< 1 and ks K1
A >> L and kA KK 1.

Where L is wave length of sea wuve,

ks = z% -~ wave number of the sea surface
2r
A

k. = -~ wave number of the radio wave in the air

o

A is wave length of the radio wave in air.17 We note that the
assumed shape of the wave is time invariant (i.e., the sea sur-
face is represented as a standing wave). In practice, sea
waves are actually traveling waves that even change fheir shape
with time. However, the velocity of the electromagnetic waves
in air is sc much greater than the sea wave velocity that as
far as electromagnetic fields are concerned, the sea waves can

be considered stationary. However, the velocity of electro-

16See Appendix A for these relations.

17For the problem considered here, typical values of the
108 2 A2 104 meters
lO3 2 L, 2 10 meters
25 2 A 2 0 neters ,

parameters are:
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magnetic radiation is considerably less in sea than in air,
and as a result the effect of the sea wave velocity is more
pronou .ced in the sea than in the air, In Section 2.9, the
effect of the sea wave velocity on electromagnetic fields in
the sea is considered.

3. The source of the electromagnetic fields is a plane
wave incident on the sea surface. One of the reasons for such
an assumption is that in the theory of ELF and VLF radio wave
propagation, plane waves play a major role. In both ray theory
for VLF and mode theory for ELF, a general feature is the local
fields are represented approximately as a sum of plane waves.l8

The incident plane wave propagating in an arbitrary direc-
tion above the rough sea surface may be resolved into two com-
ponent plane waves; one propagating in the direction in which
the surface varies and the other propagating in the direction
in which the surface is constant, A second resolution of the
problem is made on the basis of the polarization of the incident
field (see Figure 1), To solve completely the plane wave two-
dimensicnal surface problem at a fixed frequency and for a
fixed or given surface, four boundary value problems must be

solved with arbitrary angles of incident for the source waves.

18The sky wave in ray theory is represented as a sum of

rays which are approximately plane waves [see H. Bremmer,
Terrestrial Radio Waves (New York: Elsevier, 1949), p. 89].
In mode theory, the modes are TE or TM plane waves. The
ground wave is also usually represented as a plane wave,
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It is to be noted that the use of plane waves as the
sources introduces some mathematical complexity over the simple
line source. The source condition for the plane wave source is
computed as a limit of the source condition of a line source.

4, To compute the fields on the air side of the sea sur-
face, the sea is assumed to be a perfect electric conductor,
The sea is a very good conductor at the frequencies considered
here.19 The assumption that the surface impedance of the sea
is negligible does not greatly effect the tangential magnetic
fields which are used to compute the fields in the sea. With-
out this assumption the use of vector potentials would be
greatly limited and a somewhat more complex problem would re-
sult. The justification of letting the surface impedance be
negligible is considered later,

After computing the fields on the air side of the sea sur-
face, the fields in the sea are considered on the basis that
the tangential magnetic fields are continuous. The electro-

magnetic properties of the sea are assumed to be:

+9 no = 377 -~ "impedance" of air.
ﬂc = Ja—:gﬁﬁg—— - " impedance" of sea,
z‘/fggz = (1+j) (.17) £ =30%ke/s 0 =4 y = o
as n,~ ' E

In.l << n, £< 30 ke/s




-
c =4 |mhos/meter]

L= 4w10"7[heﬁry/meter}

‘109 3
€ = 210 7 [farad/meterJ
b
Using assumptions one through four, the physical problem
of the electromagnetic wave-rough sea surface interaction may

be given a rigorous mathematical formulation,

1.4 Formulation of the Electromagnetic Boundary Value

Problem in Terms of Integral Equations

In the past few decades there have appeared numerous works
in which important results relating to the solutions of boundary
value problems were obtained by techniques Involving the use of
integral equations.20 Integral equations have been used exten-
sively in the theoretical analysis of boundary value problems
(e.g., proofs of theorems of existence, uniqueness, etc.).21

However, integral equation techniques have only mor(. recently

been applied with success to the practical solution of

ZOMikhlin, S. G., Linear Integral Equations (Delhi: Hin-

dustan Publishing Corp., 1900), pp. l45-Z13,
, Integral Equations (New York: Pergamon

press, T957), ©p. 137-353.

Courant, R., Methods of Mathematicil Plhysics, Vol. II,
Partial Differenti3al Equations (New York: interscience, 1962),
2lSee Mikhlin and Courant references directly above

(footnote 21),
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boundary value problems (¢.g., the work on static elasticity).22

These recent successes in the use of integral equation tech-
niques have led to their application to problems which cannot
be solved readi’y by other methods.

The same story basically holds true in electromagnetic
theory. For electromagnetic fields, the usual integral formula-
tion is in terms of the well-known formula of Stratton-Chu (in-
tegral representation of the solution to Maxwell's equations in
terms of the boundary values).23 However, only recently has
the Stratton-Chu formula and the integral formulation of the
reciprocity theorem24 been used for the practical solution of
electromagnetic boundary value problems,

One of the major advantages of the integral equation ap-
proach is that the boundary and/or interface conditicns along
with the source conditions are immediately considered at the be-
ginning of the prcblem, Also, because the integral equations

represent actual processes involved in the physical problem,

ZZMraskbelishvilli, N, I., Singular Integral Equations
(Netherlands, Groningen: Erven P, NoordhofZz, 1953).

Some Basic Problems in the

Mathematical Theor oF BEIasEIcity (Netherlands, Groningen:
Exven P, Noordhofz, 1353).

2Sstratton, op. cit., pp. 46L-UES,

24Godziwski, Z., "The Surface Impedance Concept and the

Structure of Radio Waves Cver Real Earth (IEE, 1961).

Feinberg, E. L., "Propagation of Radio Waves Along an
Inhomogeneous Surface," Nucvo Cinento, Series 10, Vol, 11,
no, 1 Suppl., 1959, p. 66.

Harrington, op. cit., pp. 116-120, 317-338, 340-365.
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the integral equations permit direct interpretation in terms

of virtual sources.25 The use of the concept of virtual
sources is very useful in the mathematical formulation of the
electromagnetic boundary value problem.26 Further, by inter-
preting the integral equations in terms of actual physical pro-
cesses, the problem of obtaining valid approximations is con-
siderably reduced., Generally it is easier to see valid ap-
proximations in physical terms rather than in mathematical
terms.

In a very practical vein, the integral equation method in-
volves a reduction of "dimensionality," that is, a two-dimen-
sional boundary value problem can be represented as an integ-
ral over a one-dimensional space; similarly, a three-dimen-
sional boundary value problem leads to an integral in two di-
mensions., From the area of pure mathematical analysis, though
it has great practical implications, integral operators are
considerably easier to handle than differential operators, par-
ticularly when approximations are necessary.,

The above reasons cf course are not necessarily suffi-

cient to cause all electromagnetic boundary value problems

ZSStratton, op. cit., p. 467.
Baker, B. B, and E, T. Copson, op. cit., p. 114,
26Waterman., P, C., "Scattering of Electromagnetic Waves
by Conducting Surfaces," Wilmington, Mass.: Research and Ad-
vanced Development Division Avco corporation, Dec. 1962, an
unpublished report,
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to be formulated and solved in terms of integral equations.

A major disadvantage of the integral formulation is that often
to compute the fields at any point an integration is necessary.
If only the far fields are nec.ded, asymptotic expansion of the
integral may be used to obtain the fields in closed form which
does exhibit directly the variation of the field with respect
to position, 1In the near field, an integration of an integral
with a very complex kernel is needed for each point at which
the field is to be computed; this is very laborious even with
high speed computers,

For the rough surface problem considered, the integral
methods of formulation are relatively convenient. The classi-
cal methods applied to differential operators (such as sepa-
ration of variables) is extremely inconvenient, particularly
in that the unknowns in this case are not susceptible to a
physical interpretation that permits approximation. However,
some gensral qualitative results can be obtained by arguments
based ~: the separation of variables.

“he usual starting point for the study of electromagnetic
boundary value problems by use of integral equations is

2 ,
Green's theorem., l In two-dimensional space, Green's theorem

takes the form
[{o(®) s%(5) - 45 Pa(p)}as = [{o(5rv,(5) - v ()u(5)Jat
S C

(1.4.1)

zrxaplan, Wilfred, Advanced Calculus (Reading, Mass,:

addisovn-Wesley, 1953), p. 275,

- e e
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where

0 = (x,y) -- ordered pair of rectangular position

coordinates in two-dimensional space,

wn(S) =n - grad ©(p) -- normal derivative.

requirements cn their derivatives,
Surface S is bounded by a closed curve C,
The functaon § will be used as an auxiliary function ard

restrictions will be placed on ® such that it will be the

28

solution of a scalar boundary value problem. As a first

step in the above process, let
(v2 +%%) 45, 5') = - 8(3-3)

(v + %) 9B, ) = - e,B(3-3") (1.4.2)%9

where
? =x X +y % -- the position vector; i.e., ® and {

satisfy the Helmholtz equation.

®, ¥ are two arbitrary scalar functions of position with some l
!

Placing restrictions (1.4.2) into (1.4.1)
cp(al,au) 6'68 ecpqg(au,b'!) 6"53

0 p'g(suc) 0 p" Z(suc)

v [[005,5) 0 (5.5 - 9(5,5) 4,(5,5%) Ja
c (1.4.3)

“Sthe solution of Maxwell's eq. .tions (i.e., the
electromagnetic fields) is obtained from the solution of
the scalar becundary value problem,

l)

‘9The 6(3—3') symbol represents a source term. The use
of this notation is given in Friecéman, Principles and Techniques
of Applied Mathematics (New York: John Wiley, 1956, pPp. 13L-

186, where the mathematical properties of the "6 - function"
are given,




where

SUC denotas the union of the sets S and C (i.,e,, the points

belonaing to either S or C or both);

0eS denotes § is an element of S (i.e., ¢ is a point in S,

Now to form an integral eguaticn, let p'-» C. The Jﬁ is a
C

"singular" or "discontinuous" integral. In Appendix C it

is shown that

K - - - I ) - -
Lim | ¥ (5,8))9(5,8)dt = | 4_(5,59)0(5,5) & - Sl
t‘c: n U n
5'sC prec (1.%.4
p'eS o"eS
5"€S
lim r‘ Cpn(B,E")JI(E,B')dC - ‘J; (pn(a’ﬁn)w(a,pl)d,& _ 76 111(0',5")
Bn 5" C 1
o"eS p'eS (1.%.5)
ptes

Equation (1.4,5) is the basic integral equation used below
in the mathematical forwv:latinn of the electromagnetic boundary

value precblem. It holds only for closed curve C.

Equatijon (1.4.6) may be rewritten with ¥(p,0') = G(P,5")
(this is a restriction of the general equation), where G(5,5"')
is the *free-space Green's function."

6(5,5") = ¢ B B 22 (1.4.7)

o (

(e }}
O

:,5") = 2[€mG(5”’ l> ¥ ‘J:J )
- Gn(E,:-') (F‘:l.)}d{’} (l.a.8)

e e e — e me e Em— i - minyh iy g, S
N T ST e o e : ot imersmm i
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¢ given by (1.4.8) satisfied the Helmholtz equation (1.4.2);:
a further requirement of the electromagnetic fields is that
they must satisfy a source condition. 1In (1.4.8) the source
condition is represented by the term with €, as a factor,

®

¢p is the strength of the source, ewG(B’,B") represents the

incident field, i.e., the field at p' due to source ep At p"

if no scatterer were present {@1(5',5") = emG(E",S')} . The
field represented by the integral then has the physical in-
terpretation as the effect of the scatterxrer, The scattering
term is immediately interpreted in terms of virtual sources
on the scattering sur:ace (or curve),

For the boundary value problem considered here the

scattering surface (or curve) is of unbounded extent, The

closed curve C representing the scatterer is composed of two

partss:
i) € -~ curve (surface) which is the mathematical
representation of the sea surface,
ii) Ceo -- the infinite semicircle (hemisphere) which

closes C.

For purposes of analysis, the field ® under consideration
is divided into three parts,

® =9+ O+ : (1.4.9)
where

®, -~ the incident field {a plane wave in the problem
consicz2red here; however, the source condition for the plane
wave will be obtained as a limit of source conditions for

finite sources, i.e., the incident field considered just

»



below is a cylindrical wave resulting from a finite line

source) ,

®_  -- the reflected field (a plane wave in the problem
considered here., It is the reflected wave if the scatterer
were a plane, i.e,, the specularly reflected field basically).

®, -- the diffused scattered field (which represents
the effect of the roughness of the scattering surface). It
satisfies the Sommerfeld radiation condition.

The integral equation (1.4.8) will now be applied to
each term of the sum on the right-hand side of (1.4.9).

For the incident field mi

0y (5,5) = 2[o,(5',5") + | {v,.(5,5")a(5,5")
C
- (F,5)%,(F, ) ] (a)
(1.4.10)
= o558 + | {og,(5.)e(5,5)
C
- e (5,50, (5,5m) L] (b)
[ oa(5,5M6(5,5%) - 6,(5,509,(5, ) Jat] =0 (1.4.10)
Co

by Sommerfeld's radiation condition,

(1.4.11) need onlv hold if the sources are of finite
extent., To obtain the equivalent integrals (i.e., the integral
representing the incident field) to (1.4,i0 and 1.4.11) when
the sources are unbounded in extent (i.e., the source or
incident field is a plane wave), a limiting process is neces-

sary.

R
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To start the limiting process, let

0, (5,5) = [EE 8D fx( 130 &2} (1.4.12)

<

where ﬁi is to be the unit vector in the direction of propa-
gation of the incident plane wave, and € is a parameter used
in the limiting process.
Equation (1.4.12) represents the field caused by a line source
at p" of strength J/BIvkE eikg, As intuitively expected, the
source point distance from the observation point must become
unbounded (tend toward infinity) and the source strength also
beccmes unbounded to obtain a plane wave at the observation
point. Both the above occur as € > o,

Applying the limit & > » to equation (1,4,11) for the P,

given by equation (1.4,12)

- + [ a a" 2.2 _>_->| ~n oA
0 = Lin Lchpin(p,o Jo(k|3-3 1) - e (xIB-B'1)e, (5,5 fat
(1.4.13)
2, . . ’
A L L T I
o
(1.4.14)
as .
lim cp.(5|) = e+lkﬁ 'pi
g T
. a plane wave,
~ i ..7'
lim @in,(ﬁ') = in*' . ﬁike+lkﬁi P
€
Equation (1.4,14) represents the relation
0 = | {2,965, - v, (Ra(p,50) far (1.4.15)

which implies

0 = 9,(3") + 2 [{9,(Fe (5,5") - o, (3a(F,A)}at  (1.4.16)

where wi is & plane wave,




4o

Then (1.4.10) holds even if the source is unbounded in extent,
i.e., mi is a plane wave,

For the reflected field ®_
% (F) = ZL{com.'(B')s(a,s') -6, (5,00 () et (a)

: = 2 [ {0, (5)6(5,5%) - 6, (5,50, (G0 }at ()
C

a

by second radiation condition.

For the scattered field ws
5] { 3 S Y P ) '
0g() = 2 [{o, (F6(5,54) - 6, (7,508, }av (2

= 2 [{o . (FN)e(5,5Y) - e (5,5 e (50 fats (x)
c

(1.4.19)
) as
L oun (P9)6(8,5) - 5,(5,8 %, (50 Jats =0 (1.4.20)
by Sommerfeld's radiation condition,
Adding equations (1.4.16), (1.4.17), and (1.4.19),
9(7) +0,(7) = 0,(3) +2[{w,.(F)e(5,5")
c
-6, (5,5 (5 fatr (2)
: 9(7) = 2{o, () + [{2.(596(5,5) - 6,.(5,5")e(5") Jat}.
[ (b)
’ (1.4.21)

Equation (1.4.21) is the integral equation for the

field ¢ such that

1. ¢ satisfies the Helmholtz equation (1.4,2) with €™ 0.

2. © satisfies the source conditi~n (i.e., the incident
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field is a plane wave),

3. ¢ satisfies the necessary radiations (as seen above).

To compute the mathematical formulation of the boundary
value problem, it remains only to apply the necessary boundary
or interface conditions required of ® on the interface C,.
While the complete boundary value problem may be formulated
by setting up the integral equations on each side of the
interface and applying the interface conditions; it is very
convenient to assume the lower half-space bounded by C is a
perfect conductor. The effect of this approximation is given
below. The above assumption changes the interface condition
to a boundary condition. It is also convenient to consider
the field divided into two parts:

1. TE to z,

2, TM to z.

The T™M to z part may be generated by a single component
of the vector potential Z. For the basic equations, see

30

Harrington or Section 2.3. The boundary condition is ¢ = O,

This yields Etan = 0 and Hnormal

tangential H field,

= 0, mn is related to the

The TE to z part may be generated by a single component
of the vector potential ?. The boundary condition is wn = 0:

this again implies E =0,

tan ~ Pnormal
The boundary value problem may then be formulated in

terms of a single scalar.

The TM case, the integ 1 equacion is:

30

Harrington, op. cit., p. 129,
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at 2> 2 s r
| #6138 hats = 0, (5) . (1.4.22)
C
The TE case, the integral equation is:
#(3) = 20,(F) + 2 e (k |B-30lw(F)at, (1.4.23)

(1.4.22) and (1,4.23) are the integral equations to be solved

in the next chapter,

R
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2.0 SOLUTION OF THE INTEGRAL EQUATIONS

2.1 Introduction.

In this chapter, integral equations (1.4.22) and
(1.4.23) will be solved. From these solutions, the fields
on the air-side of the sea surface can be found, Also
considered are the integral equations in the sea. From
the approximate sélution of the integral equations in the
sea comes an impedance type relation between ¢ and Ph which
helds in a restricted freguency range and for a restricted
class of surfaces. Using this impedance relation, a simpli-
fied integral representation in the sea is given. Then a
brief comparison of the solutions obtained here with those
obtained by other methods is presented (a more detailed
discussion of other methods used to solve "rough surface"
problems is given in Appendix B). The following sections
are devoted to the question of the validity of some of the
assumptions used (such as, if the sea can be considered a
perfect electric conductor in determining the fields in
the air). Lastly considered is the effect of the motion
of the sea surface on the fields in the sea. Wait'sl
approximate solution is used in this discussion, as the use
of the more accurate aumerical solution would only compli-

cate the discussiocn without adding any new information.

lWait, loc. cit.
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A recent review work2 considering the practical solu-
tions of integral equations gives as two of the nine or so
available methods

1. Methods of finite differences and sums.

2. Method of degenerate kernel.

Although numerical computations using finite differ-
ence methods have recently been shown to be a useful tool
in the solution of integral equations, such computations
proved to be impractical for the sclution of integral
equations considered here. The main reasons for the
difficulty were:

1. The curve C is unbounded. The integral equations
solved by the finite difference method have had a finite
interval for the range of integration.

2? The kernel of the integral ecquations does not
decrease rapidly enough with distance from the source point
to allow useful approximations (i.e., cutting off the range
of integration to a small interval about the source point).
The computations therefore could not be made sufficiently

detailed to vield a useful solution.

2Walther, A., "General Report on the Numerical Treat-
ment of Integral and Integro~Differential Equations,"
Symposium on the Numerical Treatment of Ordinary Differen-

tial Equations, Integral and Integro-Differential
Equations -- Proceedings of the Rome Symposium, 1960,

RIS A i

Organized by the PICC (Basel, Berkhauser, 1960), p. 649.

v Pt e O S5 5 M st it o  disinsie Y 1L N i
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For the solution of one of the integral equations
(1.4.22), however, a modified form of the method of degen-
erate kernel was found to be the most practical. The
general solution, using the degenerate kernel method,

is to expand (and approximate) the kernel of the integral

equation as follows:3
N
K(x.8) m ) u;(x)v, (8) (2.1.1)
i=1
y(x) = t(x) + A [K(x8)y(8)at (2.1.2)

(2.1.2) is the integral equation to be solved.
N
y(x) = t(x) + ) cju, (x) (2.1.3)
i=1
(2.1.3) is the solution of integral equation (2.1.2) with
the approximation (2.1.1) where c, is the solution of a
system of N linear equations. In the problem considered
below, this approximation is modified and takes the form
K(x,8) n K(x-£). (2.1.4)
With the aid of this approximation, the resulting integral
equations may be solved by classical methods (using Fouriexr
Series).)‘L The approximation is wvalid because of the relative

values of the physical parameters of the problem.

J1pid, p. 654.
i

Morse, Philip M. and Hermen Feshbach, Methods of
Theoretical Physics, McGraw-Hill, New York, 1953, pPart 1,

pp. 900-962.

o v 203

peeteg
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The solution of (1.4.23) is approximately the unper-
turbed o0, as is ~asily verified.

The solution to the integral equatious in the sea is
based on the high rate of attenuation for el _ciromagnetic

waves in sea water.

2.2 TM Case.

The integral equation to be solved in the T™ case is

£ o (') sk l5-5" 1)L = 9. (5) . (2.2.1)
C

where: k0 - wave number of the electromagnetic wave (in air),
=i 4(2)
G(k|x]) = Hy (k|x|) - the free space (two-

dimensicnal) Green's function.

It can be shown that if

')2 <1

max (kOg )max <1

(8

where: &(x) is the equation of the sea surface,
g'(x) is the derivative nf € (i.e., the slope of the
sea surface) with respect to X.

Then
[ oni ) olrgls=3Nav ~ [0, Gle (155" Das'
y - (2.2.2)

where:




1-0 B2-8 22
11 =y [I2
= LW .
== e
2 [ e
1-0 2z 125
_1_-1 £ B2 Hih— =

=

122 it s
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The argument leading to this result is presented in the dis-
cussion on the three-dimensional problem.5
The integral equation then becomes
| 00 sglry15-5"Dart = 0,() - (2.2.3)
C [
This equation may then be sclved by Fourier Series.

To solve the integral equations for Ppy v let

«© . . ® . .
-1ik x -ik .x -ink X -ik_ .x
- — n XL _ S ®X1
(pn(p) = 2 ae e z ae e
== © nN=-~-0
(2.2.4)
o -ik x -ik_.x © -imk x -ik_ .x
9, (p) = zjbme e *to= E‘bme S e *
= m=~ e
(2.2.5)
where ks = 2r/L

peC.
The validity of equations (2.2.4) and (2.2.5) is estab- :

lished by considering the motivation behind such expansiors.
-ikxix

The factor e is present because the incident field

(source) has such a factor. The sum expresses the fact that

. the periodic surface implies a periodic virtual source .

(besides the factor e )

which in turn implies a periodic
field. The expansions (2.2.4 and 2.2.5) are the most generzl

mathematical statement of this periodicity of the fields.

5See page 121. This argument 1is given for the two-
dimensional problem }y Meecham, loc. cit., and Lysanov,
loc. cit.
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It should be noted that

-l(nkS + kxi)x' -ik_.x

X1 1
( 2 2
2,[(nk+k )5~ k&

(2.2.6)°

Then substituting eguations (2.2.4) and (2.2.5) into the

integral equation (2.2.3) and using formula (2.2.6), the rela-
tions between the sets of an's and bn's may be found by

equating the coefficients of like terms in the series.

6Equation (2.2.6) is obtained from the relations given

above. o . _
2 -ikx
\F H(“)(k lx])e X gy = 2J§ H(z)(kx) cos kx dx
| oo o o © ‘
(L ,
© 7 © 0<k <k,
J’ J (k x) cos kx dx = °
o o' o j |
@ k = ko
{ 0 ko <k <@

/

).

(Bateman Manuscript Project, Vol. I, McGraw-Hill, New York,

1954; p. 43, equation No. 1.)

pm 0 0 <k <k,
N _(k x) cos kx dx =
Jo o'"o ¢ -1
k <k < w
o

L J

(Bateman Manuscript Project, Vol. I, McGraw-Hill, New York,

1954; p. 47, equation No. 28.)

Therefore, eguation (2.2.6) is obtained
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The relation be:ween the an's and B;'s is

= 2 .2
a, = b, (Zj(nks + k)0 k) (2)
a = Zikyibo
a,=a w~ +2nksbn
-ik .x ik .B(x)
9. =e (e ¥ ) 8(x) = A cos (kx)
_ 1 2
bo'-l——?(kyiA) + .o 1
ik .2
_ - %1 _ a1 3 . A
- 1 n
b, =Db, N-i(kyiA)
ao-'—"'2ikyi (v) (2.2.7)
a_; = a; ¥ ik kyiA (c)
an-z n(kyi.A)n n>1 which may be neglected because
of the factors (kyiA) <<< 1.
¢ _zi <
-(2) -ikx _ o
tEcFo (x 1x|)e dx = 4 >
w k, =k
x )

It is assumed that kx.

; ¥ nk, # k_ for any integer n (note this

assumes kxi # k0 for n = 0). This assumption is useful in
avoiding the question of the convergence of the integrals
above. The physical phenomena occurring when kS = kXi leads

to a "resonance" in the fields. This "resonance" is a physical

occurrence; however, in some mathematical formulations the

fields become infinite, which is not a physical possibility.

e v e




rm mn ® w—

-ik .x

~ <. X1 _
?, = 21hyi(1 + kA cos k_x)e = 29, (%),

-

{1+ ksg(x)} (2.2.8)
where cpni(x)f is the normal derivative of ¢, on the flat
surface. The perturbation compared to the flat interface

is ﬂ&SA whir’. 1= ¢ - than about thirty per cent.7

2.3 TE Case.

In this case, the integral equition becomes:

0(3) = 29,(5) + 2| 0(3')o, (kI35 Dar (2.3.1)
C

In the flat interface case, the solution is

?(5) = 29;(5) - (2.3.2)

Using the static kernel (Green's function) and placing
the above approximation (equation 2.3.2) into tﬁ; integral,
the integyral becomes zZero. Therefore, no correction is B
necessary. The justification of the use of the static ke?ne!
is considered in Section (2.8). 1In tﬁis case, the solution
is

9(5) = 29, (5) - (2.3.3)

This is equivalent to the condition H = 2(H_ )i.

Tas Hion = @0 the perturbation (maximum derivation) in

Hi.p 15 2k A or about 28% for kA s 1/7.
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2.4 Integral Equations in the Sea.

For the fields in the sea, the integral equation (1.4.21)

still holds only with P, = 0.

v L PTG, p———

| 0(5) = 2 [ {0, G*) Gl 557 1) - 93, (kgi5-5" D}as:
v ‘ Cc

B (2.4.1)

: where kc =-i%i - the complex wave numbe. in the sea for

electromagnetic waves.
L In the VLF range, for usual sea water (o = 4, u = uo),
|k | = .3. This implies G and G, tend rapidly to zero for
; |p-p'| > 0. In the order of 10 meters G and G become
] negligi‘ble.8 If ¢ and ¢, are relatively constant con the
y sea surface (i.é., o and ¢, are relatively constant for

distances of the order of ten meters or so (36) along the

] sea surface) and the sea surface is relatively constant over

these distances;: then:

{ 8To esiimate the accuracy of neglecting G and G after

v o s e o ST e s o

a distance of about AC/Q from *he “"scurce point" the asymp- :
totic approximations to G and G will be used {the errors
y . in the asymptotic approximations are sufficiently small to

be neglected here). §

| < . ' ~ik_p
. _ Tk p ‘

? G i ~‘2—1.— k " ikcp
n ~ % (~ik ) =




L

Joa: () & (e 15-571)at & = 0, (7) (2.4.2)
'c': o

(oG e, (5= Dar = 9() 7o (2.4.3)
E c

Hm (k) ax| % — fm §(x)ax = —— (.0062)
A2 c L2]k ] N 2% |

2
3(x) = —=- &% /2

-~ normal
21T distribution

©

[ e(x x)ax! ’wsk ax! e, = .00
ldxc/z(c i“on (egx)ax| og = 003

©
1
J; Gn(ch)dX ] ?]E;—ﬁ

L Gn(kcx)dx! «< 1
G (kx)dx| < I $(x)ax = .006 << 1
“AC/Q T
l p* P e
i G_(k x)ax| < c, |J G_(k x)dx
ldAC/Q ntc o B €
C

o = -Ol]k_|R.

For many cases C2 ray be the order of 1 or greater; this
occurs as R - o, While the important contribution to the
integral no longer occurs near the "source point" the result

is the same; that is

(-]
[2G) (k5571 ar'| << 1
- 0O

whick is all that is required for the impedance boundary con-

dition.
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where R - radius of the curve.9 -

For |k |R >> 1 which holds in the VLF range and for the

sea states considered:

Q = f}-@ (2.4.4)

n°
c

This is an impedance type relation between ¢ and ¢, on the

sea surface.

9
To estimate j)

-]
- - =) N -
o(p') Gn.(kc‘p—p'|) d4', again ¢(p')
w
ig assumed constant over the meaningful range of integration.

-t =)
For small |p-p | (i.ealg%ﬂll << 1) the static Green's function
c

may be used.

- . [1 1 1
Gn.(kcp) s n'.grad {ﬁ in p} 3’2_11-'.5 o,

_(-gx v+ y) | fxxo+ gy)
N1 + (g')7 vV x2 + gz

then for p =~ O

Pn

-8'x + § .
JIFETZ (x2 + 82)

The Taylor series expansions of g(x) may be used for x sm2ll

: 1
Cpilkyp) & 77

ll2
G ,(k p) “'%% X = .%— '%i
T TR ey

o o (1(g7)2)3/2
gll

radius of curvature of the curve

(surface).

o teamnt wAm ot
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As the frequerncy decreases into the low=r ELF range,

cl

R >> 1 no longer holds. The impedance relationship bpetween

9 and wn, however, may still be an excellent approximation.
This relationship (2.4.4) is a Leontovich type of

(2
10 and may be expressed in terms of the

boundary condition,

Using the above result and the assumption &" is relatively
constant over the meaningful range of integration (i.e.,

L >> Ac) for the problem considerecl here:

J:m‘f’(a') G . (k lp-p1)ar = 9(3)3 ZL&H:EZ)(](CQ Yk o, dt

[--4

. K © -
~ o) J’ x 1{%) (k x) ax

~9(5) 75 ¥ =7
c

wQ’(E)'@‘%"ﬁ
Cc

So that if €" and ¢ are relative constants over a distance

of AC/Q or so along the surface, then:

©

[ToG) o el Dar » 9G) i
- C
10

Leontovich, loc. cit.

Brekhovskikh, Leonid M., Waves in Lavered Media, trans-

lzfed by David Liberman, Academic Press, New York, 1900, pp.
14-15.
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fields as:
Etan = e Htan - (Z'M'S)
This is true for the fields in the sea: rowever, as the

tangential fields are continuous at an .r-ecface (2.4.5),

it also holds for the fields in the air.

2.5 Simplified Integral Representation in the Sea.
The usual integral representation of a wave function

(with 9. = 0) is

°G) = | {e(x 15-7"1) o
(2.5.1)
which includes terms representing virtual sources of two
types:
¢l(3') = J; {G(kcla?a'l) Qn(E)]-d{ represents the fields

of a "single layer" source, (2.5.2}

¢2(E') = LF&%ch|5;;") m(B)}'d{ represents the fieslds
C

of a "double layer" scurce (dipole). (2.5.3)

In electromagnetic problems, these types of sources are

. . 11
the electric current and the magnetic cuarrent sources.

‘e

It would be of interest if a simplified integral representa-
tion of the wave function could be found, particularly if the

fields were to be evaluated by numerical calculation of the

11

Stratton, op. cit., p. 467.
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integral. The fields of a "double layer" are particularly
troublesome, bzcause the calculation of the norwal deriva-
tives involves use of the derivative of the eguation for the
curve C. If there exists scme reason to believe the fields
are relatively insensitive to changes in the surface, a
simplified representation would be possible; however, if
the field depended greatly on the shape of the surface, no
appreciable simplification would be possible. In the problem
considered, the fact that the electromagnetic wave is attenu-
ated rapidly in sea leads to the belief that a simplified
representation should be possible.

Consider representing ¢(p') using sources of a single
layer only,

0(') = [ £G) elrgls-5 s . (2.5.4)

) C

If, in the sea, f can be considered reasonakly constant the

J: 1s given approximately by

c .
9(5) ~ 5 £(p) (2.5.5)
c
A S S
£(p) = — o) - (2.5.6)

Equation (2.5.6) yields the function f needed such that the
representation of equation (2.5.4) tends to correct boundary
value on C. However, this does not mean (2.5.4) is a correct

representation of the solution to the boundaiy value problem.

@n(a') has yet to be considered.
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0n(5) = [ £G) 0 (l5-5" ae

2k k
c

nEEG) =2 ) er) =S 0(p) (2.5.7)
2 2

Equation (2.5.7) represents the impedance boundary condition of
Section 2.4,

then

r 2k

0() = | == 9(6) 6k [5-5" av. (2.5.8)

Equation (2.5.8) is an accurate solution to the boundary value
problem in the sea only under restricted conditions:; the condi-

tions are basically those assumed in Section 2.4.

2.€ Comparison with Other Theories.

The basic results from the solution of the integral equa-

tions in the air are: v
™ Case
. -ik_.X
wn(x) A 21kyi(l + k A cos ksx)e xi" = 2¢ni(x)f(1 + ksg(x)). 3
(2.6.1) |
T Case
P(x) w~ 2e-l(kxiX + kyig) 20 (%) e (2.6.2)

In the TM Case, Lerner and Max and Morgan use conformal
mapping of the static (w = 0) problem to cbtain the tangential
magnetic field: *“he justification of such a procedure is con-
sidered in Section 2.8. The results of Lerner and Max basical-

ly agree with the result given above. The agreement is not com-

plete, however, as Lerner and Max consider only grazing inci-
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dencz, and the above solution includes all except grazing inci-
dence:. The tangential magnetic field is obtained from equation

(2.6.1) by simply setting H = @_. Morgan's physical model

tan n

includes &' 4o, which is excluded from the model of the problem
used here. Morgan states, however, that there will be a change
in the fields in the TM case. Wait assumes that the fields on
the surface are relatively unchanged. This is of course ap-
proximately true even in the TM case (at least as far as the or-
der of magnitude of the fields is concerned) for the usual set
of physical parameters considered here.

In the TE case, Wait and Morgan again assume on physical
grounds that the fields are unchanged. Lerner and Max obtain a
similar result by solution of the static problem.

Another general method used to solve the "rough surface"
problem is the perturbation theory (see Appendix B). Winter12
used the simplest form of this technique to obtain the fields
on the sea surface. The method used by Winter is applied below
to the scalaxr functions to learn if the results agree.

"Since the roughness scales of the sea surface

are extremely small compared witl, the wavelength,

the electromagnetic fields in free space are

scarcely altered by the surface irregularities.

leinter, D. F., "Low Frequency Radio Propagation into a
Moderately Rough Sea," Radio Propagation--Section D, Journal
of Research, National Bureau of Standards, Vol. 07, no. 5,

Sept.~Oct. 1963, p. 551.
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Hence, the derivatives of ¢(z) can be calculated
from the solution to the smooth sea problem with

little error . . ."

This, as stated in the appendix, is not necessarily true.
The above quotation is probably true in the far field:; however, ¢

there is some question as to its correctne~s in the near field.

™ Case:

¢(x,0) =0 ¢(x,y) = 2i sin kyiy e Ty i¥

- 1 2
(Py(xlg) = CPY(X'O) + (Pyy(xro)g + ) @yyy(x,o)g + . . .

= (2ik,; - 0 - 2iky£% (kyig)2 b L) e HRgX

~ Zikyie'lkxix

9 (£,8) = 0, (x,0) + 9, (x,0)8 + 5 9 (x,0)8% + . . .

_ s -ik_.x
= (0 + 21(-1kxi)kyig + 0+ . . .)e ki

. -ik .x, .
s 21kyie xi -1kxi§)

. -ik_.x . -ik_.x
f o (x,8) ~ Zlkyi(l + k. ;8 & )e %i® o 21kyie %1

. ~-ik .x
& 21kyi(l + ksg) e ~xi”. .

The perturbation methed yields, as assumed, an "unperturbed

...,.-..>~-,-~
‘e

field:;" unfortunately, this is not necessarily correct in this

case.
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Perturbation theory: Hy ~ 21ky§x(~1kx§)
Results above: Hy 4 21ky§x
TE Case:

-ik .
@y(x,o) =0 o(x,y) = 2 cos kyiy e %i*

?(x,y) = o(x.0) + 9 (x,0) & + 3 q>yy(x,0)§2 + ..

= (2 + 0 + 'zl(—kgz)gz + ...) e-ikXix

-ik .x
~ 2 e xi

which is the unperturbedvfield and which agrees with the

result obtained in this investigation.

2.7 Estimates of the Effect of the Finite Conductivity of
the Sea on the Fields in the Air.

As was noted in the section describing the buysical

model (1.3), the fields on the sea surface have been com-

puted under the assumption that the sea was a perfect

electrical conductor (i.e., surface impedance was zero).

In this section, the effect of finite conductivity on the

solutions is considered. The impedance boundary condition

obtained in Seztion 2.4 maf be used to estimate the effect

of the finite conéuctivity of the sea water (and therefore

non~-zero surface iﬁpedance) on the solutions. j
The integral equation that the wave functions must }

satisfy is !

0() = 20,() + 2] {0") o (x 77" 1) *
C

- 95, (5") Gk, |3-7" ) }ar (2.7-1)
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In the ™ case, @ represents a rectangular component of

the vector potential A and H is directly proportional

tan
to o_. The boundary condition 9 = O on C was applied and

the solution
Qn(x) ~ 2 ikyi(l + k_ A cos ksx) (2.7-2)
was obtained,

Applying the impedance boundary condition to equation

(2.7.2) implies that

2k_ .
(D(x) m—]-{f}- (l + kS A cos ksX) (2.7-})
then
[ oG oy (157" Davm 3 (B (x0)? (2.7.4)

C

where Gn,(|5-5'|) ='%F In|p-5'|, the static two-dimensional

Green's function (the approximation of the dynamic Green's
function by the static Green's function is considered in

Section 2.8).

As
H:(an.dL'l << iqoil (2.7.5)
C

lo| << {o,| (2.7.6)

the original approximation of ¢ = 0 in C &ields an accurate
integral equation and the original solution (2.7.2) is
verified. In this case there is little change due to the

introduction c¢f the non-zero surface impedance.
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In the TE case, ¢ represents a rectangular component
of the vector potential F. 9, was assumed to be zero on

T and the solution

?(x) ~2¢, (x) (2.7.7)
was obtained. The impedance boundary condition gives ‘.
kc
o, =T 9 (2.7.8)

Again using the static kernel,

N k
afn 1. :
J GAL w~ (—iE) 4{2 5 1ky} = -:kakc (2.7.9)
1 N H
o GAL l <«< 1 (2.7.10)
LV

Again, the solution is basically unchanged from the zero
surface impedance case. There is, however, a small correc-

tion term in the TE case.

2.8 The Justification of the Use of the Static Kernel in Some
Integral Equations.

In general, electromagnetic fields are generated by and
support nonstationary currents, that is, currents that oscil-
late at such frequencies as to make the interaction between
current elements in éifferent parts of space significantly
affected by the finiteness of the velocity of propagation of
electromagnetic effects. The guasi-stationary state is a '
special case of the general nonstationary state in which the
velocity of propagaticn may be treated as being infinite.

In the quasi-stationary stzte the currents oscillate slowly

enough so that the approximation that all significant
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interactions between currents are effectively instantaneous

is accurate. As instantaneous interaction between two
separate elements is the same as the continuing or constant
interaction in the stationary state (in the stationary or
steady state, the electromagnetic fields and currents do

not vary with time; therefore, the interactions are unaffected
by the finite velocity of electromagnetic interactions).

For monochromatic fields of radian frequency w, the condition

for the quasi-stationary state is that:13
wl, <KV = 4 <« X (2.8.1)
max max 2T
where '
V -- velocity of propagation of electromagnetic radiation

in the medium (3-108 meters/sec. in free space).

oax = maximum distance between currents which signifi-
cantly interact.

For the electrcmagnetic fields in the air, it is not clear
that an Lnax satisfying the requirements (2.8.1) can be found.

In fact, it is clear for Py and ?, the quasi-stationary state

does not hold as:

J'mHéz) (k_lx-x"|) oilnky + X )x' o .

-0

2e-lk'xX

J Z 2
(nk, + k )* -k

(2.8.2)

13King, R. W. P., "Quasi-Stationary and Nonstationary
Currents in Electric Circuits," in Handbuch der Physics,
Band XVI, Elektrische Felder und Wellen (Berlin, Springer,

1958), p. 165.
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9. and ¢, are involved in the n = 0 term in which ko
may not be neglected, which clearly implies that for these

fields the quasi-stationary approximation does not hold.

However, the scattered fields ¢, are quasi-stationary.

The approximation involved may be seen in the integral

equation (2.8.2) (ks >> k_ so that J?hks + kx)2 - kg ~ nks)
for terms |n| > O.
The more accurate general result that the solution of
2
V g, = 0 yields an accurate solution to (V2 + kg)ws =0

may be seen from the boundary value problem.

(v + k2) o_(x,y) = 0

Qs(x,y) = Qs(x + L,y) boundary conditions (2.8.3)
82 2nmw
‘a';Z‘Ps(X'Y)= 5 ) g (x.¥)
32 _ fi2nm z 2T 2
gng&w-{ef)-cT)}me> (a)

@y (1o ) e, () (2.8.4)

2
2n1r) q) or

VZQS = 0 (2.8.5)

then solutions of V2¢s = 0 closely approximate the solutions
of (V2 + k£)¢s = 0, as long as L << A. As V2¢s = 0, by the
use of Green's theorem:

0,) = [©0,G) 6,0 (5.5") = 9., (5") 6(5.5") Ja
¢ (2.8.6)
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where

6(5.5') =5 tn |5-77|
is the "static" Green's function.

As shown above, the stationary state should be used
only to compute the “"static" part of the field (i.e., Qs)'
and the Py and ?. should be removed before using static
approximations.

The use of periodic boundary conditions played a major
role in determining that P could be computed accurately
by use of quasi-stationary equations. It therefore seems
wise to investigate the correctness of the assumption of
a periodic surface. For L << A, the periodic assumption
would not seem to effect the fields in any major way (i.e.,
a small change in the surface some distance from where the
fields are computed will have little effect on the fields).
in general, the above statement is not true; particularly
when A ~ L, the periodic assumption may lead to a great

change in the fields.

2.9 The Effect of Motion of the Sea Surface.

It was previously assumed that the sea surface was
stationary. This approximation seemed to be reasonable,
because the velocity of the electromagnetic wave in air
is many times the velocity of the sea wave. However,
even with ths: great difference in velocities, there still

is some effect on the electromagnetic fields in the air

due to the motion of the sea surface. This effect is
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greatly multiplied in the sea as the velocity of the elec-

tromagnetic radiation is much less in the sea than in the

air. However, it is sufficiently accurate to solve the

boundary value problem for a stationary surface and then ..

assume the computed field moves with a velocity related

to the velocity of the surface. .
In many cases, 9 a stationary observer in the sea,

it may appear that the sea surface is flat, but that the

source of the electromagnetic wave is approximately moving

up and down in the sea. If the wave were to propagate

into the sea as e Y0

, Wwhere D is tine depth below the sea
surface, this analysis would be correct; however, as will
be shown later, this is not exactly true. The difficulty
with the general case (i.e., using the actual solution to
the boundary value probiem) is the "equivalent velocity
of propagation" can be obtained only numerically, so nc

general result can be stated.

If it is assumed that the fields propagate approxi-

mately as e YP, then from the usual doppler theory
o 1 - v/c e

where
f is the frequency of the electromagnetic wave
fo the observed freaquency (to a stationary observer
in the sea)

v the assumed phase velocity of the electromagnetic

field as a whole (the equivalent velocity that the
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sources of the field would have) and carries a
plus sign if the source is approaching the observer
and negative sign if the source is moving away from
the observer
¢ phase velocity of electromagnetic radiatior in the
sea.
v may be obhtained as follows:
The velocity that an equivalent source (that is, a source
that would yield the same fields), moving up and down in the
sea, is given by:

d d .
v=5:D==2cos (ksvst) = - Ak_v_ sin (ksvst) (2.9.2)

vl s kA v
s s

1600 _ _ 4
fA, = f(21r6c) = fJ-?_— = 1600 Jf = 5-10 Vi . (2.9.3)

0
i

1 ke/s
n

c = 5-10" meters/sec., a decrease by a factor of approxi-

For £

mately 104 from the phase velocity in free space.

v, s 30 meters/sec., even for high sea states.
|v| S-% 30 = 4.3 meters/sec.
999.9 = fo < 1000.1 cps. (2.9.4

This amount of doppler shift may not a,, r to be too large;
and this is a "worst case" calculation. The "largeness" of

this effect is due to the shortening of the wave iength in

the sea.




5.0 COMPUTATION OF THE FIELDS IN THE SEA,

5.1 Introduction,

In the two-dimensicnal case the problem of caiculating
the fields in the sea reduces to the solution of a Dirichlet
typé boundary value problem.l Unfortunately, again because qQf
the rough sea surface, the classical method of separation of
variables can not be cdirectly appliedo2 However, once the
fields are below the lowest point of the rough sea surface,
separation cf variables can be used directly to compute the
fields. The method of separation of variables is used below
to obtain some interesting and general results,

To compute the fields in the sea, the integral representa-
tion of the wave functions may be used, The integrals would
then be numerically evaluated to obtain the fields, The major
reasons why such an approach was not taken are:

l. As the fields near the surface were to be computed,
the kernel of the iategral would have 5 be evaluated for
small, intermediate and later large arguments. The evaluation
of the Hankel function of complex argument is a scmewhat in-
volved though straightforward problem, involving large amounts

of computation,

1A Dirichlet boundary value proklem is to f£ind ¢ such
that

~—~0I1

o~
]
o

) a given "relatively" arbitrary function.

See Appendix B.
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|

2, The amount of computation is greatly increased :
by the fact that the integral must be evaluated for each point
at which the field is computed, or at least for points in the
near field(i.e., near the sea surface).

Basically, for the above reasons, even though the numeri-
cal evaluation of the integral representation has been effec- i
tively used previously,3 the method was not used here,

There still remains a wide selection of methods that may
pe used to compute the fields in the sea. The most general of
these is the method of finite differences as used to obtain a
solution to cextain boundary value problems. The finite 4dif-
ference method is a widely used technique for the numerical
solution of boundary value problems.

Briefly, this method consists of replacing the partial
differential equation with a parvial difference equation., This

approximation involves an error, usually called discretization

3Banaugh, Robert P,, "Scattering of Acoustic and Elastic
Waves by Surfaces of Arbitrary Shape,” (Ph. D, Thesis, Univer-
sity of Wisconsin), 1962.

Mei, Kenneth Kwan-hsiang, "Scattering of Radic Waves
by Rectangular Cylinders," (Ph., D. Thesis, University of
Wisconsin), 1963,

Lerner and Max, loc. cit,
4f;‘f:llatz, L., The Numerical Treatment of Differential
Equatiops, (Berlin: Springer, 19¢0). ;

Kantorovich, L. V., and V. I. Krylov, Approximate Meth- /
ods of Higher Analysis, (New York: Interscdence, .

Forsythe, G, E., and W, R, Wasow, Finite-Difference
Methods for Partial Differential Equations, (New YOrks uvonn

Wiley and Sons, 1960).
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exxor, The problem then becomes one of solving a set of dif-
ference equations, Because of the accuracy needed, the number
of equations may become quite large, on the order of 100 or
more, The technique usually used to solve this set of equa-
tions is by interation procedures, though it should be noted
that 100 x 100 matrices may be directly inverted on computers

available today.’

In what follows the general results obtain-
able by the classical method of separation of variables are
first discussed. This approach shculd give some insight use-
ful in considering the computation of the fields in the sea.
The technhigue used, the so-called *method of lines," is a
modification of the finite difference method. The partial
differential equation is approximated by a difference differ-
ential equation., The finite difference approximation is used
in the direction approximately parallel to the rough surface to
obtain the "propagation" or separation constant to be used in

the differential equation which characterizes the fields in a

direction approximately normal to the sea surface.

z(f—»x X direction approximately parallel to sea surface.
y direction approximately normal to sea surface.

N
N\
i 1
C I I

Y

Figure 3.1l. Grids for Computing the Fields in the Sea.

5Banaugh, op. cit., p. 18,

e
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3.2 Classical Separation of Variables.

The boundary value problem for the fields in the sea may
be stated as to find ¢ (a rectangular component of the field

vectors) such that it satisfies the Helmholtz equation

2

(v +k2) o =0 (3.2.1)

and

]

o(x,y) = olx + Ly} eFxi® & o(x +1,y)  (3.2.2)

Equation (3.2.2) is a periodic boundary condition (i.e., it
reguires ¢ to be periodic with a period L within a. constant
factor eikxiL). This follows directly from the physical prob-
lem, as discussed in section 2.2. The factor e Kyy b may be
neglected as kOL <K 1.

$ must satisfy the radiation condition in the (+4y) direc-
tion below the lowest point (trough) of the sea surface. Above
the trough of the sea wave, both "inward" and "outward" waves
may exist.6 As the sea is a "highly" conducting medium, the
second radiation condition holds and the fields decay exponen-

tially.

% must take on the correct boundary value on surface g(x)

lim o(x,y) = £(x)
(x,y) »¢C
(x,y) ¢ 8 (3.2.3)

bSee Appendix B,
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Separation of variables may be applied to the boundary
value problem in the region below the lowest point {trough) of
the sea surfacep this is possible there because the radiation
conditicn applies; 1In the region above the trough of the sea
surface but below the crest separation of variables applies:
howevexr, there are too many eonstants to determine by classi- ..
cal methods.7 It is nevertheless possible to obtain very genc-
r2l qualitative results by this method.

From the boundary condition

o(x,y) = o(x + L,y) (3.2.4)

; (a+ ei<y kgr' (nks * kxi)24> Y
-n

B . 7 -i(nkg + k)X
T )
n

(3.2.5)

The qualitative results follow from a discussion of the pro-

perties of ky. Since kxi and kyi are negligible compared to

kc and kS:
. 2 'Z ,-
; Ky~ J kG - (k) n>o0 (a) :
: kymkc n =0 ( b) (3.2.6) i

7See Appendix B.
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For n = O, ky ~ kc; the field is approximately constant in the

X-direction resulting in a plane wave propagating approximately
straight down into the sea as in the flat interface case.
If the field is not approximately a constant in the x-

direction, the propagation constant becomes

Yo =/ YT - vy =V YT 4k
7T 2y 2
= A/ —6'2' - (T (3'2'7)

As the term added to Y2 increases in magnitude, Re [Yv]

increases and the particular mode characterized by this pro-
pagation constant decreases more rapidly with depth than the
= 0 mode. This implies that as y » ® the electromagnetic
fields become a plane wave with propagation constant Y.8
Asymptotically, (y » ®) the major perturbation in the n = 1
mode; this is independent of the shape of the sea surface,
The major perturbation near the sea surface will depend on
the shape of the sea surface, and will be attenuated with
depth, the fields tending towards a plane wave propagating
downward (the n = 0 mode).
intuitively, a reasonable breakpoint in these types of

. . - _ . _1.85
propagation is when Re [Yy] for n = 1 is 1.85 ReY = - -

As Re YAJ > Rer J the modes n > 0 are attenuated more
than the n = &-mode pl ne wave), Asymptotically (y»®) the
higher order modes become zero more rapidly than the n = 0
mode (i.e., the ratio of the amplitude of the higher corder
modes to the n = 0 mode approaches zero asymptoticzilly).
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[ 21 2a JZT
Yy= —67-"*(%—2-)=—5- a + 1
Re[y]:l‘.’.@i»a:l»LSﬂ'n‘né (3.2.8)
. Y 5
For L s then n = 1 mode is considerably more attenua-

ted as it propagates down into the sea than the n = O mode and
the higher order modes are even more rapidly attenuated. A

qualitative idea of what this means is given in the chart below:

f =3 cps 8 = 145 meters T = 650 meters
3 ke/s 4.6 20
18.6 kc/s 1.85 8
30 kc/s 1.45 6.5

For L = L the added attenuation of the lower order modes
should “rapidly" bring the field into a plane wave., In the VLF
range, for L = 10L, the effect of the added attenuation on the
mode solution should be evident, even at the depths considered.
If L . 100L, at the depths considered in this report little de-
cay in the perturbation due to the rough sea surface would be

expected,

. 3.3 Method of lines
In one method of numerical solution of partial differen-
‘ tial equations (the method of lines), one of the variables,
say x, is discretized, while the other varisble y is left
continuous. After the finite difference approximations are

substituted for the x derivatives, the partial differential
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€quations become a coupled system of ordinary differential
equations, i,e.,, difference differential equations.9

Usually when the method of lines is used on an autcomatic
digital computer, the problem is discretized in the y-direc-
tion also as a finite difference method is used to solve the
system of ordinary differential equations.lO In the modifica-
tion of the method of lines used below, the problem is discre-
tized in the y-direction; however, the differerce differential
equations are solved by a method closely akin to separation of

. - - 11
variables and Euleris method.

In this problem, as is usual
in the method of lines, the number of subdivisions in the y-
direction greatly exceeds the number of such divisions in the
X-direction, i.e., the discretization distance in the x-direc-
tion is larger than the discretization distance in the y-direc
tion. The problem is then concerned with a rectangular net
with relatively long rectangles, This is very useful in sat-
isfying the boundary condition at the sea surface (which is a
slightly rough surface, i.e., almost flat surface with rela-
tively large variation in &, resulting in only small varia-
tions in y = E(x) ).

The boundary value problem was stated mathematically in

in equations (3.2.1), (3.2.2) and (3.2.3).

9Forsythe, op. cit., p. 178.

101p14.

llScarborough,Numerical Mathematical Analysis, fourth

ed,, (Baltimore: Johns Hopkins Press, 1903).
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As showna in the preceding section, some general qualita-
tive results may be stated, based on the relative values of
physical parameters. Using the numerical results obtained
by the use of the method given in this section, quantitative
values will be placed on the terms "relatively little
change," etc., by comparison of the theory to solutions of
some representative problems.

The method used discretizes the x variable by replacing

the x-derivatives by a finite-difference approximation

Yo (x.y) =7q-,—(;{}-“——; D.O. o(x,y) + E (3.3.1)

Y

where D.0O. is a difference operator and E an error term.
The D.O. depends on y, and will be given explicitly along
with the error term E later. The partial differential

equation then becomes a set of ordinary differential equa-
2

X

tions; the coupling of the equations is through the Yy term.
Letting

o(x,y) = X(x) Y(y) as in the separation of variables

method
a2 2 2
ez« (- o)} ¥(y) = 0 (3.3.2)
. y
Yf, = v - Y,Z{ . (3.3.3)

Intuitively, because the sea surface is only slightly
rough and because of the relative values of the physical

parameters of the problem, the propagation should be basically

in the y-direction (approximately normal to the sea surface),




so that:

Yl >> vl = vy ~ v (3.3.4)

Equation (3.3.4) holds true asymptotically (i.e., y = =),
and in most cases is approximately true near the sea surface.
For the physical parameters used in the examples given here,

the correction should be relatively small.

The solution to the ordinary differential equation
(<512 +v2) ¥ (y) = 0 (3.3.5)

is well-known to be:

v(y) = ey’ + cheVy’ . (3.3.6)

In the computer program, it proved convenient to choose Yy
such that Re [Yy] < 0, as the propagation is in the +y direc-

tion; the radiation condition then takes the form Cl = Q.

Below the lowest point (trough) of the sea surface,
the radiation condition must be applied, in which case the
method of separation of variables could be used in its
classical form. However, to obtain numerical results, the

use of the classical method of separation of variables does

not prove convenient.

LA Ly

- e
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The boundary value problem is best solved numerically,

even in this case, where the separation of variables could

be used. The problem is a marching type problem.

®(x,y) is known at the lattice points for y = Yy

¢(x,yl + 6y) can be computed from the equations

(2)

Yi = ET§%§I) D.O. ¢(X:Y1)
Yy = VY2 - Y2 (b) (3.3.7)
o(x,y; + 8y) = o(x,v,) oYy (8Y) (c)

This process is repeated until the depth y, the great-

est depth at which the fields are to e computed, is attained.

yd
egion ] Trough /// gxo
SRR

Region 2

Figure 3.2 Regions of Solution.

«~ /

To compute the fields between the crest of the sur-

face and the trough of the surface, the problem is consid-

erably more complicated. The radiation condition does

12A marching type boundary value problem is a prob-

lem in which the knowledge of boundary conditions may be
used directly to compute numerically the field near the
boundary; this may, in turn, be used to extend the field

further in a step-by-step fashion.
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not apply in this region and the method of senaration of
variables, at least its classical form, cannot be used,
The method used is, of course, based on the same
difference-differential equations assuming some value is
given to @(x,v) for all x,y in the region considercd. To

compute a new set of values for 9(x,y), let

Yo = VY2 - 2 (2)
Y X
2 _ 1
Yo = IEY) D.0. 9(x,y) (b)
(3.3.8)
o(x,y - 8y) = C) + <, (c)
- Y 28
o(x,y + 8y) = C; Y+ c e y? Y (a)
The above two equations are solved for Cl and C2:
then a new value of ¢(x,y) is computed:
-y..8 )
9(x,y) = cje Yy ¥ + cpeVy®Y (3.3.9)

This process is repeated for each X,y in the region con-

sidered until the process has been repeated for the whole
region. The process is stopped when there is very little
difference between the o0ld values of @ and the newly com-

puted values of @,

3.4 Error Estimates,

When using numerical methods, the question of error
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estimates is of primary importance, If no reasonable
error bounds can be found the method used and the results
obtained may be useless, In this section, the error es-
timates for the numerical process described in the pre-
vinus secticn are given, Because a large digital computer
was used carrying many extra significant figures, round
off error may be neglected. The major error term then
arises fro. the discretization process.

As different finite difference approximations were
used in the different regions of the problem, two sets of
estimates are gi.=n,

Region 1. (Between the crest and trough of the sea

wave ., )

o(x + h ,y) +o(x - h .y, - 2¢{x,y)

(3.4.1)

where hX is the discreiion constant in the x variable

o, (¥:/¥) = D.0. 9(x,y) + E

where E is an error term
1 2
E~ Tf(pxxxx(x’Y) hy
if h is sufficiently small and ¢ smoot. enough (it is

assumed this is true in the remainder of this sectiony

this is easily verified)

l XXXX

|h ~ 35 (Iv,In)? = 265

_7




where, y, - the effective propagation constant for propa-

gation in the x-direction,

A2
5x ~ |%|

e, -- a relative error term
Let 2 2

Y4 -- the computed value of Yx
_ 2

Yo = Y F er

e 2 ¢1 (E§)2

Yy 6 'O

€Y2 -- the relative error in yi

X

From the above, it is clear that the less the variation of
the field in the x-direction, the larger hx may be made
and still have sufficient accuracy in the calculations.
However, the main question of accuracy involves *y and,
of course, ¢(x,y) not Yi,

As [le > lYil under most sets of conditions for the

problem considered here,

N I RVERE] v 2 -
_ 2 2 - o/ Yo \ & T 1 % |
= - = - (=X bl - = (=) + ...
Yy JY Yy YW1 (Y )~ 2 (Y ) J
where yy -~ the effective propagation constant for propa-

gation in the y-direction

v | % |
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c Y
s_..l YX |Y|
eY 2 2 ''x
Y Y
s~%b ) 2 unfer most conditions
Yx

For hX < 46X

g 2 < .01 and eY s .0001 .

The final error estimates involve the field ¢(x.y) which

of course is the estimate desired.

vh - -y (1L~ ¢, )h -v.h
- oYY Y Y Y . YY h
ep = 1o ¥ ¥{e v Yoo T a lyyley by
2
[ S"‘—Eh .
6 ¢
Q y \y Yy
For the condition above, if hy < 56y
< .01 .
%o

Under most ccnditicns, ¢ is considerably less,
o

Region 2. (Below the bottom of the sea wave,)

{@(x + ZhX{y) + o(x - Zh%fy)}

2
12h

D.0. ¢(x,y) =

+ 16{¢(x + hx,y) + o(x - hX,Y)} - 309 (x,y)

+
1207
X
=D.0. ¢(x,y) + E

. 1 4
with B ~ 90 P x

CPXX

(3.4.2)



Bh

¥ h 06
or y < 5 v

<
eQp .015,

ecp -- reiative error in the field.

In this region, the first derivative is also calcu-

lated, This allows taking the curl of the field vectors.

o(x + 3h,,v) - g(x - EhX,zl

D,O. ¢ = ;

6Ohx
- 9{w(x + 2h,y) - olx - 2hX,Y)} + 45{w(x +h,,y) - o(x - hx,y)}

60h, (3.4.3)

CPX =D.,0O, v + E

1 4
B N’?ﬁ'wxxxxx hy
D, ~ 30 T o, x 7 T.5 V&

Similarly, for D

o = 7he (2D
D L]
Y 7 Y
For hy < 20
eD < ,01




Based on these rough error estimates, all calculations are
sufficiently accurate (within 1%). Nearly all calculations
are more accurate, as the conditions given above are the
extremes of those encountered. It should be noted, how-
ever, based on the calculations made, the error in each
computation usually took on the maximum value computed for
it (i.e., the error was very nearly equal to its bound

given above) .

3.5 Some Conclusions and Verifications Based on the Com-
puter Calculation

In the next chapter the numerical results of the com-
puter calculations are given; the errors and the verifi-
cation of approximations made in the computer program are
briefly discussed in light of the experience of the compu-
ter runs.

The first question considered in numerical solution
of differential equations is: how fine must the grid be
made to obtain accurate results? This is usually deter-
mined in the finite difference calculations by subdividing
the finite difference interval until no¢ changes occur in
the solution. The "subdividing" method was used in the
computer calculations, The accuracy required was three
significant places. This method was applied to both in-
tervals in the x and in the y variables, The effect of
interval change in the x variable is somewhat small as

long as the finite difference formulas are reasonably
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accurate, However, the changes in the interval in the y f
variable could greatly effect the numerical result. This
sensitivity occurred only in problems where the lower order

modes were decaying rapidly. The reason for this pheno-

menon is that if a large interval is chosen in the y vari-
able and if the decay rate is rapid and not "correct=d" in
the large interval, it causes the field to "overshoot".
This effect may be cumulative, in which case the compu-
ted field rapidly becomes zero, or if the interval is small
enough the computed field appears to "hunt® after reaching
equilibrium (i.e., plane wave). In either case, the errors

are easily seen in the computed values,

An assumption that is verified in the computed re-

SRAALE D

sulcs is that IYXI <L 'Yyl’ even where relatively rapid :
decay of lower order modes occur ( 'Yx' ie largest there,
lel < 10 'Yyl’ however it should be noted that this is
for kA < 1/7, if kA was not restricted in any way, the
above conclusion would not hold).

It would seem reasonable, that the computer program
would accurately compute the field, as the program is }
based directly on the physical processes involved in the .
propagation of the wave, However, it is also clear, that

if the original assumptions and restrictions on the para-

meters considered do not hold, the program may yield in- %

PR

PR

R

accurate results.
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4,0 SELECTED RESULTS OF COMPUTER CALCULATIONS.

4,1 Introduction.

The purpose of this chapter is to present numerical cal-
culations of the electromagnetic fields in the sea. From
these calculations, a correlation between what the theory pre-
dicts for the basic mode of propagation in the sea (see Section
3.2) and the computed electromagnetic fields in the sea may be
found. Selected results are presented, and these should be
sufficient to see the basic propagation pattern in the sea.

As stated previously, the sea surface was assumed to be
described by the equation g(x) = A cos (ksx). For the calcu-
lation given in this chapter, A was chosen such that the maxi-
mum slope ©f the wave was 1/7.l These calculations should then
bound the electromagnetic fields in the sea produced in an ac-
tual physical situation (i.e., the difference in propagation
patterns caused by the changes in the fields due to the rough
surface is maximum) .

First, to see the correlation between the "propagation
theory" and the actual propagation effects, a set of curves
piesenting the numerical solution of the scalar boundary value
problem at the lowest level (trough) of the sea wave is given,

Secondly, a set of results presenting the electromagnetic

fields in the sea at different depths is presented. These

1See Appendix A,
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fields are normalized to see the deviation from a plane wave,

Lastly, some comments on the numerical results are given.

4,2 sScalar Fields at the Lowest Level (Trough) of the Sea Wave .

The symbol a is used to connote attenuation (in db): y
a, -- Relative ratio of the field at the point considered
to the field on the sea surface vertically above it in the TE
case,
aQy -- Relative ratio of the field at the point considered
to the field on the sea surface vertically above it in the TM
case; this is basically to present the propagation effects.
a3 -~ The "corrected" value of Ao, that is, the relative
ratio of the field at the point considered to a fixed normali-
zation value; this is to account for the difference in the
field on the sea surface in the TM case (then @, and % on the
same scale),
a, -- The computed relative ratio of the field at the
point considered to the field on the sea surface vertically
above it assuming the wave propagates straight downward with
the propagation constant of sea water at the frequency of'the
electromagnetic wave and that the field on the sea surface is .

a constant (the same normalization constant used to compute

a

1 and a3).

B is used to connote phase shift (in degrees):
ﬁl -- Relative phase of the field at the point considered
to the field on the sea surtace vertically above it in the TE

case,
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B, ~- Relative phase of the field 2t the poin
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to the field on the sea surface wvertically abtcie it In the TH
case,

B

point considered to the field on the <=2 surfazs verst ~all

C

above it, assuming the wave propagite. =hsilant downward with
the propagation ccnstznt ¢f sea water at the fra3juency cf the
radio wave and thzt the field on the s£=-
(zero) phase,

The curves presented are f£or:

f = 18.6 kc/s

A = .5 meters I = 12 me*tars

A= 1.5 I o= A4

A= 4,3 L = 180

£f = 3 cps

A =15 L = 6LC

For sea water at 18.% kc¢/s, & = 1,35 met=r:; thazefor

based on the "propagatiorn theory," the fislds under the s.rface
with L = 12 should show a m2rked denrsase in the perturkaticns

P S

caused by the rough sea surfare and
For L 2 64, there should be little dscresss In the psrturkation
and the calculated change is vary small a. &n e -=3aen on the
graphs, even for the 4,3 meter waves

For sea water at 3 cpg, § = 145 metszs and sz denre2afe

in the perturbation for the 15 meter wave ie roted
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Figure 4.1, Scalar Field at the Trougb Level of the Sea Wave
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,3 The Electromagnetic Fields in the Sea.

Due to the vector nature of the electromagnetic fields
a set of curves is necessary to describe the electromagnetic
fields at a fixed depth, The description of the fields is
presented in terms of Ez or Hz depending cn the polarization
and direction of propagation of the incident field,.

Again, 0 is used to connote attenuation (in db).

&, -- Relative ratio of the field (in this case E, or
Hz) at the point ccnsidered to a normalization value,

a, -- The computed relative ratio of the field at the
point considered to the field on the sea surface vertically
apove it assuming the wave propagates straight downward
with the propagation constant of sea water at the frequency
of the radio wave and that the field on the sea surface is
a constant,

B8 again is used to connote phase shift (in degrees).

B, -- Relative phase of the field at the point considered
to the field con the sea surface vertically above it in the
TE case,

B

point considered to the field on the sea surface vertically

o T The computed relative phase of the field at the
above it, assuming the wave propagates straight downward
with the propagation constant of sea water at the frequency
of the radio wave and that the field on the sea surface has
a constant (zerec) phase,

A second set of curves is presented to represent the

other field components. These are normalized by the factor
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+1

e

(plus sign if Ez was considered; negative sign if Hz).

20 log

1
Il

20 log

( -
20 log |[-= y

13]]
1l

\20 log

c z
( phase(H,) + 45°- phase E,
=
phase(EX) - 45° _ phase H

phase(Hy) + 45° _ phase E_ - 90°

\ phase(EX) - 45° _ phase H, - 90
where phase HX is the phase of Hx'

a denotes the deviation of the ratio of the horizontal fields
from the plane wave (flat interface) case (in db). & denotes
the ratio of the vertical field to the horizontal field (in
db) .

Similarly, B and B are measures of the phase deviation
from the plane wave case for the horizontal and vertical
fields, respectively.

On each set of curves in this section a complete des-
cription of the sea surface (A and L) is given, along with
the frequency, polarization and direction of propagation of

the incident electromagnetic wave. The depth D (below the
trough) at which the fields are computed is also given on

each set of curves.
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The curves presented in this section are all for the
direction of propagation of the incident plane wave in the
X-y plane. The sets of curves differ with respect to
polarization. To obtain the fields due to an incident
plane wave with propagation vector in the y-z plane the
"dual" of the solutions is taken (i.e., for a vertically-
polarized wave, the curve for the horizontally-polarized
wave must be used). Rather tharn belabor the discussion,

a very simple procedure will be given in Section 4.4 for
using the curves to compute the horizontal fields in the

sea.

¥
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Horizontal Polarization
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Figure 4.5 Electromagnetic Fields in the Sea.
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Vertical Polarization
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Horizontal Polarization
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Figure 4,13, Electromagnetic Fields in the Sea.
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4.4 Interpretation of Numerical Calculations,

From the curves of Section 4.2, there is a clear indi-
cation even at these relatively small depths that the basic
theory of propagation (Section 3.2) is qualitatively correct.
The field for L = 12 meters at £ = 18.6 ke/s (L = 12,

J2mé 8) and L = 640 meters at £ = % cps. (L = 640,

JZrs = 65C) shows the decay of the higher order modes.
The other curves (L = 64, 180, 640 at £ = 18.6 kc/s,
/218 = 8) show the perturbation caused by the roughress
of the sea surface is "relatively unchanged." The small
changes (decaying of the perturbation) that do occur,
occur slowly and are only beginning to become evident,

The curves of Section 4,3, which describe the electro-
magnetic fields present the picture of a plane wave propagat-
ing downward, As Y~ Y, the relationships for the horizontal
fields are basically that of a plane wave (i.e., E, = ncHh);
the deviation from this condition is the order of tenth of a
¢b and one degree at the depth considered, As 1YX| <cec Y1,
the vertical fields should be relatively small; they usually
are at least 20 db below the horizontal fields.

The practical interest is then in computing the hori-
zontal fields, the vertical fields being so small. As the
horizontal fields are basically related by Ne (neglecting
a small factor) the electric field may be computed from the
magnetic field and vice versa, A very simple procedure for
computing the fields in the sea from the curxrves of Section

4,3 iss
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1., Calculate the tangential field assuming a flat sea
surface (the tangential electric field, for example).
2. E, at depth D is related to the E, computed on the

flat surface by the a, and Bl for the horizontal polarized

1
wave given in Section 4.3 (this is independent of the polari-
zation of the actual incident wave),

3, Similarly, Ex at depth D is related tc the EX on

the flat surface by the 0., and ﬁl for the vertically

1

polarized wave,

*e
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5.0 THE BASIC THEORY FOR THE THREE-DIMENSIONAIL PRORBLEM

5.1 Introduction to the Three-Dimensional Problem.

It would seem clear that the three-dimensional elec-
tromagnetic boundary value problem will be considerably
more complex and complicated than the two-dimensional
electromagnetic boundary value problem treated previously.
Comparing the two problems, some striking differences and
similarities appear,

In the two-dimensional problem, the TE and TM modes
can be completely decoupled. With this convenience. the
two-dimensional electromagnetic boundary value problem can
be reduced to a set of considerably simpler uncoupled
scalar boundary value problems. In the three-dimensional
electromagnetic problem, the TE and TM modes can no 1longer
be decoupled. Coupling occurs thrcugh the application of
boundary conditions on the rouch surface, The three-dimen-
sional problem must then be solved "all at once". However,
the coupling between the components of the field is "weak".
The dominant magnetic field component is wvirtually inde-
pendent of the other field components., Therefore, the
dominant component of the magnetic fielid may be computed
by assuming the other magnetic field components are zero,
The field pattern is basically one of a "dominantly" TM

mode or a: least it can be considered as such.
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A difference in the mathematical formulation of the two
problems is that the use of vector potentials, which proved
quite useful in simplifving the two-dimensional electromagnetic
problem, no longer provides a clear means of simplification in
the three-dimensional problem. The majcr reason for this is the
effect of the boundary conditions at a rough surface,

Other difficulties in the three-dimensional electromagnetic
problem are:

i. The solution is now represented as an integral over a
two-dimensional space, so that two integrations are necessary,
not just one as previously needed for the two~dimensional case,

ii, The solution is a vector and a function of two space
variables making the solution more complicated and therefore
somewhat more difficult to interpret.

As a result of the above difficulties, relatively little
work has been done on the three-dimensional problem.l The work
done usually involves the use of a perturbation technique which,
as previously pointed out, may not be "accurate" in the near
field.2

The basic approach is based on integral equation techniques,
Many of the assumptions used in the three-dimensional problem

were discussed in the two-dimensional problem and therefore a

1Lysanov, Y. P., "Theory of the Scattering of Waves at
Periodically Uneven Surfaces,” Soviet Physics Acoustics, Vel, 4,
no, 1 (Jan.-March, 1958), pp. 1-8.

2Hiatt, loc. cit,

Winter, loc, cit,
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somewhat abbreviated discussion is given below,

The mathematical description of the physical model is ba-
sically an extension of the two-dimensional model to three di-
mensions, It is assumed that:

1. The "basically spherical" earth is replaced by a "bhasi-
cally flat" earth.

2, The sea surface £€(x,y) is given by:

g(x,y) = A cos k X COs ksyy
5. The source of electromagnetic energy is a plane wave

incident on the rough surface,

4, For the computation of the electromagnetic fields in
e
the air but on the sea surface, the sea is assumed to be a per-
fect electric conductor (¢ ==, z_ = 0),

5.2 Formulation of the Electromagnetic Boundary Value Problem

in Terms of Integral Equations

A convenient starting point in formuiating the integral
equations for the three-dimensional problem is the vector form

of the Helmholtz's formula,

B(%) = :o {B(2) o, (i) 221) - B_,(£) (k] 2-2 ) Jas’
i (5.2.1)

H(E) = | . {B(5) o . (x)Z-F1) - B (F') alx] -2 ) Jas'
(5.2.2)

where
S is closed surface bounding volume V

r* ¢ S

o




118

rev
n -- outward normal as previously defined,
E and H are given in terms of their rectangular compo-

nents.,

Again dividing the surface S into two parts, S and S_,, S
represents the rough sea surface and S, "infinite" hemisphere,
Following the method used in Section 1.4, equations

(5.2.1) and (5.2.2) become

B(E) = B,(F) + :__{E(f' (kg T2 ) -, (£') o(x] -2 ) Jas:
(5.2.3)
#(7) = B, () + :g{ﬁ(f-) 6., (] 221 ) -, () a(x] Z-21 ) Jas"
(5.2.4)

where r ¢ V, r' ¢ S,

Equations (5.2.3) and (5.2.4) may be shown to be equiva-

lent to the Stratton-Chu type equations,

E = Ei - r__[z A' x H)G+HA* x B) x grad Gg+(a'-E) grad G}ds
(5.2.5)
" = ﬁi + Jﬁ LY(ﬁ' x B)e-(f' x B) x grad G-(a:-B) grad G]ds
B ~
(5.2.6)
The ‘rg_are "singular® integra.s (as were the Jﬁ in the two-
C
dimensional problem), the details are available in Appendix C,
Applying the results of Appendix C to (5.2.5) and (5.2.6)
= 2[3. J’ {Z A x B)e+A' x B) x grad g+(A'- ﬁ)gradG}ds]
(5.2.7)
= ZEﬁi + Ji_{Y(ﬁ' x B)e-(A* x B) x grad G+(ﬁ"§)gradG}dsj
S (5.2.8)

B st st - S s At s i R S e e
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where r and r' ¢ S.

The R and B given by (5.2.7) and (5.2.8) satisfy the vec-
tor partial differential equations, radiation and source con-
ditions‘of Maxwell's equations; there remains only the boun-
dary conlition. -~ ¥

The boundary condition at a perfect electric conductor

are:
i) the tangential electric field is zero: n x BT =0 (5.2.9)
ii) the normal magnetic field is zero: a-BF =0 (5.2.10)
where the + sian on BT and Bt denote a limiting process (see
Section 1.2).

Applying (5.2.9) and (5.2.10) to (5.2.7) and (5.7.8),

the following integral equations are obtained:

!

B = 2[?}’::t - Jpg_Cz(ﬁ' x H) ¢ + (A - E) grad G>ds_| (5.2.11)

B = Z[ﬁi + ji_ - <'(ﬁ' x B) x grad G > ds] (5.2.12)
S
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6.0 THE SOLUTION OF THE INTEGRAL EQUATIONS

6.1 Introduction

In this chapter, integral equation (5.2.12) will be
solved; this solution gives the tangential magnetic field
on the air-side oi the sea surface. The technic-2 ucsed
is similar to that used in the two-dimensional problem.
The integral equation in the sea again yields an impedan-e

type boundary condition on the sea surface.

6.2 The Integral Equartions in the Air

To compute the tangentizl magnetic field on the sea
surface, equation (5.2.12) is considered (note that the
electric field is absent from this equation, yielding an

integral equation in only the magnetic field).
H(t) = Z[Ei(i) - J:{(ﬁ'x H(T'))x grad G(kO|EL?'|)}dS']
S

(5.2.12)

where -
(k E30]) e~iko|f-r'|
G k r‘-r' = .
© Yr |2-T" |

For the scattered field ko equal to zero (i.e., w = O and
the Green's Function becomes the static or stationary
Green's Function) is a valid approximation (see Section
2.8). 1In this case, the integrals that must be evaluated

(in 5.2.12) take the form:

120
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= " i f(le)
1= j —— dxdy (6.2.1)
. L[@ [xz N yz N §2(x,y)])/é

Following the method used for the two-dimensional problem

(6.2.1) is approximated by

T = r: £: ( Qf(X'Y) dxdy (6.2.2)

~ I

This approximation is valid as:

=] 0 l
[T f(X:Y){ . - 5 }ddeI
57
U Yo (xz . y2 N g2)3/2 (Xz . yz) /2

<c | ) Jw S dxdy |
L[.:o — @ (XZ + }72 + g2)3/2

C <14+ 3/ sup(gi,gé)

2

3/) = 1/50

sup (%i:%

.97 = C < 1.03 .

To simplify the computations, the problem is subdivided
into two parts depending on the polarization of the incident
wave.

l. Vertical polarization. Without loss of generality

it may be assumed that the incident magnetic field is in the
x direction and that the propagation vector Ei is in the

y-z plane. The incident field is a TM to y electromagnetic
wave. As the currents flowing on the sea surface produce

¢ magnetic field mainly in the x-z plane, the y compcnent

of the magnetic field is small and the total wave remains




basically ™ to y.
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In this case, the integral equation

(5.2.12) "simplifies" to

where
nlnl

normal.

similar

Gyor G

Y

G
X

similar

-G, (nsz—nXHz ) o+ Gy(-nny+any)

J’m { Gz(—nzH +n H_ ) - G, (-n H +n H ) }dS'

yx XYy

—Gy(-nyHy+nsz) + GX(nZHX—nXHZ)

(6.2.3)

n, are the rectangular components of the outward

e ()

i J1+El ()l (E)

R §x(z':')

equations hold for ny and n, -

GZ are the rectangular components of grad G.

(x-x")

) {(e-x )24 (y-9 )24 (2 (x,y) _g(x,y"))2}32

equations hold for Gy and G, -

Foilowing the method used previously, let

m,n

/

Y

, e—i(ksxmx + kg ny) -ik

2
y y (6.2.4)

vi
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( )
h .
Xl,m,r‘;
= -i(k__mx + k 7)) —-ik_ .
H, = §j< hyi N L e i sX xyny) e yi¥ (6.2.5)
A B
| Tzi,mun

g€(x,y) = A cos k x cos kv = % {ei(ksxx.+ ksyY) +

ei(ksxx—ksyy>+ otk x + ksyf) + ei(—ksxX - ksyY)} (6.2.6)

-~

Placing equations (6.2.4), (6.2.5) and (6.2.6) into

(6.2.%) with the use of the formula

B U IR
Lo o (feox Vot (y-y 12)572
2iT k . .
- — 32X _ e-l(ksxx+kSYY) (6.2.7)*

ety

176 obtain ecuation {6.2.7) consider

" (x-x") e_i(ksxxi+ks y')dx'd '
L Lt v

_ il xk_y) T Pe gretlkgx 'tk y')
L (222

Jw“ x'eiksxxl = ZiJ’w x' sin ksxx' o
- o ((x')°+(y")%)°/2

8
—
—
X
+
—
"4
~
N
\N
N

- 21[ . }-%—72—) k,, K, (ksyy')] Rely'] > O

(Bateman Manuscript Project, Vol. I, McGraw-Hill,
New York, 1954; p. 69, equation No. 11l.)




for ﬁi = < D > e_lkyiy

the followinag results are obtained.
2

ksx A L -iko Ly
H w~ 2{1 + —— cos k_ X cos ksyy}e yi (a)
N
(6.2.8)
k k A : 2
Hy N 2{——§§_§¥~_ sin kX sin ksyy} e'lkyiy (b)
K & +ksy2
H = (—ZkSXA sin k_ x cos kny) e"lkyiy (c)
o x' sin ksxx'

Noting the Jﬁ dx' is an even func-

o ((x')* + (y')%)°/2
tion of y' for real y-

J’m x'eiksxx'

—e (1) 4 (v)%)72

ax' = 2ik_ K (k_ |y'])

y' - real y' #0

where Ko is a modified Bessel function.

® . S ©
s k ! 1 1 1 1 -4
J:mKo(ksxly Ne™®sy¥ ay ZJ K (k,y') cos ksyy dy*

(0]

3 ]

Yk 2) + (x2)

(Bateman Manuscript Project, Vol. I, McGraw-Hill,
New York, 1954; p. 49, equation No. 40.)

P°° - (X-X') e—iksxx'e-'iks ' ' '
Ja J:m ((x-x')2 + (y-y')2)>72 yY ax'dy

2i1rksx

o) v )
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2. Horizontal polarization.

Again without loss of generality, it may be assumed
that the incident magnetic field is in the x~z plane and
the propagation is in the x-z plane. In this case the inci-

dent field is ™ to y and the total field is basically

T™ to y. The integral equation becomes

N\ 3 h

Hx Hxi

H>=2§O> +

HZ / \HZi'
o —Gz(nzHX—nXHZ) + Gy(-nny+any)~:
ZJj.m J:m { G, (-nzHy+nyHZ) - Gx(—nyHX+nXHy) }ds'
-G.(-n H +n_ H_ ) + Gx(n H -n_H_)

Yy 2y yez Z'X X'z

(6.2.9)

k. . .

;1 ik, .8(x,v)
o
H = <0 | o7 k¥ (6.2.10)
k. . .
L il e—lkzig(x,y)/

)
Placing (6.2.5), (6.2.6), (6.2.7) and (6.2.11) into (6.2.10;

the following results are obtained:

H ZEEi{l + kSiA cos k__x cos k }e-ik i¥  (a)
x & kKt T2 SX sy? ¥
k2 + K2
k ..k k A" .
Hy o 2 il SX SY sin k_ x sin ksyy}e-lkyiy (v)
oWk 2 4 x 2
sx sy (6.2.11)
k

_p_2i : -ik_ .y
H, ~ ko{ksx A cos kxyy sin ksxx)}e vi (c)
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The tangential magnetic field is basically the same for
horizontal and vertical polarization (neglecting the

factnr wﬁi); the basic difference is in the direction of
o

the fields (relative to the direction of propagation).

Vertical polarization:

tangential magnetic field w

k .
2{1 = 5= cos k X cos ksyy} e—lkyiy (6.2.12)
koo + ko

Horizontal pclarization:

tangential magnetic field =

kzi k*EA -ik_.x
Z—Ef {l + = cos k X cos k y}e xi® (6.2.13)
L 5 sX sy
© ko +k
SX sy

At this point there is an obvicus need to check these

results with the results of the two-dimensional problem.

There are two cases:

1. ksy = 0, ksx + 0

H, perpendicular to the direction of surface variation

Htan = 0, (two-dimensional case)
-ik_.y
o 2(1 + Ko B cosdﬁsxxle vi

which agrees with the results for the limiting case (k =0)

Sy
in equation (6.2.12).

2. x.=0,k _#0
sX sy
Hx parallel to the direction of surface variation

H

tan ~ 2cPi
~ 2

whic!. again agrees with the three-dimensional result.
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A major difference caused by polarization is in the

k

factor-—%i present in the horizontally polarized case.
o

This factor is present in the flat surface or unperturbed
case.

As the basic modes of propagation in the sea are
the same for the two or three-dimensional problem, no
numerical computations are given in the three-dimensional

case.

6.3 The Integral Equatioans in the Sea.

The same integral equations (5.2.3) and (5.2.4) hold
for the electromagnetic fields in the sea as well as in
the air; in the sea, ﬁi and ﬁi are equal to zero and k = ké.
The development of this section parallels that of Section 2.4,
only is somewhat more complicated because of the vector
nature of the fielde and the fact that the integrals are
now over a two-~-dimensional space. However, the scalar prob-
lem in the sea may be treated first.

The integral equation for the scalar wave function

9(r) in terms of its boundary values is

0(3) = 2 [{o(2') oy, IE-F11) = 9, (o |E-F])} as
® (6.3.1)
for ¥ and r'eS.

Using the same assumptions as in Section 3.4

L - - - 2 ® e“ikcp
J o . {x") G(kclr-r'|)ds' s cpn(r)J1 ds kf e pdp
_ o o
5 o (£) _ _
SV reS | (6.3.2)
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B T Pnre
-y 1 1 @ 1 -ik 1
~0() 3 5= L (-ik, - =) pe”*NcPa (6.3.3)
=y, -1
~ cp(r)(2ik _R) (6.3.4)
C
1
pn

- (x-x")8, - (y-y')8, + E(x,y) - E(x'.y")
P (x-x')? + (y-y')° +(&(x,y) - 8(x',y'))°

For x-x' and y~-y' sufficiently small

S(x/y) = 8(x",y") + g (x-x") + E (v-¥")
+ {8 (x4 g (eoxt) (v-3') + 8 (-v)?)

+ o @ o
en 1.1 1 1 11
< (-t — +) =5 =
0 2 R.x ny Ry 2R
where
R
X

- radius of curvature of the section of the surface
(i.e. curve) in the x plane.

ny - radius of curvature of the secition of the sur-

face {i.e. curve) in the x=y plane.
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For |k |R << 1, the "impedance" type boundary condition is

again encountered:

? (%) » 2{——-25;;2 = iq)ﬁ(r) 78 (6.3.5)
C C
or ﬁ -
B(E) o n) 7¢8 (6.3.6)
. C

Equation (6.3.5) appears to be a direct "carry over" from
the twc-dimensional problem where the same equation was
derived. In the three-dimensional probiem, however, equation

(6.3.6) does not directly imply E as

tan = nc Htan

- R d =
nxH = nxz curl B #-35 Etan .

N

Then, to obtain the impedance type relationship between the
electromagnetic quantities directly, the Stratton-Chu equa-
tions are used. Only one of the two vector Stratton-Chu

integral equations is necessary.

2(3) = 2I [v(Arad(E)) ek |2-F1]) -
[

(n'x#(T')) x grad G(kc|?-f'|) - (n'-H(r'))grad G}ds'
(6.3.7)
(nxH) x grad ¢ = (n-grad ¢)& - (grad G-H)a . (6.3.8)

The relation obtained directly involves only the tan-
gential fields, so the second term on the right-hand side ‘
of equation (6.5.8) may be neglected. Also, using the

boundary condition at a perfect electric conductor n-8 =0
so the third term on the right-hand side of equation (6.3.7)

is taken to be zero.

27mis follows from (curl --g%)ﬁ # 0.
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H(Z) = zj{y(ﬁxﬁ(z-)) Gk |E-F']) -
5

(3'-grad G(k |- | )A(Z')} ds (6.3.9)

j(ﬁ'xﬁ(z-)) Gk, |E-2']) ds' w ﬁxﬁ(i‘)iG(kcli’-f'l) ds'
S S

n X (2) o (6.3.10)
C

-h

I(ﬁ‘-grad G(k_|F-F'|) H(Z')as’ ~ #(E) fsn.(kcl?-?‘l)ds'
= 5

o - H(E) (6.3.11)

Zich
Then from placing equations (6.3.10) and (6.3.11) into
(6.3.9)

1 Y
H {1 _.____} ~ - B, " (6.3.12)
tan ikcﬁ' 1kc tan

for |k |R >> 1 (see discussion Section 2.4) .

Y 1
Hean ™ ik Etan ™ Na Etan (6.3.13)

as

k = jﬁ T]c = A/Z;E -

c
Equation (6.3.13) yields an estimate on the tangential elec-
tric field at a good electric conductor ia terms of the

tangential magnetic field there.




7.0 CONCLGSION

From the solutions given in Chapters 2 and 6 for the
tangential magnetic field on the rough sea surface, the
perturbation of this field due to the roughness of the sea

surface is less than 3 db for most sea conditions. The

perturbation depends both on the polarization of the incident
field and the direction of propagation of the incident field,
From both the numerical solutions (Chapter 4) and the

heuristic theory of propagation in the sea (Chapter 3), it is

seen that the perturbation of the fields in the sea caused

by the roughness of the sea surface decays rapidly with depth
if the sea wave wavelength is less than or the order of mag-
nitude of the skin depth of the sea at the frequency considered;
if the sea wave wavelength is many orders of maynitude larger

i than the skin depth, there is little decay (at the depths

| considered) of the perturbation, so that the phase and

amplitude of the fields in the sea vary directly with the

EATLY 2o ae i e Co TN Loty

A e s = =

height of the sea vertically above them., These results are
1

in agreement with the work of Lerner and Max,

ipeie e arereg § o
v

e s S AT s

D aE ey X 1Ty

1Lerner, R. M., and J. Max, "Very Low Frequency and Low
Frequency Fields Propagating near and into a Rough Sea," a
; paper presented to the URSI Spring 1963 Meeting.,
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The above results are also in agreement with the work of
Winter.2 Winter used a statistical description of the electro-

magnetic fields in the sea, obtaining the basic conclusion

that the fields in the sea are "on the average" greatly per-

turbed by the rough sea surface (from the curves of Chapter 4,

s

B ™S § R S AT W T o Y o077 ST, T P vwgmmymy";ﬂm ;
|
(

g the perturbation may be 40 db or greater)., The statistical
description of the electromagnetic fields in the sea, in

i this case, do not convey very much information, This is
particularly true in light of the fact that the sea surface

A varies so slowly (the sea wave velocity is very small compared
i to the velocity of the electromagnetic wave in the sea),

permitting the observer to follow the variation of the

sea wave by observing the changes in the electromagnetic
e field,

For VLF signals, the perturbation of the fields in the

&i sea due to large sea waves is relatively unchanged (within

3

: a few db) at depths of ten meters or so. The large perturba-
3

tion in the signal due to the rough sea surface could then be

"corrected" in part by monitoring the sea surface height above
the receiving antenna.

. No "correction" is necessary for the perturbation due to

TN r § e ey o 2

small sea waves as these perturbations are small (a few db).

For ELF signals, even the perturbation due to large sea waves

e AN A S v WY L WAL

is small, so no "correction" is needed,

‘Winter, D, F,, "Low-Frequ&ncv Racio Propagation into a
Moderately Rough Sea," Radio Zrovaaation, Vol., 67D, No. 5,




APPENDIX A

GENERAL NATURE OF THE SEA SURFACE WITH A DISCUSSION

OF THE MATHEMATICAL DESCRIPTION OF THE SEA SURFACE

In this appendix, the nature of the sea surface is discussed.
The present state of knowledge about the s& surface is given;
particular attention is given the statistical nature of the
mathematical description of the sea surface. Also, at the end
of the appendix is presented a brief list of useful formulas
pertaining tc the mathematical description of the sea surface
and some tables giving pertinent data.

Even casual observation shows the great irregularity of
the sea surface; no single wave retains its identity long; the
period, form, etc.,, vary greatly even for consecutive waves,
Indeed, the sea surface, in a rough sea, seems to vary almost
randomly in both time and space.

The study of the sea surface can, for purposes of the dis-
cussion below, be placed into three general categories:

i, The study of the sea surface by classical hydrodyna-
mics,

ii, The study of the sea surface by probabilistic metheds.
In this category only the linearized prwblem will b2 consi-
dered as this allows us to obtain general results. By assum-
ing a linearized free-surface boundary condition, the problem
becomes linear and the sea surface can then be described by a

known random process (a stationary Gaussian process).,

123




134

iii, Other theories which consider the non-linear effects
of the sea surface, methods of generating the sea surface, etc.
In this case the results obtained are far less useful for a
description of the sea surface than the results of Category ii.
However, such results place the limitations of the theory of
Category ii in the correct perspective.

Before going into a more detailed study of the sea surface
a few general comments are appropriate, First, the present
theories assume a fixed meteorolcgical condition, Then the

description of the sea surface given by the theory holds as

[N

long as this assumption is approximately true, A theory based
on the correlation of the changes in meteorological conditions
with changes in the sea surface could be used but would be ’
somewhat complex, This may, however, be necessary in some

cases, Second, the presently known theories consider only the
gross meteorological conditions (e.g., average wind velocity,
average fetch, etc.>. In practice, this is all thkat can be
assumed without making the problem inordinately complex. Third,
no theory at present is complete in the description of the sea
surfaces, Under certain meteorological conditions one theory
may be approximately correct; however, it fails when the meteoro-
logical conditions change. It should be noted that no theory
now availlable gives the complete description of the detailed
properties of the sea surface; only the gross featuces «an be
mathematically described. A brief discussion of the thres

general categories follows:

ﬁ Teeiang, T A L SO
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i, Classical Hydrodynamics., When the depth of the sea is

large, a solution of the hydrodynamic equations which represent
the sea surface is a trochcidal wave.l The parametric equation
of the trochoid is:

X =rH - a sin 8

z(x) =r - a cos 6 (a.1)
where
r, a -- fixed parameters for a given trochoid.
6 -- parameter that varies (i.e., generates the cucve),

The trochoid is a two-dimensional wave which "could exist"
in a swell,

A more general deterministic model (as opposed to a sta-
tistical model) of the sea state would include the irregularity
of the sea; however, such a formulation is too complex for prac-
ticai w2, The deterministic model is considered below, Leav-
ing out details, the following equation of a simple harmonic
progressive wave is a solution to the linearized hydrodynamic

equations:

g(x,y,t) = A cos [2% (x cos 8 + y sin 8) - 3% t + e] (A.2)

where
€ -- sea surface
A -~ amplitude of the simple harmonic progressive wave
1

Lamb, H.,, Hydrcdynamics, Dover Publications, Inc., New
York, 1945, p. 473,

Kerr, D, E,, Propagation of Short Radio Waves, MoGraw-
Hill, New York, 1951, p. 407.
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T -- period of the simple harmonic progressive wave
L ~-- wavelength of the simple harmonic progressive wave
c -- velocity of the simple harmonic progressive wave
8 -- direction of propagation measured with respect ot

the +x axis

€ -- phase at x =y =t = 0 (arbitrary)

If
3 = XX + y§ -- position vector in the horizontal plane
fé= kxﬁ + ky§ -- propiégation vector in the horizontal plane
| w2 27
k =}k | = = = <= -~ wave number of the sea surface
s S g L
g -- acceleration due to gravity
w = Z% -- radian frequency of the wave
then
g(P,t) = A cos (K-B - ot + &) (a.%)

p = (%,y) in the ordered pair notation used previously.
If we assume the waves are progressing in the +x direction
(i.e., k, 2 0) which is reasonable if the wind is in the +x

direction, the general solution is3
T/2 o
g(p,t) = J\ Jﬁ [a(w,e)cos(ﬁ-EFwt) + b(w,e)sin(fogqnt)]dw ae

-m/2 0 (a.b)

“Longuet-Higgins, M. S., "The Directional Spectrum of Ocean
Waves, and Processes cof Wave Generation," Proceedings of the
Royal Society, Vol 265, no. 1322, Jan. 30, 19627, p. 286.

3Piersqn, W. I., Jr., "Wind Generated Gravity Waves,"
Advances in Geophysics, Vol. II, 1955, Academic Press, New
York, p. 107,
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where

a(w,8) and b(w,B8) are the specira of §(7,t)

1f €(0,y,t) is known, a(w,t) and b(w,t) can be obtained
and from them &(s,y,t). However, it is clear that the deter-
ministic model of the sea surface as given above is not prac-
tical. &As has been the case with many problems whose complexity
cdefies deterministic solution, one next attempts to formulate
the problem in probabilistic terms. We will now consider such
an attempt.

ii. Probabilistic Description cf the Sea Surface, In the

past few years there has been an increased tendency to treat
many natural phenomena as random processes, The main feat-.ure
of such a process is an indeterminacy in the expected behavior
of a single occurrence coupled with strong statistical proper-
ties for a large number of occurrences. The "indeterminacy" in
the sea surface comes from the complexity of its mathematical
description [e.g., £inding §(0,y,t)].

Chronologically, experimental data first led to the asser-
tion that the sea surface could be represented apprcximately as
a stationary multivariate Gaussian process, From a theore-
tical view, it can be shown by using equation (A.?) with the
assumption that the random vs -iable €(w,f) has a uniform dis-

tribution, that the general solution for ...e sea surface is:

©

g(p,t) = Jﬁ J’ cos (K+P- ot + e(wB)JAZ(w,Q\dw as (a.5)
O -7

B—
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This expression is a multivariate Gaussian process where
Az(w,e) is the energy density spectrum. This [as does (A.3)]
assumes linearized equations and boundary conditions; 1if these
assumptions holé, the surface is given by (A.5). However, as
stated above, the experimental data implies that the suxrface 1is
only approximately Gaussian, the error being due in large meas-

ure to the nonlinear effects neglected by this theory.

The same results can be given in the form:

m *x
- r .
8(o,t) = | JﬁA«D.e) cos (K% - ot + e(w,d) Jo a8 (A.6)
~-T 0
where
% Az(w,e) = 7(w,H) is the energy density spectrum.

Using this Gaussian mode) of the sea surface, many of the
general properties of the "sea state" have been calculated.5
The basic question to be resclved is: Can the multivariate
Gaussian process describe accurately the real sea surface? If
not, from what standpeoint is it deficient?

To answer this qu2stion, we consider a specific model of

the sea surface (i.e., a given spectrum E(w,f)) and then compare

°Ibid., p. 93.

Longuet-Higgins, M., S., "The Statistical Analysis of a
Random Movirg Surface," Trans. Royal Society of London, Series
A, Vol, 249, 1956-57, p. 321.

Longue' -Higgins, M. S., "Statistical Properties of an
Isotropic Random Surface," Trans. Royal Society of London,
Series A, Vol. 250, 1957-58, p. 157.
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this random process with the known properties (experimental

data) of the sea surface. Naturally, for a different spectrum

the properties of the sea predicted by the random process will '
be different. The best known spectrum cf the "sea surface" is

a semi-empirical expression given by Neumann for a fully devel-

/(l) v dm (A.'7)

{

where:
v is the velocity of the wind "generating" the "gea,"
and ¢ is a constant,

The total energy E for this spectrum then becomes:

@®

E = | Elw) d = SV (A.8)
J 23775

This seems to be in agreement with some experimental data if
c = 3,05 mz/seCS. To study in detail what this model predicts,
we will consider the shape of the spectrum and some of its re-
sults.
Cema ‘ _ g
Neumann's spectrum rises rapidly at w = 57 and has a

maximua at o = J”? g/v. For large w, »(w) %(D—6 and for small
3

L2, 2.2 4, e .
®, E(w) ~ o~ <5 /m°v® (i.e., the exponential predominates), and
therefore, there is very little energy in the low frequency
(long wavelength) part of the spectrum.

Neumann's spectrum is for a fully developed sea only. In

actuality, of course, the sea may not be fully developed. The

bPierson, op. cit., p. 148,
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growth of the sea waves depends upon the fetch (distance over
which the wind blows), the duration (length of time the wind
has been blowing) and naturally, the wind velocity. There are
methods that consider the problem of duration-limited and
fetch-limited seas (but only approximately).

From empirical data an approximate directed spectrum
(which depends on the direction relative to the wind as well

as on the duration and fetch of the wave) iss !

26 fin2ul
o—29  /0"v 2 T T

E(w,8) =|c y cos” 6 for - < 8Ky, <KL

w

(A.9)
0 otherwise
wvhere
6 -- polar angle with reference to the x axis (the wind

is blowing in the +x direction),
w; - intersection radian frequency (a function of duration
and fetch).
The above model is at best a good approximation to the
sea surface under certain conditions. There are better
models;8 however, tiaey are more complex concerning the direc-

tional part of the jformula and other errors have been noted,

T1pid., p. 155.

8Longuet-Higgins, M. S., "The Directional Spectrum of
Ocean Waves, and Processes of Wave Generation," Proceedings
of the Royal Society, Vol. 265, no. 1322, Jan. 30, 1967, p. 286.

pPierson, W. J., Jr. (Ed.), "The Directional Spectrum of a )
Wind Generated Sea as Determined from Data Obtained by the :
Stereo Wave Observation Project,” New York University Meteoro-
logical Parers, Vol. 2, no. 6, June, 1960 (unpublished) .
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This is particularly true for high sea states where the sea may
not be fully developed., Other empirical formulas are available
to represent tl.is case.\9 It is still not known concliusively
how well the statistical results of this model hold for actual
sea waves, This model of the sea surface contains some energy
in the high frequency part of the spectrum and predicts the sea
to be "completely covered by short wavslength ripples." Physic~
ally this seems reasonable even though the above spectrum is
¥nown to be deficient in the high frequency range., The error in
the high frequency part of the spectrum is due to the fact that
non-linear effects are prevalent at these frequencies; we con-
sider this effect in the next section.

iii) The Generation of the Sea Surface and Non-Linear

Effects,

PhillipslO has described the gen=ration of the sea surface
by considering turbulent fluctuation of the air (wind) above
the air-sea interface, At present this theory seems to be ac-
cepted as correct for the "original" formation of the sea sur-

face, However, once the waves have been formed, their growth

occurs through other mechanisms.

9Plerson W. J., Jdr,, "A Study of Wave Forecasting Methods
and of the Helght of a Fully Developed Sea," Deutsche
Hydrographische Zeitschrift, Vol., 12, no, 6 1950, p. 244,

lOPhillips, 0. M., "On the Generation of Waves by Turbulent

Wind," Journal of Fluid Mechanics, Vol. 2, 1957, p. 417.
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At present there are two principal theories on the growth
of waves:

(a) Phillips' resonance theory.ll
(b) Miles' sheer-flow instability theory.12

These two theories do not agree in many respects (e.g.,
Phillips' theory gives a "growth rate" proportional to time and
Miles' gives a "growth rate" exponential with time). While
both mechanisms play a role in the growth of waves, Phillips has
recently given a description of the domains of dOminance of
each mechanism. These theories, while they do give some under-
standing of the sea surface, are unfortunately of no qualita-
tive help at present in describing the sea surface,

We will consider only one other mechanism of energy trans-
fer, the breaking of the waves. Under sufficiently high winds,
the energy transfer from the breaking of waves reaches an equi-
librium; then for that range of frequencies where the nonlinear
(breaking) effects are important the energy spectrum is given
by

E(w) = agzw-5 where o = 7.4 1072 (empirical constant) .

The same basic conclusions (under basically the same restric-

tions) were obtained by Mikhailov,13 who used the theory of

llPhillips, C. M., "Resonance Phenomena in Gravity Waves,"
Proc, of Symposia in Applies Math., Vol. XIIT, Amer. Math.
Society, McGraw-Hill, New York, 1962, p. 91l.

12Miles, J. W., "Generation of Surface Waves by Shear

Flows," Proc, of Symposia in Applied Math., Vol XIII, Amer,
Math. Society, McGraw-Hill, New York, 1962, p. 79.

13Mikhailov, V. I., "On the Theory of Scatterin¢ of Elec-
tromagnetic Waves c¢n the Sea-Surface," Bulletin, Academy of
Science, U.S.S.R., Geophysics Series, 1960, p. 818.
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turbulence., There is close agreement between these theories

-5

[Phillips has E(w) ~ o -, Mikhailov cites experimental work
which gives E(w) =~ w—u to w-6; both theories are within these
bounds. Note Neumann in this range has E(w) ~ 001,

’I‘icleL has considered the problem of non-linear effects
from a perturbation point of view., He adds to the "linear
(Gaussian) spectrum" a correction spectrum due to the non-
linear effects., However, the statistics of the "non-linear"
spectrum are not unknown,

All theories (as those above) which do not directly con-
sider capillary waves (waves of very short wavelength) do not
hold for frequencies in the "capillary" range, While much work
on capillaries has been done, at present there is nothing avail-
able on correlating this theory with the overall sea surface,
And there is no correct information available on the "capillary"
range of the energy density spectrum. Work on radar return and
light reflection from the sea surface has shown that the slopes
of the sea surface are nearly Gaussian and that the sea surface
curvature is highly non-Gaussian, The usual experimental data .

taken for description of the sea surface does not include fre-

quencies in the "capillary" range.

.
*4Tick, L. J., "A Non-Linear Random Model of Gravity Waves

I," Journal Math. and Mech., Vol. 8, 1959, p. 643,

Pierson, W, J., Jr., "A Note on the Growth of the Spec-
trum of Wind-Generated Gravity Waves as Determined by Non-
Linear Considerations," Journ. Geophysical Research, Vol. 64,
no, 8, August 1959, p. 1007.
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The review of the past work done on the mathematical des-
cription of the sea surface indicates the point of departure
for the study of propagation of electromagnetic waves near the
air-sea interface. The complexity of the air-sea interface
alone is enough to make one resort to statistical analysis;
however, the fact that both the linear model and the experi-
mental data give a Gaussian process for the gross feature of
the sea surface implies that a useful model would be a satis-
tical one.

If one is willing to neglect the non-linear effects of
the sea surface and use the Gaussian model, the Ergodic theo-
reml5 implies that the ensemble analysis of statistical pro-
perties is the same as space (or time) analysis of the statis-
tical properties (note that this requires a stationary process,
i.e., equilibrium state). There are questions as to the vali-
dity of the Gaussian model as regards the statistical proper-
ties of the sea surface., However, if one is only interested
in the gross statistical features, then the Gaussian descrip-
tion may be adequate., However, such description will give only

the "smooth average" shape of the sea without any details such

as ripples or minor variations. The experimental data on sea
surface variation is meagre; the processing of such data for
meaningful results is long and costly; therefore, it is doubt-

ful if an accurate description of the sea surface can be

15Lee, Y. W., Statistical Theory of Coummunication, John
Wiley, New York, 1960, p. Z07.
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16

readily obtained, The shape of the surface of the sea depends
upon past as well as upon present conditions; however, to a de-
gree of approximation, past effects though still significant
may 2 discounted. Also, by describing the sea condition by
means of only a few average parameters, the sea surface will

not be represented accurately in every detail, but from the

practical approach, this may be all that can be done.

I6For an excellent review of much of the spectral ana-
lyses of the sea surface, see Proceedings of a Conference on
Ocean Wave Spectra (Englewood, N, J., Prentice-Hall, 1963).
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Some Useful Formulae

For reference, some useful relations pertaining to the sea
surface are given below,
If 8(%) = A cos (K'% - wt) is a solution to the linearized

hydrodynamic equations, then:

wz = gks tanh ksh

for k h >> 1 (large depth)

w? = gk, (1)
where '
_ 2w
kg =5
a) = .21’;.

We then have for a single harmonic wave in deep water:

L _o g

vp =F == YF'T -- phase velocity of the sea wave,

v = dw = 1 v = g T -- group velocity of the sea wave
g &7 'p Tr group ¥ :
_ 9 m2

L_-Z'T_I:T

For relatively "regular" seas (after they have consolida-

ted into a "regular" series of connected troughs and crests).

Echeight, 1 H 1
L'‘ITength’® TIZ T ~ 35
]
(some references give %-< %~< 7%3 where %-is the theoretical

Jimit for stability (greater slopes will "break")).




For a swell: 3% <

H, o 1
L~ 200

Using Neumann's spectrum for a fully developed sea:17

E 2 .242(T%)5 v -- knots .
Tave = .285 v T -- sec.

2 2
Love = 3(5.12) Tove L -- ft.

17Pierson, W. J., G. Neumann and R, W, James, Observing

| and Forecasting Ocean Waves, Hydrographic Office Publication
' no. 003, 1958, pp. 45, 47, 50.




APPENDIX B

REVIEW OF THE THEORY OF ROUGH SURFACE PROBLEMS

In this appendix, a review of the present theory of
boundary value problems involving a rough surface is pre-
sented. Particular attention is given to the accuracy and
applicability of the methods presented to the electromag-
netic wave-rough surface interaction problem considered
in the main sections of this report.

“In the mathematical sense the problem at hand is
extremely complex, since it is impossible to use the method
of separation of variables to obtain a solution of the wave
equation which satisfies the boundary conditions specified
on the uneven surface. The methods for obtaining an
accurate solution of this problem in general form has
(sic) not yet been found. However, there are a number of
theoretical papers (which have appeared essentially during
the last five to six years) in which a number of approxi-
mate methods fcor computing the field have been developed."”
The above is a quotation from a survey paper, "Theory of
the Scattering of Waves at Periodically Uneven Surfaces,"
by Iu. P. Lysanov.l This paper treats for the most part
the problem of a scalar field in the presence of a periodi-

cally uneven (rough) surface with "natural" boundary

lLysanov, Iu. P., "Theory of the Scattering of Waves
at Periodically Uneven Surfaces," Soviet Physics Acoustics,
Vol. 4, No. 1, Jan.--March, 1958, p. 1.
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conditions. When the boundary conditions of the actual
problem are not the "natural" ones, the "natural" boundary
conditions are used as an approximation. The "interface"
boundary ccnditions are not considered. The problem
treated is then the simplest problem considering a rough
surface; even then this problem is not solvable us’ng
known techniques. Although work on this problem has
continued since 1958, little advancement has been made
and no basically new methods oxr theories have resulted.
The investigation has generally been confined to refine-
ment of techniques given in Lysanov's paper and experi-
mental work.

Basically, Lysanov's approach will be followed. He
considers six general classifications or techniques:

1. Rayleigh Method. This is the oldest approach
and due to Rayleigh. Rayleigh assumed that the reflected
(scattgredl field could be represented as a sum of outward
(from the surface) directed plane waves. However, this is
cnly true for the field above the highest point of the
surface. Lippmann stowed that the assumption of Rayleigh
was not quite correct. Unfortunately, he could not obtain
an "accurate" solution to the problem by the use of his

variational technique. Barantsev2 has also obtained the

2Barantsev, R. G., "Plane Wave Scattering by a Double
Periodic Surface of Arbitrary Shape," Soviet Physics
Acoustics, Vol. 7, No. 2, Oct.-Dec., 1961, p. 123.
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same result by use of Laplace transforms. In Befrantsev's
approach to the problem, as in Rayleigh's, an infinite
number of algebraic equations must be solved. In the case
where the irregularities are small (the ma imum height of
the surface wave is much smaller _han & -ave lergth of the
radiation field), Rayleigh obtained ua solution for tlie
first mode ( =2cular reflection). It agrees quite well
with experimental data ir the "far field:;" however, near
the interface many evanescent (surface) waves are present
and an accurate so’"ition is not practicable (even if
Rayleigh's assumption was considered correct).:5

2. The Method of Small Perturbations. The boundary

a2

conditions are specified on the uneven surfa e, z = 7{x),
and then are transferred to the plane z = 0 by means of

an expansion into powes series with respect to §. It has
been shown by Lysanov that this method leads to solutions

identical to Rayleigh's results. This method has been

used by Feinberg for solving the problem of propagation

3La Casce, E. 0., "Some Notes nn the Reflection of
Sound from a Rigid Corrugated Surface," Jourr~l ~f
Acoustical Society of America, Vol. 33, No. 17, Dec.,

191, p. 1772.

La Casce, E. O., B. D. McCombe, R. L. Thomas,
"Measurements of Sound Reflection from & Rigid Corruga..d
Surface, " Journal of Accoustical Society of America,

Vol. 33, No. 12, Dec., 1961, p. 1768.

Senior, T. B. A.,, "The Scattering of Electromagnetic
Waves by a Corrugated Sheei," Canadian Journal of Physics,

Vol. 37, 1959 p. 787 (ap 233 Bi0).




of electromagnetic waves along the earth's surface and
more recently by Seniora who considered the effect of
surface roughness on the reflection of electromagnetic
waves, Senior is able to replace surface roughness by a
change in the impedance at the boundary. The surface
impedance is then a function of position. Hessel5 and
others have also considered the problem of varying surface
impedance; Hessel seems to account for Wonod's anomaly this
way. However, this method is useful only in the far field.
Ba556 also uses the method of perturbations to obtain
results parallel to Senior, and they again are valid only
in the far field. It should be stressed here that the

method of small perturbations may be in error in the near

MSenior, T. B. A., "Impedance Boundary Conditions for
Imperfectly Conducting Surfaces," Applied Science Research,
Section B., Vol. 8, 13860, ». 418.

Senior, T. B. A., "Impedance Boundary Conditions for
Statistically Rough Surfaces," Applied Science Research,
Section B., Vol. 8, 1960, p. 437.

Hiatt, R. E., T. B. A. Senior, and V. H. Weston,
"Studies in Radar Cross Sections XL," -- "Surface Roughness
and Impedance Boundary Conditions," University of Michigan
Research Institute, Ann Arbor, Michigan, July 1660 (un-
published).

5Hessei, A., A, A, Oliver, "On the Theory of Wood's
Anomaiies, in Progress Report No. 19," R. 452.1961,
Polytechnic Institute of Brooklyn (unpublished),
AD 256 809.

6Bass, F. G., V. G. Bocharov, "On the Theory of Scatter-
ing of Electromagnetic Waves from a Statistically Uneven
Surface," Radiotekhnika Elektronika, Vol. 3, No. 2, 1958,
p. 18C.




field and is valid only in the far field.7 Therefore,
Winter,8 who applied the method of small perturbation to
compute the fields on the rough sea surface, could be in
errcr in his calculations. The results obtained by
Winter's method were compared with the results cbtained

in this report and there was a difference (see Section 2.6).

9

Lysanov” has extended the theory of small perturba-
tions to include point sources.

%. The Method of L. M., Brekhovskikh. This could
better be called the method of geometric optics. Basically,
it uses Kirchhoff's principle (or approximations). For
the frequency range we are interested in, the use of
Kirchhoff's principle could well be in errcr. In any
case, for the solution to the problem on the interface
this method would assume away the problem. The problem
becomes one of evaluation of an integral which cannot be

done in closed form near the surface.

7Bass, F. G., "On the Theory of Combination sScattering
of Waves on a Rough Surface," lzvestia VU2, Radiofizika,
Vol. 4, No. 1, 1961, AD 262 417.

Lysanov, op. cit., p. 3.

8Winter, D. F., "Low Frequency Radio Propagation into
a Moderately Rough Sea," Radio Propagation -- Secticn D,
Journal of Research, National Bureau of Standards, vol. 67D,
No. 5, Sept.-Oct. 1963, p. 551.

9Lysanov, Iu. P., "On the Field of a Point Radiator
in a Laminar-Inhomogeneous Medium Bounded by an Uneven
Surface," Soviet Physics Acoustics, Vol. 7, No. 3,
Jan.-March, 1962, p. 255.
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4. The Integral Equation Method. The problem of the
scalar boundary value problem with "natural" boundary
conditions can, by use of Green's theorem, be formulated
crnveniently as an integral equation. This equation 1is
exact; however, it cannot be solved without making some .
approximations. If the rough surface satisfies certain
conditions (is not too rough), an approximate integral
equation is obtained which can be solved. There is a
difference in the field assumed on the surface by geometric
optics (Kirchhoff's approximation) and the field on the
surface obtained by the integral equation method. This
has led Meechamlo to question the use of Kirchhoff's
approximation. This criticism could also be extended
fo the method of small perturbations in the near field.

A variation of the integral equation method was used in
the main part of this paper.

Recently, a paper solving the exact integral equation
for a sinusoidal surface was presented;ll the numerical
results involved approximate solutions to an infinite set

of algebraic equations.

loMeecham, W., "On the Use of the Kirchhoff Approxima-

tion for the Solution of Reglection Problems," J. Rational
Mech. Analysis, Vol. §, 19%b, p. 323.

llUretsky, Jack L., "Reflection of a Plane Sound Wave
from a Sinusoidal Surface," submitted as a Letter to the
Editor, J. Acoust. Soc. Am., March 1963.
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5. The Method of Images. The method of images can
be used to investigate the fields in the presence of an
uneven surface with a sufficiently simple shape; this has
been done by Twersky for a perfectly reflecting plane
covered with half-cylinders or hemispheres (with lLittle
interaction between scatterers). Biot12 considered the
perfect conduction plane covered by hemispheres with
strong interaction (as there would be in the case of the
sea surface). Twersky also has considered multiple
scattering in a very general way. This method could be
used to find the fields on the surface assumed to be a
plane covered with hemispheres. However, to obtain a
more realistic medel of the sea surface would involve
higher multi-pole expansions and does not seem practical
(although Biot thought this method could be used for the
air-sea interface problem). It does give a good idea of
what is happening to the electromagnetic field in the air
near the air-sea interface (Biot uses a static (w = 0)

solution).

12Biot, M. A., "Some New Aspects of the Reflection
of Electromagnetic Waves on a Rough Surface," Journal
Applied Physics, Vol. 28, December 1957, p. l4B5.

Biot, M. A., "On the Reflection of Electromagnetic
Waves on a Rough Surface,"” Journal Applied Physics,
Vel. 29, June 1958, p. 998.
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6. Method of Matching Fields. This method can be
used only in the case where the rough surface is such that
the space may be separated i.to regions in which the wave
equation allows solution by the method of separation of
variables (when the wave equation is written in an appro-
priate coordinate system). As this is not possible for the
air-sea interface, we will not consider this methol further.

Lysanov also references some experimental papers.
Since 1958 other experimental papers have been published
which seem to imply that Rayleigh's theory (including the
second mode) is correct for the low frequency problem
except near Ar = Aw (Ar, wavelength of radiations;

A, wavelength of the surface).13 Since 1958 many papers
on the statistical analysis of the reflection of sound

from the rough sea surface have been publicshed; these use
either Rayleigh's assumption or Kirchhoff's approximation
for the solution of the boundary value problem and as such

14

are only useful in the far field.

13La Casce, loc. cit.

1'LLProud, J. M., Jr., R. T. Beyer, and Paul Tamarkin,
"Reflection of Sound from Randomly Rough Surfaces," Journal
of Applied Physics, Vol. 31, No. 3, March 1960, p. 543.

Marsh, H. W., "Exact Solution of Wave Scattering by
Irregular surfaces," Journal of the Acoustical Society of

America, Vol. 33, No. 3, March 1961, p. 330.

Marsh, H. W., M. Schulkin and S. G. Kneale, "Scatter-
ing of Underwater Sound by the Sea Surface," Journal of the
Acoust. Soc. of Amer., Vol. 335, No. 3, March 1901, p. 334.

Beckmann, Petr, and Andre Spizzichino, The Scatter-
ing of Electromagnetic Waves from Rough Surfaces, Pergamon

Press Ltd., London, 1903.
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One of the few papers considering "interface" boundary
conditions on an irregular surface was vublished by Wait15
in 1959; this paper has been used to calculate the effect
of the rough surface on the electromagnetic fields in the
sea. Wait's basic approach is the work of Leontovich on
approximate boundary conditions for a good conductor.

Wait obtains the field on a plane in the sea, and solves
the wave equation in the sea with this as a boundary condi-
tion. A short discussion of this work is given in a paper
by Whalen.16 Some comment on the accuracy of Wait's
assumption is given in the main part of this paper. Other
work directly considering the rough sea surface-VLF radio

17 18

wave interaction are: Lerner and Max and Winter. Winter
used the method of small perturbation to compute the fields
on the sea surface and the stochastic Stratton-Chu integral

equations to obtain statistical results for the fields in

the sea. The use of the method of small perturbation is

15Wait, J. R., "The Calculation of the Field in a Homo-
geneous Conductor with a Wavy Interface," Proc. IRE, Vol. 47,
No. 6, June 1960, p. 1155.

16Whalen, J. L., "Measured Effects of Ocean Waves on
the Phase and Amplitude of VLF Electromagnetic Radiation
Received Below the Waves," USL Tech. Memorandum No. 94l.1-
67-61, 3 August 1961 (unpublished).

Nl e s - e

l7Lerner, R. M, and J. Max, "Very Low Frequency and Low
Frequency Fields Propagating Near and Into a Rough Sea,"
a paper presented to the URSI Spring 1963 Meeting.

l8Winter, loc. cit.
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discussed in Section 2 of this appendix and Winter's statis-
tical results are considered in the conclusion chaptexr of the
main part of this report. The basic method of Lerner and
Max was outlined in Section 2.6 of this report. and their

results are considered in the conclusion part of this report.




APPENDIX C

SINGUIAR INTEGRALS

Although the results given in this appendix are avail-
able in the literature, it seems useful to make readily
available to the reader the basic theory and results per-
taining to "singular" integral eguations. These results
have been used in the body of the paper to obtain the inte-
gral equations of Sections 1.4 and 5.2.

The starting point in considering "singular" integrals
is the concept of improper integral.l By "singular" inte-
gral is meant an integral whose value changes discontinu-
ously (i.e., a "discontinuous integral").

The field of a single layer is:

P_() - Jr(p(?:') G(k|E-F' | )ds" (c.1)
S

rev, r'e S

Vi - interior volume bounded by closed surface S.

Ve - exterior volume bounded by closed surfzce S.

e(r) - strength of the single laver sources.

FS(E) - field of the single layer sources.

lMikhlin, S. G., Integral Equations, Pergamon Press,
London, 1957, p. 1ll3.
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r-S r-S YS-N
N -0 €
3
j; o(z') (x|E-2']) as'| - (c.2)
€
N_ - neighborhood of point r in & (in this neighbor-

hood G(k|T-T'|) becomes unbounded and the integral is improper).

;im[js o(E) SEIZE]) as'] = !£¢(E‘)G(k|f-5'|)dS'

r=S -
N -0 ¥
€
. r - - - -\ P -
lim | @&')G&hyrﬂ)dS'=lhn@h)k(ﬂmﬂ)ds'=
T-S W N_ -0 N
N -0 € € €

lim ¢(z)j; G(%') ds' = 0
N ,-C

as G is an even function.

N , - neighborhood of point r' in S.
G(r) - static Green's function {(the approximation
G(r') ~ G(kr') is valid for kr' << 1), which

holds in Ne,.

lim F_(E) = J’m(r-) G(k|E-2']) as’ (c.3)

=S -
S

-i'eVeorE‘eVi r' ¢S .

The field of a double layer is represented by a singu-

lar integral.

r,(E) = LL o(F) =, G(kIE-F') as' (C.k4)
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o(r) - strength of double layer sources.
n - outward normal to S.
Fd(f) - field ot double layer.
lim P, (E) = I(p('f:') 2, e(x]E-1]) as' +
rev,
r-S -y [ =

. lim ¢{%¥) JN-——. G(r') as*
r'eS N, =0 ?n

€ €

. d = 1,3 1
lim =, G(T') ds' = lim j (= =) ads' =
N_, -0 lan' N -0 Tr'‘9n™ ¢

€ €

. 1 Q 2
lim - da= - (c.5)
Ne.-'O -ET_'T_ B
Q - "solid angle" of surface S -- (for smooth surface
Q= 2m)
lim Fy(%) = ch(z~) & e(x|E-21]) as' - 1/2 o(F)
rev.
-t (c.6)3
-8
r'-s
N - = -

lin Fg(F) = |o(') 5or 6(k|E-7']) a8’ + 1/2 o(%)
Tev J n
s ® (c.7)
T-S
xr'=S
2

Courant, R. and D. Hilbert, Methods of Mathematical

Physics, Vol. 2, Interscience, New York, 1962, p. 253.

3Mikhlin, S. G., Linear Integral Equations, Delhi-

Hindustan, 1960, p. 156.

-
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lim @(¥) = lim 9, (r) + lim

S

feVi feVi fevi
r-=S r—S §~S
r'eS

[{on GIo 020 -

S

~

o(r')e (k|i’-?'|)} ds’

nI

o(2) = 9, (3) + [ {o, EIoIEE) -

9(E') 6. (k|E-F'|)}as’ + J9(F) T.E'es

by eguations {C.3) and {(C.6).

{c.8)

Equation (C.8) is the equation used in Sections 1.4

and 5.2.

The extension of these results to the coupled electro-

magnetic equations (Stratton-Chu) is straightforward.

T

Honl, H., A. W. Maue, and K. Westpfahl,

Beugung," in Handbuch Der Physik, Band XXV/l. (Berlin:

Springer, 1961), p. 218.

"Theorie of
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