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ABSTRACT

This report presents z general investigation of buffered shock t ".es.

For the case of strong shocks the number of variables needed for the analysis
of buffered shock tubes is reduced to three. An expression is obtzined from
which the buffer conditions necessary for the production of the maximwm~ shock
Mach number are determined. The strong shock analysis is extended to include
shock tubes with many buffers and buffered shock tubes with area changes at
either or both diaphragms. The concept of using a detonable mixture as a
buffer gas is explored and its limitations are indicated. Also, a study is in-
cluded of different shock tube geometrical configurations to indicate means of
achieving the maximum testing time.

The strong shock assumption implies that for given over-all conditions
the final shock strength depends only upon the upstream density ratio. This
simplification permits the study of the buffered tube throughout its entire range
of operating conditions. A number of general conclusions can be drawn from
this study. For given over-2all conditions a buffered shock tube will produce
stronger shocks than a simple shock tube provided that the optimum buffer con-
ditions are used. The performance of a shock tube improves as the number
of buffers increases, but the final shock strength soon approaches an asymptotic
value. The performance of a buffered tube is improved by using an over-all
area contraction; the most efficient distribution involves equal area changes
at each diaphragm. The gain in performance obtained with a detonation buffer
is limited when the final shocks are very strong. For fixed driver conditions
and final shock strength, increasing the diameter of the driven section does

not significantly increase the testing time.
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1. INTRODUCTION

The shock tube has become a common laboratory tool for the study of
aerodynamics, chemical kinetics, combustion processes, and high tempera-
ture gas physics. The literature on shock tubes is very extensive, compilations
of published works can be found, for example, in Refs. 1 and 2. In recent years
the shock tube has been extensively used as a driver for shock tunnels in which
Mach numbers and stagnation enthalpies of hypersonic flight can be simulated
(Ref. 3 has a large bibliography on the subject). Among the driver gases which
have been used for these devices are the following: cold hydrogen, cold helium,
hydrogen-oxygen mixtures w:th and withcut diluent, heated hydrogen, and arc-
heated helium. The present desire to simulate flight at escape velocity

(36,000 ft/sec) and higher has stimulated interest in extending driver cap-

-

abilities.
The purpose of this report is to study a particular method fer increasing
the shock Mach number in a shock tube with any given driver. This method is
the use of the buifered (or multiple -diaphragm) shock tube. The use of bufier-
ing has been considered by many authors during the past ten years. I, 6-18
However, because of the complexity of the problem, the previous studies have
dealt with specific examplcs only, and, therefore, do not reveal in a general
{ rm the maximum gains to be obtained. The present report utilizes an
1-rumption cf strong shocks to simplify the analysis of optimum performance
W.th this simplificatien the optumum buffer conditions are predicted over the
cntire range of over-all {i.e. driver to driven) conditions. Analytical expres-
sivns are derived for the maximum final shock strength obtainable with the

cptimum buifer conditions.

Manuscript released by the author Janiwary. 1964 for publication as an ARL
Technical Documentary Report.




It may be noted that a number of buiiered tubes have been built, 13-18

and, in general, the experimental results support the theory. However, the
actual performance of these tubes is below that predicted by ideal theory due
to such effects as shock wave attenuation, wave reflections, contact zone
mixing, and real gas effects.

The convenience of using strong shock assumptions to simpiify the pre-
sent analysis of buffered shock tubes was pointed out in the work of Hall and

19

Russo. They present a useful simplification to the simple shock tube equation
for shock Mach numbers exceeding about: three. For a given driver gas specific
heat ratio, shock tube performance can be explicitly expressed for all initial
conditions {including area change) in terms of two variables. They note that
the performance of buifered tubes (with strong shocks) can be expressed in
terms of corresponding variables with only the upstream dec... ty ratic 2as an
additicnal variable. They further state that previous results of Russo and
Hertzberglo showing the effects of varying buffer gas pressure and molecular
weight can be correlated in terms of this density ratio.

In Section 2.1 a survey of previous studies of buffered shock tubes is
presented. The theoretical studies all bear out the fact that the performance

of any shock tube can be improved by the inclusion of a buffer secticn. Cal-

culations of the performance of a buffered shcck tube for any given initial

conditions in the driver and driven sections are quite lengthy because of the
number of variables involved: buffer gas specific heat ratio, moleculr
weight, temperature, and pressure. For a given buffer gas at a fixed initial
temperature the final shock Mach number varies only with the buifer pressure.

There exists a certain buffer gas pressure {which shall be called the optimum




pressure) for which the final shock strength is a maximum. The determ:na-
ticr. of this optimum pressure is ccmplicated by the fact that the calculation
ot the driven section shock Mach number involves two iterations for each
set of initial conditions.

In Section 2. 2 the equations are simplified with the assumption of
strong shock waves so that analytical expressions for the optimurn buffer con-
ditions are obtained. When the optimum conditions have been determined,
analytical expressions are obtained for the maximum final shock strength for
any given over-all conditions. The strong shock analysis is extended with
similar results to the study of shock tubes with many buffers and to buffered
tebes with area changes at either or both diaphragms.

The use of a detonable mixture as a buffer gas12 is considered in
Section 2.3. This device has most of the characteristics of a buffered shock
tube with the added advantzge that chemical energy is released to the flow in
the buffer section. When the strong shock assumption 1s applied to the detona-
tion buffer equations {assuming ideal gases), the optimum performance con-
ditions can be determined. 1If the tube is operated so that the detonation in
the buffer is close to a Chapman-Jouguet detonation, a substantial increase 1n
final shock Mach number is possible. However, if the detonation is strongly
over-driven, the detonation buffer oifers only moderate gains over the inert-
gas buifer.

In Sectiocn 3 studies are made to determine the geometrical configuration
which yields the greatest testing time for a giver final shock sirength and
specified driver conditions. It has be<n pointed out that there is a severe de-

crease in flow duration for shock tubes operating at low pressures due to the




. : 20-21% ,
effects of the boundary layer behind the shock waves. “’ The testing time

as limited by boundary layer growth has been shown to be directly proportionai
to the pressure and to the area of the driven secuion. This fact has stimulated
interest in shock tubes with larger driven sections than dr:ver sections. For
most cases of interest the benefit of the larger diameter 1> fuund to be ofiset
by the need for a lower 1nitial pressure to maintein the same shock Mack

number.

2. OPTIMUM PERFORMANCE OF BUFFERED SHOCK TUBES
2.1 REVIEW OF PREVIOUS ANALYSES
The use of the double-diapnragm shock tube (i. e. the bufiered shock

tube) has been considered by 2 number of authors. t,0-18

In the following
analyses it will be assumed that the flow is one-dimensional and inviscid with
no heat conduction and no mixing at the interfaces. For the most pari the gases
will be assumed to be ideal gases with constant specifi: heats.

The basic arrangement 1s illustrated in Figure 1 for the "unsteady-
expansion' type of buffered shock tube. The initial flow phenomena are
represented on a distance vs. time {x-1) plot which is commonly known as a
wave diagram. The high pressure in the driver (region 1) causes the 1nitial

—>
diaphragm to rupture. A shock wave Sl propagates into the buffer gas,
while a rarefaction (or expansion) wave ﬁ_' propagates into the high pressure
driver gas. The driver gas and the bufier gas remain separated by a contact
surface 81 across which the pressure and velocity are equal. but the density.
temperature, and entropy are, in general. different.

Assuming that the second diaphragm bursts instantaneously upon the

impact of the initial shock, the wave diagram is represonted by Figure 1. The




flcw from region 2 to region 8 resembles that of a simple shock tube except
that the "driver" has an initial velccity U, and has been heated by the shock

10 a temperature T,

2 tHiowever, the pressure , is less than the initial

driver pressure ~pa+ . Therefore, the double-diaphragm shock tube can be
considered as a device which effectively sacrifices press ire ratio in favor
of an increased speed-of-<ound {or temperature) ratio.

A second possibility, termed the reflected-shock type of buffered shock

9

tube, is illustrated in Figure 2. L With this configuration the initial shock is
allgwed to undergo complete reflection from the second diaphragm leaving the
gas in region 5 at rest. After a predetermined delay %° the second diaphragm
is ruptured mechanically; the ensuing flow is shown in Figure 2. While this
configuration offers a slight improvement over the unsteady-expansion type,
the mechanical difficulties irnvolved in breaking the second diaphragm will
preclude its further consideration. The reflected-shock type bufiered tube
should nct be coniused with the shock tube with an area contraction at the
second diaphragm. This tube also produces a reflected shock, but the ensuing
flow is fundamcntally differeant from that of the reflected-shock type of tube.
Consider some of the characteristics of the unsteady-expansion buffered
shock tube. Beiore the shock strikes the secend diaphragm the flow is identical

to that which is found in a simple shock tube. Therefore, the well-known

simpie shock tube equaticon is valid (see Appendix I).

_ 27,
2 2 v -l
o . 27, My, ~(@7,-1) ! (M, -1)| ™ (1)
4"
7;+[ 7,+ A+lMs,
5




where Ms = U, /4/ initial shock Mach number
' )
Us,

speed of the shock relative to the tube

a speed of sound

P” = 'f’e/‘P’r initial diaphragm pressure ratio

A, = a+/a,, initial diaphragm speed-of-sound ratio
7= CP’/CT ratio of specific heats

Referring to Figure 1 and applying the usual equations of onc-dimensional
unsteady flow, the basic equation for the constant-area buffered shock tube is

obtained (see Appendix I).
27,

p = %% Ms, - (7 -1) A (r,j/’ (ﬂg’/‘ My -1| %7
+ 7 +1 7+ Po/ M

S

A

[ - (Z—I)MS, 7:4-’ (76>'/2 [_,48 Y2
e T P e ) BY e

27,
7, -1

where M, final! shock Mach number
e
r, = fi/lol density ratio
The final shock strength M, is a function of the following eight
8
variables: 7; , ); , 7;3 , Fie , f‘l‘,8 . P+| . M" . and ["‘H . However, these are

not all independent, and one can be eliminated by the use of the simple shock

tube equation (Eq. (1) ). As in the case of the simple sunck tube, M s
2]
increased if P48 is made large and r'% is made small (i.e. making A+8

large). Also, as with the simple shock tube. the best performance is obtained

when 7

A is small which suggests a diatomic driver gas. The cffect of




varying 18 is found to be negligible; a monatomic driven gas is found to be
only slightly better than a diatomic gas.
When conditions in the driver and the driven sections (4 and 8) have been

, and r'ﬂ . Russo

specified, M depends upon the three variables 7y , P
Sg P [IREY

and Hertzberglo have shown that the performance of a buffered shock tube
irnproves with increasing buffer specific heat ratio 7 - Also, the use of
monatomic buffer gases will minimize real gas effects which tend to reduce
perf{ormance.

Hemshall9 presents results for a buffered tube in which the same diatomic
gas at the same initial temperature is used throughout. In this case 7 = 7, =
r'“ and ,= My = Mg where & is the

molecular weight. The final shock Mach number depends only upon the over-all

Ty =75 Py =Ty By =
pressure ratic and the upstream pressure ratio. Figure 3 shows M‘a as a
function of the downstream pressure ratio PIO with P+8 as a parameter. It
will be noted that the maximum value of Ms occurs when P,8 is approximately
(P”)yz . A similar result can be seen from Figure 4 which shows the per-
formance of a tube in which the same monatomic gas at the same initial temper-
ature is used throughout. Of course, in a more general case, the geometric
mean may not be the optimum buffer pressure. The shock Mach numbers
obtained from simple shock tubes with the same over-all conditions are in-
cluded in Fligures 3 and 4 for comparison.

Hydrogen is a widely used driver gas since it has tne smallest molecular
weight, anu therefore, the smallest density at a given temperature and pressure.
Figure 5 shows the performance of a tube with hydrogen driver, monatomic

. . . . 4
buifer, and 1ir as the driven gas at an over-all pressure ratio of 10°. The




temperature 15 assumed constant throughout so that

rl4‘8 = 48/“"45 and Pﬂ = !34-1 /"(4, (3)

wherve /u48=/.(4//a8 the ratio of molecular weights. Therefore, M58 1s a

functior. only of My, and P‘“ .
A study of Figure 5 reveals the following .nteresting fecature. while the
optimum downstream pressure ratio P,8 varies with the buffer gas molecular
weight, the maximum value of M58 1s relatively unaffected. This seems to
indicate that certain simplifications of the basic equations are poss:ble which
reduce the number of independent variables. It will be shown presently that
this i1s indeed the case and that the simplified buffer e¢quation may be used to
determine the optimum buffer conditions.
2.2 INERT-GAS-BUFFERED SHOCK TUBES
2.2.1 Simple Constant~Areca Buffered Tubes
Recently Hall and Russo19 have shown that the analysis of a simple
shock tube with an area change near the diaphragm can be greatly simplified

by assuming that the shock Mach number is greater than about three. This

theory 1s reviewed in Appendix IT where it 1s shown that for given 7 and 7,

]

the basi tion invol ly t iabl z' ﬁ:_M,‘ i Y7
e basic equation involves on wo variables: = anc =

R Y / 41 4/ 3, ’41

where ? is the equivalence factor of Resler, Lin, and Kantrowitz, A plot

of the basic relation is given in Figure 6 for various values of 71 : the
variation in performance with 7, 1s found to be neghigible. The plot can be
interpreted as representing the performance of a simple shock tube merely by
setting ¢ cqual to one.

Now apply the strong shock assumptions to the constant-area buffered




tube. Assuming that both and are greater than about three, Eq. (2)
g s o g q

)
can be simplified to the relation

27,
7+ ) 7% (z-1)M
z, = ; E-BF /22':] S '/7’ o - T~ X
8 7 + (22)"[@, - M, + 2]
(4)
. o 2%
13 v -1
7, ¢l (7’,) (Fﬁ)/z _Z_g_ ~ F'
7'8H 7/ P41 2: J
where

2
g - <_’.'L-/
7+ \7%

Z‘—M-s-‘— and Z_= Ms
Sl : 0T T

This equation can be further simplified by the use of the simple shock tube

equation, which in this case becomes

27,
2 %l 2 ﬁ (5)
% = 57 |- B P‘“ if,:}

Equaticn (5) is easily solved for P‘" yielding

7-171%
= 2;’: 22 5’+
b 1,+l [}

(6)

P, ==
4| 822”‘
When Egs. (5) and (6) are used in Eq. (4),
2 3 (7[‘,) M’
o = | - OV 4 : X
e = C17, (27,)™ [(t’,-I)M,,' +2] 7
27,
; =N (7)
7,1 (75 " Fsa/z z o — |
7+ LY “i:r
T T
AL




where

+ 1
c -2 2
1 7 +i 7;
For given specific heat ratios and fixed over-ali densiiy rai:o r'“ » ZB

depends upon ¥_ and F, . It is possible 10 maximize ZB with respect to
L}

these two variables and cbiain the conditions for optimum performance. [he
details of this calculai:on are presented in Appendix IIi. The important poini

is thai, once the maximiz:ng is done. the final shock strength Zg is a function

oniy of the over-zll dens:ty ratio Pse

. . . . . 2
Upon nov- making the additional assumption that MS ts large compared
2 ) - ' ) .
tc 7 -7 ° Ea. {7} reduces 10 a particalarly simple form.
(e 27,
8
BE, "N "z 7
2 4+ ]
Z = C.Z‘, ! 1 - 7. -1
37, (8)
- 27, 22
Adl !
where
ya
7,—1
P,=1+ { . )
\ 2y
and

\

m

2 if2
_{= —1) 7'!) 7,+1
t 27', f' ;’a +1
Equation {8) can be written symbolicaily as

z =F (7,7, 7, Z,0,) (9)

When the over-z!l density ratio and the specific heat ratios of all gases are
spec:fied, the final shock »irerngth depends only upon Z, . Alternatively,
Eq. (6) may be used 10 eliminate the explicit dependence of 28 upon Z .

Then, for specified over-ali density ratio and specific heat ratios, Ze would

depend only upon the upstream density ratio F‘ﬂ . This result was previously

10



noted in Rei. 19. The value of Z, needed 1o yield 2 maximum 28 should

be a soluiion to the equation

a '
.__‘ - 10
aZ’ 0 (10)

The details of this czlculation are shown in Appendix IIf where 1t is found

that r

7E-I 27,
el % X, (11)

N =
48 2/5,-1 * 2
B'E. D C(1+x) 2,
and
3’, l
I+X '
where %1
.i'_.
7, -l (27, ?_z) 7
X| - 71’ 7J’, );+l : (13)

Equations (11) and (12) may be used to determine 28 -maximum as a
function of r'“ by means of the parametric dependence of these two quantities

{optimum) can be calculated from

upon Z‘ . Thus, for any given r’+8 , Z'

(11), the required upstream density ratic r‘ can be found from (6), and the
maximum final shock strength can be obtained from (12). Figure 7 is a plot
of Eq. (11) for the special case in which w7
is obtained from Eqs. (11) and (12). Also, on Fig. 8,

=7/5and 7, =5/3, while

Fig. 8 of ?8 Vs, P"a

for comparison, is a plot of Z, vs. Pﬂ for a simple shock tube w" h 7, =

7, =7/5(Eq. (6)).

11




As an example of the calculational procedure, consider a tube with a
hydrogen driver, 1 monatomic buifer, and driven air 31l initially at the same

temperature. Then

Mg = -0696 P,

In order to compare this with the results of Fig. 5 let Pﬂ = 104, P” = 696.

Then from Fig. 7 #, = .189, from Fig. 8 Zg, = 117, and from Fig. 6

4
r = 130. Now since P, =10, My =11.7 which is in good agreement

4t 48 8
with Fig. 5. If we assume that the buffer gas is argon (/a' = 32,9} then
Pﬂ = I‘“//AL‘>l = 2580 or P,, = 3.88 which is again in excellent agreement
with Fig. 5.

Some idea of the validity of the assumptions can be obtained from Fig. 9

which shews a comparison of the exact solution (Eq. (2) ), approximation 1
(Eg. {7) ), and approximation 2 (Eq. (8) ) for two different monatomic buffer
gases (/u, = 4 and A, - 80). The plots for other values of the molecular weight
are similar. Approximation 2 becomes noticably worse as P,y becomes large;
this is to be expected since Ms will be small for large Pw . Since the maxi-

mum M for the u, = 80 gas occurs at small P, approximation 2
Se ! 8

reliably predicts the maximum while the approximation for the U, = 4 case

is less accurate. This and other calculations indicate that approximation 2

alwsys yiclds values cf M’e lower than the exact solution. so that it can be con-

sidered as a lower bound. The curves of M vs. PIB for approximation 2 are

8
41l exactly similar (no matter what the buffer gas molecular weight), while the
curves for approximaticn I show a slight dependence of 28 max. upon

molecular weight (just as the exact curves do).

Figure 10 presents another comparison of the approximations, this time

12



for the case where 7 = A 78:7/5, M, = MM T, = 7;= T, and

P,e ° 10°. In this case approximation 2 gives a value of Msa which is in
error by about 15% near the optimum. This error is due to ihe low values
of Ms, {(around 3) which occur near the optimum conditions. When the pro-
ductior of strong shocks is a2 primary concern, nowever, the values of Ms,
which are needed are usuzlly such as to make approximation 2 reasonably good.
In Appendix IIT the problem of determining the optimum conditions from

approximation | is given detailed consideration. No analytical expression was

found from: which the eptimum conditions fer any ["4L could be determined.

8

Solutions to the problem were obtained for fixed values of r'48 and K
where
Kz = _[1_41._ = oLl
Pq.l T“l
ani
T, = 2
4 T'
but the calculaticns are quite lengthy. However, the following important fact
can be noted: for fixed f'“ the value of Z‘ —maximum increases as the

value of K increases. This result is illustrated in Fig. 9 which shows
that #g4 —maximum is greater for u, =4 ( K" = .5) than for AL, =80
( }(1 = . 025). It is interesting to note that as K increases, the value of
Ms, at i_"'e —maximum decreases, and, therefore, the strong shock assump-
tion is becoming increasingly invalid.

The difficulties involved in determining the optimum conditions with the
use of approximation | are comparable to those involved with the use of the
exact equation. The calculations of the optimum conditions with approximation

2, on the other hand, are relatively straightforward. Even in cases where the
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second approximation is not very accurate, approximate values for the
optimum conditions can be obtained for use as initial guesses for exact
calculations.

2.2.2 The Many-Bufiered Tube

A shock tube with more than one buifer section should produce a stronger
final shock then a simple buifered tube. Henshall considers the special case
of all diatomic gases with the same molecular weight and initial temperatures.
He assumes that the optimum pressure ratio distribution will be equal pressure
ratios across each diaphragm. Under these assumptions the final shock strength
increases with the number of diaphragms but the relative gain decreases as the
number of diaphragms increases. As the number of diaphragms becomes very
large, the final shock Mach number approaches arn asymptotic value.

The calculation of the optimum conditions for a many-buffered tube is
very difficult because the final shock strength depends upor the density and the
pressure in every section of the tube. It is therefore very desirable that a
method be developed to determine quickly these optimum conditions. The
basic equation for the many-buffered tube is developed in Appendix I and is
based upon an idealized wave diagram such as that shown in Fig. 11.

The wave diagram in Fig. 11 indicates the numbering system that will be
used when discussing the many-buffered shock tube. The system used for
numbering the flow regions in simple shock tubes (driver-4, driven-1) is almost
universally aczepted. The numbering system for the buffered shock tube which
is most widely used is that which labels the driven section 8 and the region be-
hind the reflected shock (if any) 5. Figure 11 represents the extension of this

system to a double-buffered tube. Regions 5 and 9 are omitted because there

14



are no reflected shocks.

For simplicity, begin by considering a double-buifered shock tube. The
basic equations are (A-23), the simple bu.fer Eq. (2), and the simple shock
tube Eq. (1). Assuming that Ms,»” M$8 »] , and Ms’2 » | , an initial

approximation is obtained, but the equations are still so complex that no

attempt will be made to maximize them. When the rather restrictive assump-

i 2 2 2
tions that MS >> _ﬁ and MS » 7 -]
1 35 f ]

]
to Eq. (5), Eq. (2) reduces to Eq. (8), and Eq. (A-23) reduces to

are made, it is found that Eq. (1) reduces

27,

P, 27, M, K
s
4 72 sz [ Bf’ zZl -~ X
P,
14)
, _ 2y _2% (
BE, P/’ %~ P&lz /2 Z, a1
D - - D -E . :
) e R
7+l
M-"m
where 4 =

,z‘/,s—

G
8 8
lz
and E8 :<2 < ) 78 + 1
18 7 +]

Now Eq. (8) can be solved for “ yielding

v
]

7,1
-1 2y 2\ 27,
27, |- Z 15
Pn/z_ D /_’._ 2:) % (77+/ /) (15)
% I kC, 2," BE,Ze

So that Eq. (14) becomes
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2 a 4 BE,E‘SZ r & 7‘-l
Z, =CgZ, })D, - A2 ,
2 8" s 8 L/l Al
if_ -4
X { 2y (16)
D — I Z! | (27,' 2] ¢
! -C_; z! -;\7,4-) zl )
? -3
where C = 7,1 7,
8T Gl o,
Equation (16) can be represented symbolically as
— /
2, = R(1 %% % 5, %) (a7

So, for given specific heat ratios and over-all density ratio, the conditions for

maximum le are

oF,
=0 i =0 1
37, and 37 (18)

The calculations are quite lengthly, but fortunately the results can be

expressed as equations involving only the single independent variable £,

27,
( )27’ I+X! 7~
Y
r = al
4,02 7,
BD 8655(;+x)(:+x)
(19)
2y,
(""X)fs"
z,’jc,c
where
7 - 7,
- ! 8
xa - 32..4 7, xl
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(20)

(21)

Figure 12 shows Z _, vs. r’,,n calculated from Eqs. (19) and (20), for

-

the special case inwhich 7, = 7, = 7 = 7, 5/3. This result is shown

! 8 12"
compared with the results from the simple shock tube equation and the simple
buffered tube equation. The double-buffered tube curve lies above the other

Q.
curves, the relative improvement increasing near the two limits f‘4 .2—>0(—4 —)a:)
?

2,3
and P4,lz_)°°(&,uz_>°°) . It is interesting to note that in one region (Fx 11.5
Z 7= .36) no improvement is obtained by using buffers. This point was checked
by several exact calculations and found to be quite accurate, so that in this
range a simple shock tube is just as efficient as a buffered one. It will also be
noticed that the relative gain of the double-buffered tube over th;z simple
buffered tube is always less than the relative gain of the simple buffered tube
over the simple shock tube. Similar results are indicated in Figs. 13 and 14
for different gas combinations.

Evaluating the triple-buffered-tube equations (assuming strong shocks),

it is found that
?,6‘-" F,(Z)%)zg, LAY 1/6)[-14,;5121’233212 (22)

so that the following conditions must be satisfied to determine the maximum

final shock strength:
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_a_’_:o,ﬁﬁ. 0 , and éfL:O

32, 32, Iz, (23)

The final results are quite similar to Eqgs. (19}, (20) and (21). In fact, the resulting
equations indicate a general trend, so that it is possible immediately to general-
1ze to a many-buffered tube of any number of sections. For example, if the
driven section is called number ( 71 + 4) (based on the general numbering system

indicated in Fig. 11), then

2”!1
7~
14X, )™
P+ —_—
d )(,,l (24)
Po, ned - Y7,-1 _ 2 z
b} L o
D’l En Cn (’ +'){*n>
and 7.
_1’L. 7. -1
_ -l 1 A n
zwﬁ = D, C. ..+X,, Zn (25)
where e 7x
Xn - 7,-1 7 xw-+

o
"

-1
n | +
£ = <7 I)l/z (7” *) 7yt |
n 27,( 7, 7;7,4 +

c _ 7”4_” 7’,'

n YR +1 Vns4

and

These equations are valid cnly under the assumption that all the inter-
mediate shock Mach numbers are greater thin about seven. Of course, as the

number of sections becomes large, these assumptions will generally be violated.
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The results obtained from (24) and (25) are then only gualitative indications of
performance, but as such they indicate an important trend. The final shock
strength rapidly approaches some asymptotic value as the number of dia-
phragms increases, and this value depends only upon the over-all density
ratio. In actual practice the performance of a many-buffered tube will depend
critically upon the lergths chosen for each section. Wave interactions will
gcenerate new waves which travel in the same direction as the final shock and
tend to limit testing time.
2.2.3 Effects of Area Contractions

A method for improving the performance of a simple shock tube 1s to
employ a monotonic area contraction near the diaphragm (see Appendix II).
The performan-e of such a shock tube is the same as that of a simfle shock
tube with a pressure ratio of ?«R" and a speed of sound ratio of 4 YA,
where ¢ is the equivalence factor. Obviously, the performance of a buffered
shock tube could be improved by the use of an area contraction, but here a
contraction may be put at the first or second diaphragm or both.

Censider a ccntraction at the first diaphragm (see Fig. 15). The initial
flow from region 4 to region 1 is just the same as that in a simple shock tube
with an area change at the diaphragm (Eq. (A-34) ), while the fiow from region

2 to region 8 is the same as that in a constant-area buffered tube. Therefore,

the basic equation for this configuratior is
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2 1/a
p o= 2aMy ) E L (> )'/‘ n,/
48 L — X
T I TTHANA = .
¢ P+|

(M | ] 4 | (7 ') Ms,
- n - i/a b % a x
e Ro Mo -] (-0 M.+ 2]’ (26)

e ) B oo ]}

The analysis of the buffered tube with the area contraction at the second

diaphragm is a much more difficult problem. The general theory is developed
in Appendix IV where it is shown that there are three possible wave diagrams
when Mx)i (see Fig. 16). The case of most practical interest is the one for
which the area contraction will be great enough to produce a reflected shock
(Fig. 16-c). Under these conditions the flow is adequately represented by
Egs. (A-72) and (A-76). Urfortunately, (A-76) is a fourth order algebraic
equation for M’r the reflected shock Mach number, and it is usually solved
by iteration.

If the shock tube has area changes at both diaphragms, the problem can
be analyzed by a combination of the above two methods. Figure 17 shows the
performance of a H‘— He —air shock tube operating at constant initial temper-
ature and with an over-all pressure ratio of 104. When the over-all contrac-
tion ratio is nine, Fig. 17 shows the efiect of different distributions of
contraction ratios. The best performance is obtained with equal area ratios

at each diaphragm. If, however, it is desired to have all of the contraction

at one diaphragm, the better performance is obtained with the area change at

the second diaphragm.
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Strong shock approximations can be applied to the two cases of interest

(area change at 1st or 2nd diaphragms). Ceonsider Eq. {26) under the assump-

tions that M; »l and M - >> = ; it becomes
‘e S‘ 7’,"/
BE, N/ z
T _ 2 _ I ' 48 %8
Z, = C2 {D, >

7’—1 27
27, _ ( 27, 4 z) M
? VAR B
After Za 1s maximized with respect to £, ,

N
/)

o (27, Zz)“" 1+y )"
¢ T o\7+l Y,

.= -
48 81 E,‘ C,D,y" ! (I*'Yl)l le
and
/e
7,-1
z,= " ()
8 ! ,+Y' -1
where

77
27, 27, z
§ - (7+} Z,)

/

(27)

(28)

(29)

(30)

When the arca change is all at the second diaphragm, an analytical solu-

tion to the optimization problem can be ootained only if the contraction is

infinite, Fortunately, for area ratios of ten or greater, the area change may

be considered ¢ssentially infinite, In this case

o 27, MS: -(77"/)
Sr (7-1) M +2

M
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and the bzasic Eq. (A-72) is greatly simplified {see (A-78) ). When the

assumption that Msz >J and M s, >) 2 —~ is made, 2y
] vor
! wfaf'l ] .
2 0
2! - 37+ c Zz )~ 7y ti LZGJZ ), (32)
8 7,—1 11
| 27' , 2)’
g Z,
where
7 M33 1/
¥ = === - "
8 -G'ao pr r,“ G. r;‘
and 7,
‘- 7 +1 71

G_ is the equivalence factor for an infinite area contraction at the second

diaphragm. Obviously 2‘. can be maximized with respect to Z, in exactly

the same way as for a constant-area buffered tube. The results are as follows:

%-! * _27
27, v-1

2 - 2” Zz X,

s ! X (33)

P = )

48 (I+X) Z 8 7, +1

7+l

and

7,

vr (37,~1 ” X
zZ =C, (7;’_/) 6*"‘:) Z, (34)
In Fig. 18 a comparison is shown between the exact Eq. (A-78) and the strong
shock Eq. (32) for the case of cold hydrogen driver, monatomic buffer, and
driven air. The agreement is excellent at large values of buffer gas molecular

weight and reasonably good even for a helium buffer. Figure 18 is entirely

analogous to Fig. 9 except for the area change, and the discussion of Fig. 9
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applies equally well here.
Figure 19 can be constructed from Eqs. (33) and (34). The graph again
points up the fact that some improvement may be obtained by using gases with

small values of 7y but the performance is quite insensitive to changes in 7, .

2.3 DETONATION BUFFERS

One method of improving shock tube performance is the use of some com-
bustion process in the driver to raise the pressure and temperature. 1,6,11,12,24
The most widely used of these techniques is constant-volume combustion in which
the gas is ignited and the diaphragm ruptures just as the peak pressure is
reached. Performance calculations for this type of shock tube can be made by
using the simple shock tube equation and effective values of Py 7'* , and a,
corresponding to conditions after combustion. Therefore, the previous methods
of analysis are applicable to any shock tube with a constant-volume combustion
driver.

Two other combustion processes which have been used for driver gas
heating are constant-pressure combustion24 and detonation. Both of these
methods suffer because the initial shocks are closely followed by rarefaction
waves which limit steady flow and cause shock wave attenuation. Also, there is
a lack of uniformity of diaphragm ruptures with constant-pressure combustion.

The fundamental equations of detonation wave theory are reviewed in
Appendix V where it is shown that a pure detonation is always followed by an
expansion wave that lowers the pressure and velocity. If a piston were main-
tained in motion behind the detonation with a velocity equal to that of the flow

immediately behind the detonation front, no expansion could exist. If the piston

where maintained at a higher velocity, the detonation wave would be propagated
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at a faster specd, that is, it would be overdriven.

Consider a constant-area buffered tube with a detonable mixture in the
buffer. Such a device will be called a detonation buffer. If the conditions in
the driver section are such that P and U, are equal to or greater than
the Chapman-Jouguaet values, the detonation in the buffer will be followed
by a region of quasi-steady flow. The wave diagram will then be similar to
that shown in Fig. 1, but the calculations will not be so straightforward. In
particular, the flow through the unsteady expansion between regions 2 and 6

must be calculated by integrating the characteristic equation

(/3
dll = "7 if (35)

along an isentrope. 25

Sorne exact calculations were performed for a shock tube with a hydrogen
driver gas, air driven gas, and-a stoichiometric hydrogen-oxygen buffer gas
(with an without helium diluent). Equation (35) was integrated with the help of
‘Mollier charts constructed from data obtained from Dr. Sanford Gordon at Lewis
Research Center, NASA. Conditions behind the over-driven detonation were
found by using the equilibrium norrnal shock IBM 704 program developed by Dr.
Russell E. Duff of Los Alamos Scientific Laboratories. Throughout the calcu-
lations the hydrogen driver was considered as an ideal gas, and the air was

treated.as being in equilibrium. 26,21

The exact calculations are very time
consuming, and, consequently, only a few of them were made. Some typical
results are shown in Fig. 20 as a comparison to the approximate theory that
is developed below,

The addition of helium diluent to stoichiometric hydrogen-oxygen has

2 . . . .
some interesting effects. 8 As helium is added, the detonation velocity
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increases and the molecular weight of the burnt gas decreases. The pressure

and temperature behind the detonation drop, but the speed of sound increases.

As 3 net result, the final shock strength does not vary much with the addition

of helium. Of course, the detonation buffer does offer an improvement in

performance over the inert gas buffer, but the gain is not outstanding.

In order to compare the detonation buffer with the constant-area inert-
gas-buffered tubes over the full range of operating conditions, it is desirable

to maximize the final shock strength and present a general I',, vs. Za

curve

for the detonation buffer. To facilitate such an analysis a number of assumptions

will have to be made. Suppose that the detonable mixture may be treated as an

ideal gas before detonation and as a different ideal gas after detonation.

assume that the unsteady-expansion flow can be calculated in terms of an

average specific heat ratio 7, . Then the basic equation for the shock tube

becomes
2
b ow o) o gl
R A u 7} -
P, = | - =2 2 - =
48 Pn { 2 e, 44} {' 2(1
where
2 2 27,
Uy "<P*:"Y/l % -l R L/ %=1
a, \ 7
(] l/ '+ 7,_4'[ Pz'
-1
and y - AEc
T e, T
P!

AEC is the heat released per unit mass by the chemical reaction at constant

temperature and pressure (see Appendix V).

2 Ve

)}

ye -

The resulting equations will be simplified by using F,, and P" to

25

Further

(36)

(37)



represent shock strengths rather than M, and M, . When the normai shock
! s

relations are applied, it is found that

ud |
—_— = (38)
( ) i(r )P, + (1 l)]7z
and y
7,4,' 2’,, /2
2, _ (7! P,)'/‘ gl 4
e EA] (39)
T P, t1
If Eqs. (38) and (39) are used in Eq. (36),
-1 n \'h N
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‘Now apply a strong shock approximation Pl. >> |1  and P" > |
This is essentially the same as assuming M: >>» | and M: »>> 1 . Then
! 6
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By the use of the relation
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l/:, I/; I/; 74-'
27, (I"!l)
= - 43
p4l'Pu Z«fz (yﬂ) I_?' -] N n-lsﬂ] P“ (43)
r
the dependence of F4 upon —P-ﬁ- could be replaced by a dependence upon Pq

“ .
only. It is interesting to note that Eq. (41) can't be appreciably simplified

by making more stringent assumptions about the initial shock strength, Of
27, %
41

ent on ¥ , but this is the trivial case corresponding to no appreciable

the equations are no longer depend-

course, it is true that for F:_' >

chemical energy. Suppose that the initial specific heat ratios ); ) 7’4 y Ty

and the over-all density ratio f,, are fixed. It is found that £_/ P, is still
48 78 48
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a function of the five variables 7, , 2, ¢ , R, , and P2

(o 4 !

Tc make this problem tractable assume that 7; N A and ¢ are
known beforehand. Reasonable estimates of these quantities can be obtained

if the buffer gas and its initial temperature are known. If the temperature

and molecular weight of the driver gas are known, then

r
. A4 = K" a constant (44)
Py, T“

and E’ s / P,_8 depends only upon P, , The maximizing procedure is then
straightforward and a plct of P"/p“ vs. I"“ can be obtained. Of course, a
different plot will be obtained for every value of the set of variables K , 7, ,
r AU and ¥ . This procedure is the same as that used to predict the first
approximation curves for an inert-gas-buffered tube (Appendix III). By
analogy with the inert-gas tube, it is reasonable to assume that the variation
of the performance curves with K will be small.

Maximizing (41) for fixed values of 7, %

AN Y , and K is straight-

forward but tedious. The results of the computation for two different values
of K are shown in Fig. 20, Both curves show the performance of a tube with
a hydrogen driver, stoichiometric hydrogen-oxygen buffer, and air as the

driven gas. The values of the various constants used are as follows:

- 7, =1.15 %e =1.23
AE, = 57 kcal. /mole Y =23.0
for T‘} = 1000°K K =,22
for Ty = 300°K K = .41
The X’s represent typical pcints from the "exact' calculation with K =.22.

The agreement with the approximate solution curve indicates that the assump-




-

tions used in the approximation are reasonable. The lower curve (K =.22)
corresponds to a heated hydrogen driver and large values of F, for a given

r . The values of P

48 y corresponding to this curve are considerably

above the Chapman-Jouguet value so that the detonation is strongly overdriven.
This performance curve is almost identical to that of a tube with an inert
buffer gas.

The curve which corresponds to a cold hydrogen driver ( K = .41)is
somewhat higher than might be expected. However, in this case the optimum
P” 1s the Chapman-Jouguet value up to about [° 44 =3 103. This should give
the maximum gain over the inert-gas tube since the ratio of the chemical energy
to the total energy is the greatest in this case. Above f"“ =3 103 the detona-
tion is overdriven and the relative gain of this device should decrease. At very
large values of [’48 the chemical energy released by the detonation is insignifi-
cant compared to the total energy, and the performance of the tube is

essentially that of an inert-gas-buffered tube.

3. TESTING TIME
Testing time is defined as the intérval of time between the arrival of the
shock and the arrival of the contact surface at some point in the test section of
the shock tube. By considering the equation cf continuity we can arrive at a

simple expression for the ideal testing time. 2l

X
T. = {(45)
¢ & "3,([1::"-')

where X is the distance from the diaphragm. Ideally the testing time could

be increased to any value merely by building the driven section long enough, Of

course, for a simple shock tube with a driver section of finite length, the
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expansion wave E. will reflect off the end of the driver and overtake the
contact surface (see Fig. 21). So, for a fixed driver length, there is an
optimum length of the driven section which will yield the maximum test time. 29

The wave diagram analysis for the buffered shock tube becomes much
more complex (Fig. 22). Many different wave interactions must be considered:
for exameple, the interaction of _R: and E') , the interaction of a and Ez , the
interaction of E: and ‘R-t , etc. Figure 22 represents one possible length dis-
tribution that will lead to relatively long testing times in the driven section. If
area changes are present in the shock tube, the wave diagram is further com-
plicated by more reflected waves.

Unfortunately, the actual testing time is not accurately determined by the
idealized wave diagram technique. In the first place, if the driven section is
very long, shock wave attenuation will be important. The testing times calculated
for ideal gases will be lowered somewhat by considering real gas effects. How-
ever, Eq. (45) does not require that the driven gas be ideal, so that real gas
calculations can be used with it. In practice the contact surface will not be a
discontinuity but will be turbulent and diffuse. This reduces the test time con-
siderably; a good rule of thumb is to multiply the ideal test time by a factor of
one-half,

At pressures below about five millimeters of mercury the testing time is
found to be much lower than that predicted even with the above corrections.
Roshko showed that this could be largely explained in terms of the loss of mass
21

across the contact surface due to the laminar boundary layer behind the shock.

He solves the problem in terms of tweo similarity parameters X and T
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P Z -
X = lg(._/i_) ﬂz : Ta (Pa- ) z
re st.p.

2
Ms, T, ["” P {46)
a, T M
- - 1
T - x (r‘ll ,) ¢
(47)
where s.t.p. implies room temperature and atmospheric pressure
ﬂ parameter depending on r.u » 7, »and 0O
o Prandtl number
T actual testing time
—iz compressibility of shocked gas
a diameter of driven section
M dynamic viscosity coefficient
Roshko found the relation between the two parameters to be
4
X =-2 [,Jw(l-Tl/z)-J-T'/z] (48)
for which T —» 1 as X —>ow . Hooker expanded Roshko's theory to account
y

for boundary layer mass accumulation between the shock wave and the contact
surface. 22 Hooker's equation for X (T) is more complicated than Eq. (47), but
the improvement is relatively minor,

Recently Mirels has analyzed this problem and removed some inconsis-
tencies which appeared in the previous analyses, 23 In particular, by consider-
ing the variations in free stream conditions between the shock and the contact
surface he was able to find improved values of the parameter /5 . The im-
provement provides much better correlation with experimental data for low

shock Mach numbers; for Jarge Mach numbers the analysis basically agrees
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with that of Roshko and Hooker and with the experimental data.

The fact that T approaches a limit indicates that the actual testing
time does not continue to increase as the length of the driven section is in-
creased. After a certain time the contact surface moves at the same speed
as the shock, and the testing time is at a constant value that shall be denoted

by Tm . Roshko shows that

! 'o) T; p:u 2
Tay = T = o
e ANTY (/4 Plise ZaTa <(F,,-:)‘) g (49)

Throughont the analyses of Roshko, Hooker, and Mirels it is assumed
that the boundary layer is thin (relative to the tube hydraulic radius) and
iaminar between the shock and the contact surface. Mirels has evaluated both
the Reynolds number and the boundary layer thickness at the confact surface
(when it is at the maximurmn distance from the shock) and found these assumptions
to be good for strong shocks and low initial pressures. For relatively weak
shocks (under Mach three, say) and low initial pressure such as those used by
Duff, 20 the boundary layer becomes rather thick at the contact surface.

For a fixed value of shock Mach number the maximum testing time as
determined by boundary layer development depends directly upon the initial
pressure and on the diameter squared. This fact has aroused interest in shock
tubes with large diameter driven sections for improving testing time. The
size of the shock tube driver is usually limited by structural and economic con-
siderations. Therefore, shock tubes with larger diameter driven sections than
driver sections have been studied.

A simple shock tube with an increase in area at the diaphragm admits to

one of four possible flow patterns (see Appendix II and Fig. 23). Generally,
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for strong shocks the flow will be of type (a), but for very large area changes

the other types are possible., Figure 24 illustrates the performance of such a

tube with varying values of driven pressure and diameter. With fixed driver

conditions (hydrogen, T, =750°F, .p, =15,000 psia, @, =3.5")and

the shock Mach number held at 20, the pressure in the driven section must

be lowered for operation at larger diameters. These calculations were performed

assuming that hydrogen is an ideal gas with 7 = 7/5 and using the properties
_of equilibrium air. From Fig. 24 it can be seen that testing time is being lost

by going to larger diameter driven sections since the quantity P’d—: decreases.

The maximum testing time is obtained with a constant-area buffered tube.

The analysis of buffered tubes with larger driven sections than driver
sections is more complex., For example, if all the urea change is at the sccond
diaphragm, a typical wave diagram is shown in Fig. 25. The upstream-£facing
wave (;/— is either a shock wave or a rarefaction fan depending upon the final
shock strength and the area ratio, The flow from region 2 to region 5 is a
steady expansion and is completely determined by conditions in region 2 and the
area change. The most efficient operation of this type of shock tube occurs
when the buffer pressure is so chosen that ‘\A_/ reduces to a sound wave., Of
course, if the area change is small, it may not be possible to reduce it to a
sound wave., Figure 24 compares the performance of the shock tube configura-
tion of Fig. 25 at the optimum buffer pressure with that of a simple shock tube
with an area change and the same driver conditions, The comparison certainly
indicates the importance of using a buffer with this type of a shock tube.

Using the values of -p, , dc , and Msa from Fig., 24,calculations of

T’,.‘ were made from Roshko's theory. The testing time drops with
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increasing diameter, though not as severely as for the simple shock tube.

For certain arc-heated facilities the testing time is found to actually increase
with increasing diameter and fixed Mach number. > With an arc-heated helium
driver the speed-oi-sound ratio from the driver gas to the driven gas may be

as high as thirteen. In this range the gain in shock Mach number with in-
Creasing pressure ratic is greater than in the more conventional range of speed-
of-sound ratios. Nevertheless, the gain in testing time is quite small. There
appears to be no strong reason for using large diameter driven sections when
cperating at high Mach numbers.

Now consider a buffered tube similar to that of Fig. 25 but with a
converging-diverging area change at the second diaphragm. A typical wave
diagram for this configuration is shown in Fig. 26. Again ‘V; may be a shock
or an expansion, and this must be determined in each particular problem.
Figure 27 compares the performance of such a configuration with that of a tube
with just a monotonic divergence at the second diaphragm. Notice that there
is always a loss in performance by using the converging-diverging section.
This result is analogous to the result obtained for the case of an area change
at the first diap‘hragm32 (see Appendix II). It is apparently true that the most
efficient way to accomplish an area change at a diaphragm is monotonically.

Finally, examine the effect of distributing a total area expansion between
the two.diaphragm stations. Figure 28 presents results for given over-all
conditions and varying bufier diameter and pressure. The maximum final
shock Mach number increases as the buffer diameter is-increased from the
ariver size to the driven section size. Although the performance continues

to improve as tnhe buffer diameter is further increased, the improvement is
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rather limited and by the time that A, = 2Aa the performance curve is again
below the curve for A, = Aa . So, for practical purposes, the most efficient
geometrical configuration is one for which all the area expansion occurs at

the first diaphragm.

4. CONCLUDING REMARKS

A method has been presented for quickly determining the optimum operating
conditions of buffered shock tubes and the final shock strength obtainable at these
optimum conditions. While the resulting equations are based on a strong shock
assumption, these equations are quite accurate for most of the cases of interest.
Even in problems to which the assumptions do not wholly apply, the analysis
indicates the range of conditions to consider for making exact calculations.

Most of the report is concerned with applying thie strong shock analysis
to different buffered shock tube configurations. Althsugh much has been written
a2bout buffered shock tubes, it seems worthwhile to summarize our present
knowledge abcut these devices.

1. For given over-all conditions a buffered shock tube will produce
stronger final shocks than a simple shock tube provided that the optimum
bvffer conditions are used. However, if the over-all density ratio :s of order
ten, the itnprovement is negligible. The relative improvement increases as
the cver-all density ratio approaches its two limits (P.—,.—>0 s [““-—”ao) .

2. Within the framewcrk of the strong shock approximation, the final
shock strength Za depends only upon the upstream density ratio y, when the
specific heat ratios and the over-all density ratio are speciiied. After optimiz-
ing, 2 8

3. Other factors being equal, the best driver gas is diatomic and the

-maximum depends only upon F“ and the specific heat ratios.
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best buffer gas is monatomic. The specific heat ratio of the driven gas is
relatively unimportant.

4. If the strong shock assumption is relaxed somewhat, it is found that
z -maxirnl;xzm depends not only upon Pn but also (to a lesser degree) upon
K = C——"—) . For fixed F” , Za -maximum increases as K 1increases

4
(M, decreases).

5. The performance of a buffered shock tube improves as the number of
buffers increases provided, of course, that the optimum conditions are used.
However, as the number of buffers increases, the final shock strength approaches
its asymptotic value, and therelative gain decreases.

6. A buffered tube with an area contraction at either or both diaphragms
yields higher shock strengths than a constant-area tube. The optimum distri-
bution of a given area contraction is in equal proportions between the two
diaphragm stations. However, if all the area reduction is to be at one diaphragm
station, it is better for the change to be at the second diaphragm.

7. A shock tube with'a detonable gas in the buffer can produce stronger
final shocks than inert-gas-buffered tubes. The maximum gain is obtained
when the initial shock {detonation) is near the Chapman-jouguet value. However,
for the production of very strong final shocks, the detonation must be consider-
ably overdriven. In these cases the gain.ir performance over the inert-gas
tubes is not significant.

8. For fixed driver conditions, increasing the diameter of the driven
section requires that the pressure in the driven section be lowered in order to
maintain the same final shock Mach number. The net effect of the increased

diameter but decreased pressure is to reduce the available testing time in
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most cases of interest. When the speed-of-sound ratio across the diaphragm

is very high, only a small increase in testing time may be obtained.
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APPENDIX I

DERIVATION OF THE BASIC EQUATIONS FOR CONSTANT -
AREA BUFFERED SHOCK TUBES

Many of the results derived in these appendices are well known and are
presented in several places in the literature. They are included here for con-
venience and to introduce the notation.

Consider the constant-area buffered shock tube shown in Fig. 1. The wave
diagram is drawn subject to the following assumptions: the flow is one-
dimensional and inviscid with no heat conduction, the diaphragms .re instantan-
eously removed, no mixing occurs at the contact surfaces, and there is no shock
wave attenuation. Across the contact surfaces velocities and pressures are

equal, while other thermodynamic variables may be discontinuous,

P‘i: PS ) uz‘: u.3 ) P‘: ?7 and a‘ = 117 (A-l)
The ordinary Rankine-Hugoniot shock relations hold across the shock waves in

coordinate systems at rest with respect to the shocks. For the initial shock

U‘r = Ioz (US,— ua) (A-2)
2 2
Pt A Us, = P ra (Us, - uz) (A-3)
et / r _P_':_._ 1 _ 2
4,4—7' +5 Us' =2, + A +2 (U,' u,') (A-4)

where £ is the internal energy per unit mass. A similar set of equations holds

>
for the final shock S‘ . Applying the method of characteristics to the one-

-

dimensional unsteady motion in the upstream-facing expansion waves R, and




2

k_ it is found that the P Riemann invariant ¢ + f-g— d/o is constant,

25

Civen the initial conditions in regions 4, 1,and 8 and the thermal and caloric

equations of state for the gases, the shock Mach numbers Mg and M, can be
' 8

uniquely determined. In what follows it will be assumed that the gases used

in the shock tube are ideal and have constan! specific heats.

Riemann invariant expression can be integrated to yield

u + = comnst.

7-1

In this case, the

(A-5)

across an upstream facing wave (Q-wave). Also, since the flow across any

expansion is isentropic,

Py ("'4 )
‘Ps "3

' “—
The velocity ug is zero so that Eq (A-5) applied to Rl yields

7.~
Ay = a, + -—f-i—- U,

From Eqs. (A-1), (A-6), and (A-7)

-7
-/ u +
- - 2
Py = P2 [’ Z a,,J
The pressure ratio and the density ratio across the initial shock are
2
27[ M’, -(7I’,)
P =

2§ —fl ¢+
:

(7 +1) M

Mo = G-1)Mg+ 2
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Using Eq. (A-10) in (A-2), it is seen that

2a, M-I
uz — d ! (A-11)
7+ M,

Finally, using {A-8), {A-9), and (A-11), the well-known simple shock tube

equation is obtained.

27

7o
o _2nMy-0e) | ant (-] (A-12)
" 7+ 7+l A“M,“l_

Across ‘ﬁ; the following fundamental relations hold:

2! = nl oy A-1
az+-2 u’z..a,‘i-‘2 6 (A-13)
and
- 29,
a, \ 7!
P = ) ; (A-14)
27 a,
Relations similar to (A-9) and (A-11) hold across the final shock S‘
27 * _(r,-1
_ 2% Mg — (1) (A-15)
18
7g t+1
2
. - ‘2“6 Msa—l
i (A-16)
7, +1 MS‘
Using (A-13), (A-11) and (A-16) in (A-14), one finds that
2
2 N A-17
- 7-1 [ag Ms -l a, Ms -l (A-17)
27 a, ;la.p[ M‘ 7+ Ms‘
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From (A-15), (A-17), (A-12) and (A-9) the fundamental equation for the

conetant-area buffered shock tube is obtained.

27, M,: - (#,-1)

R, P PR =

78 42 21 7, +1
27,
. 1 7l
- .-l Ms -i 1-—77" As (M _ ) (A-18)
' 7+l Ag Mg, | ey | T M,
2y,

With the use of the normal shock relation

— s ih
ey LZ_x, Msf —(;;—1)] Kx—i)M; + 2] (A-19)
2 (7+1) Mg,

and the ideal gas relation

N\ p VB
4s _ i) Fa > : (A-20)
@ 7, Car

(A-18) can be written as follows:

b - 27, Msj ~(7g-1) - 7~ J,,-:/:- <l"ﬂ>'/‘ s
° 78" 7t \%/) \Pu

8
2
"W, B 1] r0m +2]
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Next consider a doukle-buffered tube {of the "unsteady-expansion' type)
as shown in Fig. 11. The wave diagram represents only the initial flow
— «— —>
phenocmena in sich a tube. Interactions between CI and R_ or between C,
-
and R3 will generate waves that will limit the testing time (i.e., the time
between the passage of §  and-the arrival of tire contact surface C s ).

The flow between regions 7 and 10 is completely similar to the flow

between regions 2 and 6, so that, in analogy to Eq. (A-17),

25,
2 x 7’."[
—P-,’- = [ _ 2;-" d,; Ms'i‘iw 623 M’."' . (.A"'ZZ)
P 2, |7 Ms,t n+l MS,

e
Also, the basic shock relations across S:z are similar to Eqs. (A-9), (A-11),

and {A-79). Therefore, the basic equation for the double-buffered shock tube

can be written down.

r
. _ P _&_ﬁ_& - 27 M’lz -(771-’)4

[P T
A
A A TR I YT
1= = 7, (MS-MT) T o X
14l \%/ \Fy, V% T At AD]

[ rﬂ+l 1,\"‘ r',s\'/‘ AT & | Fer
e o ) () @ i) -femsi)) %

[ N
= — - (7s I)’hM{8 _ Yot | (7:“)/ My 12 7 )
E’cMs, '(73"?] E’a") Msaf"z]'/" 7atl \7,

(R i) o)

PQ)II
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T I

Of course, the simple shock tube Eq. (A-12) and the constant-area
Buffer Eq. (A-21) are alsc valid for this configuration, so that there are
three equations to determine M Mg, » M , and Msn. . The above procedure can
be extended to a constant-area shock tube with a larz€ number of buffer sec-
tions. If the final driven section is labeled #+4 , the general equation

(analogous to (A-23) ) can be written down immeédiately.

27,
s Y
b= 2t ) | (”4:)/ 'é,, I *
Haee (7‘"4 + I) M’:

(A 24)

(7"') Msu r + (22 enss |
S T L e gl ol ol

_2r

' FAETI
._P.i_TL_. M - _.’____._. -(M. - '
["4_11 Snes M3n+*) s M,

APPENDIX II

THE SIMPLE SHOCK TUBE WITH AREA CHANGE NEAR THE DIAPHRAGM

While the flow in a duct of varying cross-sectional area is not strictly
one-dimensional, the simp:ification of quasi-one-dimensional flow in which
the area A (x,t) appears as one of the variables in the fundamental equations
is often made. Once A (x,t) is specified, the problem can be solved by the
application of well-developed wave diagram techniques. 30 A further approx-
imation which can often be made is to replace the gradual change in duct area
by a discontinuous change. Such an approximation can only be used to

evaluate the effect of the area change at a sufficient distance from the
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change. 31-33 Since the changes in the flow variables are assumed to occur

instantaneously, they may be computed by using the steady flow equations for
an isentropic nozzle.

The possible wave patterns for a simple shock tube with an area change
near the diaphragm that are compatible with the above assum};tions are shown
in Fig. 23. The wave diagrams always indicate a primary -shock, an upstream-
facing expansion wave, and a contact eurface. In general, an upstream-facing
secondary wave will be required to match conditions at the interface. The
steady flow relations are assumed to hold from region 3a to_3b. In any partic-
ular case the flow pattern will be determined by the initial conditions and the
area ratios,

‘Russell has done a detailed study of all four types of solutions for varying
values of A4/A' and A;/A, . 33 He demonstrates that for any value of A*/A, ,
the shock strength increases with increasing A4/A, , and for any value of
A4 A' the maximum shock strength corresponds to the maximum .A*/A' .
Therefore, the best over-all performance is obtained with a monotonic area
contraction at the diaphragm station. With this configuration only soluuions of
type (a) or type (d) are possible. For these solutions the steady expansion is
subsonic and the second non-steady expansion (if any) is supersonic. The im-
proved performance follows from the fact that a steady subsonic expansion is
more efficient than an unsteady subsonic expansion for the conversion of
thermal to kinetic energy. 31, 32

The following analysis is valid for any flow of either type (a) or type (d)
whether A,= A, or not. For the steady flow from region 3a to 3b the

following relations hold:
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and
e 2Ly ey
A4 . M’b 2 h
3a 4 b
| + 7 Mab
where
M, < |
Across E'

e
and across R

7a-l |
a3bE+—-2— Ms;] = a4y + =

Using these relations one finds that

[ 7, - ]
7, —
+——-
a2 ay 2, _L'TT7 M
e, 2y a a B - -
b 3a 4 | 4 M
2 ‘da
B 74', 2 '/"
| + — M )
2 8a
] ———
7, -1 2 AR u
| + 2 + 2
L 2 M3b / 2 a,
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A W

Define

then

7%=l
a R 7ol 4 (A-32)
a, - a
2y 2 4
Therefore,
27,
27 _ £y
./ . =T
P - d’ -74", _ P - :i”’ ?4:-[ uz 4 . (A 33)
v - P a, =R |7 7 &,

Equations (A-9) and (A-11) may be used to obtain

2 .274
z - -
P _ | 27’, MsL"(ﬂ-/) | 7;_._[ M"-—[ ! 7’+I
"ot i+ 7l M, 2 (A-34)
27,
A &
Define new variables by
/
PAH = ?P‘H
and ™
' 27,
Ap = Vo A
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. Then Eq. (A-34) is merely the simple shock tube Eq. (A-12) for a shock tube with

7 !
a pressure ratio ’21 and a speed of sound ratio A, .

The specific case of interest is the configuration for which A, = A, .

Then if M, 2§ , M!b= i "and ¢ can be calculated from (A-26) and (A-30).

If, on the other hand, M

s & |, M“= Ma and the problem must be solved by

iteration.,

Hall and Russo19 have pointed out that for MS' exceeding about three, and
for a given driver gas specific heat ratio, shock tub: performance can be repre-
sented by a single curve for ail initial conditions. If Ms, is greater than about
three, certain terms in Eq. (A-34) can be neglected. Then the equation can be

simplified to
27,
< 7’-'

ih
?/P“ :.271M37 ] - Bél/’r‘ nu)/ M‘: (A-35)
1/ -
7t (3 Pu)

Define two new variables by

7 ! Ms n ’ %A r
= ——=—=—  and = “ (A-36)
/ fﬁl_ L] ?
Then, 27,
A
L AL e *
’ ( ’ ’

2 = 3 {i-srﬂ z,} (A-37)
The basic equation has been reduced from a relation involving six variables M,' )
Pa Y I"" , 7, ,and 7, toa relation among four variables 2,', f’4: )

p .
7, , and 7, - Figure 6 shows a plot of Z,, vs. Fﬁ for various values of driver

gas specific heat ratio., The use of different values for 7 does not noticeably
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affect the curves of Fig. 6, so, the variation in performance with driven gas
T . 4 ’

specific heat ratio can be neglected. Figure 6 indicates that for given F,_, ) Z,

increases as 3, decreases. By using numerical values it is found that for

given r'“ y &, (the actual shock strength parameter) increases as 7,

decreases.

APPENDIX III

CALCULATICNE OF THE OPTIMUM PERFORMANCE OF
CONSTANL -AREA BUFFERED TUBES

The performance of a constant-area buffered tube can be calculated from
the buffer Eq. (A-21) and the simple shock tube Eq. (A-12). In the main body
of the text it is shown that when M: and M; are large compared to one,

8 .

I

approximation 1 is oltained.

2 2 (7 "l) MO
26 = C, Z, | - 2 L : 1' 7y X
(27)" [(n=1)mg, + 2]
- . 27, :
/2 ) 7'[__,
7-1 (7 \II Mg 24 (A-38)
7 ) =1
78 + 4 2\ 27
)
| ! 7+l -
The additional assumption that M; > ’,2 | , simplifies (A-38) to approx-
i 1~
imation 2, which no longer explicitly depends upon M’n
27
" 7 -1
2t = gzt lp - DBl '
a - Ty f R/ (A-39)

27, 1 \*%
’-<7,+! Z )

can be maximized with respect to Z’ by differentiating (A-39) with respect

Z

to £, and setting

8

326 equal to zero, Upon differentiation, Eq. (A-39)
]
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becomes 2

BE M/* 7
P
0=2C,%,<D, - 1_48 Tg —
’- 2_7, Z z):f=+
7,+1 !
l,’; 7 "‘ 7; L 2 4 1,.;.,

= —!D,-
[ (27, z,/{”:l ,-(:% z,‘)f"_j

The possibility that

+-

BE, ey 2,
27 (A-41)
2», >} ¢
7+l _

is excluded because this weuld imply, by (A-39), that &, =0or F;-B becomes

infinite. Therefore, (A-40) can be simplified to

BE NGz _
D“' 2.1 -
27, _ .\ T4
’"(fm z:)
e (A-42)
S )
! —_'—-BEIF‘!gtza
1", 74 27, \2'4
H- (n—l ’/
or
BE, Ffﬁ‘z‘, _ D,
:tr-’ ) ‘i+X, 43
,_27I 2 + (A-m)
?’,4-1'2' '
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where

7, %l ( 27, x)""
Ve 4t \%+1 !
%=l (A-44)

| (27' :_)17*
7,+1 Z'

The use of (A-43) to eliminate Za from (A-39) leads to
2

X, =

%1

D, I-’-‘(Zi' zx)“‘ :ill
' A 2 > | (A-45)
- D[-

B‘E,"F“(lfx,);

This can be solved for F48 .

%a=1 2 27,
27, i |
j-- 27, Z‘ + 1+X,
7’]"' f x' (A-46)
Pn - 2/,

D' -~ BLE'I C' z,z (,+ x,)z

With (A-46) and (A-43) one finds that
%

7,-
_ th /I),X, ’ 2 (A-47)
#= G \1+x, '

rd

The possibility of determining the maximum value of 2‘ from approxi-
mation 1 now will be considered. Equation (A-38) can be written symbolically

as
Z,=F, (7, ) Tgr Ty 20 M r’”) (A-48)

So, for fixed specific heat ratios and over-all density ratio the conditions for

the maximum are
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oFg

=0
22,

Equation (A-38) can be written as

and

Z, =C,z,{+fM,)-

where

FM,,) =

(72 -1) Ms,

Differentiating {A-50) with respect to &, leads to

7.1

T (24, "‘L(y, -1)Mm, fzj'/‘

7,();(”)

I+ ;(M,‘)‘—'

:-(2”
7,+1

and differentiating with respect to M

- ("‘)'h- -
B+l \ 74 ¥ T8

2

Ze—|

| (27’ ’.)27’
7+ Z,

Equations (A-50), {(A-51) and (A-52) can be combined to yield

T 1

28 = C’ZI
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(A-49)

(A-50)

(A-51)

(A-52)



7l 72
221’ a2 27
- [ =
7+ 1 (A-54)
g

P =
48 . ,74-_’ 2
Cz \
'\t 7,
and
_ 27,
74-1
= -1 7 * 7, +1
- 7 (A-55)
= +
z' I 7; —I 74 f(MS’ )] z-f’

When values of Ms, are used to evaluate these expressions, it is found
that the only possible values of |? 45 2T€ those in the range of about 2 to 17.
These are the only values of F“ for which the expression in brackets in
Eq. {(A-50) can be egual to one. For larger values of F45 {which are usually
the ones of interest) the maximum value of 2-8 cannot be determined by the
above procedure.

A procedure to determine the optimuin conditions for approximation 1
curves such as appear in Figs. i0 and 11 will nowbe considered. These curves
were drawn subiect to the constraint that the temperatures and molecular
weights are speciiied, and, therefore, Za is no longer a function of two

variables. The equation for approximation 1 may be expressed as follows:

] 27!
2 78 +] A 71
Zg = 27, ['_ Bl 2] X '
(A-56)
27,
7-1
e 7+ (_Za_)’/& 1
, r’"‘g Za o+l \7
- §(M, ) : 1
> 5') r.' e z
41 ]
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The constraint can be expressed as

,"l
H = /_;_(4' = Kz a const. (A-57)
P‘H 41
Therefore,
i/
/> Fﬂ
- = (A-58)
R "(Pu) Ms, = K Ms,
and
Z = F (10707 Ty M, (A-59)
The optimum condition can be found from the equation
°F¢ _, (A-60)
oM,
!

The calculation is straightforward but quite involved, so it will not be presented.
The most important result of the above analysis is the following: for

given P“ ’ 25 -maximum increases as K increases ( M, decreases).
[}

APPENDIX IV

THE BUFFERED SHOCK TUBE WITH AN AREA CONTRACTION
AT THE SECOND DIAPHRAGM

The use of an area contraction in conjunction with a buffered shock tube

- 5.
has been considered by several authors. 1,6,8-13, 15-18

If the area change

is located at the first diaphragm, the flow is that of a simple shock tube with

an area change followed by a flow identical to that in a constant-area buffered

tube. This case is fully considered in the main body of the report (Sec. 2.2.3).
Suppose that an area contraction exists at the second diaphragm station

of a buffered shock tube and that the diaphragm ruptures immediately upon

impact of the initial shock (Fig. 16). If the contraction is approximated by a
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discontinuous change, the resulting simplified wave diagram will include the
incident and transmitted shocks, an interface that separates the two gases,

and a reflected ware. The cases of interest will involve supersonic flow behind
the initial shock (M L > 1) , and under this assumptio; three possible solutions
exist. If the contraction is sufficiently small, the reflected wave is an upstream-
facing expansion (Q-wave) which is swept downstream (Fig. 16-a). At larger
contraction ratios the flow is reduced to the sonic value and a shock wave is
required to match conditions at the interface. For a limited range of contrac-
tion ratios the shock can be stationary at the area change (Fig. 16-b), but as
A'/Ag increases a reflected shock is found (Fig. 16-c).

There has been a considerable amount of interest in this problem in
recent years. 34,35 For certain values of incident shock strength and contrac-
tion ratio,all three of the above solutions will satisfy the conditions of the pro-
blem. This "'regiown of ambiguity" was found to be a direct result of the simplify-
ing assumptions implicit in the wave diagram technique. More exact analyses
indicate which solution will held in any particular case.

For cases of practical interest the area change will be so large that a
reflected shocic exists, and the flow is adequately represented by Fig. 16-c.
The flow from region 4 to region 1 will obviously be represented by the simple
shock tube equation. After the passage of the reflected shock the flow will
have a smail subsonic velocity “5 . In a coordinate system which is station-

ary with respect to the reflected shock

M. = Ytz (A-61)
S a,
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where U speed of reflected shock
4

Ms reflected shock Mach number
-

The ordinary shock relations hold across the reflected shock.

_ 23 Ms,.z"(7:"/) (A-62)

52 7+

_ Bamg --0]" [e-nme +2]"
— (7+1) M,

A

52 (A-63)
The flow from region 5 to the beginning of the unsteady expansion 5' is steady.

For a monotonic convergence M, = 1, but if the area change is a converging-

diverging section M; >1 . The usual steady flow relations apply.

7,-1 Pie
’) = o {A-64)
25 1 — 2
1+ == M,
% +/
7,-1 2 2(7,-1)
._f_'. - M; 't 2 M5 (A-65)
A, M /0 i
5 -4
8 I + 7 Mg
From 5' to 6
/ 72— / 7, =i ,
a, + = e + —5— U, (A-66)
Therefore, . % -1 M: I2 Iy 7-1 M'
Qg _ 2 5 2 5 (A-67)
Qs - 7 -1 0 %=1 Uy
I+ =M, I+
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Define G by the expression

2
B 7[ __,I 2 ll:' ] 7,"[
_ H* 2 M5 7 -1 / (A-68)
G = I+ M
| 7-1 M”' 2 5
2 5
. —
Then
/il
27
a¢ G
= (A-69)
ag |+ 7-1 Uy
2 ag
or
-l
g 27 7 -1 u
— = G - —1- -70
Qg 2 ag : (A-70)
Applying the isentropic relation, it is found that
-—lZ
B L] 7!
p ! | -1 8 Se (A-71)
se ~ G |'T 714 %1
8 A 27,

Equation (A-71) may be interpreted as meaning that the flow from region 5 to

region 8 ig equivalent to the flow in a sin;p’le shock tube with a pressure ratio
-

C-;Ps8 and a speed of sound ratio Asa GC*" . Therefore, G 1is an

equivalence factor for an area change at the second diaphragm. Itis import-

ant to note that this. is not the same as the " ?« '"" factor used previously, If

equations (A-62), (A-63), and (A-71) are combined, the basic equation for

this type of shock tube is obtained.
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p = 27y Ms, =(7s-1)

n lit u Va-l
o)
1 7+l Pai 5 Mg

| (7;*’) (z-1) (M M’L Ms, Ms,
G X
(7' +1) G [27, - (- l)_-] [(7 I)M P 2___] (A-72)
2
~I
Ga)" ()
) 48 (’143 (7I + ’)
- th 1 >
[7.7, T [(-D Mg +2] / 27,M; - (7-1)
However, the equation still involves two unknowns, M s and M sy
8
The equation of continlity across the reflected shock is
Us, + u,_) = ,05 (Us,, + us\) (A-73)
or
P A
= Y (—‘ —I)+—‘ u (A-74)
s 2
©\5 ¥
By using the relation
2
P ( +1) MSr
= y A-75
,O:. (7I-I) Ms +2 ( )
.
in (._A-‘M), it is found that
Uy - Ug — s 2 I\
=, TMMoo s T (M Msr‘) (A-76)

M, is known and M5 can be calculated from Eq. (A-65), and if (A-65) is

used, (A-76) becomes a fourth order algebraic equation for M In any
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practical case Eq. (A-76) can be solved by iteration.

If the area contraction is very large, # =~ O and the shock becomes fully

reflected. 2
M‘ _ 27’, Mt,"(’;-/)
= (DM + 2 (A-77)

This exprescion may be used to eliminate Ms,. from Eq. (A-72).

: [/
p o 2uMy -G (5'——/2 X
+8 7, +1 Py

( _ * I (%-DHM,, +2 7,-1
5

— | = ———
M‘: G, (3’7")Ms - 2(%-1) e+l X
‘ (A-178)
_m
r'_
bt T (0
(7,+ I) %s M38 S \7 P4; pﬂ

7-1

G % [2(7:"’)7‘4:, -(1,-33 " [(37;—1)}4;—2(7,_[2"/‘J

where —_

. ! . pe_ = .
since Ms = 0 and Ms = 1 for an infinite monotonic convergence.

APPENDIX V

DERIVATION OF THE DETONATION BUFFER EQUATIONS

Under normal conditions a flame in a tube filled with combustible gas
will propagate at the low velocity of a few meters per second. Under certain

conditions, however, this slow combustion process is changed into a very
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rapid process that propagates at supersonic speeds. This second type of
combustion process is known as a detonation. In the following it will be
assurned that the chemical reaction occurs instantaneously across a sharply
defined front. Then the only difference between a detonaticn and a pure shock
wave is that the chemical nature of the burnt gas differs from that of the un-
burnt gas and that the reaction influences the energy balance.

In the following three pages the fundamentals of detonation wave theory
will be reviewed. Similar developments can be found in standard texts. 25, 28

Referring to a detonation moving into a quite gas at speed UD » the

Rankine-Hugoniot relations become

PI V‘ = sz (A-79)

k 5

N 2 1
Pi+pV = Pt T AA (A-80)

and
| 2 l 2
&, + .—E:— +—2T-V' + AEC = ,02+"?;"'1: +‘E‘Vz (A-81)
where -

Vo = Up—~ U,y
AEc is the heat of chemical reaction per unit mass at constant temperature

and pressure. From (A-79) and (A-80) the relation

Pa=# 2 2 2 2
— =PV, =P VYV, >0 (A-82)

1
v, -,

follows, just as in the case of pure shock waves., Here /r-_-l/p is specific

volume. Equation (A-82) implir s that there are two diiferent types of processes
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compatible with the conservation laws: those in which both pressure and

density increase and those in which both pressure and density decrease.
Processes of the first kind are detonations while processes of the second

kind are slow combustions or deflagrations. By considering pure shock waves
(AEC =(0) , it is found that deflagration-type processes (—pz!: p,)2are excluded
because they would involve a decrease in entropy. However, this argument does
not apply to the case where a chemical reaction occurs.

By proper manipulation of (A-79) and {(A-80) the relation
2 2 .
Va V= (»- #2) (v; + vy) (A-83)
is found, which when used in Eq. (A-81) yields
l
L, -2, = (pytp)n-vy) + AE,  (a-84)

This relation involves only thermodynamic variables and is commonly
called the Hugoniot relation. The internal energy can be considered a function
of the pressure and specific volume; in particular for an ideal gas with constant

specific heats
PV

=T (A-85)

Therefore, knowing AEc’ X P and v, the Hugoniot relation can be
plotted in a p-arplane. This plot of (A-84) subject to the restriction of Eq.
(A-82) is called a Hugoniot curve (Fig. 29). The curve has a detonation branch
(Mé nr;) and a deflagration branch (pé '?’l) . The present study will just consider
the detonation branch; most phenomena to be considered for this branch will
have an analogue in the deflagration branch.

A straight line through the point (ﬁa, ,/V',) will in general intersect the

Hugoniot curve in two points. By increasing the slope of this line (decreasing

65




the angle ¢ } the two points of interzection eventuaily come together at
point C which is known as the Chapman-Jougu:et point. Detconations repre-
sented by points below C will be called weak detonations; those represented
by points above C will be called strong or over-driven detonations.

The Chapman-Jouguet process has certain peculiar properties that can
be derived from thermodyramic considerations. Among these are the following:
of all detonation processes the detonation velocity U, and the entropy of the
burnt ga;s §, are minima for a Chapman-Jouguat process, and a Chapman-

Jouguet front when observed from the burnt gas moves with the sound speed.
V.= U, —u, =2, {A-86)

Also, by thermodynamic arguments, certain general statements can ke
derived which are called Jouguet's Rules. These can be stated as: the gas
flow relative to the reaction front is supersonic ahead of any detonation, super-
sonic behind a weak detonation, and subsonic behind a strong detonation. If a
more detailed analysis is made of the reaction process, taking heat conduction
and viscosity into account, it can he shown that weak detonations are possible
only under extreme and rare circumstances.

Consider a detonation front which is being followed by a piston moving
with constant velocity ( p - This problem is quite similar to the problem
of a detonation in a shock tube where the condition of constant pressure and
velocity at the contact surface replaces the piston. Suppose that « Y )Li)-—at -
Then the velocity of the gas behind the front is greater than that which exists
at the Chapman-Jouguet point, and the detonation is over-driven. If Ug= Uxf'“z ’

a pure Chapman-Jouguet detonation is sustained. If W _ < UD-—a.‘_ , @

y o

Chapman-Jouguet detonation will occur, but is will be immediately followed
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by a rentered expansion wave. The front of the expansion will just coincide

with the detonation front since

U) = u, +ta, (A-87)

If tiie piston is not moved at all, ¢ , = 0, and a Chapman-Jouguet detona-

y 2
tion is still possible. In this case the expansion will decelerate the flow to zero
velocity. That this detonation is the one that actually occurs, is the Chapman-
Jouguet hypothesis.

During the use of a detonation in a shock tube it is desirable to eliminate
the expansion fan which follows the front. Therefore, only driver p-ressures

which are great enough to support or overdrive a pure Chapman-Jouguet deton-

atior will be considered. Fzom (A-79)

w, =U, (!- r’n) (A-88)
and from (A-80)
u, = —p:%ﬁ- (A-89)
£, “p

2
After multiplying these two relations together and dividing by &, ,

(uz)t__ (l"r‘lz)(a,")'?’l
a, - P 2 1 (A-90)
1 %1
or
¥ 4
MU _ (le”) (" .r'n.) )
a, - ‘)"I" (a-91)

1

Assume that both the burnt and unburnt gases are ideai gases with constant

specific heats.

2

P a,
L, 4+ — = = A-92
! P, Cr T 7-1 ( )
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When (A-92) is used in Eq. (A-81),

7 -1 a V:- -1 a, 7-1
= *( ) S - ¢ (4-93)
3

where AE,_

C‘Pl T’

6
|

From Egs. (A-79), (A-88}, (A-93), and the definition of the speed of

sound
u\* % 7%/ e
M s a") 2 . 7; 7;.’ P’l ’1'1 ? '
s, - []__r.:,- z - 7,-1 ['_ r'n.j (A-94)

If this expression is combined with (A-89),
7+l

o BT
pu - P & 7, +1 + 27 p (A-95)
21 7,-1 7”—, ’

This can be used in {(A-94) to obtain M s, as a function of P“ , but the corres-
ponding expression is quite complex. Consequently, we shall use P2= asa
measure of shock strength rather than M 5"
Consider a constant-area bufiered tube similar to that shown in Fig. 1
with the exception that the buffer gas is a detonable mixture. Assume that the
driver and driven gases are perfect gases. The equations which hold across the
detonation front have been Jderived above. The burnt gas will not behave as a
periect gas in the expansion from region 2 to region 6, and the flow through
the fan should properly be evaluated by numerically integrating the equations of

characteristics. For the purpose of our simplified analysis assume that the

isentropic relation can be written as
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27,

2
. a,) % (A-96)

7 2¢

where 7;( is the average specific ratio between region 2 and region 6, and

the nonsteady expansion relations can be adequately represented by
7 _-1
— — ————— — —
a, = a, ~— (44 a,)} (A-97

Then the basic equation for this shock tube is

7-1 4, a, '
4+ x 7
- — A-98)
Fia Fre ! 2 a, d,} X (A-98)
27,
( LAy |

%o |
1.' "2 (u1 ~u,)}
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TUBE - UNSTEADY-EXPANSION TYPE
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Figure 2
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Figure 4 PERFORMANCE OF CONSTANT-AREA BUFFERED TUBE - UNSTEADY-EXPANSION TYPE -
WITH THE SAME MONATOM!IC GAS USED THROUGHOUT
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Figure 5 EFFECT OF PRESSURE RATIO DISTR!BUTION AND BUFFER

GAS MOLECULAR WE!GHT UPON STRENGTH OF FINAL SHOCK
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Figure 7 OPTIMUM VALUES OF INITIAL SHOCK STRENGTH FOR GIVEN OVER-ALL

DENSITY RATIO WITH CONSTANT-AREA BUFFERED TUBE
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Figure 20 PERFORMANCE OF A DETONATION BUFFER WITH TWO DIFFERENT VALUES OF K
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Figure 22 WAVE DIAGRAM FOR A BUFFEREC SHOCK TUBE OF FINITE LENGTH
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Figure 23 POSSIBLE WAVE PATTERNS RESULTING IN A SHOCK TUBE
WITH AN AREA CHANGE NEAR THE DIAPHRAGM
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