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ABSTRACT

This report presents -a general investigation of buffered shock t 'es.

For the case of strong shocks the number of variables needed for the analysis

of buffered shock tubes is reduced to three. An expression is obtained from

which the buffer conditions necessary for the production of the maximura shock

Mach number are determined. The strong shock analysis is extended to include

shock tubes with many buffers and buffered shock tubes with area changes at

either or both diaphragms. The concept of using a detonable mixture as a

buffer gas is explored and its limitations are indicated. Also, a study is in-

cluded of different shock tube geometrical configurations to indicate means of

achieving the maximum testing time.

The strong shock assumption implies that for given over-all conditions

the final shock strength depends only upon the upstream density ratio. This

simplification permits the study of the buffered tube throughout its entire range

of operating conditions. A number of general conclusions can be drawn from

this study. For given over-all conditions a buffered shock tube will produce

stronger shocks than a simple shock tube provided that the optimum buffer con-

ditions are used. The performance of a shock tube improves as the number

of buffers increases, but the final shock strength soon approaches an asymptotic

value. The performance of a buffered tube is improved by using an over-all

area contraction; the most efficient distribution involves equal area changes

at each diaphragm. The gain in performance obtained with a detonation buffer

is limited when the final shocks are very strong. For fixed driver conditions

and final shock strength, increasing the diameter of the driven section does

not significantly increase the testing time.
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1. INTRODUCTION

The shock tubc has become a common laboratory tool f3r the study of

aerodynamics, chemical kinetics, combustion processes, and high tempera-

ture gas physics. The literature on shock tubes is very extensive, compilations

of published works can be found, for example, in Refs. 1 and 2. In recent years

the shock tube has been extensively used as a driver for shock tunnels in which

Mach numbers and stagnation enthalpies of hypersonic flight can be simulated

(Ref. 3 has a large bibliography on the subject). Among the driver gases which

have been used for these devices are the following: cold hydrogen, cold helium,

hydrogen-oxygen mixtures with and without diluent, heated hydrogen, and arc-

heated helium. The present desire to simulate flight at escape velocity

(36, 000 ft/sec) and higher has stLmulated interest in extending driver cap-

abilities. 4 ,"

The purpose of this report is to study a particular method for increasing

the shock Mach number in a shock tube with any given driver. This method is

the use of the buffered (or multiple-diaphragm) shock tube. The use of buffer-

1, 6-18
ing has been considered by many authors during the past ten years.

tlowcver, because of the complexity of the problem, the previous studies have

d-alt with specific cxamplcs only, and, therefore, do not reveal in a general

rm the rmaxamum gains to be obtained. The present report utilizes an

t -uxnptiun cf strong shocks to srnplify the analysis of optimum performance

Wth this simplificaten the optimum buffer conditions are predicted over the

t tire range of over-all (i.e. drive:- to driven) conditions. Analytical expres-

si%,ns ar, derived for the maximum final shock strength obtainable with the

cptimnum b,;'fer conditions.

Manuscript re!eased by the author Jan tary. 1964 for publication as an ARL
Technical Documentary Report.



It may be noted that a number of buffered tubes have been built. 13-18

and, in general, the experimental results support the theory. However. the

actual performance of these tubes is below that predicted by ideal theory duc

to such effects as shock wave attenuation, wave reflections, contact zone

mixing, and real gas effects.

The convenience of using strong shock assumptions to simplify the pre-

sent analysis of buffered shock tubes was pointed out in the work of Hall and
19

Russo. They present a useful simplification to the simple shock tube equation

for shock Mach numbers exceeding about three. For a given driver gas specific

heat ratio, shock tube performance can be explicitly expressed for all initial

conditions (including area change) in terms of two variables. They note that

the performance of buffered tubes (with strong shocks) can be expressed in

terms of correstonding variables with only the upstream dc-.. ty ratio as an

additional variable. They further state that previous results of Russo and
10 -

Hertzberg showing the effects of varying buffer gas pressure and molecular

weight can be correlated in terms of this density ratio.

In Section 2. 1 a survey of previous studies of buffered shock tubes is

presented. The theoretical studies all bear out the fact that the performance

of any shock tube can be improved by the inclusion of a buffer secticn. Cal-

culations of the performance of a buffered shock tube for any given initial

conditions in the driver and driven sections are quite lengthy because of the

number of variables involved: buffer gas specific heat ratio, molecul-.r

weight, temperature, and pressure. For a given buffer gas at a fixed initial

temperature the final shock Mach number varies only with the buffer pressure.

There exists a certain buffer gas pressure (which shall be called the optimum

2



pressure) for which the final shock strength is a maximum. The determina-

ticr. of this optimum pressure is complicated by the fact that the calculation

of the driven section shock Mach num-n ber involves two iterations for each

set of initial conditions.

In Section Z. 2 the equations are simplified with the assumption of

strong shock waves so that analytical expressions for the optimum buffer con-

ditions are obtained. When the optimum conditions have been determined,

anal,tical expressions are obtained for the maximum final shock strength for

any given over-all conditions. The strong shock analysis is extended with

similar results to the study of shock tubes with many buffers and to buffered

tubes with area changes at either or both diaphragms.
12.

The use of a detonable mixture as a buffer gas is considered in

Section 2. 3. This device has most of the characteristics of a buffered shock

tube with the added advantage that chemical energy is released to the flow in

the buffer section. When the strong shock assumption is applied to the detona-

tion buffer equations (assuming ideal gases), the optimum performance con-

ditions can be determined. if the tube is operated so that the detonation in

the buffer is close to a Chapman-Jouguet detonation, a substantial increase in

final shock Mach number is possible. However, if the detonation is strongly

ovr-driven, the detonation buffer offers only moderate gains over the inert-

gas buffer.

in Section 3 studies are made to determine the geometrical configuration

which yields the greatest testing time for a given final shock strength and

specified driver conditions. It has been pointed out that there is a severe de-

crease in flow duration for shock tubes operating at low pressures due to the

3



20-, h etigrm
effects of the boundary layer behind the shock wa.es. Tht- t'stinr tine

as limited by boundary layer growth has bec-n shovn to be "J:rectly proportional

to the pressure and to the area of the driven section. This fact has stinulated

interest in shock tubes with larger driven sections than dr:'-.r sectionb. For

most cases of interest the benefit of the larger diameter i. found to be offset

by the need for a lower initial pressure to maintain the same shock Mach

number.

2. OPTIMUM PERFORMANCE OF BUFFERED SHOCK TUBES

2. 1 REVIEW OF PREVIOUS ANALYSES

The use of the double-diaphragm shock tube (i.e. the buffered shock
1 6-18

tube) has been considered by a number of authors. ' In the following

analyses it will be assumed that the flow is 3ne-dimensional and inviscid .% ith

no heat conduction and no mixing at the interfaces. For the most part th( gdasts

will be assumed to be ideal gases with constant specifi : heats.

The basic arrangement is illustrated in Figure 1 for the "unsteady -

expansion" type of buffered shock tube. The initial flow phenomena are

represented on a distance vs. time (x-t) plot which is c.,mmoinly known i. a

wave diagram. The high pressure in the driver (region -4) causes the initial

diaphragm to rupture. A shock wave S propagates into the buffer gas,

while a rarefaction (or expansion) wave propagates into the high prt-bsurt

driver gas. The driver gas and the buffer gas remain sewparated by a tontatt

surface across which the pressure and %elocity are equal. but the density.

temperature, and entropy are, in general. different.

Assuming that the second diaphragm bursts instantaneously upon the

impact of the initial shock, the wave diagram is rtpre!,s ntt d by Figure 1. The

4



flew from region 2 to region 8 resembles that of a simple shock tube except

that the "driver" has an initial velocity U. and has been heated by the shock

to a temperature T., However, the pressure '2. is less than the initial

driver pressure - . Therefore, the double-diaphragm shock tube can be

considered as a device which effectively sacrifices press',re ratio in favor

of an increased speed-of-s&ound (or temperature) ratio.

A seecon possibility, termed the reflected-shock type of buffered shock

tube, is illustrated in Figure 2. I,9 With this configuration the initial -hock is

allowed to undergo complete reflection from the second diaphragm leaving the

gas in region 5 at rest. After a predetermined delay 1- the second diaphragm

is ruptured mechanically; the ensuing flow is shown in Figure 2. While this

configuration offers a slight improvement over the unsteady-expansion type,

the mechanical difficulties involved in breaking the second diaphragm will

preclude its further consideration. The reflected-shock type buffered tube

should net be confused with the shock tube with an area contraction at the

second diaphragm. This tube also produces a reflected shock, but the ensuing

flow is fundamcntally different from that of the reflected-shock type of tube.

Considcr sme of the characteristics of the unsteady-expansion buffered

shock tube. Before the shock strikes the second diaphragm the flow is identical

to that which is found in a simple shock tube. Therefore, the well-known

simple shock tube equation is valid (see Appendix !).

P / [I--P4.1 , 4 (MS -
11+ r, A M

ULU g, l i n



where t$,= U ,/ I  initial shock Mach number

us; speed of the shock relative to the tube

a- speed of sound

initial diaphragm pressure ratio

initial diaphragm speed-of-sound ratio

7'-= C//c ratio of specific heats

Referring to Figure 1 and applying the usual equations of one-dimcnsional

unsteady flow, the basic equation for the constant-area buffered shock tube is

obtained (see Appendix I).

'/22 ;i/- 2 - -

k,8 // ()

P4,\IM /'t +_ -/ (M P4.]}~
2jY,

'41) (M(M51
where final shock Mach number

P4 l = 14/P density ratio

The final shock strength M is a function of the following eights8

variables: 7 , 4 , I P I ' MS, . and J . However, these are
48 48 4 +

not all independent, and one can be eliminated by the use of the simple shock

tube equation (Eq. (I) ). As in the case of the simple st,ock tube, M s  is

increased if P+8 is made large and r., is made small (i.e. making A48

large). Also, as with the simple shock tube. the best pcrformanc. is Ubtained

when -/4 is small which suggests a diatomi driver gas. The effect of

6



varying J( is found to be negligible; a monatomic driven gas is found to be
8

only slightly better than a diatomic gas.

When conditions in the driver and the driven sections (4 and 8) have been

specified, M depends upon the three variables P P , and r Russo
+1f 41

10
and Hertzberg have shown that the performance of a buffered shock tube

improves with increasing buffer specific heat ratio . Also, the use of

monatomic buffer gases will minimize real gas effects which tend to reduce

performance.

Henshall 9 presents results for a buffered tube in which the same diatomic

gas at the same initial temperature is used throughout. In this case ;r= 7'

-7/5, P = P41 P = I and Atf P , = 8 where A4 is the

molecular weight. The final shock Mach number depends only upon the over-all

pressure ratio and the upstream pressure ratio. Figure 3 shows M., as a

function of the downstream pressure ratio P with P as a parameter. It

will be noted that the maximum value of M38 occurs when PS is approximately

(P,8)0 . A similar result can be seen from Figure 4 which shows the per-

formance of a tube in which the same monatomic gas at the same initial temper-

ature is used throughout. Of course, in a more general case, the geometric

mean may not be the optimum buffer pressure. The shock Mach numbers

obtained from simple shock tubes with the same over-all conditions are in-

cluded in Figures 3 and 4 for comparison.

Hydrogen is a widely used driver gas since it has tne smallest molecular

weight, anc, therefore, the smallest density at a given temperature and pressure.

Figure 5 shows the performance of a tube with hydrogen driver, monatomic

4buffer, and air as the driven gas at an over-all pressure ratio of 10 . The

7



temperature is assumed constant throughout so that

P8 : 4 8 48  and r= ft , (3)

where ,/" 4 8 .A4 /U 8 the ratio of molecular weight!-. Therefore, M is a

functior only of I and P

A study of Figure 5 reveals the following .- teresting feature. while the

optimum downstream pressure ratiu P v-iries with tht buffer gas nmilccular

weight, the maximum value of M. is relatively unaffected. This seems to

indicate that certain simplifications of the basic equations are poss:ble whi'h

reduce the number of independent variables. It will be shown presently that

this is indeed the case and that the simplified buffer equation may be used to

determine the optimum buffer conditions.

2.2 INERT-GAS-BUFFERED SHOCK TUBES

2. 2.1 Simple Constant-Area Buffered Tubes
19

Recently Hall and Russo have shown that the analysis of a sirple

shock tube with an area change near the diaphragm can be greatly simplified

by assuming that the shock Mach number is greater than about three. This

theory is reviewed in Appendix II where it is shown that for given and

the basic equation involves only two variables: Z' and r =
141 6 416

where T, is the equivalence factor of Resler, Lin, and Kantrowitz. A plot

of the basic relation is given in Figure 6 for various values of f • the

variation in performance with 7, is found to be negligible. The plot can be

interpreted as representing the performanc e of a sinip)l shock tube merely by

setting q- cqual to one.

Now apply the strong shock assumptions to the constant-area buffered

8



tube. Assuming that both and 1and are greater than about three, Eq. (2)

can be simplified to the relation

7 V4

____ 8 71")

IIlt

(4)

• 2Z

P ,; % ,

where

Msm  M3a
z and Z-

This equation can be further simplified by the use of the simple shock tube

equation, which in this case becomes

13 P Z, (5)

Equation (5) is easily solved or P4, yielding

I -( 2- -- 
2 r,

[ , 1 _ ~(6)

When Eqs. (5) and (6) are used in Eq. (4),

9S

(7



where

For given specific heat ratios and fixed over-all density rat.o P1 ,

depends upon and . it is possible to maximize E with respect to
so a

these two variables and obtain the conditions for optimum. performance. [he

details of this calculat:on are presented in Appendix IIi. The important point

is that, once the maximiz:ng is done. the final shock strength Z is a function

only of the over-all dens:ty ratio r

2

Upon now makine the addit:onal assumption that $ is large compared

2
to - , Ea. (7, reduces to a particularly simple form.

SBEP5IhZs T (6)

DI= rI

and

Equation (8) can be written symbolically as

S=F1 (7,, ) , ; r, z, ) 9

Whtn the over-all density ratio and the spec ific heat ratios of all gases are

specified, the inal shock ..rtngth depends only upon , . Alternatively.

Eq. (6) may be used to eliminate the explicit dependence of 8 upon z,

Then, for specified over-all density ratio and specific heat ratios, Z would

depend onl.y upon the upstream density ratio P This result was previously
4

10



noted in Ref. 19. The value of Z. needed to yield a maximum 8 should

be a solution to the equation

D - 0 (10)azi

The details of this calculation are shown in Appendix II where it is found

tha t

tnat~X ) -:z~ (11)
482. z A'2

5E.124 c.,+x.) z,
and

where

I- I-+)4 1I (13)

Equations (11) and (12) may be used to determine -r maximum as a

function of r144 by means of the parametric dependence of these two quantities

upon Z, I Thus, for any given rP8 , F, (optimum) can be calculated from

(I1), the required upstream density ratio [I can be found from (6), and the

maximum final shock strength can be obtained from (12). Figure 7 is a plot
of Eq. (11) for the special case in which 4 7/5 and r, 5/3, while

Fig. 8 of z vs. 8 is obtained from Eqs. (11) and (12). Also, on Fig. 8,

for comparison, is a plot of Z vs. P for a simple shock tube w" I ' =

= 7/5 (Eq. (6)).

11



As in example of the calculational procedure, consider a tube with a

hydrogen drivc r. a rnnatomic buffer, and driven air all initially at the same

temperature. Then

P 4;8 0696 P+8

in order to compare this with the results of Fig. 5 let P'M = 10 4 . PU= 696.

44Then from Fig. 7 2 1 :189. from Fig. 8 F : 1!7, and from Fig. 6

= :130. Now since P = 104. M = .7 which is in good agreement
*1 48 S 8

with Fig. 5. If we assume that the buffer gas is argon At, = 39.9) then

P=1P4/,, 41 = 2580 or P,, = 3.88 which is again in excellent agreement

with Fig. 5.

Some idea of the validity of the assumptions can be obtained from Fig. 9

which shows a comparison of the exact solution (Eq. (2) ), approximation I

(Eq. (7) ), and approximation Z (Eq. (8) ) for two different monatomic buffer

gases (,&k, :- 4 and , - 80). The plots for other values of the molecular weight

are similar. Approximation 2 becomes noticably worse as PJ8 becomes large;

this is to be expected since M will be small for large P,8  Since the maxi-

mum Ms for the , = 80 gas occurs at small P, , approximation 2

reliably predicts the maximum while the approximation for the ,/t, 4 case

is less accurate. This and other calculations indicate that approximation 2

alwjys yi(Ids values of M., lower 0h3n the exact solution. so that it can be con-

sidered as a lower bound. The curves of M., vs. P,8 for approximation 2 are

,ll tmxctly simil-r (no matter %hat the buffer gas molecular weight), while the

curves for approximation 1 show a slight dependence of Z max. upon

molecular w.ight (just as the exact curves do).

Figure 10 presents another comparison of the approximations, this time

12



for the case where 7z OP T7/,. , , = 7T.7 and
S+

P4 = 10 . In this case approximation Z gives a value of M. which is in

error by about 15% near the optimum. This error is due to the low values

of MN, (around 3) which occur near the optimum conditions. When the pro-

duction of strong shocks is a primary concern, however, the values of M,

which are needed are usually such as to make approximation 2 reasonably good.

In Appendix III the problem of determining the optimum conditions from

approximation I is gi'-en detailed consideration. No analytical expression was

found fron- which the optimum conditions for any I' could be determined.
48

Solutions to the problem were obtained for fixed values of P., and K

where

K 1 = "4 1

anil

T4 TT,, _ T,

but the calculations are quite lengthy. However, the following important fact

can be noted: for fixed P 48 the value of Z . -maximum increases as the

value of K increases. This result is illustrated in Fig. 9 which shows

that Z.-maximum is greater for .Ai, = 4 ( K " = . 5) than for /., = 80

( K 2" = .025). It is interesting to note that as K increases, the value of

M 5 at f6 -maximum decreases, and, therefore, the strong shock assump-

tion is becoming increasingly invalid.

The difficulties involved in determining the optimum conditions with the

use of approximation 1 are comparable to those involved with the use of the

exact equation. The calculations of the optimum conditions with approximation

2, on the other hand, are relatively straightforward. Even in cases where the

13



second approximation is not very accurate, approximate values for the

optimum conditions can be obtained for use as initial guesses for exact

calculations.

2.2. 2 The Many-Buffered Tube

A shock tube with more than one buffer section should produce a stronger

9
final shock than a simple buffered tube. Henshall considers the special case

of all diatomic gases with the same molecular weight and initial temperatures.

He assumes that the optimum pressure ratio distribution will be equal pressure

ratios across each diaphragm. Under these assumptions the final shock strength

increases with the number of diaphragms but the relative gain decreases as the

nimber of diaphragms increases. As the number of diaphragms becomes very

large, the final shock Mach number approaches an asymptotic value.

The calculation of the optimum conditions for a many-buffered tube is

very difficult because the final shock strength depends upon the density and the

pressure in every section of the tube. It is therefore very desirable that a

method be developed to determine quickly these optimum conditions. The

basic equation for the many-buffered tube is developed in Appendix I and is

based upon an idealized wave diagram such as that shown in Fig. 11.

The wave diagram in Fig. II indicates the numbering system that will be

used when discussing the many-buffered shock tube. The system used for

numbering the flow regions in simple shock tubes (driver-4, driven-i) is almost

universally accepted. The numbering system for the buffered shock tube which

is most widely used is that which labels the driven section 8 and the region be-

hind the reflected shock (if any) 5. Figure 11 represents the extension of this

system to a double-buffered tube. Regions 5 and 9 are omitted because there
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are no reflected shocks.

For simplicity, be-gin by considering a double-buffered shock tube. The

basic equations are (A-23), the simple bufer Eq. (2), and the simple shock

tube Eq. (1). Assuming that M 17 MsI , and Ms >>I , an initial

approximation is obtained, but the equations are still so complex that no

attempt will be made to maximize them. When the rather restrictive assump-
2. 2 2 2

tions that M >> - and M :J - are made, it is found that Eq. (1) reduces

to Eq. (5), Eq. (2) reduces to Eq. (8), and Eq. (A-Z3) reduces to

22
P4  2 7,I2 M-%p 1 1 P, - X

Z~__ (14)

where =_

D8/2

atnd E =~~<~ 3)~ +

Now Eq. (8) can be solved for Fn8 yielding
48 4)

D8 a 8

So that Eq. (14) becomes
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f[2 z'_.o EZ ".

where 71Z+I a's

Equation (16) can be represented symbolically as

2 = F2 (?;,, 3.,,. , , Z 8,, ,,) (17)

So, for given specific heat ratios and over-all density ratio, the conditions for

maximum -M are
'aFz

D -I =0 and - 0 (18)

The calculations are quite lengthly, but fortunately the results can be

expressed as equations involving only the single independent variable "

27* + I 2 I

8 D, E, E., (I+ ,1) +X 8 )
(19)

z , 12 c, ---
where 1,-I 7'x

'8 Y"  16
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ie x'

DIID, ' D, C / 1 ,/ x (20)

and

s = j),,-I 1'' I+Xx/r- , Z

tc 1  (21

Figure 12 shows ? vs. r4,,. calculated from Eqs. (19) and (Z0), for

the special case in which , = ;4 = 7= 71 = 5/3. This result is shown

compared -.vth the results from the simple shock tube equation and the simple

buffered tube equation. The double-buffered tube curve lies above the other

curves, the relative improvement increasing near the two limits P,, 2 -- --

and 4 ' 01-oo(p,,--o). It is interesting to note that in one region (r-. 11.5,

. .36) no improvement is obtained by using buffers. This point was checked

by several exact calculations and found to be quite accurate, so that in this

range a simple shock tube is just as efficient as a buffered one. It will also be

noticed that the relative gain of the double-buffered tube over the simple

buffered tube is always less than the relative gain of the simple buffered tube

over the simple shock tube. Similar results are indicated in Figs. 13 and 14

for different gas combinations.

Evaluating the triple -buffered-tube equations (assuming strong shocks),

it is found that

F, 21 a. , (22)

so that the following conditions must be satisfied to determine the maximum

final shock strength:
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0 -=0 , and =0
aI (z3)

The final results are quite similar to Eqs. (19), (20) and (21). In fact, the resulting

equations indicate a general trend, so that it is possible immediately to general-

ize to a many-buffered tube of any number of sections. For example, if the

driven section is called number ( -1 ; 4) (based on the general numbering system

indicated in Fig. 11), then

1+4 Xl, ) ' -

" ' (24)4371+ 2'E -1 %"'J

a n d .1_ _

a 71-f CD '+t ) (Z5)

where -=

DA= II

and
C ,X, 4 ,. + 1(4,

Y1 + I 7'+4

These equations are valid only under the assumption that all the inter-

mediate shock Mach numbers are greater thin about seven. Of course, as the

number of sections becomes large, these assumptions will generally be violated.
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The results obtained from (24) and (25) are then only qualitative indications of

performance, but as such they indicate an important trend. The final shock

strength rapidly approaches some asymptotic value as the number of dia-

phragms increases, and this value depends only upon the over-all density

ratio. In actual practice the performance of a many-buffered tube will depend

critically upon the lergths chosen for each section. Wave interactions will

generate new waves which travel in the same direction as the final shock and

tend to limit testing time.

2. 2. 3 Effects of Area Contractions

A method for improving the performance of a simple shock tube is to

employ a monotonic area contraction near the diaphragm (see Appendix II).

The performan, e of such a shock tube is the same as that of a simple shock

tube with a pressure ratio of ?'P, and a speed of sound ratio of . A 41

where t, is the equivalence factor. Obviously, the performance of a buffered

shock tube could be improved by the use of an area contraction, but here a

contraction may be put at the first or second diaphragm or both.

Consider a ccntraction at the first diaphragm (see Fig. 15). The initial

flow from region 4 to region 1 is just the same as that in a simple shock tube

with an area change at the diaphragm (Eq. (A-34) ), while the flow from region

2 to region 8 is the same as that in a constant-area buffered tube. Therefore,

the basic equation for this configuratior is
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48#rQ>

4-1

(26(: E&u) I-.--s) X' , -,,l] E,-;r + 2]" (26

M $3

LP., kp,/ tr4,) 8 5
The analysis of the buffered tube with the area contrz.ction at the second

diaphragm is a much more difficult problem. The general theory is developed

in Appendix IV where it is shown that there are three possible wave diagrams

when M >1 (see Fig. 16). The case of most practical interest is the one for

which the area contraction will be great enough to produce a reflected shock

(Fig. 16 -c). Under these conditions the flow is adequately represented by

Eqs. (A-72) and (A-76). Unfortunately, (A-76) is a fourth order algebraic

equation for MSr the reflected shock Mach number, and it is usually solved

by iteration.

If the shock tube has area changes at both diaphragms, the problem can

be analyzed by a combination of the above two methods. Figure 17 shows the

performance of a H,.- He-air shock tube operating at constant initial temper-

ature and with an over-all pressure ratio of 10 4. When the over-all contrac-

tion ratio is nine, Fig. 17 shows the effect of different distributions of

contraction ratios. The best performance is obtained with equal area ratios

at each diaphragm. If, however, it is desired to have all of the contraction

at one diaphragm, the better performance is obtained with the area change at

the second diaphragm.

20



Strong shock approximations can be applied to the two cases of interest

(area change at Ist or 2nd diaphragms). Consider Eq. (26) under the assump-

tions that M 2" >I and M2 • it becomes
S P Vs ,-I

D =E 1  48 8
87_- . (27)

ky,
After 2 is maximized with respect to Z-

-(2r' ') Y (28)

I I-82.E,' CID/ 0, + Y) ,
and

=C "Z (29)

where
42 -'

I -- / (30)

/r -2)

When the area change is all at the second diaphragm, an analytical solu-

tion to the optimization problem can be outained only if the contraction is

infinite. Fortunately, for area ratios of ten or greater, the area change may

be considered essentially infinite. In this case

2. _ 7 , 3 , -(n,,) (31)
r -(31)+
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and the basic Eq. (A-72) is greatly simplified (see (A-78) ). When the

assumption that 14 >>I and M 7 -- is made,

3,/ ,-J (1 f 32)
C Z I-

where
•___-___ /, i /v

and 
4

G. is the equivalence factor for an infinite area contraction at the second

diaphragm. Obviously ?* can be maximized with respect to f in exactly

the same way as for a constant-area buffered tube. The results are as follows:

r2.,

2 Y4

I&X)(+ I (33)" 8 3L 1 3 ' 7 +
and

In Fig. 18 a comparison is shown between the exact Eq. (A-78) and the strong

shock Eq. (3Z) for the case of cold hydrogen driver, monatomic buffer, and

driven air. The agreement is excellent at large values of buffer gas molecular

weight and reasonably good even for a helium buffer. Figure 18 is entirely

analogous to Fig. 9 except for the area change, and the discussion of Fig. 9
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applies equally well here.

Figure 19 can be constructed from Eqs. (33) and (34). The graph again

points up the fact that some improvement may be obtained by using gases with

small values of -Y. , but the performance is quite insensitive to changes in x

Z. 3 DETONATION BUFFERS

One method of improving shock tube performance is the use of some corn-

bustion process in the driver to raise the pressure and temperature. 1, 6,11,12, 24

The most widely used of these techniques is constant-volume combustion in which

the gas is ignited and the diaphragm ruptures just as the peak pressure is

reached. Performance calculations for this type of shock tube can be made by

using the simple shock tube equation and effective values of -P4 , 4'+ , and a 4

corresponding to conditions after combustion. Therefore, the previous methods

of analysis are applicable to any shock tube with a constant-volume combustion

diiver.

Two other combustion processes which have been used for driver gas

heating are constant-pressure combustion 2 4 and detonation. Both of these

methods suffer because the initial shocks are closely followed by rarefaction

waves which limit steady flow and cause shock wave attenuation. Also, there is

a lack of uniformity of diaphragm ruptures with constant-pressure combustion.

The fundamental equations of detonation wave theory are reviewed in

Appendix V where it is shown that a pure detonation is always followed by an

expansion wave that lowers the pressure and velocity. If a piston were main-

tained in motion behind the detonation with a velocity equal to that of the flow

immediately behind the detonation front, no expansion could exist. If the piston

where maintained at a higher velocity, the detonation wave would be propagated
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at a faster speed, that is, it would be overdriven.

Consider a constant-area buffered tube with a detonable mixture in the

buffer. Such a device will be called a detonation buffer. If the conditions in

the driver section are such that P2 and R are equal to or greater than

the Chapman-Jouguet values, the detonation in the buffer will be followed

by a region of quasi-steady flow. The wave diagram will then be similar to

that shown in Fig. 1, but the calculations will not be so straightforward. In

particular, the flow through the unsteady expansion between regions 2 and 6

must be calculated by integrating the characteristic equation

of ! (35)
po

along an ifsentrope, 25

Some exact calculations were performed for a shock tube with a hydrogen

driver gas, air driven gas, and, a st.oichiometric hydrogen-oxygen buffer gas

(with an without helium diluent). Equation (35) was integrated with the help of

Mollier charts constructed from data obtained from Dr. Sanford Gordon at Lewis

Research Center, NASA. Conditions behind the over-driven detonation were

found by using the equilibrium normal shock IBM 704 program developed by Dr.

Russell E. Duff of Los Alamos Scientific Laboratories. Throughout the calcu-

lations the hydrogen driver was considered as an ideal gas, and the air was

treated.as being in equilibrium. 26, 27 The exact calculations are very time

consuming, and, consequently, only a few of them were made. Some typical

results are shown in Fig. 20 as a comparison to the approximate theory that

is developed below.

The addition of helium diluent to stoichiometri. hydrogen-oxygen has
28

some interesting effects. As helium is added, the detonation velocity
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increases and the molecular weight of the burnt gas decreases. The pressure

and temperature behind the detonation drop, but the speed of sound increases.

As a net result, the final shock strength does not vary much with the addition

of helium. Of course, the detonation buffer does offer an improvement in

performance over the inert gas buffer, but the gain is not outstanding.

In order to compare the detonation buffer with the constant-area inert-

gas-buffered tubes over the full range of operating conditions, it is desirable

to maximize the final shock strength and present a general '4, vs. Z 8 curve

for the detonation buffer. To facilitate such an analysis a number of assumptions

will have to be made. Suppose that the detonable mixture may be treated as an

ideal gas before detonation and as a different ideal gas after detonation. Further

assume that the unsteady-expansion flow can be calculated in terms of an

average specific heat ratio /' . Then the basic equation for the shock tube

becomes

___ 2 r,.

P{= . al (36)

where

a,+ ,. 12 (37)

and A Ec

AE C is the heat r.eleased per unit mass by the chemical reaction at constant

temperature and pressure (see Appendix V).

The resulting equations will be simplified by using P and P to
251
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represent shock strengths rather than M.s and t4, . When the normal shock

relations are applied, it is found that

(27/ is -- (38)a, [Pf 1~) p+ (Y711/
and

It 7,- -

1/ 1 + (39)

If Eqs. (38) and (39) are used in Eq. (36).

+8s 78l 2 -) (P161 -i)

2 . /

Z 2- 2rl 1,a+
-0 1 I24 i

+ 1 + .+1 F ", x

7271-T--) P- 4 (40)

f'z'e.-O . _, _ ,,.,o ,4,Yr--L (-: -'U. Ntl" pig 7 ', ;-

L ) P + (I P44 (P4 I L I+,-

Now apply a strong shock approximation P> I and P I
P 78

This is essentially the same as assuming Ms 1;> I and M' I Then
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p~ 2,p. p4

z(_ --L,,- (

",, 'I}

By the use of the relation

the dependence of p41 upon could be replaced by a dependence upon PI

o4 P41 PL

only. It is interesting to note that Eq. (41) can't be appreciably simplified

by making more stringent assumptions about the initial shock strength. Of

course, it is true that for p , .p the equations are no longer depend-

ent on , but this is the trivial case corresponding to no appreciable

chemical energy. Suppose that the initial specific heat ratios , 4 , '

and the over-all density ratio r are fixed. it is found that 8P$ is still

27
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a function of the five variables 12 , ', 9 , P4 1, andP,

To make this problem tractable assume that ? , , and ' are

known beforehand. Reasonable estimates of these quantities can be obtained

if the buffer gas and its initial temperature are known. If the temperature

and molecular weight of the driver gas are known, then

P41
K a constant (44)

and depends only upon F,, . The maximizing procedure is then

straightforward and a plot of P,,/4 vs. r4 can be obtained. Of course, a

different plot will be obtained for every value of the set of variables K ,

t-, and 9 . This procedure is the same as that used to predict the first

approximation curves for an inert-gas-buffered tube (Appendix III). By

analogy with the inert-gas tube, it is reasonable to assume that the variation

of the performance curves with K will be small.

Maximizing (41) for fixed values of y , , ' ; , and k is straight-

forward but tedious. The results of the computation for two different values

of K are shown in Fig. 20. Both curves show the performance of a tube with

a hydrogen driver, stoichiometric hydrogen-oxygen buffer, and air as the

driven gas. The values of the various constants used are as follows:

-z = 1.15 . =1.23

AE = 57 kcal. /mole 23.0

for T4 = 1000°K k =.22

for T4  = 300°K K =.41

The X'S represent typical pcints from the "exact" calculation with K = . 2Z2.

The agreement with the approximate solution curve indicates that the assump-
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tions used in the approximation are reasonable. The lower curve (K = . 22)

corresponds to a heated hydrogen driver and large values of P. for a given

' "The values of P. corresponding to this curve are considerably

above the Chapman-Jouguet value so that the detonation is strongly overdriven.

This performance curve is almost identical to that of a tube with an inert

buffer gas.

The curve which corresponds to a cold hydrogen driver ( " = .41) is

somewhat higher than might be expected. However, in this case the optimum

P is the Chapman-Jouguet value up to about r46 = 3- 103. This should give

the maximum gain over the inert-gas tube since the ratio of the chemical energy

to the total energy is the greatest in this case. Above F4 = 3.103 the detona-

tion is overdriven and the relative gain of this device should decrease. At very
large values of P41 the chemical energy released by the detonation is insignifi-

cant compared to the total energy, and the performance of the tube is

essentially that of an inert-gas-buffered tube.

3. TESTING TIME

Testing time is defined as the intdrval of time between the arrival of the

shock and the arrival of the contact surface at some point in the test section of

the shock tube. By considering the equation of continuity we can arrive at a
21

simple expression for the ideal testing time.

X (45)

where X is the distance from the diaphragm. Ideally the testing time could

be increased to any value merely by building the driven section long enough. Of

course, for a simple shock tube with a driver section of finite length, the
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expansion wave will reflect off the end of the driver and overtake the

contact surface (see Fig. 21). So, for a fixed driver length, there is an

optimum length of the driven section which will yield the maximum test time. 2 9

The wave diagram analysis for the buffered shock tube becomes much

more complex (Fig. 22). Many different wave interactions must be considered:

for example, the interaction of R 3 and C, . the interaction of C, andR 2 , the

interaction of R and R.., etc. Figure 2Z represents one possible length dis-

tribution that will lead to relatively long testing times in the driven section. If

area changes are present in the shock tube, the wave diagram is further com-

plicated by more reflected waves.

Unfortunately, the actual testing time is not accuraiely determined by the

idealized wave diagram technique. In the first place, if the driven section is

very long, shock wave attenuation will be important. The testing times calculated

for ideal gases will be lowered somewhat by considering real gas effects. How-

ever, Eq. (45) does not require that the driven gas be ideal, so that real gas

calculations can be used with it. In practice the contact surface will not be a

discontinuity but will be turbulent and diffuse. This reduces the test time con-

siderably; a good rule of thumb is to multiply the ideal test time by a factor of

one -half.

At pressures below about five millimeters of mercury the testing time is

found to be much lower than that predicted even with the above corrections.

Roshko showed that this could be largely explained in terms of the loss of mass

across the contact surface due to the laminar boundary layer behind the shock. 21

He solves the problem in terms of two similarity parameters X and T
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# 2 ;K1',A ,o
t.p. (46)

T1 X (Pit -i) a, 7- ms

(47)

where s.t.p. implies room temperature and atmospheric pressure
4 parameter depending on P , , and a-

a- Prandtl number

r" actual testing time
2 compressibility of shocked gas
2

d diameter of driven section

JAt dynamic viscosity coefficient

Roshko found the relation between the two parameters to be

X -2 [, QI -TI) + .2] (48)

for which T - 1 as X co . Hooker expanded Roshko's theory to account

for boundary layer mass accumulation between the shock wave and the contact

surface. ZZ Hooker's equation for X (T) is more complicated than Eq. (47), but

the improvement is relatively minor.

Recently Mirels has analyzed this problem and removed some inconsis-
23

tencies which appeared in the previous analyses. In particular, by consider-

ing the variations in free stream conditions between the shock and the contact

surface he was able to find improved values of the parameter A • The im-

provement provides much better correlation with experimental data for low

shock Mach numbers; for large Mach numbers the analysis basically agrees
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with that of Roshko and Hooker and with the experimental data.

The fact that T approaches a limit indicates that the actual testing

time does not continue to increase as the length of the driven section is in-

creased. After a certain time the contact surface moves at the same speed

as the shock, and the testing time is at a constant value that shall be denoted

by *i'nW . Roshko shows that

T - S (49)

Throughout the analyses of Roshko, Hooker, and Mirels it is assumed

that the boundary layer is thin (relative to the tube hydraulic radius) and

laminar between the shock and the contact surface. Mirels has evaluated both

the Reynolds number and the boundary layer thickness at the contact surface

(when it is at the maximum distance from the shock) and found these assumptions

to be good for strong shocks and low initial pressures. For relatively weak

shocks (under Mach three, say) and low initial pressure such as those used by
20

Duff, the boundary layer becomes rather thick at the contact surface.

For a fixed value of shock Mach number the maximum testing time as

determined by boundary layer development depends directly upon the initial

pressure and on the diameter squared. This fact has aroused interest in shock

tubes with large diameter driven sections for improving testing time. The

size of the shock tube driver is usually limited by structural and economic con-

siderations. Therefore, shock tubes with larger diameter driven sections than

driver sections have been studied.

A simple shock tube with an increase in area at the diaphragm admits to

one of four possible flow patterns (see Appendix II and Fig. 23). Generally,
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for strong shocks the flow will be of type (a), but for very large area changes

the other types are possible. Figure 24 illustrates the performance of such a

tube with varying values of driven pressure and diameter. With fixed driver

conditions (hydrogen, T = 750°F, " 24 = 15,000 psia, Li4 = 3.5") and
4 d

the shock Mach number held at 20, the pressure in the driven section must

be lowered for operation at larger diameters. These calculations were performed

assuming that hydrogen is an ideal gas with -/ = 7/5 and using the properties

of equilibrium air. From Fig. 24 it can be seen that testing time is being lost

by going to larger diameter driven sections since the quantity d8 a decreases.

The maximum testing time is obtained with a constant-area buffered tube.

The analysis of buffered tubes with larger driven sections than driver

sections is more complex. For example, if all the area change is at the sccond

diaphragm, a typical wave diagram is shown in Fig. 25. The upstream-facing

wave W is either a shock wave or a rarefaction fan depending upon the final

shock strength and the area ratio. The flow from region 2 to region 5 is a

steady expansion and is completely determined by conditions in region 2 and the

area change. The most efficient operation of this type of shock tube occurs

when the buffer pressure is so chosen that W reduces to a sound wave. Of

course, if the area change is small, it may not be possible to reduce it to a

sound wave. Figure 24 compares the performance of the shock tube configura-

tion of Fig. 25 at the optimum buffer pressure with that of a simple shock tube

with an area change and the same driver conditions. The comparison certainly

indicates the importance of using a buffer with this type of a shock tube.

Using the values of p ' , and M. from Fig. 24,calculations of

Irl were made from Roshko's theory. The testing time drops with
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increasing diameter, though not as severely as for the simple shock tube.

For certain arc-heated facilities the testing time is found to actually increase
5

with increasing diameter and fixed Mach number. With an arc-heatcd helium

driver the speed-of-sound ratio from the driver gas to the driven gas may be

as high as thirteen. In this range the gain in shock Mach number with in-

creasing pressure ratio is greater than in the more conventional range of speed-

of-sound ratios. Nevertheless, the giin in testing time is quite small. There

appears to be no strong reason for using large diameter driven sections when

operating at high Mach numbers.

Now consider a buffered tube similar to that of Fig. 25 but with a

converging-diverging area change at the second diaphragm. A typical wave
4-

diagram for this configuration is shown in Fig. 26. Again W may be a shock

or an expansion, and this must be determined in each particular problem.

Figure 27 compares the performance of such a configuration with that of a tube

with just a monotonic divergence at the second diaphragm. Notice that there

is always a loss in performance by using the converging-diverging section.

This result is analogous to the result obtained for the case of an area change
32

at the first diaphragm (see Appendix II). It is apparently true that the most

efficient way to accomplish an area change at a diaphragm is monotonically.

Finally, examine the effect of distributing a total area expansion between

the two diaphragm stations. Figure 28 presents results for given over-all

conditions and varying buffer diameter and pressure. The maximum final

shock Mach number increases as the buffer diameter is-increased from the

driver size to the driven section size. Although the performance continues

to improve as the buffer diameter is further increased, the improvement is
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rather limited and by the time that A, = 2A$ the performance curve is again

below the curve for A, A . So, for practical purposes, the most efficient

geometrical configuration is one for which all the area expansion occurs at

the first diaphragm.

4. CONCLUDING REMARKS

A method has been presented for quicklr determining the optimum operating

conditions of buffered shock tubes and the final shock strength obtainable at these

optimum conditions. While the resulting equations are based on a strong shock

assumption, these equations are quite accurate for most of the cases of interest.

Even in problems to which the assumptions do not wholly apply, the analysis

indicates the range of conditions to consider for making exact calculations.

Most of the report is concerned with applying the strong shock analysis

to different buffered shock tube configurations. Although much has been written

about buffered shock tubes, it seems worthwhile to summarize our present

knowledge about these devices.

1. For given over-all conditions a buffered shock tube will produce

stronger final shocks than a simple shock tube provided that the optimum

btffer conditions are used. However, if the over-all density ratio As of order

ten, the improvement is negligible. The relative improvement increases as

the cver-all density ratio approaches its two limits (r'.-0, r4a'- ) .

2. Within the framework of the strong shock approximation, the final

shock strength 2 a depends only upon the upstream density ratio Prl, when the

specific heat ratios and the over-all density ratio are specified. After optimiz-

ing, 8 -maximum depends only upon P48 and the specific heat ratios.

3. Other factors being equal, the best driver gas is diatomic and the
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best buffer gas is monatomic. The specific heat ratio of the driven gas is

relatively unimportant.

4. If the strong shock assumption is relaxed somewhat, it is found that

Z -maximum depends not only upon r 8 but also (to a lesser degree) upon

K ( )-9/ For fixed P , -maximum increases as K increases

(Ms decreases).

5. The performance of a buffered shock tube improves as the number of

buffers increases provided, of course, that the optimum conditions are used.

However, as the number of buffers increases, the final shock strength approaches

its asymptotic value. and the r elative gain decreases.

6. A buffered tube with an area contraction at either or both diaphragms

yields higher shock strengths than a constant-area tube. The optimum distri-

bution of a given area contraction is in equal proportions between the two

diaphragm stations. However, if all the area reduction is to be at one diaphragm

station, it is better for the change to be at the second diaphragm.

7. A shock tube with a detonable gas in the buffer can pToduce stronger

final shocks than inert-gas-buffered tubes. The maximum gain is obtained

when the initial shock (detonation) is near the Chapman-jouguet value. However,

for the production of very strong final shocks, the detonation must be consider-

ably overdriven. In these cases the gain in. performance over the inert-gas

tubes is not significant.

8. For fixed driver conditions, increasing the diameter of the driven

section requires that the pressure in the driven section be lowered in order to

maintain the same final shock Mach number. The net effect of the increased

diameter but decreased pressure is to reduce the available testing time in
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most cases of interest. When the speed-of-sound ratio across the diaphragm

is very high, only a small increase in testing time may be obtained.
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APPENDIX I

DERIVATION OF THE BASIC EQUATIONS FOR CONSTANT-
AREA BUFFERED SHOCK TUBES

Many of the results derived in these appendices are well known and are

presented in several places in the literature. They are included here for con-

venience and to introduce the notation.

Consider the constant-area buffered shock tube shown in Fig. 1. The wave

diagram is drawn subject to the following assumptions: the flow is one-

dimensional and inviscid with no heat conduction, the diaphragms -re instantan-

eously removed, no mixing occurs at the contact surfaces, and there is no shock

wave attenuation. Across the contact surfaces velocities and pressures are

equal, while other thermodynamic variables may be discontinuous.

P.= P3 ) = L 3 6 =- and U6 = 4 (A-l)

The ordinary Rankine-Hugoniot shock relations hold across. the shock waves in

coordinate systems at rest with respect to the shocks. For the initial shock

2. /. 2.

10 , 2 + ,, 1 (UU) (A-3)

2. P2 6 /

.,+ 2 s, >+,, 2. <
Use _ 71 2(A-4)

where a. is the internal energy per unit mass. A similar set of equations holds

for the final shock S . Applying the method of characteristics to the one-

dimensional unsteady motion in the upstream-facing expansion waves RI and
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it is found that the P Riemann invariant U + do is constant.25

Given the initial conditions in regions 4, l,and 8 and the thermal and caloric
equations of state for the gases, the shock Mach numbers tvs, and M. can be

uniquely determined. In what follows it will be assumed that the gases used

in the shock tube are ideal and have constant specific heats. In this case, the

Riemann invariant expression can be integrated to yield

2a.
U + - const. (A-5)

across an upstream facing wave (Q-wave). Also, since the flow across any

expansion is isentropic,

2 ,

( 4 (A-6)W- -

4-

the Velocity L4 is zero so that Eq (A-5) applied to R, yields

t a3. + ?' U 3  (A-7)2

From Eqs. (A-1), (A-6), and (A-7)

24

=1A 2
I  '  - (A-8)

The pressure ratio and the density ratio across the initial shock are

p 2 - (A-9)

r (A -10)
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Using Eq. (A-10) in (A-Z), it is seen that

- (A-1l)11

Finally, using -(A-8), (A-9), and (A-11), the well-known simple shock tube

equation is obtained.

____, I_ _ (M,, -I) (A-lZ)

Across the following fundamental- relations hold:

a,+" 71_ UA +  U6  (A-13)

and
2f,

P , -_ (A-14)

Relations similar to (A-9) and (A-Il) hold across the final shock .
2S

78 -/a +1

a S 
(A-16)

Using (A-13), (A-II) and (A-16) in (A-14), one finds that

zus,

a 1l a (A-17)P = I - 8  Ms6 -I

1 ' + + 1 +1 Ms
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From (A-15), (A-17), (A-1Z) and (A-9) the fundamental equation for the

constant-area buffered shock tube is obtained.

48 78 +2 27 7

24-

S\ (A-18)

- I M -- a. MI(

With the use of the normal shock relation

- is J(A-19)
a;,( , M+

and the ideal gas relation

a4, _ \, (A-20)

(A-18) can be written as follows:

- I P41

_ _ --/,- M51 (AZl

;r ze V 'I - 148 (P-4- IV/ - -
L 1141  ( M S-
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Next consider a double-buffered tube (of the "unsteady- expansion" type)

as shown in Fig. 11. The wave diagram represents only the initial flow

phenomena in such a tube. Interactions between C and R or between C2

and R3 will generate waves that will limit the testing time (i.e., the time

between -the -pa qsage -of S- .4&.Sa.-.,te .... v.. -.._e1c- oat ... ffc......

The flow between regions 7 and 10 is completely similar to the flow

between regions 2 and 6, so that, in analogy to Eq. (A-17),

F ara
_ - - 7 (A-2Z)

a-7; L' jT U 111
Also, the basic shock relations across S are- similar to Eqs. (A-9), (A-1l),

and (A-i9). Therefore, the basic equation for the double-buffered shock tube

can be written down.

9 P, 22 1 _, ,, - ) +

P12~~ Y41

_ (A-23)

L 2. 2(12. ,

C ~~4 IP4y. I\

O's / I M30) +
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Of course, the simple shock tube Eq. (A-1Z) and the constant-area

1bjffei- Eq. (A-Zl) are also valid for this configuration, so that there are

three equations to determine Ms,1 Ms8 P and MSL . The above procedure can

be extended to a constant-area shock tube with a largd number of buffer sec-

tions. If the final driven section is labeled 't 4 , the general equation

(analogous to (A-23) ) can be written down immediately.

t1 ) - 31)

APPENDIX II

THE SIMPLE SHOCK TUBE WITH AREA CHANGE NEAR THE DIAPHRAGM

While the flow in a duct of varying cross-sectional area is not strictly

one-dimensional, the simpification of quasi-one-dimensional flow in which

the area A (x, t) appears as one of the variables in the fundamental equations

is often made. Once A (x, t) is specified, the problem can be solved by the

30
application of well-developed wave diagram techniques. A further approx-

imation which can often be made is to replace the gradual change in duct area

by a discontinuous change. Such an approximation can only be used to

evaluate the effect of the area change at a sufficient distance from the
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31 -33

change. Since the changes in the flow variables are assumed to occur

instantaneously, -they may be computed by using the steady flow equations for

an isentropic nozzle.

The possible wave patterns for a simple shock tube with an area change

near the diaphragm that are compatible with the above assumptions are shown

in Fig. 23. The wave diagrams always indicate a prinaary -shock, an upstream-

facing expansion wave, and a contact surface. In general, an upstream-facing

secondary wave will be required to match conditions at the interface. The

steady flow relations are assumed to hold from region 3a to 3b. In any partic-

ular case the flow pattern will be determined by the initial conditions and the

area ratios.

Russell has done a detailed study of all four types of solutions for varying

values of A./A. and .*A He demonstrates that for any value of A,/AI

the shock strength increases with increasing A 4/A. , and for any value of

A,/A, the maximum shock strength corresponds to the maximumA*/A,

Therefore, the best over-all performance is obtained with a monotonic area

contraction at the diaphragm station. With this configuration only solutions of

type (a) or type (d) are possible. For these solutions the steady expansion is

subsonic and the second non-steady expansion (if any) is supersonic. The iimn-

proved performance follows from the fact that a steady subsonic expansion is

more efficient than an unsteady subsonic expansion for the conversion of

thermal to kinetic energy. 31,32

The following analysis is valid for any flow of either type (a) or type (d)

whether A, = A* or not. For the steady flow from region 3a to 3b the

following relations hold:
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cz3 ? tvij = 3b + (A-5)

and

[1: (4 1) (
A,4 M 3  (A-6)

where

Across V"I

and across R

3b + ' - 4-I

2 3b + 2 (A-28)

Using these relations one finds that

'Z a , a4  F 471 NIL2 1' (A-.29)[ 41 1 /4-
2 aa

2 Ob 1 2 a
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Define

Ig -- + (A-30)

2 +11MbI

then

a._+ 7,-_ U (A-31)

Equation (A-31) can be written as

I, -'I
a,,- _ (A-3Z)

Therefore,

Z 4 24

=P (-- ) = -(A-33)
+1 = 1 k.1

Equations (A-9) and (A-11) may be used to obtain
274

0.1 4-I 1-/ 1 1 -/

P+- F a+* _ (A-34)

Define new variables by

and 41 4 5 1

A /.= 9 Y A4
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Then Eq. (A-34) is merely the simple shock tube Eq. (A-12) for a shock tube with
I !

pressure ratio P and a speed of sound ratio A

The specific case of interest is the configuration for which A, = A*

Then if MI ? M6= -and can be calculated from (A-26) and (A-30).

If, on the other hand, M 3 4. , Mb= M 3 and the problem must be solved by

iteration.
19

Hall and Russo have pointed out that for 14 3 exceeding about three, and

for a given driver gas specific heat ratio, shock tub.- performance can be -repre-

sented by a single curve for all initial conditions. If M, is greater than about

three, certain terms in Eq. (A-34) can be neglected. Then the equation can be

simplified to

Y' 41

1= (P) (A-35)

Define two new variables by

,- and P 1 (A-36)

Then,

11 -2 - 8P E,(A-37)

The basic equation has been reduced from a relation involving six variables Ms,

t /
P4  , , P l r, ,and 4 to a relation among four variables ,P

1, .and r. Figure 6 shows a plot of ,vs. P for various values of driver

gas specific heat ratio. The use of different values for X does not noticeably
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affect the curves of Fig. 6, so, the variation in performance with driven gas

specific heat- ratio can be neglected. Figure 6 indicates that for given P ,
increases as 4¢ decreases. By using numerical values it is found that for

given , (the actual shock strength parameter) increases as 4
decreases.

APPENDIX III

CALCULATIONS2 OF THE OPTIMUM PERFORMANCE OF
CONSTAN"C'-AREA BUFFERED TUBES

The performance of a constant-area buffered tube can be calculated from

the buffer Eq. (A-21) and the simple shock tube Eq. (A-1Z). In the main body

of the text it is shown that when M and t4 3M are large compared to one,

approximation 1 is obtained.

- M r,-I X,,

-- (2 71, E' I) .M ]/

4 -I 8iYP- (A-38)+1_.L (z 2. r,, '-8

(- 2 imlf)s A-8_taprx

The additional assumption that "L >> , simplifies (A-38) to approx-

imation 2, which no longer explicitly depends upon M, A12'r,

I BE, 'I'A

Z 8 can be maximized with respect to j!I by differentiating (A-39) with respect

to . and setting .- I equal to zero. Upon differentiation, Eq. (A-39)
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becomes 27,

'7A-

0 = 2 C, I, D-

(A-40)
\47-1 13,Er S(- 2c, ,) BE,p 4  '8 ,-I_4_7+JI/* __,_,_____ ,-

+ O=2C.-if-- -i" -. ,-
_12r, 2 \.r

The possibility that

BE,0D,~ 1 1"4, 0

2 Y4 
(A-41)

is excluded because this would imply, by (A-39), that -= 0 or P+ becomes

infinite. Therefore, (A-40) can be simplified to
B E, P4/-" -

(A-42)

4

____ Z 8ErP 7+18

or

B E, P+3 -zd

+-I i- X

(24 

(A -13)
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where

+ ,-i tr,+S

242 (A-44)

The use of (A-43) to eliminate from (A-39) leads to

"
. .L . . . . . . 0D (A -45)

This can be solved for P4.

4

+1' = ' / (A-46)

D8 8 E, CI Z lXI)

With (A-46) and (A-43) one finds that

I _____(A-47)

,_ +

The possibility of determining the maximum value of 3? from approxi-

mation 1 now will be considered. Equation (A- 38) can bz written symbolically

as

Z a = F (7,, r, , r. Y,, Ms,. Pt6) (A-48)

So, for fixed specific heat ratios and over-all density ratio the conditions for

the maximum are
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&F5 0 and (A-49)DZI DMs,

Equation (A-38) can be written as

22- 7',S + I ( pt E ,

z8 = c,4 , i 4) 4 (A-50)

where

Differentiating (A-50) with respect to , leads to

(--S (A-51)

and differentiating with respect to Ms, leads to

4--

Equations (A-50), (A-51) and (A-52) can be combined to yield

z ±- (A -53)

8
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S48j (A-54)

and

2 "4-

1= + -1 _ (M (A-55)

When values of M., are used to evaluate these expressions, it is found

that the only possible values of 348 are those in the range of about 2 to 17.

These are the only values of P4. for which the expression in brackets in

Eq. (A-50) can be equal to one. For larger values of (1 (which are usually
48

the ones of interest) the maximum value of 28 cannot be determined by the

above procedure.

A procedure to determine the optimum conditions for approximation 1

curves such as appear in Figs. I0 and 11 will now be considered- These curves

were drawn suL ect to the constraint that the temperatures and molecular

weights are speciiied, and, therefore, a is no longer a function of two8

variables. The equation for approximation I may be expressed as follows:

(A-56)
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The constraint can be expressed as

-1 (- =- "  a const. (A-57)

P41 +

Therefore,

P41  :~~' 41) KM4 (A-58)

and

-'a P6 M")(A-59)

The optimum condition can be found from the equation

=.0 (A-60)

The calculation is straightforward but quite involved, so it will not be presented.

The most important result of the above analysis is the following: for

given P', j7 -maximum increases as j< increases ( M., decreases).

APPENDIX iV

THE BUFFERED SHOCK TUBE WITH AN AREA CONTRACTION
AT THE SECOND DIAPHRAGM

The use of an area contraction in conjunction with a buffered shock tube

has been considered by several authors. 1,6,8-13, lr-l8 If the area change

is located at the first diaphragm, the flow is that of a simple shock tube with

an area change followed by a flow identical to that in a constant-area buffered

tube. This case is fully considered in the main body of the report (Sec. 2. 2. 3).

Suppose that an area contraction exists at the second diaphragm station

of a buffered shock tube and that the diaphragm ruptures immediately upon

impact of the initial shock (Fig. 16). If the contraction is approximated by a
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discontinuous change, the resulting simplified wave diagram will include the

incident and transmitted shocks, an interface that separates the two gases,

and a reflected ware. The cases of interest will involve supersonic flow behind

the initial shock (M > I) , and under this assumption three possible solutions

exist. If he contraction is sufficiently small, the reflected wave is an upstream-

facing expansion (Q-wave) which is swept downstream (Fig. 16 -a). At larger

contraction ratios the flow is reduced to the sonic value and a shock wave is

required to match conditions at the interface. For a limited range of contrac-

tion ratios the shock can be stationary at the area change (Fig. 16-b), but as

A,/A 8 increases a reflected shock is found (Fig. 16 -c).

There has been a considerable amount of interest in this problem in
34, 35

recent years. 3 For certain values of incident shock strength and contrac-

tion ratio,all three of the above solutions will satisfy the conditions of the pro-

blem. This "regioi. of ambiguity" was found to be a direct result of the simplify-

ing assumptions implicit in the wave diagram technique. More exact analyses

indicate which solution will hold in any particular case.

For cases of practical interest the area change will be so large that a

reflected shock exists, and the flow is adequately represented by Fig. 16 -c.

The flow -from region 4 to region I will obviously be represented by the simple

shock tube equation. After the passage of the reflected shock the flow will

have a small subsonic velocity t 5  In a coordinate system which is station-

ary with respect to the reflected shock

M. (A-61)
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where U5r  speed of reflected shock

MS r  reflected shock Mach number

The ordinary shock relations hold across the reflected shock.

P r (A-6Z)
52 +i-

A - (r (A-63)

A r

The flow from region 5 to the beginning of the unsteady expansion 5' is steady.
I

For a monotonic convergence Ms = 1, but if the area change is a converging-
I

diverging section H5 > I - The usual steady flow relations apply.

\ !+ ,-! / M
2 'A -64)

I+-I 2 5s

A, _2Ms ; I
6A8 , - I(A-65)

From 5' to 6
/ _ -1_ / /1 -i
£Z + Z, a +5 2 5 2 7 (A-66)

Therefore, 1 _
a 2 M 2 J3  (A-67)
a5 U7 1 I

2 2 + 2 q

60



Define G by the expression

2 r,

Then

+ -I u(A-69)

a51+ 2- 1

or
TI-,

a - 2 - , u7 (A-70)
as 2 as

Applying the isentropic relation, it is found that

Mse (A-71-)

(8 I

Equation (A-71) may be interpreted as meaning that the flow from region 5 to

region 8 is equivalent to the flow in a simple shock tube with a pressure ratio

G P and a speed of sound ratio A G Therefore, , is an
58 s8

equivalence factor for an area change at the second diaphragm. It is import-

ant to note that this. is not the same as the " T" factor used previously. If

equations (A-62), (A-63), and (A-71) are combined, the basic equation for

this type of shock tube is obtained.
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1.

2,,, s8 -(wi,--i) F ,.,,h '----

, ,, ) P41 +£ (41Sj

( +i)-,') [ -, , _ Lfr,-)1V1 .+2]' (A-IZ)

•)1. ,- )I (,, ):I ". ((, ,)

However, the equation still involves two unknowns, ,14 and 15r

The equation of conti'niity across the reflected shock is

p 1 (~.-2. =p u +~)(A-7 2)

or

UL ~ ~ ~ M/ Or/9OI

By using the relation

in (A-74), it is found that

IkUSZ a5  _ 2 7. I-, M - 1 S4) (A-76)

is known and 5can be calculated from Eq. (A-65), and if (A-65) is

used, (A-76) becomes a fourth order algebraic equation for atr In any
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practical case Eq. (A-76) can be solved by iteration.

If the area contraction is very large, U., 0 and the shock becomes fully

reflected.

2 2(A-77)

This expression may be -;ed to eliminate MSr from Eq. (A-72).

=8 -- "

P41,

(A-78)
2r_

where
/ .r-I

since Ms = 0 and Ml = 1 for an infinite monotonic convergence.

APPENDIX V

DERIVATION OF THE DETONATION BUFFER EQUATIONS

Under normal conditions a flame in a tube filled with combustible gas

will propagate at the low velocity of a few meters per second. Under certain

conditions, however, this slow combustion process is changed into a very
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rapid process that propagates at supersonic speeds. This second type of

combustion process is known as a detonation. In the following it will be

assumed that the chemical reaction occurs instantaneously across a sharply

defined front. Then the only difference between a detonation and a pure shock

wave is that the chemical nature of the burnt gas differs from that of the un-

burnt gas and that the reaction influences the energy balance.

In the following three pages the fundamentals of detonation wave theory

will be reviewed. Similar developments can be found in standard texts. 25 , 28

Referring to a detonation moving into a quite gas at speed U , the

Rankine-lugoniot relations become

P1 V = P2 (A-79)

PI+ V + /t I(A-80)

and

+ 0 V + EcA =. +V, (A-81)

where V! = z

V1 LJ- (.2

LAE is the heat of chemical reaction per unit mass at constant temperature

and pressure. From (A-79) and (A-80) the relation

"-P2. - "16,. Z z 2

-j V P, V2 >0 (A-82)

follows, just as in the case of pure shock waves. Here N-/o is specific

volume. Equation (A-8Z) implic s that there are two different types of processes
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compatible with the conservation laws: those in which both pressure and

density increase and those in which both pressure and density decrease.

Processes of the first kind are detonations while processes of the second

kind are slow combustions or deflagrations. By considering pure shock waves

(AEC 0) , it is found that deflagration-type processes (-1 p p.1)are excluded

because. they would involve a decrease in entropy. However, this argument does

not apply to the case where a chemical reaction occurs.

By proper manipulation of (A-79) and (A-80) the relation
± 2

V2- V + (A-83)

is found, which when used in Eq. (A-81) yields

AI + (4, - ) + A E (A-84)

This relation involves only thermodynamic variables and is commonly

called the Hugoniot relation. The internal energy can be considered a function

of the pressure and specific volume; ir, particular for an ideal gas with constant

specific heats

I- (A-85)

Therefore, knowing &Ec, .r p, and 4r" , the Hugoniot relation can be

plotted in a t--4rplane. This plot of (A-84) subject to the restriction of Eq.

(A-82) is called a Hugoniot curve (Fig. 29). The curve has a detonation branch

(4r-4) and a deflagration branch( - The present study will just consider

the detonation branch; most phenomena to be considered for this branch will

have an analogue in the deflagration branch.

A straight line through the point (P 1,,) will in general intersect the

Hugoniot curve in two points. By increasing the slope of this line (decreasing
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the angle 4 ) the two points of intersection eventually come together at

point C which is known as the Chapman-Jougt.et point. Detonations -repre-

sented by points below C will be called weak detonations; those representel

by points above C will be called strong or over-driven detonations.

The Chapman-Jouguet process has certain peculiar properties that can

be derived from thermodynamic considerations. Among these are the following:

of all detonation processes the detonation velocity U., and the entropy of the

burnt gas S. are minima for a Chapman-Jouguat process, and a Chapman-

Jouguet front when observed from the burnt gas moveit with the sound speed.

V1 =U'S Ltt = Z I(A-86)

Also, by thermodynamic arguments, certain general statements can be

derived which are called Jouguet's Rules. These can be stated as: the gas

flow relative to the reaction front is supersonic ahead of any detonation, super-

sonic behind a weak detonation, and subsonic behind a strong detonation. If a

more detailed analysis is made of the reaction process, taking heat conduction

and viscosity into account, it can be shown that weak detonations are possible

only under extreme and rare circumstances.

Consider a detonation front which is being followed by a piston moving

with constant: velocity it . This problem is quite similar to the problem

of a detonation in a shock tube where the condition of constant pressure and

velocity at the contact surface replaces the piston. Suppose that U P, > L - al.

Then the velocity of the gas behind the front is greater than that which exists

at the Chapman-Jouguet point, and the detonation is over-driven. If Q L

a pure Chapman-Jouguet detonation is sustained. if Lk Z_ UV-&' , a
12,

Chapman-Jouguet detonation will occur, but is will be immediately followed
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by a rentered expansion wave. The front of the expansion will just coincide

with the detonation front since

U.0 = 2 Z " (A-87)

If the pistbn is not moved at all, IL., = 0, and a Chapman-Jouguet detona-

tion is still possible. In this case the expansion will decelerate the flow to zero

velocity. That this detonation is the one that actually occurs, is the Chamnan-

Jouguet hypothesis.

During the use of a detonation in a shock tube it is desirable to eliminate

the expansion fan which follows the front. Therefore, only driver p-esaures

which are great enough to support or overdrive a pure Chapman-Jouguet deton-

atio will be considered. F-om (A-791

CL T~ (I - r1 . (A-88)

and from (A-80)

2 (A-89)

After multiplying these two relations together and dividing by a. ,

a (A-90)

or
U1- (P,-)' (- -,)ql

-
(A-91)

Assume that both the burnt and unburnt gases are ideal gases with constant

specific heats.
2

P, T (A
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When (A-9Z) is used in Eq. (A-81),

.- (A-93)

where AEC

-P, T,

From Eqs. (A-79), (A-88), (A-93), and the definition of the speed of

sound

M IL___ (A-94)

If this expression is combined with (A-89),

- pit 
(A-95)

P2 + 7, +ld2 + 2;r

This can be used in (A-94) to obtain M as a function of P but the corres-
SI I

ponding expression is quite complex. Consequently, we shall use P2 as a21

measure of shock strength rather than M,-

Consider a constant-area buffered tube similar to that shown in Fig. 1

with the exception that the buffer gas is a detonable mixture. Assume that the

driver and driven gases are perfect gases. The equations which hold across the

detonation front have been derived above. The burnt gas will not behave as a

perfect gas in the expansion from region 2 to region 6, and the flow through

the fan should properly be evaluated by numerically integrating the equations of

characteristics. For the purpose of our simplified analysis assume that the

isentropic relation can be written as
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Ila z (A-96)

1zZ6
where ' is the average specific ratio between region Z and region 6, and

the nonsteady expansion relations can be adequately represented by

6 2 (U7 - (A-97j

Then the basic equation for this shock tube is

7

P P a. (A -98)
-- 2""

V! 2 a
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