ELECTRONICS DIVISION ¢ AEROSPACE CORPORATION
CONTRACT NO. AF 04(695)-269



Report No.
SSD- I'DR-64- 31 TDR-269(4550-10)-6

LAUNCH WINDOWS FOR ORBITAL MISSIONS

Prepared by

A H Milstead
Astrodynamics Department

AEROSPACE CORPORATION
El Segundo, California

Contract No AF 04(695)-269

| April 1964

o
3% Prepared for
: COMMANDER SPACE SYSTEMS NDIVISION
5 UNITED STATES AIR FORCE
L 0 .
T Inglewood, California

ol
s‘.i"{';

7

7 {&‘i’



-

Report No.
SSD-TDR-64-31 TDR-269(4550-10)-6

LAUNCH WINDOWS FOR ORBITAL MISSIONS

Prepared &- 3. @z;‘.@
A. H. Milstead

Astrodynamics Department
Technical Staff Member

Approved
< ,Za« con L.

E. Levin C. M. Price, Head
Senior Staff Engineer Astrodynamics Department
Astrodynamics Project

This technical documentary report has been reviewed and is approved.

For Space Systems Division
Air Force Systems Command

Edward D. Harney
L.t. Colonel, USAF
Evaluation and Analysis



ABSTRACT

A great many orbital missions involve launching a vehicle into a
particular earth-referenced plane. The launch window is defined
as the time span around the nominal launch time during which the
vehicle may be launched and the target plane achieved within a
specified additional ideal velocity budget. This paper presents
analytical formulations for the launch window as functions of the
additional AV budget and other parameters for fixed and for vari-
able launch azimuths. The effect of launch azimuth constiraints
(e.g., for range safety) on the launch window is investigated and

several related problems are discussed.
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I. INTRODUCTION

Many of the orbital missions currcntly under study by the civilian and
military spacc agencies invelve the launching of a vehicle from an earth-fixed
site and the establishment of that vehicle in a particular plane (hereafter
called the target plane) passing through the earth's center. Such a mission,
for example, is the Gernini rendezvous rnission. in which it is desired to
launch the Gemini capsule into the orbit plane of the vehicle with which it
expects to rendezvous. If the inclination of the target plane to the equator is
greater than or equal to the launch site latitude, the vehicle may nominally be
launched directly into the target plane at one of the times when the launch site
passes through the targct plane. However, if the vehicle is launched before
or after the in-plane launch opportunity (¢ g , a delay due to a count-down
hold), an additional ideal velocity expenditure will be required to place the
vehicle in the target plane. The time span about the in-plane launch oppor-
tunity during which the vehicle may be launched and the target plane achieved
within a spccified budget for the additional ideal velocity is called the launch

window

If the mission invol es goals beyond simply entering a given plane
(¢.g., rendezvousing with another vehicle already established in the planc or
burning out under certain sun lighting conditions, etc ), the definition of the
launch window may be modified to include these goals. It 1s most oiten
convenient (particularly in feasibility and preliminary design studies) to
define the mission in several separate phases, of which the achievement of
the arget plane is the first. Once the launch v ehicle is established 1n the
target plane, the next phase (e.g . rendezvous, earth referenced posit:oning,
orbital phasing for timed nodal crossings. etc ) 13 begun and, in general,
involves only 1n-plane maneuvering  The ideal vrloc.ty requirements for the
phases following the establishment of the launch vehicle ir the target plane
are frequently independent of where the target plane us entered and, therefore,

have no effect on the launch window as defined above. In cases where the



launch window is affected by the in-plane maneuvering, that effect can
usually be calculated separately and superimposed on the launch-window

as defined above.

This paper wil! consider only the establishment of the vehicle in the
target plane, because thia phase is common to many missions, rather than

specializing to a particular mission and discussing in-plane maneuvers.

The development of equations will assume the following pattern: First,
the relation bewween the vehicle's horizontal velocity component and the
angle (plane change angle) through which it must be turned to achieve the
target plane is established. It is then shown that, 1f the path of the vehicle
from launch to burnout is assumed to lie in an 1nertial plane the minimum
plane change angle (and therefore minimum required velocity for plane
change) is achieved bv launching in such a manner as to intercept the target

plane after 90 degrees of angular travel.

Equations are developed, which give the minimum achievable plane
change angle and the launch azimuth necessary to achieve that minimum plane
change angle as functions of launch delay and constant quantities. An equation
is also developed which gives the launch window itself as a function of the
maximum allowable plane change angle, and several interesting cases and
extensions of this formulation are discussed. Expressions for the launch
window for the case of fixed launch azimuth are formulated, and, finally, a
method for finding launch windows when the launch azimuth is constrained is

presented.
1I. ANALYSIS

It will be assumed that the target plane has a fixed inclination to the
equator and that the line of nodes (line of intersection of the equator and

target plane) moves in the equatorial plane at a uniform rate, w where -,

mll" B



1s positive in the same sense as the earth's rotation about its axis. ! The
path of the vehicle from lift-off from the launch site (assumed to lie in the
northern hemisphere) to interception of the target plane will be assumed to

lie in an inertial plane (hereafter called the launch plane) passing through the
carth's center. It will further be assumed that it i1s desired to enter the
target plane in an easterly sense, i. e., the launch azimuth is assumed to be
between 0 and 180 deg. ¢ The angle, a, which occurs between the launch plane
and the target plane is indicated in Figure |, and it is this angle a through
which the horizontal component of the vehicle's velocity vector must be
rotated in order to make the iaunch and target planes coincident. The

vehicle's horizontal velocity component, VH' 18 given by

VH=Vcosy (1)

where V is the vehicle's inertial velocity and y is the flight path angle of the
vehicle's inertial velocity vector with respect to the local horizontal. If the
vehicle is established in its orbit before reaching the target plane, the con-

servatiun of angular momentum gives

h=rV cos y - a constant (2)

IIf the target plane is inertially at rest, then wy is zero.  If the target plane

is a satellite orbit plane, ther L. is given approximately by

/2
cos i degrees

e
We =k 96(?) (0 - ez)—z mean solar day

where a, 1s the earth's equatorial radius. a ir the orbit's semi-major axis.
e 18 the orbit's eccentricity, and 1 is the orbit's inclination to the earth's
vquator.

“The results of this paper can b e>tended to include consideration of laun. h
azimuths botween 180 and 360 degree s and scuthern hemisphere launch sites.
These cases are excluded in the present de—elopment tor the sake ot ciarity
and brevaty.
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where his the specific angular momentum of the vehicle 1n orbit ard r is the
radial distance from the earth's center  The horizontal velocity cemponent
may be ¢xpressed as a function of 1 only by combining Equations (1) and {2}

to yicld

h p p a a
r )
\H r r r ' (3

where sudscripts p and a, respectively, denote perigee and apogee conditions.

Obviously. 1f the orbitas circular, VH 1s simply the orbatal velocity.

Figure 2 Veloc:ty Reguirements For Plane Change

It can be seen fromy Figure 2 that the velocity, AV, ncecessary to rotaie
the latnch plane through an angle a witnout —hanging magmtude or fhight path

angle of the vehicle's velocity vector is

3 5 a
AV Z\/H sin3 (-+)



Equation (4) shows that for a given Z’H. the velocity requirement, AV,
for the plane change is smallest when the ‘lane change angle, a is 1 minimum.
The condition for minimum a (and therefore fos mirirnem AV) may be found
by considering the projection of the launch and tar~.* planes onto i n inertial

sphere (concentric with the earth) at the time of launch, as shown in Figure 3.

— LAUNCH PLANE

TARGET PLANE

Figure 3. Geometry For Determining Optimum
Launch Azimuth

The great circle arc q is the angular distance from the launch site to
the point where the target plane is intercepted with an angie a. The arc p is
tke minimum great circle distance from the launch site to the target plane.
Note that p is a function of the launch time only (or equivalently of the
positions of the launch site and target plane at launch), while, for a given p,

q may be varied by varying the launch azimuth, A. From Figure 3, the

relationship between q and a for a given p is ;
. si -
sina = —pab (%)
sin q
+
f

TU



The minimum value of a for the configuration shown is found by differentiating

Equation (5) as follows:

d(sinu._) _ _sinpcosgq _
——1q_' = -0

sin q

or

50 degrees (6)

LD
il

Equation (6) shows that the minimum plane change angle may be achieved by
launching the vehicle in such a manner as to intercept the target plane 90
degree downrange from the launch site’'s position at the time of launch. Note
the 90 degree downrange intercept condition implies that the horizontal com-
ponent of the launch velocity vector is parallel to the target plane. It also
follows from Equation (6) that the plane change angle, a, is equal to the arc p
(the great circle distance of the launch site from the target plane at the time

of launcth).

A. L.aunch Window for Unconstrained Launch Azimuth

If the target and launch planes are projected onto a cylinder tangent
to the earth at the equator, the picture on the unrolled cylinder will look
somewhat like Figure 4. The time reference (t = 0) in Figure 4 is the
northerly in- plane launch opportunity, i.e., the time when the launch site
1s in the target plane. The launch site moves eastward with respect to the
target plane at a rate w - wp - W where wp is the earth's rotation rate in
inertial space. The arc r is the distance measured along the earth's equator
from the target plane's ascending node 'o the ineridian of the target plane's
crossing (on a northeasterly azimuth) of the launch site latitude, L, at which
point the target plane's local azimuth is ALT' The meridian containing the
launch site at the time of launch, t, is wt + r east of the target plane's
ascending node. at which time the target plane’'s local latitude and azimuth

are, respectively, L’ and AL’. The vehicle is launched with inertial
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Figure 4. Launch Geometry for Optimum Launch Azimuth
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azimuth Ao to intercept the target plane 90 degrees downrange at an angle a.

pt
The arc of the target plane's projection from the launch site meridian to

interception of the launch plane 1s designated as Z.

The first step in formulating the launch window (defined as the time
span during which the maximum allowable plane change angle, 3. is not
exceeded) is to express the p'ane change angle, a. as a function of time, t.
This i8 accomplished by relating the respective parameters through spherical
trigonometric r«iations applied to the spherical triangles represented in

Figure 4 The quantitics A and r are independent of the launch delay, t,

LT
and may be expressed in terms of the launch site latitude and target plane

inclination as:

L0 0 R
“ sinr  sin L
cCos 1 - sin ALT cos L
or, solving for ALT and r,
sin A ?Co%stl (0 €A . €90 deg) (7)
4T ¢ ‘&’;1; (0 < r <90 deg) (8)

The plane chang. angle, a, may be expressed as

sina sin (L’ - L) sin AL' (9)

3The plane change angle has a direct relation [ Equation (4)] to the velocity
requirement for plane change. Therefore this definition of launch window is
equivalent to that given in the introduction



and the local latitude, L’, of the target plane is expressible in the following

two forms (see Figure 4):

. ' siniain(wt+r)‘
sin L' = WY
L
’ (10)
cos L’ = Coshs
" sin K’L )

Expanding Equation (9) and substituting Equations (10) to eliminate L’ and
AL' yields the following expression for the plane change angle as a function

of time:
sina - sinicos L sin (wt + r) - cos i sin LL : (i1)

Note that Equation (9) and, therefore, Equation (11), give positive

values for a sin a, when L (the launch site latitude) is less than L’ {(the
local target plane latitude) and negative values for sin a when L is greater
than L’ (see Figure 4). This property will be used later to derive analytic

expressions for the launch window.

Figure 5 shows the plane change angle, a (taken as positive), versus
time for a launch site latitude of L. - 28. 34 deg (geocentric) and target orbit
inclinations of i = 28. 34, 29, 30, 31 and 32 deg. The nodal regression rate,
w_. of the target pl.nes is taken to be zero so thatw = w. - 0.250684 deg/min
for this case. The value of r for each i is found from Equation (8). The
values of AV corresponding to the plane change angles, a, in Figure 5 are
shown on the right ordinate and were calculated from Equation (4), assuming

a VH of 25, 580 fps.

The launch azimuth, Aopt' may Le formulated as a function of time by

noting from Figure 4 that

cos 90 deg - 0 = cos (L’ - L) cos Z - sin (L’ - L) sin Z cos AL' . (12)

-10-
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It also follows from Figure 4 that

cos Z = sin (L’ - L) cos Aépt\
(13)
sin Z = _sir_l_Ao t
sin A, )

Substituting Equations (13) into Equation (12) and combining the resuiting

equation with Equation (10) yields the expression for the launch azimuth,

Aopt' which gives the minimum plane change angle, a.
= _cos L cos 3+vsm L sin i sin (wt + r) (14)
opt sin 1 cos (wt + r)

<
(0 A, <180 deg)

Figure 6 shows the optimum launch azimuth as a function of time for the

same conditions as in Figure 5.

Launch windows may be obtained from Figure 5 by measuring the time
span, At, during which the AV (or a) capability for plane change is not
exceeded. For example, if the maximum allowable plane change velocity
increment is AV = 1000 fps (corresponding in this case to a 2.23 deg)
and the target plane inclination is 30 degrees, then the launch window from
Figure 5 is At - 45 + 212 = 257 min. Note from Figure 5 that, if i > (L + am)
(where e is the maximum plane change capability), the launch window is
split into two parts. For example, if i = 32 degrees anrd a . ° 3 degrees,
the launch window extends from -44 minutes to + 70 minutes and from +172

minutes to +286 minutes yielding a total launch window of 228 minutes.

The development to follow will result in an equation which will give the

launch window, At, as a function of the target plane inclination, i, the launch

site latitude, L, and the maximum plare change capability, a .- This formula

-12-
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will obviate the need for a graph like Figure 5 to obtain a launch window.

The formulation will also eliminate the need to calculate the parameter r.

It was noted in Equation (11) above that sin a takes on positive or
negative values depending on whether L’ is greater or less than L. If the
plane change angle, a, is defined as a positive angle (e.g., as used in

Figure 5) then Equation (11) must be rewritten as
4 sina = 8ini cos L sin (wt + r) - cos i sin L
or, equivalently,

cos i sin L £ sin a) (15)
sin 1 cos L )

wt + r = sin-l(

A typical time history curve of a (see Figure 5) may be described as having
two ''wings'' on either side of a "hump' and as being symmetrical about the
center of the hump. The center of the hump occurs at wt + r = 90 degrees
(see Figure 4). Therefore, if the arcsine in Equation (15) is taken to be less
than 90 degrees (quadrants I and IV), the corresponding time values will be to
the left of the hump. The positive sign for sin a in Equation(15)corresponds
to times on the hump, while a negative sign for sin a corresponds to time
values on the wings. Note (from Figure 5) that for each time value there is
one corresponding value of a (for given i and L.) but that, in general, a
particular value of a has four associated time values, i.e., one on each of
the wings and two on the hump. For example, on the i = 32 degree curve in
Figure 5, a = 3 degrees corresponds to times of -44, +70, +172 and +286
minutes. The time values associated with a given a may be distinguished in
Equation (15) by the choice of sign for sin a and by the quadrant in which the

arcsine is taken, as shown in the following Table (see Figure 5):

B e e

-14-
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Quadrants of Sign of Time Value
sin~ l(cos s inBEEEysin u) 8in a (See Figure 5)
sin 1 cos L
I and IV - Left wing value
I and IV + Left hump value
II and III + | Right hump value
II and III - Right wing value

It was noted above that the center of the hump occurs at wt + r = 90 de-
grees. This point obviously corresponds to a local maximum for 04, and the

value, a of a at the hump center [from Equation(11)with wt + r=90 degrees]

hc’
i8

=i-L (16)

Therefore, for values of the maximum plane change angle a.> 1 - L, the
launch window is continuous from the left wing to the right wing (see Figure 5),
and, for a_ < i - L, the launch window is divided into two equal parts by a

portion of the hump.

For the continuous launch window (um >1i - L), the above table specifies
negative signs for sina in Equation (15). Therefore, evaluating Equation (15)
for the left and right wing values, respectively, and subtracting eliminates

the quantity r.

_1/¢°8 isin L - sin a .
(wt + r)Rw - (wt + r) LW = w(At) = sin \ o e & ) (Quad II & II])

1 cos isin L - sina
- sin (

m) (Quad I & [V)

sin 1 cos L

this can be shown by differentiating Equation (11) with respect to time.

-15-



However, for any quantity X,

sin” !X (Quad II & 1) = 180 deg - sin” 'X (Quad I & IV)

Therefore
cos 1s8in L - sina
-“-’(-zAi) = 90 deg - sin'l< o T o T m) (Quad I & IV)
_1/¢°® isin L - sinom
= cos ( o T, ) (Quad I & II)
or

cos 1 sin LL - sina
o8 wlat) m

¢ 2 sin 1 cos L (17)

Equation (17) is a closed form expression for the launch window (At) for
am >i- L.

Since the relation of the plane change angle to launch time is pcriodic,
a launch window corresponding to [ w(At) = 360 degrees}r’ may be considered
infinite. Therefore, the plane change capability necessary for an infinite
launch window may be obtained by letting w(at)/2 180 degrees in Fquation
(17). This substitution leads to

sinom' sin L cos i+ sinl cos L  sin (L + 1)

or

a - L+ (18)

For w, = 0, i.e., an inertial target plane,such a launch window is dne
sidereal day.

-16-




Equation (18) may also be derived by inspection of the geometry involved by
noting that the maximum great circle distance ever encountered from the

launch site to the target plane is i + L.

It was noted above that when a < 1 - L, a portion of time is excluded
from the launch window given by Equation (17). An expression for the
excluded portion of time may be derived in a manner similar to the derivation
of Equation (17) using Equation (15) and the table on page 15 The resulting

expression is

(19)

w(At) cos 1 8in L + sina
cos €XC m
sin 1 cos L,

2

Although the above relations have been derived with the implicit assumption
that 1 > L (the definition of the time reference becomes meaningless when

1 < L); Equation (17) may be¢ used to obtain the launch window when 1 < L.
However, wheni < L and a < L - 1. Equation (17) will yield imaginary
values for the launch wir sow [ | cos w(Aat)/2]/ > 1]. The correct interpretation

of this phenomenon is that no launch window exists for these conditions.

Equations (17) and {19) may be combined to give the following ¢xpression

for the launch window:

2 _lcos.sinL-sina _l(osisinL+sinnm
At ::[cos ( "‘) - cos ( )] (20)

sin 1 cos L sin1 cos L

where arccosines with arguments larger 1n magnitude than unity are defined
to be zero|e.g. . the second arccosine in Equation (20) will be zero when

a_ >1 - L, in whichk case Equation (20) reduces to Equation (17 ].
'4

Equation (20) may be used to determine the target plane inchination, 1,
which gives the maximum launch window for a fixed launch site latitude, L,
and plane change capability, a Obviously, f a 2 L. aniof 2z¢ero may be

chosen to give an infinite launch window [ sece Equation (18)]. Therefor.. the



region of interest for this question is 0 < a < L. Equation (20) is continuous

for 0 £i £ 90 deg, but d(At)/di is discontinuous ati = L - a and ati = L +am

at which points the right sided slope is infinite (see Figure 7). However, it

can be shown that:

Td(Alt) =0[and At = 0 by the definition following Equation
(20)] for 0 <i<(L - a_)
m
d(at) ;
=5 >Ofor(L-a )<i<(L+a_)
(see Figure 7) {
2%1& 0for (L +o_)<ic<90 deg
d(at) ;
-3 - 0 for 1 90 deg

The correct interpretation of the above c~nditions is that the maximum
launch window, At, (for 0 < a < L) occurs wheni - (L + am), the minimum
At (= 0) occurs for 0 < i < (L - um). and a local minimum At occurs at

1= 90 degrees (designating a polar target plane). An expression for the

maximum launch window Atmax may be obtained by substituting 1 = (L. ¢+ om)
into Y guation (20) to give
cos[ 2tmax] ,  ranL (21)
D7 B tan (L + am)

The launch window for polar target planes may be obtained by substituting

1 = 90 degrees 1nto Equation (20) to give

sin a

(22)

sin [u(?t)]

cos L

-18-
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Figure 7 is a plot of Equation (20) for L = 28.34, w= 0.25063 deg/min,
and a_ = 6 degrees. The dashed line in Figure 7 is the locus of maximum
launch windows (when a and L are held constant and 1 is varied)obtained
from Equation (21). Figure 8 shows the launch windows {Equatlon (20)] as a
function of a for several values of i. The dashed line in Figure B is, as

before, the locus of maximum launch windows

B. Launch Window for Constrained Launch Azimuth

Because of range safety considerations and/or because of some charac-
teristic of the launch vehicle, the launch azimuth may be constrained to lie
between certain values or to be fixed If the launch azimuth, AL' 18 fixed,
then the inclination, i’, of the plane into which the vehicle is launched is
fixed also. The relation connecting A, and i’ can be seen from Figure 9 to

be

L

cos 1’ cos L sin AL (23)

The local azimuth, A of the target plane at the launch site latitude (on

LT
the northerly crossing) is similarly given by

. cos 1
sin ALT m (0 .‘I\LT 90 dC‘g) (24)

Let the time reference (t = 0) for the tixed a/imuth case be defined as
the time when the launch site passes through the target plane on the target
planc's crossing (on the northeasterly azimuth) of the launch site latitude
(This definition 1s consistent with the variable launch azimuth case and will
allow fixed and variable launch azimuth results to be combined later ) The
geometry att 018 shown in Figure 9, and the geometry for a later time, t,

is shown in Figure 10

-1y-
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The quantity x in Figure 9 is the difference in longitude of the ascending
nodes of the two planes att 0. An expression from which x can be found

may be written as

S _ N . o ! 5 . 2 .
LOS(ALT AL) COS 1 Ccos 1 + sini1sin1 CoOs X
or,
cos (A - A, ) - cosicosi
cos X LT ﬁﬁLj ., (-90 deg € x < 90 deg) (25)

sSitn 1 sin 1

where x has the same sign as (ALT - AL).

The expression for the plane change angle, a, may now be written (see
Figure 10) as

cosa - cos icosi’” + sini sini’ cos (uwt + x) (26)

The condition for minimum plane change angle for the fixed azimuth case

may be found by differentiating Equation (26) as follows:
Q dﬂ . . J a . a 7
sin a (0] sin i1 sin1 sin (wt + x) - O (27)

The two solutions to Equation (27) are

(wt + x), - 0 or 360 deg

and f (28)

(wt + x)2 180 deg

23



It is apparent-from examination of the second derivative of Equation (26) that
the first solution above corresponds to the minimum and the second to the
maximum values of a Further, the minimum and maximum values of the
plane change angle may be found by substituting the solutions (28) into (26) or

by inspection to be

(29)

It is also evident from Equation (28) and the geometry that, when the minimum
or maximum plane ckange angle occurs, the intersection of the target and
launch planes occurs on the equator. The minimum a occurs when the planes
cross the equator at the same point in the same sense (northerly or southerly),
and the maximum a occurs when the planes cross the equator at the same

point in opposite senses.

Figure 11 shows the plane change angle as a tunction of time for a

target plane inclination of 1 - 30 degrees. a launch site latitude of L. 28. 34

degrees, and launch azimuths, A of 70, 79.722, 90, 100.278, and !10

IJ‘
degrees. As before, the nodal regression rate, w., 1s assumed to be z¢ro.

Note that the curves defined by A 70 degrees and A 110 degrees are

L. L.
identical. This is due to the symmetry of the launch azimuths about A[, 90
degrees [Equation (23) shows that launch azimuths symmetrical at ot 10
degrees yield 1dentical values of i’ and therefore. from FEquation (26) the
same shape curves ot a versus t]. The curves defined by AI, YT e e el s
and AL - 100. 278 degrees exhibit a similar property and in addition contain a
point where a - 0. These are the oniy two lannch azimuths which yield a4 zero
a for the particular 1 and L. under (onsideration, because 79. 722 degrees 1s
the local target plane azimuth, A[,T‘ at the launch site latitude [see Equation
(21)] and 100.278 degrees 1s '80 degrees - AI,T' Therefore, vehicles
launched on these azimuths may at some time be launched directly into the

target plane.
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Launch Windows for Fixed Launch Azimuth



In many problems with a fixed launch azimuth constraint, the launch
azimuth i5 chosen to be the azimuth which results in a direct launch into the

target plane at the nominal launch time (i.e., A, - A Such a condition

IR s
results 1n the inclinations of the launch and target planes being 1dentical
(i i’) and in their longitudinal separations att - 0 being zero (x = 0).

Therefore, for this case, Equation (26) reduces to

(cos a) = coszi + sinzi cos wt (30)

(AL-ALT)

It can be seen from Equation (26) (also see Figure 11) that the curve
of a versus t is symmetrical about the value of t corresponding to the
minimum a«. Therefore, the time measured from the minimum a point
[ defined by (wt + x) = 0] to the time defined by: a=a (the maximum allowable
plane change angle) is one half the launch window, At. Using this reasoning.

Equation (26) may be written aa
d .’ J E . .2
cosa__ - cosicost’ + sinisini’ cos
m 2

or, solving for the launch window

cosa - cos icos i’
cos wat L0 (31)
2 sinn 1 sin t’

where i’ is obtained trom Equation (<3).

If the launch azimuth is not constrained to be constant but is constrained
not to c¢Xce¢ed a certain value, then the launch window is defined by a combina-
tion of variable and fixed azimuth formulations Suppose, for example, that

a southerly azimuth limit, A_, exists. The time history of the plane change

S’
angle, a, is given by the variable azimuth formulation Equation (11), up until
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As 1s reached and ther by the fixed azimuth formulation. Equation (26)., with

AL. AS.

Figure 12 shows a typical launch window tor several southerly azimuath
Iimits. For this case, the launch site latitude 1s 28. 34 degrees and the target
plane inclination 1s 30 degrees. Figure 12 shows that tor a plane change capa-
bility ot 2 degrees. the launch window extends from -41 minutes to +208 mn-
utes for a total launch window of 249 minutes with no launch azimuth (on-
straints. However, 1if the launch azimuth 1s (onstrained to be no larger thar

100 degrees, the window 18 reduced by 28 minutes to give atotal of 221 minates

The time during an otherwise unconstrained launch window when the
southerly launch azimuth limit is reached may be read from Figure 6 or,

if such a grapl. is not available, may be calculated from Equation (14)6.

For example, the 100 degree launch azimuth Iimit tor the case sited
above 18 reached 165 minutes after the northe rly in-plane launch opportunity
Theretore, the time history of a during the launch window 18 piven by
wquation (11) up tot - 165 minutes and by F.quation (2b6) after t 165 minates
Northerly launch azimuth limits may be handled in 4 manner similar to that
cutlined above for southerly launch azimuth limits  The launch window may
then be measured from a plot similar to Figure 12 or found by calculating
the beginning and ¢nd points of the launch window from Equation (11) and/or
Equation (20), taking the difference, and excluding the "hump " portion
| Equation (19)] .

6One method for solving Equation (14) would be to substitute the southerly
azimuth limit, AL, for A in Equation (14) and re-arrange the equation
, S opt

in the form

cos (wt + 1) ot A_sin L{cot L. cot 1+ sin (wt ¢ r)]

S

Assignment of some value between zero and unitv 1o sin (wt + r) on the right
side of the above equation then yields a value ot (wt + r) from the left side

which is substituted 1nto the right side of the equation. This iteration pro-
~edure 1s continued until a sufficiently accurate value of (wt + r) 1s obtained
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I SUMMAKY

The launch window has becn defired as the time span during which a
vehicle may be launched and established in a given inertial plane passing
through the earth's center without exceeding a given maximum value, a
for the plane change angle (or, ecquivaleatly, the maximum ideal velocity
budgeted to plane chang .. This paper has developed concise formulations
for the plane-change angle as a function of launch delay only (assuming
target plan 'ncliraticn and launch site latitude fixed) for variable, optimized
launch azimuth [ Equation (11)] and for fixed launch azimuth [ Equation {Z0j] .

It has been shown that the optimum launch azimuth (i. e., yielding minimum
vlane change angle) is one which results 1n a 90-degree downrange intercept

of the target plane, and the optimum launch azin.ith has teen formulated as ¢
a function of time « nly [ Equation (14)]. Further development of the equations
has led to concise formulations for the length of the launch windew (assuming
target plane inclination and launch site latitude fixed) corresponding to a

given a {maximum plane change angie) for variable, optimized laivnch

azimuth [ Equation (20)! and fcr fixed launch azimuth [ Equation 31)]. A

={ {

method was then defined to obtain a time history of plane change angle for
a combined fixed and variable launch azimuth case (e. g., a case where the

launch aczi.auth is constrained ‘v be within certain limits) Numerical

&
cxamples and graphical illustrations were given for most of the cases and %

=
several miscellaneons formulations growing out of the development were ’:'
presented.
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