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ABSTRACT 

A great many orbital missions involve launching a vehicle into a 

particular earth-referenced plane The launch window is defined 

as the time span around the nominal launch time during which the 

vehicle may be launched and the target plane achieved within a 

specified additional ideal velocity budget This paper presents 

analytical formulations for the launch window as functions of the 

additional AV budget and other parameters for fixed and for vari- 

able launch azimuths The effect of launch azimuth constraints 

(e.g. , for range safety) on the launch window is investigated and 

several related problems are discussed. 
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I. INTRODUCTION 

Many of the orbital missions currently under study by the civilian and 

military spact  agencies involve the launching of a vehicle from an earth-fixed 

site and the establishment of that vehicle in a particular plane (hereafter 

called the target plane) passing through the earth's center      Such a mission, 

for example,   is the Gemini  rendezvous mission,   in which it is desired to 

launch the Gemini capsule into the orbit p.'ane of the vehicle with which it 

expects to rendezvous.     If the inclination of the target plane to the equator is 

greater than or «-qual to the launch site latitude,   the vehicle may nominally be 

launched directly into the target plane at one of the times when the launch site 

passes through the targ» ♦ planr.     However,   if the vehicle is launched before 

or after the in-plane launch opportunity (e   g   ,   a delay due to a count-down 

hold),   an additional ideal velocity expenditure will be required to place the 

vehicle in the target plant-      The time span about the in-plane launch oppor- 

tunity during which the vehicle may be launched and the target plane achieved 

within a 8p<cified budget for the additional ideal velocity is called the launch 

window 

If the mission invol   es goals beyond simply entering a given plane 

(r. g. ,   rendezvousing with another vehicle already established in the plane or 

burning out undfr certain sun lighting conditions,   etc   ),   the definition of the 

launch window may be rrodifit-d to include these goals.     It is most often 

convenient (particularly in feasibility and preliminary design studies) to 

defint- the mission in several separate phases,   of which the achievement of 

the    arg«'t plane is thr first      Once the launch vehicle is established in the 

target  plane,   the next  phase (eg   .    rendezvous,    earth referenced positioning, 

orbital phasing for timed nodal crossings,   etc   )  13 begun and,   in general, 

involves only in-plane  maneuvering      The  ideal v» loc.ty requirements  for the 

phases following the establishment of the launch vehicle ir the target plane 

are frequently independent of where the target p'ane is entered and,   therefore, 

have no effect on the launch window as defined above      In cases where the 
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launch window is affected by the  in-plane maneuvering,   that effect can 

usually be calculated separately and superimposed on the launch-window 

as defined above. 

This paper wilJ consider only the establishment of the vehicle in the 

target plane,   because this phase is common to many missions,   rather than 

specializing to a particular mission and discussing in-plane maneuvers. 

The development of equations will assume the following pattern:    First. 

the  relation between the vehicle's horizontal velocity component and the 

angle (plane change angle) through which it must be turned to achieve the 

target plane is established.    It is then shown that,   if the path of the vehicle 

from launch to burnout is assumed to lie in an inertial plane    the minimum 

plane change angle (and therefore minimum required velocity for plane 

change) is achieved bv launching in such a manner as to intercept the target 

plane after 90 degrees of angular travel. 

Equations are developed,  which give the minimum achievable plane 

change angle and the launch azimuth necessary to achieve that minimum plane 

change angle as functions of launch delay and constant quantities.     An equation 

is also developed which gives the launch window itself as a function of the 

maximum allowable plane change angle,  and several interesting cases and 

extensions of this formulation are discussed.     Expressions for the launch 

window for the case of fixed launch azimuth are formulated,   and,   finally,   a 

method for finding launch windows when the launch azimuth is constrained is 

presented. 

U.        ANALYSIS 

It will be assumed that the target plane has a fixed inclination to the 

equator and that the line of nodes (line of intersection of the equator and 

target plane) moves in the equatorial plane at a uniform rate,  u^   ,   where ^ 

H 
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is positive in the same sense as the earth's rotation about its axis.       The 

path of tin   vehicle from lift-off from the launch site (assumed to lit' in the 

northern hemisphere) to interception of the target plane will be assumed to 

lie in an inrrtial plant- (hereafter called the launch plane)  passing through the 

tarth's center      It will further be assumed that it is desired to  enter the 

target plane in an easterly sense,   i. e. ,   the launch azimuth is assumed to be 

between 0 and  180 deg.       The angle,   Q,   which occurs between thf launch plane 

and the target plane is indicated in Figure  1,   and it is this angle a through 

which the horizontal component of the vehicle's velocity vector must be 

rotated in order to make the launch and target planes coincident.     The 

vehicle's horizontal velocity component,   V„,   is given by 

VH = V cos v (1) 

where V is the vehicle's inertial velocity and y is the flight path angle of the 

vehicle's inertial velocity vector with respect to the local horizontal.    If the 

vehicle is established in its orbit before reaching the target plane,   the con- 

servation of angular momentum gives 

h = rV cos Y 
r  a constant (2) 

If the target plane is  inertially at rest,   then UJJ. is   /.tro      If the target plane 
is a satellite orbit  plane,   then   J     is given approximately by 

7/2 
,a 

cos  i decrees ,,,.,/   e\ cos i deg 
r \ a / . . 2. Z mean s 277 mean solar day 

(1  -  e   ) 

where ae is the earth's equatorial radius,   a it tht- orbit's  semi-major axis, 
e is the orbit's  eccentricity,   and i is the orbit s inclination to the earth's 
equator. 

The  results of this  paper can b«1 e>tnnded to include  consider.ition of laun   h 
azimuths between   180 and  360 degree . and  southern hemisphere   launch  sites. 
These cases are  excluded in the present  development  for the  sake ot clarity 
and brevity. 
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Figure 1.    launch Goometr' 
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wht're h is tht." specific  angular momt'ntum of tht- vehicle  in orbit ar d r is thr 

radial distant»   from th«' earth's  center       The hori/.ontal velocity cumponent 

may b«   ixpr«'ssed as a function of r  only by combining   Equations (1)  and (2) 

to yield 

H 
h 
r 

r   V 
P    P 

r  V 
a    a 

( i) 

where  suosenpts  p  and a,    respectively,   denote  perigee  and apogtt   conditions 

Obviously,   if the orbit is circular,   V,. is  simply the orbital velocity 
H 

Figure  2      Velocity  Requirements  For Plane   Changf 

It can be seen from Figure Z that the velocity, _\V, ntcessary to rotate 

the la-.'.nch plane through an ingle a witnout hanging magnitude or flight path 

angle of the  vehicle  s  velocity ve< tor is 

AV      2VH sin V H: 



Equation (4) shows that for a given  /   .   the velocitv requirement,  AV, hi 
for the plane change is smallest when the -lane change angle,  a is ü minimum. 

The condition for minimum a (and therefore fo.- mir imam AV) may be found 

by considering the projection of th»- launch and taiv t planes onto in inertial 

sphere (concentric with the earth) at the time of launch,   as shown in Figure 3 

NORTH 
POLL 

EQUATOR 

— LAUNCH PLANE 

TARGET    PLANE 

Figure 3.     Geometry  For  Determining Optimum 
Launch A/.imuth 

The great rircle arc q is the angular distance from the launch site to 

the point where the target plane is intt-rcepted with an angle a.     The arc p is 

the minimum great circle distance from the launch site to the target plane. 

Note that p is a function of the launch time only (or equivalently of the 

positions of the launch site and target plane at launch),  while,   for a given p, 

q may be varied by varying the launch azimuth,   A.     From Figure 3,   th*" 

relationship between q and a for a given p is 

sin a sin p 
HTn q (?) 
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The minimam value of a for the configuration shown is found by differentiating 

Equation (5) as follows: 

d(sin •<) sin p cos q      n —g^- - = -^—   = o 
^ sin  q 

or 

q = 90 degrees (6) 

Equation (6) shows that the minimum plane change angle may be achieved by 

launching the vehicle in such a manner as to intercept the target plane 90 

degree downrange from the launch site's position at the time of launch.     Note 

the 90 degree downrange intercept condition implies that the horizontal com- 

ponent of the launch velocity vector is parallel to the target plane.     It also 

follows from Equation (6) that the plane change angle,   a,   is equal to the arc p 

(the great circle distance of the launch site from the target plane at the time 

of launch). 

A. Launch Window for Unconstrained Launch Azimuth 

If the target and launch planes are projected onto a cylinder tangent 

to the earth at tht- equator,   the picture on the unrolled cylinder will look 

somewhat like Figure 4.     The time reference (t - 0) in Figure 4 is the 

northerly in-plane  launch opportunity,   i. e. ,   the time wh^-n the launch site 

is in the target plane      The launch site moves eastward with respect to the 

target plane at a rate GJ - OJ„ - w  ,   where UJ     is the earth's rotation rate in 

inertial space.     The arc  r is the distance measured along the earth's equator 

from the target plant''s ascending node '.o the meridian of the targtt plane s 

crossing (on a northeasterly azimuth) of the launch site latitude,   L,   at which 

point the target plane's local azimuth is A. _,.     The meridian containing the 

launch site at the time of launch,   t,   is wt +  r east of the target plane's 

ascending node,   at which time the target plane's local latitude and azimuth 

are,   respectively,   L'   and A. ' .    The vehicle is launched with inertial 
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Figure 4.     Launch Geometry for Optimum Launch Azimuth 



) 

Azimuth A        to intercept the tarcet plane 90 degrees dov nrange at an angle a. Opt r o r 
The arc of the target plane's projection from the launch site meridian to 

interception of the launch plane is designated as  Z 

The first step in formulating the launch window (defined as the time 

span during which the maximum allowable planr  change angle, 3     <  is not 
3 m 

exceeded) is to express the p'ane change angle,   a,   as a function of time,   t. 

This is accomplished by  relating the respective parameters through spherical 

trigonometric  r- lotions applied to the spherical triangles  represented in 

Figure 4      The quantities A. T  and r are independent of the launch delay,   t, 

and may be expressed in terms of the launch site latitude and target plane 

inclination as: 

sin A. ,_ 
LI        sin i 

in L sin r        si 

cos i  -   sin A. _, cos  L 

or.   solving for A. T and r, 
LT 

COS    1 
8inALT     F^TT^^LT^900^ (7) 

81n r      V*" V   (0 < r < 90 deg) (8) 
tan i 

The plane chang    angle,   a,   may be expressed as 

sin a       sin ( L'   -   L)  sin A.  , (9) 

The plane change angle has a direct relation ( Equation (4)]  to the velocity 
requirement for plane change.     Therefore this definition of launch window is 
equivaltnt to that given in the introduction 
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X 
and the local latitude,   L' ,   of the target plane is expressible in the following 

two forms (see Figure 4): 

T /       sin i sin (wt + r) 
sin L    = 1—TV sin A. 

cos L    = —i- 
sin "ST 

(10) 

Expanding Equation (9) and substituting Equations (10) to eliminate L'  and 

A. , yields the following expression for the plane change angle as a function 

of time: 

sin a = sin i cos L sin (wt + r) -  cos i sin L (i 1) 

Note that Equation (9) and,  therefore,   Equation (11),   give positive 

values for a sin a,   when L (the launch site latitude) is less than L'  (the 

local target plane latitude) and negative values for sin a when L is greater 

than L'  (see Figure 4).    This property will be used later to derive analytic 

expressions for the launch window. 

Figure 5 shows the plane change angle,   a (taken as positive),   versus 

time for a launch site latitude of L      Z8. 34 deg (geocentric) and target orbit 

inclinations of i  =  28. 34,   29,   30,   31  and 32 deg      The nodal regression rate, 

a»  ,  of the target pKnes is taken to be zero so that u - Cü^,      0. 250684 deg/min 

for this case.     The value of r for each i is found from Equation (8).    The 

values of AV corresponding to the plane change angles,  a,   in Figure 5 are 

shown on the right ordinate and were calculated from Equation (4),   assuming 

a V„ of 25. 580 fps. 
H 

The launch azimuth,   A       .   may be formulated as a function of time by opt ' 7 

noting from Figure 4 that 

cos 90 deg =  0 = cos (1/   -  L) cos  Z -  sin (L'   -  L) sin Z cos A   ,    .   (12) 
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It also follows from Figure 4 that 

cos Z  =  sin (L/  -  L) cos 
opt 

-       sin A 
sin Z = opt 

sin A. / 

(13) 

Substituting Equations (1 3) into Equation (1Z) and combining the resulting 

equation with Equation (10) yields the expression for the launch azimuth, 

A       ,  which gives the minimum plane change angle,   a. 

tsa A . cos L cos i + sin L sin i sin (cjt + r) 
opt "~   sin i cos (ut + r)     ~ 

(0 < A        < 180 deg) 
* opt • 

(14) 

Figure 6 shows the optimum launch azimuth as a function of time for the 

same conditions as in Figure 5. 

Launch windows may be obtained from Figure 5 by measuring the time 

•pan,  At,   during which the AV (or a) capability for plane change is not 

exceeded.     For example,   if the maximum allowable plane change velocity 

increment is AV =  1000 fps (corresponding in this case to « 2. 2^ deg) 

and the target plane inclination is 30 degrees,   then the launch window from 

Figure 5 is At -  45 + 212 = 257 min.     Note from Figure 5 that,   if i > (L +   a    ) 
" m 

(where Q      is the maximum plane change capability),   the launch window is 
m 

split into two parts.     For example,   if i = 32 degrees and a      r 3 degrees. 

the launch window extends from -44 minutes to +70 minutes and from +17 2 

minutes to +286 minutes yielding a total launch window of 228 minutes. 

The development to follow will result in an equation which will givt' the 

launch window, At. as a function of the target plane inclination, i, the launch 

site latitude,   L,   and the maximum plane change capability,  a This formula 

> 
■:.- 

i 

r 
i 
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will obviate the need for a graph like Figure 5 to obtain a launch window. 

The formulation will also eliminate the need to calculate the parameter r. 

It was noted in Equation (11) above that sin a takes on positive or 

negative values depending on whether L/  is greater or less than L.    If the 

plane change angle,  a,   is defined as a positive angle (e.g. ,   as used in 

Figure 5) then Equation (11) must be rewritten as 

± sin a =  sin i cos L sin (tot + r) -  cos i sin L 

or,   equivalently, 

- 1/cos i sin L ± sin a wt + r =  sin    I r sin i cos TT •) (15) 

A typical time history curve of a (see Figure 5) may be described as having 

two "wings" on either side of a "hump ' and as being symmetrical about the 

center of the hump.    The center of the hump occurs at wt + r = 90 degrees 

(see Figure 4).   Therefore,   if the arcsine in Equation (15) is taken to be less 

than 90 degrees (quadrants I and IV), the corresponding time values will be to 

the left of the hump.   The positive sign for sin a in Equation (1 5) corresponds 

to times on the hump,   while a negative sign for sin a corresponds to time 

values on the wings.    Note (from Figure S) that for each time value   there is 

one corresponding value of a (for given i and L) but that,   in general,   a 

particular value of a  has four associated time values,   i.e.,   one on each of 

the wings and two on the hump.     For example,   on the i = 32 degree  curve in 

Figure 5,   a = 3 degrees corresponds to times of -44,   +10,   +172 and +286 

minutes.     The time values associated with a given a  may be distinguished in 

Equation ( 1 S) by the c hoice of sign for sin a and by the quadrant in which the 

arcsine is  taken,   as shown in the following Table (see Figure  5): 
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1               Quadrants of Sign of Time Value 

|        - l/cos i sin L ± sin a\ sin    1 1—■           • 1 
1             V       sin i cos U      f sin a (See Figure 5)       | 

\                     I and IV - Left wing value 

I and IV + Left hump value 

II and III + Right hump value    j 

II and III - Right wing value      | 
_J 

It was noted above that the center of the hump occurs at ut + r = 90 de 
4 

grees.     This point obviously corresponds to a local maximum for a   ,   and the 

v 

is 

alue, a.    , of a at the hump center [ from Equation (11) with ut + r = 90 degrees ] 

Qhc  = 1 (16) 

Therefore,   for values of the maximum plane change angle a      > i -  L,   the 

launch window is continuous from the left wing to the right wing (see Figure 5), 

and,   for a      < i -  L,  the launch window is divided into two equal parts by a 

portion of the hump. 

For the continuous launch window (a     > i - L),   the above table specifies m 
negative signs for sin o in Equation (15).    Therefore,   evaluating Equation (15) 

for the left and right wing values,   respectively,   and subtracting eliminates 

the quantity r. 

1/ cos i sin L -   sin a 
M i  r)RW -  M +  r)LW = u>(At)  =  sin     i >) 

81 ■I 
sin i cos L 

cos i sin L -   sin a 

(Quad II & III) 

sin i cos L ^)   (Qu ad I k IV) 

This can be shown by differentiating Equation (11) with respect to time 
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I 

However,  for any quantity X, 

sin" ^ (Quad II & III) -  180 deg -  sin' ^ (Quad I & TV) 

Therefore 

. /cos i sin L -   sin a   \ 
n'M .—. . -)  (Quad I & IV) 

y sin i cos  L / 
90 deg -  si 

'cos i sin L -   sin a 
:os     l- sin i cos 

—)  (Quad I & ID 

or 

cos u>(At) 
cos i sin L -  sin a 

m 
sin i cos 

(17) 

Equation (17) is a closed form expression for the launch window (At) for 

a      > i - L 
m 

Since the relation of the plane change angle to launch tirm- is pinodic. 

a launch window corresponding to [ u)(At) =   360 degrees j     may be considered 

infinite.     Therefore,   the plant- change capability necessary for an infinite 

launch window may be obtained by letting u)(At)/2      180 degrees in Equation 

(17).     This substitution leads to 

sin a sin L cos i + sin I cos L     sin (L + i) 
m 

or 

a L + i (18) 

For uir = 0,   i. e. .   an inertial target plane, such a launch window id  me 
sidereal day. 
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Equation (18) may also be derived by inspection of the geometry involved by 

noting that the maximum great circle distance ever encountered from the 

launch site to the target plane is i + L. 

It was noted above that when a      < i -  L,   a portion of time is excluded 
m r 

from the launch window given by Equation (17).     An expression for the 

excluded portion of time may be derived in a manner similar to the derivation 

of Equation (17) using Equation (15) and the table on page   IS      The resulting 

expression is 

4At)       "I        cos i sin L +  sin a 
-^ (19) 

ru)(At)     i exc 
sin i cos T7 

Although the above relations have been derived with the implicit assumption 

that i >  L (the definition of the timt" reference becomes  meaninglt-ss when 

i < L);   Equation (17) may b«   used to obtain the launch window whtn i <  L 

However,   when i < L and a      < L -  i,   Equation (17) will yield imaginary 

values for the launch wir JOW [ | cos u»(At)/2! >   1 1       The correct interpretation 

of this  phenomenon is that no launch window exists for tht-se conditions 

Equations (17)  and ^19) may be combined to give the following t-xpression 

for the launch window: 

r ./cos.sinL-sina    \ ./cosisinL+sina    \"| 
cos     ( ■ . -, )   -   cos      | 1 > T 1        (Zl 

| y sin i cos  L / \ sin i cos  L /] 

where arccosines with arguments largtr in magnitude than unity art- defined 

to be  zero ( e. g   ,   the  second arccosine in  Equation (20) will be  /.«ro when 

a      -> i  -   L,   in which case Equation (20) reduces to  Equation (17)). 

Equation (20) may be used to determine the target plane inclination,   i, 

which gives the maximum launch window for a fixed launch site  latitude,    L, 

and plane change capability,   a Obviously,    if a       > L,   an i of /.ero may be 

chosen to give an infinite launch window [ see   Equation (18)] .     Therefor« ,   the 
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region of interest for this question is 0 < a     < L.    Equation (20) is continuous 

for 0 S i < 90 dec,   but d(At)/di is discontinuous at i = L - a      and at i = L +a m m 
at which points the right sided slope is infinite (see Figure 7),    However,   it 

can be shown that: 

/ 

(see Figure 7)    ^ 

d(At)  _ 0 [ and At - 0 by the definition following Equation 
(20)]  for 0 < i < (L - a    ) m 

V 

^4^ > 0 for (L -  a    )<i<(L+Q    ) 
di m m 

^^ <  0 for (L + a     ) < i < 90 dec 
di m 0 

^ - 0 for i      90 deg 

The correct interpretation of the above cnditions is that the maximum 

launch window,   At.   (for 0 < a      < L) occurs when i      (L + a     ),   the minimum 
m m 

At (=  0) occurs for 0 < i < (L - a     ),   and a local minimum At occurs at 
m 

i =  90 decrees  (designating A polar target plane).     An expression for the 

maximum  launch window At may be obtained by substitutint» i -  (L  + a     ) 
max 7 * m 

into Equation (20) to give 

OS 

"(At h max 
 2— 

, tan L , 
^ tan(L+ a    ) -   1 

m 
(21) 

The launch window for polar target  planes may b»- obtained by substituting 

i = 90 degrees  into Equation (20) to give 

si 
sin Q 

nMAt)]     P",um 
L     ?    J      tos L (22) 

-18- 



Figure 7 is a plot of Equation (20) for L = 18. 34,   u> = 0. 25063 deg/min. 

anc^ am = ^ ^egree8-     The dashed line in Figure  7 is the locus of maximu m 

launch windows (when o       and L are held constant and i is varied) obtained 

from Equation (2 1).     Figure 8 shows the launch windows [Equation (20)]  as a 

function of a for several values of i      The dashed line in Figure 8 is,   as 

before,  the locus of maximum launch windows 

B. Launch Window for Constrained Launch Azimuth 

Because of range safety considerations  and/or because of some charac 

tenstic of the launch vehicle,   the launch azimuth may be constrained to lie 

between certain values or to be fixed      If the launch azimuth,   A. .   is fixed, 

then the inclination,   i' ,   of the plane into which the vehicle is launched is 

fixed also.    The relation connecting A.   and i'   can be seen from Figure 9 to 

be 

cos i'   -  cos L sin A. (23) 

The local azimuth.   A. T,   of the target plane at the launch site latitude (on 

the northerly crossing) is  similarly given by 

sin A. _      COS j  (0 ■    A, ^ ^  90 deg) (24) 
LT      cos L LT B 

Let the tune   reference  (t -  0) for  the  tixed  a/imuth case  be defined as 

the time when the launch site passes through the target plane on the target 

plane's crossing (on the northeasterly azimuth)  of the launch site latitude 

(This definition is consistent with the variable launch azimuth case and will 

allow fixed and variable   launch azimuth results  to be combined later   )    The 

geometry at t      0 is  shown  in Figure 9.   and the geometry for a  later time,   t, 

is  shown in Figure  10 
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Figurt1 4.     Geometry  tor Fixed Launch Azimuth at  t      0 
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Figure  10      Gfometry for Fixed Launch A/.imuth at t  > 0 



The quantity x in Figure 9 is the difference in longitude of the ascending 

nodes of the two planes at t      0.     An expression from which x ran be found 

may be written as 

cos (A. _,-   A.)      cos i cos i'   +  sini sin i'   cos x 

or, 

cos x 
cos (A. T -   A. ) -  cos i cos i' 

—i—i—i—17- 
sin 1 sin r 

(-90 deg < x < 90 deg) (25) 

where x has the  same sign as (A. _ -   A. ). 

The expression for the plane change angle,  a,   may now be written (set- 

Figure  10) as 

cos a  - cos i cos i'   +  sin i sin i'   cos {ut +  x) (26) 

The condition for minimum plane change angle for the fixed azimuth case 

may be found by differentiating Equation (2.6) as follows: 

da 
dl^tT sm a -rr-rr      sin i  sin i'   sin (wt + x)   =  0 (27) 

The two solutions to Equation (27) are 

(wt + x).       0 or  360 deg 

and 

(üot + x) 180 deg 

\ 

/ 

(28) 
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It is apparent from examination of the second derivative of Equation (26) that 

the first solution above corresponds to the minimum and the second to the 

maximum values of a      Further,   the minimum and maximum values of the 

plane change angle may bv found by substituting the solutions (28)  into (26) or 

by inspection to be 

at 
1 

Q 1-1 
mm 

a 1+1 max 

(29) 

It is also evident from Equation (28) and the geometry that,   whtn tht- minimum 

or maximum plane change angl»   occurs,   thv intersection of the target and 

launch planes occurs on the equator      The  minimum a occurs when the planes 

cross the equator at the same point in the  same sense (northerly or southerly), 

and the maximum a occurs when the planes cross the equator at the same 

point in opposite senses. 

Figure   1 1   shows the plane change angle as a  function ot  time for a 

target plane inclination   of i       30 degrees,   a  launch site latitude  of L      28.  34 

degrees,   and launch azimuths.  A    ,   of 70,   79.722,   90,   100.278.   and  110 

degrees.    As before,   the nodal   regression   rate,   uJr.   is assumed  to he /.e ro. 

Note that the curves defined by A.        70 degrees and A 1 10 degrees are 

identical.     This  is due  to the symmetry of the launch azimuths about    A ')0 

degrees [Equation (2 3)  shows ihat launch azimuths symmetrical  about   '0 

degrees yield identical  values of i' and therefore,   from Equation  (2M     the 

same shape curves of n versus t] .     The curves defined by A L 
9,  722   de C rcc s 

and A.        100. 278 degrees exhibit a  similar property and  in addition > ontain a 

point where a       0.     These are the only two laum h azimuths whu h yield a   zero 

a for the particular  i and L under consideration,   because   79   722 decrees  is 

the local target plane azimuth,   A. _,,   at the  launch site latitude [see Equation 

(^1)]   and   100. 278 degrees  is   180 degrees   -  A        ,     Therefore,   vehicles 

launched on these azimuths may at   some  time  be  laum hed direi tly   into the 

ta rget plane. 
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In many problems with a fixed launch azimuth constraint,   the launch 

azimuth is chosen to be the azimuth which results in a direct launch into the 

target plane at the nominal launch time (i. e   ,   A.   - A. T)      Such a condition 

results in the inclinations of the launch and target planes being identical 

(i      i') and in their longitudinal separations at t     0 being zero (x = 0). 

Therefore,   for this case,   Equation (26)  reduces to 

, v 2.  . 2. (cos a). A      A       .  = cos   i + sin i cos u)t (30) 

It can be seen from Equation (26) (also see Figure  11) that the curve 

of a versus t is symmetrical about the value of t corresponding to the 

minimum a-     Therefore,  the time measured from the minimum a point 

[ defined by (ut + x)  = 0)  to the time defined by a = a      (the maximum allowable 

plane change angle) is one half the launch window,  Ai.     Using this reasoning. 

Equation (26) may be written a« 

cos a 
m 

cosicosi    f sin i sin i    cos —*— 

or,   solving for the launch window 

ros —*— 
cos a 

m 
cos i cos  i 

sir. i sin r (31) 

where i'   is obtained trom Equation (23). 

If the launch azimuth is not constrained to be constant but is constrained 

not to exceed a ct-rtain vdlut*,   then the launch window is defined by a combina- 

tion of variable and fixed azimuth formulations      Suppose,   for example,   that 

a southerly azimuth limit,   A„,   exists      The time history of the plane change 

angle,  a,   is given by the variable azimuth formulation Equation (11),   up until 
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A    is reached and then by the fixed azimuth formulation,   Equation (26),   with 

AL.     AS 

Figure   1Z  shows a typical launch window tor several   southerly az-imuth 

limits.    For this  case,   the  launch site  latitude   is 28.  54 degrees and the target 

plane  inclination   is   30 degrees.    Figure   12   shows  that  tor a   plane  change  ( a pa 

bility ot I degrees,  the  launch window extends  from  -41   minutes to +208 min- 

utes lor a total  launch window of 249 minutes with no launch azimuth i on- 

straints.     However,    if the  launch azimuth  is  (.onstrained  to  be  no  larger  than 

1 00 deg ree s , the window  is reduced by 28 minutes  to yive a total  of 22 1 minutes 

The time during an otherwise unconstrained launch window when the 

southerly launch azimuth limit is  reached may be  read from  Figure 6 or, 

if such a graph is not available,   may be calculated from Equation (14) 

For example,   the   100 degree  launch azimuth limit  tor  the t ase  sited 

above  is   reached   Mt^ minutes after the  northerly   in-plane   lauruh  opportumts 

Therefore,   the  time  history   of a during  the   launch wmdov.   is   given  by 

Equation (11)  up to t   -    16^  minutes and  by  Equation  (26)  after  t        IhS  minutes 

Northerly launch azimuth limits may be handled in a manner  similar to that 

outlined above for  southerly launch azimuth limits      Thr launch window may 

then be measured from a plot similar to  Figur«   12 or found by calculating 

the beginning and end points of the launch window from  Equation (1!) and/or 

Equation (2o),   taking the difference,   and ex< luding the  "hump     portion 

[ Equation (1 9) | 

"5  
One method for solving  Equation (14) would be to substitute the southerly 

azimuth limit,   A„,   for A        in Equation (14)  and   re-arrange the equation 
in the form 

cos (ojt  +   r)       cot A^sin  LJ cot   L ( ot  i  +   sm (u;t -»   r) | 

Assignment of some value between /.ero and umW (o sin (u/t  +   r) on tht   right 
side of the abov^ equation then yields a  value ol (u^t  +   r)  from the left  side 
which is substituted into the  right side of »he  equation      This  iteration pro- 
cedure is continued until a sufficiently accurate value of (cjt  +   r)  is obtained 
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III.       SUMMARY 
■: 

Th^ launch window has be( n defined as the time span during which a 
it 

vehicle may be launched and established in a given inertial plane passing 

through the earth's center without exceedina a »fivrn maximum value,   a 

for the plane change angle (or,   ?quivalently.   the maximum ideal velocity 

budgeted to plane chang   ,.     This paper has developed concise formulations 

for the plane-change an^le as a function of launch delay only (assuming; 

target plan      nclinaticn and launch sits latitude fixed) for variable,   optimized 

launch azimuth [ Equation (11))  and for fixed launch azimuth [ Equation (Zo)] . 

It has been shown that the optimum launch azimuth (i. e. ,   yielding minimum 

plane change angle) is one which results in a 90-degree downrange intercept 

of the target plane,   and the optimum launch azm. ith has been formulated as 

a function of time (  ily [ Equation (14)].    Further development of the equations 

has led to concise formulations for the length of the launch window (assuming 

target plane inclination and launch site latitude fixed) corresponding to a 

given a      (maximum plane change angle) for variable,   optimized lavnch 

azimuth [ Equation (Z0)|   and for fixed launch azimuth [ Equation   ^1)] .     A 

method was then defined to obtain a time history of plane change anglt for 

a combined fixed and variable  launch azimuth case (e: g. ,   a case where the 

launch azi..iuth is constrained 'o be within certain limits)      Numerical 

examples and graphical illustrations were given for most of the cases and 

several miscellaneous formulations growing out of the development were 

presented 
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