
601047

-

R-340 - Rpt #2(Final) Contract: DA19-129-qm-1784 FMC Corporation

A Study for Resistance of Centainers to Chemical Warfare Agents

Period: 24 May 1961 - 23 May 1962

QUARTERMASTER FOOD AND CONTAINER INSTITUTE FOR THE ARMED FORCES Research and Engineering Command Quartermaster Corps, U.S. Army Chicago, Illinois

DDC AVAILABILITY NOTICE:

QUALIFIED REQUESTORS THAT

BEST AVAILABLE COPY

Q

F. C

1

Ē

С

CONTRACT RESEARCH PROJECT REPORT

QUARTERMASTER FOOD AND CONTAINER INSTITUTE FOR THE ARMED FORCES OM Research and Engineering Command, U. S. Army, OM Research and Engineering Center, Natick, Massachusetts

FMC Corporation Chemicals and Plastics Division 1701 Patabace Avenue Baltimere 26, Maryland

Official Investigator: Dr. John I. Stevens

÷

•

Project Nr.: 7-91-03-015 Contract: DA19-129-cm-1784 Report Nr. 2(Final) File Nr.: R-340 Period: 24 May 1961 -23 May 1962 Initiation Date: 24 May 1961

Title of Contract: A Study for Resistance of Centainers to Chemical Warfare Agents

..

Page ii.

TABLE OF CONTENTS (Continued)

Page No.

		3. Preparation of a Calibration Curve for Agent IV	34
	F.	Development of An Analytical Procedure for Use with Agent V	37
		1. Stability of Agent V in Aqueous Propylene Glycol	37
		2. Analytical Procedure for Agent V	37
		3. Calibration Curve for Agent V	38
VI.	EXP	ERIMENTAL PROCEDURES	41
	A.	Design and Construction of a Test Cell	41
	B.	Procedure Used in Starting a Test Series	45
		1. Procedure for Starting Vapor Permeability Tests	46
		2. Procedure for Starting Liquid Permeability Test Series	47
	c.	Procedure for Removal of Samples	48
		1. Removal of Samples from the Collecting Solutions	48
		2. Removal of Samples from the Vapor Chamber	48
	D.	Procedure for the Dilution of Samples	49
•	E.	Enzymatic Procedure for the Determination of Anti-cholinesterase Activity	50
		1. Principle	50
		2. Reagents	52
•		3. Equipment	53
		4. Procedure	53
VII.	EXF	PERIMENTAL RESULTS	57
VIII.	LIT	TERATURE CITED	95

•

i

911 (P. F.B. (P. T. G. C. P. K. T. F.

ī

*** * * * * * *

.

.....

.

.

÷

1--

.

•

TABLE OF CONTENTS

			Page No.
I.	INI	RODUCTION	l
II.	SU	MARY	2
III.	REC	COMMENDATIONS FOR FUTURE WORK	7
IV.	DIS	CUSSION OF RESULTS	8
	A,	General Results of the Permeability Tests	8
	В.	Relative Permeabilities of the Types of Materials Tested	11
	c.	Limitations of the Test Procedures	13
۷.	DEV	ELOPMENT OF ANALYTICAL PROCEDURES	15
	λ.	Adaptability of the Enzymatic Procedure to the Study of the Permeability of Films	15
		1. Procedural Changes	17
	В.	Use of the Enzymatic Procedure with Agent No. 1	20
		1. Stability of Agent No. I in Aqueous Propylene Glycol	20
		2. Preparation of a Calibration Curve for Agent No. 1	20
	c.	Use of the Enzymatic Procedure for Agent II	21
		1. Stability of Agent II in Aqueous Solution	21
		2. Preparation of a Calibration Curve for Agent II	24
	D.	Use of the Enzymatic Procedure for Work with Agent III	28
		 Stability of Agent III in Aqueous 78 Percent Propylene Glycol 	28
		2. Preparation of a Calibration Curve for Agent III	28
	E.	Development of An Analytical Procedure for Use With Agent IV	32
		1. Analytical Procedural Development	32
		2. Stability of Agent IV in Aqueous Propylene Glycol	34

_

TABLES

Page iii.

TABLE OF CONCENTS (Continued)

Page No.

I.	Comparative Permeabilities of Selected Packaging	
~ ,	Materials	4
II.	Selected Test Packaging Materials	5
III.	Chemical Warfare Agents Used in the Container Resistance Studies	6
IV.	Percent Inhibition of Acetylcholinesterase Due to Propylene Glycol Under the Enzymatic Test Conditions	19
۷.	Stability of Agent I in 78.5 Percent Propylene Glycol	22
VI.	Stability of Agent I in Dilute Aqueous H ₂ SO ₄	23
VII.	Stability of Agent II in Aqueous Solutions	25
VIII.	Stability of Agent II in Aqueous 78 Percent Propylene Glycol	26
IX.	Stability of Agent III in Aqueous Propylene Glycol	31
х.	Stability of Agent IV in Aqueous 78 Percent Propylene Glycol	36
XI.	Permeation of Nineteen Packaging Materials by Agent I (Liquid)	58
XII.	Permeation of Twenty-three Packaging Materials by Agent II (Liquid)	59
XIII.	Permeation of Twenty Packaging Materials by Agent III (Liquid)	60
XIV.	Permeation of Ten Packaging Materials by Agent IV (Liquid)	61
XV.	Permeation of Ten Packaging Materials by Agent V (Liquid)	62
XVI.	Agent I - Vapor Permeability Test Series No. 1 - Analyses of Vapor Chamber	63
XVII.	Agent I - Vapor Permeability Test Series No. 1 - Analyses of Collecting Solutions	64

TABLE OF CONTENTS (Continued)

Page No.

TABLES (Continued)

. •

Į

化合物 建氯化化物的 网络人名法阿尔弗 化酸盐 医胆管管 医下子

, **--**--,

XVIII.	Agent I - Vapor Permeability Test Series No. 2 - Analyses of Vapor Chamber	65
XIX.	Agent I - Vapor Permeability Test Series No. 2 - Analyses of Collecting Solution	66
xx.	Agent I - Liquid Permeability Test Series No. 1 - Analyses of Collecting Solution	67
XXI.	Agent I - Liquid Permeability Test Series No. 2 - Analyses of Collecting Solution	68
XXII.	Agent I - Liquid Permeability Test Series No. 1 - Analyses of Vapor Chamber	69
XXIII.	Agent I - Liquid Permeability Test Series No. 2 - Analyses of Vapor Chamber	70
XXIV.	Agent II - Liquid Permeability Test Series No. 1 - Analyses of Collecting Solutions	71
XXV.	Agent II - Liquid Permeability Test Series No. 2 - Analyses of Collecting Solutions	72
XXVI.	Agent II - Liquid Permeability Test Series Nc. 1 - Analyses of Vapor Chamber	73
XXVII.	Agent II - Liquid Permeability Test Series No. 2 - Analyses of Vapor Chamber	74
XXVIII.	Agent II - Liquid Permeability Test Series No. 3 - Analyses of Collecting Solutions	75
XXIX.	Agent II - Vapor Permeability Test Series No. 1 - Analyses of Collecting Solutions	76
XXX.	Agent III - Liquid Permeability Test Series No. 1 - Analyses of Collecting Solutions	77
XXXI.	Agent III - Liquid Permeability Test Series No. 2 - Analyses of Collecting Solutions	78
XXXII.	Agent IV - Liquid Permeability Test Series No. 1 - Analyses of Collecting Solutions	79
XXXIII.	Agent IV - Liquid Permeability Test Series No. 2 - Analyses of Collecting Solutions	80
XXXIV.	Agent V - Liquid Permeability Test Series - Analyses of Collecting Solutions	81

Page v.

TABLE OF CONTENTS (Continued)

.

		Page No,
TABLES (Continued)	
XXXV.	Agent V - Liquid Permeability Test Series - Analyses of Collecting Solutions	82
XXXVI.	Agent I - Liquid Permeability Test Series - Analyses of Collecting Solutions	83
XXXVII.	Agent II - Liquid Permeability Test Series - Analyses of Collecting Solutions	84
XXXVIII.	Agent III - Liquid Permeability Test Series - Analyses of Collecting Solutions	85
XXXIX.	Agent III - Liquid Permeability Test Series - Analyses of Collecting Solutions	86

FIGURES

• • •

.

1.	Calibration Curve for Agent I	27
2.	Calibration Curve for Agent II	29
З.	Calibration Curve for Agent III	30
4.	Calibration Curve for Agent IV	35
5.	Lack of Stability of Agent V in Aqueous Propylene Glycol	39
6.	Calibration Curve for Agent V Using the Chloramine / Procedure	40
7.	Permeability Test Cell	43
8.	Test Material No.1, Series No. 2, Agent I Vapor Tests - White Sulphite Board	87
9.	Test Material No. 4, Series No. 2, Agent I Vapor Tests - Kraft Board	88
10.	Test Material No. 10, Semies No. 2, Agent I Vapor Tests - Cellophane	89
11.	Liquid Permeability of Materials 20, 21, 22 and 23 Towards Agents II and III	90
12.	Liquid Permeability of Material 10 (Cellophane) To Agents I through V	91

ц. Р

7

TABLE OF CONTENTS (Continued)

Page No.

FIGURES (Continued)

13.	Liquid Permeability of Test Material 9, Saran, Q4164.7, Towards Agents I through V	92
14.	Liquid Permeability of Test Material 4, Kraft Board, Towards Agents I through V	93
15.	Liquid Permeability of Test Material 1, White Sulphite Board, Towards Agents I through V	94

Page vi.

Organic Chemicals Division FMC Corporation Baltimore, Maryland

Final Report - May, 1962

INTRODUCTION

The scope of Contract DA19-129-QM-1784 (01 5091), "A Study for

Resistance of Containers to Chemical Warfare Agents" was defined in the

contract as follows:

I.

"The Contractor shall, commencing on 24 May 1961 and continuing through 23 May 1962, supply the necessary personnel, facilities and materials and do all other things necessary for or incident to and will furnish his best efforts within the estimated cost to the performance of the work as set forth below:

- "(1) The Contractor shall determine adequacy of current laboratory techniques and procedures for testing materials for resistance to penetration of chemical warfare agents.
- "(2) Where necessary, the Contractor shall modify current laboratory testing methods or develop new methods to assure precise measurement of the degree of effectiveness of the materials in preventing penetration of the agents.
- "(3) The Contractor shall determine the resistance of approximately twenty packaging materials using techniques described in paragraphs (1) and (2), above. Materials will include but not necessarily be limited to unsupported plastic films, aluminum foil, paper and combinations thereof. The Project Officer will determine the specific materials to be evaluated, which materials shall be furnished by the Government to the Contractor at Government expense.
- "(4) The number of chemical warfare agents to be tested will not exceed five (5). The specific warfare agents will be determined by Army Chemical Center, Edgewood, Maryland, in consultation with the Contractor and the Project Officer. The agents shall be furnished by the Government to the Contractor at Government expense."

1

ŝ,

1

1.1

ş

١,

The Project Officer for this contract was Mr. Frank J. Rubinate (Chief, Development and Standards Branch, Container Division, Quartermaster Food and Container Institute), who made the choice of packaging materials to be tested, and exercised general supervision of the project.

The agents to be tested were specified by the U. S. Army Chemical Research and Development Laboratories. Miss Virginia Bauer of the Biochemical Research Division was designated as technical advisor representing the Chemical Research and Development Laboratories.

II. SUMMARY

An apparatus was designed to allow a direct comparison of the permeabilities of the packaging materials towards chemical warfare agents. A sensitive analytical method for each of the five chemical agents was adapted to the test requirements. Vapor permeation tests were capable of distinguishing barrier efficiencies only for the more volatile agents. A standard liquid permeation test was therefore adopted as a means of barrier efficiency evaluation, applicable to all packaging materials and agents.

Test conditions comprised placing 0.04 g. of each agent directly upon the circular film test piece, forming a barrier between two compartments. The agent permeated was collected in a solution in the lower compartment. Samples of the collecting solution were analyzed over a 10-14 day period. The tests were conducted at room temperature and 50 percent relative humidity.

The degree of permeation was expressed as micrograms of agent permeated per 100 sq.in. of barrier during the test period. Values so obtained allow a direct comparison of barrier efficiencies under test

Page 2.

conditions. Substantial differences in permeability were observed. The test is regarded as a practical screening method for choosing packaging materials for more rigorous testing under variable field conditions.

The relative permeabilities of the packaging materials are summarized in Table I, p. 4. Qualitative observations on each type of material in the approximate order of efficiency are listed below:

- A. Vinyl-Aluminum Foil-Mylar Laminate: Excellent resistance to all agents.
- B. Mylar: Generally impermeable except toward Agent I.
- C. V3 Board (paper laminate including two asphalt layers): Intermediate permeability.
- D. Saran: Certain samples showed good inherent resistance but wide variations in results indicate a lack of uniformity.
- E. Cellophane coated with Saran: Rather poor resistance to permeation with the possible exception of Agent I.
- F. Polyethylene: Rather poor resistance.
- G. Cellophane: Poor resistance.
- H. Kraft Board: Poor resistance.
- I. Sulphite Board: Poor resistance.

In Table I, and throughout the report, the agents are designated by number, I through V. The corresponding agent identification is listed in Table III, p. 6. In Table II, p. 5, the packaging materials are identified.

Page 4.

Table I

Comparative Permeabilities of Selected Packaging Materials (a)

Film				AGENT		
No.	Material	I	II	III	IV	<u>v</u>
1	Sulphite Bd.	5	. 6	7	6	6
2	Mylar	2 ່	1	1		2
3	Poil Laminate	1	1	1		2
- 4	Kraft Bd.	5	6	6	6	6
5	V3 Bd.	3	2 -	3		2
6	Saran, Type 7	2	3	2	5	5
7	Saran, Type 17	l	3	l		6
8	Saran-coated Cellophane -DK-202	1	· 4	. 4		5
9	Saran, Q4164.7	5	4	5	4	4
10	Cellophane,195 PSD 12412	5	6	6	5	6
11	Foil Laminate (Doback)	1	1,1	3		
12	Foil Leminate (Dobeck)	1	l			
13	Foil Laminate (MilPrint)	1	3			
14	Foil Laminate (Con-Can)	1	6,1	1		
15	Foil Laminate (Kleerpak)	1	1			
16	Foil Laminate (MMM)	1	1,2	1		
17	Mylar (DuPont)	3	1,1	3		
18	Cello-Saran (Am.Viscose)	5	6,5	5		
19	Cello-Saran (DuPont)	2 ′′	4,3	4		
20	P.E. Low (DuPont)		5	5		
21	P.E. Med (DuPont)		4	5		
22	P.E. Low (Carbide)		5	5		
23	P.E. Med (Carbide)		4	5		

(a) Table I was prepared by averaging the results shown in Tables XI through XV, pages 58 through 62. The rating numbers listed in the agent columns have physical significance, i.e., a rating of 1 indicates less than 10 micrograms permeated per 100 sq.in.; a rating of 6 indicates less than 10⁵ micrograms but more than 10⁵ micrograms permeated.

でなど用と単語にないと思い

Page 5.

Table II

Selected Test Packaging Materials

Material <u>No.</u>	Supplier	Type of Film	Notes	
l	-	Sulphite Board	22 pt., white, porous cardboard	
2	DuPont	Mylar Film	l mil	
3	DuPont	Foil Laminate	0.003 vinyl-0.00035 alum.foil 0.0005 Mylar	
4	-	Kraft Board	Brown, porous cardboard	
5	-	V3 Board	40 pt.,multi-layer, two asphalt layers	
6		Saran Film	Type 7, 100 gauge	
7		Saran Film	Type 17, 100 gauge	
8	DuPont	Saran-coated Cellophane Film	DK-202 - 1/2 vil Saran coating	
9		Saran Film	Q4164.7, 10 0 gauge	
10	DuPont	Cellophane Film	195, PSD 12412	
11	Dobeckmun Div., Dow	Foil Laminate ^(a)	(VBA 1142) Vinyl-Alum.Foil-Mylar, Lot 1	
12	TT 11	n n (a)	" " " Lot 2	
13	MilPrint	" " (a) (F-11)" " " Lot 1	
14	Con.Can	" " (a)	Vinyl " " Lot 1	
15	Kleerpak	11 11 (a)	" " Lot 1	
16	Minn.Min. & Mfg.	n n (a)	" " Lot 1	
17	DuPont	Mylar Film	Lot No. 1, 1.0 mil	
18	Am.Viscose	Saran-coated Cellophane	Lot No. 1, RS-2, 140 gauge	
19	DuPont	Saran-coated Cellophane Film	Lot No. 2, K-202, 140 gauge	
20	DuPont	Polyethylene Film	Low Density, 200 A-101	
21	DuPont	Polyethylene Film	Medium Density	
22	Union Carbide	Polyethylene Film	Low Density, N-695-M	
23	Union Carbide	Polyethylene Film	Medium Density, N-690-A	

(a) These laminates were all composed of 0.5 mil Mylar, 0.35 mil foil and 3.0 mil vinyl.

Page 6

Classified page #6 has been removed from this report and is not available for distribution.

III. RECOMMENDATIONS FOR FUTURE WORK

A. More Complete Tests of the More Resistant Materials

The tests described in this report were made by determining the permeation of measured quantities of liquid agent deposited on the surface of the material being examined without regard to the area of liquid contact. This procedure led to a satisfactory differentiation between films with appreciable differences in permeability, and permitted conclusions to be drawn as to the preferential use of a specific packaging material.

It would also be desirable to carry out similar tests in which the area exposed to liquid agent would be held constant. This test variation would provide more direct information concerning the rate at which an agent penetrated any specific packaging material. This value would then make possible a more reliable estimation of the length of time during which a specific packaging material would offer protection against penetration by agents.

B. Tests of Packaging Materials After Their Having Been Subjected to the Packaging Processes

Each of the packaging techniques below would be expected to offer a possibility of adversely affecting the barrier efficiency of test materials. Tests of the effects of these factors upon the better films would be recommended.

1. Creasing.

2. Folding.

3. Cornering.

4. Heat sealing, where applicable.

5. Glueing, where applicable.

6. Multi-layer assemblages of packaging materials

in the order used for packaging.

 Handling of completed packages, as represented by tumbling and falling tests.

C. Effects of Climatic Variations

Tests to date have been conducted at room temperature (70-75°F.) and 50 percent relative humidity. Variations in temperature and humidity may greatly affect permeability directly (B-1) and indirectly in terms of physical strength and resilience of the packaging material. In any extension of this work, it is recommended that the more promising of the packaging materials be tested under conditions representing the complete range of climatic conditions reasonably to be expected.

IV. DISCUSSION OF RESULTS

A. General Results of the Permeability Tests

The twenty-three samples of various packaging materials shown in Table II, page 5. were tested for resistance to permeation by the selected chemical agents shown in Table III, page 6. The first ten materials were tested initially for resistance to each of five chemical agents. Additional samples of those materials found to be least permeable were then tested for resistance to permeation by two of the five chemical agents. These additional tests thus provided an indication of the reproducibility to be expected from different suppliers, or production lots, of each type of film. The condensed results of these tests are shown in Table I, page 4. Most of the tests were made in duplicate in order to provide additional information concerning the reliability of the analytical procedures and the uniformity of the test materials.

As described in Section VI, page 41, Experimental Procedures, the tests were carried out in an apparatus consisting of an open bell jar-shaped chamber and a dish-shaped collecting chamber which could be clamped together by means of opposing ground glass flanges. The film to be tested was inserted as a barrier between these two sections. The chemical agent to be used was placed in the upright cylindrical chamber; any agent which passed through the film was collected in the second chamber and measured analytically. Tests were made of the permeability of the first ten materials toward chemical agents in the vapor phase as well as in the liquid phase. These tests, in general, confirmed the results of the liquid tests, but were not applicable to the less volatile agents. During the latter part of the program, the experiments were therefore limited to tests with agents in the liquid phase. The same test cell was used for both.the liquid phase and the vapor phase tests, except that, for the vapor tests, agent vapor was allowed to generate from a supply of agent suspended in the chamber above the test film barrier as shown in Figure 7, page 43. In the liquid permeation tests. the amount of agent placed on the film (0.04 ml.) was held constant throughout the entire series. The test cells were adjusted so that the film surfaces were horizontal and, in general, the agent remained spread out in the center of the film. No attempt was made to measure the area covered or to make the area covered uniform.

It was felt that the tendency of agent drops to spread upon contact with the film surface would be a characteristic of the test film itself and valuable results would be obtained by keeping constant the amount of agent added.

The penetration of the permeable films by agent vapor was characterized by an induction period during which negligible quantities were detected in the collecting solution. The concentration in the collecting chamber then rose rapidly to a maximum at which it remained relatively constant. The lack of any further increase in concentration in the collecting chamber was undoubtedly associated with a simultaneous decomposition of the agent in the vapor chamber. Gradual decomposition of agents under humid conditions was to be expected. The results of vapor phase tests with the sulphite board, kraft board and with cellophane are shown in Figures 8, 9 and 10, respectively.

The permeation data was expressed in terms of micrograms of agent permeated per 100 square inches of barrier. Because of the limitation of the analytical methods, values below a specific minimum level which varied with each agent were considered to be without significance. All such values obtained were nevertheless recorded in the tables even for the barriers resisting penetration. The table entries considered to be below the sensitivity of the method were enclosed in parentheses.

As shown in Tables XI through XV, pages 53 through 62, the tests have given fairly consistent results. The laminated aluminum foil, Mylar and Saran Wrap (Type 17), respectively, appeared to be most resistant to permeation. The V3 board was also relatively resistant to permeation by the agents in general. The sulphite and Kraft boards, Saran Q4164 and Cellophane offered little or no resistance to permeation. The Saran Type 7 and Saran-coated cellophane appeared to give erratic results which were attributed to a lack of uniformity in the film samples. Both low density and medium density polyethylene were found to be quite permeable toward the only two of the agents against which they were tested.

B. Relative Permeabilities of the Types of Materials Tested

1. White Sulphite Board

This porous cardboard was readily permeable toward all five of the agents tested, as shown in Figure 14, page 93. The material was intended for use, however, as an internal packaging wall and was not designed to provide resistance to external permeation.

2. Mylar

1

This polyester film was one of the better materials tested. It was apparently permeated to some extent by Agent I and permitted up to 100 micrograms per 100 square inches to penetrate during a 10-15-day test period.

3. Vinyl-Aluminum Foil-Mylar Laminate

This material, an aluminum foil laminated internally with a vinyl film and, externally, with Mylar, was the most resistant film tested. A total of seven samples of this product, representing different suppliers or production lots, were examined. Only one sample, No. 14, was permeable; a second sample from this supplier was impermeable.

4. Kraft Board

This product was similar in appearance and composition to No. 1, the sulphite board, and was found, as shown in Figure 14, page 93, also to offer little resistance to permeation by any of the agents tested.

5. V3 Board

This material was a heavy, multi-layered cardboard in which were included two layers of asphalt. It was apparently designed to provide packaging strength and some degree of impermeability toward moisture, etc. The product provided a surprising resistance to permeation by the five agents tested.

6. <u>Saran, Type 7</u>, was found to be only intermediate in resistance to permeation by the five agents.

Saran, Type 17 was much less permeable than Type 7, but an appreciable variation in the test results was observed. This may have been attributable to a lack of uniformity in the film tested.

Saran, Q4164.7 was much more permeable than Type 7 and offered comparatively little resistance to permeation by any of the five agents, as shown in Figure 13, page 92.

7. Saran-coated cellophane

Three different lots of Saran-coated cellophane were found, generally, to offer little resistance to permeation except that permeation by Agent I was found to be relatively low for two of the three samples.

- 6. <u>Cellophane</u> The single sample of cellophane tested offered almost no resistance to permeation by any of the five agents, as indicated in Figure 12, page 91.
- 9. Polyethylene

Neither low density nor medium density polyethylene films offered any appreciable resistance to permeation by the two agents with which tests were made, Nos. II and III. These results are shown in Figure No. 11, page 90.

C. Limitations of the Test Procedures

The small quantities of agents which were found to penetrate the less permeable films studied during these tests imposed certain limitations on the results obtained. Since less than 1-10 micrograms of agent were found to penetrate the better films during the entire test period, intermittent analyses of these particular systems was only possible with extremely sensitive analytical methods. Since three of the five agents used were cholinesterase inhibitors, it was possible to use a standard enzymatic inhibition procedure for the detection of these three agents. However, this analytical procedure was difficult to control and was characterized by the limited reproducibility associated with many extremely sensitive methods.

It was necessary to use colorimetric procedures also for both agents IV and V. The procedure for Agent IV was found to be insufficiently sensitive to differentiate between the less permeable films tested. It was necessary to regard these results as simply indicating that less than a given minimum quantity of

Page 14.

agent permeated the film during the test period.

Agent V was found to decompose upon standing in the collecting solution used and it was necessary to use an analytical procedure which would detect the decomposition products.

These analytical procedures were all sufficiently accurate, however, to distinguish between those films which were relatively impermeable and those which offered little resistance to permeation by the agents. Those values which were so low as to be considered without significance were shown in parentheses in the accompanying tables of results.

In addition to the limitations inherent in the analytical methods, other variations were imposed by the properties of the agents and the mechanical procedures followed. Humidity is known to be an important factor affecting permeability (B-1). The relative humidity of the test chamber was arbitrarily controlled at 50 percent, by means of an aqueous solution of propylene glycol used as collecting solution. The agents in general are subject to hydrolysis; hence, over the period of the test a slow but significant hydrolysis probably occurred, tending to give somewhat low results for permeability. Stability tests of each agent in the collecting solution were made and are discussed in later sections.

In addition to hydrolytic losses, certain agents are known to be subject to deterioration in storage. Agent I, for instance, is subject to rapid deterioration in a thin film in contant with glass. This behavior was exhibited in the vapor permeability tests

with Agent I (p.87-9), wherein it is apparent that a constant saturated vapor concentration was not maintained in the vapor generator side of the barrier throughout the test period. In most of the tests, the liquid agent was placed directly on the barrier film. Although it is probable that plastic surfaces are much less disruptive than glass, individual stability tests have not been made.

Since vapor permeability tests were incapable of differentiating between the less permeable films, it was necessary to place the liquid agents directly on the film. Although the magnitude of the deposits were maintained approximately constant, variable wetting of the film, tilting, etc. undoubtedly caused variations in the area exposed, as mentioned earlier.

Finally, the number of specimens tested are probably inadequate statistically to eliminate, unequivocally, the effects of occasional analytical errors and film imperfections introduced during manufacturing.

While it is recognized that these limitations may affect the accuracy of the absolute amount of agent permeated, the results possess integrity and are entirely adequate for the purpose of screening film types and choosing suitable candidates for more rigorous field testing.

DEVELOPMENT OF ANALYTICAL PROCEDURES

ν.

A. Adaptability of the Enzymatic Procedure to the Study of the Permeability of Films A number of advantages led to the selection of the enzymatic

procedure for use in the proposed study of permeability of films

Page 15.

ų.

by those agents possessing the property of cholinesterase inhibition. The procedure was extremely sensitive and, after some modifications were made, proved to be capable of detecting as little as 0.001 micrograms/ml., of agent. Since the quantity of agent penetrating several of the better packaging materials could be expected to be very low, such sensitivity was highly desirable.

Also, the procedure was only responsive to materials which still retained toxicity after penetration of the film. Since contamination of the packaged materials by toxic substances was the really important question being studied, this appeared to be a distinct advantage. The enzymatic process also appeared to be usable for the analysis of test systems involving three of the five agents to be studied initially. This minimized the work involved in analytical procedural development and standardization.

The selection of the enzymatic method of analysis required consideration of several factors in order to modify it for use in the proposed program. As indicated above, the procedure involved first establishing a controlled reaction system and adding test solutions to this system until a measurable effect on the enzymatic activity is observed. This involved the preparation and testing of an entire, continuous series of dilutions, of the unknown solution, to be certain of obtaining at least one dilution which fell within

the range of the test conditions. The procedure, as it was previously carried out in these laboratories, only permitted the analysis of 15-20 samples per day and, until some knowledge of the strength of the unknown solution was obtained, it was quite possible to carry out an entire day's analyses and still not have a reliable value for the unknown concentration. As indicated below, this problem was minimized by a modification of the procedure which permitted the analysis of a larger number of samples.

The enzymatic procedure was also subject to interference by extraneous solvents, etc. This problem appeared to be satisfacotrily controlled. Although propylene glycol did interfere, if present in high concentrations, dilution of the propylene glycol to less than about 10 percent in the test solution was successful in preliminary test work. This interference, and its successful elimination, are shown in Table IV. Solvent concentrations were chosen such that inhibition due to solvent was less than 10 percent.

1. Procedural Changes

When the enzymatic method for the determination of Agent No. 1 was initially proposed for use in the film permeability program, it became apparent that the procedure should be modified so as to permit the simultaneous analysis of a much larger number of samples. A review of the proposed work under the Quartermaster Corps Contract indicated that it would be desirable to be able to analyze as many as 100-150 solutions per day.

Page 17.

Several procedural modifications were proposed and found to be satisfactory. These included:

a. Substitution of unstoppered 15 x 150 mm. test tubes for the stoppered 10 ml. volumetric flasks previously used. This small change permitted the use of a suspended test tube basket rather than the individually suspended volumetric flasks, and also simplified the time-consuming job of washing glassware.

b. Elimination of the process of addition of reagents at exact one-minute intervals. The reagents were added in rapid succession to the entire serves of samples involved.

c. Use of stronger trichloroacetic acid for neutralization of the reaction.

d. Minor procedural changes designed to speed up the processing of increased numbers of samples.

These modifications were satisfactory as it was found

that 40-50 samples could be analyzed within a two to three

hour period.

The detailed enzymatic procedure used is recorded in Section VI-E, p. 50.

Table IV

ample No.	Source	Dilution	Aliquot (a)	Percent Inhibition
1	78.5% P. Glycol	× 10	0.5	0
2	11	, : ** ,	1.0	0
3	17	11	1.0	0
4	17	Ħ	1.0	2.8
5	11	Ħ	1.5	12.5
6	TT ·	n	2.0	10.9
7	π	n	2.0	5.6
8	Ħ	Ħ	2.0	5.6
9	Ħ	· 11	2.5	10.9
10	π	Ħ	3.0	11.0
11	Ħ	Ħ	3.0	11.0
12	- 179	Ħ	3.0	15.5

Percent Inhibition of Acetylcholinesterase Due To Propylene Glycol Under the Enzymatic Test Conditions

(a) Water was added to these aliquots, where necessary, to make a total volume of 3.0 ml, which was then analyzed using the enzymatic procedure. Thus, the values shown in column 5 represent the inhibitions which were found to be due to propylene glycol in the absence of any egents

Page 20.

B. Use of the Enzymatic Procedure with Agent No. [

1. Stability of Agent No. I in Aqueous Propylene Glycol In order to use the enzymatic procedure for the

determination of Agent No. I in the collecting solution, it was necessary that the agent remain stable in the collecting solution through the period of the test. The stability in aqueous, acidic, 78 percent propylene glycol was established by preparing a series of solutions of known concentration and analyzing these solutions intermittently.

The stability of Agent I in these solutions was found to be satisfactory as shown by the series of successive analyses listed in Tables V and VI, pages 22 and 23. Some degree of interference may have been observed in the series of analyses, particularly in the more dilute solution. A consistent analysis of about 0.001 microgram/ml. was obtained for this solution. It was uncertain whether or not this high result was due to an error in preparation, interference by the propylene glycol or to some other factor. The propylene glycol interference, when observed, was found to be erratic as shown by the three 10th-day analyses in Table V, page 22. The use of dilute sulfuric acid was selected in order to eliminate any partial pressure of agent from the collection solution itself.

 Preparation of a Calibration Curve for Agent No. I Since the stability of Agent No. I in aqueous 78 percent
 propylene glycol was apparently satisfactory, a series of

solutions of known concentration in aqueous, acidic propylene

glycol were prepared and analyzed. The dilution and analytical procedures were carried out, as nearly as

possible, in the manner in which the analyses of the test cell samples were made.

These results were plotted so as to give the calibration curve shown in Figure 1.

This curve was checked again later in the program using a supply of stabilized Agent I. The slope of the line was decreased somewhat because of dilution by the stabilizer, but the stabilizer did not interfere with the enzymatic analytical procedure.

C. Use of the Enzymatic Procedure For Agent II.

 <u>Stability of Agent II in Aqueous Solution</u> It was necessary, again, that the agent remain stable in dilute aqueous solutions for at least 1-2 weeks in order to use the enzymatic analytical procedure since the method only detects the presence of active agent.

The decomposition of Agent II in aqueous solution has been described as perhaps taking place more readily than that of Agent I and as being catalyzed by both acids and bases. It was suggested (Miss V. E. Bauer, Army Chemical Center, Chemical Research and Development Laboratory) that improved stability might be effected, if necessary, by the use of a buffered collecting solution (pH 4-6).

In order to provide a preliminary indication of the stability of this agent, solutions of Agent II in water,

Page 21.

·····				
No. Days	0.0005 (a)	0.0010 (a)	0.0015 (a)	0.0020 (a)
0	0.0010	0.0020	0.0030	0.0027
1	0.0010	0.0015	0.0017	0.0023
2	0,0008	0.0012	0.0016	0.0022
3	0.0010	0.0013	0.0017	0.0023
7	0.0008	0.0010	0.0014	0.0017
9	0.0010	0.0013	0.0017	0.0020
10	0.0015	0.0015	0.0015	0.0022
10	0.0013	0.0011	0.0019	0.0017 ;
10	0.0011	0.0012	0.0018	0.0018 .
	0 1 2 3 7 9 10 10	0 0.0010 1 0.0010 2 0.0008 3 0.0010 7 0.0008 9 0.0010 10 0.0015 10 0.0013	0 0.0010 0.0020 1 0.0010 0.0015 2 0.0008 0.0012 3 0.0010 0.0013 7 0.0008 0.0010 9 0.0010 0.0013 10 0.0015 0.0015 10 0.0013 0.0011	0 0.0010 0.0020 0.0030 1 0.0010 0.0015 0.0017 2 0.0008 0.0012 0.0016 3 0.0010 0.0013 0.0017 7 0.0008 0.0010 0.0014 9 0.0010 0.0013 0.0017 10 0.0015 0.0015 0.0015 10 0.0013 0.0011 0.0019

Table V

Stability of Agent I in 78.5 Percent Propylene Glycol

(a) Actual concentration of test solution, in micrograms/ml. The values tabulated in each column are the concentrations found by analysis at the indicated time intervals.

	Ta	ble	VI
--	----	-----	----

Stability of Agent I in Dilute Aqueous H₂SO₄ (a)

Reference	No. Days	0.0005(b)	.0010(b)	.0015(b)	,0020(b)
D495-82	5	0.0006	.0011	.0014	.0017
D495-83	6	0.0005	.0010	.0014	.0017
D495-85	7	0.0006	.0011	.0014	.0017
D495-89	8		.0010 (c)	**	
D495-93	11	0.0005	.0010	.0014	.0016
D495-94	12	0.0005	.0010	.0015	.0018
D495-94	12	0.0005	.0010	.0015	

- (a) Prepared by removing appropriate aliquots from an Agent I solution in 0.001 N H₂SO₄(0.1 mg/ml.) and diluting with water.
- (b) Actual concentrations of test solutions, in micrograms per ml. The values tabulated in each column are the concentrations found by analysis at the indicated time intervals.
- (c) The average result of 20 replicate analyses.

Page 24.

in aqueous propylene glycol and in buffered (pH 5.6) aqueous propylene glycol were prepared and analyzed after standing for a period of four days. The solution in aqueous propylene glycol was found to be sufficiently stable, on a preliminary basis, to justify making a more detailed investigation of its use in this program. These preliminary results are shown in Table VII, page 25, in terms of percent inhibition as a function of concentration before and after aging.

A solution of Agent II in aqueous 78 percent propylene glycol was prepared and analyzed intermittently for a period of ten days. As shown in Table VIII, Agent II was apparently sufficiently stable in aqueous propylene glycol to permit the use of the enzymatic procedure for the analysis of the collecting solutions, even though slow deterioration is apparent.

2. Preparation of a Calibration Curve for Agent II A calibration curve for Agent II was prepared by

analyzing a solution of Agent II of the maximum concentration that might be reached in a test cell collecting solution (about 0.011 micrograms/ml.). The dilutions and analyses were carried out using exactly the same procedure followed for diluting and analyzing the test cell solutions (See Section IV, Experimental Procedures). The results are shown in Figure 2, p. 29.

Page 25.

Table VII

Stability of Agent II in Aqueous Solutions (a)

		Solvent				
	Micrograms of Agent II	H2O % Inhibition	22% H2O 78% Propylene <u>Glycol</u> % Inhibition	22% Buffer Solution (b) 78% Propylene Glycol % Inhibition		
Original						
Analysis	0.0054	24	27	30		
-	0.0038	17	15	25		
	0.0027	11	11	14		
	0.0019	9 7	7	13		
	0.0013	7	6	10		
Percent		22	21	22		
Inhibition		14	13	15		
After 4 Days		7	14	13		
		5 3	5	7 2		

- (a) This was a preliminary study designed to indicate the general stability of Agent II. A more detailed study was then made comparing aqueous propylene glycol and buffered aqueous propylene glycol.
- (b) Prepared by dissolving 2.9 g. of trisodium citrate and 0.64 g. of citric acid in 100 ml. of water (pH = 5.6).

Table	VIII
-------	------

Stability of Agent II in Aqueous 78 Percent Propylene Glycol

Micrograms of Agent II	% 1	Inhibition _2_	After No. 4	of Days 7	Indicated 8	(a) 10
.033	100.0	100.0	100.0	91.0	98.5	79.3
.023	93.8	85.0	88.8	83.4	94.8	74.5
.016	85.8	77.5	86.0	79.0	69.6	64.7
.011	79.5	60.0	76.3	67.0	65.0	54.9
.008	61.5	48.8	70.8	53.6	54.5	43.9
.006	55.5	37.2	58.3	52.2	43.9	35.4
.004	42.5	18.6	47.2	28.4	30.3	28.1
.003		20.0	41.6	25.4	21.2	19.5

(a) A stock solution originally containing 0.11 micrograms of Agent II per ml. of 70 per cent propylene glycol in water was diluted 1:10 with water. An aliquot of 3.0 ml. was removed for analysis. A second aliquot portion of 70 ml. was diluted to 100 ml. and a 3.0 ml. sample removed. This 70:100 dilution process was repeated until the eight samples indicated were obtained.

100 88 80 72 84 56 48 40 Percent Inhibition [·] 32 24 15 8 0 .0002 .0004 .0007 .0010 .0015 .0018

Agent I, Micrograms

Figure I - Calibration Curve for Agent I.

Page 27.

Page 28.

D. Use of the Enzymatic Procedure for Work with Agent III

1. <u>Stability of Agent III in Aqueous 78 Percent</u> Propylene Glycol

The use of the enzymatic analytical method for work with Agent III was considered desirable, as previously with Agent II, because of the extreme sensitivity of the procedure. Since the procedure is only responsive to active agent, however, it was again necessary that Agent III be inherently stable for a period of one or two weeks in the aqueous propylene glycol used as a collecting solution.

In order to test this stability, a solution of Agent III in aqueous 78 percent propylene glycol was prepared and analyzed at intervals for a period of about two weeks. The results are shown in Table IX. In order to also evaluate the reproducibility of the results, several analyses were made of freshly prepared solutions of Agent III. These results are also shown in Table IX.

The stability of Agent III in aqueous propylene glycol, while not good, was considered adequate for our test purposes. 2. <u>Preparation of a Calibration Curve for Agent III</u> <u>A calibration curve for use in the studies with Agent III</u>

was prepared by analyzing a fresh solution (at zero days) as shown in Table IX. The resulting calibration curve is shown in Figure 3. While the reproducibility to be expected from the use of this curve would not be of the highest order, as shown by an inspection of Table IX, it should be entirely adequate for our purposes. Again, a slow deterioration of agent in solution is apparent.

Page 29.

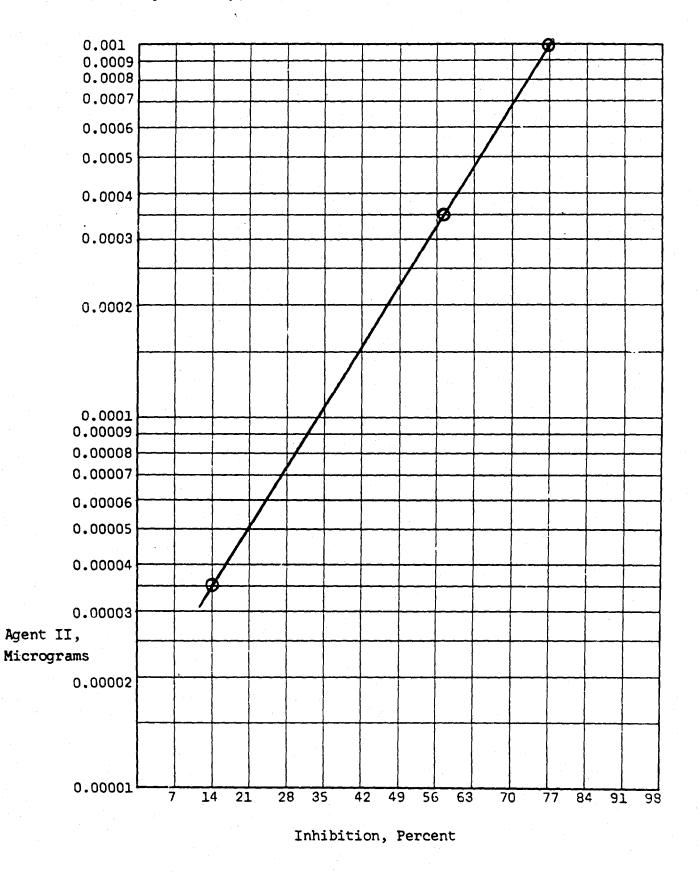


Figure 2 - Calibration Curve For Agent II.

.

0.10 0.09 80.0 0.07 0.06 0.05 0.04 0.03 0.02 Agent III, Micrograms 0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 1 0.002 0.001 7 14 21 28 35 42 49 56 63 70 77 84 91 98

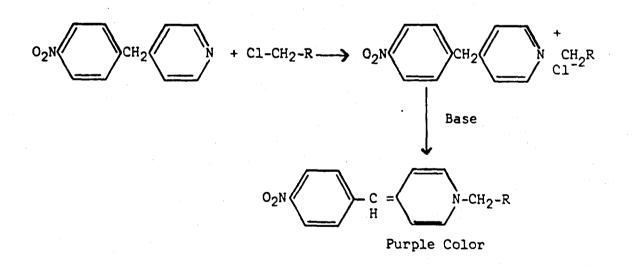
Inhibition, Percent

Figure 3 - Calibration Curve For Agent III.

Page 30.

Table IX

Stability of Agent III in Aqueous Propylene Glycol


Micrograms of Agent III (a)	0			bition After torage Indic	cated	13	<u> </u>
0.039	>100, >	100	100	93,	100	94, 75	
0.0039	86,	62	98	38,	44	15, 6	
0.00039	15		22	12,	15		
0.036	94, 7	100,>	100				
0.0036	13,	45,	44				
0.0027	11,	34,	28				
0.0018	7,	14,	19				
0.0009	7,	5,	8				
0.0005	4,	5,	6				
0.00025	4,	5,	2				

(a) These values represent the actual concentrations of the test solutions. The analytical results tabulated represent the equivalent inhibition after the time intervals indicated.

Page 32.

- E. Development of An Analytical Procedure for Use With Agent IV
 - 1. Analytical Procedural Development

Since Agent's IV and V are both vesicants and are not effective cholinesterase inhibitors, it was necessary to adopt a different analytical procedure for analyzing the collecting solutions used in our test systems. The analytical reaction used for the detection of both Agents IV and V is well known and is based upon the alkylation of 4-(p-nitrobenzyl)pyridine (DB-3) as shown below. The quaternary pyridinium salt formed is converted, in alkaline solution, to a highly colored complex which can be measured spectrophotometrically.

Page 33.

The reaction is rather straightforward and most of the recent references (B-2, B-3) have involved the adaptation of the reaction to the particular system being studied or the specific compound being detected.

It was considered highly desirable to continue to use 78 percent propylene glycol in water as the collecting solution in our test system, since its use leads to a relative humidity of about 50 percent in the system. It was decided, therefore, to attempt to use aqueous 78 percent propylene glycol as the solvent for the analytical reagents also. This modification gave good results and was adopted. A number of alkaline reagents can be used for the color development step. Piperidine has been used widely for this purpose and has the advantage of being readily miscible with the desired 78 percent propylene glycol reaction medium. The following procedure was, therefore, adopted arbitrarily and has given entirely acceptable results.

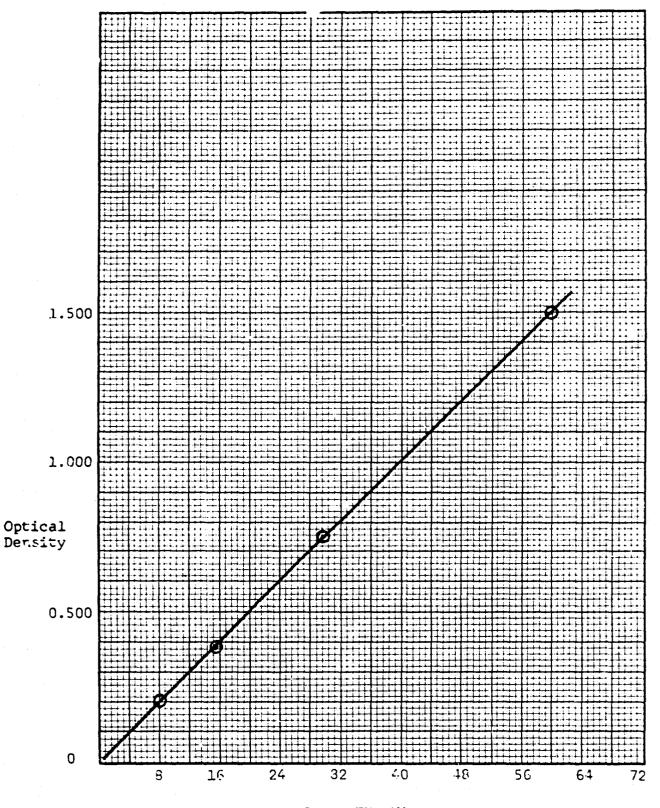
Procedure

To 5 ml. of a 78 percent solution of propylene glycol in water, containing about 75 micrograms or less of Agent IV, was added 5 ml. of DB-3 reagent (prepared by dissolving 3.0 grams of 4-(p-nitrobenzyl)pyridine and 0.5 gm. of potassium perchlorate in 100 ml. of a 78 percent solution of propylene glycol in water).

To the solution, after heating in a boiling water bath for four minutes and cooling for two minutes in an ice bath, were added 25 drops of piperidine. After one minute, the solution was read at 540 millimicrons. A blank solution was prepared by carrying out the procedure using 5.0 ml. of aqueous 78 percent propylene glycol containing no agent, 5 ml. of DB-3 reagent and 25 drops of piperidine.

Page 34.

2. Stability of Agent IV in Aqueous Propylene Glycol It was considered necessary that Agent IV remain stable


in aqueous propylene glycol for a period of one or two weeks since the analytical procedure was designed to detect undecomposed agent. A solution of Agent IV in aqueous 78 percent propylene glycol was prepared and analyzed at intervals for a period of about one week. As indicated in Table X, the stability of Agent IV was considered adequate under these conditions.

3. Preparation of a Calibration Curve for Agent IV Since the intermittent analysis of the solution of

Agent IV indicated that the results would be comparatively reproducible, the results obtained from the analysis of the freshly prepared solution were used for the calibration curve shown in Figure 4.

As was expected, a comparison of the relative permeabilities of the more resistant films was not possible during these test series with Agent IV. This was due to a lack of the required sensitivity on the part of the analytical procedure. As seen in Figure 4, the minimum amount of Agent IV which can be measured with minimum reliability was about 1-2 micrograms, whereas the detection of about 0.01 to 0.1 micrograms would be necessary in order to distinguish between the better films being tested.

Page 35.

Agent IV, Micrograms

Figure 4 - Calibration Curve For Agent IV.

Table X

Stability of Agent IV in Aqueous 78 Percent Propylene Glycol (a)

No. of Days	Optical Density Equivalent to Indicated Micrograms of Agent IV								
of Storage	60	30	15	7.5					
0	1.500	0.830	0.460	0.230					
l	1.500	0.750	0.395	0.210					
2	1.250	0.740	0.370	0.210					
3	1.250	0.750	0.400	0.210					
4	1.500	0.850	0.500	0.290					
7	0.900	0.620	0.360	0.220					
8	0.900	0.520	0.290	0.160					

(a) These results were obtained using the DB-3 procedure. While a slow decomposition of the agent is evident, the stability was considered adequate for these tests.

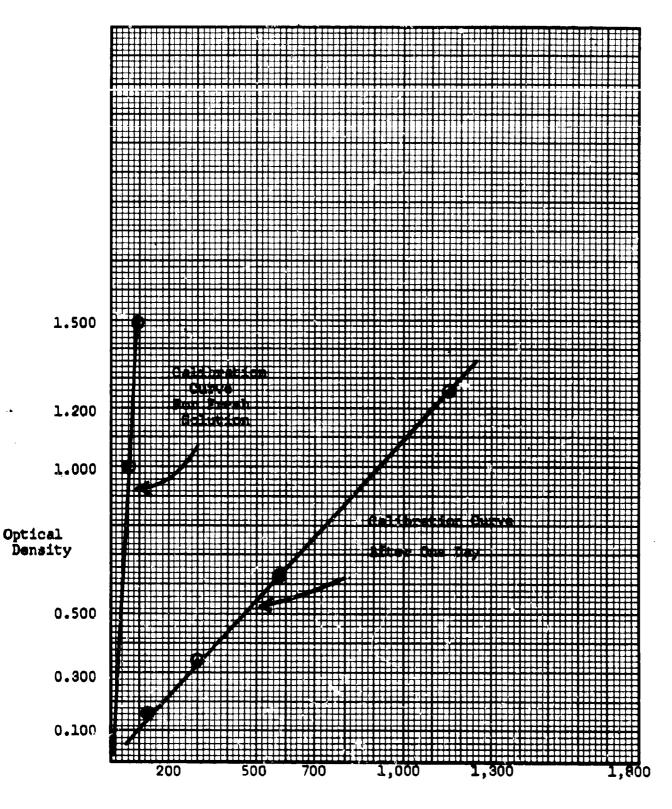
Page 37.

F. Development of An Analytical Procedure for Use With Agent V

 Stability of Agent V in Aqueous Propylene Glycol The DB-3 procedure used for the analysis of Agent IV

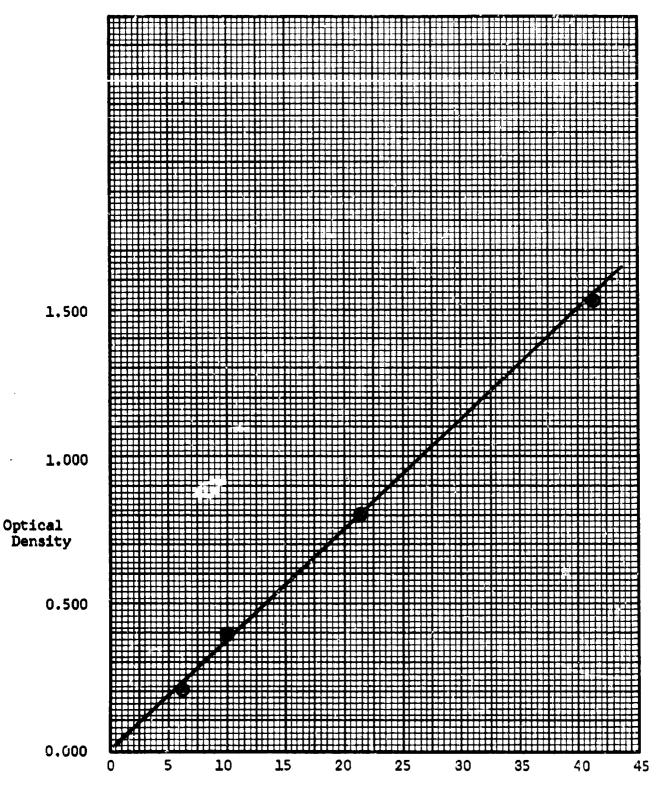
can also be used for Agent V. Since the DB-3 procedure was only sensitive to undecomposed agent, however, it was again necessary that Agent V remain stable in aqueous propylene glycol for the one to two-week test period.

In order to test this stability, a solution of Agent V in 78 percent propylene glycol was prepared and analyzed after standing. As shown in Figure 5, Agent V was found to have decomposed extensively in this solution after standing for only one day. The DB-3 procedure could not be used, therefore, for this agent under these conditions, and it was necessary to resort to an alternate analytical procedure which would detect Agent V after decomposition.


2. Analytical Procedure for Agent V

An alternate procedure (V. E. Bauer, Army Chemical Center) was then tested for use with Agent V. This procedure is based upon the oxidation of the sulfur in Agent V and is independent of the extent of decomposition of the agent.

Determination of Agent V and/or Decomposition Products To 5.0 ml. of a 78 percent solution of propylene glycol in water, containing 50-60 micrograms or less of Agent V, was added 1.0 ml. of 4 N hydrochloric acid and 1.0 ml. of a 0.04 percent solution of chloramine T in water. After the resulting solution had been allowed to stand for five minutes, 1.0 ml. of 0.1 M potassium iodide in water was added. After an additional three minutes, the liberated iodine was measured spectrophotometrically at 420 millimicrons. A blank reading was obtained by carrying out the procedure in the absence of agent. The spectrophotometer was adjusted to zero initially with distilled water. Subtraction of the sample reading from the blank reading gave a value equivalent to the quantity of Agent V present.


3. Calibration Curve for Agent V

Analysis of a series of solutions containing known amounts of Agent V in aqueous 78 percent propylene glycol gave the calibration curve shown in Figure 6. It should be pointed out that this curve was obtained using an impure grade of Agent V (Levinstein, purity about 75 percent). It would have been desirable, perhaps, to have used a better grade of distilled agent, if available, but this poorer grade of material represented the product which was of interest militarily.

Agent V, Micrograms

Figure 5 - Lack of Stability of Agent V in Aqueous Propylene Glycol.

Agent V, Micrograms

. . .

Figure 6 - Calibration Curve For Agent V Using the Chloramine-T Procedure.

V

VI. EXPERIMENTAL PROCEDURES

A. Design and Construction of a Test Cell

The design of a suitable test cell by means of which the penetration of a test film by an agent could be measured was begun on the premise that the apparatus should consist of two adjacent chambers. The film to be tested would be inserted as a barrier between these two sections. The first chamber would be used for the generation of agent in the vapor or liquid phase. Measurement of the agent present in the second chamber at successive intervals would indicate the rate at which penetration of the intervening barrier had occurred.

The nature of the agents to be studied was found to impose restrictions on the design of the test cell. Certain agents have been found to decompose relatively completely in a period of several hours when a small quantity was allowed to contact a relatively extensive glass surface. It was necessary, therefore, to limit the over-all size of the test cell to be used and to restrict severely the contact of the agent vapor with glass walls. This was considered particularly important in the collection chamber, since it was planned to analyze the contents periodically over an indefinite period of perhaps several weeks.

In order to hold the agent over a period of time in the collection chamber and minimize any direct contact with the glass walls, the use of a collecting solution was proposed.

It was also considered necessary to limit the volume of solution in the collecting chamber since the amount of agent

Page 42.

penetrating the films could be expected to be probably quite small, and too large a volume of collecting solution might dilute the agent concentration beyond the limits of the analytical procedure.

Therefore, a shallow collecting dish was designed which would hold 20-25 ml. of collecting solution and which would leave only about one cm. or less path between the film and the surface of the liquid. A side arm was attached for removing liquid samples. A 3/8-inch magnetic stirring bar (Teflon coated) was placed in each dish for use in mixing the solutions before sampling.

The agent vapor generation chamber was designed as shown in Figure 1. A number of designs were tested in an attempt to secure a more uniform and perhaps higher concentration of agent vapor. This test cell, however, appeared to offer a simple, inexpensive system which would be readily adaptable to all of the types of films and packaging materials to be tested. The packaging materials could be inserted readily for testing and the atmosphere within the chamber could be analyzed intermittently as could the collecting solution.

In order to make the system as nearly isolated as possible, rubber septums were inserted in both sampling tubes. In order to avoid the creation of a vacuum within the system as samples were withdrawn, extra hypodermic needles were placed permanently in the edge of the rubber septums. As a sample was withdrawn, air was then allowed to enter through the extra needle as

Page 43.

FIGURE NO. 7 PERMEABILITY TEST CELL

BEST AVAILABLE COPY

BEST AVAILABLE COPY

Page 44.

required to maintain a constant pressure. After use of this system with the first test agent, it was decided that the use of rubber septums was unnecessary and small corks were used to seal the ends of the sampling tubes. The corks were removed during the sampling procedure. This led to more efficient cleaning and decontamination when the agent being used was changed.

It was desirable to carry out the tests at a relative humidity of about 50 percent. Since solutions of glycols in water can be used to maintain atmospheres at a desired relative humidity and propylene glycol, if properly diluted, was thought not to interfere seriously with the proposed enzymatic analytical procedure, a 78.5 percent solution of propylene glycol in water (B-4, B-5) was selected. Also present in the water when Agent I was used should be sufficient acid to maintain the collected agent as a salt, where possible, in order to minimize the partial pressure of the agent above the solution.

Some studies were also made of ethylene glycol for use in the collecting solution. There appeared to be less interference from ethylene glycol than from propylene glycol. Should interference from propylene glycol have proved to be extensive enough to affect the results obtained, ethylene glycol could have been used instead.

The collecting solution (78 percent aqueous propylene glycol) was analyzed daily, as far as possible, using the 1:10 serial dilution procedure in which 1.0 ml. was withdrawn, diluted to

10 ml. and analyzed. An aliquot of 1.0 ml. of this first dilution was again diluted to 10 ml. and analyzed. This 1:10 dilution process, as described in Section IV-D, page 49 was continued until an inhibition level below 100 percent was obtained.

The upper vapor chamber was analyzed similarly by removing one ml. of vapor with a syringe containing 1.0 ml. of 0.001 N sulfuric acid. After shaking the syringe thoroughly, the solution was diluted to 10.0 ml. with water and analyzed using the same 1:10 serial dilution procedure.

B. Procedure Used in Starting a Test Series

As shown in Figure 7, the upper or bell-shaped portion of the test cell was fitted with a rubber stopper at the top and a small cork at the opening in the side arm. This section was then suspended slightly above the position designated for the collecting dish section of the cell.

The collecting dish section was fitted with a small cork at the side arm opening and was then placed in position directly under the upper cell section. A small stirring bar was placed in the collecting dish and 35.0 ml. of a 78.5 percent solution of propylene glycol in water were added. Care was taken to ensure that none of this collecting solution was spilled on the ground glass surface at the edges of the dish.

A section of the film to be tested was then cut in a circular pattern, with a small protruding portion which was used for handling so as to eliminate the effects of finger marks or perspiration. This section of film was cut so as to extend about one-quarter inch beyond the edge of the collecting dish to ensure complete coverage of the dish and to eliminate the effect of any stretching or tearing while cutting the film. The circular test section was then placed in position between the ground glass flanges of the collecting dish and the upper

section. No attempt was made to pull the film tight nor was it allowed to sag.

1. Procedure for Starting Vapor Permeability Tests

If the series were to be a vapor permeation test, the upper portion of the cell was removed and a specially constructed 50 ml. beaker attached to a 6 mm. glass rod inserted as shown in Figure 7. This rod was used to suspend the beaker in the upper portion of the cell. Approximately 20.0 ml. of the agent to be tested were placed in the beaker. The upper cell section, with the rubber stopper removed, was then lowered over the beaker so that the glass rod extended approximately two inches through the opening at the top of the cell. A rubber stopper with a 7-8 mm.hole bored in the center was then placed snugly in the top opening of the cell This left approximately one inch of glass rod section. extending through the 7-8 mm. hole in the stopper. The glass rod was then grasped firmly and gently raised, so as to suspend the beaker about one and one-half inches above the level of the ground glass flange. While holding the glass rod at a point close to the rubber stopper, a one-inch piece of 5 mm.

Page 47.

rubber tubing was slipped over the glass rod so as to hold the beaker and agent at the desired height above the film. The smoothly cut edge of the tubing also forms a seal when in contact with the hold in the rubber stopper. The upper cell section containing the suspended beaker was then placed in position so that the ground glass surfaces of this section were just opposed to those of the collecting dish. After placing the film in position between the two ground glass surfaces, the flanges of the two cell sections were clamped together with paper clamps to ensure a tight seal. The whole assembly was then clamped to a rack in a suitable ventilating hood.

2. Procedure for Starting Liquid Permeability Test Series When the series was to be a liquid permeability test,

this same procedure was followed, except that the beaker assembly was not used. After the assembly was clamped in place, the stopper was removed and 0.04 ml. of the test agent was added through the opening in the top of the cell using a 0.05 ml. syringe and a six-inch curved needle. The needle was inserted into the cell through the opening and the contents of the syringe were expelled directly onto the film, keeping the needle tip approximately one inch above the film. The stopper was then replaced in order to seal the cell.

Care was taken to keep the cells level so as to prevent the agent from running to one side of the cell.

C. Procedure for Removal of Samples

1. Removal of Samples From the Collecting Solutions The collecting solution to be analyzed was mixed

thoroughly and carefully by moving a portable magnetic stirrer under the board supporting the test cell and spinning the 3/8-inch magnetic stirring bar which had been placed in the collecting solution at the start of the test. Care was taken that the mixing solution did not splash up to the underside of the material being tested.

The cork stopper was removed from the sampling tube and a suitable aliquot removed with a six inch blunted needle attached to a hypodermic syringe. The syringe was washed thoroughly before and after the sampling process in order to minimize contamination of subsequent samples. The washing stage was considered particularly important in view of the extreme differences observed in concentration of agent in the various collecting solutions. Disposable polyethylene syringes were used at times to eliminate contamination by the agents which were less easily washed out with water.

The sample of liquid removed was then diluted to 10 ml. as the first step in the dilution of the samples for analysis, as described in Section VI-D, page 50.

2. Removal of Samples From the Vapor Chamber

The cork in the side arm in the upper, or vapor, section of the test cell was removed and a 1.0 ml. sample of the atmosphere within the chamber was drawn into a hypodermic syringe containing 1.0 ml. of a scrubbing solution. The syringe was then shaken vigorously and the contents were expelled beneath the surface of the solution used to make the first dilution used for the analysis.

The vapor sample was taken from an area within the chamber just above the outer edge of the beaker containing the agent supply. The scrubbing solution for the vapor samples was water except that, for samples of Agent I, 0.001 N H_2SO_4 was used.

D. Procedure for the Dilution of Samples

1. Prepare a series of dilutions of the solution to be tested. These dilutions may be prepared conveniently by dissolving the material to be tested in 10 ml. of water and diluting a 1.0 ml. aliquot of this solution to 10 ml. with water. A 1.0 ml. aliquot of this second solution is then diluted with water to 10 ml. This successive dilution process results in a series of solutions, each of which is one-tenth as concentrated as the preceding solution, and may be extended as far as necessary until a solution of the proper concentration is obtained. Usually, 5-10 successive dilutions are sufficient.

The 1:10 serial dilution procedure described in Section IV-B, above, for the preparation of calibration curves, has the disadvantage that only 1-2 points will be obtained which fall between about 20 and 80 percent inhibition. The number of calibration points obtained may be increased, while maintaining the continuity of the 1:10 dilution procedure, by preparing one or two intermediate solutions involving a less than ten-fold dilution.

E. Enzymatic Procedure for the Determination of Anti-Cholinesterase Activity

1. Principle

The enzymatic method of determining anticholinesterase activity is based upon the fact that acetylcholine is hydrolyzed by an enzyme, cholinesterase, which is present in mammalian blood. This hydrolysis of acetylcholine by the enzyme is a fundamental part of the mechanism by means of which impulses are transmitted through the nervous system. The toxicity of the nerve gas types of chemical warfare agent, for example, is based upon their ability to deactivate the enzyme and thus interrupt normal neuromuscular processes.

The analytical procedure is based upon a measurement of the decrease in activity effected by the addition of such an anticholinesterase agent to a specified quantity of the enzyme. In actual practice, a reaction system is selected so that a controlled amount of enzyme will hydrolyze a measured quantity of acetylcholine. By adding solutions containing known amounts of cholinesterase inhibitor, the enzyme is partially inactivated and is correspondingly less effective in hydrolyzing the acetylcholine present. The acetylcholine remaining unhydrolyzed as a result of the inhibited activity of the enzyme is measured colorimetrically by conversion to a colored ferric hydroxamate complex. A relationship can thus be developed between the amount of inhibitor known to be present in test solutions and the degree of inhibition of the activity of the ensyme. By comparison of the ensyme inhibiting strength of unknown solutions with the inhibiting effect of such known standard solutions, an estimation of the amount of inhibitor present in unknown solutions can be made.

Final Report - 1	May,	1962	Page 52.
2.	Rea	gents	
	A.	Buffer Solution (pH 7.2)	Dissolve 16./2 g. of Na ₂ HPO ₄ ·12 H ₂ O and 2.72 g. KH ₂ PO ₄ in one liter of H ₂ O.
	Β.	Acetylcholine	Dissolve about 0.1 g. of acetylcholine chloride in 100 ml. of buffer solution (A). Refrigerate.
	c.	Hydroxylamine Hydrochloride	Dissolve 13.9 g. NH ₂ OH·HCl in 100 ml. of H ₂ O; refrigerate.
	D .	NaOH Solution	14,0 g. NaOH dissolved in 100 ml. of distilled H ₂ O.
	E.	Alkaline Hydroxylamine	Mix one volume of reagent C with one volume of reagent D immediately before using.
	F.	HCl Solution	Dilute 100 ml. of concen- trated aqueous HC1 with 100 ml. of distilled H ₂ O.
	G.	0.1 N HCL	Dilute 9.0 ml. of aqueous 37 percent HC1 to 1 liter with distilled water.
	н.	Ferric Chloride Solution	Dissolve 10.0 g. FeCl3 [•] 6 H ₂ O in 100 ml. of solu- tion G.
	Ι.	Cholinesterase Solution	Fresh human blood plasma or commercial Horse Serum (Fisher Scientific Co, 11/610) of the concentra- tion indicated in Section 4-A below; refrigerate.
	J.	Trichloroacetic Acii Solution	Dissolve 15 g, of tri- chlorcacetic acid, C1 ₃ CCOOH, in a mixture of 90 ml. of reagent F and 10 ml. of water.

,

Page 53.

з.	Equ	ipment	
	Α.	Syringes	Assorted syringes: 10 ml., 5.0 ml. and 1.0 ml., disposable polyethylene syringes, 2.0 ml. (Burron, Bethlehem, Pennsylvania).
	Β.	Water Bath	Equipped with an agitator and thermostat so as to maintain a constant temperature of 37°C. <u>+</u> 1°C.
	c.	Filter Paper	Whatman No. 1, or equiva- lent, 7.0 cm. diameter.
	D.	Test Tubes	Unstoppered, 15 x 150 mm. test tubes.
	E.	Test Tube Basket Support	Three, as required to suspend test tubes in the water bath and to hold test tubes during the dilution steps.
	F.	Spectrophotometer	B and L Spectronic 20, Fisher Cat. No. 7-144-1, or equivalent, with

4. Procedure

A. <u>Standardization of Enzyme Solution</u> Since plasma cholinesterase Varies in activity, it
is necessary to adjust the concentration so as to prepare
a solution of standardized enzyme activity. This concentration is chosen such that ca. 85 percent of the acetylcholine is hydrolyzed in one-half hour at 37°C, in the absence of inhibitor.

accessory test tubes, Fisher Cat. No. 7-144-15,

بمسييم فمسيبه الماليات

as required.

1. Dilute 2.5, 3.0, 3.5, 4.0 and 4.5 ml. of horse serum to 25 ml. with buffer solution [reagent A). These solutions may be labelled dilutions 1, 2, 3, 4 and 5.

2. Select seven 15 x 150 mm. test tubes and, for clarity, label these Control A, Control B, Control C-1, C-2, C-3, C-4 and C-5, successively. Add 3.0 ml. of distilled water to each of the seven test tubes. To Control A, also add 2.0 ml. of buffer solution (reagent A). To Control B, also add 1.0 ml. of buffer solution (reagent A).

3. Add 1.0 ml. of dilutions 1, 2, 3, 4 and 5 to Controls C-1, C-2, C-3, C-4 and C-5, respectively.

4. Place the tubes in the 37°C. constant temperature bath and allow to come to temperature equilipbrium.

5. Add 1.0 ml, of acetylcholine solution (reagent B) to Control B and to Controls C-1, C-2, C-3, C-4 and C-5. Mix the contents of each tube and agitate mechanically while incubating for 30 minutes at 37°C.

6. Add 2.0 ml. of alkaline hydroxylamine solution (reagent E) to each of the tubes and mix thoroughly.

7. Add 1.0 ml. of trichloroacetic acid solution (reagent J) to each of the tubes and mix.

8. Filter the contents of each tube into graduates until at least 4.0 ml. of filtrate have been collected. Examine for clarity and, if turbid, refilter. Decant the excess filtrate over 4.0 ml.

9. Add 0.6 ml. of ferric chloride solution (reagent H) and mix. Measure the absorbance, as instructed below, of each solution before proceeding with the next solution.

10. Adjust the spectrophotometer to zero at 540 millimicrons with Control A. Measure the absorbance of each of the other solutions.

11. Calculate the percent hydrolysis as follows:

(D Control B - D Control C)100 = % Hydrolysis D Control B

Where D = absorbance (optical density)

Page 55.

Final Report - May, 1962

12. Select a dilution of serum such that 1.0 ml. will effect hydrolysis of about 85 percent of the acetylcholine under these test conditions.

B. Determination of Cholinesterase Inhibition

1. Prepare a series of dilutions of the solution to be tested. These dilutions may be prepared conveniently by dissolving the material to be tested in 10 ml. of water and diluting a 1.0 ml. aliquot of this solution to 10 ml. with water. A 1.0 ml. aliquot of this second solution is then diluted with water to 10 ml. This successive dilution process results in a series of solutions, each of which is one-tenth as concentrated as the preceding solution, and may be extended as far as necessary until a solution of the proper concentration is obtained. Usually, 5-10 successive dilutions are sufficient.

2. Transfer a 3.0 ml. aliquot from each dilution to be tested to a 15×150 mm. test tube.

3. To each of three 15 x 150 mm. test tubes, labelled <u>Control A</u>, <u>Control B</u> and <u>Control C</u>, respectively, add 3.0 ml. of distilled water. To <u>Control A</u>, also add 2.0 ml. of buffer solution (reagent A). To <u>Control B</u>, also add 1.0 ml. of buffer solution (reagent A).

4. Place all the tubes, including at least <u>Control C</u> (Controls A and B need not be incubated except for operational convenience), in the constant temperature bath and add 1.0 ml. of serum solution (reagent I), to each of the sample tubes and to Control C (Not to A,B).

5. Incubate at 37°C. for 30 minutes.

6. To each of the sample tubes, and to <u>Control B</u> and <u>Control C</u>, add 1.0 ml. of acetylcholine solution (reagent B).

7. Incubate at 37°C. for 30 minutes.

8. To each of the tubes, including all three controls A, B and C, add 2.0 ml. of alkaline hydroxylamine solution (reagent E) and mix.

9. To each of the tubes, including all three controls A, B and C, add 1.0 ml. of trichloroacetic acid solution (reagent J) and mix.

10. Filter each solution, including the three controls, into graduates until at least 4.0 ml. of filtrate have been collected. Examine each filtrate for clarity and, if turbid, refilter. Decant the excess over 4.0 ml. from each filtrate.

(Note: In normal routine operation, Controls A and B need not be filtered. The excess over 4.0 ml. should be decanted from each.)

11. Add 0.6 ml. of ferric chloride solution (reagent H) and mix. Measure the absorbance immediately, as instructed below, before proceeding to the next sample.

12. Adjust the spectrophotometer to zero at 540 millimicrons with Control A. Measure the absorbance (optical density) of each of the other solutions at 540 millimicrons.

13. Calculate the percentage inhibition as follows:

 $\frac{(D \text{ unknown - } D \text{ Control } C) 100}{(D \text{ Control } B - D \text{ Control } C)} = \text{Percent Inhibition}$

Where D - absorbance (optical density)

14. By comparison with the calibration curve prepared using the inhibitor in question, determine the amount of inhibitor present in the 3.0 ml. aliquot used for the analysis. Apply the appropriate aliquot factors and calculate the concentration of inhibitor in the original sample. In general, an inhibition level between about 20 percent and about 80 percent should be obtained for best results.

C. Preparation of a Calibration Curve

1. A calibration curve is prepared by carrying out the procedure exactly as described in Section B, above, using a solution of known concentration for the preparation of the dilutions for testing.

2. Notes:

a. The calibration curve should be prepared, as far as possible, using a sample of inhibitor of the same quality and source as that being determined.

b. The calibration curve should be prepared, as far as possible, under the same conditions as the analytical determinations.

Page 57.

c. The 1:10 serial dilution procedure described in Section 4-B, above, for the preparation of dilutions for analysis, has the disadvantage that only 1-2 points will be obtained which fall between about 20 and 80 percent inhibition. The number of calibration points obtained may be increased, while maintaining the continuity of the 1:10 dilution procedure, by preparing one or two intermediate solutions involving a less than ten-fold dilution.

VII. EXPERIMENTAL RESULTS

The following tables describe these results.

Page 58.

Table XI

Permeation of Nineteen Packaging Materials by Agent I (Liquid) (a) Replicate Determinations

			Micro	grams	Permea	ted pe	r 100	ŝą. Ir	ches
Film <u>No.</u>	Material	<10	<10 ²	<10 ³	<104	<10 ⁵	<10 ⁶	<107	Rating(b)
l	Sulphite Bd.					xx			5,5
2	Mylar		XX						2,2
З	Foil Laminate	XX							1,1
4	Kraft Bd.					XX			5,5
5	V3 Bd.		x	X					2,3
, 5	Saran 7	X	x						1,2
7	Saran 17	XX					•		1,1
8	Saran on Celloph.	xx	X						1,1,2
9	Saran Q4164.7				X	x			4,5
10	Cellophane				X	x			4,5
11	Foil LamDobeck-	-1 X							1
12	n n n .	-2 X							l
13	" " -MilPrir	nt X							1
14	" " -Con-Car	n X							1
15	" " -Kleerpa	ak X							1
16	11 11MMM	x							l
17	Mylar (Dupont)			x					3
18	Saran on Celloph. (Am.Viscose)					x			5
19	Saran on Celloph. (Dupont)	•	x						2

- (a) These results are expressed as the number of micrograms of agent passing through 100 sq.in. of film during the test. A constant quantity of about 750,000 micrograms (<10⁶) per 100 sq.in. was used in each test.
- (b) These ratings represent the logarithm (to the next highest unit value) of the amount of agent which would pass through 100 sq.in. of test film during the test.

Table XII

		······	Micro	grams	Permea	ted pe	r 100	Sq. I	nches
Film No.	Material	<10	< 100	< 10 ³	< 104	<10 ⁵	< 306	<107	(D) Rating (c)
1	Sulphite Bd.						X(X)	X	6,7, (ξ)
2	Mylar	(X)		x		У.			3,5,(1)
3	Foil Laminate	(X)		XX					3,3,(1)
4	Kraft Bd.						X(X)	X	6,7,(6)
5	V3 Bd.		(X)	x	X				3,4,(2)
6	Saran 7 '		X	(X)		X			2,5,(3)
7	Saran 17			X(X)	΄ Χ				3,4,(3)
8	Saran on Celloph.			(X)		XXX			5,5,(3),5
9	Saran Q4164.7				(X)	XX			5,5,(4)
10	Cellophane						XX(X)		6,6,(6)
11	Foil LamDobeck-1	XX			ı				1,1
12	" " -2	X							l
13	" " -MilPrint			x					3
14	" " -Con-Can	X					X		6,1
15	" "-Kleërpak	X							l
16	" " -MMM	X	X						1,2
17	Mylar (DuPont)	XX							1,1
18	Saran on Celloph. (Am.Viscose)					x	x		6,5
19	Saran on Celloph. (DuPont)			x	X				4,3
20	P.E. Low (DuPont)					X			5
21	P.E. Med (DuPont)				X				4
22	P.E. Low (U.C.)					x			5
23	P.E. Med (U.C.)				x				4

Permeation of Twenty-three Packaging Materials by Agent II (Liquid) (a) Triplicate Determinations

(a) These results are expressed as the number of micrograms of agent passing through 100 sq.in. of film during the test. A constant quantity of about 750,000 micrograms (<10⁶) per 100 sq.in. was used in each test.

(b) These ratings represent the logarithm (to the next highest unit value) of the amount of agent which would pass through 100 sq.in. of test film during the test.

(c) Those numbers in parentheses represent the results of a third, and more reliable, series of tests. The improved results are particularly noticeable in those tests in which only small quantities of agent were apparently present (film Nos. 2 and 3).

an a sur a manual a construction a construction of a data that a sub-

Page 60.

Table XIII

Permeation of Twenty Packaging Materials by Agent III (Liquid) (a) Duplicate Determinations

Film			Microg	rams P	ermeat	ed per			ches	
No.	<u>Material</u>	<10	<102	<103	<104	<10 ⁵	<106	<107	Rating	<u>(b</u>)
l	Sulphite Bd.						X	X	6,7	
2	Mylar	XX							1,1	
3	Foil Laminate	XX							1,1	
4	Kraft Bd.						XX		6,6	
5	V3 Bd.		x	x					2,3	
6	Saran 7	X		x					1,3	
7	Saran 17	XX							1,1	
8	Saran on Celloph.			X	X				3,4	
9	Saran Q4164.7				x	x			4,5	
10	Cellophane						XX		6,6	
11	Foil LamDobeck-1			х					3	
14	" " -Con-Can	X							l	
16	" " M_M	X							1	
17	Mylar (DuPont)			X					З	
18	Saran on Celloph. (Am.Viscose)					x			5	
19	Saran on Celloph. (DuPont)				x				4	
20	P.E. Low (DuPont)					X			5	
21	P.E. Med (DuPont)					X			5	
22	P.E. Low (U.C,)					X			5	
23	P.E. Med (U.C.)					X			5	

- (a) These results are expressed as the number of micrograms of agent passing through 100 sq.in. of film during the test. A constant quantity of about 750,000 micrograms (<10⁶) per 100 sq.in. was used in each test.
- (b) These ratings represent the logarithm (to the next highest unit value) of the amount of agent which would pass through 100 sq.in. of test film during the test.

Page 61.

Table XIV

Permeation of Ten Packaging Materials by Agent IV (Liquid) (a) Replicate Determinations

Film			Micro	grams	Permea	ted pe	r 100	Sq. I	nches
No.	<u>Material</u>	<10	<10 ²	<10 ³	<104	<10 ⁵	<10 ⁶		Rating(b)
1	Sulphite Bd.						XX		6,6
2	Mylar								(c)
3	Foil Laminate								(c)
4	Kraft Bd.					٠	xx		6,6
5	V3 Bd.								(c)
6	Saran 7					x		۴	5
7	Saran 17								(c)
8	Saran on Celloph.								(c)
9	Saran Q4164.7				XX				4,4
10	Cellophane					XX			5,5

- (a) These results are expressed as the number of micrograms of agent passing through 100 sq.in. of film during the test.
 A constant quantity of about 750,000 micrograms (<10⁶) per sq.in. was used in each test.
- (b) These ratings represent the logarithm (to the next highest unit value) of the amount of agent, in micrograms, which would pass through 100 sq.in. of test film during the test.
- (c) The analytical procedure used for the detection of Agent IV was not sufficiently sensitive to distinguish between film Nos. 2, 3, 5, 7 and 8.

小いと思いい

1

という

Table XV

Permeation of Ten Packaging Materials by Agent V (Liquid) (a) Duplicate Determinations

Film			Micr	ograms	Perme	ated p	er 100	Sq. Inches
No.	<u>Material</u>	<10	<10 ²	<10 ³	<10 ⁴	<10 ⁵	<106	<10 ⁷ Rating(b)
1	Sulphite Bd.						xx	6,6
2	Mylar	x	x					1,2
з	Foil Laminate	Х	x					1,2
4	Kraft Bd.						XX	6,6
5	V3 Bd.	x	x					1,2
6	Saran 7					xx		5,5
7	Saran 17		×		x	x		5,6
8	Saran on Celloph.				xx			5,5
9	Saran Q4164.7		x				x	2,6
10	Cellophane		,				xx	6,6
								_

- (a) These results are expressed as the number of micrograms of agent passing through 100 sq.in of film during the test. A constant quantity of about 750,000 micrograms (<10⁶) per 100 sq.in. was used in each test.
- (b) These ratings represent the logarithm (to the next highest unit value) of the amount of agent, in micrograms, which would pass through 100 sq.in. of test film during the test.

Page 63.

Table XVI

Agent I

Vapor Permeability Test Series No. 1 Analyses of Vapor Chamber (a)

				Mate:	rial 1	No.				
	1	2	3	4	5	6		8	9	10
No. of Days	Sulphite Bd.	Mylar	Alum. Lam.	Kraft		Saran-7		Cello. Saran Ct'd.	Saran Q4164.7	Cello- phane
l	•		23	21	21	18	23	59	11	23
2	53	86	18	12	15	17	17	17	21	8
3	10	23	20	12	12	19	11	18	19	18
4			23	13	16	19	20	20	18	11
6	2	12								
7	2	10	10	3	, 7	5	7	7		11
8	4	4	5	2	2	8	5	7	15	6
9	8	6	2	1/2	1/2	2	3	1	7	2
13	1	4			. •					
14	2	l								
<u> </u>			· · · · · · · · · · · · · · · · · · ·							

(a) Results calculated as micrograms of Agent I per liter of atmosphere.

Table XVII

Agent I

Vapor Permeability Test Series No. 1 Analyses of Collecting Solutions (a, b)

					Mater	ial No.			
No.	$\frac{1}{Sul-}$				5	6		$\frac{8}{Cello}$.	10
of Days	phite	Mylar	Alum. Lam.	Kraft	<u>V3</u>	Saran-7	Saran -17	Saran Ct'd.	Cello- phane
1			(2.7)	3.3	(1.0)	(1.3)	(1.3)	(1.3)	800
2	2.8	(1.4)	(4.7)	4.7	(2.7)	(3.1)	(1.3)	(1.0)	5,100
3			(3.0)	6.5	(1.6)	(1.2)	(0.8)	(1.2)	3,900
4			(1.5)	8.2	(1.2)	(1.2)	(0.8)	(1.3)	560
5	138	(0.7)							
6	191/625	(1)				~			
7	1130	10	(1.3) -	100	(1)	(1.3)	(0.6)	(1.3)	1,000
8	5400	7.3	(1.1)	98/320	(2.2)	(1.5)	(0.7)	(1.3)	1,100
9	1000/ 2100	(2.7)	(2.2)	100/ 300	(2.2)	(1.6)	(1.4)	(1.8)	910/ 1580
12	910	(4.0)							
13	1100	(2.5)				N			
14	1750	(2.2)			2.1				

(a) Results expressed as total micrograms of Agent I penetrating 100 sq.in, of material.

(b) The values less than about 3 micrograms shown are below the sensitivity level of the analytical procedure and are considered to be without significance. Values of doubtful significance are enclosed in parentheses.

Page 65.

Table XVIII

Agent T

Vapor Permeability Test Series No. 2 Analyses of Vapor Chamber (a)

				Mate	erial	No.				
1	1	2	3	4	5	6	7	8	9	10
No. of Days	Sul- phite Bd,	Mylar	Alum. Lam.	Kraft	V3	Saran-7	Saran -17	Cello. Saran Ct'd.	Saran Q4164.7	Cello- phane
1	7	15	11	5	6	7	2	15	19	5
2	10	17	17	20	11	8	10	23	43	21
5	3	3	3	3	17	2	10	10	4	3
6	6	4	5	(1)	8	4	7	6	3	2
7	5	3	5	3	(2)	9 v	4	3	(1/2)	4
9	(1)	(1)	(2)	(1/2)	(2)	3	3	(2)	(2)	5

(a) Results calculated as micrograms of Agent I per liter of atmosphere.

(b) The values shown in parentheses are considered to be without significance since they fall below the sensitivity level of the analytical procedure.

ļ

Table XIX

Agent I

Vapor Permeability Test Series No. 2 Analyses of Collecting Solution (a)

			_	Mate	rial l	No.	_			_
	_1	2	3	4	5	6	7	8	9	10
No. of Days	Sul- phite Bd.	Mylar	Alum. Lam.	Kraft	V3	Saran-7	Saran -17	Cello. Saran Ct'd.	Saran Q4164.7	Cello- phane
1	(1.7)	(1.3)	(0.6)	2.7	(0.6)	(1.3)	(0.6)	(1.6)	(0.8)	2.0
2	(3.1	6.6	(1.3)	(0.2)	(1.6)	(0.8)	(0.6)	(3,6)	(1.6)	14.2
5	102	(2.0)	(1.8)	65	(1.2)	(1.4)	(0.9)	(0.9)	(1.2)	650
6	124	(1.2)	(1.0)	90	(1.1)	(1.1)	(1.0)	(1.1)	(1.1)	965
7	120/ 310	(1.8)	(1.8)	85/ 200	(1.1)	(0.7)	(0,7)	(1.1)	(1.1)	760/ 1120
9 ·	115/ 330	(1.1)	(1.1)	71/ 140	(1.1)) (1.1)	(1,1)	(0.7)	(1.6)	875/ 1000

(a) Results calculated as total micrograms of Agent No. 1 penetrating 100 sq.in. of test material. The values less than 3 micrograms are below the sensitivity limit of the analytical procedure and are considered to be without significance. Such values are enclosed in parentheses.

		•		aulena	eability	Duduid Permeability Test Series No.	es No. 1			
				Anauyses	5		UOTINTOS			
		~1	(Micrograms	of Agent		Material No.	Permeated per 100 Square Inches) (a) Material No.	ches) (a)		
	1	2	e	4	Ś	9	6	8	6	10
of Days	Sulphite Bd.	Mylar	Alum i num Laminate	Kräät	V3	Saran-7	Saran-17	cellophane Saran Coated	Saran Q4164.7	Cellophane
	1,070			1,180						
e	9,500			5,750					2,820	
9	7.700			6,500					6,000	3,350
٢	8,750			010'6					6,800	5,000
30	16,900		5.5	1,126					8,850	6,210
10	9,650	(2.2)		7,720					8,560	6,740
13	12,000	22	က	11,600	21	(2)	(2)	(2)	11,500	8,800
14	26,000	92	4	6, 390	106	(1.5)	4	4	11,000	10,600
15	25,800	94	S	11,150	85	(1.4)	IJ	ŝ	10,100	006 ° 6
	a) The resu since th	ults show Tey fall	The results shown in parent since they fall below the s	theses are cons sensitivity of	e consid ty of th	dered to be he analytic	sidered to be without sign the analytical procedure.	(a) The results shown in parentheses are considered to be without significance, since they fall below the sensitivity of the analytical procedure.		

Table XX

Agent I

E ahilit. Liguid Per

Final Report - May, 1962

Page 67.

XI	
e	I
Ę	l
Ца Н	I

Agent I

Liquid Permeability Test Series No. 2

Analyses of Collecting Solution

(Micrograms of Agent Permeated per 100 Square Inches) (a)

					Mat	Material No.				
No.	Ţ	2	m	4	5	9	7	8 Cellophane	6	10
of Days	Sulphite Bd.	Mylar	Aluminum Mylar Laminate	Kraft	V3	Saran-7	Saran-17	Saran Coated	Saran Q4164.7	Cellophane
Ы	1,150			638				0	5.3	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4,130	13		688	5.5	25.8	(0°0)	0		125
4	7, 890			5,800		12.9		0	4,010	3,520
4	•	77	(2.4)	<b>6,800</b>	·			0	8,550	7,350
8	32,100	103	3.7	<b>11,</b> 300	79	57	(2.2)	0	7,500	6,800
6	18,400	92	4.1	11,100	68	55	(2.2)	0	<b>9,</b> 350	9,200

The results shown in parentheses are considered to be without significance, since they fall below the sensitivity of the analytical procedure. (a)

Η	L
н	Ł
$\mathbf{x}$	Ł
$\mathbf{x}$	L
	L
e U	Ł
4	L
д	L
g	L
H	L

Agent I

# Liquid Permeability Test Series No. 1

### Analyses of Vapor Chamber

# (Vapor Concentration in Micrograms per Liter) (a)

	10	Cellophane	9	ო	15	17	(1)	4	က	e	ო	
	6	Saran Q4164.7 C	13	15	6	19	2	Ś	(2)	Ċ	(1)	
	8	Cellophane Saran Coated	7	18	20	13	12	18	8	6	20	
	<u> </u>	Saran-17	9	S	က	က	(2)	9	(2)	(1)	(1)	
Material No.	9	Saran-7	œ	19	17	6	S	9	4	0	(1)	
¥	h	V3	8	9	9	8	* ⁽ 1)	(7)	0	0	(1)	
	4	Kraft	(7)	ი	4	20	(8)	14	2	9	ю	
	3	Aluminum Laminate	4	12	15	23	8	8	8	(2)	က	
	2	Mylar	(1)	4	22	11	6	> 23	ο	14	15	
	1	Sulphite Bd.	G	6	7	10		က	(2)	17	4	
		No. of Days	Ч,	e	9	2	80	10	13	14	16	

Final Report - May, 1962

Page 69.

Values in parentheses are based on very low inhibitions and are of questionable significance.

(a)

Malyses of veloc concentration in Micrograms per Liter) (a)         I 2 3 4 5 6 7 9 aron 9         Nulphite         Material No.         Nation in Micrograms per Liter) (a)         Sulphite         Mat       Material No.       9         Sulphite       Matuminum       Material No.       9         Sulphite       Maluminum       Material No.       9       9         Sulphite       Maluninum       Material No.       9       9         Dia       23       22       20       16       14       22       21       13         10       23       22       20       16       14       22       22       21       13         10       23       20       5       8       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       <	Analyses of value in Micrograms per Lifer) (a)(Vapor Concentration in Micrograms per Lifer) (a)123456799Bd.MylarAluminumKraftV3Saran-17SaranSaranSaran1123221614222113102322112322191310232015112322211310232058202020207232058202020209006(1)(1)0218(1)00(2)(1)(1)0218(2)(1)0(2)(1)(1)0218(3)00(2)(1)(1)0128(3)1010(1)(1)0128(3)100(2)(1)(1)0128(4)1010101010128(2)10010(1)0128(3)10010(1)0128(4)1010101010128(4)1001010101213(4) <th></th> <th></th> <th></th> <th>Liquid</th> <th>id Perme</th> <th></th> <th>st Seri</th> <th>les No. 2</th> <th></th> <th></th> <th></th>				Liquid	id Perme		st Seri	les No. 2			
(Vapor Concentration in Micrograms per Lifer) (a)         Material. No.         Material. No. $1$ 2       3       4       5       6       7       9       9         Sulphite       Mylar       Aluminum       Kraft       V3       Saran-17       Saran-17       Costed       Q4164.7         Bd.       Mylar       Ideminate       Kraft       V3       Saran-17       Saran-17       Costed       Q4164.7         D1       23       22       20       16       14       22       22       21       13         10       23       22       11       23       22       13       13         9       0       0       6       (1)       23       22       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       2	(Vapor Concentration in Micrograms per Lifter) (a)1234567912345678aran9SulphiteMunimumKraftV3Saran-7Saran-17Coated $Q4164.7$ 112322161422211310232211232219131023205820202072320582020209006(7)(3)3(2)8(1)01(1)(1)0218(2)(1)02020202020(3)21(1)(1)(1)0218(3)00(2)(1)(1)0218(4)1(1)(1)(1)0218(4)1(1)(1)(1)0218(2)1(1)(1)(1)0128(3)1(1)(1)(1)0128(4)1(1)(1)(1)0128(3)1(1)(1)(1)0128(4)1(1)(1)(1)0128(4)1(1)(1)(1)			ı		Analy	9					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Material. No.         1       2       3       4       5       6       7       9       9         Sulphite       Mylan       Aluminum       Kraft       V3       Saran-17       Saran       Saran       Saran       Saran       Saran         11       23       22       20       16       14       22       21       21         10       23       22       11       23       22       13       13         10       23       20       15       11       23       22       13         10       23       20       5       8       20       20       20       20         7       23       20       5       8       20       20       20       20       20         9       0       0       6       (1)       (1)       0       21       8       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20					concentra		crogram	ns per Liter	() (a)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1       2       3       4       5       6       7       5 aran       5 a						Materi	al, No.			σ	10
SulphiteAluminum bd.Aluminum MylarAluminum LaminateXraftV3Saran-17Saran CoatedSaran Q4164.711232220161422222110232215112322191310232058202020207232058202020209006(2)(3)3(2)8(2)(1)04(1)(1)0218(1)00(2)(1)(1)0218(1)00(2)(1)(1)0128	SulphiteAluminum bd.Aluminum bd.Aluminum bd.Saran-1Saran-1Saran coatedSaran-1Bd.MylarLaminateKraftV3Saran-1CoatedQ4164.711232220161422222110232015112322191310232058202020207232058202020209006(?)(3)3(2)8(2)(1)04(1)(1)0218(1)00(2)(1)(1)0128(a)Values in parentheses arebased on very low inhibitions and are of questionable		1	2	3	4	S.	ە	۲ ۲	y veilophane		- 
Bd.         Mylar         Latendary         Latendary         22         22         22         22         21         21         22         21         21         21         21         21         21         21         21         21         21         21         21         21         21         22         21         23         22         21         23         22         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20 </td <td>Bd.         Mylar         Lamination         Lamination</td> <td>No.</td> <td>Sulphite</td> <td></td> <td>Aluminum I aminum</td> <td>Kraft</td> <td></td> <td>ran-7</td> <td>Saran-17</td> <td>Saran Coated</td> <td>04164.7</td> <td>Cellophane</td>	Bd.         Mylar         Lamination         Lamination	No.	Sulphite		Aluminum I aminum	Kraft		ran-7	Saran-17	Saran Coated	04164.7	Cellophane
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10       23       2C       15       11       23       22       19       13         7       23       20       5       8       20       20       20       20       20         9       0       0       6       (?)       (3)       3       (2)       8         (2)       (1)       0       4       (1)       (1)       0       21       8         (1)       0       0       2       (1)       (1)       0       21       8         (1)       0       0       (2)       (1)       0       21       8         (1)       0       0       (2)       (1)       0       12       8         (3)       Values in parentheses are based on very low inhibitions and are of questionable       10       12       8	Days	Bd.	Mylar 23	22	20		14	22	22	21	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7       23       20       5       8       20       20       20       20       20         9       0       0       6       (?)       (3)       3       (2)       8         (2)       (1)       0       4       (1)       (1)       0       21       8         (1)       0       0       2)       (1)       (1)       0       21       8         (1)       0       0       (2)       (1)       (1)       0       21       8         (1)       0       0       (2)       (1)       (1)       0       12       8         (1)       0       0       (2)       (1)       0       12       8         (1)       0       0       (2)       (1)       0       12       8         (1)       1       0       0       12       13       8	-		0 C	20	15	· .	23	22	19	13	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9       0       6       (2)       (3)       3       (2)       8         (2)       (1)       0       4       (1)       (1)       0       21       8         (1)       0       0       (2)       (1)       (1)       0       12       8         (1)       0       0       (2)       (1)       (1)       0       12       8         (1)       0       0       (2)       (1)       (1)       0       12       8         (a) Values in parentheses are based on very low inhibitions and are of questionable	N	2 '	) C	U¢	Ś		20	20	20	20	ۍ ۲
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2) (1) 0 4 (1) (1) 0 $21 = 8$ (1) 0 0 (2) (1) (1) 0 $12 = 8$ (a) Values in parentheses are based on very low inhibitions and are of questionable	4 1	- 0	ç, ⊂	) O	9	(2)	(3)	n	(2)	œ	2
	<ul> <li>(1) 0 0 (2) (1) (1) 0 12 8</li> <li>(a) Values in parentheses are based on very low inhibitions and are of questionable</li> </ul>	<b>`</b> 0	r (c)	, (C	0	4	(T)	(1)	0	21	œ	4
	are based	010	(1)	) o	0	(2)	(1)	5	Ο	12	ω	(3)
	are based											

Table XXIII

VIXX	
Table	

### Agent II

# Liquid Permeability Test Series No. 1

# Analyses of Collecting Solutions (a)

		•			Mai	Material No.				
		2	e	4	5	9	r	в Cellophine	6	10
NO. Of Davs	Sulphite Bd.	Mylar	Aluminum Laminate	n Kraft	V3	Saran-7	Saran-17	Saran Coated	<b>Saran</b> Q4164.7	Cellophame
	1,200,000	7,000	106	1,000,0000 4,240	4,240	11	62	17,580	6,810	619,000
e	1,500,000	10,000	495	900,000	6,256	420	313	22,500	16,266	3,000,000
4	500,000,000	10,000	1,030	700,000	6,256	267	127	18,000	11,058	1,000,000
7	50,000,000	000,01	980	670,000	1,900	28	260	11,500	15,000	675,000
8	18,000,000	1	188	570,000	1	17	970	16,900	24,400	930,000
6	2,000,000	70	40		63	55	1	ł	1	720,000
10	800,000	105	36	1,800,000	69	55	1,050	13,600	18,600	720,000

Results expressed as total micrograms of Agent II in the collection solution based on 100 sq.in. of film. (a)

For example, the magnitude of results listed are in error due to early calibration errors. Results are valid, however, when considered as comparative indications of barrier efficiencies.

Final Report - May, 1962

Page 71.

Table XXV

### Agent II

# Liquid Permeability Test Series No.

2

# Analyses of Collecting Solutions (a)

					Mate	Material No.				
		4	E	4	r	٥	/	8	ĥ	DT-
	-	<b>1</b> -	)					Cellophane		
No.	Sulphite		Aluminum		Ċ		71	Saran	Saran 04164.7	Cellophane
Davs	Bd.	Mylar	Laminate	Kraft	62	Saran-/	T-IID.TDC	00000		
°	2.000.000	6,250	681	722,000 2,061	2,061	51,600	200	25,000	28,800	619,000
1 C		31,300	626	1,000,000	7,250	105,000	1,060	20,000	31,300	1,300,000
<b>D</b>	000 001 T				4,000	58,000	006	20,000	31,300	500,000
4	/00,000	20,000				58 NND	920	27,000	52,000	580,000
2	580,000	1	200	380,000						940,000
8	5,600,000	4,563	200	1,300,000 9,402	9,402	56,000	005	000,00		
10	690,000	<b>k</b> - 1 1	160	1,200,000	1	1	700	24,500	53,000	/20,000

Results expressed as total micrograms of Agent II in the collecting solution based on 100 sq.in. of film. (a)

For example, the magnitude of results listed are in error due to early calibration errors. Results are valid, however, when considered as comparative indications of barrier efficiencies.

Final Report - May, 1962

Page 72.

Н	ł
S	ł
9	ł
	I
e	I
-	۱
<u>a</u>	I
Ľ.	ļ

### Agent II

# Liquid Permeability Test Series No. 1

### Analyses of Vapor Chamber (a)

					Mate	Material No.				ay,
	7	5	3	4	2	و		8 Cellophane	6	TO
no. of Days	Sulphite Bd.	Mylar	Aluminum Laminate	Kraft	V3	Saran-7	Saran-17	Saran Coated	Saran Q4164.7	Saran Q4164.7 Cellophane
Ч	35	2,300	7,600	35	8,900	8,900 >13,000	>13,000	1,700	7,300	35
က	> 130	170	1,700	30	3,300	1,700	1,700	170	1,700	60
4	475	66	330	30	825	660	066	330	495	35
7	65	25	70	15	260	1	260	ł	;	35
80	1	<b>N</b>	20	10	350	20	33	ł	ł	30
TO	(2)	က	(1)	15	> 130	50	> 130	ŝ	16	20

(a) Results expressed as micrograms of Agent II per liter of atmosphere in the vapor chamber.

F

Table XXVII

### Agent II

# Liquid Permeability Test Series No. 2

### Analyses of Vapor Chamber (a)

Results expressed as micrograms of Agent II per liter of atmosphere in the vapor chamber. (a)

.

н	I
н	l
H	1
$\mathbf{i}$	Į
Ř	I
	I
ച	1
Б	l
N	I
E	

Agent II

3 (a)	
No. 3	
Series	
Test	
Permeability	
Liquid P	

		DT	Cellophane	420,000	210,000	600,000	680,000	
	ľ		Cell	420	510	600	680	
		ۍ م	Saran Q4164.7	100	40,000	1,400	3,800	
		8 Cellonhane	Coated	13	200	80	180	
ions		٢	Saran-17	(1.0)	(0.5)	20	400	
Analyses of Collecting Solutions	Material No.	9	Saran-7	(1.0)	(0.6)	(0.4)	011	
Collec	Ma	2	V3	(0.5)	4	5.5	13	
nalyses of	2	4	Kraft	42,000	400,000	40,000	480,000	-
A.		е	Aluminum Laminate	(0.5)	(0.5)	(1.3)	(0.4)	
		2	Mylar	(q) (1.0)	9	5.5	4	
			Sulphite Bd.	45,000	62,000	140,000	100,000	
			No. of Days	- H	8	9	10	

(a) Results expressed as total micrograms permeated per 100 sq.in. of area.

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. **e** 

					10	Cellophane		16,000	200,000	620,000		
					ത	Saran Q4164.7		22,000	62,000	65,000	135,000	
					8. Cellophane	Saran Coated		15	15,500	31 <b>,</b> 000	000 <b>'</b> STT	
		o. 1 (a)	tions		6	Saran-17		22	25	3,100	4,800	
XIX	비	or Permeability Test Series No. 1 (a)	Aralyses of Collecting Solutions	Material No.	9	Saran-7		(4.5)	(0.2)	3,100	5,000	
Table XXIX	Agent II	ity Tes	f Colle	Σ	5	V3		125	20	125	300	
		Permeabil	Aralyses of		4	Kraft		640,000	800,000	650,000	190,000	
		Vapor		•	Э	Aluminum I.aminate		(q) (p)	(0.8)	(2)	(4)	
					2	ne [v]M	TBTAU	65	20	62	36	
						Sulphite	• ng	210,000	820,000	4 2,000,000	190,000	
						No. of	Days	Ч	7	4	11	

Results expressed as total micrograms permeated per 100 sq. in. of area. (a)

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. (<u>a</u>

Final Report - May, 1962

Page 76.

Table XXX

Agent III

Liquid Permeability Test Series No. 1 (a)

		10	Saran Q4164.7 Cellophane	140,000	250,000	250,000	240,000	1	1
		თ	1	(2)	(3•5)	600	1,000	1,800	2,000
		8 Cellonhane	Saran Coated	(3.5)	(3.5)	140	120	OTT	011
lutions		6	Saran-17	(3.5)	(3.5)	(2)	(4)	(4)	(3)
Analyses of Collecting Solutions	Material No.	9	Saran-7	(3.5)	(3.5)	(4)	(2)	(7)	(3)
of Coll	Ma	5	V3	(3,5)	18	13	30	6	(3)
Analyses		4	Kraft	100,000	200,000	250,000	200,000	250,000	1
		ę	Aluminum Laminate	(3.5)		(4)	(2)	(2)	(8)
		2	Mular	(3.5) ^(b)	(3.5)	(6)	(6)	(6)	(3)
			Sulphite Bd	250.000	310.000	300,000	420,000	300,000	1 1
			No. of	c/pr		്	n O N	7	σ

(a) Results expressed as total micrograms permeated per 100 sq.in.of area.

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. (q)

×I	
×1	
<b>S</b>	
$\sim$	
ωl	
<b>–</b> 1	
·~!	
~	
- r0 I	
اته	
C.1	

### Agent III

2 (a) Liquid Permeability Test Series No.

ċ ¢ L

			4	Analyses of Collecting Solutions	Collec	ting Solu	tions			
		•	I		Mate	Material No.				
C N	1	2	က	4	2	9	2	8 Cellophane	6	10
of Days	Sulphite Bd.	Mylar	Aluminum Laminate	Kraft	V3	Saran-7	Saran-17	Saran Coated	Saran Q4164.7	Cellophane
Ч	820,000	(2) ^(b)	(2)	80,000	(3)	(5)	(3.5)	320	50	210,000
8	2,600,000	(2)	(2)	270,000	(5.5)	(2.5)	(3.5)	2,000	l l	1
9	600,000	(1)	(3.5)	240,000	60	60	(4)	1,850	2,700	360,000
7	1,300,000	(2)	(4)	360,000	55	55	(4)	1,000	2,500	250,000
σ	<b>8</b> 8 	(2)	(2)	!	011	011	J 8 .	930	11,000	1 1

(a) Results expressed as total micrograms permeated per 100 sq.in. of area.

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. <u>(</u>

		10	an 4.7 Cellophane	- 2,500	5) 18,000	22,000	0 43,000	0 80,000	83,000	
		6	une n Saran ed Q4164.7	;	(65)	•	550	2,250	• • •	
(a)	~	8	Cellophure Saran 7 Coated	1	(65)	L e	1	<b> </b>	1	
Liquid Permeability Test Series No. 1 (a)	utions	<u> </u>	Saran-17	-	(65)	t i	. <b>1</b>	1	1	
Test Seri	Analyses of Collecting Solutions Material No.	9	Saran-7		5,500	6,700	14,700	20,000	23,000	
eability	of Colle M	S	V3	1	(65)	4	1	1		
quid Perm	Analyses	4	Kraft	7,600	25,000	89,000	104,000	200 <b>,0</b> 00	210,000	
Lic		3	Aluminum Lamínate	ł	(65) ^(b) (25)	1	ł	1	1	
•		2	Mylar	1	(65)	1	(125)	1		
		<b>T</b>	Sulphite Bd.	54,000	115,000	190,000	250,000	470,000	482,000	
			No. of Days	Т	0	ß	4	٢	8	

Table XXXII

Agent IV

Results expressed as total micrograms permeated per 100 sq.in. of area.

(a)

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. **(q**)

					Cellophane	2 500	5 7	12,500	20,000	31,000	E2 000	000 <b>,</b> 20	80,000					
			.0		Saran Q4164.7		1 1	1	1 1	250		<b>Τ,</b> 5UU	1,900		are of			
			¢	o Cellophane	Saran Coated		1	L L L	8			1 1 1	1	of area.	vels and ar			
		Series No. 2, (A) Solutions		<b>.</b>	Saran-17		1	<b> </b>   	k F	(301)	((+1))	1	1 1 1 1	100 sq.in.	hibition le		•	•
IIIX		eability Test Series No. of Collecting Solutions	Material No.	9	Saran-7		1	1	•		1	1 1 1	<b> </b>	meated per	ent low in			
Table XXXIII	Agent IV	Coll		5	V3		1	1	ł			1	ł	ner s	epres			
Tab	A	Liquid Permeability Test Analyses of Collecting		4	Kraft		30,000	75,000	96,000		134,000	210,000	233,000	. of area.	Results expressed as rocal metros represent low inhibition levels and The values enclosed in parentheses represent low inhibition levels and			
		Lij C		3	Aluminum Laminate		ł	1	   		(65)	ł	1		sed in pa	<b>jnificance</b>		
				2 ·	Mylar		i i	1	   	!	(125) ^(b)	1	3		s expresse lues enclo	questionable significance		
				1	Sulphite Bd.		76,000			260,000	350,000	480,000	650,000		(a) Result (h) The va			
					No. of Davs		, ,	i c	N O	m	4	7	. α					

Page 80.

			0.5	DT	Cellophane		310,000	470,000	350,000	290,000	350,000	400,000	-
				ת	Saran Q4164.7		8	17,000	4 	250,000	330,000	325,000	
				8 Cellophane	Saran Coated		i i	18,000	4 3	25,000	53,000	31,000	
	es (a)	itions		~	Saran-17		1	18,000	1	27,000	145,000	000,00	
	/ Test Seri	scting Solu	Material No.	9	Saran-7		1	13,000	1	27,000	27,000	76,000	
Agent V	ability	f Colle	W	s S	V3		- J - J	0	ł	0	o	1	
	Liquid Permeability Test Series (a)	Analyses of Collecting Solutions		4	Kraft		380,000	500,000	600,000	380,000	360,000	400,000	
	ГIJ		•	e E	Aluminum T.aminate		1	0	0	0	0	8	
•				2	nelow	TRACT	k I	0	0	0	0	8	
				1	Sulphite	•ng	260,000	250.000	315,000	260.000	350,000	435,000	
					No. of	Days	0	i u	י ע	) ⁽	• . œ	) ກ 	

(a) Results expressed as total micrograms permeated per 100 sq.in. of area.

Final Report - May, 1962

Table XXXIV

Page 81.

XX	
Table	

Agent V

Liquid Permeability Test Series (a)

	Collecting Solutions	Material No.
	Ч	
	malyses	
ļ	A	i

Final Report - May, 1962

Aluminum Mylar         Aluminum Laminate         Kraft         V3         Saran-7         Saran-17         Coated Coated             420,000								our of the other of the other of the other		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ite	nelum	Aluminum I.aminate	Kraft	V3	Saran-7	Saran-17	Saran Coated	Saran Q4164.7	Saran Q4164.7 Cellophane
0       0       450,000       0       19,000       19,000       13,000         0       0       550,000       0             0       0       430,000       0        12,000       12,000         0       0       280,000       0       33,000       33,000       27,000         0       0       280,000       0       33,000       87,000       24,000			3	420,000	<b>I</b> . 1	8	1	1	8	0
0 0 550,000 0			0	450,000	0	19,000	19,000	13,000	₽ ₽ ₽	120,000
0 0 430,000 6 24,000 24,000 12,000 0 0 280,000 0 33,000 33,000 27,000		) C	C	550,000	0	8	ŝ	1	- 4 1	305,000
0 0 280,000 0 33,000 33,000 27,000 400,000 63.000 87,000 24,000		o c	, c	430.000	<del>ن</del>	24,000	24,000	12,000	0	360,000
0 0 24,000 400 000 63.000 87,000 24,000		ວິເ		280,000	0	33,000	33,000	27,000	0	270,000
				400,000	8	63,000	87,000	24,000	l t	360,000

(a) Results expressed as total micrograms permeated per 100 sq. in. of area.

Page 82.

nal	Rep	ort	-	May	y, 1'	962							1
	-			cellophane M	,		(0.6)	2.2	2.7	12.0	1	22	
			× •	19 Cellophane	Saran Ct'd. du Port		3	27		62	i i	20	
				18 Cellophane	Saran Ct'd. Am.Vis.	-	(0.5)	5		{	1,000	1,200	
	<b>(a)</b> (b)	ions	-	17	Mylar		(0.2)	36		330	ł	200	
<b>1</b>	est Series	ting Solut	No.	16 Aluminum	Laminate MMM		(0.2)	(0.2)		ł	!	(0.2)	
Agent I	ability Te	Analyses of Collecting Solutions	Material No.	15 Aliminum	Laminate Xleerpak		(0.2)	(0.2)		1		(0.4)	
	Liquid Permeability Test Series (a)(b)	Analyses		Aliminim	Laminate		(0.2)	(0,0)		i i i		(0*3)	
				13	Laminate	MITLITIC	(0.2)		(2.0)	1	1	(0.2)	-
				12	Aluminum Laminate	DoDeck.z	(0.2)		(2.0)	1	ł	(0.3)	
				II	Aluminum Laminate	Dobeck.1	(0,2)		(0.2)	ł		(0.6)	
					No.	Days	~	1	4	S.	Ľ	<b>~ ~</b>	

(a) Results expressed as total micrograms permeated per 100 sq.in. of area.

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. <u></u>

Final Report - May, 1962

Table XXXVI

Page 83.

	ł
H	l
$\geq$	Į
Š	Į
R	l
e	ļ
۳	I
þ	۱
പ്പ	I

Agent II

Liquid Permeability Test Series (a)(b)

ć

rt	-	May, 1	962	2					1.
		cellophane W Saran ' Coated L		9	60	420	1	75,000	
	-	I9 Cellophane Saran Ct'd. du Pont		20	60	420	<b>!</b>	1,350	
•		18 Cellophane Saran Ct'd.	•CTA •IN	8	14,500	000,011	<b>}</b>	>660,000	
		17	лутаг	1 1	(7)	(1)	ł	(1)	
Solutions	<b>.</b>		MMM	3	(1)	(1)	1	(1)	
of Collecting Solutions	Material No.	15 Aluminum Laminate	Kleerpak	l t	(1)	(9)	(2)	(16)	
Analyses of C		14 Aluminum Laminate	Con.Can.	ł I	62	600	18,000	> 660,000	
And		12 13 Aluminum Aluminum Laminate Laminate	Dobeck.2 MilPrint	•	(9)	(13)	1	380	
	•	12 Aluminum Laminate	Dobeck.2	(1)	(1)	(1)	1	(1)	
		ll Aluminum Laminate	Dobeck.1	(1)	(1)	(1)	1	(T)	
		No.	Days	н	4	Ŋ	9	7	

(a) Results expressed as total micrograms permeated per 100 sq.in. of area.

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. <u>(</u>

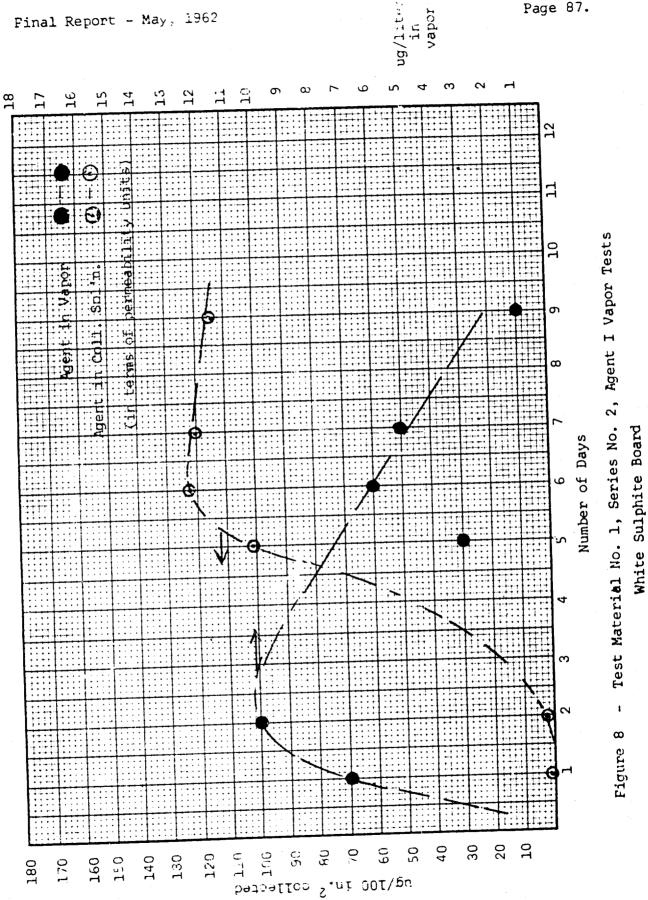
Final Report - May,

					P. E. Mod		1,650	4,100	7,000	1		
				××	ь Б.Б.	u.c.	10,000	31,000	000,01	l J		e of
				• *	21 P. E.	du Pont	3,200	4,100	7,000	1	f area.	ils and ar
		(d)(b)	DTIS		20 P.E.	du Pont	3,200	31,000	31,000	l l	sq.in. o	tion leve
티		Test Series	ting Solution	No.	19 Cellophane	Saran Ct'd. du Pont	12	125	160	t 1	ated per 100	: low inhibi
Table XXVIII	Agent III	Liquid Permeability Test Series (a)(b)	Analyses of Collecting Solutions	Material No.	18 Cellophane	Saran Ct'd. Am.Vis.	2,900	14,200	10,000	a a b b b	total micrograms permeated per 100 sq.in. of	(b) The values enclosed in parentheses represent low inhibition levels and are of questionable significance.
		Liquid P	Analys		17	Mylar	(0.2)	8.2	1.2	i I	al micro	arenthes e.
			•	-	16 Aluminum	Laminate MMM	(1.0)		<u>~</u> 80	29	sed as tot	losed in p ignificanc
					14 Aluminum	Laminate Con. Can	(1.0)	(1.0)	(1.0)	1	Results expressed as	The values enclosed in par questionable significance.
					11 Aluminum	Laminate Dobeck.l	(1.0)	(1.0)	(10)	, ,	 (a) Resu	(b) The ques
					CN N	of Davs	2	9	- r	œ		

Page 85.

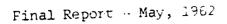
×	L
Ы	L
S	L
겆	Ĺ
	Ł
υ	Ł
ہم	t
<u> </u>	L
ð	1
н	1

### Agent III

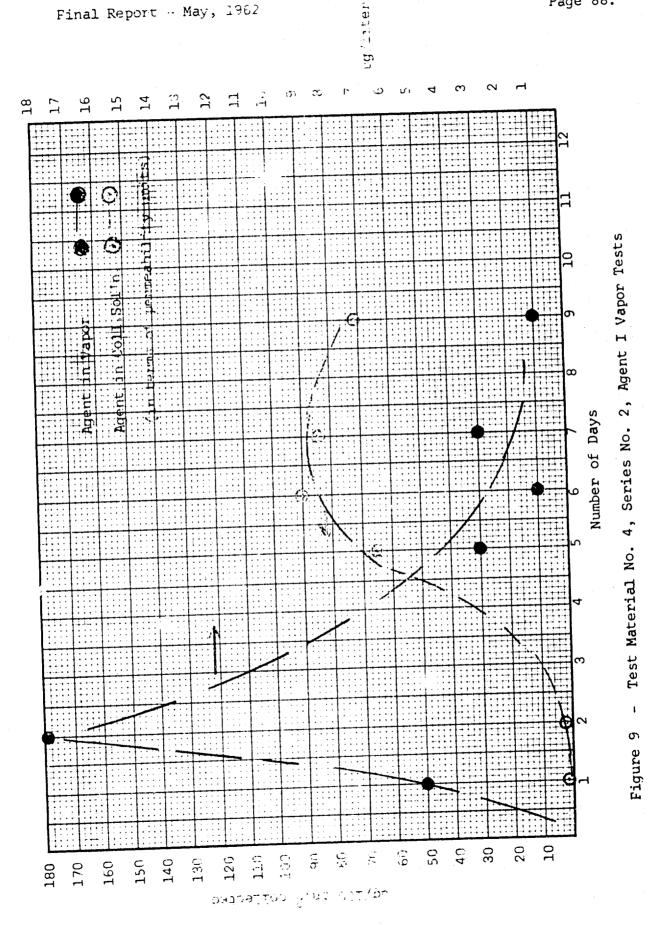

# Liquid Permeability Test Series (a)(b)

## Analyses of Collecting Solutions

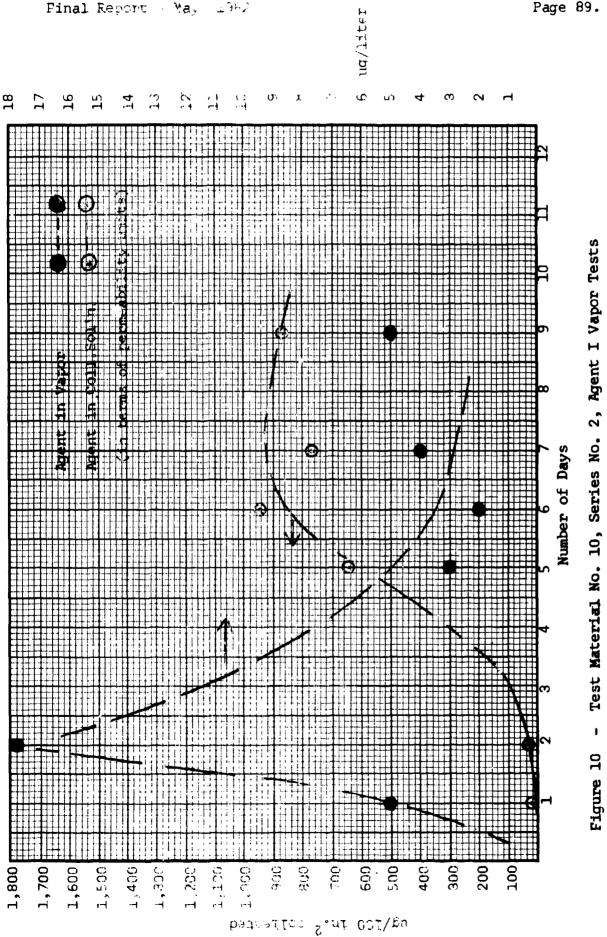
				11012						
						Material No.		10	66	53
No.	11 Aluminum Laminate	11 14 16 Aluminum Aluminum Laminate Laminate	16 Aluminum Laminate	17	18 Cellophane Saran Ct'd.	18     19       Cellophane     Cellophane       Saran     Ct'd.       Saran     Ct'd.	P. E. Low du.Pont	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. E. Low C.	P. E. Med. C.
Days		Con. Can	WWW	Mylar	AM. VIS.	1010				
5	100 320	(3)	(3)	. 65	32,000	(0)	7,300	3,500	000 <b>,</b> 01	4,200
ļ		. : <b>:</b> ^	(4)	310	31,000	l	31,000	10,000	31,000	12,300
0	011	n in	ŝ		50,000	1,800	78,000	30,000	78,000	30,000
ω	 	1	8	380	1	1		1 1 1	1	1
					·					


Results expressed as total micrograms permeated per 100 sq.in. of area. (a)

The values enclosed in parentheses represent low inhibition levels and are of questionable significance. **a** 




Page 87.

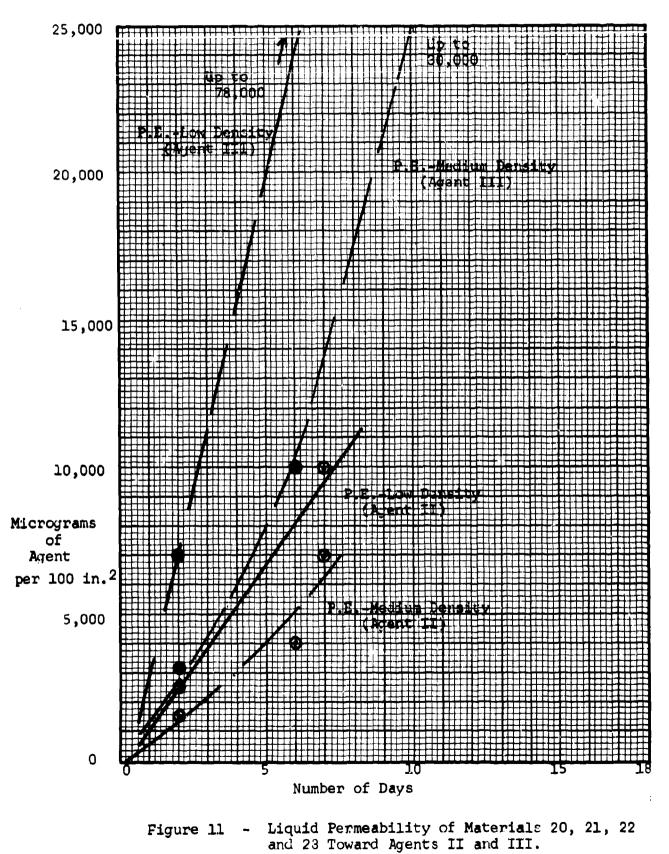

F







Xraft Board



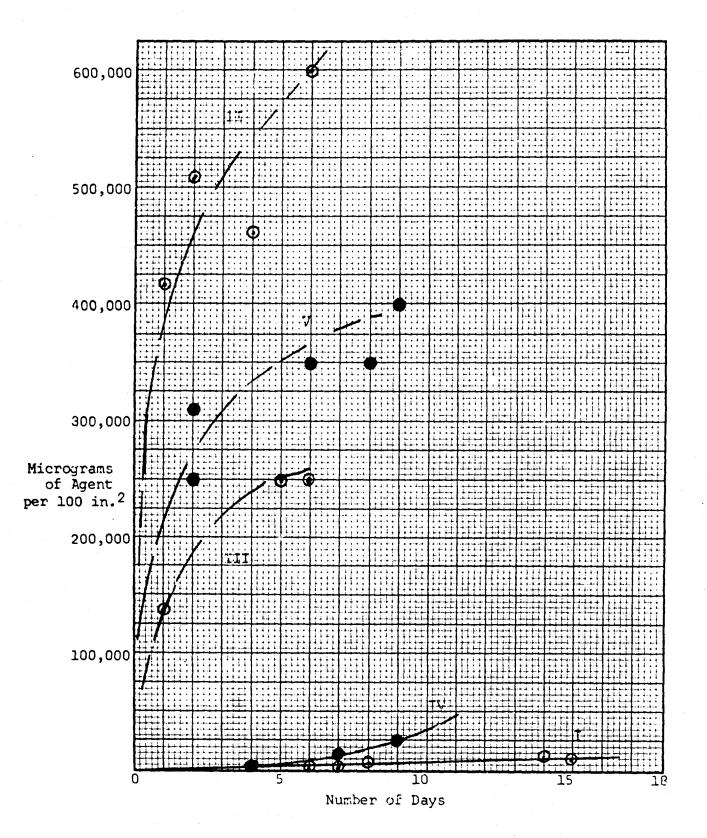
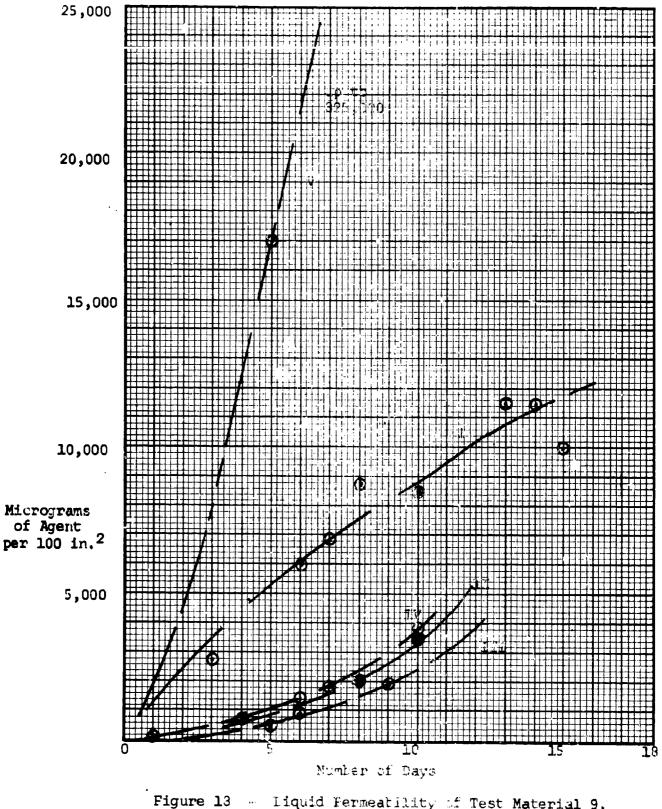
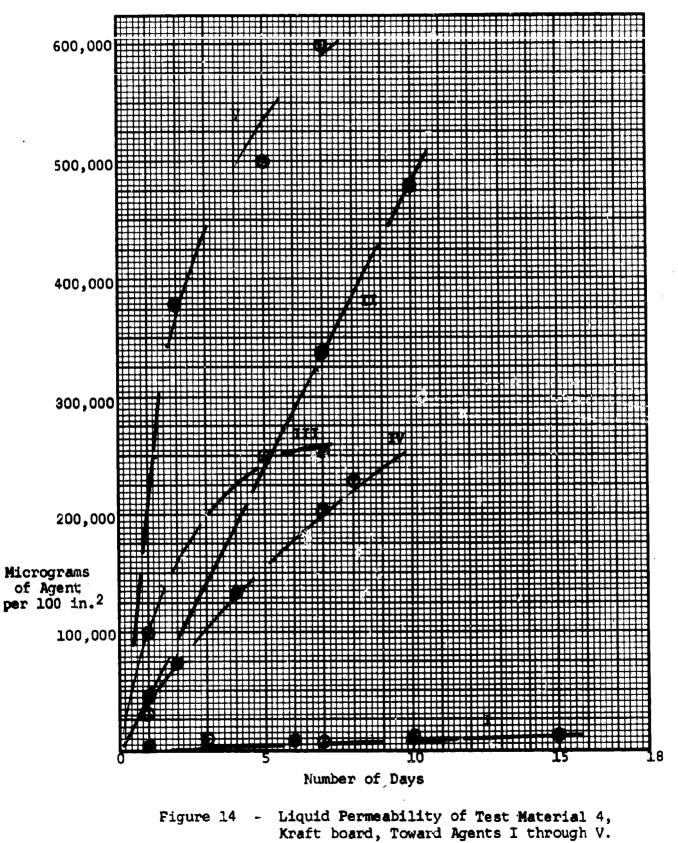

Page 89.

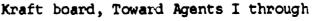
Cellophane

ખે



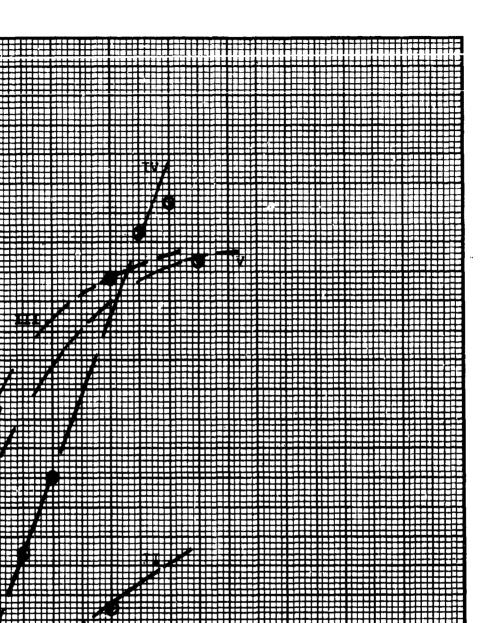


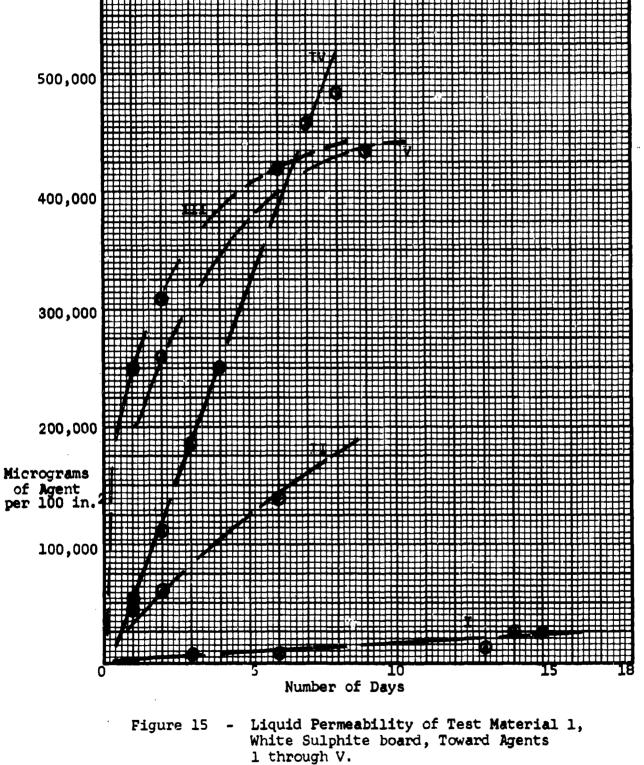






Figure 12 - Liquid Permeability of Test Material 10 (cellophane) To Agents I through V.






3 - Liquid Fermeability of Test Material 9, Saran, Q4164.7, Toward Agents I through M.






Page 93.

600,000





Page 94.

۷

### VIII. LITERATURE CITED

### A. FMC Literature

 Research Notebook No. D-495, pages 3 through 150, inclusive.

 Research Notebook No. D-590, pages 2 through 150, inclusive.

3. Research Notebook No. D-616, pages 3 through 93, inclusive.

### B. Published Literature

 "Permeability of Plastic Films and Coated Paper to Gases and Vapors," 1962, page 16, TAPPI Monograph Series No. 23, Technical Association of The Pulp and Paper Industry, New York.

 "Colorimetric Estimation of Nitrogen Mustards in Aqueous Media," Friedeman, O.M., and Boger, E., Analytical Chemistry 33, (7), 906 (1961).

3. "Modifications in the NRL Colorimetric Method for the Determination of Bis-(2-chloroethyl)sulfide with DB-3," Stamulis, A., U.S. Naval Research Laboratory, May 16, 1960 (OTS 161 066).

Dow Glycols, 1947, Dow Chemical Company,
 Midland, Michigan.

5. Propylene Glycol, N.F., 1949, page 14, Dow Chemical Company, Midland, Michigan.

		•		
	<pre>A component and and the second and any of the second and an and a down it.</pre>	<ol> <li>Perneability</li> <li>Packaging Films</li> <li>Chemical Tarfare</li> <li>Agents</li> <li>Contract DA19-</li> <li>129-Q4-1784</li> </ol>	FIC Corporation, Bultimore, Paryland A STUDY OF THE RESUMMED OF CONTRINUES TO CHERICAL TARKARD AGENTS - John I. Stevens, Edward F. Orwoll Report No. Final May, 1962, 95 pp 15 illus., 59 tablas. (Contract No. DA19-129-QM-1784) Project No. 7-91-03-015, 01 No. 5091,	1. Franschlity 2. Frakrothr Filma 3. Chamical Marfurs Acontrat DA19- 129-00-1784
	Then y-three samples representing nine fifterent types of packaging materials mere tested for resistance to permeation by five selected chemical warfare agents. A test system was developed which per- mitted a specific agent to be placed directly in contact with the test film. The permeability of the film was then estimated by collecting and measuring the agent which was found to pass through the film into an adjacent chamber		Twenty-three samples representing nire different types of packaging materials were tested for resistance to permeation by five selected chemical warfare agents. A test system was jeveloped which per- mitted a specific agent to be placed directly in contact with the test film. The permeability of the film was then estimated by collecting and measuring the agent which was found to pass through the film into an adjacent chamber.	
	<ul> <li>Accession No.</li> <li>FIC Corporation, Baltimore, Maryland &amp; STUDY OF THE RUSIGFIZICE OF CONTAINERS</li> <li>CHILL WARKER AGANTS - John I.</li> <li>CHILL, WARKER AGANTS - John I.</li> <li>Stevens, Edward F. Orwoll</li> <li>Stevens, Edward F. Orwoll</li> <li>Stevens, Edward F. Orwoll</li> <li>Contract No. Final May, 1962, 95 pp</li> <li>Contract No. Did9-129-00-1784</li> </ul>	<ol> <li>Permeability</li> <li>Packaging Films</li> <li>Chemical Warfare Agents</li> <li>Contract DA19-</li> <li>129-Q4-1784</li> </ol>	AD ACCESSION NO. FMC COTPORATION, Faltimore, Maryland A STUDY OF THE RESEISTANCE OF CONTAINERS TO CHEMICAL TARFARE AGENTS - John I. Stevens, Edward F. Orwoll Report No. Final May. 1962, 95 pp 15 illus., 39 tables. (Contract No. DA19-129-024-1784) Provinct No. 7-01-03-015. 01 No. 5091.	<ol> <li>Permeability</li> <li>Prokaging Films</li> <li>Chamical Warfare</li> <li>Acents</li> <li>Contract DA19-</li> <li>129-01-1784</li> </ol>
►	The structure samples representing nine ifferent types of packaging materials we fire selected chemical warfare agents. A test system was developed which per- atted a specific agent to be placed if testly in contact with the test film. The permeability of the film was then estimated by collecting and measuring the agent which mas found to pass through the film into an adjacent chember		Twenty-three samples representing nine different types of packaging materials were tested for resistance to permeation by five selected chemical warfare agents. A test system was developed which per- mitted a specific agent to be placed directly in contact with the test film. The permeability of the film was then estimated by collecting and measuring the agent which was found to pass through the film into an adjacent chamber.	Adod TIBALLABLE COPY

.

BEST AVAILABLE COPY

•

•

•