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summary

jil Sharp upper and lower bounds are derived for hazard rates and
densities of distributions with monotone hazard rate, These bounds
are related to Chebyshev inequalities in that they are obtained under

the condition that certain moments are known. Similar bounds are also

obtained when the density is a Polya frequency function of order twolif '/)
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1. Introduciion. There 1s, of course, a large body of literature
devoted to the subject of Chebyshev-type inequalities, which provide
bounds for the probability of various events in terms of moments., In
splte of this, there seems to be essentially no inequality known which
glves a bound for the density in terms of moments, One reason for

this is that the moments can in general be possessed by a discrete
distribution., Furthermore, densities are not unique when they do exist,
but may be arbitrarily defined on a set of measure zero to violate any

bound,

There are, however, a number of Chebyshev inequalities known which
apply to distributions F subject to restrictions which may force a
density to exist, at least over part of the support of F. Furthermore,
the restrictions may suggest a natural version of the density. As an

example, we cite the result of Gauss [7] which requires 1 - F(x) to be

convex in x > O.

In Sections 2 and 4 of this paper, we obtain bounds on both the
~ density and hazard rate under the assumption that the hazard rate is
monotone. A distribution F is said to have increasing (decreasing)
hazard rate denoted IHR(DHR) if 1log.l - F(x)] is concave on the support
, of F (convex on [0,®)). 1In [11], it is shown that if F is IHR(DHR),
then F 1is absolutely continuoﬁs except possibly for a jump at the right-
hand (left-hand) endpoint of its interval of support., Hence F has a

' density, say f, with the possible addition of one saltus. The ratio

a(x) = £(x)f[1 - F(x)] is called the hazard rate of F, and if F 1is

——




IHR(DHR), there is a version of f for which q is increasing (decreasing)e
If F is IHR, such a version of f satisfies f(t-) £ f(t) <f(t+) since -
otherwise q would not be increasing. Therefore, we seek upper bounds

on f(t+). and lower bounds on f(t-), and always refer to a version of

the density for which q 1is monotones When F 1is DHi’y the same comments

hold with "+" and "-" interchanged.

In Section 3, we obtain bounds on q(t) and f(t) assuming that
f is a Pdlya frequency density of order 2 (PF2)° Briefly; f is P?z
if 1log f(x) is concave on the support of F, an interval. This
condition implies that F is IHR, but not conversely. It may be regarded
as a smoothness condition, and guarantees that the density is essentially
unique, unir>dal, and continuous within its interval of support. Prdper-

-
1

2le Many life

ties of PF, densities are discussed in [9] and [°

densities such as the normal and certain of the gamma and Weibull family

are PF..

-~
J
.

The hazard rate has many aliases and as many uses, In reliability
theory [3], q(x) is also called the "failure rate", and is a measure
of the quality of a device or structure at age x. In the theory of
the strength of materials, it is called the "risk function", and is a

- o~

function of the stress applied to a material, rather than a function of

-

time (see, e.ge [13]). In the theory of fatisue failures, the extreme
value distributions have been widely employed by Gumbel [8] and by
Freudenthal and Gumbel [6]. The distributions called Type I and Type III

by Gumbel have increasing hazard rate. In medical and accuarial work,

the hazard rate is called the "force of mortality" or the "age specific



failure rate",

In congestion theory (i.e., queuzing theory, truffic theory,
telephone trunking theory) the renewal density m(t) (renewal rate)

is of interest. For IHR distributions,
£(0) < m(t) < q(t)

(cefe [2, p384])e Bounds on ine hazard rate provided in this paper

therefore also provide bounds on the renewal density,

Throughout this paper, we assume F(0-) = 0 and write i, for
@

§ xrdF(x). Frequently, we use the easily verified relation
O .

1 - F(x) = exp[- qu(Z)JZ]-
0

Many of our arguments, particularly in Sections 3 and 4, utilize the
fact that IHR distributions intertwine members of certain families of
extremal distributions in rather specific ways. A fact often used is
that if F and G have k moments in common, they must cross at least
k timess If G is exponential in some interval, say (a,P), then
because 1 - F 1is log concave and 1 - G 1s log linear on (a,p), F
and G can cross at most twice in (a,B). If there are two such crossings,
the first crossing of 1 -G by 1 - F must be from below, and the second

must be from above.

2. Bounds on densities and hazard rates in terms of a single expectation.

We consider first a slight generalization of the condition that F 1is

IHR, namely that a(x) = 6(x)q(x) is increasing in x > 0, where 6(x) >0

for x20 and q 1is the hazard rate of F.




Several proofs of this section depend upon the fact that if

F(x) S G(x) for all x, and ¢(x) 1is increasing in x > 0, then
(2) .
(2.1) § r(x)d®(x) (5)5 2(x)dG(x) .
0 =0

The inequality is reversed for ¢(x) decreasins in x > O.

—

~

We begin by defining two distributions which play the role of G
in the applications of (2.,1) below. Fix t > 0, suppose that 8(x) > 0

for x > t, and let

ik ' “x <t
N = Ga(x) ; .
exp{-a § dz/6(2)}, x>t . .
t, . e 0 ’
In case O(x) >0 for all x < t, let )
. . $ X L] () 3
exp{-a § dz/8(z)}, 0<x <&
=) o
1 - Ha(x) e R
0, X > te
If a(x) is increasing in x > 0, then
L ]
alt), x<t ( 0, x <t
a(x) < , and 'a(x):; :
[ 4
©, x>t a(t) x>,
*
so that : J
r/;)// ()\’ Xét O, - x <t
q(x) £ » and q(x) 2
@, x >t a(t)/6(x), x> t.

Hence . .




(s

Sxa(t)dz/e(z), el 1}

X
Q(x) = § q(z)dz £
é v x>t,
and
Qs x<t
Ax) 2 L
a(t) S dz/e(z)9 x2t,
it
or

(2.2) 1l - Ha(t)(x) &1l = F(%) il Ga(t)(x)'

Theorem 2.1e If a(x) is increasing in x> 0, 68(x) >0 for x> t,
and if ¢ 1is a strictly monotone function on [0,®) such that

@

§ ¢(x)dF(x) = v < @, then there exists a unique solution a, of

0 @

v =§ &(x)d¢_ (x) = 9.(a,) whenever t < C_l(v). Furthermore,
0 aq iR

a,/0(t), t< )
(2.3) £{t+) <a(t+) <

®, - C-l(v).

Proof. The second lnequality is triviel and we need only consider the

first. Assume that &(x) 'is increasing in x, so thet by (2.1) and

(2.2),

(= ]

v = g C(x)dF(x) < é C(X)dGa(t)(X) = 9, (a(t)).

Clearly @l(a) is strictly decreasiﬂg and continuous in a, lim @l(a) =
) a=0
= 1im &§(x) > v, lim @l(a, = §(t)e Thus, if v > ¥(t), there exists a
X0 a-

unique solution &, of @l(al) = v; furtlermore, a; 2 a(t) ylelds (2.3).

B



The proof for decreasing ¥ 1s analogous. H

In case ¥(x) = x so that vy = s (2.3) reduces with 6(x) =1 to

(244) £{t+) < q(t+) £
Oo’ t Z p'l’

and if Z(x) = = so that v = p,, (2,3) with B8(x) =1 becomes

t+,/2p2-t2

—,
(245} £(t+) < q(t+) < L

) t 2 Pé/2 .

e

< 12

Further explicit results are given in Theorem 2.3.

Remark. Theorem 2.1 requires that 6(x) >0 for x > t. A special
case of interest is 8(x) = 0, x < xy < t, and B(% S Xys SC
that the hypothesis that a is increasing becomes the hypothesis that

q 1is increasing in x > Xye Thus Theorem 2.1 ~an be applied to the

case that q 1is actually initially decreasing,.
Before discussing the sharpness of (2.3), we prove

Theorem 2.2. If a(x) is increasing in x> 0, 9(x) >0 for x < t,

and if ¥ is a strictly monotone function on [0,®) such that

®
§ ¥(x)dF(x) = v < », then there exists a unique solution a, of
0

v = SQC(x)dHa (x) = @2(a2) whenever t > C-l(v). Furthermore
0 2
a,/B(t), t>T(v)
(2.6) q(t-) 2
0, t < T,

and




(247) £(t-) 2 0.

Proof. We prove (2.6) only for &(x) increasing, in which case it

follows from (2,1) and (2.2) that

[* ¢}

v = é Z(x)dr(x) 2% C(x)dHa(t)(x) = @Q(a(t)).

Clearly @2(a) is strictly'decreasing and continuous in a, lim mz(a) = £(t),
a=0

lim mz(a) = ¥(0) < v. Thus, if Z(t) > v, there exists a unique solution
8-
a, of mz(a) = vj furthermore, a, < a(t) and this yields (2.6). ||

Remark. Theorem 2.2 requires that 6(x) > 0, x < t.

In case 6(x) =1 and ¥(x) = x so that vy = hys 8, can be
~a, /)
obtained from Table I of [l], where e e 1 is tabulated.

Although Ha does not have a density at t, we can still define
2
two versions of its hazard rate by

1im[H (x+a)-H (x)]/8[1-H_ (x)], =x<t
) ato %2 9 2
qy (x) =
Py x> b,
and
lim[H (x#2)-H (x)]/A[1-H (x)], x<t
A0 2 ) 2
qy (x) =

Similarly, let qa (qg) be the left (right) continuous hazard rate of G .
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Theorem 2.,1's If t <X L(v), equality in (2.3) is attained uniquely

by the hazard rate q;. If t 2> ¥ "(v), equality in the right side of
(2.3) is attained by the hazard rate q:; the bound on f(t) can be

approached arbitrarily closely by distributions of the form

-b,x
e T, 0<x<Kt
(208) :- - G(x) =
-b,t -b,(x-t)
1 “ + N
e ) L2 Xy

x

where b, satisfies § Z(x)dG(x) = v and b, - =,

1 0 2
Theorem 2.2'« If t < l(v), equality in (2.6) and (2.,7) is attained
by the hazard rate qa. If t> (_l(v), equality in (2.6) is attained

uniquely by the hazard rate qg. For t> £ (v), equality in (2.7) is

approximated by the distributions given in (2.8) with b, = @,
We omit the procfs of Theorems 2.1' and 2.2'. It is straightforward

to verily that the given distributions attain equality. Uniqueness

follows from an examination of the proofs of Theorems 2.1 and 2.2.

Remark. Since the density of G, 1s PF, (indeed PF_), the above
1 .
bounds~which are attained by q. cannot be improved with this additional
¥ §

assumption. However, the non-trivial lower bound of (2.6) is attained

by gq,, and since H does not have a PF, density, (2.6) can be improved

when f is PF,. Also in this case, f has a non-trivial lower bound at
“~

C-l(v) (See Section 4).

Although the bounds of Theorems <.l and 2,2 are sharp, they are not
explicity the following theorem gives an explicit result that is sharp

in only very special cases,
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Theorem 2.3. If F 1is IR, and u_=§ x"dF(x), where r > 1, tren
0
5 11/1‘
(2.9) £(t+) < a(t+) < [L(r+) ] : 0<t< ul/*‘ ;
- - [Ll/%-t - r
r

The inequalities are sharp for r =1, and in case t =0, for r > 1,

Proof. 3Since g{(x) 1is increasing in x,

~
L4

4(t) < =7 (l-Li/r-) - Q(t)]
r

where Q(x) = § q(z)dz. The right-hand inequality follows from this,
' 0
' and the bound 1 - ¥(

/oy s et tomey VoY (o1 o
lLr, ) 2 eXp{—._I (I‘+.L) } L4 s The-_)roml .-J/ . In
case r = 1, (2.9) reduces to (2.4), which is sharp. FEauality is

e . c s . Coyae . . . th
attained in (2.9) with t = 0 by the exponential disiribusion with r

moment ur.

Remark. The inequality

Mot
£(0) < 'T——'4L_' ’ 1y0 = Lydyeen
14-1

was given in [2, p383 where \_ = ur/r(r+1). Bounds on £'(0) assuming
f is PF, and £f(0) = 0 are given in [9, pl030]. Additional bounds can
| be giver. on derivatives of £ at t = 0O assuming higher order total

positivity conditions [10].

% In case a(x) = 5(x)q(x) is decreasing, the results possible are
more limited than in the increasing case. We obtain only upper bounds
for qft) and f(t) under restricted conditions, and give some examples

to show the impossibility of certain other non-trivial results.

——_



Let 6(x) >0 for all x > 0, and let

X
exp{-a § dz/0(z)}, x<+
1-K (x) = 1
exp{-a § dz/6(z)}, x> t.
0

If a(x) = 6(x)q(x) is decreasing in x > 0, a(x) > a(t) for x< t,

X X
and a(x) >0 for x > t. Hence Q(x) = § q(z)dz > a(t) § dz/6(z) for
0 0

x > t, so that
(2.10) l1-F(x)<1- Ka(t)(x).

Theorem 2.4. If a(x) is decreasing in x> 0 and ¥ is a strictly
decreasing function on [0,®) such that § Z(x)dF(x) - v < », then there
o 0
exists a unique solution a, of v =§ C(x)dKa (x) = ¢3(a3). Purthermore
7 0 3

(2.11) q(t+) £ aB/G(t).

Proof. By (2.1), (2.10) and the fact that ¥ is decreasing, v 2 9.(a(t)).

Clearly o¢.(a) is strictly increasing and continucus in a, lim @B(a) =

= %(0) > v, lim mj(a) = 1im &(x) < v. Hence a, exists uniquely and
a-0 X

since v 2> @B(a(t)), a(t) < a

:

Theorem 2.5 If a(x) is decreasing in x 2> 0 and if { is a strictly

increasing function on [0,®) suci that 1lim ¥(x) =M < « and
@ K40
§f %(x)dF(x) = v < =, then there exists a unique solution-a, of
0 t A
v =§ C(x)dK_ (x) + MK_ (t) = 9,(a, )3 furthermore,
- 2, a, e *

(2.12)  a(t) <8 /6(%).

Proof. By (2.1), (2.10) and the fact that ¥ is increasing, v £ wA(a(t)).

Clearly QL(a) is decreasing and continuous in i, lim @A(a) = £(0),
8-



lim ¢ ,(a) = M. Henre a, exists uniquely and since v < @/(a(t)),
a—O e - = v
(2.12) follows.

Equality is attained in (2.11) uniquely by the hazard rate of the

/

4

(improper) distribution K, »and In (2.12) by K, » co that (2.11)

2 p

iy

and (2.12) are sharp.

The fcllowing theorem provides upper bowmds for the density in
{

case F 1is DHR. The proof riven 1s quite unlike the precedin; proofs,

o

but is similar to the kind of arrument used in (9],

Theorem 2.6. If F is DHR and & is a monotone ‘unction on [0,*)

[o o]
such that § ¥(x)dF(x) = v < @, then
O-
(2.13) £(t-) < max[ sup a;e-at, sup be_bt’,
0<a<1 bpak
where for each a, a = ala) satisfies
(2.14) aa § C(X)e_axix + (1-2)%(0) = v,
0
and a* = a(l) is determined by a* § Z(x)e™® *ax = v.
0
Proof. Let
e ®, x>0
1l - ua()() =
1, x <0,

where for each a, a is determined by (2.14), and suppose that for all 1y

1

must cross at least once (otlerwise, by (Z.1), we obtain a contradiction).

F # La' Since L, and F satisfy § ZdL, = § gdt vy 1 = L, and 1

Since 1 - 1is log convex and 1 - L, 1is log lirear, 1 - Ll

l - only once, and this crossine must be from above. Uenote by u
) )

]
A

can Ccross




13

the point where 1 - La crosses 1 - F from above if such a crossing
exists, and otherwise let w = ©, By the log convexity of 1 - F
and log linearity of 1 - Lu, it can be shown that u is continuous

in ae Furthermore, since 1lim 1 - La(x) =0 fer all x > 0, we
a0
conclude that limu = =,
a-0

b

Now let 1 - Mb(x) =y x’ x 2 0, so that Ma* =L, and 1 -N

1

crosses 1 - F from above at 4. Let vy be the crossing of 1 - F

a*

by 1 - Mb from above if such a crossing existsjy otherwise, let o O

Then since 1lim 1 - Mb(x) =0 forall x>0, lin v, =0, and again it
h—s© e

can be shown that Yy is continuous in b.

Thus we have shown that for each point t » Vi there exists a
such that 1 - La crosses 1 - F from above at te. But this means
that at t, the density of F is less than the density of La’ or
£(t) € aae™®" where a 1is determined by (2.14). Sinmilarly, for each

point t £ v,, there exists b such that 1 -M_ crosses 1 -F from

above at t, and f(t) £ be Vs I

b

Theorem 2.6'e If &(x) 1is increasing in x, equality can be attained

in (2.13).
" . a "ﬂ.t iy _at
Proof. If the bound is attained by sup age = aage ", then equality
0<e<l
is attained by the density of La o If the bound is attained by
-b.t 0

sup be-bt = boe s then equality is attained by the distribution
bya*

-box

e ’ 0x<t+e¢

1-M(x) = -bo(t+e)-c(x-t—¢)

e R - % R A
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where c 1s determined by the moment condition § Z(x)dM(x) = v. Such
@ _bx

a distribution is DHR, (i.ee, c < bo), since § C(x)boe g dx < ve |
0
Corollary 2,7. If F is DHRand § x"dF(x) = p, < @, then
0
(ﬁe)-l, 24 ki/r
_t/(\l/l' )
(2.15)  £(t-) < \;1/Pw T xi/r <t < (r+1)x;/r
r+l
xrzg%;) e-(r+l% S (r+1) l/r

where kr = pr/F(r+l).

Proof. This result is a dire~st application of Theorem 2.6. ;

Theorem 2.8, If F is DHR, p_ = § x dF(x), and F(O+) - O, then
)
(2.16)  £(0+) = r(o+) >A7YT,
Proof. Since Q(x) = -log(l - F(x)) is concave, Q2(x)/x 1is decreasing

in x, and qu) = 1im 9(x)/x > o
r 11/r x-0
< e-LF(r+l)’ L], and the result follows.

/r\/ /P. ut 1 - F(ui/r) >

Note that equality is attained in (2.16) by the exponential distri-

bution I

In order to construct examples showing the impossibility of certain
other non-trivial bounds, we consider

-bx
e 5 X

7N
N

1 - N(x) =
_-[bztc(x-2)]

LT 7

where b and c jolntly satisfy the moment condition



o

{2.17) v = § ¥x)AN(x) = a(z ,b) + p(z,bly(z,c),
0

" -bx ) -bz -c(x-z)
ﬂ(z’b) = S C(x)be dx, f(zyb) = e ) Y(Z’C) =6 5 E(x)e dxe
0 z
Note that 1im a(z,b) = £(0), lim a(z,b) = 0, lim yv(z,c) = §(z) and
b+ b-0 c—®
lim v(zy¢) = 1lim {(x)e Clearly N has hazard rate
-0 X0
by 2%z
ay(x) =
Cy X >

In the following, q is decreasing and § &(x)dF(x) = ve
0

(i)e If ¥ is decreasing and t > 0, then gq(t) > £(%) >0 4is sharp: Choose

v > &> lim{(x), and c¢ surficiently small that a(z,0) + P(2,0)y(z,c) < ¢e
W .
But limfa(z,b) +p(zyb)y(zsc)]= £(0) > v3 hence by continuity, for sufficiently
e
small ¢, there exists - b > ¢ satisfying (2.17). With 2z < t, this

shows the impossibility of non-trivial lower bounds for 4q(t) and f(t).

>

(1i)e If ¥ is increasing and 1lim §(x) =M < =, then q(t) > O is sharp:
b
Observe that vy(z,c) increases monotoncially to M as c¢ decreases to

zero, so that a(z,b) + F(z,b)r(z,c) < a(z,b) + B(z,b)Ms Since p(z,b)
decreases monotonically to zero as b decreases to zero, and since a(z,b)

o

is bounded and 1lim a(z,b) = 0, we conclude that (2.17) has a solution
’r\ e
in b for fixed c¢ sufficiently small. With 2z < t, this shows the

desired result.

(ii1). If ¥ is increasing and t > 0, then q(t) < ® is sharp: For

fixed b sufficiently large, ¥(0) - a(z,b) and p(z,b) are arbitrarily

small, Since ¥(0) < v, and since +v(z,c) is monotone in ¢, there exists



16

a unique solution c¢ of (2.17). Furthermore, lim ¢ = 0. With =z > t,
b=

the result follows.

With the exéeptinn of Theorem 2.6, the results of this section
have been obtained by essentially the same method. While this method
is straightforward, it does not always seer to be alaptable to more
complex problems. In Sections 3 and 4, we theretore utilize a third
method, more closely related to that of Theorem 2.6. Before proceedin,

however, it muy be worthwhile to illustrate the method in an alternate

proof of Theorem 2.1 (for the case that 0(x) = 1).

Let G, =fc :0<w(< C-l(v)‘, where

and b is determined by (2.19),

We remark, but do not prove, that a and b are uniquely determined

by (2.19).




Alternate Proof of Theorem 2el, 8(x) = 1. Consider the case that

- 4 C-l(v). Let Gwc(l, where a. satisfies (2.19). We may assume
-

F é gl and F(x) >0 for x >t since otherwise the inequality is

~

obvious. By log concavit 1l - F(x) must eross 1 - G, (x from below
A b t

say at x, > t. Furthermcre, 1 - F(x) must be continuous at %, and

ossess a right derivative at x.. The slope of 1 - G,(x) at x. is
£ 0 * t 0

less than the slope ~f 1 - F(x) at Xn3 lee.

—al(xo-t)

f(x;) < e 4
Since 1 =~ F(xo) =1 - Gt(XO)’ q(xo) < 2, and by monotonicity of q,

q(t+) < a Since 1 - G,(t) = 1, equality is attained in (2.3) by

1.
Gy c!}l. il

A similar proof of Theorem 2.2 utilizes both Gi and 62.

3. Bounds on PF. densities and hazard rates. In this section we

T,

strengthen the hypothesis that is IHR by assuming that F has a
PF2 density f. This stronger hypothesis makes possible improvements
of the inequalities of Section 2 except in cases where equality is

attained yadistribution with PF2 density (see the remark following

Theorem 2,2').

Theorem 3.1. Let  be a PF, density such that f(x) =0 for x< 0,

Let ¥ be a function continuous and strictly monotone on [0,®) such
«©

that § ¥(x)f(x)dx = v exists finitely. Then
0

8yt
(3.1) a(t)<{ ‘
©y t 2 :-*(V)’



be PP/(1 - &%), £ > i),

where &y is the unique solution to
(¢ -al(x-t)
v=_§ C(x)ale dx
0
and b ..is the unique solution to

5
(3:3) v = Tl v X =z 0l
0

All inequalities are sharp,.

Egégﬁ. (3.1) and (3+2) for t < C—l(v) follow from Theorem 2.1, and
sharpness follows from the remark following Theorem 2.,2'. In [5, Lemma
53]y it is proved that for .C increasing, (3.3) has a unique solution b
whenever t > (-l(v); by obvious modifications of the proof given there,

we obtain the same result for ¥§ decreasinge. Let

be-bx/(l - e-bt), 0<x<t

o, x>

and suppose that f # g,. Since log f(x) is concave and log g, (x) is
p %, t

linear in xe[0,t], there are at most two crossings of £ by & (see [9]).

@ o

Since f and g, are densities satisfying §20)f(x)dx = § C(x)gt(x)dx = o
0 0
they cross at least twice, Hence f and g, cross exactly twice in [0,6]5

moreover, the second crossing of { by e, must be from below, and we

conclude that f(t) < Ht(t) as asserted, Of course, equality in (3.2)

for t > ¢ *(v) 1is attained by £y
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Theorem 3,2. Let { be a PF_ density such that f(x) =0 for x <0,

Let ¥¢(x) be a function continuous and strictly monotone on [0,®) such

that § €(x)f(x)dx = v exists finitely. Then
0
0 t < C—l(v)
(B.A) q(t') 2 m .
inf g (t)/§ e, (x)dx, L2 THV),
m>t, t

where

i, (3)

o elsewhere,
m

b 1is uniquely determined by § (x)g (x)dx = v.
O dis w

ey
3
[oH

oA . -1
Proof. Sharpness of the trivial lower bound for t < { ~(v) follows from
Thecrem 2.2'. Let x*(m) be the unigque point where B, crosses £ from
below, and suppose first that t < xt(x)., Ther there exists my >t such

thav f(t) = g_(t) (the proof of this in case { 1is increasing is given
My
in [5, Proof of Theorem 5.1]; the modifications necessary in case ¥ is

decreasing are 0bv}:u: and not extersive), But f(t) = A (t) together

0 ¢ 0
with 1 - F(t) <§ g (x)dx (again, see [5, Proof of Theorem 5.1]) yields
t 0
+
h ®

the desired resul

It remains to consider the case that 4 > x¥(») = x*., Then by an
argument identical with the case t < x* we obtain

[ o]

alxt) > g (x)/§ g (x)d
1

L
~

which together with @q 1increasing yields (3.4) in this case,

As noted in Section 2, PF_ densities have non-tiriwvial lower bounds
<
1/r
r(ud/)
r

at "mcment points", In particular, we obtain lower bounds on

for r 2 1. To do this, we use the following




Lemma 3.3, I § @(x)fl(x)ix § p(x)f. («)dx < *, and 1f the support of

¥

fl is contained in the support of [, then

(3.5) 5 a00r G)lor[ry(x)/2,(x)] 2 0.

Proof. § n(x)*l(x)log{Yl(x)/fg(x)’dx - n(xzft(x)lo;[f'(x)/”l(t)ﬂdx >
2§ w ()0 () [1- £, )/ ()l =fo () £ ()% - 9(x)f (x)dx ~ 0. Ihe

inequality {ollows directly from logr'z< 2z - 1, z > 0.
Remark. With 9(x) = 1, this is the well-known "inTommation ineauality".

Theorem 3,.s Let 9 be a non-nerative {unction and N\ be a number .uch

that

N < f p(x)r(x)dx = § i(m)\e_xxix < w,
0

If £ is PF, and 1(x) = 0, x < 0, then

(3.6)  f(a) >re "
where a = (§ s (x)0(x)dx)/(§ »(x)f(x)dx).

. . - =X .
Remark. A satisfyins § »(x)f(x)dx = § @(x)ne ""dx does not necessarily
exist in general. However, it'  1s monotone, then such a \ always

exists.

Proof. Since { is log concave, log f(x) lies below its tangent at a,

+—
]
N
5
S
.

=
]
3
—~
P
~
[\ _/
(@]
-

ie€ey, (x=a)f'( /"( +13{3'f'(a) D

and upon integrating, we obtain




w @€ x
£ :
£8) ¢ oix){x = a)elx)ax + log £(a) § e(x)e(x)dx > § o(x)tx}icg £(x)ax
f(a) ;5 0 0
= @
> § o(x)f(x)[log A = Ax]dx = (log A - a\) § o (x)f(x)dx.
0 A
The second inequality follows from Lemma 3.3. By the definition of a,
the first term on the left of this inequality is zero, and we have
= 2
log f(a) § »(x)f(x)dx 2 (log A - &) § 9(x)f(x)dx.
4 <
Lo W

Corollary 3.5 lLet f be a PF. density such that f(x) =0 for x<0
& L ’
~ )
& : R " s 1
ad = § x"#(x)dx. Then if r > 1,
A

~
)

7 i - ~1/I‘
3.1 ) 3 e T ST

—_

Proof. If r = 1, the result follows from Theorem 3.4 with eo(x) =1,

a r r+l)/r
If r>1; let olx)=x # (Pr+l - p£ )/

ui/s is increasing in s > 0, it follows that o(x) > O. By straight-

)/(“i/r - ul). Then since

Torward algebra, a = ui/r. Thus A\ = U‘(r+1)/hr]l/r, and (3.7) follows. |

The bound of (3.7) for r =1 was originally communicated to us

by Samuel Karlin.

Lo Bounds on densities and hazard rates when F is IHR with specified
first and second moments. Assume that F 1is IHR with By = 1 and By

specified. In [5], the class of extremal distributions for bounding F
were determined. This same class of distributions is also important in

bounding f and g, and we begin with some definitions.

- 2 2 |
Let To =] - qﬁz-; (since F is IHR, # & o < 7 so p, =1 2 0),

and let I, = aallog(l - ao) where a, in [0,1] satisfies



{{s1) pf2=f§ e O ax = aaL[l - Q log(l - aO)‘°
i 0 C
Let G, = o r 2 Tl} where
1, x< A
(442) 1 - GT(x) = e-a(x—d), 8Lz, 12 T,
0, x>7

and where a and A in [O,TO] are determined by the moment conditions,

ioeo’

(4e3) g (1 = Gp(x)ldx=p, =1,

(4e4) (S) x[1 = Gp(x)]ax = p,/2.
Let G, = {Gp 2 Ty ST STy}, where
-a.X
e : " x< 7T

(4e5) 1 - GT(x) = » T, STET,

-a.T-a.(x-T)
e o y X T

and a, { a, are determined by the moment conditions (4e3)y (4e4) as
befores It is shown in [5, Lemma 3,4] that a,A and a,,8, satisfying

(403) and (4.4) exist uniquely. It is also shown in [5] that for t > O,

inf[1 - Gy(t)] < 1 - F(t) § sup[l - Gy(t)]

where the extremums are taken over 63 U GA' These bounds have been

tabulated for u, =1 and selected values of p2(1 <, & - 1 T s 5

Theorem 4.1. If F 1is IHR with density f, F(0) = 0, By = 1 and by
is specified, then



o+

O,

a, < s < TO
(4e6) £(t+) < a(t+) < _1/2

1) "% =T,

“y t.?“s
(4e7) a(t+) < a,, LLts T,
and

-8t

(4+8) £(t+) < ae s T, 5tCT,,

where a, is defined by (4.1); a 1is defined by GT ¢ (33 with A=¢%
and some T 2 Tl; a) and a, are defined by GT ¢ gA’ with T = t,
All inequalities are sharpe

Proof. Case 1,0 < t < T,. Either F(t) =0 and £(t) =0, 0r 1- F(x)

crosses 1 - GT(x) from below at, say to 2 t, where 1 - GT(x) is riven

by (4e2) with 4 = t. Therefore i‘(to) < gT(tO) and 1-F(to)=1-GT(t0), so that
q(to) £ qT(to) = a, where &p (qT) is the density (hazard rate) of GT'

Since t < t; and q 1is increasing, we have that q(t+) < a. Equality

in f(t+) < a 1is attained by the density of GT' Letting t decrease to

zero, we see that f(0+) < lima = age
t40

Case 2 ?Q;ﬁ £ < Tl' From [5, Theorem 3.3] we know that 1 - F(t) £

1- }t(t) where G, is ziven by (Le5)e. This together with the fact that

F and Gt must cross at least twice implies that 1 - F(x) must cros:

1- Gt(x) from below at some t, > t. Hence a(t+) < q(to) < qt(to) = a,
where q, 1is the hazard rate of G.j and this is (Le7)e From (L.7) and

4t
1-7(t) $1-6G.(t) =e *, we obtaln (48). Equality is attained by

G, in both (4.7) and (4.8). Letting t decrease to Ty» we obtain from
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this, (406) with t = Too

Case 3, t > T,. The bound £f(t) € q(t) < ® cannot be improved as can be

seen by considering the extremal distribution G, ¢ G 3 where T =t, |

-alt

Remark. e for T, <t < T, is tabulated in Table III, [1].

Theorem 4.2. If F 1is IHR, F(o) = 0, p.l =1 and p.2 is specified, then
0, DELLT

0
8y TO <P x 'I'l
(469)  d(t=) 2 ( a, t=T
a, t > Tl
W)V, 1=,
where 8y, 8 and a, are defined in Theorem 4.l. The inequality is

sharp.

Proof. Case le 0 { t £ EQ' The lower bound is attalned by G, e G 4 for

a)t.

Case 2. To L R I‘l. Consider Gt € GA' Either 1 - F(x) crosses

l- Gt(x) from above in [O,t], or 1 -F(x) <1 - Gt(x) for x in
[0yt]. Suppose 1 - F crosses from above, say at ty < te Then

q(t-) 2 q(to) b qt(to) = a, where g, 1is the hazard rate of G,. Next,
suppose 1 - F(x) lies entirely below 1 - Gt(x) for x in [O,t].

Then q(t-) > q(0+) 2> a,, which completes the proof of this case.

The cases t = Tl and t = ® are obtained as limit results from
Case 2. ||

Theorem 4.3. If F is IHR with density f, F(0) =0, By =1, and p,
is specified, then



N

0, DL teT

0
(4010) f(t-) 2 fmin[g(t),n(t)], Ty <t Ty -
0, t > ‘I:‘l’

—a(t-a) iy

where g(t) = inf ae and hit) = Ainf 5@ &
0<AST, T, SIS,
Proofe If 0K t< Ty» the lower bounds are attalned by Gp » 1f t > Tes
0
the lower bound is attained by GT « Suppose now that T, <t £ Tie Let
1

s(T) denote the crossing in (4,T) from above of 1 = GT eg% by 1-F

if such a crossing existsj otherwise, let s{T) = Te

Case 1. T, CE L s(Tl). Let G ¢ ‘;A’ and let w(T) denote the point at

which 1 - F(x) crosses 1 - GT(x) from above in (0,T). Then s(Tl) %
w(Tl), 1lim w(T) =0 and w(T) 4is continuous in T (see [5, Proof of
¥ i Ly
Theorem 33.]). Hence there exists T such that w(T) = te Since 1 - GT(x)
-a.t
¥

crosses 1 - F(x) from below at t, it follows that f(t-) > ae o

Case 2. s('l‘;) £t <s(®)e Let Gp € G by continuity of s(T), there

exists T such that s(T) = te Since 1 - F(x) crosses l-GT(x) from

above at t, f(t-) > ae'a(t.A).

Case 2, s(=) <t < Tl. If s(=) > '1‘1, then of course this case is vacuous,

Otherwise, let v(T) be the crossing in (T,®) from above of 1 - G.r(x)
by 1 - F(x) if such a crossing exists, and let v(T) be the right-hand
endpoint M of the support of F 1if such a crossing does not exist, Then
v(To) = s(») and Tlti'lx'n v(T) = Me By continuity of v, there exists T

in [TO,TI] such that 1 - F(x) crosses 1 - GT(x) from above at t,

and the argument is concluded as in the previous cases. ||
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