
01 -82 -0338 

BOE I NGSCIENTIFIC 
RESEARCH 

. . · . , LABORAfORIES 

9-

Bounds on Densities and Hazard Rates 

R. E. riow 

A. W. Marshall 

Mathematics Research 

April1964 



fSff? • 

D1-82-0338 

BOUNDS ON DENSITIES AND HAZARD RATE: 

b7 

R. E. Barlow- 
University of California,  Berkeley 

and 

A. W. Marohall 
Mathematics Research Laboratory 

Mathematical Note No.   3^1 

Mathematics Research Laboratory 

BOEING SCIENTIFIC RESEARCH LABORATORIES 

April 196/, 

'f    Research partially supported by the Office of Naval Research under 
Contract Nonr-222(83) with the University of California.    This 
document is also being issued as a report by the Operations Research 
Center, University of California, Berkeley. 

nkm 



^ 

Sumirmry 

Sharp upper and lower bounds are derived for hazard rates and 

densities of distributions with monotone hazard rate. These bounds 

are related to Chebyshev inequalities in that they are obtained under 

the condition that certain moments are known. Similar bounds are also 

obtained when the density is a Polya frequency function of order two. 
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1,    Introduction.    There Is, of course, a lar^e body of literature 

devoted to the subject of Chebyshev-type inequalities, which provide 

bounds for the probability of various events in terms of moments.    In 

spite of this,  there seems to be essentially no inequality known which 

Hives a bound for the density in terms of moments.    One reason for 

this is that the moments  can in general be possessed by a discrete 

distribution.    Furthermore, densities are not unique when they do exist, 

but may be arbitrarily defined on a set of measure zero to violate any 

bound. 

There are, however, a number of Chebyshev inequalities known which 

apply to distributions    F    subject to restrictions which may force a 

density to exist, at least over part of the support of   F,    Furthermore, 

the restrictions may suggest a natural version of the density.    As an 

example, we cite the result of Gauss  [7] which requires    1 - F(x)    to be 

convex in   x > 0, 

In Sections 2 and i of this paper, we obtain bounds on both the 

density and hazard rate under the assumption that the hazard rate is 

monotone,   A distribution    F    is said to have increasing (decreasing) 

hazard rate denoted IHR(DHR) if   log[l - F(x)]    is concave on the support 

of   F    (convex on    [0,*)).    In [11], it is shown that if   F    is IHR(DHR), 

then    F    is absolutely continuous except possibly for a jump at the right- 

hand  (left-hand)  endpoint of its interval of support.    Hence    F    has a 

density, say   f, with the possible addition of one saltus.    The ratio 

q(x) = f(x)/[l - P(x)]    is called the hazard rate of   F, and if    F    is 
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failure rate". 

In congestion theory (i.e., queualng theory, traffic theory, 

telephone trunklng theory) the renewal density m(t) (renewal rate) 

is of interest. For IHR distributions, 

f(0) < m(t) < q(t) 

(c.f, [2, p3ß/J). Bounds on tne hazard rate provided in this paper 

therefore also provide bounds on the renewal density. 

Throughout this paper, we assume F(O-) = 0 and write ;x  for 
ao r 

3 x dF(x), Frequently, we use the easily verified relation 
0 

x 
1 - F(x) = exp[- 5 q(z)dz]. 

0 

Many of our arguments, particularly in Sections 3 and 4> utilize the 

fact that IHR distributions intertwine members of certain families  of 

extremal distributions in rather specific ways,    A fact often used is 

that if   F    and    G    have    k   moments in common, they must cross at least 

k    times.    If    G    is exponential in some interval, say    (a,?),  then 

because    1 - F    is log concave and    1 - G    is log linear on    (a,!5), F 

and    G   can cross at most twice in    (a,ß).    If there are two such crossings, 

the first crossing of    1 - G   by   1 - F   must be from below, and the second 

must be from above. 

2,    Bounds on densities and hazard rates in terms of a single expectation. 

We consider first a slight generalization of the condition that    F    is 

IHR, namely that    a(x)  = 0(x)q(x)    is increasing in   x ^ 0, where    9(x) ^ 0 

for    x ^ 0    an^    q    is the hazard rate of   F. 



Several proofs of this section depend upon the fact that 1-f 

F(x)   /X  G(x)    for all    x, and    ^(x)    Is Increasing In    x ^ 0, then 

(2.1) 5  r(x)d!'{(x)  X 5  C(x)dG(x). 
0 [^) 0 

The Inequality Is reversed for ^(x) decreaslnf* In x 4> 0, 

We begin by defining two distributions which play the role of G 

in the application:; of (2,1) below. Fix t > 0, suppose that 0(x) > 0 

for x ^> t, and let 

, x < t 

1 - Gjx) 

exp[-a 5 dz/e(z)},  x > t . 
t 

In case 9(x) > 0 for all x < t, let 

1 - HJX) : 

/ .  ■   »x 
exp[-a j da/e(z)j,  0 < x < 4 

G* 
; 

X > t. 

If a(x) is increasing in x ^ 0, then 

a(t),  x < t 

so that 

Hence 

a (x) < , and a(x) )>M 

x > t 

U(t)/e(x), 
q(x) <> 

0,    x < t 

a(t)  x ^ t, 

x < t 

x > t 

, and q(x) 2 

0,   * 

■ 

a(t)/e(x), 

x < t 

x ;> t. 

•     « 



Q(x) ■ 5 q(z)dz i 
0 

5 a(t)dz/e(z),  x ^ t 
0 

■l x > t , 

and 

or 

Q(x) 2 

0, x < t 

a(t) J dz/e(z),  x ^ t, 
t 

(2.2)    1 - Ha(t)(x) ^ 1 - F(x) ^ 1 - Ga(t)(x), 

Theorem 2.1, If a(x) is increasing in x ^ 0, 9(x) > 0 for x ^ t, 

and if C    is a strictly monotone function on [O,00) such that 
00 

5 C(x)dF(x) = v < ""j then there exists a unique solution a,  of 
0     00 

V = 5 C(x)dG (x) ■ cpn(a1) whenever t < C~ (v). Furthermore, 
0     al     1 1 

(2.3)    f(t+) < q(t+) < 

»-1. a1/9(t),  t<C"-
L(v) 

. t ^ chv). 

Proof. The secona inequality is trivial and we need only consider the 

first. Assume that C(x) 'is increasing in x, so that by (2,1) and 

(2.2), *  • 

(XI 

* '   v =5 C(x)dF(x) <i C(x)dG ,.,(x) n^Wt)). 
0 0     al j 

Clearly   <p, (a)    is strictly decreasing and continuous in    a, lim q», (a) = 
a-0 

= lim C(x) > v, lim qp'a) = Kit),    Thus, if    v > Kit), there exists a 
x-*0 a-*0 

unique solution    a,    of   (p,(a,) = v; furthermore,    a, ^ a(t)    yields (2.3) 



The proof for decreasing C is analogous« 

In case C(x) - x so that v - jx,, (2,3) reduces with 9(x) = 1    to 

i/Cii^t),    t<|i1 

(2./J    f(t+) < q(t+) <, 

and if C(x) : x' so that v :z (t«* (2»3) with 9(x)  1 becomes 

(2.5)    f(t+) < q(t+) ^ 

t+v^l^l 

m-t 
,    t < j^' 

1/2 

t > U '  . 

Further explicit results are fiven in Theorem 2.3. 

Remark.    Theorem 2.1 requires that    9(x) > 0    for    x ^ t,    A special 

case of interest is    9(x) = 0, x < xn < t, and    9(x)  = 1, x ^ xn, so 
0 ^O1 

that the hypothesis that a is increasing becomes the hypothesis that 

q is increasing in x ^ x-. Thus Theorem 2.1 can be applied to the 

case that q is actually initially decreasing. 

Before discussing the sharpness of (2,3), we prove 

Theorem 2.2. If a(x) is increasing in x ^ 0, 0(x) > 0 for x < t, 

and if C ie a strictly monotone function on [O,00) such that 
00 

J C(x)dF(x) = v < "^  then there exists a unique solution    a9    of 
0    00 ^ 

v = J" C(x)dH (x) a «p (a-) whenever t > C"x(v). Furthermore 
0     a2     ^ ^ 

i 

(2.6)    q(t-) ^ 

a2/9(t),  t>r
1(v) 

0, t z chv). 

and 
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(2.7)    f(t-) 2 0. 

Proof. We prove (2,6) only for C(x) increasing, in which case it 

follows from (2.1) and (2.2) that 

00 00 

v - 5  C(x)dF(x) 2 5  C(x)dH m(x) = q)?(a(t)). 
0 0     a^ ^ 

Clearly ?5(a) is strictly decreasing and continuous in a, lim <P5(a) = C(t), 
a^O ^ 

lim ^(a) = K(0)  < v. Thus, if C(t) > v, there exists a unique solution 

a? of q>2(a) = v; furthermore, a« < a(t) and this yields (2.6). 

Remark. Theorem 2.2 requires that 9(x) > 0, x < t. 

In case 8(x) s 1 and C(x) = x so that v = \i.f &„    cari be 

obtained from Table I of [l], where e      is tabulated. 

Although H   does not have a density at t, we can still define 
a2 

two versions of its hazard rate by 

qjj (x) = 

lim[H    (x+A)-H    (x)]/A[l-H    (x)],      x < t 
AtO    a2 a2 a2 

^ x > t. 

and 

q« (x) = lH 

lim[H    (x+A)-H    (x)]/A[l-H     (X)],      x<t 
AiO    a2 a2 a2 

•, x ^ t . 

Similarly, let q' (q ) be the left (right) continuous hazard rate of G . 
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Thoorom :i,3.    If F is IHR, and [1=5 xrdF(x), where r ^ 1, then 
r      0 

1/r 
(2.9) f(t+) ^q(t+)  < tr(ffi]   , 

i '    - t r 

o <: t < nI//r . r 

The inequalities are sharp for r = 1, and in case t = 0, for r ^ 1, 

Proof. Since q(x) is increa^in^ in x, 

ix / -1 

where Q(x) = J q(z)dz. The right-hand inequality follows from this, 

1/r) >exvi-lr(r+l)'l/r' and the bound 1 - Fd^ ) ^ exp[-[r(r+l) ^/r] ([/■, Theoreir. 3.8). In 

case r = 1, (2,9) reduces to (2./J, which is sharp. Equality is 

attained in (2.9) with t - 0 by the exponential distribution with r 
th 

moment    u   . 
r 

Remark.    The inequality 

f(o) <; ^^ , 
■i+j-i 

>Kl 
1 P 1  •       J    •   • 

was given in [2, P383. where \ = H /r(r+l). Bounds on f^O) assuming 

f is ?F?    and f(0) = 0 are ^iven in [9, pl030j. Additional bounds can 

be giver: on derivatives of f at t = 0 assuming higher order total 

positivity conditions [.10]. 

In case a(x) = e(x)q(x) is decreasing, the results possible are 

more limited than in the increasing case. We obtain only upper bounds 

for q(t) and f(t) 'ander restricted conditions, and give some examples 

to show the impossibility of certain other non-trivial results. 
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Le e(x ) > 0 or a1 X ~ o, n 1e 

1 - K (x) = I :. :~~ Ox 

0 

le( z ) , 

-:.I ( z ) ' X ) • 

(x) = (x) q(x) i e X '- 0 , (X) ( ) or X ~ , 
X X 

an (x ) 0 o x ) • ( ) q ( z) '"' a ( ) I ( ) or 
0 0 

X ) , 0 

( • 0) 

a (x) j i X ' 0 t r· y 

h ~ ( x) ( x ) v < oo, n there 
Q) 0 

exi = ~ ( x ) (x ) - (a ) . F hermor e 
0 a 

o ... 

(2 . 1) ( ) ~ I < ) . 

!2:.22_.- By (2 . 1) , (" . 0) an 

ear y ( ) r y r e 

= C(O) > ' 
im J( a ) . ,, ~ ( x ) He 

a X-P> 

n e ~ 3 (a(t~) , (t) ~ 

(x ) 

0 0 . 
Q) 

S C ( ) ( x = < oo , er e exi s 
0 

= S C(x ) K (x ) + K ( ) - (a ) ; 
0 a 

( 2. q ( ) ~ a Ia ( t) . 

Pr oof . By (2. ) , (2 . _0) and the ~ a 

C ear y ~ (a ) s ecreas a d co i o 

i 

e 

X 0 

< 
0 't. . o. 

' v (a ( )) . 

3 ( ) = 

0 

'J ~ (a ( ) ) • 

) = ~ (0) , 
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lim 9,(a) : M. ilen^e a. exists uniquely and ^ince v ^T,(a(t)), 
a-0 'f 4 " /f 

(2,12) follows. 

Equality is attained in (2.11) uniquely by the hazard rate oi" the 

(improper) distribution K , and In (2.12) by K , so that (2,11) 
•1 

and (2,12) are sharp. 

The fo] lowing theorem provides upper bo'uids for the density in 

case F is DIIR, The proof riven is quite unlike the preceding proofs, 

but is similar to the kind of argument used in [')], 

Theorem 2.6, If F is DHR and C is a monotone function on [0,*) 

such that j" C(x)dF(x) - v < "^ then 
0- 

(2,13)   f(t-) ^ max[ 3up aae~  , sup be" ", 
0<i<l b2aw 

where for each a, a 2 a(a)  satisfies 

(2,U)   aa J C(x)e"tiÄdx + (l-a)C(O) = v, 
0 

-a-x 
and aw = a(l) is determined by a:- J" C(x)e~  dx " v. 

0 

Proof. Let 

ae  ,  x > 0 

1 - Ljx) = 
1,     x < 0, 

where for each a* a is determined by (2,14,), and suppose that for all a, 

F / L .    Since L, and F satisfy J Cdl^ ■  j CdF  v, 1 - L  and 1 

must cross at least once (otherwise, by (2,1), we obtain a contradiction). 

Since 1 - F is log convex and 1 - L-, is log linear, 1 - L,  can cross 

1 - F only once, and this crossing must be from above. Denote by u 

- r 



.3 

t he poin wh<:!r l - L r o es - F a r o in 

exis n 0 er e e = 00 
0 8 h - ~ 

' 
an 0 - .u 

~ n 
' 

e ho t t on 

r he .. o e , n 1 ' T (x) = 0 c X ) o , we - .u 

h 1 ' = • 

1 - Mb(x) -bx o , = L 1 - M ow = e X () 7, n au a* 

r o e 1 
., r o: L v e r o n 0 l - F - ~ • 

1 Mb r o 0 e r o c .:.n xi 0 er e , e = o . 

hen n e M (x) = 0 or o, = o , a n 

a e how b 0 n 0 • 

we cwn !.or P"i n ' 
h re 

. c t t. - .u r o e 1 - ~ r o. bo e • 

t " e e :.. t," o; ~' e 
' 

or 

( ) ~ 
- a t her :.s b (?. ) . h e a r or e 

o ' n ~ her M 0 - r"' r o 

f( ~ 
- b :I a o·1e , an • 

• (x) f_ .l.n x, q 1 ' e 

in ( • ) . 
Proo he i -a t e eq 1 • = o e ' 
i b 

-b 0 
p e = , ~ en r 0 

bLa* 0 ,-v e ' ~ Y. ~. + ( 

- M(x) = 
e- '-0 ( +d - (x-t-e ) 

X + € 



u 

where c is determined by the moment condition J C(x)dM(x) = v. Such 

-b0x 
a distribution is DHR, (i.e., c < b-), since ) C(x)bne   dx < v . 

0 
SB 

Corollary ^.7.    If    F    is DHR and      5  xrJP'(x) = [i    < ",  then 
0 r 

(2.15) f(t-) ^ 
i/  -tAl/r 

, -l/r      /   r 

-    r 

X1^ ^ t <  (r+l)Xl/r 

X   (^rV^, t  > (r+DX1^ r    t ' £. v      /  r 

where   X     = ^ /^(r+l), 

Proof,    This  result is  a direct application of Theorem 2.6. 

Theorem 2.8.    If    F    is DHR, y    = j x dF(x), and    F(0+)   : C, then 
r      0 

(2.16) f(0+) r-. r(o+) >X-l/r. 

Proof.    Since    Q(x) = -log(l - F(x))     is concave, Q(x)/x    is decreasing 

Vrwi/r l/r, 
in    x,  and    q(0) = lim Q(x)/x 2 2(^ /-)/ji^   .    But    1 - F(ji '   ) < 

rpf-.Tnl/r        x-C 
^ e"L   u^x;j [/f], and the result follows. 

Note that equality is attained in (2,16)  by the exponential distri- 

bution. 

In order to construct examples showing the impossibility of certain 

other non-trivial bounds, we consider 

1 - N(x) = 

-bx 

-[bz+c(x-z)j 

X < z 

,  X ^ z 

where b and c Jointly satisfy the moment condition 
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00 

(2. 17) \) = 5 (x) . (x ) = ( 
' ) + ( , b) ( z, ) ' 

0 
z -b (x- ) a ( z, b) = r;: (x ) e x , ~ ( ' b) = (z , c ) = (x )e- x. 

0 

. o e h ( z ' ) ' ( ) ' (z, ) = o, · (z , c) ( z) 

li (z, ) (x) . c_e h h· zar 
..<) X 

I 
X ( z 

(x) -

Y.. 

' q i (x ) F(x) = • 
0-

(" ) . hen g ( ;. ) ~ £ill iwose e, 

> c :: (x ) , .:.e l y .. 11 + ), ..... a ( ,o) ( z , 0 )y ( z , c ) < c. 
X 

B 1 ' . a (z , b) + (z, )y ( 
' 

) ~= ((0) ) v; hen e ui or i en l y 
~ 

a er e e > t, .:. :"t . ( . z hi 

ow he .:.r.:. o ibi : i v:J o:, non- .,..., 1 low r 0 1 ( n ( ) . - -~ 

( i . ) • rr: har12 : 
x-

Ob er ·e h ( :::-e y to " e 0 , ~ ' 

z r o, 0 
... ( ~ , -:c .,. b (:: , ) < , b) + (z , b) ( u, b) v "' I ' • 

e r e e :r:.o '-0 ze 0 0 zero, an e ( z, 

i bo (:: , b) = e ( . 7 ) a ) ol t'on 

n _or • 4 .:. e. vl· ,... ... h < h 0 1r! t he 

e i r e' r e ., 1 v e 

(iL'_) . " > 0 , ) ( oo is shar12 : For 

fixe s , ___ :~ ie ... . ar e , Z: (O ) (z , b) an .- ( z, b) are arbi t r ar ily v 

. a • Since ~ ( ) < , a n e · ( z , ) •. o o o e c , here exists 
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a unique solution    c    of (2,17).    Furthermore,  lim c = 0.    With    z > t, 

the result follows. 

With the exception of Theorem 2.6,  the results of this section 

have been obtained by essentially the same method.    While this method 

is straightforward.  It does not always seen1 to be adaptable to more 

complex problems.    In Sections 3 and /„, we therefore utilize a third 

method, more closely related to that of Theorem 2.6.    Before proceeding, 

however, it may be worthwhile to illustrate the method in an alternate 

proof of Theorem 2.1  (for the case that    0(x)   - 1). 

--1/   O Let   ti1   : fc;w  :   0 S w < C    (v)], where 

1, 

(2.13)        1 - G  (x) w 

X \ w 

-a x-w e ,      * j w 

and a is determined by 

(2.19) 

Let 0 

(2.20) 

2 

j C(x)dG (x)  v. 
0     ' 

[ G :  K    (v) ^ w]  where 

1 - G (x) = 
w 

-bX       0  .     y 
e  ,  0 ^ x < w 

0, x 2 w 

and    b    is determined by (2.19). 

We remark, but do not prove, that    a    and    b    are uniquely determined 

by (2.19). 
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Con id r h ase at 

t < ~-1 ( ) . Let 

F • G
1 

a n F (x) 

c {I , •· e e ti r · e ( • ) . ·:e y a sume 

0 0 X ) e otherwi e the ne l i y ' s 

obvio By lo y , 1 F (x) m r os 1 - (x) _r o below 

F he ere , be o t i 

pos ess ri t eri a ve he lo e o 

l ess th t e l ope ~ 1 - ? (x ) 

Si e 1 F( XQ) = t ( xo ), q ( xo ) s 1 ' 
an y . 0 0 on y o. q , 

q( t + ) < 1 . e t< ) = l , eq li a a i e ( • .3) by 

t c {I . 

A imi .. ar r oo 0 mheor em 2. 2 i zes bo h (j (j2 . 

.3 . I h ' s ect ' on we 

t ren t te ypothe is th F hat n ha 

.., . on o:. i l e · pro emen s 

o he eq ali e e ion ~ exce t in where eq ali y is 

a taine (Ua · :.r ib o " · t PF2 i y ( ee " e re ark ollowin 

Theor e 2. 2 1 ) . 

Le 

Let t:: be a func on 
co 

that S ~ (x) (x ) X = 

0 

q( t) ~ I al , 
(3 . 1) 

co , 

be PF en ' ty s 
2 

hat (x ) = 0 or x < 0. 

an t rictly mo o o e on o , co) such 

exi s lin ' el • hen 
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(3.2)   f(t) <, 

a1        t < r1^) 

be-bt/(l - e-bt),  t >r1(v), 

where a. is the unique solution to 

t     ^(x-t) 
v = J C(x)a,e      dx 

0     1 

and b -is the unique solution to 

(3.3)   v - J C(x)be-bxdx/(l - e'bt). 
0 

All inequalities are sharp. 

Proof. (3.1) and (3.2) for t < C (v) follow from Theorem 2.1, and 

sharpness follovlrs from the remark following Theorem 2.2', In [5, Lemma 

5.3], it is proved that for K    increasing, (3.3) has a unique solution b 

whenever t > C (v); by obvious motiifications of the proof given there, 

we obtain the same result for C decreasing. Let 

gt(x) '- 

be"b7(l - e'bt),  0 < x < t 

0, x > t 

and suppose that f / g, , Since log f(x) is concave and log g. (x) is 

linear in xe[0,t], there are at most two crossings of f by g  (see [9]). 
00 00 

Since    f   and    g.     are densities satisfying    J C(x)f(x)dx = j"  C(x)g. (x)dx = v, 
1 o       o   Jt 

they cross at least twice. Hence f and g  cross exactly twice In [0,t]j 

moreover, the second crossing of f by g.  must be from below, and we 

conclude that f(t) < g.(t) as asserted. Of course, equality in (3.2) 

for t 2  ^(v) is attained by g.. 
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Thuorom 3.2.    Let    f    be a PF? density such that   f(x) = 0    for    x < 0. 

Let    C(x)    be a function continuous and ctrictly monotone on    [O,00)    such 
00 

that j" C(x)r(x)dx = v exists finitely. Then 
0 

0 t < r^v) 
(3./J    q(t) 2 

'■ 

where 

inf ^(t)/! rri(x).ix,  t 2 : (v), 
m^t     t 

,rbx/(1 _ e.bn)f      0 ^x^m 

^ 

0, elsewhere, 

m 
and b is uniquely determined by J C(x)g (x)dx = v« 

0    rn* 

-1, 
Proof. Sharpness of the trivial lower bound for t < C (v) follows from 

The orem 2.2'. Let x-" (m) be the unique point where e  crosses f rom 

below, and suppose first that    t < x^00).    Then there exists    mn > t    such 

thao    f(t) = s    (t)     (the proof of this in case    K    is increasinp is civen 

in [5f Proof of Theorem 5.1]J  the modifications necessary in case    C    is 

decreasing are obvious and not extensive).    But    f(t) = g    (t)    together 
m0 . m0 

with    1 - F(t) < j     ^  (x)dx    (again, see  [5, Proof of Theorem 5.1]) yields 
" t      *'0 

the desired result. ^ 

It remains  to consider the  case that    t 2 x';;"(GC)       x-"" •    Then by an 

argument identical with the case    t < x*    we obtain 

q(x*) 2 Ej^)A gao(x)dx 
x* 

which together with q increasing yields (3»^.) in this case, 

As noted in Section 2, PF^ densities have non-trivial lower bounds 

l/r 
at "moment, points". In particular, we obtain lower bounds on f(|i. ' ) 

for r ^ 1. To do this, we use the following 



.0 

Lenma 3.3,    If J ^(x)!' (x)dx = J -p (x)r.;(x)dx < 
aj, and if the support of 

f..  is contained in the support of f0, then 

(3.5) I T(x)f1(x)lor[f1(x)/f;,(x)] > 0. 

Proof,    j cp(x)^1(x)log[f1(x)/f2(x)]dx = - J (p (x)f1(x)log[f?(x)/f1(x) jdx 2 

2 J (p(x)f1(x)[l-f2(xyfL(x)]dx=^(x)f1(x)dx - J rp(x)f2(x)dx     o.    The 

inequality follows directly from    log *2 < z - 1,  :• > 0. 

Remark.    W.i th   'p(x)   - 1,  this is the well-known "information inequality". 

Theorem 3»^.    Let    *p     be a non-negative  function and    \    be a number such 

that 

00 00 

0 < j ■p(x)f(x)dx := j iP(-0Xe'Xxdx < ». 
0 0 

If    f    is Prp    and    f(x)  = 0, x < 0,   then 

(3.6) f(a) > \e'Xa 

where    a = (i  xp (x)f (x)dx)/(j q)(x)f (x)dx). 

CO oo 

Remark.    \    satisfying    j 'p(x)f(x)dx   : j 9(x)\e      dx    does not necessarily 
0 0 

exist in general.    However,  if   rp     is monotone,   then such a    \     always 

exists. 

Proof.    Since    f    is log concave, log f(x)    lies below its tangent at    a, 

i.e., (x-a)f'(:.:)/f(a)+logf(a) ^ log f(x).     If    ?(x) 2 0, 

7(x)(x - a)f,(a)/f(a) +cp(x)log f(a)  >'D(X)1O.- f(x) 

and upon integrating, v/e obtain 



co co 

~(a) (x)(x - -). (x) x 
a 0 

_o .;.' ( ... ) ( _. ) _ (X) X ::> (X)- (X) lo - J. (X X 
0 0 

co 

> r,) (x) :.'( x) "lo~- .. - I Y. ~ X = ( ~o -
0 

, ) ~ (x ). (x) ix . 
0 

.., e e o: lneq l i ' ~ o_low .~ ;, Ler"~· J . 3. 11" :.. e l ~l · .:.o .. o~ 

he - · r ~e ~ o. t .e le ·~ o: \ e •e 

co 

, ( Y. ) • (X) X / ( ~G ' . - . ) (X):' (X) X • 
0 c 

, 

a rJ> < c; .< • • I.e be PF~ le . ~ "y u tl t. ; ( ::.. ) - 0 .... or x < 0 , 
CX) 

:1 L = s X ;' (x) x . 
r 

..,, 
J., . 

., _, 

(3 . 7 ) .: ( ~t 1/ ) • 

~- L r = l , re l 'o1 eor • • w' t cp (x ) • 

(x) 
~ 

( "' r+_ 
( + )/r )/( 1/ r ) If r > 1e 

... 
+ i , = X ' - fL • en ce 

r 1 
I i r a o, :.ol OV.' 

.. .... (x) > o. y r ai h -... " 

:for w r = :./r ':'}': = r (r+ ) /: r " 
/r (3 . 7 ) ow j. • ' a -0 • r 

mhe o.:. ( . 7 ) .or ::' = ., or y ommun a t ed 0 s 

by Sa:.: e~ r. • 

• 

first and sl!!cond mo:r.ent • h. s' .e th:: t " IHR w' th ~ = 1 an ~ 

specified . In · 5~ , he c a s of ext r e ... a : r i ' ::o ... or oun r 

were deter.T~ned . :b~s ~~e c_as o: i~ r ' b t i o. ~ o importa t in 

bo:mding and q , and we be in wi. th o!':e e _i i t ' ons . 

ll 

Let T0 = 1 -~ (since F 

let T1 = - a~1log(l - a 0 ) where 

i HR, / ? 0 j. - l ~ 0) , 

and n "o , , ... . a v .... . e~ 



(4.1) 

Let G
3 

= [ G , ~ uher e 

(4. 2) 

22 

x([j, 

41 ~ X ~ ' 

X T 

and where a and [j, n 0 , 
0 

are determined by the moment conditions, 

i.e., 

( 4 • 3) J 1 - GT (X) X - ~J. 1 = 1 , 
0 

(1 •• 5) 

and a1 ~ a2 are determined by the moment conditions (4.3), (4.4) as 

before. It is shown ·n [5 , Lemma 3.4 that a,A and a1,a2 satisfYing 

(4. 3) and ( . 4) exi t '..L."liq ely. It is also shown in [5] that for t ~ o, 

inf[l- GT(t) ] ~ 1- F(t) ~sup 1- Gr(t) ] 

where the extremums are taken over G
3 

(;
4

• These bounds have beer, 

tabulated for IJ.l = 1 and selected values of ~J. 2 (1 < IJ.l ~ 2) [1]. 

Theorem 4.1. If F is IHR with density f, F(O) = O, lll = 1 and ll-2 

is specified, then 



ao , =. 0 

a, 0 < < 0 (4. 6) f(t+) s q( +) s , / 2 
(IJ. ?- 1) - ' 0 

a)' ::? T ' 

( • 7) osts 
an 

(4. 8) 0 < t < 1 ' 

where a0 is defined by (4. 1) ; a is de ined by GT c (jJ with A = t 

and some ~ T1; a1 and a2 are defined by GT c G4 with T = t . 

All inequalitie are sharp. 

~· Case 1 . 0 < t < T0• Either F(t ) = 0 and f (t ) = 0, or 1- F(x)' 

crosses 1 - GT(x) f rom below at, say t 0 ~ t , where 1 - T(x) is iven 

by(4. 2)'Jith A = t . Therefore f(t0 ) ~ (t0) and l -F (t0 ) = 1 -GT(t0 ),sothat 

q(t0 ) S q (t0 ) = a , where (qT) is the density (hazard rat e ) of GT. 

vlnce t <to and q is increasing, we have hat q(t+) s a. Equality 

in f(t+) Sa i s attained by the density of 

zero , we see that ~(0+) S lim a = a0• 
t•o 

• Le tin~ t decrease to 
! 

Case 2. T0 < t < T1• From [5 , Theorem 3. 3 we kr.ow t hat 1 - F(t) S 

1- }t(t) where Gt is given by (!.. . 5) • .'. This to '3ther with the fact that 

F and Gt must cross at least twice ~plies that - i( x) must er osE 

1 - Gt(x) ~rom below at so~e t 0 > t . Hence q( +) ~ q(t0) S qt(t0 ) = a2 

where qt is the hazard rate o~ G. • and this is (~.7 ) . Fr om (4.7 ) and 
-al t v 

1 - F(t) ~ 1 - Gt(t ) = e , we obtain (4.8). Equality is attained by 

Gt in both (4.7) and (4.8). Letting t decrease to T0, we obtain from 



this, (4.6) with t = T
0

• 

Case 3. t ~ T1 • The bound f (t ) ~ q{t) ~ ~ cannot be improved as can be 

seen by considering the extremal dis tribution GT c (j 
3 

where T = t. II 

~t 
Rspark. e for T0 ~ t ~ T, is tabul ated in Table III, [1]. 

Theorem 4.2. If F i s IHR, F (O) = 0, pol = 1 and P- 2 is specifi ed, then 

o, o ~ t ~ T0 

al' T0 < T < T1 

(4.9) q(t-) ~ ao, t = T 
1 

a, t ) T
1 

( .. )-l / 2 
p. 2- .!. ' T = GD' 

where ao, a and al are def ined in Theorem 4.1. The inequali t7 is 

sharp. 

Proof. Case 1. 0 ~ t ~ T0• The lower bound is attained by GT c c;
4 

for 

~ ~ t. 

Case 2. T0 < t < r1• Consider Gt c c;
4

• Either 1- F(x) crosses 

1- Gt(x) from above in [O,t , or 1 - F(x) ~ 1- Gt(x) for x in 

[O,t • Suppose 1 ~ F crosses from above, s_, at t 0 ~ t. Then 

q(t-) ~ q(t0 ) ~ qt{t0 ) = ~ where qt is the hazard rate or Gt• Ne~, 

suwose 1 - F(x) lies entirel.T below 1 - Gt~x) for X in [O,t]. 

Then q(t-) ~ q(O+) ~ ~· which caapletes the proof or this case. 

The cases t = T 1 and t = • are obtained as lim1 t results from 

Case 2. II 

Theon!ll 4.3. It F is IHR with densit7 r, F(O) = O, ~1 = 1, and ~2 
is specified, then 



5 

r, 0 ~ t ~ T 

(4.10) f (t- ) ~ ·n [ (t) , h(t) , T0 < t ~ , 1 

o, t > 1 ' 

. -~ (t~) 
-~ t 

where (t) h(t) = in 1 = ~nf ae an le 
0~~0 ~~1 

Proof. If 0 ~ t ~ T0 , the lower bounds re attained by 

• 

.. 

• I t 
0 

the lower bound is attained Qy G • 
1 

s(T) denote the crossin in (.1,T) 

Sup~ose now that T0 < t ~ T1• Let 

rom a ... ove of -G e~ by 1 - r 

if such a crossing exists ; otherwi e, l et s ( ') = T. 

denote the point at 

which :- ?\x) crosses 1 - GT(x ) f r om above in (O,T). Then s(T1 ) = 
(see [5 , Proof of w(T1}, lim w(T) = 0 and w(T) is contin ous i n T 

T~T 

, 

Theorem 3~] ). Hence there exists such that w(T) = t. Since l - GT(x} 
-al t 

crosses 1 - F(x) from below at t, it follows that f(t-) ~ a1e • 

Case 2. s(T1 ~ t ~ s(co). Let GT c {i 3; by continuity of s(T}, there 

exists T such that s{T) = t. Since 1 - F(x} crosses 1 - GT(x) from 

above at t, f(t-) ~ ae-a(t~). 

case ~. s(•) ~ t ~ T1• If s(co) > T1, then of course this case i s vaeuous . 

Otherwise, let v(T) be the crossing in (T,•) from above of 1 - GT(x} 

b.1 l - F(x) if such a crossing exists, and let v(T) be the right-hand 

endpoint M of the support of F if such a crossing does not exist. Then 

v(T0) = s(•) and lim v(T) = M. B,y continuity of v, there exists T 
TtT 

in [T0,T1] such that l - F(x) crosses 1 - GT(x) from above at t, 

and the argument is concluded as in the previous cases. II 



2 

phy 

[1] Bar_ow, R. E., an Mars all , A. • (1 J) . able of boun · f or 

distributions with anatone ar rate . oein Scienti c 

Re ear h Laborator' e Do umen Dl- 2-Q • 

[2 Barlow, R. E., Mar h 11 , A. w., an Pro h n, F. (19 ) . Propertie 

of i~trib tion wi h anatone azar rate . Ann . Math . Stat ' t. 

2k 375- • 

[3] Barlow, R. E., heory of Reliability. 

J ohn W'ley n So s , New York (to pear) . 

~4] Barlow, R. E., and Marshall, A. w. (1 41 ). Bound for distributions 

with mo atone hazard rate, I . Submitted for publication in Ann. Math. 

Statist. 

(5] Barlow, R. E., and Marshall, A. W. (1964II). Bounds for distributions 

with monotone hazard rate, II . Submitted for publication in Ann• 

Math. Statist. 

[6] Freudenthal, A.M. and Gumbel , E. J. (1954). Minimum life in fatigue. 

J. Amer. Statist. Assoc. ~ 575-597. 

[7] Gauss, c. F. (1821). Theoria combinationis observat~onum, ~ 

(18eo) ~ 10-11 (Goettingen). 

[8] Gumbel, E. J. (1958). Statistics or Extremes. 
0 

Columbia Univ. 

Press, New York. 

[9] Karlin, s., Proschan, F., and Barlow, R. E. (1961). Moment inequalities 

of P~ frequency functions. Pacific J. Math. 11 1023-1033 • .... 



[10] Karlin S. Total, Po itivity and Applications, a forthco . in 

book. 

[11 Mar hall , A. W,, and Proschan , F. (19 ~) . Maximum likelihoo 

esti ation for istribut · ons with onotone fai lure rate, Boein 

Sci enti ic Research Laboratories document Dl- 82-0329. 

[12] Schoenberg, I . J . (1951) , On Polya frequency functions , l• 

d'Analyze Math . 1 331- 374. 

13 Weibull, W, (1949). A statisti al representation of fatigue 

f ail re in solids, Proc. Roy, Tech, Univ,, No , 29 , Stockholm. 


