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-SUMMARY

The principal part of this paper is devoted to the study

of the distribution auid density functions of the ratio of two

normal random variables. It gives several representations of

the distribution frn-tion in terms of the bivariate normal

distribution and Nicholson's V function, both of which have

been extensively studied, and for which tables and computational

procedures are readily available. One of these representations

leads to an easy derivation of the density function in terms

of the Cauchy density and the normal density and integial. A

number of graphs of the possible shapes of the density are

given, together with an indication of when the density is

unimodal or bimodal.

The last part of the paper discusses the distribution of

the ratio (u1 +-.-+ un)/(v, +..-+ vm) where the uts and
n m

vts are, independent, uniform variables. The exact distribu-

tion for all n and m is given . and some approximations

discussed.
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1. Introduction. The first part of this paper will discuss the

distribution of the ratio of normal random variables; the second part,

the distribution of the ratio of sums of uniform randop variables.

There does not seem to be much in the literature concerning the ratio

of normal variables - there are. some commerts by Curtiss in his paper,

[2], on the ratios of arbitrary variates, and papers by Fieller 14],

and Geary [5], all of which are opite old. It might be thought that

the subject is so simple that it was considered long ago, then dropped,

but this is not quite the case. Unless the mtans are zero, where one

easily gets the Cauchy distribution, the distribution of the ratio of

normal variables does not respond readily to the devices that work so

well for other important quotients in statistics, e.g., those of t, z,

or F. Curtiss remarks that it is apparently impossible to evaluate

the density in closed form, a rather vague statement. We will derive

the exact density of the ratio of two arbitrary normal variates by

what might be called modern methods - not in the sense of using power-

ful new techniques, but merely by using properties of distributions

that have been extensively studied in the intervening years. The

density may be expressed as the product of a Cauchy density and a

factor involvir., the normal density and integral, which might be con-

sidered a closed expression (equation (5) of Section 2). At any rate,

there are now available a number of methods for handling the functions

associated with the distribution and density of the ratio, and with the

aid of a computer, we may study them in detail.

Aside from its frequent occurrence in problems involving the ratio

of measured quantities with a random, presumably normal, error, the
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problem of the ratio of normal variates is of importance in regression

theory. In fitting a lne to points (XlYl),...,(XnYn)9 the x's

assumed constant and the y's independent normal with E(yi) = + +xi

one gets a and p as estimates of a and g by least squares. It

is natural to estimate the x-intercept of the regression line in the form

- ;/1, and thus the problem of the ratio of normal variates arises.

The following example of this problem occurs in medicine: in order

to estimate the life span of the circulating red blood cells of a subject,

a number of his red cells are labelled and then, by some means or other,

the number of labelled cells still in the circulation is sampled, say,

every 5 days for 50 days. This gives a sequence of points which are

plotted and fitted with a straight line; the point -.;here the line inter-

cepts the time axis is used as the estimate of the red cell life span.

It is important to know the distribution of this estimate about its

true value - the normal red cell life span is about 120 days and

shortened life spans are associated with various hematological disordei-,

most of them severe.

We will discuss the distribution and density of the ratio of two

normal random variables in Section 2. In Section 4 we will discuss the

distribution of ratios of the form (u1 +...+ un)/(vI +---+ vm) where

the u's and v's are independent uniform variables; a recent paper

[8], on this distribution for n = m = 3 led to its being considered

here. We will find the exact distribution for all n and m, and

examine the closeness of the normal approximation. On the way to finding

the distribution of (u1 +--+ ur)/(vI +--+ v m) we will need the distri-

bution of a linear combination of uniform variates; some comments on this

distribution and its history are in Section 3.



2. Ratios of normal var.ables We are concerned with the distribution

of 'he ratio of two norwal random variables. The problem has been dis-

cussed in the past, [2,4,5]. We will bring the problem up to date in

this Section - give an explicit representation of the distribution in

terms of what are now familiar functions, and discuss in more detail

some of the properties of the distribution.

Let

(I) w b + y

where ab are non-negative constants and x,y are independent standard

normal random variables. It is easy to see that if w'= xl/Y1  is the

ratio of two arbitrary normal random variables, correlated or not, then

there are constants a1 and -2 such that cI + c2w' has the same

distribution as w. It thus suffices to study the distribution of (1);

translations and changes of scale will provide the distributions of

the general ratio Xi/yI.

The set of points (xy) for which a+x <t is a region boundedb +
by straight lines, and the normal probability measures of such regions

have been extensively studied in the past few years. We should thus

be able to express the distribution of w in terms of functions asso-

ciated with those measures., particularly the bivariate normal distribu-

tion function

L(hwkep) = ad > ha nm > ko

where C and i! are standard normal with covariance p., and the V
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function of Nicholson [11]:

h qx/h
V(hq) =S S cp (x)q(y)dydx,

00

where q is the standard normal density. We have

P[w< t] = P[a + x < t(b + y)',b + y > 0] + P[a + x > t(b + y),b +y < 0]

= P[-x + ty > a - bt,y > -b] + P[x - ty > -a + bty > b]

a-b t -a+btt

=~ a - bt, -t, '• +L( ,b , P y

J1 + t2Il+ t 2  Jl + t2 fl + t2

Then using the elementary properties of the L and V functions (see,

for example, the NBS table [10],p. vii),

h k
L(-h,-k,p) = L(h,k,p) + S q(x)dx + S ip(x)dx,

0 0

L(-h,-k,p) + L(h,kp) = 2V(h, k p h + 2V(k, h - Pk) + + ,
- p 2  1-p2  2

we have several representations of F(t) = p[b y < t]:b + y

(2) F(t) =L( -bt -b, + L( - b, b
Jl"+ t+ t 2 j1 + t2' /-1+ t 2

(bt-a)/Wl+t2  b bt - a t
(3) F(t) = S p(x)dx + S q(x)dx + 2L( A-,

0 0 ll+t2 ýi +t 2

1 1 -bt a b +at - a

(4) F(t)-= + tan-lt + 2V( b , - at% 2V(bva).
2+ t2 l +ý ft2

Representation (4) appears best for numerical purposes, unless b



:LI

S~~ll 2k

I3131 413+1 311

huT iiu~~r 371T ~ 7T rwT T

31 2130 3130 411 3 5 1314X

*1775W 7716T 7FF! 77MW71

213+Xri~ 61341
013.WITT1 TiUTY

Figure 1. Graphs of the density of (a + x)/(b + y), where a > 0,
b > 0 and x,y are independent, standard normal random variables.

The formula for the density is in euation (5). Values
a 0=3,1./3,... ,6/3 and b /= 08,I/8,...,8/8 were chosen so as
to represent the possible shapes of the density function



is large, say b > 3, since we have good methods for providing values

of V and tan-lt, [9],[10, and [13]. However, when b is large,

the second and third terms of (3) may be replaced by .5 and 0, so

that

pra +x < t] +I (bt-a) l•7t2 •(bt-a l•-+-t2

b +y 2 t(x)dx pta(x)dx
0 -a

provides very good numerical approximations to F(t), plus the additional

information that (bw - a)A/I+w is approximately normally distributed.

Now we turn to the dens*ity of (a + xc)/(b + y). Let

h = bt - a b + at 2,= b + at
' -J2 J2 h b-at"

Using primes to indicate differentiation with respect to t, so that

h? = q/(l + t 2 ), V' -(a 2 + b 2 )/(bt - a)2, we differentiate (4) +o get

1 q h
f(t) = F1 2 + 2htq(h) S q(y)dy -- 2X' S xqp(x)q)(Xx)dx.

w(i + t ) 0 0

Integrating the last term and simplifying, we get this form for f(t),
a+x:

the density funct.i1on of the ratio - +--

-'5(a2+b2) q (p)dy] b + at(5) f(t) = e (I +2 ) l + t2.

Figure 1 shows f(t), the density of (a + x)/(b + y), for various

values of a and b. The curves in Figure I were drawn by a computer; it
a 4 x

also drew the identification for each density in the form Y--- where

a is a nultiple of - and b a multiple of The values of a and3
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b Uf(a, b) isin
this region, the If (a, b) is in this region,

b7the density ul~ '111i bimodais unlmodal.

2
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0 ! 23 4 6
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Figure 2. The den2Ity of (a + x)/(b + y) is unimodal or bimodal

according to the region of the positive quadrant in whichthe point (a,b) fall1s.
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b were chosen so as to give a rough indication of the possible shapes

of the densities given by formula (5). As you can see, some unusual

shapes are encountered. The positive a,b quadrant may be divided into

two regions according to whether the density of (a + x)/(b + y) is

unimodal or bimodal, ras in Figure 2. The curve that determines the two

regions is asymptotic to a = 2.257. Thus when a > 2.257, the density

of (a + x)/(b + y) is bimodal, even though it may not appear so. For

example, the density of (10 + x)/(lO6 + y), x and y independent

standard normal, would appear to be a single spike at t = 1, but in

fact it has another mode somewherp in the vicinity of t = -il•2.

We conclude this Section with a summary.

a+x

Summary of the properties of the ratio w -- y' where a > 0, b > 0,
x and y independent standard normal..

1. If w, = xl/y 1  is the ratio of any two jointly normal variables,

then there are constants c1 and c2 so that cI 4- c 2w has the same

distribution as w.

2. The distribution of w, say F(t) = P[' + x < t], may be expressed

in terms of the bivariate normal distribution, or Nicholson's V function

in several ways - formulas (2), (3), and (4) above.

3. When b is large, say b > 3, then (bw - a)/Il - w is approxi-

mately normally distributed, and

= p[t + x < t] S rp(u)du.P[w _< t] bP + y - -

4. The density of is given by formula (5). This density is

plotted for various a and b in Figure 1.
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Sa + x

. .5. The dr•maity o1 b + y unimodal or bimodal according to the region

of Figure 2 in which (a,b) lies. When a > 2.257, the density is bi-

modal, although one of the modes may be insignificant.

3. The distribution of cluI +...+ cnun.

Let VU ,...q,un be independent random variables, each uniformly

distributed over the interval (0,1). In the next Section we will

need the distribution of a linear contribution of the u's,

(6) Clu1 ' c2u 2 +-.+ CnUn

with the c's positive. The general linear form in the u's can

readily be reduced to (6), for example

II - 2u2 + 5u3

has the same distribution as

3In- -2(l -u 2 ) +5u 3  3u, + 2u 4 -5u 3  2,

since 1 - u2 has the same distribution as u2 .

There have been a number of discussions of the distribution of (6)

in the literature - the problem (for equal c's) dates back to Laplace

[7], who solved it as a limiting form of the discrete case*,and, again

with equal c's, the result is in standard textbooks, e.g., Uspensky [17),

who inverted the characteristic fUnction, and Cramar [1], proof by suc-

cessive convolution. For unequal c's the result was given by Olds [12],

and the distribution appeared as a problem on volumes, [3), wit'i subse-

quent remarks on Ats proof - particularly a development of Schoenberg [15],

using recursive relaticns for spline curves.
*The discrete case of the problem, which may be viewed as the problem of
finding the sum on n "dice", each one having a certain number of faces,
has an even more curious history. In 1710 Montmart solved the problem for
equal dice, as did DeMoivre in 1711, Simpson in 1740, LaGrange around 1770,
and Laplace in 1774. Montmart attempted, but did not solve, the problem
of unequal dice. See Todhunter's History [16],Articles 148,149,364,888,9159,987.

---- -ne..- - - - -
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More recently, Roach [14], offered a geometric argument.

Thus the problem is now well known, and it is not particularly
difficult, although notational difficulties, plus the fact that the

problem may be viewed as one of probability, geometry, or spline

functions, have led to a variety of proofs.

Roughly, the distribution of culI +--+ CnUn may be described

as follows: Let S be the set of all 2 n numbers which can be formed

as a sum oi different c's:

S = [O,c 1 ,...,cnCI + c2 ,...,cI +..-+ Cn.

Then

P[ci + u*<iacu + (a _ s)n
11 nfl n~c1c2 .. Cn seS,s<a

the + or - being according to whether there are an even or odd

number of c's used to form s. For example,

P(2uI + 3u2 + 8u3 < 7]= 3, [7 -(7 2)-(7 - 3) + (7 5)3]

and

(7) P [2aI -4 3u2 4 8-U3 < 121 1 3.- [1231 - (12 - 2)3 - 1 )3 -12-8)3

+ (12 - 5)3 + (12 - 10)3 + (12 - ll)3].

Note also that the distribuation of 2u1 + 3u 2 ÷ 8u3 is symmetric

(any linear combination of independent symmetric random variables is

symmetric), and that, rather than compute expression (7), one might

(.
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i•'leoh~ider

SP[2ul + 3u 2 8u s3 < .12] P[2(l ul) + 3(l -u2) + 8(l u u3 < 12]

:! =~~P[2uI +3u +au3> 1]= -:(s"

S~We may formally de.-ýribe the distributi6n of clU a.. CUn as

follows :

Theorem 1. Let u1,U 2,JU 3,...*sun be independent random variables, each-uni-

formly distributed over the interval (0,1), and let C ,c2, ... ,cen be

positive constants. Let

%(a) = Prob [clul +-.+ ul <_ a)

and let

0 if x <O,

gn(X) =

nx if 0< x.
n .Icl c2 -• e. n

Then, for 0 < a < cI +"*+ c n,

Fn(a) = gn(a)- E gn~-i ÷(a-c-c-. + g (a-c.-c.-ck+-.
nn ni ij gn a-i c i~j<k n I j

The theorem may be easily proved 17 induction, using the elementary

results : %: a n 1 ý a - xCn+l0

and

C Cn+ gn (b -x)dx =gn+l(b) -gn+,(b -Cn+j)"

Cn+l 0
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When the c's are all equal to 1, the result takes the following

form:

Pu U < (a] = -!-[a n _ (n)(a n . (n)(a 2 ) n ... ]
-n n a =2

where the terms are taken as long as a,a - l,a - 2,**., are positive.

,ore formally, for 0 < a < n, and with the greatest integer notation,

P[uI +'" u < a] 1 YE a - i)n.
i=O

4. The distribution of
v! +-+ Vm

Let uu 2 ,.. .,un ,V 1 ,...,Vm be independent random variables, each

uniform over (0,1). We want the distribution of

(8) V +...+v m

The distribution of (8) is of interest in studying ro.nd-off error

propagation in numerical analysis, see [6],[18]. The particular case

Im = n = 2 was worked out in detail in [8]. We will find the distribu-

tion of (8) for all n and m, by applying the results of the previous

Section, and will, in addition, discuss approximations to the distribution.

Since 1 - v. is distribiuted as v., we have1

u1  •[u u +.-.+u
_ " " n e__] n (a]Pv )1++---+(Vm-"

+ +v In - (

P[u•1 + n + av1 *- av 2 +'--+ av < ma]

and hence a direct application of Theorem 1 gives, (after a little thought

about hcw the terms combine):

_ _ _ _ _ _ _ _ 1 [m a ] [ ( na -i ) / a ]
PLv <a] =EE _(-1)i J(n)(m)[(m - j)a _ ]n+m.V + m (n + m).am 'i=O j=0O



an=
nn6mI=

5 6

m=n=)4

*X rn-n

Figure 3
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For example,

(7)[5)(5)12(12+( 12

(M)[(5)(3.) (2r)(.6) 127 5 1 15 81297 M5 )3.012(')2-6 1+(5) (1-7) 1+(5)(.8)12]
1 +0*+ 12 531

Pu1 +..u7 <.] 1 +(7)[(0)(2.5) 12_(5)'(1.6)'2 +('(.7) 12
vl1+...+v 5  121( .9 2 02 3

(7) [(5) (.5)12]

The variate (uI +-.-+ un)/(vI +'--+ v M) is approximately a ratio

of independent normal variables, and the discussion of Section 2

should apply. We may derive a good normal approximation directly,

however, writing

U. +*..+ u
P[.1 +"..++ Un < a] = P[u1 +---+ un + av1 4--- aVm < ma].

Since the sum on the rignt is approximately normal with mean .5[n + ma]

and variance (a 2m + n'/12, we have

Pul1 +..'+ U n <a(=am-- n)] .

S'" f + n

Figure 3 gives some indication of the merits of this approximation.

In case it is necessary to get the tail of the distribution with

great precision, it is not too difficult to calculate the exact pro-

babilities: for 0 < a < I,

[U 1 +.-U ~ a n n+m m- (m 1 n+m + (m, - n+ir+"Un < at )( (m i2)m"'P , vI ÷. - m (n + m) ' ...

and for b >n,

u + Un> b] bm [nn+m n) (n 1)n+m 2 - 2)n+m
I>b] [ - ( )(n + 2 4- -2

"1l m
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