- D1-82-0348

o'J
[- ISR R T\
AN ot e M v eca,,,,

?Ql“" // f"‘h
t" {
N"

SCIEN

BOEING::ss
ABO Rl ES
/
& -"‘J:‘/:::*c“

3
w Ve /;:9 ﬁy@’/%é, Yow ey /Z;r/
my

o

(-

£ Ratios of Norma! Variables and Ratios of
Sums of Uniform Variables

George Marsaglia

PR Y-

Mathematics Research

April 1964




Y54~ e et o eSO T e A I N e LR Co g A

D1-82-0348

RATIOS QF NORMAL VARIABLES AND RATICS OF
SUMS OF UNIFORM VARIABLES

by

George Marsaglia

Mathematical Note No. 348

E Mathematica Research Laboratory
€ BOEING SCIENTIFIC RESFARCH LABORATORIES
April 1964




SUMMARY

The principal part of this paper is devoted tc the study
of the distribution and density functions of the ratio of two
normal random variables. It gives several representations of
the distribution fvn~tion in terms of the bivariate normal
distribution and Nicholson's V function, both of which have
been extensively studied, and for which tables and computational
procedures are readily available. One of these representations
leads to an easy derivation of the density function in terms
of the Cauchy density arnd the normal density and integtral. A
number of graphs of the possible shapes of the density are
given, together with an indication of when the density is

unimodal or bimodal.

The last part of the paper discusses the distribution of
1 ‘... o e 0 '
the ratio (u1 Feoot un)/(vl Feoot vm) where the u's and
v's are jndependent, uniform variables. The exact distribu-
tion for all n and m 1is given, and some approximations

discussed.
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1. Introduction. The first part of this paper will discuss ths
distribution of the ratio of normal random variables; the secornd part,
the distribution of the ratio of sums of uniform randor. variables.
There does not seem to be much in the literature concerning the ratio
of normal variables - there are some comments by Curtiss in his paper,
[2], on the ratios of arbitrary variates, and papercs by Fieller {4],
and Geary [5], all of which are quite old. It might be thought that
the subject is so simple that it was considered long ago, then dropped,
kut this is not quite the case. Unless the means are zero, where one
easily gets the Cauchy distribution, the distribution of the ratio of
normal variables dces not respond readily to the devices that work so
well for other important quotients in statistics, e.g., those of t, z,
or F. Curtiss remarks that it is apparently impossible to evaluate
the density in closed form, a rather vague statement. We will derive
the exact density of the ratio of two arbitrary normal variates by
vhat might be callea modern methods - not in the sense of using power-
ful new techniques, but merely by using properties of distributions
thet have been extensively studied in the intervening years. The
density may be expressed as the product of a Cauchy density and a
factor involvir, the normal density and integral, which might be con-
sidered a closed expression (equation (5) of Section 2). At any rate,
there are now availatle a rmumber of methods for handling the functions
associated with the distribution and density of the ratio, and with the

aid of a computer, we may study them in detail.

Aside from its frequent occurrence in problems involving the ratio

of measurad quantities with a random, presumably normal, error, the




problem of the ratic of normal varistes is of importance in regression
theory. In fitting a line to points (xlyl),...,(xh,yh), the x's
assumed constant and the ¥'s independent normel with E(yi) =q + ﬁxi,
one gets a and ﬁ as estimates of a and B by least squares. It

is natural to estimate the x-intercept of the regression line in the form

- E/ﬁ, and thus the problem of the ratio of normal variates arises.

The following example of this problem occurs in medicine: in order
to estimate the life span of the circulating red blcod cells of a subject,
a number of his red cells are labelled and then, by some means or other,
the mumber of labelled cells still in the circulation is sampled, say,
every 5 days for 50 days. This gives a sequence of points which are
plotted and fitted with a straight line; the point . here the line inter-
cepts the time axis is used as the estimate of the red cell life span.

It is important to know the distribution of this estimate about its
true value - the normal red cell life span is about 120 days and
shortened life spans are associated with various hematological disordeis,

most of them severe.

We will discuss the distribution and density of the ratio of twe
normal random variables in Section 2. In Section 4 we will discuss the
distribution of ratios of the form (u1 Foeot un)/(vi +eeedt vﬁ? where
the u's =and v's are independent uniform variables; a recent paper
[8], on this distribution for n=m =3 led to its being considered
here. We will find the exact distribution fcr ali n and m, and
examine the closeness of the normal approximation. On the way to finding
the distribution of (u1 4eoot un)/(vl +es++ v ) we will need the distri-
bution of a linear combination of uniform variates; some comments on this

distribution and its history are in Section 3.
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2. Ratios of normal variables We are concerned with the distribution
of the ratio of two norual random variables. The prohlem has been dis-
cussed in the past, [2,4,5]. We will bring the problem up to date in

this Section - give an explicit representation of the distribution in

terms of what are now familiar functions, and discuss in more detail

some of the properties of the distribuvtion.

T > Sy 2 i
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Let

_a+
(1) w-b—';%r

vhere a,b are non-negative constants and x,y are independent standard
} normal random variables. It is easy to see that if w'= xl/yl is tne
ratio of two arbitrary normal random variables, correlated or not, then

there are constants ¢, and

1 32 such that c1 + czw' has the same

disiribution as w. It thus suffices to study the distribution of (1);

translations and changes of scale wiil provide the disiributions of

k the general ratio x,/y,.
- The set of points (x,y) for which %—{-—;- <t is a region bounded

by straight lines, and the normal probability measures of such regions

have been extensively studied in the past few years. We should thus

be able to express the distribution of w in terms of functions asso-~

ciated with those measures, particularly the bivariate normal distribu-
tion function

L(h,k,P) = P[E¥ > h, n> k]

where § and n are standard normal with covariance p, and the V

s, . A % o i —— o




function of Nicholson [11]:

h qx/h -
V(h,q) = é é o(x)o(y)dydx,

where ¢ is the standard normal density. We have

Pla+x<tb+y),b+y>0] +Pla+x>tlb+y),b+y<0]

L

Plw < t]

i

Pl-x + ty > a - bt,y > -b] + P[x - ty > -a + bt,y > b]

_L(a—bt +L(-a+bt,b’___t:).
1+ t2 J 1+ t2

Then using the elementary properties of the L and V functions (see,
for example, the NBS table [10],p. vii),

h k
L(-h,-k,p) = L(h,k,p) + § o(x)ax + § o(x)dx,

0 0
-1

L-h,-k,p) + L(b,k,p) = 20(h, =By 4 oy(k, D=8y 4 1, 200 P
1-p2 L 2

we have several representations of F(t) = P[a hs ; <{t]:

(2) F(t) _L(a-bt b, R TR +1 -a+bt /___)
J1 + 2 J1+ 42 J1+t

—————

(bt-a) A/1+t2 b bt - & .
(3) Ft) =] p(x)dx + § o(x)dx + 2L( » b, ),
0 J1 + 2 1 + t2
1, -1

bt -a’ b +at) _ 2V(b,a).

(4) F(t) =3§-+” t + 2V(

J1+ 12 J1+ ¢2

Representation (4) appears best for mumerical purposes, unless b
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Figure 1. Graphs of the demsity of (a + x)/(b + y), where a > 0,
b >0 and x,y are independent, standard normal random variables.
. Vvalues

The formula for the density is in equation (5)
a = 0/3,1/3y00.,6/3 and b = 0/8,17;

,e+,8/8 were chosen so as

to represent the pcssible shapes of the density function
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is large, say b > 3, since we have good methods for providing values

of V and %-tan-lt, [9],[10], and [13]. However, when b is large,

the second and third terms of (3) mey be replaced by .5 and 0, so
that

patx .1 (bt-a),d1+t (bt-a)l/1+t2
by <t =3+ ?(dax = § 9(x)dx

provides very good rnumerical approximations to F(t), plus the additional

information that (bw - a)A/1 + Wl is approximately normaslly distributed.

Now we turn to the density of (a + x)/(b + y). Let
=bt-a _brtat ,_g_ptat

J1+t Jl+t2’ . b-at‘

Using primes to indicate differentiation with respect to t, so that

h' = g/(1 + tz), A = -(a2 + b2)/(bt - a)z, we differentiate (4) *o get

1 q h

—=——+ 2h'o(h) § o(y)dy + 22" § xp(x)o(Mx)dx.
(1 + t°) 0 0

f(t) =

Hi

Integrating the last term and simplifying, we get this form for £(t),

the density function of the ratio i I ;:

-+5(a%4p%)
(5) £t) = L+ ooy 5 o(x)ayl, q=2tat

ﬂ(l-‘-t -/l+t2

Figure 1 shows f(t), the density of (a + x)/(b + y), for wvarious

values of a and b. The curves in Figure 1 were drawn by a computer; it

also drew the identification for each density in the form %—$~§3 where

a 1is a mltiple of %- and b a mltiple of %5 The values of & and
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Figure 2. The denrity of (a + x)/(b + y) 1is unimodal or bimecdal
according to the region of the positive quadrant in which
the point (a,b) falis.
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b were chosen so as to give a rough indication of the possible shapes
of the densities given by formula (5). As you can see, some unusual
shapes are encountered. Thec positive a,b guradrant may be divided into
two regions according tc whether the density of (a + x)/(b +y) is
unimodal or bimodal, ~s in Figure 2. The curve that determines the two
regions is asymptotic to a = 2.257. Thus when a > 2.257, the density
of (a+x)/(b+y) is bimodal, even though it may not appear so. For

example, the density of (106 + x)/ (106 +y), x and y independent

standard normal, wculd appeer to be a single spike at t =1, but in

-10t2.

fact it has another mode somewhere in the vicinity of t

We conclude this Section with s summary.

a+ x
b+ y’

Summary of the properties of the ratio w =
x and y independent standard normai.

wvhere a >0, b > 0,

1. If w'= xl/yl is the ratio of any two jointly normal varisbles,

then inere are constants cl and c2 so that cl + c2w has the same

distribution as w.

+
2. The distribution of w, say Ft) = P[%—;—%—i— < ‘b], may be expressed

in terms of the bivariate normal distribution, or Nicholson's V function
in several ways - formulas (2), (3), and (4) above.

* 2 -
3. When b is large, say b > 3, then (bw - a)A/1 + v is approxi-

rately normslly distributed, and

2
a4 x - S(bt-a)ﬂlﬁ.

Plw { t] = P[b Ty {t] = o(u)du.

L0

a +x
b+y
plotted for various a and b in Figure 1.

L. The density of is given by formla (5). This density is
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o 81+ x
& b+y

of Figure 2 in which (a,b) 1lies. When & > 2.257, the density is bi-

is unimodal or bimodal according to the region

modal, although one of the modes may be insignificant.

3. The distribution of Uy desod cu .

Llet ui,...,un be independent random variables, each uniformly
distributed over the interval (0,1). In the next Section we will

need the distribution of a linear contribution of the u's,

(6) cjuy + e, +esct cu

with the c's positive. The general linear form in the u's can
readily be reduced to (6), for example

3u, - 2u2 + 5u

1 3

has the same distribution as
3u1 - 2(1 - uz) + 5u3 = 3ul + 20, + 5u3 -2,

since 1 - u2 has the same distribution as u2.

There have been a number of discussions of the distribution of (6)
in the literature - the problem (for equal c's) dates back to Laplace
{7}, who solved it as a limiting form of the discrete case*,and, again
with equal c's, the result is in stendard textbooks, e.g., Uspensky [17],
who inverted the characteristic function,and Cramer [1], proof by suc-
cessive convolution. For unequal c¢'s the result was given by Olds [12],
and the distribution appeared as s problem on volumes, [3], witi subse-
quent remarks on its proof - particularly a development of Schoenberg [15],

usirg recursive relaticns for spline curves.

%The discrete case of the problem, which may be viewed as the problem of
finding the sum on n "dice", each one having a certsin number of faces,
kas sn even more curicus history. In 1710 Monimart solved the problem for
equal dice, as did DeMoivre in 1711, Simpson in 1740, LaGrange around 1770,"
and Laplece in 1774. Montmart attempted, but did not selve, the problem

of unegual dice. See Todhunter's History [16],Articles 1i8,149,364,888,915,987.

R o e 1 —————— e -~ — - i —— o -- - .~




More recently, Roach [14], offeresd a geometric argument.

Thus the problem is now well known, and it is not particularly
difficult, although notational difficuities, plus the fact that the
problem may be viewed as one of probability, geometry, or spline

functions, have led to a variety of proofs.

Roughly, the distribution of 1Yy +eoeet cu, may be described
as follows: Let S be the set of all 2n numbers which can te formed
as a sum of different c's:

S = {O’cl,oo.,cn,cl + cz,ono,cl +“‘+ cn}.

Then

S S n
P[clul teestoeuy <a] = nic.C....c z + (s - 8)7,

172 n seS,sa
the 4+ or - being according to whether there are an even or odd
number of c¢'s used to form s. ¥or example, -

' _ 1 3 3 3 3
P(2ug + 3u, + 8uy < 7] = gyEyl7T” - (7-2)7 - (7 - 3)7 + (7 - 5)7]

and

. . o __1 3 3 3 3
{7 P[Zul + 3u2 8L3 <12] = 3;(235{12 -{12-2)7 -(12-37 -(12 -8)

+(12-52+02-103+ (12 - 11)3].

Note also that the distribution of 2u1 + 3u2 + 8u3 is symmetric
(sny linear combination of independent symmetric random variables is

symmetric), end that, rather than compute expression (7), cne might




~2,
i
+
¥
&
N
5,
n

Pl2(1 - ul) + 301 - u2) +8(1 - u3) < 12]

_ 1
P[2ul+3u2+8u3>l]-—l-3348 .

We nmay formally des~ribe the distribution of 4y +eoot cu, as
follows:

Theorem 1. Let Uy slUyslgsess Uy be_independent random variables, each uni-

formly distributed over the interval (0,1), and let C19CgseeesCp be

positive constants. Let

F_(a) = Probfcju; +e+etcu < a]

and let
0 if x<0,
g (0= |
&
if 0<=x.
\ niciCyeeeCy

Then, for 0<a< ¢y +oeot c,»

Fn(a) = gn(a)~ f gn(a-—ci) + iz.gn(a-—ci-cj) - Z gn(a.ci-cj.ck) oo,

<G 1<k
The theorem may be easily proved by induction, using the elementary

results: c
n+l

1
F _(a) = § F (a - x)dx
n+l cn+1 0 n

and

cn+1

1 -
§ gy(b - x)dx = g, (b) - 8ns1(P = Cpyg)-
ntl O

Cc
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When the c's are all equal to 1, the result takes the following

form:

Pful teeet v, <al = ﬁ%{an _ (g)(a _ l)n N (g)(a _ 2)n ool

where the terms are taken as leng as a,a ~ l,a - 2,-++, are positive.

Mcre formally, for 0 < a <n, and with the greatest integer notation,

[a] .
P[ul Ferty < al = é%.iég (- D - i)".

1 +..l+u

- + - > Caol et ——
L. The distribution of v, FeF v

Let Uy sUns e sl 5V be independent random variables, each
4

uniform over (0,1). We want the distribution of

+...+
u1 un

(8) o T s
Vl + + Vm

The distribution of (8) is of interest in studying ro.nd-off error
propagation in numerical analysis, see [6],[18]. The particular case
m=n=2 was worked out in detail in [g8]. We will find the distribu-
tion of (8) for all n and m, by applying the results of the previcus

Section, and will, in addition, discuss approximations to the distribution.

Since 1 - A is distributed as Viy wWe have

+oo ot ., teee+ u
! Un 1 n

gy v a oy <

’

j\ )]

et
1

P[ul teeetu +oavy tav, teectoavy < ma]
and hence a direct application of Theorem 1 gives, {after a 1little thought
about hcw the terms combine):

uy et u N (ma] [(ma-i)/a]

- - 343 . . +‘
PLV +oooes+ Vn < aj = m X Z (- l)l J(?) (Ifl) [(m - J)a - l]n 'n~
1 m (n + m)la" i=0 j=0 J
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ERROR RESULTING FROM APPROXIMATING
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m=n=3

Figure 3

p— o —— e "7

I N e




11

For example,
(1) (4520 (3.6 1240 (2.1 12 (1.8) 2+() (.9) )
M 1C) (3.2 (2.6 124 (1.1 145 (-8) 2]

U, +eeetu
Pt <91 — 24D [(3) (2.9 120V (1.6) 2+ (1) 2]

Vyteeetvg 121(.9

Tyr (5 125y ¢y12
(P 5= (.67

Tyr(d 12
MG (513

The variate (ul Fooot un)/(vl oot vm) is approximately a ratio
of independent normal variables, and the discussion of Section 2
should apply. We may derive a good normal approximation directly,
however, writing

U, teeet
1 Yn

P~
vl. +Vm

<al = P[u1 teestu +oav) seeetavy < ma] .

Since the sum on the rignt is approximately normal with mean .5{n + ma]

. 2
and variance (a“m + n)/12, we have

Figure 3 gives some indication of the merits of this approximation.
In case it is necessary to get the tail of the distribution with
great precision, it is not too difficult to calculate the exact pro-

babilities: for 0 < a < %3

p[u teeetuy <a] = a” =0 (M(m - l)n+m + (N(m - 2)n+m -]
Ply, Heeet v n+m! 1 2 ’
1 m
end for b > n,
u, teect u b-m

p|t————2 > 1] =

+ + +
~vl doeet vm |[nn " (I{)(n = 1)!1 n + (g)(n - 2)!1 . "'].

zn + m;.
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