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PREFACE AND  SUMMARY 

One  aspect  of  RAND work on  the   development  of  com- 

puter models   to  represent  physiological  subsystems   is   con- 

cerned with  the  resolution of  attendant  problems  of   theo- 

retical   and computational  mathematics.     In a previous 
r 

Memorandum--Mass  Action Laws  and  the Gibbs  Free  Energy 

Function'   N.   Z.   Shapiro and L.   S.   Shapley,   RM-3935-PR, 

December   196!^--the  use of   the Gibbs   free  energy  function 

vis-a-vis   the mass   action   laws   for   the  analysis  of  complex 

chemical   systems  was   considered.     The  present Memc randum 

continues   that  discussion,   obtaining   an   inequality   concern- 

ing   the  effect  on  a chemical  system  of changing  its   free 

energy parameters. 
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INTRODUCTION 

In  this  Memorandum we  obtain  an  inequality which 

furnishes   information  about  the  behavior  of  a chemical 

equilibrium  system when   its   free   energy  parameters   are 

changed. 

The result   is  proved by viewing  the   solution  of  a 

chemical   equilibrium problem as   the result of minimizing 

the   free  energy   function.     Were   the  solution viewed   in 

terms  of   the  mass   action   laws,   the  proof would become 

much more  difficult. 
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ON THE  BEHAVIOR OF A CHEMICAL EQUILIBRIUM SYSTEM 

WHEN ITS  FREE ENERGY PARAMETERS ARE CHANGED 

Theorem 1.     Let  P and  P    be chemical  equilibrium 

problems    which are identical except possibly for their 

free energy parameter vectors,  c and c  .     (That  is,  P and 

P    contain  the same species,   compartmentalized  in the 

same way and obeying identical mass balance  laws, Ax = b» 

In other words,  P    is  the prcblem obtained  from P by re- 

placing  c by c  .)     Let x be any solution of P and  let x 

be any solution of P  .     (Note:     We do not assume  that  P 

or P    necessarily has a unique solution.    Thus,  x may be 

one of possibly many solutions  of P.)     (Note:     We do not 

assume  that  x or x    is  positive;   that is,   some of their 

components may be zero.)     It  then follows   that 

x#.(c#-c)   ^ x.(c#-c)   . (1) 

Furthermore,  if c  -c  is  not representable as a linear 

combination of the rows of  the constraint matrix A, and 

For   a  detailed   introduction  to   the  subject matter of 
this Memorandum,   see Part   I  of RM-3935-PR,   Mass  Action Laws 
and  the Gibbs  Free Energy  Function,   N.   Z.   Shapiro  and L.   S. 
Shapley,   December   1963,   and  also the publications  referenced 
in  that  Memorandum. 



-2- 

if all the components of either x or of x (or of both x 

and x ) are positive, then 

x •(c -c) - x-(c -c) 

Before  proving Theorem  1,   we give  two examples  of 

applications  of  the  theorem. 

Example   1.     If a  chemical   equilibrium probleir with a 

solution x is altered by increasing one of the  free  energy 

parameters  c,  and if x    is  any  solution of  the  resulting 

problem,   then 

x,   i-   x.    . 
J J 

Furthermore, if x is positive and if x. is not de- 

termined solely by the mass balance constraints, then 

x, < x. . 
J   J 

Example  2.     Let a  chemical   equilibrium problem,   having 

a positive  solution,  x,  be altered by increasing  each of 

the  c.'s   in one  of the compartments  by the same  positive 

1 .v ■ * 
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imount.  (Note:  This corresponds, loosely speaking, to 

increasing the pressure of that compartment.)  Let x be 

any solution of the resulting problem.  Let x and x denote 

the sum of the x.'s and of the x.'s in the affected com- 
J J 

partment.  Then, if x is not determined solely by the mass 

balance constraints, we have 

-#  - 
xx. 

Theorem 1 follows from a more general result.  To 

state this more general proposition:  Let n be d positive 

integer.  Let E be Euclidian n-dimensional space.  Let 

H be a convex subject of E .  Let H be the interior of 

H relative to the linear manifold on E generated by H. 

Let F be a real-valued convex function defined on H. 

If u is any element of 11 and if Ö is any element of 

E  such that u + tö is an element of H for all sufficiently 

small positive real L, then the directional derivative 

F'(u) is defined by 

rt/ x    i.  F(u+tQ) - F(u) F'(u) =  lin —^ f ^-^- 
ev"/   --■■      t (2) 
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It is well known that the convexity of F assures the 

existence (if we accept - as a limit) of Fl(u),     It is 

also well known that if u and v are elements of H, then 

F(v) - F(u) ' F;_u(u) . (3) 

We will say that F is weakly differentiable at a 

point u in H, if for all 0 (for which u + t9 is in H for 

all real t with sufficiently small absolute values) for 

which F'(a)  0 and F' (u) > 0, we have 

F^(u) = FlQ(u)  = 0 . (4) 

(Note:  Weak differentiability follows from the stronger 

assumption that F' (u) = -Fi(u) for all 0 (for which 

u + t0 is in H for all t having sufficiently small ab- 

solute values),) 

Let 1  be any element of E . Let F be a real-valued 

function defined on H by means of 

F#(u) = F(u) + A-u . (5) 
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Then,  Theorem 1 will   follow from: 

Theorem 2. Let x be a member of  the minimum set of 

F on H, and let x    be a member of the minimum set of F 

on H.     Then, 

A.x#  ^ Ax   . (6) 

Furthermore,  if: 

(A) F is weakly differentiable at x 

(B) x is  in H0 

(C) A»u is not constant for all u in H 

or if: 

(A ) F is weakly dif ferentiable at x 

(B ) x is m H 

(C ) A»u is not constant for all u in H 

then: 

A.x# < A.x . (7) 

Proof of Theorem 2. Let us first observe that for any u 

in H and for any 0 for which u + t0 is in H for all suf- 

ficiently small positive t 
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F^u)   = F^(u)  + A.0   . (8) 

In particular, 

F#
y)    (x)  = F'^^     (x) + A-(x#-x)   . (9) 

X   -X X    -X 

But,   since x is   in  the minimum set  of F,  we must have 

F^ (x)  0 . (10) 
x -x 

But by (3) 

F#(x#)-F#(x) - F^  (x) ^ (By (9) and (10)) 1-  (x#-x) 
X -x 

(11) 

# # 
But, since x is in the minimum set of F , we have 

FV
A
)   F#(x) ; (12) 

then,   (6)   follows  (11)  and  (12). 

To prove that (7) follows from (A), (B) , and (C), or 

from (A ) , (B ), and (C ), it would be sufficient (by the 

symmetry obtained when A is  replaced by -A)   to  show that 
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(7)   follows   from  (A),   (B),   (C). 

Let us,   therefore,   assume   (A),   (B),   and   (C),   and   let 

us  also assume  that   (7)   is  false.     But,   since we already 

proved   (6),  we have   that 

A-(x#-x)   =  0   . (13) 

But   this  and   (11),   then,   yield 

F#(x#)       F#(x)   , (14) 

so   that   (12)   and   (14)   yield 

F?;(xy;)   =  F'ix)   . (15) 

Let u be a point in H guaranteed by (C) such that 

i'u ^ ^.x.  Let 9 = u-x.  By (B), x + t9 is in H for all 

t with sufficiently small absolute values. 

Since x is in the minimum set of F, we know that 

F^(x) ■ 0, and F^e(x)   0. Hence, by (A) 

F'(x) = F;e(x) = 0 . 

.. ►B*c ^ 
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Hence, by (8), 

FQ(X) = A-0  and  F^(x) = -A-9 

Since ^«0 4  0, we have (if necessary by replacing 9 by -9) 

FQ(X) • 0 . (16) 

But,   since x     is   in  the minimum  set  of  F   ,   (15)   show 

that  x  is   in  the minimum  set of F   ,  a   fact  which contra- 

dicts   (16).     QED. 


