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ABSTRACT 

Rotatlonally Symmetrie stresses and deformations are considered for 

a prestressed elastic sheet of circular outer boundary loaded transversely 

by a centered indenter with a hemispherical tip. A nonlinear membrane 

solution is obtained for the portion of the sheet that is in frictionless 

contact with the rigid tip of the indenter. This solution and the solu- 

tion that was previously obtained for a prestressed annular membrane 

[Ref. 1] are used to obtain the exact solution for stresses and de- 

flections in the indented membrane. Simpler, limiting expressions for 

stresses and deflections are also obtained for sufficiently large 

and sufficiently small indenter loads. 

Comparison of computed results from this analysis with the ex- 

perimental results of Jahsman, Field and Holmes [Ref. 2] on stretched 

mylar membranes shows good agreement except in the immediate neighbor- 

hood of the indenter. The theory shows that yielding and plastic 

deformation of the membrane is incipient for a relatively small value 

of the Indenter load, and, for these experiments, this limiting value 

is less than the least value of indenter load for which data was 

reported. 
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NOTATION 

a Outer radius of membrane. 

b Radius bt the point of tangency. 

c Radius of the hemispherical head of the indenter . 

C Integration constant, Eqs. (l.7a,b) . 
o 

C (F )      Function determined by Eq. (3.12) . 

E Young's modulus. 

f = yVS ctn ß . 

F = 22/3 (€p)l/3 f . 

.2/3 -ö)m F = I ST 1 I —S—)   >  combined loading parameter . 

F* Value of F  at which C (F ) = 0 . 
o o o o 

F T Value of F  for P = P. . 
oL o L 

-'(«2)-(^) 

1/3 
'  c 

a 

F T Value of F^ for P = PT . 
€L € ij 

h Thickness of elastic sheet. 

H = ho  . Horizontal component of stress resultant at 
o ro 

r = a. 

P Central indenter load. 

P = UirEhc s^ , upper bound on P at elastic limit. 
L L 

p Transverse pressure on the elastic sheet under the 

indenter. 

r Radial coordinate. 

s(ß) = sr + se . 

sr,6e,s,sL = (or/E), (öQ/E), [(öJ.+OQ)^], (oL/E) . 

u Horizontal displacement. 

w Transverse  (vertical) displacement component. 

w =  -w(o)   ;    Central deflection. 

y =    (r/a)2, 

- v 



Notation (Continued) 

(5 Angle of tangent rotation • 

ßb a    (b/c) . 

€ =    (b/a) . 

c Radial mid-surface strain, r 

€- Circumferential mid-surface strain, 
ö 

V Polsson's ratio. 

p - (siSb) ' 
o ,a- Radial and circumferential stress components. 

o Applied preptress. 

aT Elastic proportional limit stress. 

- Vl 



SECTION 1.  INTRODUCTION 

A theoretical analysis has been given by Nachbar [Ref. 1] for the 

finite, rotatlonally symmetric deformations and stresses of a prestreased, 

annular elastic membrane, or sheet, subjected to applied transverse 

loading only along the Inner edge. The sheet Is Initially flat and Is 

supported at the outer edge where stretching Is also applied. An ex- 

plicit solution was obtained for the case of transverse loading Introduced 

through a rigid plug or disk which is attached centrally to the annular 

membrane. Experimental results for a similar problem have also been 

given by Jahsman, Field and Holmes [Ref. 2]. However, the experiments 

used a complete membrane ana a rigid indenter with a hemispherical tip 

in order to apply transverse load. Thus, stresses and deformations of 

the membrane in the immediate neighborhood of the Indenter tip are to 

be expected to be different from those predicted by the plug analysis. 

In the present paper is considered the problem of finite, rotatlonally 

symmetric deformations and stresses in a prestressed circular flat sheet, 

of outer radius a , due to transverse loading at the center by a rigid 

indenter with a hemispherical tip of radius c . This problem will 

henceforth be referred to as the indenter problem. A small strain, 

elastic solution for the indenter problem is obtained. Figure 1 shows 

the indenter problem geometry and the nomenclature. The radial distance 

is to the membrane r, and r = b denotes the point of tangency of the 

sheet with the indenter: b is a function both of load P and of H . 
o 

Solution for the portion of the sheet (0 5 r 5 b) in frlctlonless con- 

tact with the indenter is obtained in Section 2. This portion will be 

called the constrained region. This solution and the results for the 

free region (annular portion of the membrane which Is not in contact 

with the indenter) are used in Section 3 to obtain the complete solution 

to the Indenter problem. 

The results for the free annular region [Ref. 1] which are essential 

for the present paper are summarized below. These are valid for small 

strain and moderate rotation restrictions. The inner radius is b and 

the outer radius is a.  Displacements normal p.nd parallel to the initial 



RIGID INDENTER WITH 
HEMISPHERICAL TIP 

I FREE REGION (bSrSd) 
II CONSTRAINED REGION (OlrSb) 

DEFORMED EQUILIBRIUM CONFIGURATION 
Fig.  1.    Deformation of the Elastic Sheet - Deformed Equilibrium 

Configuration. 
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INDENTER 
TIP 

MEMBRANE 

DEFORMATION  OF A MEMBRANE ELEMENT IN THE 
CONSTRAINED REGION 

Fig. 2. Deformation of the Elastic Sheet — For the Constrained 
Region. 
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plane are w and u , respectively. The angle of rotation of the 

tangent to the midsurface from the initial plane is ß . The sheet has 

uniform thickness h and elastic coefficients E,V . Nondimensional 

stress variables s and s0 are defined as 
r      0 

r    ,       9 
B = «r   and s« = s- r  E ©  E 

(1.1a) 

and the independent variable is chosen as 

,2 

^(1 (1.1b) 

with use of the nondimensional shape parameter    €    and the  load 

parameter    p  , 

€ =  — P = 27rEhb    ' 
(l.lc) 

a nondimensional stress function F is defined as 

F . (Ucp)1^ yl/2 ctn ß a (4€p)l/3 yl/2 ß-l (l.ld) 

Stresses and displacements are given  in terms of    F(y)    by Eqs.   (3.7)> 

(3.8),   (3.9),   (3.11) and (3.13) of Ref.   1 as follows: 

a        [2 
\2/5       1/2 2g.(l + v)I 

dy y 
(1.2) 

3e 2  ep 

2/3 2? dy n (1.3) 

2  6p 
^    F 

(i.M 

w 
a 2  €p 

^3      r1   . 

y 

,,      vl/3      1/2    „-1 
ß  =   (l+€p)   /        y /        F 

(1.5) 

(1.6) 

U   - 



Equations (1.3) and (l.U) are seen to satisfy identically the differential 

equations of equilibrium (Eqs. 2.1a,b below with p = 0), and the equa- 

tion of compatibility [Eq. (2.5b)] becomes, with the use of Eq. (1.6), 

a differential equation for F(y): 

$-£  + 2F-2 = 0 (1.7a) 
dy^ 

The integral of this corresponding to    sa > 0   has the general form 

rF(1) /i     \'W 
i - y = j (v    Co) dv   ' (1,7b) 

F(y) 

where    C      is a real-valued constant, 
o 

The boundary condition at    y = 1    is    Ehs    = ho      = H  .    Thus    H 
r    ro   o        o 

determines the prestress a  . The parameter F  expresses the 

combined loading condition, through use of Eq. (l.M, as 

rW ^o 4 (^r (1-8a) 
2 

The boundary condition at y - €  is expressed as 

F(€2) = F€ (1.8b) 

where    F      is to be determined from conditions of continuity with the 

constrained region.     When    €,F ,F     are given so that    F    > F^ > 0  ,    C 
0 € O    € O 

is uniquely determined from Eq. (l.7b) expressed at y = €2 as follows: 



SECTION 2.  SHEET TN FRICTIONLESS CONTACT WITH INDENTOR 

Finite deformation, small strain equations for the constrained 

region  (0 S r £ b) of the sheet are [Ref. 3] those of equilibrium, 

^ (r6r cos ß) - 8e + gf sin ß = 0 (2.1a) 

^- (rs sin ß) - U cos ß = 0 (2.1b) 
dr   r        Eh v 

elasticity [0 < v < (l/2)] , 

€ = s - vs. (2.2a) r   r    6 v   ' 

€e = S0 " vsr (2-2b) 

and strain-displacement, 

(1 + €r) sin ß = 1^ (2.3a) 

(1 + €r) cos ß =  1 + Ip (2.3b) 

6e = 7      . (2.3c) 

When    p    is eliminated between Eqs.   (2.1a,b),  there obtains 

^ (rsr)  = se cos ß (2.4) 

The compatibility relation obtained by combining Eqs.   (2.3b,c), 

|jL (r€e)  + 1 - (1  + er) cos ß = 0    , (2.5a) 

can be written in a more convenient form, with the use of Eqs. (2.2) 

and {2.h),  as 

r d?^Se + Sr^ + ^ + Se + Sr^1 ' C0S ^^ = 0 (2.5b) 

- 6 



Since the membrane is assuined to deform smoothly onto the indenter, the 

geometric relation for the constrained region 

.me-^u^-f^e) (2.6) 

is apparent from Fig. 2. 

It is next shown that [ß| must necessarily be of the order of the 

square root of the maximum elastic strain or smaller. From Eq. (2.3b) 

and the derivative of both sides of Eq. (2.6), 

dß   -1 /,    \ r^ = c  (1 + € ) , 
dr     x    r (2.7) 

transforming as Eqs. (2.6) and (2.?). The differential operator 

1  +  € 
rdQ_r      dß      . dü=   ZU 

dr        c d(r/c)      dß        \1 + sin ß 
e 

äl 
dß 

Equation (2.5b) can be written 

dß (se + 6r) + 

(l+se+sr)(l+€e) 

rrrn— r 
LLz£2! ß)     o 

sin ß 

Because of the assumption of small strains, s «1 and ls_l « 1 , 

the square bracketed terms in the above equation can be approximated by 

unity, and the equation becomes 

Iß {sr + se) + tan § = 0 (2.8) 

Let s(ß) = s +• sft ;  then the integral of Eq. (2.8) can be written as 

s(ß) = s(0) + 2 in cos | (2.9) 

or also as 

ß 
cos ^• = exp {- i [8(0) - s(ß)]} (2.10) 

Equation (2.10) shows that s(ß) < s(0) for all ß > 0 .  Furthermore, 

since  |s|  is bounded by some linear elastic limit value denoted by 

- 7 - 



(2sT), where sT « 1 ,  then Eq. (2.10) implies 
L L 

[1 - cos (ß/2)] < 1 - exp(-sL) i sL 

2 *• 
so that ß < 8sT .  Therefore, if sT is sufficiently small, it is 

L L 
necesjiary to assume as consistent with the small strain approximation 

that the rotation is finite but "moderate", viz. 

ß2 « 1 (2.11) 

Hence Eqs. (2.6) and (2 9) are approximated as 

sin ß = ß = - (2.12a) 

s(ß) = s(0) - £ ß2 (2.12b) 

If Eq. (2.4) is written in the form 

ds 
r r— + 2s = s - 3.(1 - cos ß) 
dr    r      9 

then with the use of Eqs. (2.12a,b) and the small strain assumption, 

this becomes 

ds 
ß -r^ + 2s = 8(0) - i ß2 (2.13) 

The solution is 

C 
2  siO)       1 Q2 .  ,, v 

P 

and from Eq. (2.12b) , 

P 

With use of these relations in Eqs. (2.2b) and (2.'5c), u is determined 

to be 

£ = .(! + v) ^ + ± (1 - v)ß s(0) - ^ (3 - v)ß;5 (2.15) 

-8 



The contact pressure p between the membrane and the indenter is 

determined by using Eqs. (2.1b), (2.12a) and (2.19a,b): 

Eh 
P =- 8(0) - i ß2 (2.16) 

An expression can be given for s(0) in terms of s (ß ) , where 

ßb = (b/c) ,  by using Eq. (2.lUa): 

8(0) = 2 sr(ßb) - 2 -| + j^ 
ßb 

(2.17) 

Equations (2.lU) to (2.1?) are valid for CL ^ 0 , but if the membrane 

is to be elastic for all ß 2 0 ,  then Cp = 0 .  For the case 

C = 0 ,  Eqs. {2.1k)  to (2.16) become with use of Eq. (2.17): 

s,(ß) = BJßJ +ir (ß? - ß2) 'r^b'  1^ ^b 
(2.18a) 

8A0) = s (ßj + ir ß JQ rN^b' 1^ 1^ ß
c (2.18b) 

= ß 

P(ß) = f 

(-v)^)*-^1^-1^^ 

2 sr(Pb' * 5 eb " C 

(2.18c) 

(2.l8d) 

The displacement    w(ß)    is found by Integration of Eq.   (2.3a): 

w(ß) = w(ßb)  - § (ß2  - ß2) (2.l8e) 

A necessary condition to be satisfied for contact between indenter 

and membrane in 0 S ß 5 ß ,  is that p(ß) ? 0.  This condition is 

seen to be fulfilled if 

se(ßb) > 0 (2.19) 

This latter condition is necessary, however, for the stability of the 

free membrane against wrinkling [Ref. 1, Eq. (3.l6)] and must be imposed 

for a rotationally symmetric solution to the indenter problem.  It will 

be shown in the following section [see Eq. (3.39)] that (2.19) is 

satisfied. 

Q - 



The equilibrium of the indenter at the point of tangency, ß = ß , 

requires 

P = 27rEh bß. S (ß, ) 
b r b 

which is written as 

P    ß? § s (ßj (2.20) 2TrEha  Kb a rx b' 

- 10 



SECTION 3.     SOUJTION OF THE INDENTER PROBLEM 

Solutions froni Section 1 for the free region and from Section 2 

for the constrained region are now used.    Solutions for these two regions 

are distinguished by the use of    y    as independent variable in the free 

region and of    ß    as independent variable in the constrained region.    At 

the point of tangency    r = b    (y = €      for the free region and    ß = ß, 

for the constrained region),  conditions of continuity of displacements 

and normal stress are imposed.    From Eq.  (l.U), 

2/3 

■^ ■ (I €p nil 
2 

€ 
(3.1) 

where,  from Eq.  (l.lc), 

P cp = 
27rEha 

(3.2) 

Continuity of    s      requires 
r 

s  (O  = s  (ßj 
r r    b 

(3.3) 

This equation,  after substitution from Eqs.   (1.8b),   (2.20),   (3.1) and 

(3.2),  can be written as 

F    = 
€ TrEha/ a 

(3.10 

Note that F  does not depend upon e . 

Continuity of the displacement u is invoked to determine b,  or 

what is equivalent, the nondimensional parameter e: 

U(€^)   =   U(ßb) 

Equations  (1.2),   (l.Ta),   (l.8b) and (3.2) give 

(3.5) 

u(€2) 
2/3 

P 
UirEha 

;i 'r + co 
1/2 

(1  + V)-| (3.6) 

Equation (2.l8c) gives 

11 



u(Bb) 
— , (1 -v)Sr{ßh) .^l {3.7a) 

which can be written In the convenient form, using Eqs. (5.1) to (3.1»), 

uOV _/  p  . - 
b    \ i+TTEha 

F    2 
d-v)-!-^ 

€   2F€ 
(3.7b) 

Substitution from Eqs. (3.7b) and (3.6) into Eq. (3.5) leads to the 
2 

following equation quadratic in € , 

,1/2 

^ft-o 
€2 - UP3 - 0 

e (3.8) 

The only positive root  is 

€
2 = -2F2ff .C €VF

€ 
0 

1/2 
kvr (L. + r 

e'VF 
+ UF0 

0/ € 

1/2 

which can be written  simply as 

1/2 2 2 
€    = 2F 

€ 
^ + c 
F o 

—  +  C 
F o 

€ 

1/2 
(3.9) 

Equations  (1.9)  önd  (3.9) are used to determine    €    and    C      with 

F      and    F    ,     or equivalently,  with    P    and    H    ,     through the use of o € o 
Eqs.   (1.8a) and  (3.U),   considered as  independent variables. 

Certain characteristics of the  solutions    €    and    C      to Eqs.   (1.9) o 
and  (3.^) for fixed    H    > 0    are now studied.     Restrictions of these o 
developments to  small   indenter radii will  be made  subsequently as 

sufficient for applied purposes and  in the  interest of brevity. 

First,   it  is observed that    F       is  expressible as a function of 

F      and    H      by means of Eqs.   (1.8a) and  (3.9) 
o o 

'H   ^ 
F.   = 2 Ug - I '■  ~-(l/2) 

a ' o (3.10) 

Therefore, for fixed H  ,  F  may be regarded as a function of F 

only, viz. F (F ) .  Substitution of F (F )  into Eq. (3.9) yields 

- 12 



the function € = e(F ,C ) . Then the right-hand side of Eq. (1.9) can 
o o 

be defined by the function l(F ,C ) as 
00 

Fo        v(l/2) 

^w-J    U + co     dv (3-11) 
F€(Fo) ^ 

and then Eq. (1.9) can be written as 

€2(Fo,Co) + l(Fo,Co) -1=0 (3.12) 

Equation (3.12) will be shown to determine implicitly a function 

C (F ) ,  which can be regarded as the solution to the problem.  Since 

0 5 € < 1 is a geometrical constraint, then by Eq. (3.12) 

0 < I[F ,C (F )] ^ 1.  It iF necessary to consider the left-hand side 
o o o \ 

of Eq. (3.12) in the F ,C  plane within the allowable domain*' which 

is determined by the two inequalities 

i- + C > 0 (3.13a) 
F    o v 

o 

/ H \ '        2/3 
0 <'<<[£)     (r)    <ro ^^) 

Inequality (3.13b)  follows from Eq.   (3.10)  and the inequality    I > 0, 

which  implies    F   > F    > 0  . 

It  is evident  from Eqs.   (3.9),   (3.10)  and  (3.1l) that    e(F  ,0  ) 

and     I(F  ,C  )    are  continuous functions of    F      and    C      in the allowable 
00 00 

domain.     The partial derivative with respect to    C      of the  left-hand 

side of Eq.   (3.12)  is 

*) It  is  shown  in Ref.   1 that if wrinkling  is to be avoided, 
Co(F0)    must be confined to a  smaller domain which lies wholly within 
the allowable domain. 

-  13 - 



-(1/2) .-(1/2) 

^^--)--|'2(|- + Co) fc + Co) € 

Fo -3/2 

"/    (v + Co) dv (3-11+a) 

F 
€ 

Therefore,   in the allowable domain,  the right-hand  side above  is 

negative,  and so 

^_    (c    + I - 1) < 0 (3.14b) 

This partial derivative is a continuous function of F  and C . 
o o 

At this point,  the further restriction to small indenter radii  is 

made,  viz. 

- < < 1 (3.15a) a 

From this it necessarily follows that 

e < < 1 (3.15b) 

since a  So. and 
ro   L 

sL = (aL/E) < < 1 (3.15c) 

then E  a  < < 1 ,  and therefore 
ro 

(H /Eh) < < 1 (3.15d) 

Consequently, it can easily be shown from Eq. (3.10) and inequalities 

(3.13b), (3.15a,d) that 

- 11* - 



When C = 0 ,  let F = F* be the root of Eq. (3.12).  Then with 
o o   o 

the use of Eqs. (3.9) and (3.1l), Eq. (3.12) yields 

(3.16a) 
„#(3/2)      3 
^            * 2 1 - 2 (V? - •|)^(3/2)] 

In view of (3.15e) 

o -   ^2^ + 0(€2) (3.16b) 

It follows from inequalities (3.13), (3.15a,d) that the point F = F* 

C = 0 , lies within the allowable domain, 
o 

With these restrictions, we will now prove the existence of C 
o 

as a continuous function of    F      in the following subdomain of the 
o 

allowable domain: 

C * 0  and  F * F* (3.1?) o o   o \   i / 

Inequality (3.1^) implies that (€  + I - l)  is a monotone, strictly 

decreasing function of C  for a fixed F . Also for C = 0 and D o o o 
F > F* , it can readily be shown that 
oo 

€2 + I - 1 > 0 (3.18a) 

It can also be shown, with 1 he use of Eqs. (3.9) and (3.1i), that 

lim    € = 0   and     lim   1=0, 
C0-oo C0-<» 

F fixed F fixed 
o o 

from which it follows that 

lim    (€2 + I - 1) = -l ,      „   , 
CQ-« (3.18b) 

F fixed 
o 

Therefore, for each F    > F*  ,     it follows from (3.14b), (3.l8a.b) that o    o \     / » \        / 
there exists a unique positive value of C  ,  such that Eq. (3.12) is 

15 



satisfied. The continuity of C (F ) follows from a theorem on implicit 

functions (Ref. h). 

In the subdomain (3.17)> upper and lower bounds for C (F ) are 

obtained when Eq. (3.1l) is rewritten as, 
r 

I(F .CJ - f 
o o 

c.(i/2) av. c-(i/2)( 
o o 

> 

Fc(Fo) 

1 - 1 + 1 \-(1/2)" 
vC 

dv\ 

J 

This becomes 

Po - Fe  ,-(1/2) 

o 

R (3.19a) 

Where 
F r o 

R = 
•(1/2) 

1 - 1 + 
vC^ 

dv (2.19b) 

It is easily shown that 

.     / 1 + C F 

\      O € 

(3.19c) 

Then Eqs.   (3.12) and  (3.l6a) are used to obtain 

(1  -  e2)cI/2  = F    - F    - R < F    , 
X '    O O € O 

which yields 

F2 
€    1 

F C 
o o 

in 
1 + F C 
 o o 
1 + F C 

€ O, 

< C < F2[i + 0(€2)]   (3.20a) 
o   o 

With the right inequality and Eq. (3.10), an upper bound for 

obtained 
1/2 

' C  is 
€ 0 

FC < 2(^)   ^F3/2 [1 + 0(€
2)] 

€o   \ Eh /   a o 
(3.20b) 

- 16 



The partial differential of the expression in Eq. (3.12) with 

respect to F  is 

sr (^ i -1) = 
o 

.-(1/2) 

o 

2€ 
F 

-(1/2) 

^'r+ co (3.21a) 

where with the use of Eq. (3.10), 

ST ' " 2 FeF0 o 
(3.21b) 

Then Eq.   (3.22a) becomes 

)        o n N-(1/2)        2     F    / Al/2) 

o o        o \   e 

This with the use of the left  inequality (3.20) yields 

d (.2 + i 
o -^^f lt0(£2)+i. 

(l/fe)  .   ,. x-(l/2) 

-£ tF4r+co 

v 
(3.22a) 

From this inequality it is evident that 

'  (€2 + I - 1) > 0 
o 

(3.22b) 

in the subdomain (3.17). 

The differential of Eq. (3.12) yields an expression for the 

derivative of C (F ): 
o o 

dC 
 c 
dF 

o 
.1)/ 

o ■ l)\ 

(3.23) 
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In view of  inequalities  (3.lVb) and  (3.22b),  this derivative is positive 

for all    F    > F*  .       This  implies that the  solution to Eq.   (3.12) ex- 
oo 

pressed by    C  (F  )    is a continuous,  monotone strictly  increasing functior 

Approximate solutions for the  indenter problem will next be obtained 

for certain  limiting cases.     Consider first the case when 

P = PT  = ViTEhc  s^ (3.25a) 

and 

H  \       ,    x2/3    , /_ 

mj " [a)        bL        o 

Then,   with the use of Eq.   (l.8a) 

H 
F 

o 
o \ / UirEha f3    (\\(e\2/2    1 

Li LI 

It can be seen with the use of inequality (3.25b), that F  > F* ,  and 

therefore the solution for P = P  is in the subdomain (3.1?). Upon 
L 

substitution of    F    = F T     into the right-hand  inequality (3.20b),  there 

is obtained for    F    = F T     and    C    * C T   , € €L o oL 

FC     -  F TC T  < 2 (-^)       [1   + 0(€2)] (3.25d) €   o €L oL \o      I \      / J \ s   / 

Therefore,   if  the ratio    (o    /a.)    obeys 
ro    L 

-f(ff ^<^<- - <—> 
where the left inequality is obtained from Eq. (3.25b), then it follows 

that for F  = F r o   oL 

FC  - F TC T « 1 (3.26b) 
€ o   €L oL 

Hence the following order relation will hold, by continuity, for F 

in some neighborhood of F   and for P in some neighborhood of P : 
O LJ LI 
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0 < F C    «1 (3.26c) 
€   O 

Let Eq.   (3.9) be approximated for email    FC      as 

=  [2{fi~  1)]1/2    ?ZJk  [1 - 0(F C  )] (3.27a) 
€   Ü 

» 2{ i? -  l)1/2   | 5A f^-fA (3.27b) 2TrEha; 

Expressions  for    ßv  ,     s  (ß^)    and    s  (0)    for    P    near    PT     are obtained 

from Eqs.   (2.l8a) and (2.19) with the use of the approximation (3.27c): 

BJK) i i-ziL:]      = i »h (5-28b' r b     k{Js - D^^
0
 I        M^i . i)  b 

It is noted that  these relations are  independent of the prestress ard 

membrane radius    a.     Also the maximum stress  in the membrane,  which 

occurs at    ß  = 0(i.e.   r = 0),   increases with    P.    Then for    P = P    ,   the 
Li 

maximum stress  in the membrane,  evaluated with the use of Eqs.   (3.28a,c) 

and (3.25a),   is 

s  (0) r --  s.     , (3.29) 
P-PL 

which is the clastic limit or yield stress o .  Therefore, since the 

stresses are limited by o ,  it is concluded that if the prestress is 

within the limit g:ven by (3.26a), then P  represents an upper bound 
L 

on P ,  viz. 

P ^ PT  , (3.30) 
L 

- 19 - 



If    P    is sufficiently small,   so that 

F    » 1 , o (3.31a) 

then it is easily shown with the use of inequality (3.20a) that 

C « F2 
o   o 

(3.31b) 

Sufficiently large values of F  are now considered, such that 

F C » 1  and  F K » 1 
e o € o 

F2 (3.31c) 

This  inequality,  with the use of Eqs.   (l.8a) and (3.U),   implies that 

E 
Frfhc 

(H0/h)' 
« 1 (3.31d) 

With the use of inequality (3.31c), Eq. (3.9) can be approximated as 

3 

o 
i>F C 

€ O J 
(3.32a) 

This expression with the use of Eqs.   (3.31b),   (l.8a)  and (3.10) yields 

1/2 

e 3 
27ra   V  o/ 

1/2 
(3.32b) 

An approximation for the integral l(F ,C ) in Eq. (3.1l) is also 

obtained with the use of inequalities (3.31a,c) as 

^o'Co'3^1- 

F . F 
_£ 1  . _o 
F " 2F C F 
O 0 0 € 

(3.33) 

An expression for deflection    w(€   )    is obtained from Eqs.   (1.5)    and 

(1.7a); 

w(€2) -2 
'H /Eh 

o 
.1/2 r 

F  ^- + c 
oVF^ o 

o 

1/2 
- F    ~ + C 

e\F o 

1/2 
C   (1   -   €^) 

(3.34a) 
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With the use of Eqs. (3.32P^ and (3.33) and inequalities (3.31a,c), 

this equation is approximated as 

.1/2 

(3.34b) W(62) .  (H0 
a     VEh, (FC)^ ln[re 

o o 

With the use of Eqs.   (3.31b),   (1.8a) and (3.10),  Eq.   (3.3Ub) yields 

w(€2)  = In 'a™2 /Ho (3.34c) 

The central deflection w(ß = 0)  is obtained from Eq. (2.l8e) as 

^(0) = - |^ + w(€2) (3.35a) 

This yeilds,  with the use of Eq.   (3.34c) and  (3.32b) 

P w(0)   = 1  + In 
27ra2    Ho 

(3.35b) 

Expressions for s (0, ) and s (0) are obtained with the use of 

approximation (3.32b) and Eqs. (2.l8a) and (2.20) : 

s
r«V - w (3-56a) 

M0' -m + ikr (5-36b) 

The final topic considered in this section is the stability of the 

free membrane against wrinkling.  It has been shown in Ref. 1 (see 

Appendix; II, p. 43), that the wrinkling stability condition is satisfied if 

(3.37a) 

and 

8e(l) > 0 

Se(€
C) > 0 (3.37b) 

It can easily be shown that (3.37a) is satisfied if 
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c  sir O        4 

]_ 

F 
(3.38) 

This  inequality  is  satisfied both for    F    =  F      and for    F    »  1   . ^ J o o o 
Furthermore the  numerical  solutions for    C  (F   )    show that  inequality 

o o 
(3.38a) is satisfied for all F > F* . v    ' o   o 

An expression for sa(€ ) is obtained with the use of Eqs. (2.l8b) 

and (2.20) as 

t   2x     1 S9(€ ) = 

^)^ 

UP / c V   U 
- € 

TTEhC (f) (3.39) 

With the use of Eq. (3.9), it can be shown that for both 0 < F C < 1 H € O 

and 2 < F C < » , 
e o 

e    < 2(A/2
,- 1)F ^ (3.U0a) 

to be satisfied for 1 < F C < 2 .  Inequality (3.U0a), with the use of 

Furthermore from numerical solutions this inequality has been observed 

to be satisfied for 1 « 

Eq. (3.U), implies that 

^r f£v (3.wb) y TrEhc J       \BJ 
e
2< 

A/2  /   \2 

Therefore, with the use of Eqs. (3.39) and (3.U0b), it is concluded 

that inequality (3.37b) is satisfied for ail F > F* .  Hence, in 
o   o 

particular, the membrane is stable against wrinkles for P ^ P. . 

P? 



SECTION k.       NUMERICAL RESULTS AND COMPARISON WITH EXPERIMCNTS 

Experimental results have been reported (Ref. 2) for the central 

load-transverse deflection characteristics and the deflection profile of 
*) a mylar sheet   stretched in its plane by dead weight loading. This 

load is referred to as the platen load. The sheet was supported by a 

ring of ^-in inner radius. The transverse load  P was applied at the 

center of the sheet by a load probe, or indenter, having a hemispherical 

tip of l/l6-in radius. The membrane deflections were measured both by 

a dial gage and, in the immediate vicinity of the indenter, by measure- 

ments from photographic enlargements.  Stresses were not measured directly, 

but  o  was calculated from an equilibrium equation [the present Eq. 

(2.1b) with p = 0], and values of ß were obtained by numerical differ- 

entiation of the deflections. 

The procedure used to compute numerical results from the present 

theory is first to obtain, for given values of P and o  (i.e., for 

a given F0), the root  C  of Eq. (3.12).  Since for these experiments, 

(c/a) = 0.0125, inequalities (3.15a,b) follow.  Then, for each F > F* 

[Eq. (3.l6)], the root C > 0 is obtained using numerical Integration 

to evaluate l(F ,C ), Eq. (3.il). Then e = e(F ,C ), follows immediately. 
00 00 

With the use of these values of e and C , and with application of 

Eqs. (l.7b), (l.M, (1-3), (1.2) and (l.5)> stresses 0 ,oA and de- 

flections w,u  in the free region of the membrane are calculated. 

Stresses and deflections in the constrained region of the membrane are 

then determined with the use of Eqs. (3.3), (2.l8) and (2.20); note that 

ß, = (a/c)€ , and that w(e ) from Eq. (1.5) is equal to w(ßh)  in 

Eq. (2.l8e). 

The values of 0   could not be obtained experimentally to within ro r        -v 

less than 15$ error (see Ref. 2, Table Al), probably because of friction 

between the sheet and the outer supports. Even for constant platen 

*)propertie6 of mylar sheet: Thickness h = 6.0 x 10 psi 
Poisson's ratio v = 0.3 ,  Yield stress in uniaxiai tension 
0 a 104 psi. 
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loads in the experiment,  o   is a weak function of P. To compare 

predictions of the present theory with the experiments, the numerical 

value of o   for each value of P is determined by adjusting  o 
ro ro 

In the theory so that the predicted deflections near the outer edge 

r = a are in agreement with the experimental deflections. The values of 

o   thus found agree roughly with the experimental estimates. 

In Figs. 3 and h  are shown curves for the principal stresses and 

the transverse deflection w as predicted by theory for P = 0.66 lbs 

(300 grams) and a calculated value of o  = 850 psi; for these values, 
ro , 

F    = l.hh,    PT   = 0.070U lbs,  and F T   = 6.U.    Also    (0    /oTr   = 7.2 x 10   ; 
o L oL ro    L 

hence    P = PT    at the yeild limit,   in view of  inequality  (3.25c) and 
L 

Eq.   (3.29).    Therefore,   since    P > PT     and    F    < F ,   ,     the  stresses in 
^ L o        oL 

the neighborhood of the  indenter as predicted by the theory,  exceed the 

yield limit of the material (See Figs.   3 and k).    This  indicates that 

plastic deformation of the membrane  in the neighborhood of the   indenter 

must have occurred  in the experiment causing larger transverse  displace- 

ments    w    than those predicted by the theory. 

In Fig.   5>  central load-deflection characteristics are  shown in 

curves  1,  2,  3    —    each for a fixed prestress.    The values of     0 '  ' r ro 
used are those determined as mentioned above for platen loads of 10,20 

and ^0 lbs. with the respective indenter loads of 300, 350 and kOO  gms. 

Limiting value of load PT = O.OTOU lb. is also indicated.  Since ex- 

perimental data was not available for loads below P ,  no direct 
L 

comparison between theory and experiments was possible.  However, dis- 

crepancy between theory and experiment decreases for smaller loads. 

In the neighborhood of limit load P ,  tneory and experiments show 
Li 

good agreement. 
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PROBE LOAD P-0.66 lbs 
o-o  EXPERIMENTAL  DATA 

10 lbs/Platen 

  THEORETICAL CURVES 
PRESTRESS crro»850 psi 

RADIAL STRESS (rr 

CIRCUMFERENTIAL STRESS ITB 

Fig. 3. Deflection w and Stresses  a  and o  vs, 
Membrane. 

(r/a) for the 
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PROBE LOAD  P« 0.66 lbs 

THEORETICAL CURVES 
PRESTRESS aro«850psi 

.RADIAL STRESS <rr 
CIRCUMFERENTIAL STRESS 

Fig.  k.     Deflection    w    and Stresses    o      and    o      vs. r " 
Membrane  In the  Neighborhood of the Indenter. 

(r/a)    for the 
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