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TORSION OF ROUND SHAFTS WITH VARIABLE DIAMETERI)
(A Contribution to the Theory of Notch Effects)

by ludolf Sonntag, Gera

seitsehrift fOr angewandte Mathematik und Mechanik |Journal
of Applied Mathematics and Mechanicsi, February 1929, Vol 9,

No 1, pp 1-22,

It is very important for the technology of machines to
know about the stress increase which takes place, e.g., in
shouvldered-off shafts through the influence of diametric
changes with relatively smalli flllet radii. - This importance,
however, is frequently underrated in practice, as is manifested
by the ail too often occurring and sometimes disastrous shaft
breakdowns which can almost always be attributed to insuffi-
cient consideration of the stress increase during design and
nanufacture of such shafts. This adverse effect endangers
particularly those shafts which are subjected during operation
to rapidly changing torsional mcments (e.g., torsional vibra-
tions), since a slight excess over the elastic limit is all that
is needed at each lnversion to cause a rupture in course of time.

Corresponding to the importance of this matter, attempts
vere not lacking So find solut%ons §3v this, by no means simple,
strength problem?), since A. Foppl 3/ laid its foundations by

1) Excerpt from author's doctoral thesis of the same title,
accepted by the Polytechnic Instjtute of Munich, 1926.
(Reviewers: Prof. Dr. phil. L. Foppl, Prof. Dr.-Ing. D.
Thoma ). '

>) See the summarizing report by Th. Pdschl: Solutions of the
Torsional Problem of Bodies of Rotatlon, published hitherto.
This journal, Vol 2 (1922), pp 137-147.

3) A. Féppl: .eport of the Meeting of the Bavarian Academy of
Selences 1905, Vol 33, p 249 and rollowin§, and A. and L.
®oppl: Drang und Zwanp [Strain and Stress), Vol 2, Second
Edition, p 102 and following.




formulating the differential equation. However, only very
little has been achieved as yet analytically because the
rigorous integration of the differertial equation at nrescribed
limlting conditions meets with severe difficulties, that have
been overcome so far for only two extreme cases, wnich how -
ever, are never encountered in practice (shaft with ComDLetPIV
- surrounding s imi clreuiar groove of 1nfin1tesimaxg small
~fillet radius and a shaft with sharp shoulders-’/ and abrupt
changes in diameter). There are no numerical apuvroximated
solutions for the case of finite transition radii with the
exception of a rouzh estimate made by A. Fop113 3 according to
which the maximum strain in the fille% c¢f a stepped shaft, the
radius of which is 1,10 of the smaller shaft radius, is 2.09
times greater than the circumferential strain of the thinner
part of the shaft.

The understandine of the stress distribution was appre-
clably advanced by a graphical integration method devised by
Runge, by means of wh* ? F. A, Nlllers investigated, in his
G8ttingen dissertation a great number of shaft forms of
practical importance «ith respect to thelr maximum stresses,
and did this with such exactness that hils results can be con-
sidered as almost equivalent to actual stress measurements on
a real shaft, provided that the material is isotropic. Unfor-
tunately, the usefulness of this method 1s very limited 1n
technical practice since 1t 1s excessively cumbersome and time-
consuming, and also because the results found so far can only
be given in graphical or table form.

The aim of the present paper is to provide the designer
with reliable formulae for the calculation of the stress in-
creases on the places of transition in coaxial shafts used in
machine design; these formulae shall at the same time be
simple enough to establish thelr place in practice and In the

technical handbooks.

The solutions ¢iven are avproximations. For testins
their accuracy we had availiabie the values found by ¥illers as
-well as the resuifts o our own lavoratory tests. The followine
approximation method ref'lacts the actual conditions with a

1)1, Foppl: Report o' the Meatin- of the Bavarian Academy »f
Sciences 1921, Vol <., « i,

2) F. A. Willera: Dizsortotion, lttingen. See als ﬁ‘§c~ .
tdr Math. u. thy:. ‘Journal o dathematics and ’h% sic
v"’TT‘Tl'g‘é’ﬂ, r @2y A. Tlapss dath. Ann., Vol 7i (191 nud,

3) A ngpl' VDI - “e«itochr. tdournal of the Assoclation of
German Engine.» !, w», Doty

4) F. A. Willers, .oisa-rtation, dottingen.
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quite satisfactory accuracy, and hence we can consider the
approximate solutions as being of a high quality, at least for
those cases which alone are of practical importance.

l. Fundamentals of the Theory of Elasticity. A. Foppll)
has demonstrated the truth of the following statement: If a
solid of rotation having varying dlameters is subjected to a
torsion around its axis, then an elastic deformation will take
place consisting of a distortion within the cross-sectional
plane. This distortion is such that circles that have been
drawn around the center of the cross section before the defor-
mation remain circles also after deformation, but these
circles of different diameters experience, in contrast to the
cylindrical shaft itself, different angular displacements
around the axis of rotation. This deformation has for conse-
quence that only tangential shear stresses appear in the cross
section, whereas the shear stresses in the longitudinal or
meridional section are directed parallel and normal to the
axis of rotation. Normal stresses appear neither in the cross
section nor in the meridional sections. Due to the rotational
symmetry of the state of deformation (and hence of stress),
all meridional sections are equivalent, so that the stress
conditions of the whole shaft are known as Zong as the two
components of the shear stress in a wmeridional section are
determined for each of its points. We choose the axis of
rotation as the x-axis and denote the perpendicular distances
from it by p. We call the axial shear-stress component T,,
the radial component T.

The equilibrium condition for an element of volume against
dislocation in the tangential direction 1is

A, &v,+211,-

-T; +-0T{; ¢ 0 . . . .. . (l).

As is usual, we express the shear stress components by
the elastic displacement v which takes place in the cross sec-
tional plane, and its derivative, and eliminate frcm the two
equations obtained in this way the displacement v. We then
get the equation of compatibility ' :

J A ) D ” L L) :
L R e et and o 3 . . TS (*}.
To " e '

Now, for the subsequent finding of approximate solutions,
it is possible to express Tx and T as the differential quo-

tients of a single function F(x,e0). This is so since, if we
write ’ , .

1) A. F8ppl: VDI - seitschr. 1905, p 1032,
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- ;1 h,_,: " ;’ he ° @),
these values identically satisfy equation (1),Vand equation (2)
transforms into

o F o? } ] " 2‘ r'!’ -0 . - . . . ) . . ) (4)

YL Co ol o o

The curves F = constant in the meridional section plane
represent the stress curves, i1i.e., thelr direction at any
point coincides with the direction of the stress transmitted
there, as can ve seen from the differential equation of these
lines:

de 0= s ? . (s
ol o B T
:\(b

P Since we have postulated that
ro no external forces attack on the

Aﬁ, YL circumference of the shaft ex-
T)hK: I cept on its ends, the shaft
r . ! boundary itself, in the longi-

. ,_; z tudinal section, represents a
! ; stress curve which we will denote
} 3 by F = const.

YT The total torsional moment
transmitted by the shaft of
Fig. 1. radius a is

M=2a-F. o _ (o).

For the problems to be dealt with in the present paper it
is advantageous to use polar coordinates, r, o instead of the
rectangular ones. We shall therefore transform the general
equations given above into polar coordinates. The orientation
of the polar coordinate system 1s shown in Fig. 1, representing
tlie longitudinal section of a cylindrical shaft of radius a.
ke have

X=r-eing;: p=a—rcosq,
f.—=t.-8inq 4+2,c0n; 1. =1g8inT — 1, .CO0Y . . . . 7).

and thus, the equations (1) and (2) transform into

it T 1 01 Tgrlp s ~ T, con
S A A S =0 : . i),
r r r g n—rcong

‘e, Nyg 1 T.oding + 73000 % .
J.( — Ty - v * -—0 ... 2.
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The stress components T, and Tm appear in the differen-
tial quotients of the stress function F(r,p) as follows:

1 Op 1 Br 1
T - ° 7 Tg= — -

. = ‘3a)
r g la—r-coas?’ NDe (a—-rcong) '

as can be seen immediately 1f we substitute these values into
equation (la), which thus ylelds an identity.
A) The Symmetrical Problem
2. The Cylindrical Shaft Completely Surrounded by a
Semicircular Groove. (See Fig. 2 showing that part of the
longitudinal section lying above
the axis.) We start from the

: v +4- stress function of the smooth
! \(;>/r,ﬁ* cylindrical shaft which in the
g B polar coordinates (Fig. 1) used
? } r- here reads as follows:
vai,' _]L F—=C-(a—rcosg) . . . (8)
Fig. 2. where C is a constant. P = 0 on
the shaft axis, 1.e., forr =
a

~cos &’ and F = Ca4 on the boundary, 1.e., for cos » = 0. Con-
sidering eq. (6) it follows that

14 [/
[ . ('/

"2a-a'

Denoting the groove radius by b, we expand the equation
for the stress function of the smooth cylindrical shaft, eq.
(8), and so obtain, as the simplest imaginable approximation
farmula for the stress function of a grooved shaft:

1"—'0']"0'-"("1'(’:)“‘""‘(':).““)c""’}. ... 10y,

where m and n are two as yet undertermined positive numbers.
The solutlon of the problem depends on their appropriate desig-

nation. PFor b = 0 and r = », this expression transforms into
eq. (8), as 1t should. Coefficients cy and co, are obtained

from the two limiting conditions:

1. F=C-a‘tor, = b 2. }-z-('rﬂ'-f— ° - . l1ta-
A cce gy

Best Available Copy



The tﬂird limiting conditlion, according to which F must
become C-a™* on the boundary outside the groove, is automati-
cally satisfied. According to eq. (6), the constant C becomes

}C;= -—ﬂ-ﬁ. If we introduce as an abbreviation ---9 =Y,
. en.a :

" then. it follows from the two limiting conditions of (10a) that

6= BRI ST 5 b U § B § A

If for the sake of brevity, we substitute w for the term be-
tween the brackets of eq. {(10) we obtain for the stress com-
ponents:

Toe= + tn::c:nrr)' ;g ) (:) + oy (:) . ;Esin g ;__.’;a"’:‘(_g)m*. ‘:;‘;(t)'} cosq:g (12),

cuwt e . "
Ty = — PO tey(m l)(»} w4y (- 1)(3
L r . r

-
_\a—rcosq')"‘i_ 'lJCOC‘I- . (13,

The stress of main interest is 75+ Its maximum lies at

~ the bottom of the groove, i.e., forr=b, » = 0. At this
- point, as everywhere else on the boundary, w a, so that

. ¢ ad(e n—di+ (ginml)=1;
(73) = : oL j
v =W} B

The quantities m and n could hitherto assume any arbitrary
positive value. To determine them, we use the condition that
(Tm)r = p becomes twice the value of the circumferential stress

=0
of the smooth cylindrical shaft of radius a, when the groove
radlus b comes infinitesimally small. Thig was shown by
Willersl) (approximately) and by L. FBpple (rigorously, by
means of the Bessel functions). The rigorous proof of this
stress duplication, known as
“notch effect," will be shown
here in still another manner.

We first consider a torsion

\Qi/ o problem, compietely different
. 777t from that at hand, but one for
it which it 1s possible to find a
rigorous solution, namely the
Flg. 3. Fig. 4. - problem of a cylindrical shaft
ee ers, loc. cit., page 251.

2) L. F8ppl: Report of the Meeting of the Bavarian Academy of
Sciences, 1921, Vol 51, page 61.




weakened by a semicircular key groove, runing parallel to the
axis (Fig. 3). We assume the radius b of the keyway to be

negligibly small compared with shaft radius a. Moreover, we
consider only that part of the shaft's cross section that is
in the immediate vicinity of the keyway and is represented in
Pig. 4 in infinite magnification. We proceed analogously with
the grooved shaft, which 18 also represented by Fig. 4, 1f we
consider this figure to be a part of the longitudinal section
of this shaft. If we assume the shaft radius and the tarsional
moment to be equally large in both cases, then the tangentiai..
stresses T, of both shafts, at a sufficiently large dlstance

from the semicirnle, are also equal. The stress lines can be -
considered by hydrodynamic analogy as the streamlines of a -
plane fluid motion that flows through the cross section or
longitudinal section, respectively. We denote the velocity

vector in the cross section of the shaft with the keyway by s8,,
the velocity vector in the longlitudinal section of the grooved

shaft by sp, and the shear stresses accordingly by T aﬁd Toe
In order for the fluld motions to remain free of poles the.
following relations must exist between s and T, as 1s well
nown: ,

o= seo=q (ﬂ‘ . .. ‘ N . .' ‘ib},

where p and q are arbitrary factors of proportionality and o .:

is, as before, the distance of a point on the longitudinal sec- :

tion from the shaft axis. On the circumference of the shaft,
at a sufficiently great distance from the keyway or the neck
respectively, and with o = a, we have:

(Me=p-n)=p- 1, ‘h=q-a' (e =g a1, . .U,

s and T assume their maximum values si, 11, and S, Ths Ye-

spectively at point A (Fig. 4). Since here b becomes negli-
gibly small compared with a, we have to write p = a, 1n this
case too, and

5 = 7|’, -\'4' "Q'a’- h' e . . “7)'

We see immediately from egq. (lv) and (17) that with p = q-a€ =
= 1 both flows become identical in the boundary regions, i.e.,
we have:

SomroNyaaS=0cr . L (18)'
whence A A L 19)

We shall subsequently prove tnat 1f the stress lncrease T'/T
caused by the notch effect can be found for one case, 1t is




known at tne same time also for the other case. We can more-
over deduce from this consideration that the stress increase
will have about the same magnitude in both cases even at finite
values of b, as long as they are small compared with a.

Denoting tne stress function by f the rigorous solution
for the shaft with a semicircular keywayl) (circular-arc moon-
let) (Fig. 3) is 1in polar coordinates :

- h -
f=12acosq —;*e!—b— T’b' :—

2

2
L e

where ¢ is the torsion angle. The function f satisfles tne
limiting conditions, because 1t dlsappears on the edge of the
eross section (for r = 2a cos y and for r = b) and also satis-
-fies also the compatibility equation:

) t Ny 3
___f+ - - -

a4 r dr

-,

RN PR e 2

1

1

RS PR

~

as can easily be seen by substituting into it f of eq. (20).
- The stresses are obtailned in the usual manner and are

'Y ?

. . a‘! AP .
T.o== - 8N Y (! - ;7)(; AR T, -- (:c co8 ) --;+—;;—cnsq)(, O (0

If we substitute here for 7. : r = b and 9o = 0, and alsob = 0,

we obtaln for the stress sought wnich we designated before as
7! the value 1 =12q-v.8 Since b = 0, the respective torsion

angle ¢ for the smooth cylindrical shaft is, #-.%i thus:
oM o ‘

' = 2--—-? =2 7T which proves the stress duplication due te
“.a 0’ p " p

the notch effect also for the shaft with the neck groove.
Setting this value of 7' equal to the right side of eq.

(14), in which b 1s made equal to O, we obtain a condition
equation for quantities m and n. This equation with C = EJ&u,
na

and considering that ¢y = = (cy + 1), is

(= 6 {m = my == n~+-2 =10 Co e 33).

T) This solution was found by the author quite some time ago
and was confirmed, among otner proofs, experimentally by
means of a Prandtl tension loop produced by a soap film,
Meanwhile it was also given by C. Weber., See Forsch.-
Arbeiten [Research Pap.rs] No 249, page 31.




According to eq. (11) we first get for (c¢;)p=g the indetermi-

nate form 0/0. The true value is found if we differentiate
both numerator and denominator with respect to y, it is

. » '
C Jhe0 --————;‘—.—;—— ........ (2").
m: Pyeqg ~"

Since the quantities m and n must necessarlly be positive,
integer or fractional, numbers which are different from each
other, we have with m > n:

(rl)b::i): ~ 1.

Substituting this value into eq. (23), n cancels out, and we
obtain

mo=2 . .

To obtain unknown n, whose value must in any case be equal to
or larger than zero and smaller than 2, one could utilize the
principle of the minimal deformation energy, but this proves
unfeasible here, because the calculation becomes far too com-.
plicated. But various reasons, among others also the analogy
with the shaft with the keyway (see footnote 1) on page 11 lof
this manuscript}) indicate that we must take for n, here as
well as there, the smallest permissible value, 1.e., the value
which differs most from m. Incidentally, as we saw before for
a vanishing, small b, the value of n 1ls arbitrary within the
permissible limits, hence the cholce of a specific value for n
1s practically of minor importance in the case of small grcove
radii. We shall thus put n = 0 and we shall see that this
leads to a very good agreement with the results of Willers.
Collecting the terms, the now canpletely determined stress
function reads:

M alcon g ir— m’T o
Fe ——lag=— - = et L {28)
2n'u‘[a (w?'—tVeon?y) ¢ | 3m.al (26)

The stress component Tep? which 1s of main interest, becomes

2M et Y+ BN cos g _ (21)
nmoal.r (qa-reoag?(ad —bdcos’y) C

Ty==

It 1s worth noting that this expression rigorously satisfies
the compatibility equation eq. (2a) along the semicircular

87'

boundary line on which 7, and Ty disappear, if the transition

radius b becomes infinitesimally small.
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Flg. 5.
For r = b we obtain
(Ta)ee. s = N 2acongy 2N 2a'cosq -—i:: 4 s .

n-la—dcosg) ‘a+bceosg) m.ad (n—bcolq)'(a+bcolq)

For the maximum stress at the bottom of the groove, i.e., at
the boundary point ¢ = 0, we get the simple formula

M 2
Trns = (7' Fom b T ey = RS r - . . (29
=0 Rcta—b)! (a+b) n (e — b3

The first factor represents that maximum stress which would re-
sult if we assumed a linear stress distribution in the cross
section 9 = O; the second factor y characterizes the stress in-

T
crease. Fig. 5 shows the proportionality values -575 = » and

Tmax | na
T = vy as functions of a/b in graphical form, whereas the
n(a=b)3

values found by Willers are indicated by small circles. The
agreement 18 very satisfactory. Table 1 shows the computed re-
gsults of the proportionality values for a number of a/b values.
The stress component T, becomes °

_ IMvlsing (r? - oY) (a7 + b oos’ ) (30).
= nla—rcosglal  riat=d' co’y)

10




TALLE 1.

PR A ] G !
= , g 5 ———— vergl. Ahh. §

'i‘ 1 25 5 8,68.. B 10 113,33, 20 30 40 . a0

x (‘2;\ oc 6,6 3,95  2¥1 264 2,49 241 296 | 2,22
v. nach Willerw) [> -- 3,07 2,76 260 246 — 233 1 217

X~ X

215 . 2,10 2,09 4,0
- 204 —~ 20

H

i i
Z . 100 - b +3 +2 4t — 41 43 | = e - 0
! H

. ! . ‘
y oLl 16T LT LN 182 1835 1,86 . 1,9 ‘:,uus; 1,95 1,98 2

1 -- See Fig. 5; 2 -- (according to Willers).

On the generatrix outside the grogve, i.e., for ¢ = n/2,
(Tm)®=ﬂ/2 = 0 and the boundary stressl) becomes

2 M by? 2N .
S (| S I o0

For r = », or for b = 0, this value transforms into that valid
for the clrcumferential stress of the smooth cylindrical shaft.
At the corners r = b, 9 = n/2, both 7, and Te disappear. The

stress in the weakest cross section obeys the law:

90 ¥e. otr? 4 b% 2 M .. (3.

) = e )
(1) -0 xoal oa—ria?—th  mo(a—d"

Fig. 6 shows, for the case a/b = 11, the functions for the

boundary stresses (Tm)r=b and (Tr)wgﬂy?, as well as the stress
in the weakest cross section (Tm)mgo in graphlcal form. The

corresponding numerical values are given in Tables 2 through 4.
We see from the stress dis.ribution over the weakest cross sec-
tion that the torsional moment is transmitted mainly by the
outer layers of the shaft, while the layers closer to the axis
carry less of the load?),

T) Willers, too, arrives at this equation on page 254 of his
paper by means of an approximate integration of the differ-
ential equation for the case that b is very small compared
to a.

2) The deductions drawn from the hydrodynamic analogy lead also
to a certain simllarity between the grooved shaft and the
shaft having the kKeyway, in regard to the gtress distribu-
tion in the border regions. Since our formula for F worked
out well in the case of the grooved shaft, it seemed feasihle

11




Fig‘ 6.
l] == Shaft radius a.

to try an equation for the stress function of the shaft
with the keyway, developed exactly like eq. (10), and then
to compare its results with those obtained by the rigorous
solution. This equation, using the notations of Fig. 3, is

..’ ”
P q-;nn-'[hcolr-""ﬁ (%) #C"'('.")" w,

r

which changes over into the expression for the full circle
if b=0. The limiting conditions here are F= 0 for r = b
and r = 2a cos o9 and it follows from the condition of the
doubling of the stress due to the notch effect, that m = 3;
we cannot state at first anything about n, except that it
certainly is < 3. To determine n, there is at our disposal
the additional condition that the stress must disappear in
the center of the cross section; this center coincides with
the shearing center (and not, as one could tnink, with the
center of zravity). This condition ylelds for n very exactly
the value 0. ile thus obtain for the stress on the radius
vector o = 0O:

Q-2 »
Nylgmy . (96 + \Qhlyes a- r-((Q));m0- 0+ 1))

12




The behavior of the border stress (Tr)m=n/2 on the cylin-

drical part of the shaft, represented in eq. (31) has been
tested in experiments and well confirmed. (See also the test
report.) The a/b of the test shaft was 11. According to
Table 1, the stress increase at the bottom of the groove is
83.5%. The disturbance in the stress distribution of the cyl-
indrical shaft, caused by the turned-in groove, practically
disappears at a distance of 10b, measured axially from the

pole.
TABLE 2.
—— e e ——
v ¥ aj a &P
(1g)r=bdm ;;.‘ﬂl ' ftir den Fali: 3 =1 vergl. Abb. 6
9 00 7 800 45 f $0° ! "0*
Y T
M I 2.44 f 2,08 1,62 1,1 ' 0
1l -- For the case; 2 -- See Fig. 6.

TABLE 3.

)
N -

(h)'-un-;'——-.'ﬂ: ’ tor den Fall: :- w-lil, vergl. Abh. 6
L 3 .

-~ v | 1,9 1.4 16 1,8 2.0 3 ‘ 3 10

. |
IS o 0808 049 061 | 069 ! o075 |

|
080 08945 0,08 0.9

1l -- For the case; 2 -- See Fig. 6,

where the lolliowing holds true if we use the abbreviation
*—-ﬂz:

2a cos o

a=(3) sty metitee

The numerical evaluation ylelds an extremely close approxi-
mation to the stress distribution of the rigorous solution,
even when the ratio b/a has rather higher values. The de-
viations in the maximum stress e.g., for b/a = 1/3 are about
-3%, and the deviations of the torsion angle about +6%. The
approximation used here thus ylelds a high quality approxi-
mate solution also for this torsion problem,

13




e —

. - 1) X
In n &
eI IR fur den Fall: — =11, vergl. Abb. 8
(Tplgez0 = Joare 7 r den Fa P ]
L | 1 ) 3 4 5 7 ] ] 11
» : .
i ; ; ! 1 :
" | 1,885 0,902 0,684 0541 | 0466 ‘ 0.804 0,331 o188 | o

1 -- For the case; 2 -- See Fig. 6.

. Shaft with Concentric Hole and Turned-in Groove. If
g is the radius of the axial drill hole, then depresﬁlon E,
already modified £or the 1imiting conditions of 1) F = Ca% for

= b; 2)'F = Ceg” fOorr= g___g’ is:
cos o

Al

o la—gi? = 9 ron? g}

M
i | @
Fx?n(a‘—-p‘)[

For the maximum stress we obtain

_IMe- In‘lu«b)‘ - 0') ‘. — o? L (ae,
a((c o)'-"‘) f.‘—p‘)(c Bi(a-g g — %)

Tray ™=

vwhere the second factor represents the stress increase over a
linear distribution.

On the shaft circunference outside the groove we have

(_‘.,)".,A,._,,,_ LR (1 (:):) ....... (38).

T {a'~ 2"Y

The stress in the weakest cross section (r = 0) is distributed
according to the following law:

L. RN | .
1M -n we . gr tethia -9 ,an)

“’2?‘ o= ;K 1y ~.‘) Rt | -rl' ..(tg—-."—.‘l

w denotes the expression within brackets of equation (33).

The stress increase f{or the case of % = ]1, g - il 13‘8&%

(as compared with 83.5% for the shaft without the bore hole).

4, aft with a Slot-Like Turned-In Groove Whose Depth
8 er : e Transition us [. Here, the gen-
eral form o e stress ctlon 1s derived in the same manner

as in Section 2. It is

14




FeKa—r: (m( )+m)cow“

j; rl_.__ Here the constant K,using notations of Fig.
3P 7, 18 K = 3> While the coefficients
Ne, 2ne(a+d)
+——— g; and g, are found from the limiting con-
ditions. The 1limiting conditions in the
Fig. 7. region of the longitudinal section of the

shaft between axis and radius vector 9 =
= n/2: F=ororr--ﬂ-and1?=x(a+d) for r = b. Ve

find

"(".m.) elsdd-conr
o= A dcondy ' - a' - ooy
therefore
[ 1)
. .).7@'0,7*‘)-'@0.,(.’* tdceony) X
e L. U
F-,".“’l‘+ 0’—.'!‘0." -"-(l'b". u (.,)
and
a’e
. he 1Mo g4 hesy +d rontp@’+idony
" W ™ e——————— 3 o—— YR - . — (..)
@~-reony)? Be  n.la e Dia - rcony)? '~ Veor'y

In particular, we obtaln for the stress distribution law in the
weakest cross section

LY
Wi e ny b ho ¢."O¢‘I
( x " = o’ )
'. -0 e ——p, + = - —

. 139),
T~ theda- " tas s :

gromawhich the maximum stress at the bottom of the groove 13
oun

¢ ’

—~bed +alerd
Pune w (Py)y .a—}' I - 12
- 'v:t 'l-l" ‘sobiane &) N (a=M

1 {40).

Factor v signifies how much the stress 1s increased when com-
pared with the linear stress distridbution in the weakest cross
section. Taking d = O (case of the semicircular groove) v be-

- comes v = ;3253, as 1t should be according to eq. (29).

15




For b = 0, 1.e., for the case of an infinitesimally nar-
row slot, we have v = @, On the radius vector 9 = n/2 we ob-
tain

d »,?
s feer s ’].%.(.‘.)’ ..... ()

(tylyemsip= noa+d .’A r

and:

(v.)'--,l- [." [N "-) [ ] .. (e3).

T w0

From this we can compute the variable angle 3, at which the
radius vector o = /2 1s intersected by the stress lines run-
ning parallel to the axis, at a large distance from the slot
and above this radius vector. This angle is found from

d-b
W cw— . R
$ b rY - d?

‘l"’-‘»‘(l':) . 143).

To visualize how the stress lines crowd together in the vicin-
ity of the groove bottom, we can e.g., calculate the coordinate
) of the point at which the radius vector o = 0 is intersected
by the stress line which coincides, at a large distance from
the slot, with the radius vector o = n/2., We take for this pur-
pose (")m-n/Z = a = (W)..0 and find from 1t

r=so

Pe 'bV IEE
Yor o




In this way we obtain e.g., for the case where a = 11 ¢m, t =

=1ecm, d= 4 cn, a value of r, = 2.2 cm. Using the 1llustra-

tive hydrodynamic analogy, this means that the fluid whicn
flows in a ribbon of 4 cm width, at a large distance from the
slot and above the radius vector o = m/2, now occuples a width
of only 1.2 cm when it passes the radius vector » = 0. Fig. 10
depicts this numerical example. It shows several stress lines
and their tangents where they intersect the radius vector o =

= n/2. The curve of Piz. 8 shows the stress increases, which

follow frcm eq. (40) for the case {g : %1 as a function of

d. The corresoon"‘ng nunericzl vzlues are given !n Table 5§
which also snows the ratio between the boundary stresses at the
border point v = n/2 and the corresponding maximum stresses.
Fig. 9 and Tables 6 and 7 show the stress distribution in the
weakest cross section according to eq. (39) for the case of

a/b =11, 2—5-9 = 2,5. They also show the behavior of the

boundary stress along the circular borderline. Finally, Fig.
10a and Table 7a show graphically and numerically the factor
v as a function of b for the case a = 11, d = 4. This factor
characterizes the stress increase.

Fig. 9.
1l -=- Shaft Axis.
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Willers did not 1nvest1gate tals problem, hence the for-

mulae derived here can be tested only indirectly by the re-
sults of Section 7 helow. We state right now that a good agree-
ment with Willers' values is obtained. We shall not pursue

here the stress distribution‘in the region of the longitudinal

section above the radius vector ® = n/2, since it 1ga of only
minor interest. o o o
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TABLE 5.

T~
( 2.
Tiay = ‘2—"'- v, far ll(‘?lzl"nll: a1, bzt vergl hierau Abb. 8
(s =8}
;—““IJ 0 1 e 3L« 5 10 »
$ . 1
. 1,83 2,53 s11 . 362 | 4,06 o3 380 10,16
frgl; % X H .
=t 0 0,273 0408 i 048 | 0544 0583 0578 0814
Tmes ' i

1l -- For the case; 2 -- See also Fig. 8.

TABLE o.
n o - — o
e < — =
el Cra: t oo, P T =2 v.ul.;mn AbD. 9
(rg:¢ g:n (;H-hﬂ..' . for den Fall: b © i, . WS
Y L e iy
i . ; ;
r 3 ! ] I 2 ® ! s 1"
b l ‘ l..l ‘ 2 ; ‘ l L J
t ¢ + — + ? !
5 p (4] [1]
w | oses | oam 1 0,84 o4s | o028 | o2 | 015 | oo

1l -~ For the case; 2 -- See also Flg. 9.

TABLE 7.
e :“l_“ m‘l N “_b—'a" uri.\hbo
(Todras b = (;-_; o Xy, fitr den Fall. » S I B - = D, gl. .
y | 0o i 809 I 430 ot een I 90°
1 ; .
- l 4,06 i 116 ; 3.43 3,08 1 2.23

1l -- For the case; 2 -- See also Fig. 9.

, The case of the shaft with a concentric bore hole can be
dealt with as before without difficulty.

B) The Assymetrical Problem

Stepped Shaft Whose Step Height Equals the Transition
Radius . This problem, as well as that discussed in
‘he next section, is of specilal importance from the point of
view of practical application, because the stepped shaft be-
longs to the machine parts most frequently used in machine de-

sign.




Ter = - v,  tedenm Fall: a_ 11. A=4,  vergl. biersu Abb. 10a
n-

- [ . T - e ———— e e
v Py T - ~

) 0 0,03 0.! 0,2 0,5 1.0 | R 2.0

" b 59.9 30,5 13.1 7,03 1,08 ‘ 3.05

{Tg) emp
oym=mR)

H v,738 0721 w69} 0.626 0,042 0482 0437

Temur

1l -- For the case; 2 ~- See also Fig. 10a.

We call tne small step "half notch," to distingzuish 1t
from the "full notch,” which corresponds to a small semicircu-
lar groove. In the present case of the half notch, the limit

‘ of the factor characterizing the stress in-
" crease in the borderpoint o = 0, is, for an
o infinitesimally small transition radius,
I i obviously 1.5 (average of numbers 2 and 1
R ’Q> r, s whicn are respectively applicable to the
0 i \\(q ; full noteh and the smooth shaft). This can
o N, be proved in detall by a somewhat cumber-

—&53 —— some calculation, which however we omit
T here for the sake of brevity. Here eq.
Fg. 11. (14) is valid without changes and it thus

follows that m = 1.5. But we try to avoid
fractional exponents in the interest of arriving at formulae
that are conveniently evaluated numerically. We shall there-
fore introduce this limit into the calculation in another way,
which leads to a practically complete agreement with Willers'
results. Introducing the new coefficients e; and eo, and with

"m=2 and n = 0, the equation (10) now reads
F=C-[a—-r~(ﬁ'(:)2+ e)eosy]t . . . . . . (457,

The,boundary condition for r = b demands that e, = - e, we can
therefore write L

:Fnc-[d-—r-e.(-i-l)—r-??contp]‘. L. (48

From this the maximﬁm stress for the grooved shaft is obtained
as | .

40at r+d
'" _ ‘- wsh K PR f -(.~ ) . . . . .
o = T el rat (46a),

L4




where the term in parentheses meang the limiting value of the
stress increase for infinitesimally small groove radius b (on
account of (e1)p=p = - 1). Adding to the numerator and the

denominator of this expression the quantity b, the expression
assumes the value 1.5 according to the prescription forr=b>b
applying in this case and the results obtained by this simple
means differ only very slightly from those which we would have
obtained with m = 1.5, These considerations suffice also to
determine the border stress at point ¢ = 0. This stress can be
considered as the maximum stress, as will be shown later and as
it follows also from Willers' paper. The sinple calculation
which proceeds analogously to that of Section 2, ylelds for
this stress the extremely simple formula

. 2V 3 sk 2 M \
iyt D T = IR A T N W At Y
T g Ao o2 i 206 (1 — 8

If however we ralse the question of the stress distribu-
tion in the longltudinal section of the shaft and of the magni-
tude and the location of the real maximum stress, then the ex-
pression in parentheses of the stress function must be ex-
panded by a term which is odd in o, on account of the asym-
metrical course of the stress lines with respect to the radlus
vector © = O, which 1s obviously no longer intercepted by them
at a right amgle, except by the border line. The stress func-
tion can now be written:

M b s+ 2 ¢ N
’l‘—...___._, - . g ( -_— ) Y ) H 2 — . ad ‘N
Pt [a reag, 1 31‘.—0 co8 ¢ + () sin ’qg]_.?”'n‘ AT T

where the double aﬁgle in the sine term stems from the limiting
condition: F = C-a™ for the border » = w/2. This term must in
any case disappear at point o = O, since the stress increase at
this point follows already from the symmetrical part of the
stress function discussed above.

About the function f(r) we can only state that it must
disappear for b = 0 and decay rapidly with increasing r. Theo-
retical considerations could provide no further information on
the shape of this function, so we resorted to experiments to
determine it approximately, with good success. 1If we take

/(7‘)?—'+( b ), [ (‘9)l

r+d

we achleve a very satisfactory agreement between the calculated
and measured border stresses along the cylindrical parts of the
shaft.

el




Omitting the auxiliary calculations, we obtain from eq.
(48) in the usual manner

1 3———-”’_"—2’;IDQ 1
3 M S+ beosg) [P+ 270+ BONCOSE Ty ,, (5v)
— R '““—“"“”"‘a.mzq) '
3 e 1Y)
me (a—remq\’(a—bcnsy)-[n-«-bcour(?+a*°¢°.' rs+

and for the border stress in the fillet:

3 1 .
{a — b)Y -(a + bcosq) (-— cosy + |In27)
L S NI BE L, (s,

_— T a8
a-fa -t (“_b‘.‘,avw[n-{»bcuu](?+;‘+bcm‘r

(rq)r=p =

where Ao represents the stress lncrease over the normal circum-
ferential stress of the weaker part of the shaft. With o = 0,
eq. (51) transforms into eq. (47). As we can see, the maximum
stress does not occur at the border point o = 0O, but at a
closely neighboring border point o = @, and ¢ becomes maxi-

mun for a/b = =, i,e., for b = 0. Substituting b = 0 1n eq.
(51), the condition for maximum 1s:

df'r.(—: cos q + : sin 2m)=0,
from which we get: sin = 0.281 or = 16°20', We thus find
Pm Pm

(Al)mn = 1.57, WHILE ()'I)QRO = 1,50

For the case of a/b = 11 we have g, = 10° and the true
maximum stress is only 31/2% larger than (’m)rabf for smaller
¢

o=

values of a/b the difference is still less. The stress

(?m)r-b of formula (47) can therefore te considered as the max-
o=0

imum stress with sufficient accuracy (see in this connectlon

the last two columns of Table 11)., The stress in the cross
section o = O opeys the law:

L]
N AP ee Y LS ET R YU Y
(Fedem-o = oy et P MY o),
Mo 7 (0= alela—nt lme 200(red) nolg=d

and the radial stress component on the radius vector o = 0 of
the longitudinal section 1s




| ]
9 . . (-
(e M e e R (D)
")""_o-n-(n_h\3'a’(¢+2b)(|-1’)’~r~‘r*") a+2bd r+d n-la--H

The quantity in brackets 1s always negative, hence the two
stress components on the radius vector ¢ = O always have op-
posite signs, as 1s also postulated by the pattern of the
stress lines. The border stress of the stronger shaft part be-
comes:

> 2M G- (r'+ 8rbd+ 4 bD 2N
(7'/'=:'/2 = T L SR l.ﬂ Ce e (5)4).
T-a rir+ b)? w-a

The border stress of the weaker part of the shaft follows from
the stress function F' which holds true for the region to the
left of the radius vector o = O (see Fig. 11) (when setting up
this function we must remember that the angle ¢ here 18 nega-
tive and that the 1limiting condition on the border is F' = Ca4
b
cos w)'
border stress 1s

for r =

Thus, the equation for the above-mentioned

’

1 2 m+bcosq)[l +ros¢(2-l_£'2.?..ﬂ_ )]
7 :w.(,_;)‘— o=t +COAq

cos - T la— b3 b sin2 Y
7 Cos [a tbheosy (2 e s v ) (1 4 cong)
a M a+ bheong

=g e Lo ad).

This equation as well as eq. $54) were tested experimentally
and good agreement was found (see test report). Fig. 12 shows
the variation of the border stress along the border line of the
meridional section of the shaft graphically, for the case:

a/b = 11. The calculated stresses are plotted orthogonally to
the contour line. Note the interesting phenomenon that the
stress disturbance which is generated through the place of
transition propagates much farther into the thin part of the
shaft than into the thicker one. For instance, the deviation
from the normal circumferencial stress that prevails on the
thinner part of the shaft is about 8%, at an axial distance
-from the center of the fillet that equals six times the filllet
radius. The deviation at the thicker part of the shaft, at an
equal distance from the corner (at which the stress is zero)
i8 on the other hand only one percent, in good agreement with
the experimental results. Furthermore, it follows both from
theory and experiment that the border stress of the stronger
shaft part increases from the corner on faster than in the
case of the grooved shaft.

Flg. 13 shoys graphically the proportionallity values

Tma = p, as functions of &/b, where Tpqy 18

—-—-pland 2M

2
™ a3 ne(a-b)3

H]

3

e3




the actual maximum stress at the border point © = «p. The

values found by Willers, of which only two were available here,

are indicated by small circles. The azreement is very good

here, too. For the case of a/b = 1, 1.e., when the diameter
Imax must

of the thinner shaft becomes infinitesimally small,

n a3

T T
become infinitely large and -7§%$- must become 1; 7?%% will

ne{a=b)3 m a3
therefore approach the value o asymptotically. For very large
values of a/b both curves will approach the value 1.57 asymp-
totically.

&,0.”’ - mD 1 1

inansl Lu)

HKeieorsgus 2

Fig. 12.
l] -- Shaft radius.




The behavior of the cross sectional stress (‘rq))wﬂo eq.

(52) and the radial component of the meridicnal sectional
stress ('rr)mgo eq. (53) along the radius vector © = O 18 shown

for a/b = 11 in Fig. 14. In Fig. 15 the tangents to the stress
1ine8 in the meridional section are plotted for different
points of the radius vector ¢ = 0.

Figs. 14 and 15.
1l -- Shaft Axis.

The numerical values of the stresses have been computed
for the drawing of the corresponding curves and are compiled in

Tables 8 through 13.

TABLE 8.
1m0 e o, 2 T
rgh -ban'(";;”"-lg, far den Fall: N 11, vergl. Abb, 12
v o 100 20° LI T s0? us | ee*
‘s 1,983 1,43 1,624 1,05 1.1 0.923 05 | o

1 -- For the case; 2 -- See Fig. l2.

6. Stepped Shaft, as in Fig. 11, but With Concentric Bore
¥01 . Using g to aenofe the raaﬁus ot the bore, we obtaln the
ollowing formula for the maximum stress, from a calculation
that proceeds analogously to the previous case, which however
we omit here

. IN-a 1-a¥i—n)aigs
(Pg)rrmi = — Sl ” L - D (58)
par a.tat g 2ia MEa g A e TH)
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TABLE 9.

2N '? ' n (2_‘
g sa-- -y eds, fur den Fall: - =11,  Vergl. Abb. 12
m.a8 [}
! l 1 1,2 1,5 1.7 2 L] ‘ 6 10
i l 0 0.314 0.574 0,677 0.8 0,917 | 098 0,987 0.998
l -- For the case; 2 -- See Fig. 12.
TABLE 10.
by § 1 a <
L Y I fiir den Fall: =11, vergl. Abb. 12
nela—03 b
v | o e 30° e e 200 82050' | 83° 880
7 '
A | 1988 | 1,295 117 1,109 1,098 1.08% 1,073 1,058 ’ 1,027

1l -~ For the case; 2 -- See Fig. 12.

TABLE 11.
2n 2N ("l " 11
(rp:-- = 7 et 2—;:‘ o r'—:. U vergl. AD H
- = e e
1 2.5 ] 16 1 20 3o 50 x®
2 "
> : . ’! , i e !
mo (4 w | 543 XTI RO R O R R (N L L
(g (nach Willers) o ! L 1.003% . ' - 9 .
» :5"9"" 100 0 i ) i £0 - - ; ‘ -
(Mo ' i ' ’ : ;
" 1 6 117 1,'.':’ a2 LR WT IR T BT I K2
N 1 1.18% 12 bt 1,985 us:l 1,651 ° 1472 1 150

1 -- See Fig. 13; 2 --

(according to Willers).

TABLE 12.
> il Zip v
LY B .
. SO I . vergl ADD 14
"‘)‘-.u.‘._“.l.__ tuy den Fall . |v“~- ) y
A ‘ 1 (1) ? b 4 s ! d "
. .
‘. 1.88% 1,108 (R 11! 0280 ngos (X ] H (RT3 0140 [

1 «= For the case; 2 -- See Pig. l4.




TABLE 13.

.~ a '
[fy)g =0 = 2»1 ' thr den Fall: =il vergl. AbD. 14
n(a—aF b .
— - .. !
’ i TR T S 1 L ‘ 5 ? v 1 on
2 n A * 1 o i . E .
'N I [} Lo osd — 0070 - 0048 02T 0 - 0 uth o-oed o efood t

l -- For the case; 2 -- See Fig. 14,
The Stepped Shaft Whose Step

b _ Height 1s Larger Than the Transition
T ius . For the sake of brevity
— s N we sha scuss here only the problem of

7 the magnitude of the maximum stress. Here,
< too, this can be with sufficient accuracy
NI A & by the stress at border point o = O. As we
o -[~«=—<l<—  have pointed out already in Section 5, the
‘ term of the stress function containing o
Pig. 16, with an odd exponent does not play any role,

S0, in order to calculate the stress we may
neglect this term a priori. According to the procedure in Sec-
tion 5 and with this simplification, we obtain for the stress
function

F = ls'-{'c--r- '1(‘:"'-0',3"23“*6()..].-K~u‘ . (.7).
where
. ! ]
K- ‘e o+ @

In the following considerations we are concerned only with that
region of the lonzitudinal shaft section that is cross hatched
in Piz. 156. The same limiting conditions apply to 1t as to the
case discussed in Section 4 and we find from this the coeftl-
clents t; and t, as

140 L8 heney LT
20 e’ os Nr«-v ) asdocong Pae)
b - 20ICME 02 . T e Rl T )
. .-.p.v a--bemy

From eq. (57) we obtain:

and -
.~ M ]
- P - . N |
‘0o e “‘."."‘{‘4[8" o
.. Loty ‘(:, - ‘)}m 1w , "o
v a-} 2'400 as?e [ 3 LRI i




For d = O ve get u = 3.a Yy gb’ as is also postulated by the

2 a
analogy to the case of Section 5.

;@ ar &5 & a5 & & @ a5 W
wgd # 7 7 J ¢ § § T 29

Fig. 17.
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&
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I R —
o.0® o @& @ s &

Plg. 13.
- Por b= 0, 1.e., o @ sharp corner, u = ®, Fig. 17 shows
the tactor i, wnich cnaracterizes the stress increase. as a
runctlon of h-t-ﬁ for the case of a/b = 11. This curve is

drawn as a aolid line. Tne curve obtained by Willers 1s drawn
as a dashed line (cee also Table 1%). 'hen we compare these
two curves and aiso the following ones, we must take into

28




account tnat tne Willers values refer to the actual maxiaum
stresses, whereas we have approximated them in tnils problem ity
tne border stresses (T.).. which are slishtly smaller. For

=0
instance (see also Table 14) tne followinz appears: The factor

uis 1.385 for gét-g
stress increase as calculated in Section 5, for tne torder
point » = T yielded for thls case the value 1.43, wnlcn azrees

witn Willers. Taxing this into consideration we can say that
the two curves exniblt satisfactory acreement. Only at rela-
tively large values of dsa are tne deviations sreater, btut
these cases are no lonzer of any practical siznificarice. The
solid-1line curve in Fig. 15 shows the factor u as a function of

. a-b_3 _
or ¢t se = d o =)
a—— for the ca —= -3 (see also Tatle 15). Here too,

the computed values agree beautifully with those of Wiliers
(dasned curve). It can be seen from these two curves that the
increase in the ratio of the shaft radil g—%—% at constant
fillet radius causes an increase in tne maximun stress (Fi{:.
17), wnile, when tne ratic of the shaft radii is kept constant
but tne ratio of tne fillet radius to the smaller sihnaf: radlus
1s increased, tne maximum stress decreases (Fiz. 1Z). Wlllers
varied these two ratios of the radil simultaneocusly, in the
same sense, by taking tne shaft contour as an unchanging erntity
and puttiny it closer to or fartner away from tne axis, wiiere-
by it was to be expected that tne stress ir.crea-e renains
nearly constant. Tne same experinent nas teen ..ade nere, 1iu
Fiz. 19, for the case tnat b = 1,/¢(d + t), t.e., that the fil-
let radius comprises one third of tie snaft step. PFi-. 1-
shows tne variation of tne stress increase at increasin: alez-
tance of tne snaft contour {rom the axis; tne dasned curve 13
again taien from tne paper oy Willersl) (cee alzo Table 1v),

As car. te seen fronm tne calculated curve, the cornstancy ol fac-
tor u s out o ¢ne question, if cniy for tie reasor tnat the
curve hes to intersect the ordinate axis at point ! in any case.
This is explained from the fact that there c:n ce no stress in-
crease for a snaft for wnlch a - b » 0, L.e., 2 shalt wnose
fillet radius is infinitely large as compared with tne radlus
of the thinner tshaft part. It seems tnat u approaches 3 cone
stant value only at nisher values of a - t. This proves tuat
our spproximatior. tneory per~ites tne calculatior cf the

TT Dr WIITeérs Lold me in ansuwer to ar inquiry tnat the ordi-
nates of taies curve (Fiz. 13 of Willers' dissc-tation) te-
lonzin~ to the va.nes of a - t, especlally tc e amall
values, are erconeously ~iven as far toc large. 3o, for in-
stance, accordinz to Willers, the stress increase for a - U=
= 2 15 not V1%, as stated in the dlssertation referred to,

but only 24,

= 0.1, 1i.e., for d = 0, while the maximunm

£y




strength of also those shafts which are most important in prac-
tice with an accuracy which 1s absolutely sufficient for tech-
nical applications -- with the single exception of exaggerated
sharp and abrupt dlameter changes which in any case must al-
ways be avolded in practice. For this kind of shafts our cal-
culation ylelds values of the stress 1ncrease which are
slightly too hiﬁnl

TABLE 14.
- ‘]-- -
2 M ' 2 a e
(1 ir =™ Toay == et B, for den Fali: =11, . vergl hierzu th 17
o T ola~b3 7 )
b+ d R
0.1 6.2 ) 03 6,5 10 *
a—~b . 1 f‘ H . R
¥ ! i ‘
EY 1585 148 1 1Ael 1326 . 196 2,86n
fls. 1) tnach Wiilers) 1,43 1535 16, Y RO 1.79 -
1o~ flye ‘ x i ; ’
. 100 - 31 . L —-44 i w8
1"y i :

1l -- For the case; 2 -- See also Fig. 17; 3 -- (according
to Willers).

TABLE 15,
' T ‘ ' rOR '
2 M i - Wb 3 A »
(Tgdr 3™ Ty = o, fiy den Fall: = . verpl. hierza Abb, 18-
500 nla—t)? a+d 1
R . s . . T -
0 005 - o1 0,2 0,23 1 040
a-—h ;
w30 % 205 Lt 1.38 131 L g
flwls ) itneh Willers) o Tovan 1,675 1.3% 1,278 1,24
o~ My - . B
o100 Sk v 9 s T P+ 2.7 o+ 08
Hie ) . o

1 -- For the case, 2 - See also Fib. 18 3 == (according
to Willers). ‘

15 For instance, according to our calculatlon the stress at a

sharp corner approacnéé.infinity as lim %;,\whereas, as.
| - | b=0 '
Willers has shown, it becones infinite as lim
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Flg. 19.
TABLE 16.
- 2i ¢y [ER
. ;—_o Twax = ;Zﬁ:—;}" “, far den Fall: b = Y d+d=1, vergl. hierzu Ahh 19
S a=—b 3 5 7 i 10 12 15

tig = 0) \ 1,233 1,44 1.5t 1.58 1,608 | 1.65
otz =g,) (nach Wiliers) 1.2 ca. 1,40 ca. 1.50 ca, 1,60 . ca. 1,72

Y
T sen 4 + 083 ca. 0 cn. 0 oA 4
B e -

1 -~ For the case; 2 -- See also Fig. 19; 3 -- (according
to Willers).

8. Danger of Fracture at Abrupt Transition. In this con-
nection we shall make a few short remarks on the danger to
which such a stepped or grooved shaft with relatively very
small fillet radius 1s exposed. As has been shown (see e.g.,
Fig. 9) the reglon in which the stress increase 1s noticeable
when compared with linear distribution is locally confined
within narrow limits. Let us suppose that the shaft was de-
signed and dimensioned for a certain load without regard to the
stress increase at the tramsition point. If, now, thls load
is applied only once, the calculated maximum stress will not be
formed in the fillet in the case of a plastic material, because
after the elasticity limit has been exceeded at the place of
highest stress and the plastic flow of the material beglns, a
plastic state of stress sets in over a very small region which
- 18 entirely different from the calculated elastic state. In
such a case even a very large calculated stress increase would
normally hardly endanger the shaft seriously. But in contrast
to a non-recurrent, single loading, a varying load 1s of un-
comparably higher importance: it will inexorably bring such a
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shaft as described above in course of time to a fatigue break-
down, because the over stresses, repeated innumerable times,
form crxstalline planing surfaces and cause at last fine hair
cracksl). So, for instance, all shafts having abruptly chang-
ing diameters and being subjected in operation to ogcillations
(e.g., tunnel and propeller shafts of ship engines<?), shafts
of steam turbines, crank shafts of Diesel engines, etc.) be-
long to the machine parts carrying highest strains, and an

- exact knowledge and consideration of taelr stress increases on
the trangltion polnts is of great, and sometimes crucial im-
portance3),

. The eriments which have been performed in the
Strength Materials Laboratory of the Polytechnical Institute
of Munich®/) could have as their aim only the determination of

the cyilndrical part of the shafts that adjoin directly the

“place of transition, because it seems hardly possible to meas-

- ure the stresses directly on the fillets. A semicircular

- groove was turned into the stronger part of the test shaft,
‘according to Fig. 2, and the shaft was turned down to a smaller

dlameter at a sufficlently great distance from the groove and

from the shaft ends. The transition was formed by a 90° cir-

cular arc according to Fig. 11. The shaft was made of S. M.

steel of 7000 kg/cm2 tensile strength and was cleanly ground on

the cylinder parts. The peirtinent dimensions were as follows:

- 2. radlus of the stronger part of the shaft: a = 4.4 cm, groove

radius by = 0.4 cm, radius of the fillet on the step bg = 0.4

~cm., Thus, the ratio a/b for the groove is 11 and for the step:
10.7. The total free length of the shaft between the chucks
was 140 cm. The experiments were performed on the large
Werder-Machine which has a cross head for the attachment of the
chucks for torsion experiments. The machine was freshly cali-
brated before the experiments. '

1) See Th. v. Kdrmédn and L. Fbppl, Encyclopedia of Mathemati~
cal Sclences IV, 31, page 732.

2) See also e.g., K. Kutzbacn: Common Problems in Machine De-
sign, VDI-Zeitschr. 1915, page 849, A. Thum. Materials in
Modern Steam Turbines, VDL-Zeitschr., 1927, page 754 and
following. ‘ \

3) See to this section especially: F. L4sz16: "“The Notch,"

. VDI-Zeitschr., 1928, page 851 and following.

4) I am very much indebted to the Head of the Laboratory,
- Prof. Dr. Foppl, for having placed necessary equipment and
help at my disposal.
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For the precision measurements we used the shear stress
meterl) designed by Dr.-Ing. K. Huber in Munich, which permits
a very accurate measurement of the angular changes and nence
of the stresses (if the shear modulus is given). The angular
displacement of the two mirrors of the shearing meter was ob-
served in the usual manner by telescope and graduated scale.
The two points of the lever which rest on the generatrix of the
shaft cylinder, when the instrument is attached, have a dis-
tance from each other of 10 mm. Hence, the measurement ylelds -
the mean value of the angular change (or of the shear stress)
along a distance of 10 mm length. Instead of one reading dial
two must be used, because otherwise the simultaneously occur-
ring rotation in a perpendicular plane, which the shearing me-
ter experiences together with the shaft, moves the lmage out of
the field of view of the telescope and thus renders a reading
impossible. The just-mentioned rotation ¢f the mirrors also
had for consequence that we operate only with a relatively
light loading because otherwise the two dials would have to be
too far apart, which would have impaired the accuracy of the
reading. The distance of the dial from the axes of the two
mirrors, l.e., from the center of the shaft, was 1500 mm, so
that when the dial readings of the two mirrors are a; and a, in

a + a
—%36362, provided that the

two mirrors rotate in opposite directlions -- which was the case
in the experiments.

mm, the angular change y was: vy =

The following relation exists between the shear stress r,
the angular displacement vy and the shear modulus G: 7 = vy - G.
Therefore, the shear modulus of the shaft material was first
determined. This was done in the following way: the angular
change vy was measured on both the stronger and weaker parts of
the shaft, at a sufficient distance from the shaft ends and the
transition points and then t was calculated from the well known

formula 7 = Jagg. The lever arm of the torsional moment was
ﬂc

49,6 em, the load range which was found most suitable and hence
used in almost all experiments, was 750 - 500 = 250 kg, so that
the torsional moment was M = 250 « 49.6 = 12400 kg/cm [sic.
should read kg cm]. The following mean values from five ex-
periments resulted from the weaker part of the shaft:

1) K. Huber, VDI-Zeitschr., 1923, page 923, "The Determination

of the Shear Stresses and the Elasticity Modulus of Shear-
ing by Means of a New Precision Instrument.” A. Fippl gives
a detailed description of the shear stress meter in the Re-
ports of the Meetings of the Bavarian Academy of Sclences,
1923, page 109.




a =638 mm, ay = 3,06 mm, a + a3 == 9,43 mm
and thus

y = 243

- 943 2124000
€8 000 '

739390

7T =

= 124,5 kg/om?,

80 that
G=1ly = 834000 kg/om*

~ For the stronger shaft part, the mean value from seven experi-
ments ylelded

a =49%9mm, Gy =21 mm, a4 a,=70mm

thus

7,0 3-124 000
= =" """-" = 92,7 kg/om’
63 000’ . 4,43 7 kgiom’,

14

from which
G =1/y = 834000 kg/cm’.

The complete agreement of these two values for G proves
that the precision instrument 1s very reliable.

Accordingly, 1 mm of the dial graduation mean$ a shear

834,000 “ 5
33:000 13.23 ‘cg/cm and since 1/10 mm can well

be estimated during the reading, the mean value of the shear
stress along a measuring distance of 10 mm can be determined to
an accuracy of 1 to 1.5 kg/em2 1f one succeeds in eliminating
all other experimental errors.

stress of v =

The additional frictional moment on the movable chuck by
which the torsional moment is transmitted to the shaft was
practically without any influence upon the experiments because
the angular displacements were measured not starting at the
zero load but within the load range of 500 to 750 kg. (In a
few cases, the load range 750 to 1000 kg was also used as far
as possible.) Only those experiments were considered admis-
sible for the computation of the mean value for which the read-
ings before loading and after unloading agreed completely or
differed only by a few tenths. If after unloading the zero
reading on the left telescope was greater by the same amount
(compared with the zero reading before loading) as the reading
wag lower on the right telescope, this showed only that the
shaft had moved during the experiment. Such an experiment was
therefore still considered all right.

34




‘uojernored (q -- J fjuswiasdxy
-3B3UW 9U3 UTU3TM L SSadg4s aeaus auj JO anTea ueady -- G

(e -- wmwss 01 JO dduejsip Zufan

BJ9AR 8] U0 sjuswigad

-X3 anoJy woJaJ s3uipesa [eIpP JO oNTEBA UED]] -- % [*3 wo peaa pinous *018) 3y wo
Ul jusuol Teuosao] -- ¢ {juswaInsesw JOo UCT3RO0T -- g ‘8oue3sSIgd JUTINSES]] -- 1

t
- . _ tg & N -

o= St _ T e « usg ==
L~ vEl _ tel £0'01 - « cp =2
9's — 1t m 9l Lot - “ o mz
‘o t'56 H 988 L'e . « g1 =1

]
L+ i XY L'eg s’y « « 6 =4
re+ 872 m 8'sL ¢g's < « §'¢ =4

0F 'z6 ! 1'te 0L « « 000 =A==
5'0 + z's8 _ EXT t's . ¢ §1 ==z
$'0 + g 0'98 S'9 . « =z
o't + tL 8'9L 8's 000 ril wa gy ==z
X £9
QU127 ) <2 _M-Eu,wx uj e te - tp) =) wm uy to + lv
- , a ) Agjud ur gr
A TonugoIay q . : uyaIns
001 - T 6 Yyansia g M r\@v -3334 1318 Wl gapMyYy e 1038 QK

‘ ) : T T e e s -qainp snt gaduusaqu juswwunialqg h)
WU Q1 Uny ININEPI “0AEAG SIP 1IN ; m. \ d 14
Soairpiane g Suengedrqnedg 29 339 wjanlg “ «\nurv \ ~’

Sy,

wi gy = - W g =,
L3 BRI PR KA !

3 T, N
Pl - = \C
P i -
2 g BN TAREN D EES I T
E _ © C—>"
. £ } i
6 mm ="y v 3 : :
i Of == 9233350y |
< —» !
i /
v { ' ~ |
m i
_Ax!! ———y I i N |

jaoday 3s89],

35




Page 35 of the manuscript shows the test report for the
stress measurements at the different locations on the shaft.
The agreement in the shear stresses found by computation and
by experiment may be considered satisfactory if we remember
that the calculation 1s an approximation only and that the ex-
periments were performed, for the reason stated above, at a
relatively very small load range in which reading errors and
other experimental errors play a larger role tnan in the case
with a larger load range.

) I

* <
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(Ra99: 7207 awilp

Fig. 20. Fig. 21.

Summary. A simple approximation method is shown for the
calculation of stress increases at the transition points of
stepped or gzrooved shafts. The results of this method are well
confirmed by the paper of Willers as well as by our own experi-
ments. This method depicts the actual conditlions for practi-
cally all technically important cases with a completely suffi-
cient accuracy. (The average error is less than *5%.) Some-
what larger deviations -- meaning higher computed maximum
stresses -- will probably result for exceptionally abrupt tran-
sitions, i.e., in cases which are obviously dangerous and are
therefore in practice of minor interest only, apart from the
fact that they can always be avoided.’ fith the notations of
Figs. 20 and 21, wnich are commonly us n practice, the for-
mulae for the maximun stresses are: *

1. For a stepped shaft accordins to Fig. 20:

-~

N P {3l rpn R ¢ Tow - Ry~ KBy - 00 (By + 809
n Ryl ‘l..l_ Ry« 3 S¢0 '

| (O ]

In the frequent case: Ry'~ Ry = pg, thls formula simplifies to

¢ N VR
nes " l-ﬂg‘ TR’

2. Por a shaft with a tumed-in groove according to Fig.

2l:
. (” . ‘-,".J
(X | e

B Kyl e (Rgtﬂ).#a(..-h—p)
et T E e T

L R
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For a shaft with semicircular groove (R; - Ro, = pg) we have

v A
R’

Ty ==

o e iR
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