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TORSION OF ROUND SHAFTS WITH VARIABLE DIAMETE3 1 )

(A Contribution to the Theory of Notch Effects)

by . udolf Sonntag, Gera

_eIeitschrift fur angewandte Mathematik und Mechanik [Journal
of Applied Mathematics and Mechanics], February 1929, Vol 9,

No 19 pp 1-22.

It is very important for the technology of machines to
know about the stress increase which takes place, e.g., in
shouldered-off shafts through the influence of diametric
changes with relatively small fillet radii. This importance,
ho;ever, is frequently underrated in practice, as is manifested
by the all too often occurring and sometimes disastrous shaft
breakdowns which can almost always be attributed to insuffi-
cient consideration of the stress increase during design and
rm~nufacture of such shafts. This adverse effect endangers
particularly those shafts which are subjected during operation
to rapidly changing torsional moments (e.g., torsional vibra-
tions), since a slight excess over the elastic limit is all that
is needed at each Inversion to cause a rupture in course of time.

Corresponding to the importance of this matter, attempts
were not lacking, o find solutions i rthis, by no means simple,
strength problem', since A. Foppl laid its foundations by

iExcirTpt from author's doctoral thesis of the same title,
accepted by the Polytechnic Inst;tute of Munich, 1926.
(Reviewers: Prof. Dr. phil. L. Poppl, Prof. Dr.-Ing. D.
Thoma).

:) See the summarizing report by Th. Pschl: Solutions of the
Torsional Problem of Bodies of Rotation, published hitherto.
This ,journal, Vol . (1922), pp 137-147.

3) A. Fsppl: leport of the Meeting of the Bavarian Academy of
Siences 1905, Vol. 13, p 249 and followin , and A. and L.
!"pp: Dran, und Zwan, [Strain and Stressl, Vol 2, Second
Edition, p 102 and following.
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formulating the differential equation. However, onU' ery
little ha> been achieved as yet analytically because the
rigorous integration of the differential eqiation at prescribed
limiting conditions meets with severe difficulties, that have
been overcome so farV for only two extreme cases, which, how-
ever, are never encountered in practice (shaft with completely
surrounding semicircular groove of infinitesimal small
fillet radius ) and a shaft with sharp shoulders- ) and abrupt

changes in diameter). There are no numerical approximated
solutions for the case of finite transition radii with the
exception of a roug-h estimate made by A. Foppl i, according to

which the maximum strain in the fillet cf a stepped shaft, the
radius of which is /10 of the smaller shaft radius, is ?.09
times greater than the circumferential strain of the thinner
part of the shaft.

The understandin of the stress distribution was appre-
ciably advanced by a graphical integration method devised by
Runge, by means of whi.4 F. A. Willers investigated, in his
G~ttingen dissertation'), a great number of shaft forms of
practical importance with respect to their maximum stresses,
and did this with such exactness that his results can be con-
sidered as almost equivalent to actual stress measurements on
a real shaft, provided that the material is isotropic. Unfor-
tunately, the usefulness of this method is very limited In
technical practice since it is excessively cumbersome and time-
consuming, and also because the results found so far can only
be given in graphical or table form.

The aim of the present paper Is to provide the designer
with reliable formulae for the calculation of the stress in-
creases on the places of transition in coaxial shafts used in
machine design; these formulae shall at the same time be
simple enough to establish their place in practice aild In the
technical handbooks.

The solutions given are avproximations. For testing:
their accuracy we had availabLo the values found by Villers as
-well as the results of ju own labor'atory tests. The fol iowinf
approximation method c the actual conditiono with a

i1--Fdppl:'Report ,)A" the MentlnW- of' the Bavarian Academ, nf'
Sciences 1921, % ol ,: .

2) F. A. Willers: Di,*; .tc' , '''ttn;en I o . hr,
f'ir Math. u. ihy:. .' 4-nat o -lathematics rv: Physi
Vol 53 (i flo " A. Ti:A :; ;rIth.. Ann., Vol 7i (1911),

3) •.F pl: VDJ -. :'t,:'h. tJ, u:nai of the A33ocitiQn or
German Engine- , ,, r) 0

4) F. A. Willers, . itaton, inEn.



quite satisfactory accuracy, and hence we can consider the
approximate solutions as being of a high quality, at least for
those cases which alone are of practical importance.

1. Fundamentals of the Theory of Elasticity. A. Foppl I )
has demonstrated the truth of the following statement: If a
solid of rotation having varying diameters is subjected to a
torsion around its axis, then an elastic deformation will take
place consisting of a distortion within the cross-sectional
plane. This distortion is such that circles that have been
drawn around the center of the cross section before the defor-
mation remain circles also after deformation, but these
circles of different diameters experience, in contrast to the
cylindrical shaft itself, different angular displacements
around the axis of rotation. This deformation has for conse-
quence that only tangential shear stresses appear in the cross
section, whereas the shear stresses in the longitudinal or
meridional section are directed parallel and normal to the
axis of rotation. Normal stresses appear neither in the cross
section nor in the meridional sections. Due to the rotational
symmetry of the state of deformation (and hence of stress),
all meridional sections are equivalent, so that the stress
conditions of the whole shaft are known askong as the two
components of the shear stress in a awrJdional section are
determined for each of its points. We choose the axis of
rotation as the x-axis and denote the perpendicular distances
from it by p. We call the axial shear-stress component Tx,
the radial component T.

The equilibrium condition for an element of volume against
dislocation in the tangential direction Is

+ ..0 ..... . ..... (x,

As is usual, we express the shear stress components by
the elastic displacement v which takes place in the cross sec-
tional plane, and its derivative, and eliminate from the two
equations obtained in this way the displacement v. We thov.
get the equation of compatibility

Now, for the subsequent finding of approximate solutions,
it is possible to express Tx and T as the differential quo-
tients of a single function F(x,o). This is so since, If we
write

1) A. M 1906, p oj. .
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,4 (3r ),

these values identically satisfy equation (1), and equation (2)
transforms into

.b2 r ;' . . . . . . ...... (4).

The curves F = constant in the meridional section plane
represent the stress curves, i.e., their direction at any
point coincides with the direction of the stress transmitted
there, as can be seen from the differential equation of these
lines:

gfj. TS-d .4 _. . . . . . . . .. s

Since we have postulated that
no external forces attack on the

r ( circumference of the shaft ex-
cept on its ends, the shaft
boundary itself, in the longi-
tudinal section, represents a
stress curve which we will denote

I by F = const.

Pry':I NThe total torsional moment
transmitted by the shaft of

Fig. 1. radius a is

For the problems to be dealt with in the present paper It
is advantageous to use polar coordinates, r, a instead of the
rectangular ones. We shall therefore transform the general
equations Civen above into polar coordinates. The orientation
of the polar coordinate system is shown in Fig. 1, representing
the longitudinal section of a cylindrical shaft of radius a.
We have

2-r sin r , {, - rcoeq,
r. - 91" ~q -+ r , / Y._- o~nq ft- r,.ol . . ..o ).

and thus, the equations (1) and (2) transform into

-- 4- -- 4 "2 " . 7O ),r' T r ;t7 - cooI4F

2 . a - l; 1 V,- T1V, O OI. -o0-- T, - On 0r . . . .-eon

r 'T , - r O

4Best Available Copy



The stress components Tr and TC appear in the differen-

tial quotients of the stress function F(r,p) as follows:

F I
r ja.q -" 9. .

as can be seen immediately if we substitute these values into
equation (la), which thus yields an identity.

A) The Symmetrical Problem

2. The Cylindrical Shaft Completely Surrounded by a
Semicircular Groove. (See Fig. 2 showing that part of the

longitudinal section lying above
the axis.) We start from the
stress function of the smooth

F 4 17F cylindrical shaft which in the
polar coordinates (Fig. 1) used

I ,here reads as follows:

T F -- C- (a -rcos (S).

Fig. 2. where C is a constant. F = 0 on
the shaft axis, i.e., for r =

a .and = Ca4 on the boundary, i.e., for cos = 0. Con-
cos M

sidering eq. (6) it follows that

- a'. , .

Denoting the groove radius by b, we expand the equation
for the stress function of the smooth cylindrical shaft, eq.
(8), and so obtain, as the simplest imaginable approximation
formula for the stress function of a grooved shaft:

I _ C .)- . . .-,,o #

where m and n are two as yet undertermined positive numbers.
The solution of the problem depends on their appropriate desig-
nation. For b = 0 and r = , this expression transforms into
eq. (8), as it should. Coefficients cI and c2 are obtained
from the two limiting conditions:

Best Available Copy



The t ird limiting condition, according to which F must
become C.a on the boundary outside the groove, is automati-
cally satisfied. According to eq. (6), the constant C becomes

C M. -If we introduce as an abbreviation bcos .=,

then.it follows from the two limiting conditions of (10a) that

SI j 0- IC ).......... ).

If, for the sake of brevity, we substitute w for the term be-
tween the brackets of eq. (10) we obtain for the stress com-
ponents:

(4 C ~ ) I C (b -I
- ,,.'w "g o ( "n - -,.-, c, (V l lconq . (13).

The stress of main interest is TV Its maximum lies at

the bottom of the groove, i.e., for r = b, m = 0. At this
point, as everywhere else on the boundary, w = a, so that

S __ 4 C a3 icj , -- . .* ... If- 1,

The quantities m and n could hitherto assume any arbitrary
positive value. To determine them, we use the condition that
('T)r = b becomes twice the value of the circumferential stress

cP=0

of the smooth cylindrical shaft of radius a, when the groove
radius b comes infinitesimally small. This was shown by
Willersl) (approximately) and by L. Fbppl2Y (rigorously, by
means of the Bessel functions). The rigorous proof of this

stress duplication, known as
Onotch effect," will be shown
here in still another manner.

q, We first consider a torsion
Pproblem, completely different

from that at hand, but one for
which it is possible to find a
rigorous solution, namely the

Fig. 3. Fig. 4. problem of a cylindrical shaft

1 See Wilers, -oc. cit., page 251.
2) L. Fdppl: Report of the Meeting of the Bavarian Academy of

Sciences, 1921, Vol 51, page 61.
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weakened by a semicircular key groove, running parallel to the
a.7is (Fig. 3). We assume the radius b of the keyway to be
negligibly small compared with shaft radius a. Moreover, we
consider only that part of the shaft's cross section that is
in the immediate vicinity of the keyway and is repreaented in
Fig. 4 in infinite magnification. We proceed analogoisly with
the grooved shaft, which is also represented by Fig. 4, if we
consider this figure to be a part of the longitudinal section
of this shaft. If we assume the shaft radius and the torsional
moment to be equally large in both cases, then the tangential-
stresses To-of both shafts, at a sufficiently large distance

from the semicircle, are also equal. The stress lines can be
considered by hydrodynamic analogy as the streamlines of a
plane fluid motion that flows through the cross section or
longitudinal section, respectively. We denote the velocity
vector in the cross section of the shaft with the keyway by sl,
the velocity vector in the longitudinal section of the grooved
shaft by s2 , and the shear stresses accordingly by T1 and T2.

In order for the fluid motions to remain free of poles the
following relations must exist between s and T, as is well
known:

where p and q are arbitrary factors of proportionality and P
is, as before, the distance of a point on the longitudinal sec-
tion from the shaft axis. On the circumference of the shaft,
at a sufficiently great distance from the keyway or the neck
respectively, and with o = a, we have:

(, p , ) p , q a' (r,) = q.,,l. ro, .

s and T assume their maximum values s,, T,, and s , T', re-82

spectively at point A (Fig. 4). Since here b becomes negli-
gibly small compared with a, we have to write p = a, in this
case too, and

"si = ,, .,, - 'a- " to' , . . (17).

We see immediately from eq. (1o) and (17) that with p = q.a2
= i both flows become identical in the boundary regions, i.e.,
we have:

whence , -, .19)

We shall subsequently prove that if the stress increase T/To
caused by the notch effect can be found for one case, it is

7



known at the same time also for the other case. We can more-
over deduce from this consideration that the stress increase
will have about the same magnitude in both cases even at finite
values of b, as long as they are small compared with a.

Denoting tne stress function by f thq rigorous solution
for the shaft with a semicircular keywayl) (circular-arc moon-
let) (Fig. 3) is in polar coordinates

/ E -- '-, - " - -)b. -7

where 0 is the torsion angle. The function f satisfies tne
limiting conditions, because it disappears on the edge of the
cross section (for r = 2a cos y and for r = b) and also satis-
"fies also the compatibility equation:

1 F 9' f 4- -A - . . .
,),'J r 0 r '"

as can easily be seen by substituting into it f of eq. (20).
The stresses are obtained in the usual manner and are

Cor' l .+ Co

If we substitute here for T., : r = b and c = 0, and also b = 0,

we obtain for the stress soug-ht which we designated before as
T' the value a=.' e; o. Since b = 0, the respective torsion

angle 0 for the smooth cylindrical shaft is, ,,= - -, thus:

2M
T' = 2o= 2 To, hich proves the stress duplication due to

the notch effect also for the shaft with the neck groove.

Setting this value of T' equal to the right side of eq.
(14), in which b is made equal to 0, we obtain a condition
equation for quantities m and n. This equation with C =

and considering that c2 =- (cI + 1), is

1) This solution was found by the author quite some time ago
and was confirmed, among other proofs, experimentally by
means of a Prandtl tension loop produced by a soap film.
Meanwhile it was also given by C. Weber. See Forach.-
Arbeiten (Research Papcrs] No 249, page 31.
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According to eq. (11) we first get for (cl)b=O the indetermi-

nate form 0/0. The true value is found if we differentiate
both numerator and denominator with respect to y, it is

. . . . . . .. (24).

Since the quantities m and n must necessarily be positive,
integer or fractional, numbers which are different from each
other, we have with m > n:

(q~b~o=- |.

Substituting this value into eq. (23), n cancels out, and we
obtain

To obtain unknown n, whose value must in any case be equal to
or larger than zero and smaller than 2, one could utilize the
principle of the minimal deformation energy, but this proves
unfeasible here, because the calculation becomes far too com-
plicated. But various reasons, among others also the analogy
with the shaft with the keyway (see footnote 1) on page 11 of
this manuscript)) indicate that we must take for n, here as
well as there, the smallest permissible value, i.e., the value
which differs most from m. Incidentally, as we saw before for
a vanishing, small b, the value of n is arbitrary within the
permissible limits, hence the choice of a specific value for n
is practically of minor importance in the case of small groove
radii. We shall thus put n = 0 and we shall see that this
leads to a very good agreement with the results of Willers.
Collecting the terms, the now completely determined stress
function reads:

[a (2 ro r-N ~ 2)
X,' ('- bcoal r --. 4' U (9G)

The stress component 'P, which is of main interest, becomes

f W. fr,  i . or n" (27).
n - 4 rl (no - rCo (1- 6 ~,1

It is worth noting that this expression rigorously satisfies

the compatibility equation eq. (2a) along the semicircular

boundary line on which Tr and 6 disappear, if the transition

radius b becomes infinitesimally small.

9



t=

to

___ -N t JO 0 5

Fig. 5.

For r f b we obtain

2 M 2a con 2 n4 coo 2 J I
R ( - bCos T)3 .+ bComs ) T a3 (,--b co ll)ta+ beoo) I'ra3

For the maximum stress at the bottom of the groove, i.e., at
the boundary point cp = 0, we get the simple formula

= iM

;; 7 ( N O b a ( 6~) n* (a- b, ..

The first factor represents that ma:ximum stress which would re-
sult if we assumed a linear stress distribution in the cross
section - o0; the second factor y characterizes the stress in-

'rmax

crease. Fig. 5 shows the proportionality values = x and
2 M

Tmax
- I y as functions of a/b in graphical form, whereas the

2M

iT(a-b )3
values found by Willers are indicated by small circles. The
agreement is very satisfactory. Table 1 shows the computed re-
sults of the proportionality values for a number of a/b values.
The stress component Tr becomes •

-2 Jmu3 m (lie ) (l, + 6o*0 ) (30).

10



TALLE 1.

,. :r .- * ' 7, ergi~. Abb. 5

j I 2, ; 6,66.. 8 10 11 1,33. 20 30 40 ; ,0

C,6 1 9.2_5 2.s 1 2,61 2,49 2.41 2,36 2,22 2,15 2.10 2,09 Y,fl

3 h V I -- :,07 2,7; 2,61 2,4 ; - 2,33 2,17 - 2 04 - 2,11

100 - -* 5 +3 +2 41.71 - +1 +2 + - - to

,1 1,31 I, 7 1, 1 1,7 N ,82 1,S35 1,86 1,, 1 ,9 35 1,9 1'J 2

I -- See Fig. 5; 2 -- (according to Willers).

On the generatrix outside the gro ve, i.e., for p = ,/2,
(T C )m,/2 = 0 and the boundary stress becomes

2 ,f[ (b 3] 2N. N-- (3 1........(3I)'.

For r = , or for b = 0, this value transforms into that valid
for the circumferential stress of the smooth cylindrical shaft.
At the corners r = b, ep = TT/2, both Tr and T. disappear. The
stress in the weakest cross section obeys the law:

,It. ( 03, , (r0 + A _ 2 K -(3 ),

Fig. 6 shows, for the case a/b = 11, the functions for the
boundary stresses (T )r,-b and (Tr)Wr/2, as well as the stress

in the weakest cross section (T) P4O in graphical form. The

corresponding numerical values are given in Tables 2 through 4.
We see from the stress diesribution over the weakest cross sec-
tion that the torsional moment is transmitted mainly by the
outer layers of the sha t, while the layers closer to the axis
carry less of the load 2).

1) Willers, too, arrives at this equation on page 254 of his
paper by means of an approximate integration of the differ-
ential equation for the case that b is very small compared
to a.

2) The deductions drawn from the hydrodynamic analogy lead also
to a certain similarity between the grooved shaft and the
shaft having the Xeyway, in regard to the etress distribu-
tion in the border regions. Since our formula for F worked
out well in the case of the grooved shaft, it seemed fesible

11



-tb)

76

[, "N !/9b

Fig 6.
1 -- Shaft radius a.

to try an equation for the stress function of the shaft
with the keyway, developed exactly like eq. (10), and then
to compare its results with those obtained by the rigorous
solution. This equation, using the notations of Fig. 3, is

P= ,_ r " -[I coo r-)'

which changes over into the expression for the full circle
if b - 0. The limiting conditions here are F - 0 for' r = b
and r - 2a cos c and it follows from the condition of the
doubling of the stress due to the notch effect, that m = 3;
we cannot state at first anything about n, except that it
certainly is < 3. To determine n, there is at our disposal
the additional condition that the stress must disappear in
the center of the cross section; this center coincides with
the shearing center (and not, as one could think, with the
center of -ravity). This condition yields for n very exacty
the value 0. We thus obtain for the stress on the radius
vector c o r 0:

Il-e + ),12 - I .((q)-Nme 6) Ill.

*'m 12



The behavior of the border stress (Tr)CP= /2 on the cylin-

drical part of the shaft, represented in eq. (31) has been
tested in experiments and well confirmed. (See also the test
report.) The a/b of the test shaft was 11. According to
Table 1, the stress increase at the bottom of the groove is
83.5%. The disturbance in the stress distribution of the cyl-
indrical shaft, caused by the turned-in groove, practically
disappears at a distance of lob, measured axially from the
pole.

TABLE 2.

fur den Fall: 1- = 1, vergl. Abb. 0

0 0o $00 45 S6oo  too
I I

/% , 2,44 2,0. %,62 1, 0

1 -- For the case; 2 -- See Fig. 6.

TABLE 3.

(r,)i w= * - --j- . fr den Fall: - II vergl. Abb. I

,1 I 's I'l 1'0 0 4 10

a2 n 0,805 0,49 0.81 0,66 0, 0,89 0,49 0,6 6.9I

1 -- For the case; 2 -- See Fig. 6.

where thefolowing holds true if we use the abbreviation
b - ' " Z:

2a cos -:

(.-) , ++,. -. .
all-- I'.

The numerical evaluation yields an extremely close approxi-
mation to the stress distribution of the rigorous solution,
even when the ratio b/a has rather higher values. The de-
viations In the maximum stress e.g., for b/a - 1/3 are about
-3%, and the deviations of the torsion angle about +6%. The
approximation used here thus yields a high quality approxi-
mate solution also' for this torsion problem.

13



TABLE 4.

fmr den Fall. A vi, bb. 6
1 2,= = t(8 -6 4t 5 9

A

I.S$5 0,602 0,06 0,541 j .466 0.304 0,1 0,189 I

1 -- For the case; 2 -- See Fig. 6.

%. Shaft witn Concentric Hole and Turned-in Groove. If
g is the radius of the aIxal drill hole, then depression ,
already modified or the limiting conditions of 1) F Ca= for
r = b; 2) ? = C~g for r w L- , is:

N Mr _ , , - - - I I . . . (33).

For the maximum stress we obtain

nt (0 -') (34),

where the second factor represents the stress increase over a
linear distribution.

On the shaft circuxnference outside the groove we have

The stress In the weakest coss section (T - 0) is distributed
according to the following law:

w denotes the expression within brackets of equation (33).

The stress increase for the case of b  12, is 84%b 3
(as compared with 83.5% for the shaft without the bore hole).

Shaft with a Slot-Like Turned-In Groove Whose Depth
e ransion uadlus F7. T. ere, the gen-

era oro esress con s erve n the same manner
as in Section 2. It is

1J4



bFrnKi a - rigi Cs

VI~ Here the constant ICusing notations of Fig*

iL 4---7 is Kn 2 2T(~) while the coefficients
g, ad 92are round from the limiting con-

ditions. The limiting conditions In theFig. 7. region of the longitudinal section or the
shaft between axis and radius vector cp =

=ri/2: F = 0 for r ---A- and -K(a + d)4 for r -b. WeCos 0
find

therefore

and

1 tor F
3  (howly + d) +"GP('bdMMV)

4 4e )414 - roy' em- b',u

In particulars we obtain for the stress distribution law in the,
weakest cross section

from which the maximum stress at the bottom or the groove is
found

04*1~ 6d

'~~Sb~~'s)~~-@~ I" A~~~---- 4)

Factor v signifies how much the stress is Increased when coma-
pared with the linear stress distribution In the weakest cross
section. Taing d a 0 (case of the semicircular groove) v bo-'

Coms Wa + b 9 as It should be according to eq. (29).

15



For b = 0, i.e., for the case of an infinitesimally nar-
row slot, we have v *. On the radius vector c = r/2 we ob-
tain

Pr -a+ ' ( all(r_)_____ J, ) ., " b). ..' (41)

and:

fl X

From this we can compute the variable angle 0, at which the
radius vector m - r/2 is intersected by the stress lines run-
ning parallel to the axis, at a large distance from the slot
and above this radius vector. This angle is found from

S. . . . I 43).

To visualize how the stress lines crowd together in the vicin-
ity of the groove bottom, we can e.g., calculate the coordinate
ro of the point at which the radius vector r = 0 is intersected
by the stress line which coincides, at a large distance from
the slot, with the radius vector c - /2. We take for this pur-
pose (w).,/2 - a - (w):O and find from it

rie

V..
4' 0' i T . IIr

Fig.

16



In this way we obtain e.g., for the case where a = 11 cm, b =
= 1 cm, d = 4 cin, a value of r = 2.2 cm. Using the illustra-

tive hydrodynamic analogy, this means that the fluid which
flows in a ribbon of 4 cm width, at a large distance from the
slot- and above the radius vector c = r/2, now occupies a width
of only 1.2 cm when it passes the radius vector T = 0. Fig. 10
depicts this numerical example. It shows several stress lines
and their tangents where they intersect the radius vector m a
= ,/2. The curve of Fig. 8 shows the stress increases, which

a = 1 1 as a function of
follow frcm eq. (40) for the case s = f

d. The correson"4_ng numeri ,l values are given !n Table 5
which also shows the ratio between the boundary stresses at the
border point 7 = r/2 and the corresponding maximum stresses.
Fig. 9 and Tables 6 and 7 show the stress distribution in the
weakest cross section according to eq. (39) for the case of

a/b = 11, -- - 2.5. They also show the behavior of the

boundary stress along the circular borderline. Finally, Fig.
10a and Table 7a show graphically and numerically the factor
v as a function of b for the case a = 11, d 4 &. This factor
characterizes the stress increase.

Fig. 90

1 Shaft Axis.

17



ff/IenuchJm

Fig. 10.
1 -- Shaft AXis.

so

5 ;
0U I 

-

Fig. lOa.-
Willers did not investigate this problem, hence the for-mulae derived here can be tested only indirectly by the re-Sults of Section 7 below. We state right now that a good agree-ment with Willers, values is obtained. We shall not pursuehere the stress distribution in the region of the longitudinalsection above the radius vector p = r/2, since it is of onlyminor interest.

18



TABLE 5.

m . far #,oi Vn ll: to = I ,I b b I vorl.-blerso Abb. 3

4 i 0 1 3 4 5 10

1,83 2,53 3,1 i 3.62 4,06 4.13 5,40 10,16

0 0,273 0,406 i 0,48V 0,544 0,563 0,76 0,814

1 -- For the case; 2 -- See also Fig. 8.

TABLE a.

(ft: ~ ~ ..... ^_g~il Ab
. for den Fall: 11 2, Abb. 

,. 0,43 0

x, i ,oe ,.' Io,6, I . no !o, , 0ol5. o.nIn
1 -- For the case; 2 -- See also Fig. 9.

TABLE 7.

S v flr ,Ii IalI - 1 - = 2.,. ver Ab. 9

: Fo4,06 t , 3.43 3,01 2.22

For the case; 2 -- See also Fig. 9.

The case of the shaft with a concentric bore hole can be
dealt with as before without difficulty.

B) The Assymetrical Problem

5. SteD ed Shaft Whose StepD Height Evuals the Transit -ion
Radius--FIR. I1W Ths problem, as well as that discussed in 1

the next section, is of special importance from the point of
view of practical application, because the stepped shaft be-
longs to the machine parts most frequently used in machine de-
sign.
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TABLE 7a.

r X fl41 den Fall: a II . - 4, ergil bel Abb. 10,

I .0,05 0.: 0,2 0,5 1.0 1., 2,o

59,9 10,5 15.1 7,03 4,06 3, .5

...76R s0.721 *.g 2 6 O.) , 4 Q.42 '4:47

. -- For the case; 2 -- See also Fig. 10a.

We call the small step "half notch," to disting uish it
from the "full notch," which corresponds to a small semicircu-
lar groove. In the present case of the half notch, the limit

of the factor characterizing the stress in-
crease in the borderpoint co- 0, is, for an
infinitesimally small transition radius,

- ! obviously 1.5 (average of numbers 2 and 1
-'> .r which are respectively applicable to the

full notch and the smooth shaft). This can
V! "Abe proved in detail by a somewhat cumber-

- - some calculation, which however we omit
here for the sake of brevity. Here eq.

Fig. 11. (14) is valid without changes and it thus
follows that m = 1.5. But we try to avoid

fractional exponents in the interest of arriving at formulae
that are conveniently evaluated numerically. We shall there-
fore introduce this limit into the calculation in another way,
which leads to a practically complete agreement with Willers'
results. Introducing the new coefficients el and e2 , and with
m - 2 and n = 0, the equation (10) now reads

F C. [a - r. . (e), + e,) Cos ,f . . . . . . .

The boundary condition for r = b demands that e2 = - el, we can
therefore write

P Celb, ( ) "1 .-- oo j' . . (46).

From this the maximum stress for the grooved shaft is obtained
as

, (Wo , - (r+ bIre - .. . . . ..
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where the term in parentheses means the limiting value of the
stress increase for infinitesLmally small groove radius b (on
account of (el)b=0 = - 1). Adding to the numerator and the

denominator of this expression the quantity b, the expression
assumes the value 1.5 according to the prescription for r = b
applying in this case and the results obtained by this simple
means differ only very slightly from those which we would have
obtained with m = 1.5. These considerations suffice also to
determine the border stress at point T = 0. This stress can be
considered as the maximum stress, as will be shown later and as
it follows also from Willers' paper. The sinple calculation
which proceeds analogously to that of Section 2, yields for
this stress the extremely simple formula

.4. 2 31 - (4 7), 2 1

If however we raise the question of the stress distribu-
tion in the longitudinal section of the shaft and of the magni-
tude and the location of the real maximum stress, then the ex-
pression in parentheses of the stress function must be ex-
panded by a term which is odd in tD, on account of the Psym-
metrical course of the stress lines with respect to the radius
vector w = 0, which is obviously no longer intercepted by them
at a right amgle, except by the border line. The stress func-
tion can now be written:

F -- E a b 2- -6 CO A -f (r,) ain 2q 2 z2-17' a, r r h 0'' 2 '1--- n

where the double a.gle in the sine term stems from the limiting
condition:F-- C-a4 for the border T = 7,/2. This term must in
any case disappear at point w = 0, since the stress increase at
this point follows already from the symmetrical part of the
stress function discussed above.

About the function f(r) we can only state that it must
disappear for b = 0 and decay rapidly with increasing r. Theo-
retical considerations could provide no further information on
the shape of this function, so we resorted to experiments to
determine it approximately, with good success. If we take

f (r,) _-.+ b ), . . - . . . . . . . (410),
(r +

we achieve a very satisfactory agreement between the calculated
and measured border stresses along the cylindrical parts of the
shaft.
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Omitting the auxiliary calculations, we obtain from eq.

(48) in the usual manner

s'a + bcosy)'(r.2 rb + b'J
e oB + 26 .

i 4 (S - .b COS ) + b C bfln2 1

and for the border stress in the fillet:

(a - b) .(a + bos) eO O + min)2

-~~~ b% COS- b(

where X2 represents the stress increase over the normal circum-

ferential stress of the weaker part of the shaft. With w = O,

eq. (51) transforms into eq. (47). As we can see, the maximum

stress does not occur at the border point w = 0, but at a
closely neighboring border point p = cm, and % becomes maxi-

mum for a/b = w, i.e., for b = 0. Substituting b = 0 in eq.
(51), the condition for maximum is:

d( ID2)dr . (3COS --4_4 1 sin .,2 0,

from which we get: sin cpm = 0.281 or % = 160201. We thus find

for (kl)max:

1,7, WHILE (1,).-8 1,50

For the case of a/b 11 we have c--- 100 and the true

maximum stress is only 31/2% larger than ('r)r-b; for smaller
CP0

values of a/b the difference is still less. The stress
('r crb of formula (47) can therefore be- considered as the max-

q-o

imum stress with sufficient accuracy (see in this connection
the last two columns of Table 11). The stress in the cross
section e = 0 obeys the law:

At6o-14 - __
, .(a- r'. )(+ *)

and the radial stress component on the radius vector c = 0 of
the longitudinal section is
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231 0- W .2 bs(r -- b) ~2 b a.6 __ )I ~ (b
(7,g (fh13 a3 (a+2b) ?r + 2 h) a f b)

The quantity in brackets is always negative, hence the two
stress components on the radius vector c = 0 always have op-
posite signs, as is also postulated by the pattern of the
stress lines. The border stress of the stronger shaft part be-
comes:

2J b (r-I)(r +  rb+4b 2........... . 54).
.r -a r 4b)

The border stress of the weaker part of the shaft follows from
the stress function F' which holds true for the region to the
left of the radius vector c = 0 (see Fig. 11) (when setting up
this function we must remember that the angle c here is nega-4
tive and that the limiting condition on the border is F' = Ca

for r = bL). Thus, the equation for the above-mentioned
cos C

border stress is

1oJ / 2,,F 4+beo,#)[ +- -O. /(2-:,.)~
2t M 44 beopfV I + o? 2

:. . . . . . . . . . . . . . . .

This equation as well as eq. (54) were tested experimentally
and good agreement was found(see test report). Fig. 12 shows
the variation of the border stress along the border line of the
meridional section of the shaft graphically, for the case:
a/b = 11. The calculated stresses are plotted orthogonally to
the contour line. Note the interesting phenomenon that the
stress disturbance which is generated through the place of
transition propagates much farther into the thin part of the
shaft than into the thicker one. For instance, the deviation
from the normal circumferencial stress that prevails on the
thinner part of the shaft is about 8%, at an axial distance
-from the center of the fillet that equals six times the fillet
radius. The deviation at the thicker part of the shaft, at an
equal distance from the corner (at which the stress is zero)
is on the other hand only one percent, in good agreement with
the experimental results. Furthermore, it follows both from
theory and experiment that the border stress of the stronger
shaft part increases from the corner on faster than in the
case of the grooved shaft.

Fig. 13 shols graphically the proportionality values

ma2Ma 2- p2 as functions of a/b, where 1maM is
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the actual maximum stress at the border point ro = c%. The

values found by Willers, of which only two were available here,
are indicated by small circles. The agreement is very good
here, too. For the case of a/b = 1, i.e., when the diameter

of the thinner shaft becomes infinitesimally small, -- must
2M

ra 3
Imax max will

become infinitely large and M must become 1; a i
2 M 2 M

T- (a-b)3  r a3
therefore approach the value = asymptotically. For very large
values of a/b both curves will approach the value 1.57 asymp-
totically.

Fi. 12.

1 -- Shaft radius.

JI

r

' ')

Fig. 13.
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The behavior of the cross sectional stress (T T)4. eq.

(52) and the radial component of the meridional sectional
stress (Tr)TO eq. (53) along the radius vector w = 0 is shown

for a/b s 11 in Fig. 14. In Fig. 15 the tangents to the stress
lined in the meridional section are plotted for different
points of the radius vector w = 0.

271
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Figs. 14 and 15.

1 -- Shaft Axis.

The numerical values of the stresses have been computed
for the drawing of the corresponding curves and are compiled in
Tables 8 through 13.

TABLE 8.

' a= , fl n Fall: II , efrgi. Abh. it

,I f *" 206 - 4 go 741 too

S I ,138:" 1,43 1,421 l,:l 1.73 9192 * 0

1 -- For the case; 2 -- See Fig. 12.

6. Ste Red Shaft, as in Fig. 11, but With Concentric Bore
Hole. Using g to denote the radius or the bore, we obtain the
T 611owing formula for the maximum stress, from a calculation
that proceeds analogously to the previous case, which however
we omit here

(")" - ....."

25



TABLE 9.

- - A.-, fUr den VnIII - I I vergi. Ahb. 12

1,2 1 1,5 .. 7 2 3 4 6 10

4, 0,3)14 .574 ; 0,677 1.78 0,917 0,96 0,987 0,998

1 -- For the case; 2 -- See Fig. 12.

TABLE 10.

,- for -Ion Fn: = I , verpr. Abb. 12

0" 1 I" 30 4;5 60 110 02e 50' 85* 080

I1,3"4s 1,295 1,17 1,109 I,0f9's 1.088 1,073 1,058 f 1,047

1 -- For the case; 2 -- See Fig. 12.

TABLE 11.

Sv;41dI Abh II

______________ I4 1 II 240 34' ,

P,1 ( ,2 e,42 1,01 I,94 1,00S 1,74 1 8 1,4,I. 1 4

, P OO O . jI' I-

7I II_,7 I. I, 1' 1,49 1. 4 I " I.E,4

1 -- See Fig. 13; 2 -- (according to Will!ers).

TABLE 12.

N fi d. Pai. $ II.a1 Abb 14

*eIlt* ISl .1 I,?IO de 01 OVat OfII ADD t II

1 0 For the case; 2 -- See Fig. 140
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TABLE 13.

257--
34 flir don Fall: , I rl. Abb. 14

A 0 4 71 1 1 12

A, U ,'-. 4 - 007: . t.O4M ,gi - *ii , '1 I .4 •

1 -- For the case; 2 -- See Fig. 14.

7. The Stepped Shaft Whose Step
b Height is Larger Than the Transition

i-- Rdius Fis. l 6. For the sake of brevity
- we shall dizcuss here only the problem of

the magnitude of the maximum stress. Here,
too, this can be with sufficient accuracy
by the stress at border point m = 0. As we

Wir have pointed out already in Section 5, the
term of the stress function containing 0

Fig. 16. with an odd exponent does not play any role,
so, in order to calculate the stress we may

neglect this term a priori. According to the procedure in Sec-
tion 5 and with this simplification, we obtain for the stress
function

tr A a- r- 10) co o K 9

where

K
i a+

In the following considerations we are concerned only with that
region of the longitudinal shaft section that is cross hatched
in FiG. 16. The same limiting conditions apply to it as to the
case discussed in Section 4 and we find from this the coetfi-
cients t1 and t2 as

0 elm

From eq. (57) we obtain:

RA 1 a.

and

Is '4 ".-l 6 ' 4 -l of 4 I

0 I I i s



For d 0we get = 3a + b2o + 2b' as Is also postulated by the
analogy to the case of Section 5.

t I

P, 4' r o

r

1 j j $-

Fig. 17.

4, 4' 4. 4: 4r 4$ "

Plf . id.

For b l 0, I.e., on a sharp comer, t - *. Fig. 17 shows
the factor L, wnlcn onaracterizes the stress increase, as a

wiontion of for the case of a/b w 11. This curve isa- b
dirawn as a solid line. The curve obtained by Willers is drawn
as a dashed line (-ee also Table 14). When we conpare these
two curves and also the following ones, we .'ust take into
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account that the Willers values refer to the actual maxiaium
stresses, whereas we have approximated them in this problem ty
the border stresses (T which are slIihtly smaller. For

instance (see also Table 14) the following appears: The factor
is 1385forb + d

4 is 1.385 for = 0.1, i.e., for d = 0, while the m ximum
a - b

stress increase as calculated in Section 5, for the border
point r = " yielded for this case the value 1.43, wn!-ch agrees

witn Willers. Taking this into consideration we can say that
the two curves exhibit satisfactory agreement. Only at rela-
tively large values of d/a are tne deviations greater, but
these cases are no longer of any practical significance. The
solid-line curve in Fig. 18 shows the factor . as a function of

b for tie case a - b -3 (see also Table 15) Here too,
a-b a + d 4
the computed values agree beautifully with those of Wiliers
(dashed curve). It can be seen from these two curves that the

increase in the ratio of the shaft radii a + at constant

fillet radius causes an increase in the maximum stress (Fig.
17), while, when the ratio of the shaft radii is kept constant
but the ratio of tne fillet radius to the smaller shaft radius
is increased, the maximum stress decreases (Fi:. 18). W.l1lers
varied these two ratios of the radii simultaneously, in the
same sense, by taking tne shaft contour as an u .- hanginz entity
and puttin- it closer to or farther away from tne as, where-
by it was to be expected that tne stress ir.crea,-e remains
nearly constant. The same eXperiment las teen .ade nere, in
Fig. 19, for the case that b = 1/'(d + C), i.e., tnat *he fC-
let radius comprises one third of th:e shaft step. Fi-. li'
shows the variatior of tne stress increase at inrcasin Q.-
tance of tne snaft contour from the axis; the dasned curve 13
again tanon from the paper by ;o)av -i)
As can be seen from the calcuiated curve, the corstancy o. fac-
tor g Is out o: Uhe question, if only for t:.e reason that the
curve has to intersect the ordinate axis at point . in any case.
ThIs Is explained from thie fact that tnere ccn re no stress Ir-
crease for a shaft for wnIch a - b a Q* 1.e., 3 shaft wnose
fillet radius is Infinitely 1arge as compared with tne radius
of the thinner sheft part. 't seems tnt u approaches a con-
stant value oiy at ni;her values of a - b. This proves tIhat
our arproximatior tneory pemits the ;aicul3tIor, cf the

1) rvu.ers told me In answ.er to ar. inquiry that the ordl-
nates of tals c'urve (Fi. 13 of Illlers' dlsse'ttation) te-
longmlr to the va-J.es of a - t, e.pecially te %e smalI
values, are erroneously 1iven as far too large. So, lor In-
stance, accordin; to '-lillers, the stress increase for s - ba

3 is not 615, as stated in the dissertation referred to,
but only 2:. '



strength of also those shafts which are most important in prac-
tice with an accuracy which is absolutely sufficient for tech-
nical applications -- with the single exception of exaggerated
sharp and abrupt diameter changes which in any case must al-
ways be avoided in practice. For this kind of shafts our cal-
culation yields values of the stress increase which are
slightly too highl),

TABLE 14.
a1

2M " ,

(r -., , . , for den FaI: =11, vergI b . A.hh. 17

+ d
0' 1 0.2 ,; 5!0

Ivll Wliler ) 1,43 1 1i., !,75 1.79 -

14 -- 14,,

100 I ,1. 4,! -1.4 ,

1 -- For the case; 2 -- See also Fig. 17; 3 -- (according
to Willers).

TABLE 15.

2 M t .. .. -h 3

(z;)r , At6 = -p,, Ult df'- ial: ierp. hierzi, Abb, IN

-II

0. ). 0,2 0,2.-,,

k e.ah WIIlers) 2 0. I.'75 1,35 1,275 1,24

100 4' ,9 - 0.7 4# 2.7 +

1 -- For the case; 2 -- See also Fi G. 18; 3 -- (according
to Willers).

1) For instance, according to our calculation the stress at a
C

sharp corner approaches .nfinI'.1y as lir -, wnereas, as
b=O

Willers has show i, it beco'Ies infinite as lir C
b=O 6"

30



Fig. 19.

TABLE 16.
* 2rdq (!) , b)=-s

Mr e, .=Fall: b= --(d + 6) 1 rl,. hlera Abb 19

a-b 7 10 12 is

1 n) (- i,333 1,44 1 .5 !58 .,606 q

t (naeh Wllpral 1.2s ea 1.40 ma. 1,50 ca. 1,6O (a 1,72

o00 4 ci. 4 .ca 3 ,. 0 ca. 0 .a 4

i--For the case; 2-- See also Fig. 19; 3 -- (according
to Willers).

8. Danger of Fracture at Abrupt Transition. In this con-
nection we shall make a few shor remarks on tWe danger to
which such a stepped or grooved shaft with relatively very
small fillet radius is exposed. As has been shown (see e.g.,
Fig. 9) the region in which the stress increase is noticeable
when compared with linear distribution is locally confined
within narrow limits. Let us suppose that the shaft was de-
signed and dimensioned for a certain load without regard to the
stress increase at the transition point. If, now, this load
is applied only once, the calculated maximum stress will not be
formed in the fillet in the case of a plastic material, because
after the elasticity limit has been exceeded at the place of
highest stress and the plasti, flow of the material begins, a
plastic state of stress sets in over a very small region which
is entirely different from the calculated elastic state. In
such a case even a very large calculated stress increase would
normally hardly endanger the shaft seriously. But in contrast
to a non-recurrent, single loading, a varying load is of un-
comparably higher importance: it will inexorably bring such a
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shaft as described above in course of time to a fatigue break-
down, because the over stresses, repeated innumerable times,
form crystalline planing surfaces and cause at last fine hair
cracks-1 . So, for instance, all shafts having abruptly chang-
ing diameters and being subjected in operation to oicillations
(e.g., tunnel and propeller shafts of ship engines2), shafts
of steam turbines, crank shafts of Diesel engines, etc.) be-
long to the machine parts carrying highest strains, and an
exact knowledge and consideration of their stress increases on
the trans tion points is of great, and sometimes crucial im-
portance3).

9. The Eperiments which have been performed in the
Strengh Materials Laboratory of the Polytechnical Institute
of Munich4) could have as their aim only the determination of
the cylindrical part of the shafts that adjoin directly the
place of transition, because it seems hardly possible to meas-
ure the stresses directly on the fillets. A semicircular
groove was turned into the stronger part of the test shaft,according to Fig. 2, and the shaft was turned down to a smaller
diameter at a sufficiently great distance from the groove and
from the shaft ends. The transition was formed by a 900 cir-
cular arc according to Fig. 11. The shaft was made of S. M.
steel of 7000 kg/cm2 tensile strength and was cleanly ground on
the cylinder parts. The pertinent dimensions were as follows:
radius of the stronger part of the shaft: a = 4.4 cm, groove
radius br = 0.4 cm, radius of the fillet on the step b. = 0.41

cm. Thus, the ratio a/b for the groove is 11 and for the step:
10,7. The total free length of the shaft between the chucks
was 140 cm. The experiments were performed on the large
Werder-Machine which has a cross head for the attachment of the
chucks for torsion experiments. The machine was freshly cali-
brated before the experiments.

1) See Th. v. K~rm~n and L. F6ppl, Encyclopedia of Mathemati-
cal Sciences IV, 31, page 732.

2) See also e.g., K. Kutzbacn: Common Problems in Machine De-
sign, VDI-Zeitschr. 1915, page 849. A. Thum. Materials in
Modern team Turines, VDL-Zeitschr., 1927, page 754 and
following.

3) See to this section especially: F. IAszl6: ':The Notch,"
VDI-Zeitschr., 1928, page 851 and following.

) I am very much indebted to the Head of the Laboratory.
Prof. Dr. F~ppl, for having placed necessary equipment and
help at my disposal.
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FQr the precision measurements we used the shear stress
meterl) designed by Dr.-Ing. K. Huber in MWnich, which permits
a very accurate measurement of the angular changes and hence
of the stresses (if the shear modulus is given). The angular
displacement of the two mirrors of the shearing meter was ob-
served in the usual manner by telescope and graduated scale.
The two points of the lever which rest on the generatrix of the
shaft cylinder, when the instrument is attached, have a dis-
tance from each other of 10 mm. Hence, the measurement yields
the mean value of the angular change (or of the shear stress)
along a distance of 10 mm length. Instead of one reading dial
two must be used, because otherwise the simultaneously oceur-
ring rotation in a perpendicular plane, which the shearing me-
ter experiences together with the shaft, moves the image out of
the field of view of the telescope and thus renders a reading
impossible. The Just-mentioned rotation of the mirrors also
had for consequence that we operate only with a relatively
light loading because otherwise the two dials would have to be
too far apart, which would have impaired the accuracy of the
reading. The distance of the dial from the axes of the two
mirrors, i.e., from the center of the shaft, was 1500 mm, so
that when the dial readings of the two mirrors are a1 and a2 inaI + a2
mm, the angular change y was: y = a, +0"2 provided that the

two mirrors rotate in opposite directions -- which was the case
in the experiments.

The following relation exists between the shear stress ,
the angular displacement y and the shear modulus G: T = y • G.
Therefore, the shear modulus of the shaft material was first
determined. This was done in the following way: the angular
change 7 was measured on both the stronger and weaker parts of
the shaft, at a sufficient distance from the shaft ends and the
transition points and then T was calculated from the well known2 M
formula 2 = -. The lever arm of the torsional moment was

49.6 cm, the load range which was found most suitable and hence
used in almost all experiments, was 750 - 500 = 250 kg so that
the torsional moment was M = 250 • 49.6 = 12400 kg/cm (sic.
should read kg cm]. The following mean values from five ex-
periments resulted from the weaker part of the shaft:

1) K. Huber, VDI-Zeitschr., 1923, page 923, "The Determination
of the Shear Stresses and the Elasticity Modulus of Shear-
ing by Means of a New Precision Instrument." A. F6ppl gives
a detailed description of the shear stress meter in the Re-
ports of the Meetings of the Bavarian Academy of Sciences,
1923, pace 109.
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a, -6,38 mm, a, sm 3,0 mm, a +a, a, 9,43 mm

and thus
9,43 2• 124000

6S 00--; . ... . =124,5 kgI m',
63 000 3,9891

so that
= )ly 834 000 kg/oml.

For the stronger shaft part, the mean value from seven experi-

ments yielded

a, =4,9 mm, as 21,1 Mm, a, + a, - 70 mm

thus

7,0 2124 000 92,7 kg/cm 2,
63 000 . 4,43

from which

G = tly - 834 000 kg,'cm2.

The complete agreement of these two values for G proves
that the precision instrument is very reliable.

Accordingly, 1 mm of the dial graduation mean6 a shear
stress of t = "3 = 13.23 g/cm2 and since 1/10 mm can well

if T 63,000 132

be estimated during the reading, the mean value of the shear
stress along a measuring distance of 10 mm can be determined to
an accuracy of 1 to 1.5 kg/cm2 if one succeeds in eliminating
all other experimental errors.

The additional frictional moment on the movable chuck by
which the torsional moment is transmitted to the shaft was
practically without any influence upon the experiments because
the angular displacements were measured not starting at the
zero load but within the load range of 500 to 750 kg. (In a
few cases, the load range 750 to 1000 kg was also used as far
as possible.) Only those experiments were considered admis-
sible for the computation of the mean value for which the read-
ings before loading and after unloading agreed completely or
differed only by a few tenths. If after unloading the zero
reading on the left telescope was greater by the same amount
(compared with the zero reading before loading) as the reading
was lower on the right telescope, this showed only that the
shaft had moved during the experiment. Such an experiment was
therefore still considered all right.
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Page 35 of the manuscript shows the test report for the
stress measurements at the different locations on the shaft.
The agreement in the shear stresses found by computation and
by experiment may be considered satisfactory if we remember
that the calculation is an approximation only and that the ex-
periments were performed, for the reason stated above, at a
relatively very small load range in which reading errors and
other experimental errors play a larger role than in the case
with a larger load range.

i

Fig. 20. Fig. 21.

S. A simple approximation method is showm for the
calcuTa--ion of stress increases at the transition points of
stepped or grooved shafts. The results of this method are well
confirmed by the paper of Willers as well as by our own experi-
ments. This method depicts the actual conditions for practi-
cally all technically important cases with a completely suffi-
cient accuracy. (The average error is less than +5%.) Some-
what larger deviations -- meaning higher computed maximum
stresses -- will probably result for exceptionally abrupt tran-
sitions, i.e., in cases whi.ch are obviously dangerous and are
therefore in practice of minor interest only, apart from the
fact that they can always be avoided./ Ith the notations of
Figs. 20 and 21, wnicn are cormonly usln practice, the for-
mulae for the maximum stresses are:

1. For a stepped shaft according to Fig. 20:

L t o aa . * + J ,-k a

In the frequent case: Rl,- Rp - 0,o thls formula simplifies to

j - $ 41 + es)

2. For a shaft with a tumed-in groove according to Fig.
21:

V..IA -, -*-too
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For a shaft with semicircular groove (RI R 2  po we have
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