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ABSTRACT

At Reynolds numbers greater than about 5 x 10 corresponding to

altitudes below about 180,000 ft., the hot "outer inviscid wake"

behind the bow shock wave produced by a blunt-nosed body at hypeivsonic

speeds is cooled mainly by turbulent diffusion and conduction. Turbu-

lence originates in the "inner wake" formed by the coalescence of the

free shear layers (or annulus) shed from the body surface when the

boundary layer separates from the surface. As this turbulence

spreads outward, it swallows enthalpy or momentum defect originally

coitained in the outer inviscid wake. If the turbulence is "locally

similar", i.e., if it behaves at each station like a slice of a low

speed "self-similar" wake, then the turbulent diffusivity grows from

a low initial value near the body to a value corresponding to the

total drag of the body at about 300 body diameters downstream. At

flight velocities of the order of 9,000-10,000 ft./sec. the growth of

the turbulent inner wake predicted on the basis of "locally similar"

turbulence is in good agreement with shadowgraph measurements of

wake widths behind spheres obtained in ballistic ranges in the

region from 200 to 4,000 body diameters downstream of the body.

Tentatively, one concludes that the turbulence mechanism in the wake

with respect to a fixed observer is similar to the low speed case, in

spite of the large mean temperature gradients.
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electron density in a burbulent wake behind a blunt body, the two

limiting cases of thermodynamic equilibrium and pure diffusion (zero

electron-ion recombination rate) are calculated for M, = 22 at

altitudes of 100,000 ft. and 200,000 ft. Even for the case of thermo-

dynamic equilibrium, the predicted turbulent radar trail length is

about 200 body diameters at L-band (1300 mc/sec.) at 100,000 ft.

altitude azd about 150 body diameters for UHF (4oo mc/sec.) at

200,000 ft. One interesting result is that the width of the plasma

cylinder corresponding to the plasma frequency at L-band remains

virtually constant at about 3.5 body diameters in the range 30 < x/d <

150 at 100,000 ft. altitude. These results are sufficiently encourag-

ing so that one can think about including the effects of finite

chemical and electron - ion recombination rates in the analysis in

order to give a more complete picture of the wake at hypersonic speeds.
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1. Introduction

The wake produced by a body moving through a fluid medium is one of

the oldest known fluid-mechanical phenomena. In calm water the wake of

a sailing ship is observed for many miles behind the ship. Experi-

mental studies of low speed wakes show that the momentum defect

contained in the viscous portion of the wake spreads rather slowly into

the rest of the fluid, even when the diffusion process is turbulent.

High speed wake phenomena have also been noticed for a long time, but

much less is known about them. When the familiar meteor trails are

studied by radar echo techniques, trails at least 15 miles long are

recorded at altitudes of the order of 100 miles. For small meteors

the trail length is determined partly by the time required to consume

the object, and partly by laminar diffusion and electron attachment

processes in the wake.

Wakes produced by slender projectiles and blunt bodies at supersonic

speeds have been observed in ballistic ranges by shadowgraph and other

optical techniques, but until recently these observations did not extend

very far behind the body. One of the most striking features of the flow

field around a blunt-nosed object at supersonic speeds is the bow shock

wave (Figure 1). When a missile or spacecraft enters the earth's

atmosphere at hypersonic speeds a distinct, nearly paraboloidal shock

surface'* is first formed in front of the body at altitudes of the

order of 350,000 - 400,000 feet. The gas that traverses the "strong",

nearly-normal portion of the bow shock wave is compressed and heated

* Superscripts denote references listed at end of paper.
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irreversibly in the shock, and forms an "outer wake" behind the body

(Figure 1). Even after isentropic expansion back to ambient pressure,

which occurs in a distance of 50 - 100 diameters behind the body, the

maximum gas temperature in this outer wake in thermodynamic equi-

librium is about 4500 0K at satellite velocity, and about 6500°K at a

flight velocity of 40,000 ft./sec. 2 . Clearly the trail length defined

in terms of observables such as electron density or gas radiation

intensity is determined by the diffusion and recombination processes

in this cylinder of hot gas left behind in the atmosphere.

Feldman2 treated this problem under the assumption of thermodynamic

equilibrium and a laminar or molecular diffusion prccess. Under these

assumptions the problem downstream of the "pressure-controlled" portion

(x/d?50) is closely analogous to the cooling of a gas cylinder with

a given initial temperature distribution. The time required to reduce

the enthalpy is proportional to r where K = k/? cp is the thermo-

metric conductivity and r is the body nose radius, which characterizes

the breadth of the initial enthalpy distribution. Here time is equiva-

lent toz/u , where Lis distance behind the body, so that

/rn u r/ = Re x Pr where Re is the Reynolds number and Pr the

Prandtl number. Thus the predicted laminar trail length is very long

even at high altitudes; for example for a nose radius of one foot at

250,000 feet altitude Y./r lo2 - l0 3, depending on the observable of
n

interest while at 60,000 feet altitude I/rn -105 _ 106

- - ----- ~---- -- -- n



1-3
2

Feldman himself suggested that the cooling process irt much faster if

turbulence is produced in the wake. One expects turbulence to originate

in the flow region with the highest velocity gradients, and this region

is undoubtedly the "inner wake" formed by the coalescence of the free

shear layers (or annulus) shed frcm the body surface when the boundary

layer leaves the surface (Figure 1). Experimental evidence 3 shows that

transition to turbulent flow occurs downstream of the "neck" at fairly

low Reynolds numbers, corresponding to altitudes of the order of 180,000

Zeet. Near the neck this turbulence is confined to a narrow region

around the wake axis, but it soon spreads outward by feeding on the

surrounding gas. Eventually all of the streamlines originally in the

"outer wake" are engulfed by the turbulent inner wake. The main

purpose of this paper is to analyze this swallowing process, which

determines the rate of diffusion and cooling in the wake of a blunt-

nosed body at hypersonic speeds.

In order to bring out the main ideas as simply as possible the

assumption of thermodynamic equilibrium is retained in the present
N

paper. The ifluence of finite recombination rates can be included

later when the\turbulent diffusion process is somewhat clearer.

In Section 2 the structure of the wake behind a blunt-nosed body

at hypersonic speeds is described, and simplified representations of

the outer and inner wakes are introduced. The boundary between these

two regiont L ssupposed to be a sharp 1'front' and the growth of the\/
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inner wake depends only on the gradient and value of the enthalpy at

ths front. Two limiting cases of the behavior of the turbulent

diffusivity are studied: (1) i'locally similar" turbulence, in which

the flow at each station behaves like a "slice" of a low speed "Self-

similar" turbulent wake, so that the diffusivity is proportiona. to

the local momentum defect or dig contained in the inner wake; (2)

Tfrozen' diffusivity, in which the turbulent diffusivity depends only

on the initial value of the drag coefficient for the inner wake at the

"neck'e. Once the diffusivity is specified the turbulent diffusion

equations r-enthalp and mass concentration can be integrated

(Section 3). In Section 47,_pecific examples of the growth of the

turbulent inner wake are calculated for comparison with measurements

made in ballistic ranges. A typical reentry example is also computed

at M4- 22 and an altitude of 100,000 feet, in order to illustrate the

behavior of the enthalpy distribution, and the behavior of the profiles

of electron density in the wake in the two limiting cases of thermo-

dynamic equilibrium and pure diffusion (zero recombination). clusions

about the hypersonic wake obtained from this study are summar zedT

Section 5, which also contains some suggestions for future work.



2-1

2. Model of the Hypersonic Wake

2.1. Description of the Flow Pattern

In order to determine the conect initial conditions for the

lateral spreading of the turbulent inner wake, we must examine the

main aspects of wake formation behind a blunt body at hypersonic speeds.

Shadoikgraph observations supplemented by Ample physical considerations

show that the hypersonic viscous wake differs from its low speed

counterpart in three important respects: (1) no evidence of large-scale

vortex formation, even for laminar flow; (2) much greater "stability"

of the laminar free shear layers; (3) an initial value of the momentum

defect or "drag" contained in the inner wake (Figure 1) one to two orders

of magnitude smaller than the total body drag.

Even on a bluff body, such as a sphere, separation occurs well aft

of the 960 station, partly because of the falling pressure over the

front half of the body, and partly because the supersonic shear layers

can negotiate relatively high recompression pressure ratios (2-3) at

the "neck" (Figure 1). The free shear layers (or annulus) shed from

the separation line (or ring) on the body surface show a "rigidity"

characteristic of supersonic, and especially hypersonic flows. Large-

scale vortex formation just behind the body is apparently inhibited by

the fact that violent streamline deflections would be accompanied by

large pressure changes and shock wave formation. The separated flow

tends to retain the direction established at the point of separation,
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and the flow converges toward a minimum section or "neck", which

contains the effective rear stagnation point.

When the boundary layer on the body surface is turbulent of course

the free shear layer (or annulus) is also turbulent; however, if the

boundary layer is laminar, the laminar free shear layers show a

remarkable persistence at supersonic speeds. Experimental studies

(and some stability considerations) indicate that the transition

Reynolds number ReTR for the laminar free shear layer, based on

properties at the outer edge and the length of laminar "run". increases

very rapidly with increasing local Mach number . For an insulated
o4  O5  20 n

body Re 5 x 10 at M, = 0.5, Re ';2x10at M=2.0, and

6ReTR = 2-3 x 10 at MCO= 4.5, the highest Mach number studied. Partly

this effect is the result of the high average kinematic viscosity across

the layer5 .* Downstream of the neck, on the other hand, the relevant

Mach number based on the difference between the flow velocities on

the axis and at the edge of the inner wake decreases rapidly with

distance away from the neck, and the flow apparently becomes unstable.

In addition, the inner wake is probably subjected to disturbances

originating at the neck. Recent experiments at GALCIT indicate that

the local transition Reynolds number in the inner wake behind an

* This fact was pointed out to us by Dr. Edward Zukoski, on the
basis of his experience with hot wakes behind flame-holders.

e
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insulated cylindrical rod transverse to the airstream at M = 5.8 is of
4CO

the order of 5 x 10 4 , based on local properties and the distance between

the neck and the transition zone. These considerations suggest that the

regine in which the free shear layer is still laminar upstream of the

neck, but transition to turbulent flow occurs not far downstream, is

important in understanding diffusion processes in the wake behind a

blunt body at hypersonic speeds.

'4

As explained by Chapman the fluid below the zero streamline origi-

nating at the separation point on the body is turned back at the neck

because of the pressure rise produced by the flow deflection. This

fluid enters the zone of recirculation just behind the body. The fluid

along the zero streamline is brought to rest, while the flu;,a above the

zero streamline, although slowed down, flows on to form the inner wake

(Figure 1). In Chapman's limiting case the velocity along the zero

streamline just upstream of the neck is about 60 per cent of the

velocity at the outer edge of the free shear layer. Thus the static

enthalpy at the outer edge of the viscous wake is about 35-40 per cent

of the stagnation enthalpy in the inviscid flow. This is to be compared

with the enthalpy along the zero streamline from the free shear layer

which if brought to rest adiabatically has an enthalpy of about 60 per

cent of the stagnation enthalpy in the inviscid flow, when the body

surface is "cold".* Thus a hot core of fluid is generated in the inner

* If the body surface is insulated, the enthalpy on the zero stream-
line is about 95 per cent of the total enthalpy outside the viscous wake.
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wake, but this core cools off with distance downstream of the neck.

Typical velocity and enthalpy profiles just upstream and downstream of

the neck are shown schematically in Figure 2.

The initial momentum defect or drag contained in the inner wake

represents the sum of the skin-friction drag on the body and the

momentum defect associated with the pressure rise at the neck. Since

the density of the fluid in the inner wake just downstream of the neck

is much lower than ambient and the neck 'width is usually less than one-

half the body diameter, this initial drag is only a small fraction of

the drag associated with the bow shock at hypersonic speeds. As we

shall see later (Section 2.3) the turbulent eddy diffusivity CT is

proportional to the drag coefficient of the inner wake. We conclude

that the initial value of CT is much lower than the final value

(x/d--+c) corresponding to the total body drag. This fact has

important consequences tor the whole process of turbulent diffusion

(Sections 2.3 and 3).

Near the neck the amount of momentum defect swallowed up by the

growing inner wake is still small compared with the initial momentum

defect, and the inner wake develops in the downstream direction almost

as if it were enveloped by an external environment uniform in the

direction normal to the wake axis. In addition to the usual spreading

of the wake by "mixing", the physical boundaries of the wake expand

because the static pressure is falling in the stream direction, and



2-5

the whole flow field is expanding, The proper length scale for the initial

development of the inner wake is not the body diameter, but the momentum

thickness e of the inner wake, which is at least ten times smaller. Thus

the velocity difference Au = [uf - u (0)] across the inner wake decays

to a small fraction of (Ufdneck in a downstream distance of the order

of 100 9 to 200 e, which corresponds to about 10 - 20 body diameters,

at most. In fact when uf - u(O) 1 1 the mean inner wake flow

Ufuf
downstream of transition to turbulence should exhibit a similarity of

the form

(N)42 (eY

just as Townsend 6 found for the low-speed wake behind a cylindrical rod

transverse to the air stream.* (Here Y is essentially the stream function,

and m is a geometric index; m = 0 for a two-dimensional flow and m = 1

for axially-symmetric flow.) A typical velocity distribution at x/d--l0

is sketched in Figure 3a, and the corresponding enthalpy profile appears

as a "turbulent pulse" at the base of the "inviscid" profile of the

outer wake (Figure 3b).

When x/d is of the order of 10, the rate at which the inner wake is

swallowing momentum defect originally contained in the outer wake can no

* Except possibly for a small effect caused by the negative pressure
gradient along the wake axis.
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longer be ignored. In the limiting case of "frozen" diffusivity the

turbulent eddy diffusivity 6 T retains the value established by the

initial drag of the inner wake at the neck. But in the opposite

limiting case of "locally similar" turbulence, the local value of

TT(x) depends on the local drag contained in the inner wake at that

station. Thus (dE 1/d x) depends on the rate of increase of momentum

defect in the inner wake, which, in turn, depends on the product of

the slope of the inviscid enthalpy profile, ( h/ y) , and the
Y:-Yf

rate of spreading (dyf/dx) of the inner wake. But (dyf/d3:) itself

depends onV When yf/d << 1, (Z h/3y)yf is small, and and

yf both increase slowly with distance downstream. Soon the turbulent

front reaches the portion of the inviscid enthalpy profile where

(O)h/c y) is appreciable, and one expects a rapid growth ofe T and

inner wake width. Eventually ()h/3 y) decreases again and the

rate of growth of the inner wake slows down. Far downstream (x/d > '? 1)

most of the wake is turbulent; the turbulent difDasivity takes on a

value corresponding to the total drag of the body, and similarity is

again established.

2.2. Characteristics of the Outer and Irvner Wakes

2.2.1. Outer Wake

In order to bring out the main features of the pcoblez as simply

as possible, we consider Reynolds numbers large enough so that the

time scale for laminar diffusion in the outer vake is much longer than
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the time required for the turbulent inner wake to swallow most of the

momentum defect. The flow at any point in the outer wake is supposed

to be unaffected by the inner wake until the turbulent "front" reaches

it. Thus the enthalpy profile in the outer wake is completely specified

by the inviscid flow field. The present analysis is concerned with

the region x/d ? 2 - 10, where the static pressure is only about 5 times

ambient pressure, at most. In this region the enthalpy along an inviscid

streamline is a slowly varying function of static pressure, and we shall

ignore the streamwise enthalpy gradient, but evaluate the local enthalpy

correctly. This procedure amounts to a kind of local similarity approxi-

mation.7

As in most ccmpressible flows the "proper distance" nonnal to the

wake axis is not the physical distance y, but the Howarth-Dorodnittyn

variable y defined by the relation

YL ?YL(1

where y = y/d, and the subscript "L" denotes "inviscid" or outer wake

quantities. The inviscid enthalpy profile is represented by the two

parameter relation

* The wake shock (Figure 1) introduces a slight modification
(Appendix 1).
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for Y L > Yf where h denotes the complete static enthalpy, including
f7

the chemical enthalpy7 , (hL)o is the value that the enthalpy would

have along the zero streamline if the inviscid flow extended to the
hL

axis, H L ( _- 1) z =o m YL and c1 is a scale factor. In the

entire hyperaonic wake 20u </ , 1 and h - h '= -u (u-u).

To this approximation YL (Eq. (1)) represents the stream function, or

mass flux between the axis and y, and the parameter cLm is determined

by the womentum defect in the inviscid flow. In the region x/d)5 - 10

the drag contribution made by the static pressure is negligible compared

to the momentum defect, and (Appendix 1),

4- A.l-9

Here CD is the "inviscid" drag coefficient and
0

When x/d - 50 - 100 the static pressure is virtually equal to

the ambient pressure, the streamlines in the inviscid flow are all

parallel to the wake axis, and the inviscid enthalpy profile described

by Eq. (2) is independent of axial distance, in the limiting cases of

"frozen" flow or thermodynamic equilibrium.*

*Evidently the methods of the present paper can be generalized
to include chemical and electron-ion recombination.
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2.2.2. Inner Wake

The present study is simplified by considering only the thermo-

dynamic effect of the static pressure variation along the wake axis,

but not its dynamic effect. Thus the shape of the turbulent mean

enthalpy profile across the inner wake is invariant in the proper

coordinates for a short distance downstream of the neck, and this

same "similarity profile" should again appear far downstream. Although

the profile shape in the intermediate region undoubtedly changes to

some extent, the simplest assumption is that the mean enthalpy is

described completely by two parameters -- the amplitude (hT (0) - hf)

and the wake width Y Tf i.e.,

C* 
(3)

for
oy .y

T Tf

Since the local environment surrounding the inner wake is characterized

by the values of f), hf, and ud determined by the inviscid flow at

y = yf, the Howarth-Dorodnitsyn variable YT for the inner wake is

logically defined as follows:

* A more refined analysis taking the change in profile shape
into account can always be carried out once the turbulent diffusion
process is understood somewhat better than at present. Also, the
function G(YT/YT ) is arbitrary and for the present calculations is

taken as a parabola.
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(The relation between the inviscid and turbulent mass flux quantities
Y L and Y is discussed in Appendix 2.)

x -xi
The two unknown functions B ( d ) = B and Yf

are to be determined by satisfying the following two conditions (Section 3):

(1) conservation of energy, as expressed by the energy integral equation

across the inner wake; (2) energy balance along the inner wake axis,

which relates the rate of cooling in the stream direction to the rate

of turbulent heat conduction normal to the axis. In the absence of any
8

acceptable theory of turbulent transport we adopt Reynolds' hypothesis

of similarity between the turbulent transfer of mass, momentum and

energy. Reynolds' analogy states that

_________ - -(5)

where hth is the thermal enthalpy = CP dT, Ki is the mass fraction of

the i t h species, and t T is the common turbulent "exchange coefficient".

In other words the turbulent Prandtl and Lewis numbers are both equal

to unity, and7

= - (6)

In his thorough experimental study of the low-speed turbulent

wake behind a long cylindrical rod normal to the airstream, Townsend 6

found that a relation of the formt=? (I T ( u/y) is indeed

satisfied by the mean velocity field not too close to the wake edges,
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once the mean flow becomes "self-preserving", or "similar".* This fact

must be regarded as an interesting coincidence for symmetrical wakes

(Appendix 3). As Townsend points out, pure gradient diffusion cannot

possibly describe the process of envelopment of fluid by the large-

scale eddies at the outer boundaries of the wake. Nevertheless this

empirical description is correct near the wake axis, and is therefore

extremely useful in satisfying the energy equation on the wake axis

(condition 2, above).

In Townsend's case the flow outside the wake is irrotational and

the wake drag is constant. Once the influence of the initial conditions

dies out the wake flow becomes "similar", and the wake is characterized

by a "universal" Reynolds number R constant, where u

is the mean velocity difference across the wake and)o is a measure

of the wake width, i.e., ET = (N) 1 . u 9-.** In spite of the

fact that the inner wake exhibits similexity at hypersonic speeds only

in the initial and final stages we make the crucial assumption that

all along the wake axis

.T =K'u yf , (7)

* In Townsend's notation G T-T T'
** Townsend found the value RT = 12.5 for the wake behind a

cylindrical rod. Although data on axially-symmetric turbulent wakes are
extremely scarce even at low speeds, the few measurements made by Hall 9

and Hislop lead to the provisional value RT ' 14.
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where K' is a non-dimensional quantity dependent on fluid properties (see

below), but not on the velocity difference or the wake width. According

to Eq. (5), this assumption is equivalent to the statement that the

intensity of turbulence at each station is proportional to tb.a local

value of 6 u, and the scale is proportional to the local wake width

(Appendix 3). In other words the effect of previous history on the

development of the inner wake is ignored, so far as the turbulent

diffusivity is concerned. The characteristic time required for internal

adjustment of the turbulent motion is assumed to be very short compared

to the time scale for the rate of change of eT in the axial direction,

and &- T is supposed to take on instantaneously the value appropriate

to a locally similar flow. Later (Sections 2.3 and 3) we shall also

consider the opposite limiting case of "slowly adjusting" turbulence,
or "frozen" diffusivity, where the quantity (Tf/,)YTfmE is determined

only by the initial conditions in the inner wake.

The quantity K' could be regarded as an empirical function to be

determined experimentally, but it is interesting to see whether K' can

be related to Townsend's RT for low-speed, isothermal wakes. Now it is

well known that the transformation given by Eq. (4) reduces the heat

conduction problem with variable density to an equivalent "incompressible"

heat conduction problem. The heat conduction term in the energy equation

specifies the equivalent turbulent diffusivity. By utilizing Eq. (4)

9
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one finds that

On the axis this term becomes

But (Eq. .),

and the heat conduction term is reduced to the form

where' the equivalent turbulent diffusivity is given by the relation

= T* (8)

• Following Mager s I 0 work, Ting and Libby suggest a similar
relation of the forms T = ( ?/? f)2 e T for two-dimensional turbulent
wakes or jets (in oiw notation, where? f is constant). They correctly
point out that such a relation leads to a compressible eddy viscosity6 T

that varies across the flow. In the present study only turbulent heat
conduction on the wake axis is involved, so this difficulty does not
arise. Besides, the whole semi-empirical notion of the existence of
CT is probably correct only near the wake axis (Appendix 3). On the

wake axis Eq. (8) also agrees with their relation beteen T andGT

for axially-symmetric wakes and Jets.
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According to Eqs. (7) and (8),

/2/(m49

~z(~C) LL tJ (To)C'~. 9

If one makes

then

T K & - (lOb)

exactly as in Townsend's case6; therefore K is proportional to (T)-.

The constant of proportionality depends only on the relationship

between our YTf and Townsend's £o (Appendix 3).

By adopting the value of K' specified by Eq. (10a), E T is given

more precisely by the following relation (Eqs. (7) and (8)):

When x/d 7 5 - 10 the total enthalpy is virtually a constant across the

inner wake, equal to the total enthalpy of the inviscid flow. Also
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U -u

u ,1 so that in the turbulent portion of the flow,

(12)

where u., represents some average velocity, and 0.8 = = 0.9. To

this approximation, Eq. (11) for a T becomes

LLOO Lk(13)

2.3. Relation between Equivalent 'Turbulent Diffusivity and

Momentum Defect: Growth of Inner Wake

2.3.1. Turbulent Diffusivity and Momentum Defect

Once we assume that the equivalent turbulent diffusivity is given

by Eq. (lOb) or Eq. (13), it is not surprising that the relation between

T  and the local value of the momentum defect in the inner wake takes

the same form as it does in an incompressible "similar" wake with

constant drag. The momentum defect with respect to the local inviscid

flow at the turbulent front is given by

D(w 30 (LL 4 LL)~ j* (14)

* The relation between this momentum defect and the ordinary
drag is discussed briefly in Appendix 4.
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By utilizing Eqs. (3), (4), and (12), one finds that

D (IT) I-C G-m%(5
where

(15 a)

and

with G(_T) arbitrary (for the present calculations in Sections 2 and

4 a parabola is chosen). By combining Eqs. (13) and (15) we find that

LL"d YTi = 4-+ C 0( ,,- (16)

Here CDf' is the "local" drag coefficient defined by the relation

C'f 1-1) rr 1(17)

i.e.,

C' (17a)

2
where C is the drag coefficient based on 2 . By Eq. (4)

Y= YT ( ) -/m ),so that
Df
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C - (18)

or,

-' ___ _____(18a)

u> J , JT 4  i -,, .

For "locally similar" turbulence CDf in Eq. (18a) is the local value

of the drag coefficient. Thus the quantity

increases from its initial value corresponding to (CD) i to the final

value far downstream corresponding to the total drag coefficient of the

body. The opposite limiting case of "slowly-adjusting" turbulence is
T y~

characterized by "freezing" the quantity (f/)) ( m

at its initial value corresponding to (C Df) i

A precise value of (CD ) i is difficult to determine a priori, but

a rough estimate is obtained by equating (D.)i to the sum of the skin

friction drag of the body and the additional momentum defect produced

by the pressure rise associated with the flow deflection at the neck.

The analysis in Appendix 4 indicates that (CD) i varies with Reynolds

number like Re "  when the free shear layer is laminar. According to

Eq. (A. 4-9) at Red = l5, (CDf )i 0.02 for axially-symmetric flow,

so that (CI ) Z'o.o4 at m 6, while (C ) =f0.2 at M 20.
Df10 f i C

* The "exact" expression for CT (Eq. (13) or (16)) is utilized

in the detailed computations of Sections 3 and 4.
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The actual estimated value of (CDf')i is less significant than the fact

that it is at least one order of magnitude lover than the total body

drag coeffcient for a bluff body at hypersonic speeds. According to
e-T

Eq. (18) the initial value of T- YTn (or the "frozen" value foru ' f
"slow" turbulence) is also one order of magnitude lower than the value

corresponding to turbuleat flow sa-ross the major portion of the outer

wake.

By employing Eqs. (15) and (17) we have

-- f. D_ (19)

Thus, ouce (CD"')i is known the initial value of YTf is determined by

the value of B1 /H seleczed to start the computations. In other words,

BI/H, (CDf)i , and H axe the parameters of the problem. If (Y Tf)il< <

one expects the subsequent development of the wake to be relatively

insensitive to the particular value of (Y Tf)i selected (Section 4).

2.3.2. Growth of Inner Wake for "Locally-Similar" Turbulence

Z:T
Although small, the initial value of -u a plays an important

role in determining the initial rate of growth of the inner wake once

the pressure approaches ambient. For "locally similar" turbulence this

initial growth rate determines the location downstream of the body at

w ^hich +he inner wake begins to swallow appreciable momentum defect from
T

the outer wake, and thereby to increase u in accordance with
u O
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with Eq. (18). In Figure 4., the momentum defect contained in the inner

wake is represented by the area under the curve of enthalpy ratio

hT-h f
-- h vs. YT

(Eqs. (12), (14), and (15)). From this figure one sees that

0 . 0 * (20)

where the right-hand side represents the swalloving rate. By employing

Eqs. (17) and (20) we ftrd tha~t

C~ -1±.yL (21)

and by using Eqs. (2) and (18) we have

84 ___4M) H

d t' J, ~ { +~W t'~ ~ T  .( YLf (22)

But the energy balance along the wake axis (Section 3) leads to a

relation of the form

which together with Eq. (22), yields a differential equation for

T mo-- Yam of the form
0 TfA f

* A proof of this relation is given in Section 3.1.
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This last relation clearly shows the exponential character of the growth

of the turbulent diffusivity, but the amplification factor depends

strongly on the slope of the inviscid enthalpy profile g' (zf), as

expected (Section 4).

In the initial stages z (e 1 and g' (z)<< L, so that the rate
f J.

of growth of the inner wake is given by an expression closely resembling

the usual similarity relation (Section 3):

N4T*~c>'+-G.V (23)

By taking g'(zf) = - 2zf (Appendix i), and by using Eq. (23) and the

approximate relation (f/) M+l = y+l (Appendix 2), the

differential equation Eq. (22) for - d can be integrated, andu d

the result is as follows, for zf/<l:

LL:,d T (TZ7 ¢4 +.

where

/_do s e vu of (f/r. If he2)

IIt

and (Ff/(eoo denotes a suitable average value of ()/). If the
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turbulent mean enthalpy profile is chosen to be a parabola then

G, = 2/3, G2 = 1/4, G"(0) = -2

Also,

A

over a wide range of Macb numbers for equilibrium conditions
2

(Appendix 1). As an illustration we take g(z) = e-z ) so that

(Eq. (A.l-l0)), g- = ff/2 and g2 = then

o2 0.36 ando(1 2 1.35 for C_ =1 (Eq. (A.1-9)).
0o

Wi-Gh K = .04 (Appendix 3 ) and = 0.9 one obtains

Ao 0.0033 ( l.)3/2 (CDf i (25)

0.0 (/) 2/3 (CD1/

Fortunately the axial distance required to increase the effective

turbulent diffusivity by a specified factor is relatively insensitive

to the value of (CD )i. This distance vwries like (CD )i  1/3 in thef -f

two-dimensional case, and like (CD )i 1/4 in the axially-symmetric

case. However, this distance varies directly with ( -V )" for

two-dimensional flow, and like ( / )' for axially-symmetric flow.

At Red = 105, (CD )i = 0.014 in the two-dimensional case and

(CD f = 0.02 for axially-symmetric flow (Appendix 4).

At = 6, (0/) --o.39 . According to Eqs. (24) and (25), the

noI
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distance required to increase the initial diffusivity (T /u d) Y m

by 50 per cent is about 300 diameters in the two-dimensional case

and about 35 diameters in the axially-symmetric case. At M = 20,

) 0.033. Here the corresponding axial distance is about

3500 diameters (I)* for two-dimensional flow and about 120 diameters

for axially-symmetric flow. The marked difference between two-

dimensional and axially-symmetric flow is caused by two related

factors: (i) the hot gas in the inviscid flow iL concentrated much

closer to the wake axis in the axially-symmetric case; (ii) the axially-

symmetric inner wake swallows mass (and momentum defect) much more

rapidly than its two-dimensional counterpart, again because of the

geometric factor. The growth of6 u, d for the axially-symmetric

inner wake is indicated schematically in the accompanying sketch,

ET

!F

A'

1000

* In other words this distance is so large that the quantity
( f/ ) (6Vu , d) is virtually constant at its initial value.
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3. Turbulent Diffusion Equations and Their Solution for Enthalpy and
Mass Concentration

3.1. Turbu3Lent Diffusion of Enthalpy in the Inner Wake

In a steady, two-dimensional or axially-symmetric turbulent flow

of boundary layer type the energy equation for the complete static

enthalpy of an effective binary mixture takes the following form7 :

LL (26)

+ LA

Here 6T' M' and 1m are the turbulent thermal, momentum, and

mass diffusivities, respectively, and Le T is the turbulent Lewis

number = (em/ GT). The laminar contribution to the transport and

dissipation terms is regarded as negligible in comparison to the

main turbulent contributions.

The relative importance of the dissipation term in the wake is

measured by the ratio

(4 Qo-'
where Lu -- uf - u (0). In hypersonic wakes this term is negligible.

The statement that LeT = 1 eliminates the last term in Eq. (26).

(This statement is not necessary in formulating the energy integral

equation. (See below.)) As explained in Section 2 only the thermo-

dynamic effect of the static pressure variation. but not its dynamic
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effect, is taken into account here. With these approximations Eq. (26)

becomes

L>4v~i~.~ j~.r~j(27)

By the usual order of magnitude considerations for wake flows
12

v( h/ y)< u (3h/3 x) not too close to the neck. Also

u = Pu ,where 0.80$= 0.90. Thus the present problem is

analogous to a problem in one-dimensional (m= 0) or cylindrical

(m = 1) non-steady heat conduction, with t = x/iu. However, the

situation is somewhat unusual, becausef T itself depends on the

amplitude and breadth of the enthaipy pulse (Eqs. (8) and (13)), and

"heat" is spreading into a region (y > yf) containing a time-independent

non-uniform enthalpy distribution, but in which rT is effectively zero.T

The diffusion of a material property is governed by an equation similar

to Eq. (27) (Section 3.2).

By introducing the Howarth-Dorodnitsyn variable (Eq. (4)), and by

making use of the continuity equation, Eq. (27) is converted to the

form

LL T- L (28)

where = x/d, y = y/d, and 'Vis the lateral velocity in the "equivalent

incompressible flow" given by the relation v -= u Y Y + v Y-,. As shown
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in Section 2 the effective thermal diffusivity E T is defii.ed by

\ik . :)uLtd u~d*

Instead of seeking "exact" analytic solutions to Eqs. (27) or

(28) we integrate Eq. (27) across the inner wake., thereby converting

it into a first-order, non-linear ordinary differential equation for

the enthalpy excess, or momentum defect contained in the inner wake.

A second equation of this type is supplied. by satisfying Eq. (27) all

along the wake axis.** These two equations are sufficient to determine

the behavior of the two parameters B1 (, ) and YTf () (Eq. (3)), and

thus all characteristics of the turbulent diffusion of enthalpy.

* Actually the transformation to an "equivalent incompressible
flow" is strictly valid only along the wake axis, because f is not
constant.

** Additional integrals, or higher "moments" of Eq. (27) can
be employed later if greater accuracy is found to be necessary.
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mi

By multiplying Eq. (27) by ym, integrating across the inner wake,

and utilizing the continuity equation and Eq. (4), one obtains

F'T fr'% ] 'I{fe YT J ] _ML * Lr (29)

or

[S3 fh- - Vl%___ __ (30)

where u has been replaced by u, and thereby eliminated from Eq. (30).

The integral on the left-hand side of Eq. (30) is proportional to

* The heat transfer rate 4 (y ) at the interface between the
inner and outer wakes (y = yf) is supposed to be negligible compared
to the rate at which enthalpy is entrained at this interface. Since

this approximation is correct if

C~oL  , T 8 <<l

or if

::?LlI
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the momentum defect (Eqs. (12) and (14)). 
By introducing Eq. (3) for

the turbulent enthalpy profile, and employing Eq. (2), one has

SIM YT)CTM~l(31)

This last equation is identical to the relation obtained from Figure

4 by intuitive considerations (Eq. (20); 
now the basic assumptions

underlying this relation are clear. Integration of Eq. (31) yields

4L 1 ~YT~ 4  ir T[ aI~Y+G .(2

'YLL

By recognizing that (Appendix 2)

(T 'Yr- d(constant)(A26

* For >< 100
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and employing Eq. (A. 1-9) for Om+ , Eq. (32) is rewritten in a

convenient form defining a "drag function" F1 (zf):

e>O ( +CTD-___ 1i (33)

I Y LI

where zf =-- Y.f and ( L/ho )o -I.

Along the wake axis Eq. (27) or (28) becomes

PLL (34)

By using Eq. (3) for the turbulent enthalpy profile, one obtains

H , .)_._, __, =C" " ( "o) _..._,

For "locally similar" turbulence (- T is given by Eq. (16). By utilizing

Eqs. (17a), (33), and (A.2-6), one finds that

0
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[3 LA.d - --,,-M1-) (36)

Now (dBl/d ) can be eliminated in favor of (dzf/d ) by employing

Eqs. (31) and (A.2-6), and BI itself is expressed in tenms of zf by

using Eq. (33). For simplicity we take S- (p/h). Finally one has

where

(5Z + k)() (Q) _ __(37a)

and

+ 1 Tx+G73(m
.2~ (37b

Fl(zf) is defined by Eq. (33),

" 3 H (A.2-8)
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+4
-TVJ(37c)

with (Eq. (33)),

p~Y +1 0 ______37d)

Also

and

(37f)

The function H) in Eq. (37) depends on only through the

slow variation of H with decreasing (pf/p,) along the wake axis.

Therefore, .-(Zf, H) is practically a function of zf alone, and Eq. (37)

can be converted into a single quadrature for the growth of the

turbulent inner wake:

9 N-J 8
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The static pressure distribution along the wake axis must be obtained

from a theoretical solution for the inviscid flow including the wake

shock (Figure 1), or from experiments. Of course for 2 100,

(p f /p)-"1. once zf( ) is known from Eq. (38) the physical

wake boundary is determined from Eq. (37e), and the amplitude of the

turbulent pulse is given by Eq. (37d).

In the opposite limiting case of "frozen" diffusivity from Eq. (18a)

Ti E r r = V (Ct). (18a)

and by using Eqs. (31), (33), and (A.2-6) the heat conduction equation

(Eq. (35)) is converted to the following single quatrature:

-)~ ~ H rrZ C{X(~

where

* The exact value of the initial diffusivity given by Eq. (16)
or Eq. (36) is used in the calculations discussed in Section 4.
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with F2(zf) defined b Eq. (37b), and (hf/h.,) given by Eq. (37f).

In the region not too close to the neck, but before appreciable

"swallowing" has begun,

+ H f)POOk 4 (+ H)

Thus the solution of both Eqs. (37) and (39) is reduced to the similarity

relation

However, the outward growth of the physical boundary of the inner wake

is strongly influenced by the falling static pressure along the wake

axis in this region (Eqs. (A.2-6) and (37e)).

Once the swallowing process begins, the solutions for "locally

similar" turbulence and "frozen" diffusivity diverge, of course, and

it is difficult to give any precise estimates of the wake growth. For

locally similar, axially-symmetric turbulent wakes, however, the

swallowing process is virtually completed 100-200 body diameters dom-
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CD  (C )i

stream of the neck, so that F 1(zf)' -' D-+ and F .(z)f) = 1

for -l100- 200. Roughly speaking (Eqs. (37), (37a), (37c) - (37f))

and

Thus the wake width at a given is not very sensitive to H (or flight

velocity). The growth of the wake is given more accurately by Eq. (37e);

this relation takes into account the cooling effect, which makes the

wake grow more slowly than an isothermal wake. Numerical calculations

are required to illustrate the actual behavior of the wake. (Section 4).

Far downstream ( 4 04) the wake has cooled off sufficiently
hhf =lcmYf ,

so that hC0 () , , and _: 1. In this

regime the growth of the wake is described by a relation like Eq. (40),

with C replaced by (CD  + C ) for "locally similar" turbulence.
fio f.

The enthalpy distribution takes on the self-similar behavior analogous

to Towmsend's case:

F z F 1 /~- _
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where

P 42L 4 -4

and 0 is the momentum thickness defined by

3.2. Turbulent Mass Diffusion in the Inner Wake

Once the history of the turbulent diffusivity4, ( ) along the

wake axis is known, turbulent diffusion of a particular chemical

species in the inner wake can also be described by an analysis

similar to that employed for the complete static erthalpy (Section

3.1). As an illustrative example, consider the simplest case in which 0

all of the diffusing species is confined within the inner wake, and

recombination or other chemical reactions involving this species are

so much slower thau diffusion that they can be ignored. Such a

situation might arise when an ablating body deposits a "foreign"

substance into the boundary layer.

In analogy to Eq. (3) for the enthalpy, the simplest representation

of the mass concentration is a two-parameter description of the form

YT (43
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where K, is the mass fraction of the diffusing specje, and

is a measure of the breadth of the mass fraction profile. In this

special case it is convenient to take

Y1-

e T D (43a)

Then,

0

where

!r

By introducing a mass flux coefficient, cm, one has

M k -TI 4a

A second relation between K and YTD Is supplied by the binary

diffusion equation, which for Le T = 1 takes the same form as Eq.. (27)

or (28), with h replaced by c.* Along the wake axis (Eq. (34)),

* In spite of this fact t.he normalized mass fraction and enthalpy
are not similar during the swallowing process (Section 3), because they
do not satisfy the baxie boundary conditions.
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or (Eq. (43a))

For "locally similar" turbulence 6is given by Eq. (36) by

introducing this relation and Eq. (44a) into Eq. (45a) one obtains

__ __ cIV\t% 0 V.T k (CD) F,______(46

By again taking p/h and integrating, one finds

4f__ _ ( 1 4  (417)

where

PI_-

(g_ -c\ In. .

F2
k J)
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When the static pressure (Pf/Po) is known and zf() is obtained from

the quadrature in Eq. (38), all quantities in L ( ) are also known

(Eq. (37)). An alternative form of (Eq. (47)) is given by

(KT oC11)) (48)

I +

where the .nitial turbulent mass fraction and enthalpy profiles are
2 2

"matched" by taking (YTD) i  = 2 (YTf i (Appendix 3).

Once the mass fraction is known the value of the number density

per unit volume along the axis is calculated from the relation

)(49)

The number density distribution across the wake is given by

-- e YT/T

eee D 

(50)

where Y TDis obtained from Eq. (48).
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In the opposite limiting case of "frozen" diffusivity u d

is given by Eq. (18a), with CDf = (CD)i,, and Eq. (45a) becomes

(Eq. (44a))

so that

/ 1 (52)

or

____ 'TD<C ( g") '
K (6 D-f) :(53)

I-+- 1'4-) L ,,+, - .)4 "-A<-'CL""

a
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In this case zf(& ) is obtained from the quadrature for frozen

diffusivity (Eq. (39)), and the number density per unit volume is

calculated from Eqs. (49), (50), and (53), with the appropriate

values of h/h

According to Eq. (49) the initial decay of number density

along the wake axis is caused mainly by the volume expansion of the

flow as pf - p, . When (- i) ,-50 -lO0, Pf P , and the

cooling of the wake flow, or its increasing density, means naturally

that the number density falls off less rapidly with downstream distance

than the mass concentration.

As stated before, the swallowing process for the axially-

symmetric turbulent inner wake is virtually completed when ( - -i)''

200, so that F2 (zf) =1 when ( - i) 200. Also

+ V\ [K ( .d4> FK~ j
By comparing Eqs. (37) and (47), one sees that

2..

or

2Y -' 2

- T f -----
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As expected, the normalized mass fraction and complete static enthalpy

are similar once the swallowing process is completed. Thus

(Similar remarks are applicable also to the case of "frozen" diffusivity.)

This slow decay of peak concentration along the axis represents

the limiting case of zero or "slow" recombination rate. If the

diffusing species is reactive, the equilibrium concentration ("very fast"

reaction rates) is a function of the temperature and pressure, and is

known once the enthalpy field is known (Section 3.1.). The actual

distribution of the diffusing species along the wake axis lies between

these two extremes, and the methods of the present paper can be

generalized to include finite recombination rates whenever these rates

are known.
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4. Distribution of Some Observables in the Wake: Comparison with

Experiment

4.1. Inviscid Enthalpy Prof"__ for Axially-Symmetric Flow and

Initial Conditions for Inner Wake

Two examples have been calculated in detail for axially-symmetric

flow: (1) M = 8.5 and p, = 1 ATM, corresponding to the conditions

for most of the experimental data on wake growth obtained in ballistic

ranges; (2) MO,= 22 at an altitude of 100,000 feet, co.rresponding to

typical ballistic reentry conditions, The calculations were divided

into three different regions, beginning at the wake neck and moving

downstream. First, a very short region was assumed to occur i.n which

pure expansion (no mixing) takes place because of the rapid drop in

pressure immediately behind the wake shock. This effect is so pre-

dominant that it overrides any mixing that could occur until the

pressure is 3-4 times ambient. In that region the entire flow field

was expanded simply by the volume ratio required to reduce the neck

pressure to the initial mixing pressure, which was assumed to occur

at p = 4p,. (The fact that pressure heavily dominates at first and

then mixing gradually begins to take hold is brought out clearly by

the wake growth results.) The second region extends from the staticn

where p = 4p, to the point at which the pressure becomes ambient. In

this region both pressure drop and mixing occur. In the third and

final region the pressure is ambient everywhere and mixing alone

needs to be considered.



It is necessary to determine the neck pressure and fix its decay

to ambient conditions. Characteri.stics calculations were carried out

at M = 22 for the geometry shown in the sketch below using the

Wohlwil113 computer program. Briefly, the pressure p2 (see sketch)

immediately behind the wake shock, -which depends on Mach number, is

about 24p for 14 = 22 (P2- 7.5 P for M = 8.5), and the pressure

drops to a value four times ambient in a distance of about six body

diameters behind the wake shock (only oe diameter is required at

M = 8.5). Since yf 4 .18 for these conditions, the turbulent
Sneck

core expands by a factor
p2

to a value "' .44 in this initial region before mixing begins

= .25 at M = 8.5). Assuming the neck porition to be about

h"p "R--.dP-n
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1.5 body diameters 'behind the nose, the initial stations measured from

the nose where miL-dng calculations were begun were x/d = 7.5 for

MW = 22 and x/d = 2.5 for M., = 8.5. The distance downstream to the

point w¢here the pressure returns to ambient is also a function of the

free stream Mach rumber. For M. = 8.5, (x/d) 25 and for
p i

M = 22 (x/d) 50 .

At the initiation of mixing, the inviscid enthalpy profile in the

outer wake imst be specified. Since the enthalpy is relatively in-

Lens-Itive to pressure in the range 1 '
- p/p - 4 the enthalpy profile

corresponding to ambient pressure is employed in the calculations.

To find the inviscid enthalpy profile at p = po the shape of the bow

shock was used as described in Appendix 1. If the shape is known

enalytA.':ally and is approximated, an analytical expression for the

do-.nstream profile can be found, as shown by Lykoudis . Alternatively,

if the entropy distribution behind the shock is found, the profile at

p = p can be determined numerically by continuity methods, as

described by Goulardl 5 . In the present paper the continuity method

was used at M. - 8.5 and both methods were employed for M__ = 22.

The resulting profiles vh.,n transformed to the Howarth-Dorodnitsyn

variable by Eq. (1) are shown in Figure.' 5 and 6.

At the axis the slope of the profile must be zero, as shown in

Appendix 1. Since the numerical and analytical shock shapes used



for M = 22 all agree fairly well in the body nose region (Appendix 1,

Figure 19), the enthalpy profiles also agree quite well near the axis.

Away from the axis the parabolic shock g4ves a higher enthalpy because

the slope of this shock surface is somewhat steeper. For computational

purposes the enthalpy profiles were approximated by combining a

Gaussian curve near the axis with an exponential curve in the outer

portion, in such a manner that the total drg coefficient was unity,

ad the slopes of the two curves agreed at the matching point. It

should be emphasized that this procedure was employed for convenience

only, and exact values from the profiles could be used just as well.

It was found from the computer program described previously that the

wake shock raises the value of the enthalpy along the stagnation stream-

line by 5 pex cent, Combining these features gives the following

equations for the enthalpy. which are also shown in Figuros 5 and 6.

M = . ,a = C>Y1.22e Y

. ~ - e(54a)

(54b)

-S. (55a)

. = 3.e (55b)

Based on the estimates described in Appendix 4, the values of the

initial drag contained in the turbulent core were taken as follows:
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MCO (C D )i
8.5 .02P

22.0 .0077

The effect of different values of (CDf)i on the resultant wake growth

is considered later for one of the examples. The expezximental

constant, K, used in the diffusivity was taken as 0.04 (Appendix 3).

Also, the value of P (Eq. 12) was taken to be 0.9.

4.2. Turbulent Diffusivity

The growth of the turbulent diffusivity for "locally similar"

turbulence has been discussed in a general way in Section 2; we now

examine the numerical results for M = 8.5. The exact expression

fore T YTm can be obtained from Eqs. (13) and (33) and is given

by

(~~71j~c) ()(jr~*I j~4J)Y~v49 (56)

This quantity compared to its initial value is shown in Figure 7 as

a function of downstream distance from the initial mixing station.

The rapid initial growth in 6T Y is caused by the pressure
Tf

decrease and accompanying rapid increase in yf. The region

x/d 10 - 20 illustrates the eurly stages of mixing before the

diffusivity increases rapidly again. The explosive growth of

diffusivity begins at x/d 'f 40 for the condition shown. For two-



4-6

dimensional flow and the same external conditions this growth would

occur much later. According to Figure 7 the process of swallowing

enthalpy or momentum defect originally contained in the outer wake is

virtually completed in about 300 body diameters. Far do.nstream the

diffusivity approaches the asymptotic value given by the relation

TK

4.3. Growth of the Turbulent Inner Wake

The calculated growth of the turbulent inner wake at a flight

velocity of 9,500 ft./sec. is shown in Figure 8 for both "locally

similar" turbulence and "frozen" diffusivity. Up to x/d = 15-20 the

two limiting cases are practically identical, because the marked

increase in turbulent diffusivity in the "locally similar" case has

not yet begun (Figure 7), and the pressure drop plays an important

role. Downstream of this region the "locally similar" wake grows

rapidly to a width of about 3 body diameters at x/d = 100, 5 body

diameters at x/d = 300, and 8 body diameters at x/d = 1,000. Soon

after the swallowing process is completed (x/d 300) the wake width

approaches the familiar 1/3-power growth curve corresponding to the

total drag of the body. Wake widths calculated on the assumption of

"frozen" diffusivity are smaller by a factor of at least two over the

range 200, x/d N4,000.

These calculations are compared with experimental shadowgraph data
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in Figure 9. Most of the data are supplied by Slattery16 and Clay

(9,000 ft./sec.) at the Lincoln Laboratory (M.I.T.). Some additional

points obtained in the region x/d,<300 were taken from Feldman2 (AVCO)

(15,000 ft./see.) and Danal 7 and Short (CONVAIR) (7,400 ft./sec.).

The experimental scatter is too large to detect any details of a

rapid growth region in the early stages (x/d< 50). The most important

result is that the predicted growth of the inner wake for "locally

similar" turbulence is in good agreement with the shadowgraph measure-

ments in the range 200 < x/d< 4,000, while the wake widths calculated

for "frozen" diffusivity are too low by a factor of about two. No

adjustment of the diffusivity constant K was necessary to fit th6

data.

The theory (Section 3) indicates a weak dependence of wake width

on flight velocity and. agrees qualitatively with the fact that

Feldman's data obtained at 15,000 ft./sec. lies in general above the

computed curve (Figure 9), while the data of Dana and Short at

7,400 ft./sec. lie below the curve.

At a flight velocity of 22:,000 ft./sec. the calculations show

that the inner wake grows more rapidly in the region x/d<300 than

at 9.,500 ft./see. (Figures 10 and 11), because of the combined effect

of a larger pressure drop and a higher effective turbulent diffusivity.

However, the wake grovs more slowly than the er ..... s
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region x/d 300 - 4oo, because the core is still much hotter than

ambient (Eq. (37e) ). The enthalpies aLong the axis and the front

axe shown in Figure 12. At = 1,000 the axis enthalpy is still

over six times ambient. In fact, the calculated curve of wake

groith has not yet taken on the 1/3-power behavior at x/d = 4,ooo.

Of course very far downstream the wake boundaries for all flight

velocities must eventually coincide (for the examples shown this

occurs at l05 ) if the total body drag coefficient is the same.

4.4. Effect of (CDf) i

In ordei to determine how accurately the value of (CDf)i must

be known, calculations were made at M, = 22 for two values of

initial drag differing by a factor of two, namely .0077 and .0155.

The enthalpy increment on the axis of the inner wake was taken to

be the same for both values of (CD )i. According to Eqs. (A.2-8)

and (37d), if

0 77 (-B1/ , .O 55

then the quantity

( -M_____ H

is also the same. In taking B1 = const. we must have the ratio
m+l

(Cn).)f= constant; thus if (CD)! is doubled zf must increase

-- -i
-f
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by V Then the initial fronts are not quite at the same position andhf

neither h (0) or have the same values. This discussion
h h,.

shows that the value of z must be chosen to be consistent with
i

(CD and (BI/H)i

The growth of the turbulent inner wake is shown in Figure 13 for

initial values of the drag coefficient equal to .0077 and .0155 with

and without pressure effects. The axial coordinate is measured fiom,

the initial mixing station. Differences in downstream location for

a given wake width are large in the initial stages (x/d <lO), but

soon become unimportant once the swallowing process is in full swing.

For these two cases, the values of the integrand of Eq. (38), 3 (zf, H),

were essentially idcntical after x/d = 125. The differences in this

function occur only for small zf and upon integration eventually

become a small contribution.

Here the effect of the pressure drop in shaping the early portions

of the front is very evident, resalting in a parabolic behavior as

opposed to the slow initial growth predicted by mixing alone.

4.5. Mass Diffusion Calculations

Calculations for turbulent mass diffusion at M = 22 are shown

in Figure 14. As described in Section 3.2, this case represents the

limiting behavior in which some species is contained entirely within
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the inner wake, and no recombination occurs, so that the total number

of particles remains the same. The behavior with "locally similar"

turbulence and "frozen" diffusivity is shown as computed from Eqs. (48),

(49). and (53). A rapid decrease in concentration occurs first, because

of the pressure drop, but by x/d = 500 the peak concentration along the

axis is falling slowly because of the slow growth of the wake width

and the cooling effect (Figures 10 and 11). In these calculations,

the pressure drop accounts for a decrease by about a factor of five

while the mixing accounts for about two orders of magnitude up to

x/d = 1,000. The values of peak concentration for "frozen" diffusivity

are almost an order of magnitude above the values for "locally similar"

turbulence.

4.6. Electro, Distribution

Electron concentrations in the wake can be found from the enthalpy

and pressure distributions. Representative results are shown in Figures

15, 16, and 17. In these illustrative examples it is assumed that the

flow is in complete thermodynamic equilibrium at least up to the neck

location. The lower curve in Figure 15 shows the axial distribution

of electrons for M = 22 at 100,000 ft., assuming that the electrons

also follow the equilibrium flow conditions in the wake given by the

"locally similar" turbulence calculations. Here the initial concen-

tration is equal to the value at the neck, or in other words, it is

given by the conditions _h (0) .6 stagnation and p = 24 ph h_
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The pressure drop to ambient has a strong influence for a short

distance, after which h (0 determines the distribution. Theh

distribution crosses the equivalent C-band (5600 me/see; ne e.

3.1 x 1011/cm3)* electron concentration at x/d ='100, L-band
100c 3  x ,

(1300 mc/sec; ne 2 1.7 x 10 0/cm ) at x=- 200, and the lowest

frequency, UHF (400 mc/sec; ne -=1.6 x 109/cm ), at x/d 325.

The curve in Figure 15 labelled "pure diftusion" corresponds

to the case of frozen flow in the wake so far as the electrons are

concerned. The initial conditions are the same as for the equi-

librium case, but the presence of electrons in the outer wake is

ignored. Thus the normalized distribution of number density is

identical with the diffusion results shown in Figure 14. Again

the pressure drop in the initial region accounts for a considerable

portion of the decrease in n . In fact the differences between the

two limiting cases of frozen and equilibrium flow are not large for

x/d <100. Downstream of x/d = 150 the electron concentration is

* In rationalized units, the electrons /cm 3 are given by
m e Go 2-s f2

ne 0 where 0) and f are radar frequencies

in radians and cycles per second respectively, 7 is the dielectric
constant of free space, and e and me are the eleStronic charge and
mass respectively. We consider here the lengths to be roughly the
distance between the object and the position where the electron
density falls below the value given by this equation for any radr
frequency.



4-12

orders of magnitude larger in the case of pure diffusion, as expected.

As discussed in Section 3.2, these two cases should represent the

limits of behavior, and the actual situation lies between these two

limits.

The third curve in Figure 15 shows the axial electron distribu-

tion for the laminar equilibrium condition as calculated by Feldman 2

and Lykoudis. The strong pressure effect initially is similar, but

once the pressure is ambient ( >100) the slow time scale compared
*

with turbulent diffusion is evident.

in Figure 16 the calculations have been scaled to an altitude

of 200,000 ft. for illustrative purposes. Here the equilibrium

conditions would indicate no C-band wake. The L-band wake length

corresponds to a value of 50, while the trail length for UHF

corresponds to 150. However, the pure diffusion wake would

have a UHF length of x/d t 250.

Finally, the radial distribution of electrons at several axial

stations is shown in Figure 17 for M = 22 and h = 100,000 ft.,

* The laminar calculations do not account for the initial
heated inner core, hence the difference in the concentrations for
x 'lOO.,a
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under the assumption of equilibrium and "locally similar" txrbulent

flow conditions. Near the neck the electrons appear restricted to

a fairly narrow region, but they diffuse outward rapidly downstreaxf

of the neck. The total width of the plasma cylinder corresponding

to the plasma frequency at L-band remains virtually constant in the

ragion 30<,x/d<llO at about 3.5 body diameters. The width corre-

sponding to UHF remains practically constant at about 5.5 body

diameters in the region 30K'x/d<250.
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5. Conclusions and Future Work

I. At velocities of the order of 9,000 - 10,000 ft./sec., the

predicted growth of the inner wake for "loc.lly similar" turbulence

is in good agreement with shadowgraph measuxements of wakes behind

spheres obtainied in ballistic ranges. Wake widths calculated for

the opposite limiting case of a "frozen" diffusivity determined

only by the initial drag of the inner wake are too small by a factor

of at least two over the range 200< x/de4,000 covered by the experi-

mental data. We conclude that the adjustment time for the scale and

intensity of turbulence must indeed be short compared to the time

scale for the changes in turbulent diffisivity along the wake axis.

The adjustment is probably made easier by the fact that the process

of swallowing enthalpy or momentum defect originally contained in the

outer wake is almost completed in about 300 body diameters. The

constant K appearing in the expression for turbulent diffusivity in

the present paper corresponds directly to Townsend's "universal"

Reynolds number T for low-speed turbulent wakes. Tentatively one

concludes that the turbulence mechanism in the wake with respect to

a fixed observer is probably quite similar to the low speed case, in

sp te of the large meezn temperature gradients. Experimental studies

of the structure of turbulence in the wake are required to settle

this point.

Measurements of the growth of the turbulent inner wake behind

blnt-nosed bodies of various nose bluntness ratios at "-o^^ -
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of the order of 20,000 ft./sec. would help to clarify the influence of

the nose drag, the outer wake entbalpy distribution, and the hot core

in the inner wake.

2. Once the swallowing process is in full swing the influence of

the initial drag coefficient (CD)i is small, because the drag absorbed

from the outer inviscid wake is so much larger than the initial drag.

However, the "incubation length" required for the inner wake to begin

swallowing momentum defect at an appreciable: rate J.J proportional to-1/3)j/ th

(CDf)iz In the two-dimensional case, and to (CDf)i-1/4 in the

axially-symmetric case. A brief analysis shows that (CD i varies with
1 

f

Reynolds number like (Re)-  when the free shear layer is laminar, and

a rough estimate establishes the value of (CD ) within a factor of

about two. Careful theoretical and experimental studies of the re-

compression just behind the body are required if the initial conditions

for the turbulent inner wake are to be specified more precisely.

Theoretical investigations of the stability of laminar flow in the

wake, and extension of hot-wire studies of laminar-turbulent transition

in the axially-symmetric wake would be very helpful in determining the

lower Reynolds number limit for the appearance of turbulence.

3. Because the fluid in the free shear layer above the zero stream-

line is decelerated and ccmpressed at the "neck", the gas in the inner
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wake is much hotter initially than the gas in the outer wake at the

turbulent front. In one typical example (M = 22, h = 10,000 ft.)

the enthalpy along the wake axis requires a distance of about 150

body diameters to cool down to a value equal to the initial enthalpy

in the outer wake at the front. Even at x/d = 1000 the eni'halpy on

the wake axis is still about 10 times ambient for a blunt body such

as a sphere. The axial variation of the enthalpy at the front. =y

is simply a one-to-one mapping of the curve of wake growth y on

the original enthalpy distribution in the outer wake.

4. As an example of turbulent mass diffusion the decay of peak

electron density along the axis of the inner wake is calcv .ated for

M = 22, h = 100,000 ft., on the assumption that the initial electron

density corresponds to thermodynamic equilibrium, and that the electron-

ion recombination rate in the wake is negligibly small. The peak

electron density decays from a value of 5 x 1013/cm3 to a value corre-

sponding to the plasma frequency at L-band (f = 1300 mc/sec;

ne 1.7 x 10/1cm3 ) in a downstream distance of about 1000 body

diameters. This length should be compared with the corresponding

distance of about 200 body diameters for complete thermodynamic equi-

librium (very fast recombination rates). The actual situation is

expected to lie somewhere between these two limits. In any event the

predicted radar trail length for a blunt body is fairly long, even with

turbulent diffusion.
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0he interesting result for equilib3um flow at M = 22 and

h = 100,000 ft. is that the width of the plasma cylinder correspond-

Sto the Iasma frequency at L-band remains virtually constant at

t 3.5 body diameters in the region 30( x/d_ jll0, while the width

co: ' esponding to UHF (400 mc/sec; 1.6 x 109 /cm3 ) remains practically

constant at about 5.5 body diameters in the region 30x/d<,250.

Similar calculations can be carried out for equilibrium gas

radiation intensity or radiation from an ablating species in the

wake.

5. The results obtained in the present paper are sufficiently

encouraging so that one can begin to think of including the effects

of chemical and electron-ion recombination processes. Clearly these

rate processes and turbulent diffusion interact when streamlines

enter the spreading inner wake, because of the effect of diffusion

on the local mass fractions of the reacting species. Hopefully,

the methods utilized by S. C. Lin 18 and J. D. Teare (and others)

for the outer wake can be combined with the present analysis to give

a more complete picture of the wake at hypersonic speeds.

I'
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APPENDIX I

ENTHALPY DISTRIBUTION IN THE OUTER WAKE

We consider the inviscid flow region for 25-50 where the static

pressure is virtual.y equal to the ambient pressure. The enthalpy

profile is independent of axial distance and is specified by the bow

and wake shock shapes. The procedure used here to calculate the

profile is to determine the profile that would exist for a semi-infinite

hemisphere-cylinder, and then modify this profile slightly to correct

for the wake shock. Feldman 2 has shown that this correction is small

and for many applications could be neglected.

If the bow shock shape is known analytically and is approximated,

an analytical expression for the downstream profile at ambient pressure

can be found, as shown by Lykoudis 1. Alternatively, given a numerical

shock shape, the mass flux and entropy distributions just downstream

of the shock can be found. Assuming an isentropic expansion to ambient

pressure some distance downstream of the nose, the flow variables can

be found corresponding to the ambient pressure and the entropy values

downstream of the shock. The radial position or distribution of the

streamlines is determined by a continuity balance for the mass flux

entering the bow shock along any given streamline. Goulard15 first

applied this method as a means of comparing various flow field

techniques.
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Thus the problem is basically that of determining the correct shock

shape. Feldman2 used the method of characteristics and computed down-

stream to 1 25 along the hemisphere-cylinder. These values wered

subsequently used by himself and the Goulards 1 9 to solve the laminar

heat conduction problem in an equilibrium wake flow. However, as

Goulard15 pointed out, the characteristics method is subject to

accumulative errors when it is extended to the downstream distances

needed. The present authors have had the same experience with

computer calculations run in conjunction with this investigation.

Considerable care in the programming procedure is necessary.

Blast wave theory indicates that a parabolic shock should exist.

Lykoudis 14 has used this fact with the decided advantage that a closed

solution was obtained even to the laminar conduction problem. There

are two features which modify this assumption: (1) Because of the

entropy layer, a parabolic shock can not exist for a hemisphere-
*

cylinder and the exponent must be slightly less than .5. This result

has also been found by Van Hise 2 0 , who used the sonic cone method and

obtained computer solutions to various body shapes. He found the

shock shapes for all the various bodies could be correlated very well

by the equation
4ig

d1 "
(A.l-1)

(2) Real gas effects (the Van Rise computer calculations were for

constant ) can be important. The density no longer has the given

*This fact was recently pointed out to us by Dr Milton Van Dyke
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maximum ratio across the shock, and the shock shape is modified

accordingly.

Regarding the correction for the secondary shock, it has been found

that the body streamline enthalpy when expanded to p = is raised by

about 5% over that on the hemisphere-cylinder surfa.e. The amount in

axially-symmetric flow can be somewhat different from that for two-

dimensional flow, since the free expansion streamline behind the body

in the former case tends to curve inward as the axis is approached,

resulting in a different secondary shock strength.

For the specific examples used in the present work, the experi-

mental shock shapes shown in Figure 18 were employed to get the

entropy and mass distribution for M = 8.5. The entropy distribution

downstream of this shock was found using the Wohlwill13 computer

shock routine, and then the continuity balance described before was

used to get the profile at p = pV . At M, = 22 the Wohlwill 1 3

computer program was used to get the subsonic and transonic shock

shapes. The result at M. = 22 is shown in Figure 19 compared with

20 1
the shock shapes given by the Van Rise and Lykoudis equations.

For both examples, the final enthalpy profiles when transformed by

the Howaeth-Dorodnitsyn variable are shown in Figures 5 and 6.

The laminar profile exhibits a flat region near the axis followed

by a rather rapid drop in enthalpy. Since this shape contributes to
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the initially slow and then explosive growth of the turbulent mixing,

one should examine theoretically whether the initial slope at the

axis is finite or indeed zero. This point can be investigated by

using the procedure given by Wohlwil121 for calculating the gradients

normal to a streamline crossing a shock. We first calculate the

entropy gradient,

where+ is the. stream function, Ts is the temperature behind the

shock and is the shock inclination afgle measured from the axis.

Since

(AJl.3)

and from the Rankine - Hugoniot relations

+±L 0  .LT 7 ~~y
C0

UL -S 0 (-g9+ P.

it follows that

J5 Z -1_ ] 2-(A.1-5)

so

LL X LrL (.1-5a
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We want

T 5= (A 1.5b)

For two-dimensior:A] flow,

I, .  = (A.-1. 6a)

and for axially-symmetric flow,

Lj _= R uxJ- (A.1.6b)

where the notation is shown in the sketch.

Now CI--j is a constant along any streamline. Since the pressure is

constant, TdS = dh and we have finally for two-dimensional flow

T'3  
_ (?-L)LL., coso~l-- (A17a

and axially-symmetric flow

____ ____ ____ ___(A-1.7b)

d -i- d- T50-IL-)RW

Since = 900 for the stagnation streamline, the normal entropy and

enthalpy gradients are always zero for two-dimensional flow regardless

of the body shape. For axially-symmetric flow, the gradient is
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proportional to the body radius r, and is zero only if the streamline

returns to the axis, which it does in the present case. Thus the

enthalpy gradient at the axis is zero.

Finally, with the enthalpy profile of the form given by Eq. (2)

the value oftm can be found from the drag coefficient CD0 . When

(V K) LL the drag coefficient is given by the expression

0( 2-L, U L
U -A 41(A-1.8)

wheref D 0 C .4- Since KK f'~tL-c'ad(~)~

CD  r c4 ? 7 A'L (A.1.8a)0 Q -) MCO

Hence

-. 4D

with OC,

m+ 1 =f(A.1.lO)
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APPENDIX 2

RELATION BETWEEN INVISCID AND TURBULENT

MAESS FLUX QUANTITIES Y Lfm+l AN ? ,. ) m+].m AND m~ "

The rate of entrainment of mass flux by the inner wake is

given by the expression

di = ( y (A.2-1)

whereof is the inclination of the streamline just entering the inner

wake. In the present analysis the influence of the turbulent inner

wake on the outer wake is regarded as a second-order' effect (Section 2).

In other words, f, uf, andpf are supposed to have the same values

along the curve y = yf(x) as they .would have if the outer wake flow

field extended smoothly to the axis. To this approximation Eq. (A.2-1)

states that the rate of increase of mass flux nlf contained within the

bounding curve y = yf(x) is also the same; therefore, the inviscid and

turbulent mass flux quatitities at any station differ by a constant,
*

at most.

This constant is readily determined by evaluating the two mass
m+l , m+l

flux quantities at x = xi, where Y f and (?f/ ) YTf are both

*Near the neck (dyf/dx) and Pf may be comparable, and some error
could be introduced by neglecting the interaction effect. However, the
wake flow is "pressure-controlled" in the first 5 - 10 body diameters
downstream of the neck in any case. Beyond x/d 10, 10 f i (dyf/dx).
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(~1. When z f <K, )1 + H = (LL/1kC) 0  (4k and according to

Eq. (37d),

p7, Th+(00 (A. 2-2)

or

By inverting Eq. (4), taking / , and utilizing Eq. (3), one

finds on the other hand that

-, (-mx) ., CG 1 rT . (A.2-4)

By employing Eq. (19), we have

"IT4 
A.2-5

and by equating the two relations Eqs. (A.2-3) and (A.2-5) forf, one

obtains

(m/,)(YT fl kA J r-x+I) (: ( I) -6)

( YT -C (A.2-7)

where (Eqs. (A.l-9) and (A.2-6))

TWI~X(A .2-8)"-l-i{1 CD0

$1- ._(
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APPENDIX 3

SOME REMARKS ON TOWNSEND'S EXPERIMENTAL RESULTS FOR LOW-

SPEED WAKES: RELATION BETWEFN OUR K AND TOWNSEND' S RT

According to Townsend's experimental results 6 -L = Ye ( 3u'/A

near the axis of a symmetrical low-speed wake behind a long cylindrical

rod normal to a uniform air stream, where G T is independent of y.

Once the wake flow becomes "self-preserving" the mean velocity distri-

bution near the wake axis is described by the parabola

_LLJ I- - (A.3-1)
- Li(O)

where a is a constant. Thus

T (A.3-2)

where L~u = uf - u(O). But T= - , and the question arises as

to whether Eq. (A.3-2) for tC is consistent with the behavior of the

correlation iFv' across the wake.

Townsend6 found that the turbulent velocity fluctuations require

a somewhat longer distance behind the rod to reach equilibrium, or

"similarity", than the mean axial velocity. Nevertheless this simi-

larity is well established at x/d = 500 (Figures 7.1 and 7.4, p. 135

and pp. 142-143, Reference 6). In Section 2.1 it was pointed out that

the characteristic length in our case is not the body diameter but thra

inner wake momentum thickness, e. Therefore on the basis of Townsend's
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results and our estimates of ei/d, one should expect complete flow

similarity in the inner wake to be established in 5 - 20 body

diameters. Once this similarity exists

, I

(A.3-3)

and by symmetry

( / " / ] (A.3-3a)

near the wake axis (Figure 7.10, page 152, Reference 6). The quantity

u'r_ is virtually independent of y near the wake axis and its magni-

tude decays with downstream distance exactly like'( u)2 (Figure 7.4,

.ff 2page 142, Reference 6). In other words u'-l- (Au) 2 . By combining

this statement with Eq. (A. 3-3) and (A. 3-3a), we find that

-C=- P L _,-F( L 2 vl(A.3-4)

Clearly Eq. (A.3-2) and (A.3-4) for T are compatible if -T -AZ #,

or if the quantity ' is a universal constant "Reynolds number"

for the symmetrical wake flow. In this particular case, the validity

of the semi-empirical relation= CTQ /q) is assured by symmetry and

similarity; in fact one could dispense with it entirely and work directly

with the Reynolds stress. Evidently these same arguments are applicable

to axially-symmetric "similar wakes", and by Reynolds' analogy, to the

turbulent transfer of mass and heat.

The only remaining question is the magnitude of the Reynolds number

A-- , which must be determined by rough physical arguments about the
1rT



A-3.3

characteristic size and shape of the large eddies 6 , or by experiment

The procedure adopted here is to make certain that the relation between

the turbulent diffusivity and the drag coefficient of the wake (Eq. (18a))

reduces to Townsend's relation for isothermal flow. In this way our K

is related directly to Townsend's

1e- . -(A .3-5 )

where -I° is a measure of the wake width. In Townsend's case, the

mean axial. velocity distribution not too near the edge of the wake

is described very closely by the Gaussian distribution

u.L eu x- (A .3-6)

Thus (Eq. (14))

CD{ = i+(.h/A) 2 (A.3-7)

where F = and F2 = -.. By using Eq. (A.3-5) and (A.3-7),

we have

( - i )(fo/- "(P-) CD ' "  (A.3-8)

Now for isothermal wakes of Townsend's type our Eq. (18a) for

(or Z-- T) reduces to the form

eE .fr T oe f s t(A.3-9)

By equating Eq. (A. 3-8) and (A. 3-9) for z- T' one finds that
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PK~ ________ F_____I(A.3-lo)

For a two-dimensional wake with a parabolic mean enthalpy profile,

G1 =2/3, and

K = 0.53 (A)-13-a)

or, taking Townsend's value of RT = 12.5,

K = 0.043 • (A.3-1Ob)

In the case of an axially-symmetric wake, the value of K depends

to some extent on the "matching" between the velocity profile selected

for the inner wake in our case and the Gaussian velocity profile for

a low-speed wake spreading into an irrotational flow. By comparison

with the experimental results of Townsend 6 , and Hall 9 and Hislop, the

"best fit" for a parabolic velocity profile is obtained by taking

YTf = 2(1 /d). At this point (u,. - u) V--0.05 Au for the actual

profile (Figure 7.4, Reference 6), and the turbulent intensities

u 2 , v' 2 , and w'2 are less than 10 per cent of their peak values.*

• The problem of selecting the "best fit" is somewhat similar to

the problem of choosing the "thickness" of a boundary layer along a
solid surface. One wants to include the bulk of the mean shear flow,
but not too much of the "external" inviscid flow. Fortunately in the
axially-symmetric case the wake width at a given downstream location
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With this choice of YTf and with G = 1/4, and RT = 14.5

K = 0.035 = 0.04 (A.3-10c)

This value of K is utilized throughout the numerical computations

(Section 4).

* N depends on K' / 3 (Section 3.1), or on ( ) However, the

downstream location for a given wake width varies inversely with K. It
should be noted that the intermittency factor g is about o.4 at the
point YTf = 2Y9o (Figure 7.5, Reference 6), and a sensitive hot-wire

anemometer measuring turbulent fluctuations might find a "wake width"
as much as 50 per cent greater than the wake width for the mean flow
quantities.
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APPENDIX 4

MOMENTUM DEFECT IN THE INNER WAKE AND ORDINARY DRAG;

ESTIMATE OF INITIAL DRAG COEFFICIENT, (CDf) i

According to Eq. (18) the effective turbulent diffusivity is

determined by the momentum defect Df in the inner wake measured

with respect to the local flow in the outer wake at the turbulent

front. But the usual aerodynamic drag D is measured with respect

to the free-stream velocity, u . These two quantities are con-
co

nected by the relation

0 (A. 4 - 1)

4+ rLT(LLio-Lt)f9r~ ?

0/ 0

or,

where ilT is the mass flux in the turbulent inner wake. Even in

the initial stages near the neck, where Df is very nearly constant,

D increases in the downstream direction because the inner wake is

capturing additional mass flux, and the term mT (u~ - uf) takes

account of the differences in momentum flux as measured in the two

different coordinate systems.
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Once the process of swallowing momentum defect begins Df and

D, both vary along the wake axis. Of course the total momentum

defect is constant when ( p - p ) 4u4 2 , and so is the

difference between the turbulent and inviscid drags of the inner

wake for the same mass flux. This relation can be derived as

follows:

According to Eq. (A.4-2) the difference /kDf can be written

'+LL LLkI j (A.4-3)

JOJ
Now D

I T (A.4-4)

or

0.

TPe firs inerli(q A45 ersnsteda fteoiiAl5

flow in the outer wake, and is a constant; therefore the quantity in

f j , which is identical with ADf, is also a constant. The constant

is determined by evaluating ADf when yf 1/ 1. In that case uL = uf
S
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and

which is exactly the initial momentum defect of the inner wake with

respect to the local flow in the outer wake at the front. The fact

that LDf is constant can also be verified by utilizing Eq. (20).;

the rate of increase of the first term in Eq. (A.4-3), which

determines the turbulent diffusivity, is exactly balanced by the

rate of increase of the second term.

A precise value of (Df)i or (CDfi) is difficult to determine at

present, but a rough estimate is obtained by equating (Df)i to the

sum of the skin friction drag on the body and the additional mo-

mentum defect produced by the pressure rise at the neck (Figure 1).

According to the momentum equation, this increase in momentum defect

is given by

H "(A.4-6)

where Ap is the pressure rise at the neck. Viscous stresses are

neglected because the compression occurs over a short distance .

Let the subscripts 1 and 2 denote conditions Just upstream and

downstream of the neck, respectively. Then /p =,- -)

and (Eq. (A.4-6))
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For two-dimensional flow the quantities p2 and pl/p, can be

evaluated approximately. C. F. lyawey, Jr.* points out that for an

isentropic compression process P2  is equal to the pressure on the

body surface at the point where the streamline is parallel to the

free stream direction. By employing a Prandtl-Meyer expansion

from the sonic point on a blunt-nosed body this pressure is evalu-

ated, and by using Chapman's criterion for p2/pl, Dewey finds that
2lM .( 2) Also p Pl -- 3 because --3,

P1 /Po, 1'l.3 x 102 M, 2 /~'

virtually independent of M

The remaining unknown is the neck width (yf/d)i. This width

is determined by the boundary layer thickness at the separation

point on the body surface, plus the subsequent mass flux entrainment

in the free shear layer. A rough estimate of (yf/d)i for the case

of a circular cylinder is obtained by considering this whole process

to be equivalent to the development of the laminar boundary layer

over a blunt-nosed slab of equivalent length. Since the free shear

layer makes an angle of about 17 with the free stream direction

the neck location corresponds approximately to = 2.3. Calcu-

lations similar to those made in Reference 22 for a hemisphere-

cylinder yield (cj*/d)i 3 8' oi (c/). rl-ed =t-L ,J- -

* Private communication.

** 'he boundary layer in the two-dimensional case is thicker than
it is on the hemisphere-cylinder by the factor \2.
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This rough estimate is in fair agreement with measurements of the neck

width in the wake behind a circular cylinder made by C. F. Dewey, Jr.,23

at M = 5.8.

In the axially-symmetric case the inviscid flow is more complicated

near the neck. For the present, we utilize the estimates for pl/pO

and p2/pI obtained from two-dimensional flow considerations. If the

ratio of mass flux in the inner layer at the neck to the mass flux at

the boundary layer separation point is the same as in the two-dimensional

case, then mass continuity dictates that the quantity (y/d)i2 must be

equal to the two-dimensional value of (yf/d)i, divided by the factor FY.

Collecting all of these estimates we find that

- 3:/ .7
Vz 3

~(A.4-8)

Now CD =Cf +ACDf, where C f is the skin-friction drag coefficient% _(/.3)2
of the body. Roughly Cf

so that

5
e or-,(A.4-9)

Since the probable minimum Reynolds number for turbulent flow in the

wake 3 is of the order of 5 x 10 4 , the maximum relevant value of (CDf) i
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is about 0.02 in the two-dimensional case, and about 0.028 in the

axially-symmetric case. This condition corresponds to a flight

altitude of about 180,000 feet for a body one foot in diameter at

satellite velocity. At an altitude of 100,000 feet, for example,

Red f 2.5 x 106 for the same body, so that (C )1 - 0.0033 in the

two-dimensional case and (CDf)i-0.005 in the axially-symmetric

case. In the numerical examples of Section 4 the value of

0.022 for (CDf )i at M,= 8.5 corresponds to a Reynolds number near

the lower limit, while the value 0.0077 for M = 22 corresponds to

Red t 8x 105.
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