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ABSTRACT

At Reynolds numbers greater than gbout 5 x 1oh, corresponding to
altitudes below about 180,000 ft., the hot "outer inviscid weke"
behind the bow shock wave produced by a blunt-nosed body at hypersonic
speeds is cooled mainly by turbulent diffusion and conduction. Turbu-
lence originates in the "inner wake" formed by the coslescence of the
free shear layers (or annulus) shed from the body surface when the
boundary layer separates from the surface. As this turbulence
spreads outward, it swallows enthalpy or momentum defect originally
contained in the outer inviscid wske. If the turbulence is "locally

similar", i.e., if it behaves at each station like a slice of a low

:§> speed 'self-similar” wake, then the turbulent diffusivity grows from

a low initial value near the body to a value correéponding to the
total drag of the body at about 300 body dismeters downstream. At
flight velocities of the order of 9,000-10,000 fﬁ./sec. the growth of
the turbulent inner wake predicted on the basis of "locally similar"
turbulence is in good agreement with shadowgraph measurements of

veke widths behind spheres cbtained in ballistic ranges in the

region from 200 to 4,000 body diameters downstream of the body.
Tentatively, cne concludes that the turbulence mechanism in the wake
with respect to a fixed observer is similar to the low speed case, in

spite of the large mean temperature gradients.
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electron density in a turbulent wake behind a blunt body, the two
limiting cases of thermodynamic equilibrium and pure Qiffusion (zexro
electron-ion recombination rate) are calculated for M__ = 22 at
altitudes of 100,000 £t. and 200,000 ft. Even for the case of thermo-
dynamic equilibrium, the predicted turbulent radar trail length is
about 200 body diameters at L-band (1300 mc/sec.) at 100,000 f£t.
altitude and about 150 body diameters for UHF (400 mc/sec.) at

200,000 £t. Cne interesting result is that the width of the plasma
cylinder corresponding to the plasms frequency at L-band remains
virtually constant at about 3.5 body diameters in the range 30 x/d {

150 at 100,000 ft. sltitude. These results are sufficiently encourag-
ing so that one can think about including the effects of finite

chemical and electron - ion recombination rates in the analysis in

order to give a more complete picture of the wake at hypersonic speeds.
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1. Introduction

The wake produced by & body moving through a fluid medium is one of
the oldest known fluid-mechanicel phenomensa. In calm water the wake of
a sailing ship is observed for many miles behind the ship. Experi-
mental studies of low speed wakes show that the momentum defect
contained in the viscous portion of the wake spreads rather slowly into
the rest of the fluid, even when the diffusion process is turbulent.
Eigh speed wake phenomena have a8lso been noticed for a long time, but
much less is known about them. When the famjliar meteor trails are
studied by radar echo techniques, treils et leest 15 miles long are
recorded at altitudes of the order of 100 miles. For small meteors
the trail length is determined partly by the time required to consume
the object, and partly by laminar diffusion and electron attachment

processes in the wake.

Wakes produced by slender projectiles and blunt bodies at supersonic
speeds have been observed in ballistic ranges by shadowgraph and other
optical techniques, but until recently these observations did not extend
very far behind the body. One of the most striking features of the flow
field around a blunt-nosed object at supersonic speeds is the bow shock
wave (Figure 1). When a missile or spacecraft enters the earth's
atmosphere at hypersonic speeds a distinct, nearly paraboloidal shock
surfacel* is first formed in front of the body at altitudes of the
order of 350,000 - 400,000 feet. The gas that traverses the "strong",

nearly-normel portion of the bow shock wave is compressed and heated

* Superscripts denote references listed at end of parer.
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irreversibly in the shock, and forms an "outer wake" behind the body
(Figure 1). Even after isentropic expansion back to ambient pressure,
which occurs in a distance of 50 - 100 diameters behind the body, the
maximum gas temperature in this outer wake in thermodynamic equi-
1ibrium is sbout 4500°K at satellite velocity, and about 6500°K at a
flight velocity of 40,000 ft./sec.a. Clearly the trail length defined
in terms of observables such as electron density or gas radiation
intensity is determined by the diffusion and recombination processes

in this cylinder of hot gas left behind in the atmosphere.

Feldman2 treated this problem under the asssumption of thermodynamic
equilibrium and s laminar or molecular diffusion prccess. Under these
assumptions the problem downstream of the "pressure-controlled" portion
(x/d;>50) is closely analogous to the cooling of a gas cylinder with
a given initial tempersture distribution. The time required to reduce
the enthalpy is proportional %o rn2A<., where K_= k/? cp is the thermo-
metric conductivity and r, is the body nose radius, which characterizes
the breadth of the initial enthalpy distribution. Here time is equiva-
lent tol fu where £ 15 distance behind the body, so that
Q/rna:um rn/K.= Re x Pr where Re is the Reynolds number and Pr the
Prandtl number. Thus the predicted laminar trail length is very long
even at high altitudes; for example for a nose radius of one foot at
250,000 feet altitude £/rn';’102 - 103, depending on the observable of

interest while at 60,000 feet altitude B/rhfvlos - 106.
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Feldman himself suggestedathat the cooling process in much faster if
turbulence is produced in the weke. One expects turbulence to originate
in the flow region with the highest velocity gradients, and this region
is undoubtedly the "inner wake" formed by the coalescence of the free
shear layers (or annulus) shed frum the body surface when the boundary
layer leaves the surface (Figure 1). Experimental evidence> shows that
transition to turbulent flow occurs downstreasm of the "neck" at fairly
low Reynolds numbers, corresponding to altitudes of the order of 180,000
Zeet. Near the neck this turbulence is confined to a narrow region
around the wake axis, but it soon spreads outward by feeding on the
surrounding gas. Eventually all of the streamlines originally in the
"outer wake" are engulfed by the turbulent inner wake. The main
purpose of this paper is to analyze this swallowing process, which
determines the rate of diffusion and cooling in the wake of a blunt-

nosed body at hypersonic speeds.

In order to bring out the main ideas as simply as possible the
assumption of thermodynemic equilibrium is retained in the present
paper. The }hfluence of finite recombination rates can be included

later when the \turbulent diffusion process is somewhat clearer.

\

\4

In Section 2 the structure of the weke behind a blunt-nosed body
at hypersonic speéds is described, and simplified representations of

the outer and lnner wakes are imtroduced. The boundary between these
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upposed to be a sharp Vfront", and the growth of they /
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inner wake depends only on the gradient and value of the enthalpy at
this front. Two limiting cases of the behavior of the turbulent
diffusivity are studied: (1) “locally similar" turbulence, in which
the flow at each station behaves like a “slice" of a low speed "self-
similar" turbulent weke, so that the diffusivity is proportional to
the local momentum defect or drng contained in the inner wake; (2)
“frozen"ydiffusivity, in which the turbulent diffusivity depends only
on the initial value of the dreg coefficient for the inner wake at the
%neck"f Once the diffusivity is specified the turbulent diffusion
equatio;:\}br~gg§gg§gz;ggﬁ mass concentration can be integrated
(Section 3). 1In Section &}{;pecific exasmples of the growth of the
turbulent inner waeke are calculated for comparison with measurements
made in bellistic ranges. A typical reentry example is also computed
at Mg~= 22 and an altitude of 100,000 feet, in order to illustrate the
behavior of the enthalpy distribution, and the behavior of the profiles
of electron density in the wake in the two limiting ceses of thermo-
dynemic equilibrium and pure diffusion (zero recambination).gConclusions
about the hypersonic wake obtained from this study are summajiiiiﬁku

Section 5, which also contains some suggestions f9r future work.

)




2. Model of the BHypersonic Weke

2.1. Description of the Flow Pattern

In order to determine the correct initial conditions for the
lateral spreading of the turbulent inner wake, we must examine the
main aspects of wake formation behind a blunt body at hypersonic speeds.
Shadowgraph observations supplemented by .imple physical consideraticns
show that the hypersonic viscous wake differs from its low speed
counterpart in three important respects: (1) no evidence of large-scale
vortex formation, even for laminar flow; (2) much greater "stability"
of the laminar free shear layers; (3) an initial value of the momentum
defect or "drag" contained in the inner wake (Figure 1) one to two orders

of megnitude smaller than the total body drag.

Even on a bluff body, such as a sphere, separation occurs well af't
of the 90o station, partly because of the falling pressure over the
front half of the body, and partly because the supersonic shear layers
can negotiate relatively high recompression pressure ratios (2-3) at
the "neck" (Figure 1). The free shear layers (or annulus) shed from
the separation line (or ring) on the body surface show & "rigidity"
characteristic of supersonic, and especially hypersonic flows. Iarge-
scale vortex formation just behind the body is apparently inhibited by
the fact that violent streamline deflections would be accompanied by
large pressure changes and shock wave formation. The separated flow

tends to retain the direction established at the point of separation,
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and the flow converges toward a minimum section or "neck", which

contains the effective rear stagnation point.

When the boundary layer on the body surface is turbulent of course
the free shear layer (or annulus) is also turbulent; however, if the
boundary layer is laminar, the laminar free shear layers show a
remarkable persistence al supersonic speeds. Experimental studies
(and some stability considerations) indicate that the transition

Reynolds number Re__ for the laminar free shear layer, based on

TR
properties at the outer edge and the length of laminar "run", increases

very rapidly with increasing local Mach numberh. For an insulated

~ L
Reqp = 2-3 x 106 at M= 4.5, the highest Mach number studied. Partly

this effect is the result of the high average kinematic viscosity across

body Re T2 x 10° at M_= 2.0, and

the layers.* Downstream of the neck, on the other hand, the relevant
Mach number based on the difference between the flow velocities on
the axis and at the edge of the inner wake decreases rapidly with
distance away from the neck, and the flow apparently becomes unstable.
In addition, the inner wake is probably subjected to disturbances
originating at the neck. Recent experiments at GALCIT indicate that

the local transition Reynolds number in the inner wake behind an

¥ This fact was pointed out to us by Dr. Edward Zukoski, on the
basis of his experience with hot wakes behind flame-holders.

P St e — RO
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insulated cylindrical rod transverse to the airstream at'g” = 5.8 18 of
the order of 5 x 1oh, based on local properties and the distance between
the neck and the transition zone? These considerations suggest that the
regive in which the free shear layer is still laminar upstream of the
neck, but transition to turbulent flow occurs not far downstream, is

important in understvanding diffusion processes in the wake behind a

blunt body at hypersonic speeds.

As explained by Chapmanu the fluid below the zero streamline origi-
nating at the separstion point on the body is turned back at the neck
because of the pressur2 rise produced by the flow deflection. This
fluid enters the zone of recirculstion just behind the body. The fluid
along the zero streamline is brought to rest, while the fluid above the
zero streamline, although slowed down, flows on to form the inner wake
(Figure 1). In Chapman's limiting case the velocity along the zero
streamline just upstream of the neck is about 60 pexr cent of the
velocity at the outer edge of the free shear layer. Thus the static
enthalpy at the outer edge of the viscous wake is about 35-4%0 per cent
of the stagnation enthalpy in the inviscid flow. This is to be compared
with the enthalpy along the zero streamline from the free shear layer
which 1if brought to rest adisbatically has an enthalﬁ& of about 60 per
cent of the stagnation enthalpy in the inviscid flow, when the body

surface is "cold".* Thus a hot core of fluid is generated in the inmer

* If the body surface is insulated, the enthalpy on the zero stream-
line is about 95 per cent of the total enthalpy outside the viscous wake.

© e e e
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weke, but this core cools off with distance downstream of the neck.
Typical velocity and enthalpy profiles just upstream and downstream of

the neck are shown schematically in Figure 2.

The initiel momentum defect or drag contained in the inner wake
represents the sum of the skin-friction drag on the body and the
momentum defect assoclated with the pressure rise at the neck. Since
the density of the fluid in the inner wake Just downstream of the neck
is much lower than ambient and the neck width is usually less than one-
half the body diemeter, this initial drag is only & small fraction of
the drag associated with the bow shock at hypersonic speeds. As we
shall see later (Section 2.3) the turbulent eddy diffusivity €. 1is
proportional to the drag coefficient of the inner wske. We conclude
that the initial velue of € is much lower than the final value
(x/d —> <o) corresponding to the total body drag. This fact bas
important consequences <for the whole process of turbulent diffusion

(Sections 2.3 and 3).

Near the neck the amount of momentum defect swallowed up by the
growing inner weke is still small compared with the initial momentum
defect, and the inner wake develops in the downstream direction slmost
as if it were enveloped by an external environment uniform in the
direction normal to the wake axis. In addition to the usual spreading
of the wake Dy "mixing", the physical boundaries of the wake expand

because the static pressure is falling in the stream direction, and
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the whole flow field is expanding. The proper length scale for the initial
development of the inner wake is not the body dismeter, but the momentum
thickness 8 of the inner wake, which is at least ten times smaller. Thus
the velocity difference Au = [uf -u (09 across the inner wake decays

to a emall fraction of ( in a downstream distance of the oxder

uf)neck
of 100 © to 200 6, which corresponds to about 10 - 20 body diameters,

at most. In fact when °f u(0)

Ue

downstream of transition to turbulence should exhibit a similarity of

Z< 1 the mean inner wake flow

the form
o+l
ot 2. Y
'—L — 2 - __.\_3 Tt
(U-_S_‘) neck. e '{: (Y- - ,Xt)m* o T(\-b?—J

Just as ‘I‘ownsend.6 found for the low-speed wake behind a cylindrical rod
transverse to the air stream.* (Here Y is essentially the stream function,
and m is a geametric index; m = O for a two-dimensicnsl flow and m = 1

for exially~-symmetric flow.) A typical velocity distribution at x/&’:lo
is sketched in Figure 3a, and the corresponding enthelpy profile appears
as & "turbulent pulse” at the base of the "inviscid" profile of the

outer wake (Figure 3b).

When x/d is of the order of 10, the rate at which the inner wake is

swallowing momentum defect originally contained in the outer wake can nc

* Except possibly for a small effect caused by the negative pressure
gradient along the wake axis.
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longer be ignored. In the limiting case of "frozen" diffusivity the
turbulent eddy diffusivity &€ o retains the value egtahlished by the
initisl drag of the inner wake at the neck. PRut in the opposite
limiting case of "locally similar" turbulence, the local value of
éT(x) depends on the local drag coantained in ths innexr wake at that
station. Thus (4 € ,l/cix) depends on the rate of increase of momentum
defect in the inner wake, which, in turn, depends on the product of
the slope of the inviscid enthalpy profile, (Oh/o y)y=y , and the
rete of spreading ( dyf/d.x) of the inner wake. But (dyi,/gx) itself
depends one 7 P
Ye both increase slowly with distance dovnstxeum. Soon the turbulent

Hen y./d << 1, ( on/d ¥)y., is smsll, andé and
=Yg

front reaches the portion of the inviscid enthalpy profile where

(éh/ o ¥) is appreciable, and one expects a rapid growth ofe.T snd
inner wake width. Eventually (Oh/d y)y--y decrenses sgain and the
rate of growth of the inner weke slows dowfx. Far downstrean (x/d >7 1)
most of the wske is turbulent; the turbulent diffusivity takes on a
value corresponding to the total drag of the body, and similarity is

agein established.

2.2, Characteristics of the Outer and Imnner Wakes

2.2.1. Juter Wake

In order to bring oud the main fectures of the psoblem as simply
as possible, we consider Reyuolds rambers large enough so that the

time scale for laminsr diffusion in the outer wake is much longexr than
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the time required for the turbulent inner wake to swallow most of the
momentum defect. The flow at any point in the outer wake is supposed

to be unaffected by the inner weke until the turbulent "front" reaches
it. Thus the enthalpy profile in the outer wake is completely specified
by the inviscld flow field.* The present analysis is concerned with

the region x/d 7 2 - 10, where the static pressure is only about 5 times
ambient pressure, at most. In this region the enthalpy along an inviscid
streamline is a slowly varying function of static pressure, and we shall
ignore the streamwise enthalpy gradient, but evaluate the local enthalpy

correctly. This procedure amounts to a kind of local similarity approxi-
7

mation.

As in most ccmpressiblé flows the "proper distance" normal to the
wake exis ie not the physical distance y, but the Howarth-Dorodnitsyn

varieble Yy defined by the relation

™

Yl_ le_ = (?L‘/?‘”\;gmag _ (1)

where'§r= y/d, and the subscript "L" denotes "inviscid" or outer wake
quantities. The lnviscid enthalpy profile is represented by the two

parameter relation

(/i) =1 )1 g @ Ye) = Mg @)

* The wake shock (Figure 1) introduces a slight modification
(Appendix 1).
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for YL > YL , where h denotes the complete static enthalpy, including
f .
the chemical enthalpy', (hL)o is the value that the enthalpy would

have along the zero streamline if the inviscid flow extended to the

h

axls, H = (-EL -1l),z=cl_ Y., ando\_ is a scale factor. In the
h,, o a m\LYL m

entire hypersonic wake T << L emdh-h "= -u_ (w-u_ ).

To this approximaticn Y. (Eq. (1) ) represents the stream function, or
mass flux between the axis and y, and the parameter ot - is determined
by the nomentur defect in the inviscid flow. In the region x/d)S - 10
the drag contribution made by the static pressure is negligible compared

to the momentum defect, and (Appendix 1),

o+l A‘_*J‘!\-H H ( )
e~ - A.1-9
X =
Cp, %“’\-H (X”") Mci‘
Here CD is the "inviscid" drag coefficient and
o)
b
m -
s = Z ?j(z‘) dz (4.1-10)

o
When x/d > 50 - 100 the static pressure is virtually equal to
the ambient pressure, the streamlines in the inviscid flow are all
parallel to the wake axis, and the inviscid enthalpy profile described
by Eq. (2) is independent of axial distance, in the limiting cases of

"frozen" flow or thermodynemic equilibrium.¥

¥Evidently the methods of the present paper can be generalized
to include chemical and electron~-ion recombination.
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2.,2.2. Inner Wake

The present study is simplified by considering only the thermo-
dynamic effect of the static pressure variation along the wake axis,
but not its dynamic effect. Thus the shape of the turbulent mean
enthelpy profile across the inner weke is invariant in the proper
coordinates for a short distance downstream of the neck, and this
same "similarity profile" should again appear far downstrzam. Although
the profile shape in the intermediate region undoubtedly changes to
some extent, the simplest assumption is that the mean enthalpy is

described completely by two perameters -- the amplitude (hT (0) - hf)

and the wake width YT , 1.e.,
£
X=X Y
(ho/ng-(e/ma)B(5—) & () o
.{.
for
0 é‘YT'S YT

Since the local environment surrounding the inner wake is characterized

by the values of ?f, hf, and Uy

Yy = yf, the Howarth-Dorodnitsyn variable YT for the inner wake is

determined by the inviscid flow at

logically defined as follows:

m ~ T
YoodY, = Vp Y Y (1)

* A more refined analysis taking the change in profile shape
into account can always be carried out once the turbulent diffusion
process is understood somewhat better than at present. Also, the
function G(YT/Y ) is arbitrary and for the present calculations is

T

teken as a parabola.
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(The relation between the inviscid and turbulent mass flux quantities

Y and Y., is discussed in Appendix 2.)
L T
£ £
X - X, «
The two unknown functions B, ( —= )=B(§)andY (%)
1 d 1 '1‘f »
are to be determined by satisfying the following two conditions {Section 3):

(1) conservation of energy, as expressed by the energy integral equation
across the inner wake; (2) energy balance along the inner wake axis,
which relates the rate of cooling in the stream direction to the rate

of turbulent heat conduction normal to the axis. In the absence of any
acceptable theory of turbulent transport we adopt Reynolds'8 hypothesis
of similarity between the turbulent transfer of mass, momentum and

energy. Reynolds' analogy states that

et o aen |
H 1 (W] ' N
-V L VR th v KL

- = - = &£
Do) Ry T ()T ST ?

th i

where h,_, is the thermal enthalpy = J Ep dr, K, is the mass fraction of
the ith species, and q is the common turbulent "exchange coefficient".
In other words the turbulent Prandtl and Iewis numbers are both equal

to unity, and7
q=-f evij“/éy) (6)

In his thorough experimental study of the low-speed turbulent
wake behind a long cylindrical rod normal to the airstream, Townsend6
found that a relation of the form T = P € p (()u/ ()y) is indeed

satisfied by the mean velocity field not too close to the wake edges,
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once the mean flow becomes "self-preserving", or "similar".* This fact
must be regarded as an interesting coincidence for symmetrical wakes
(Appendix 3). As Townsend points out, pure gradient diffusion cannot
possibly describe the process of envelopment of fluid by the large-
scale eddies at the outer boundaries of the wake. Nevertheless this
empirical description is correct near the wake axis, and is therefore
extremely useful in satisfying the energy equation on the wake axis

(condition 2, above).

In Townsend's case the flow outside the wake 1s irrotational and
the weke drag is constant. Once the influence of the initial conditions

dies out the wake flow becomes "similar", end the wake is characterized

AuQ
by e "universal" Reynolds number RT = —— constant, where Au

is the mean velocity difference across thf gake and ,f_o is a measure
of the vake width, i.e., € p = (RT)’lAu 9 _.#* In spite of the
fact that the inner wake exhibits similerity at hypersonic speeds only
in the initial and final stages we make the crucisl assumption that

all along the wake axis

6T=K' ADu Yf ) (7)

* In Townsend'!s notation é’T = \) T

*¥%¥ Townsend found the value = 12.5 for the wake behind a
cylindrical rod. Although data on“axially-symmetric turbulent wekes are
extremely scarce even &% low speeds, the few measurements nade by Hall?
and Hislop lead to the provisionel value R, = 14,
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where K' is a non-dimensicnal quantity dependent on fluid properties (see
below), but not on the velocity difference or the wake width. According
to Eq. (5), this assumption is equivalent to the statement that the
intensity of turbulence at each station is proportional to the local
value of Au, and the scale is proportional to the local wake width
(Appendix 3). In other words the effect of previous history on the
development of the inner wake is ignored, so far as the turbulent
diffusivity is concerned. The characteristic time required for internal
adjustment of the turbulent motion is assumed to be very short compared
to the time scale for the rate of change of éiq’ in the axial direction,
and.e.T is supposed to take on instantaneously the value appropriate

to a locally similar flow. Iater (Sections 2.3 and 3) we shall also
consider the opposite limiting case of "slowly adjusting" turbulence, ‘

or "frozen" diffusivity, where the quantity (f}/ﬁ;) Yo méT is determined
f

only by the initial conditions in the inner wake.

The quantity K' could be regarded as an empirical function to be
determined experimentally, but it is interesting to see whether X' can
be related to Townsend's R,Il for low-sveed, isothermal wakes. Now it is
well known that the transformation given by Eq. (4) reduces the heat
conduction problem with variable density to an equivalent "incompressible"
heat conduction problem. The heat conduction texrm in the energy equation

specifies the equivalent turbulent diffusivity. By utilizing Eq. (&)

([




(|

™ * ~ &
-:‘j_ () (? 'r bk) :n ()é\(_‘_ [(%) é:'r _-\Y‘t-ﬁ' 3:}}
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one finds that

On the axis this term becomes

T T

L am—v—%ﬁer)%:zi = %)

But (Eq. &),
~ . /‘Th-H
Y E Y ()

and the heat conduction term is reduced to the form

(W“-H (C)Y") .0 g'r

where the equivalent turbulent diffusivity is given by the relation

0 /(m\
‘(‘%L) * (8)

11
* Following Mager' slo work, Ting and Libby suggest a similar
relation of the forme =(¢/ P f) €  for two-dimensional turbulent

wakes or jets (in our nota.tion, wherep is constant). They corrsctly
point out that such a relation leads to & compressible eddy viscosity €

that varies across the flow. In the present study only turbulent heat
conduction on the wake axis is involved, so this difficulty does not
arise. Beslides, the whole semi-empiricel notion of the existence of

€, 1s probably correct only near the wake axis (Appendix 3). On the

wake axis Eq. (8) also agrees with their relation between 4 P and &
for exially-symmetric wakes and Jjets.

T

T




2-1h

According to Egs. (7) and (8),

2w 7.
= = ; ?Co) \ — Kl () (my - (9)
& 7 s A (%f) Sy
If one makes
-1
k' - (£CL) /o) (102)
{¢
then
e. T K Aaw Y4 -4 (10b)

T £

exactly as in Townsend's case6; therefore K is proportional to (RT)"l.
The constant of proportionality depends only on the relationship

between our Y, and Townsend's ’eo (Appendix 3).
T

By adopting the value of K' specified by Eq. (10e), € _ is given

T
more precisely by the following relation (Egs. (7) and (8) ):

e L (e )VC"“*‘>< Bz W

LLaod ?;T_- W o Qﬂ*

When x/d‘7 5 - 10 the total enthalpy is virtually a constant across the

inner yake, equal to the total enthalpy of the inviscid flow. Also
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u_ -u
{4 1 80 that in the turbulent portion of the flow,

h-he, & =P (-uw) (12)

where @uw represents some average velocity, and 0.8 ‘é‘(_J, ﬁ 0.9. To

LIPS

—
this approximation, Eq. (11) for & o becomes

y(‘m +1)

- s ($7) 2 %© @

2.3. Relation between Equivalent ‘furbulent Diffusivity and
Momentum Defect: Growth of Inner Weke

2.3.1. Turbulent Diffusivity and Momentum Defect

Once we assume that the equivalent turbulent diffusivity is given
by Eq. (10b) or Eq. (13), it is not surprising that the relation between

—

é"T and the local value of the momentum defect in the inner wake takes
the same form as it does in an incompressible "similar" wake with
constant drag. The momentum defect with respect to the local inviscid

flow at the turbulent front is given by
m (JF -
D = 2(w) g)u.(u,‘—u)-‘y dy * (1b)

o

* The relation between this momentum defect and the ordinary
drag is discussed briefly in Appendix 4.
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By utilizing Egs. (3), (4), and (12), one finds that

LT

Dg - 2(m)" g, 4™ B, (g) v G (15)

where

G =

Ty

G(sﬁ)jomdj, (15a)

(o) >

and
=
£
vith G( ) arbitrary (for the present calculations in Sections 2 and

L & parabola is chosen). By combining Egs. (13) and (15) we find that

g_\_ ™ ()(o) V(’rn+|3~ |
w.d YT& = 4’“*‘GM< <q5*/ YT{) CD; (16)

Here C, ' 1s the "local" drag coefficient defined by the relation

Df
~ ™m
- ' (’\T) puy! > (a7)
D¥ C“Fl o~ d -ﬁ%;L—J
i.e.,
Yo 2
C.D.F - ((’)“/f’{,> (CD{ /[5 ) (172)
Ro Ue
where CDf is the drag coefficient based on —_— By Eq. (4)

3= Yo (-—Y%-(g—)) -l/(m+1), 80 that




Er R, AL _ W o
13 u,md T{l - L T+t D{- * (18)
™A
or,
()f‘ g—r \( o K/’rb
-_— — = (18&)
?«, <\L d ) H_'ﬂ'\-fl G-W.H CD{_

For "locally similar" turbulence C, in Eq. (18a) is the local value
£
of the drag coefficient. Thus the quantity

B (S vy

increases from its initial value corresponding to (CD )i to the finsl
£
value far downstream corresponding to the total drag coefficient of the

body. The opposite limiting case of "slowly~adjusting" turbulence is

characterized by "freezing" the quantity \‘f/ﬁ;) ( ————) Y
f
at its initial value corresponding to (CD )i.
f

A precise value of (CD )i is difficult to determine & priori, but
£
a rough estimate is obtained by equating (Df)i to the sum of the skin

friction drag of the body and the additional momentum defect produced
by the pressure rise associated with the flow deflection at the neck.
The analysis in Appendix 4 indicates that (CD )i varies with Reynolds
numbexr like Re'%'when the free shear layer isflaminar. According to
Eq. (A. 4-9) at Rey = 105 (c )1 = 0.02 for axially-symmetric flow,

so that (Cl')f)i = 0.0% at M, o= 6 while (C'f)i = 0.2 a6 M_ = 20.

* The "exact" expression for € n (Eq. (13) or (16)) is utilized
in the detailed computations of Sections 3 and k.
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The actual estimated value of (ch' ) ; is less significant than the fact
that it is at least one ordexr of magnitude lower than the total body
drag coeffecient for a bluff body’_'a’c hypersonic speeds. According to
Eq. (18) the initial value of —-%;%— YTfm (or the "frozen" value for
“glow" turbulence) is also one order of magnitude lower than the value
corrasponding to turbulent flow seross the major portion of the outer

weke,

By employing Eqs. (15) and (17) we have

e.(§)
.__..H_... \(_‘_“

. 2 .
™ (Xw —l) Meo [32' Cog (19)
H

™
G

Thus, once (C_ '), is xnown the initial value of Y
D, ‘i Ty

the value of Bl/H selecved to start the computations. In other words,

is determined by

B./E, (C. ), , and H are the parameters of the problem. If (Y., ), <<l
1 Df i Tf i
one expects the subsequent development of the wake to be relatively

insensitive to the particular value of (YT ) 4 selected (Section 4).
£

2.3.2. Growth of Inner Weke for "locally-Similar" Turbulence
—~—

€ 7
Although small, the inltial value of ---ﬁ;T— plays an important
role in determining the initisl rate of growth of the inner wake once
the pressure approaches ambient. For "locally similar" turbulence this
initial growth rate determines the location downstream of the body at

which the inner wake begins to swallow appreciable momentum defect from

o~

€ T

5 in accordance with

the outer weke, and thereby to increase
<o
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with Eq. (18). In Figure 4, the momentum defect contained in the inner
weke is represented by the arca under the curve of enthalpy ratio
By - by
h

vs. Y’l‘

(Egs. (12), (14), and {15) ). From this figure one sees that

d-Dﬁ‘::'-,a 'Tr) }\. YTE "n\-H {_ * (20)
d? ( ?‘f e RV AE( \\ >

where the right-hand side represents the swallowing rate. By employing

Egqs. (17) and (20) we £ixd thst

1 . “Thetl \L‘;
Yﬁdge /P@ CD%) A (*%‘)&' ‘ -,:i waxm ——"‘in_e'; &)
Y=Y,

and. by using Egqs. (2) snd (18) we have

—{C\ 0 .g_’r_ ™ Kol
d??ﬁ: gl YT*F) p(-nu)er (Xm-\)M"g%_ % ?@()%L (22)

But the energy balence along the wake axis (Section 3) leads to a

relation of the form

dY;_;_ / ’é
N <\(L4 4% = u;d

which together with Eq. (22), yields a differeatial equation for

-f§;§—~—- Y B of the £
uop Tf orm

El___[_(._)_{r__ Er \‘/m\_,__rN N \g (= NP ET
38 pe i Yo 0T B

Voo™,
)

* A proof of this relation is given in Section 3.1.
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This last relation clearly shows the exponential character of the growth
of the turbulent diffusivity, but the amplification factor depends
strongly on the slope of the inviscid enthalpy profile g° (zf) , 88

expected (Section k).

In the initial stages Zs {{1land g' (zf)<< 1, so that the rate
of growth of the inner wake is given by an expression closely resembling

the usual similarity relation (Section 3):

3

f d ? | l‘-“\*i G AL

\‘/ ™o 4y ) v G."“O \
T T . (o) (_be)L . (23)

By teking g'(zf) = - 2z, (Appendix 1), and by using Eq. (23) and the

approximate relation ({ f/ f’w) YTm+l = YLm+l (Appendix 2), the
B
differential equation Eq. (22) for n Td can be integrated, and
(=]
the result is as follows, for z,<4<1l:

£

o~ (2 2
— Yr, =(-S&T ™ z ™ (2k)
) T‘f - «w_d YT_{. O !+A.m J o

where

T d 2 |-

- ! K G (o) . m(c{m> } )( H WL = D))
™ 2Tn/(m«>)(' ﬁz@%ﬂ'ﬁ\ﬁ‘p) et (m-\s \(Xw")M;XCD{-)' (_%_

and ( ﬁ./ feo ) denotes a suitable average value of (Pf/@,,) If the
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turbulent mean enthalpy profile is chosen to be & parabols then
Gy = 2/3, G, = 1/, ¢"(0) = -2 .

Also,
=
(f=) Ve

1

L
=

over a wide range of Mach numbers for equilibrium conditions
2
(Appendix 1). As an illustration we take g(z) = e”2 , so that
(BEq. (A.1-10)), g = V'ﬂ‘/a and g, = %; then
oL02 :0.36 emd.O(l2 "=Jl.35 for CD =1 (Eq. (A.1-9)).

o
Wich X = 0.0k (Appendix 3 ) and B = 0.9 one obtains

8% 0.0033 (F5/p)¥/2 (ch)i% (25)

h = 0.0 (T (),

Fortunately the axial distance required to increase the effective
turbulent diffusivity by a specified factor is relatively insensitive

to the value of (CD );+ This distance varies like (CD )i' 1/3 in the

by big
two-dimensional case, and like (CD )i' 1/4 in the axially-symmetric
£

case, However, this distance varies directly with (€E7ﬂﬁ)"l for

1
two~dimensicnal flow, and like (?f/co) 2 for axially-symmetric flow.

At Re, = 105, (CD )i = 0,014 in the two-dimensional case and
£

(CD )i = 0.02 for axislly-symmetric flow (Appendix 4).
h ¢
K M_= 6, (P-/fe) 7'0.39. According to Eqs. (2k) and (25), the




M A =

2-22

distance required to increase the initial diffusivity (&, /u_a) ¥, n

Te

by 50 per cent is about 300 diameters in the two-dimensional case
and about 35 diameters in the axially-symmetric case. At Mm = 20,
(Ff/-?oo )"——f 0.033. Here the corresponding axial distance is about
3500 diameters (!)* for two-dimensional flow and about 120 diameters
for axially-symmetric flow. Tne marked difference between two-
dimensional and axially-symmetric flow is caused by two related
factors: (i) the hot gas in the inviscid flow it concentrated much
closer to the wake axis in the axially-symmetric case; (ii) the axially-
symmetric inner wake swallows mass (and momentum defect) much more
rapidly than its two-dimensional counterpart, again because of the
geometric factor. The growth ong/u L d for the axially-symmetric

inner weke is indicated schematically in the accompanying sketch,

Er s
(ET)L lré'_‘r v W c
100 + \{/—Lﬁu&’d T{lo ‘GGZ D
~
S

0+ \\\

= =\,

\\ s “aJ‘

N

~ Er - 153 Y
\“*f(@ Yr;);,-\—g@:(%{);.

[} ’ e ?:: 7‘~")<:_,
100 1000 3

¥ In other words this distance is so large that the quantity
(ff/ » ) (€ T/u“ d) is virtually constant at its initiel value.




3. Turbulent Diffusion Equaticns and Their Solution for Enthalpy and
Mass Concentration

3.1. Turbulent Diffusion of Enthalpy in the Inner Wake

In a steady, two-dimeunsional or axially-symmetric turbulent flow

of boundary layer type the energy equation for the complete static

enthalpy of an effective binary mixture takes the following form7:

h b"\- | C) ™
o4 85+ 53) = w35 (7 <y 3——3,;‘% PE (3——‘);‘1“)2
+ U bxp_ + A -J_A’jl ?6““(\"—__\.;1)'\1 ?hLT—’

Here 6T, GM, and ém are the turbulent thermal, momentum, and

(26)

mass diffusivities, respectively, and LeT is the turbulent Iewis
number = (€m/ éT). The laminar contribution to the transport and
dissipation terms is regarded as negligible in comparison to the

main turbulent contributions.

The relative importance of the dissipation texrm in the wske is

measured by the ratio

(oW’

(7=)-
)
where Du = u, - u (0). In hypersonic wakes this term is negligible.

f
The statement that Lep, = 1 eliminates the last term in Eq. (26).

(This statement is not necessary in formulating the energy integral
equation. (See below.)) As explained in Section 2 only the thermo-

dynamic effect of the static pressure variation, but not its dynamic

3-1
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effect, is taken into account here. With these approximations Eq. (26)

becomes

BN OR )
CO*B?“*VQU)’q}RBH(T&TH 5%9 (27)

By the usual order of magnitude considerations for wske i‘lows12

v(0h/0 y) <& u (Oh/d x) not too close to the neck. Also
u=u= fi*’uw , where 0.80 & =0.90. Thus the present problem is
analogous to & problem in one-dimensional (m= O) or cylindricai

(m = 1) non-steady heat conduction, with t = x/iI. However, the

situation is somewhat unusual, because &_ itself depends on the

T
arplitude and breadth of the enthalpy pulse (Egs. (8) and (13)), and
"heat" is spreading into a region (y >yf) containing a time-independent
non-uniform enthalpy distribution, but in which éT is effectively zero.
The diffusion of a material property is governed by an equation similar

to Eq. (27) (Section 3.2).

By introducing the Howarth-Dorodnitsyn variable (Eq. (%)), and by

making use of the continuity equation, Eq. (27) is converted to the

form
M~ M 1 D ﬁp 2 el 55
u.a_?.-x-v&YT—YTm 5*7;{’4) dT = v (28)

where ? = x/d, ¥ = y/4, and ¥ is the lateral velocity in the "equivalent

incompressible flow" given by the relation V=u Y? + v YS’" As shown




in Section 2 the effective thermal diffusivity‘g? is defined by

T

2'~2T"€.T — ) & €T
(@ 5D I .

Yo Yy d 04

Instead of seeking "exact" analytic solutions to Egs. (27) or
(28) we integrate Eq. (27) across the inner wake, thereby converting
it into a first-order, non-linear ordinary differential equation for
the enthalpy excess, or momentum defect contained in the inner weke.
A second equation of this type is supplied by satisfying Eq. (27) all
along the weke axis.¥* These two equations are sufficient to determine
the behavior of the two parameters B, (g) and YTf( %) (Eq. (3)), and

thus all characteristics of the turbulent diffusion of enthalpy.

* Actually the transformation to an "equivalent incompressibdle
flow" is strictly velid only along the wake sxis, because ?f is not
constant.

¥*%  Additional integrals, or higher "moments" of Eq. (27) can
be employed later if greater accuracy is found to be necessary.
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By multiplying Bq. (27) by y", integrating across the inner wake,

and utilizing the continuity equation and Eq. (%), one obtains

AV R T
I R~ R TS At
or
Y, Tt
alft ™y | cp, e Ak

o

where u has been replaced by u, and thereby eliminated from Eq. (30).

The integral on the left-hand side of Eq. (30) is proportional to

* The heat transfer rate ¢ (y,) at the interface between the
inner and outer wakes (y = y.) is supgosed to be negligible compared
to the rate at which enthalpy is entrained at this interface. Since

. . - ~ c)‘u.
() =nC40 = = (39 A=y

this approximetion is correct if

—_ KL 7On/d dr
Co, ( /‘Ll:)l—/h,? d: <L

or if
LLmd d"i{_
\); dx

>7 1




the momentum defect (Eqs. (12) and (14)). By introducing Eq. (3) for

the turbulent enthalpy profile, and employing Eq. (2), one has

(L m(\(rm+‘ he JY;. (31)
df %B@X Tv‘) CT“‘ "= (?ﬁt )d‘mﬂ ( ) %(d'“Y j" ’

This last equation is identical to the relation obtained from Figure
b by intuitive considerations (Eq. (20); now the basic assumptions

underlying this relation are clear. Integration of Eq. (31) ylelds

-

—-%;— Bl(?) YT{, G = % B'(§) YT‘F GT‘(\-H -

(32)
Yo L
N NN
—— g— Y { %/ ™ T L
Y._;
By recognizing that (Appendix 2)
e+
(S’f/fw) Yoo = Y,_?*' _(constamt) , *  (a.2-6)

* For (?— f;)> oo CS(( YL;“-H

3-5
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m+l

and employing Eq. (A. 1-9) for o , Bq. (32) is rewritten in a

convenient form defining a "drag function" Fl(zf):
N,
?w 'y T+ . T, C—D.F
it d] - C
N D
(% B\ {T." G'ﬁ\-’c\)L ( ;-)

=F (2= 14 H"L (24)‘?(£4°é] (33)

I .7;%. r s i“ }
+ ,§D° ' J Z g(z)dz —l_—d—z’ - )"'Z*;l ;
( D{)i. G ™ Th-+
= A

vhere z, =0 YLf and H = (hL/hco )y -

Along the weke axis Eq. (27) or (28) becomes
o (o) (3)

By using Eq. (3) for the turbulent enthalpy profile, one obtains

H%/ (24 )dz‘éL j?. () S G“ (O) (@u:rd ) (35)

For "locally similar" turbulence €  is given by Eq. (16). By utilizing

T
Egs. (17a), (33), and (A.2-6), one finds that




™

T K Coe)s 0) \ A v ¥,
[é—fdz N ) (_gg_l)< ) +)(i4 (25)

p L*‘\'h'ﬂ CTT“_H e ":\4-\68) (36)

Now (dBl/df) can be eliminated in favor of (dz f/rl 5;) by employing
Eqs. (31) and (A.2-6), end B, itself is expressed in tems of z, by

using Eq. (33). For simplicity we take ?~ (p/h). Finally one has

’}(Z{‘)H)(dz‘{/d§)=—(K/z)fmgc) d'ﬂ\ (CD (p{'/Poo) \*) (37)

where

.

e+ h\-u J’(’"‘**‘ aN & R
Flog, )= = ANCHEEN <_{:°l 5 wey (372)
) Ij(ﬁ M+ SN ;‘-:H-J 7 <2‘f>

N

and

LR m-ﬂ
! & C
e e o e

™+ (‘n\-H)CT %“ﬁ\'ﬂ( ) Z__; \':( {)

Fl(zf) is defined by Eq. (33),

m-n (A.2-8)

H Cop:
CS Cm-n)cj/amﬂ — CDS-

&
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W (o }'
= — BI
w2y 8 e
with (Eg. (33)),
GV I LRl o)) (372)
S (.-*“-' S
Also
/,
=)~ (7 /()
Ei,’ e ! _ (gw\)H B S
\'\‘/.-.«./ (—77 ;>" l -**v\-ql ! e j\:—) L (378)
Jy
and
W
e _
A ) (37£)

The function -H(z " H) in Eq. (37) depends on? only through the
slow variation of H with decreasing (pf/pm) along the wake axis.

Therefore, '_7: (zf, H) is practically a function of z_ alone, and Eq. (37)

f
can be converted into a single quadrature for the growth of the

turbulent inner wake:

X
. | /
Tz, --X =@ - ) B 2z (38
j - -") / - B }_"’i’*-ﬂ:j_ - ‘Pvi/ __,—
e T
2";"
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The static pressure distribution along the weske axis must be obtained
from & theoretvical solution for the inviscid flow including the wake
shock (Figure 1), or from experiments. Of course for ?7 100,
(pf/pco )=1. Once zf( ?) is known from Eq. (38) the physical
wake boundary is detexrmined from Eq. (37e), and the amplitude of the

turbulent pulse is given by Eq. (374).

In the opposite limiting case of "frozen" diffusivity from Eq. (18a)

t E7 N X . 18a)
—?Ew [3u,mcl \(T'f' B (524‘1“1‘51\-\“ CCD'F)‘- ( *

and by using Egs. (31), (33), and (A.2~6) the heat conduction equation

(Eq. (35)) is converted to the following single quadrature:

i_F ’?

-k G ™2 G
%(;'bH)dZ{' - p* L!_'mﬂé‘_m“d“ <CD{)¢ (‘Ei)m )c‘_’% (39)

Zc): .

g S

where

™, T Tl /6“*') ’ %“*9
rolG o (= o J) (T}:{f) R o)

%  The exact value of the inltial diffusivity given by Eq. (16)
or Bq. (3€) is used in the calculations discussed in Section k.
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with Fa(zf) defined by Eq. (37b), and (hf/hos) given by Eq. (37f).

In the region not too close to the neck, but before appreciable

"swallowing" has begun,

vl

+i

et R (24) =1 ) F,_(Z,(_)?\,

o Y ‘V\.:T“*' /(e
A = vy (T = (/e

N

Thus the solution of both Egs. (37) and (39) is reduced to the similarity

relation
'm+%_ ™2 - W G'(o .
A G ) &~ G G

However, the outward growth of the physical boundary of the inner wake
is strongly influenced by the falling static pressure along the wake

exie in this region (Egs. (A.2-6) and (27e)).

Once the swallowing process begins, the solutions for "locally
similar" turbulence and "frozen" diffusivity diverge, of course, and
it is difficult to give any precise estimates of the wake growth. For
locally similar, axially-symmetric turbulent wakes, however, the

swallowing process is virtually completed 100-200 body diameters down-
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¢ C
ys Do * ("Dg)y
. (®pe )y

for %' §,~100 ~ 200. Roughly spesking (Egs. (37), (37a), (37c) - (37f))

stream of the neck, so that F ,(z, and F ,(z,) = 1

- A ) s, A
»{V{C&wﬂ ) W T 7= _ Ay

LS

and

, Yonas
“(.«__—_-\ T’\("**l (’V‘""u)
T~ AN K (Cot Cog JH )% (42)

Thus the wake width at a given giis not very sensitive to H (or flight
velocity). The growth of the wake is given more accurately by Eg. (37e);
this relation takes into accoun®t the cooling effect, which mekes the
weke grow more slowly than an isothermal wake. Numerical calculations

are required to illustrate the actual behavior of the wake. (Section k4).

Far downstream ( g?;> th) the wake has cooled off sufficiently

h Y
so that -*-‘-—1(19)-— =, _-h-f——- =1, and Snf ). In this

regime the growth of the wake is described by a relation like Eq. (40),

with C;  replaced by (CD + Cp } for "locally similar" turbulence.
£ o £,
i i

The enthalpy distribution takes on the self-similar behavior analogous

to Townsend's case:

]l
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where

and © is the momentum thickness defined by

(—@—)m‘ _ Soe g
d = ,22#\

3.2. Turbulent Mass Diffusion in the Inner Wake

Once the history of the turbulent diffusivityéET (fg) along the
weke axis is known, turbulent diffusion of a particulaer chemical
species in the inner wske can also be described by an analysis
similar to that employed for the complete static enthalpy (Section
3.1). As an illustrative example, consider the simplest case in which
all of the diffusing species is confined within the inner wake, and
recombingtion or other chemical reactions involving this species are
so much slower than diffusion that they can be ignored. Such a
situation might arise when an ablating body deposits a "foreign"

substance into the boundary layer.

In analogy to Eq. (3) for the enthalpy, the simplest representation

of the mass concentration is a two-parameter description of the form

KL(?,YT) = Ko (3) F(\( (gj) (43)

A,




A,
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vhere K; is the mass fraction of the diffusing species, and Y, ( % )
D

is a measure of the breadth of the mass fraction profile. In this

special case it is convenient to take

Yt 3.
F( Yo ) =e Y (k3a)
Then,

[=~]

i m ™ ™ 4 ) el _ oF (hh)
(TT)"‘ Pu, K 'Ls le = ,2(T\') l&ﬁ uaaa KOHTD Fon consl
o

where o

X‘;-kd}\j LA F, = /%2

)

E

TR+

[

By introducing a mass flux coefficient, ¢, one has

(kla)

.S}_ Yr'mﬂ _ T“\L

= = = stamt
b %o a(ﬂ)mg?wumdm*l Foo Com, (COR )

A second relation between Kc> and Y‘I‘ 1s supplied by the binary
D

diffusion equation, which for Ie_ = 1 takes the same form as Egq. (27)

T
or (28), with h replaced by K.* Along the wake axis (Eq. (34)),

(c)K-‘. =<’m+9(52\’<:'> (_::ET )
5, 37 0\ ot )

In spite of this fact the normalized mass fraction and enthalpy
are not similar during the swallowing process (Section 3), because they

do not satisfy the samé boundary conditions.

*
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or (Eq. (43a))

"‘V ET KQ
g = —'2<“\”<l?>u.wd> YT: (b52)
g'I.‘

For "locally similar" turbulence is given by Eq. (36); by

ngoo d

introducing this relation and Eq. (4ka) into Eq. (45a) one obtains

Ko _ _ 2(m) ol K (o) (()(0)\ , ?; A o(m‘i) 2, F, () (46)

a4 = z/(mﬂ) ‘52- 'rn-| \qw ZS‘ (th\. ;r:«)

?n-n

By agein taking F»« p/h and integrating, one finds

e - &
| )% _j( , )’7( D 4D K o (346 (47)
@ T\ - e, ) Y

5
where
)fm*)[i o ']
‘P 1\ L ¢ i

3 \ce (w K Z{ |<Z+)

L(9= = D _

(_'m -m—&‘cj) Z—_{_ F}_(Z:_’,) (_E:{-_ y(_’m+)
73:(;L§)F{> Peo




When the static pressure (pf/pq?) is known and zf(gf) is obtained from
the quadrature in Eq. (38), all quantities in L (%:) are also known
(Eq. (37)). An alternative form of (Eq. (47)) is given by
] v G
[Ke(e) (X )L (_i}_)%“*) - (48)
o) \\=/
™2 1

Z.CCD{.)L Am K .
(52- 4‘m G\'mﬂ (Z Ty ‘m-hJ)j?/(“m-H L—(%)dg

—O{T\'\ [ -
5 ¢
where the .nitial turbulent mass fraction and enthalpy profiles are
2 2
"matched” by teking (Yj ), = % (Yp )y (Appendix 3).
D £

Once the mass fraction is known the value of the number density

per unit volume along the axis is calculated from the relation

~, (§¢,0) _ (k) (+9) K. (8.) (49)
ORI COEC

The number density distribution across the weke is given by

(g () v/,

ne(%,0) (E-S()) © / (50)

vwhere Y, 1is obtained from Eq. (48).
D
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~ T

In the opposite limiting case of "frozen" diffusivity N

is given by Eq.

(= =

(18a), with C., = (cD )1, and Eq. (45a) becomes

D

T f
(Eq. (bka))
/p('-*f’:")/““/w 2y KoY LCLy): /mﬂ 0 et “h/(‘"')
\&” ;{- i :n/(hf) 3 A:\n-t\GT:“ ) (Z{_ -, C'D (51)
so that
(52)
| %“‘ ") l/\'* D) ™
A l A e { K(CDF)L, rM:— e [ )T (m+s)
) e &pw/ (SR
. 'mﬂ m
or
4/\\1 4) 7/“\“)
(K (%)) - ( H (53)
K(§) (\( n) <{,T7(“*‘
(C ) X e F Y('“") h 'é”') | mn-n}
A VAT pL Yt ( Zo e}
-+ T~ S Rty 7w = X d)dY
| | 2 4 C—Tmuk"-!r T J,).?( ) | \ P ‘R{:) $

L R O b e P

s eGPV e eyt ¢ e
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In this case zf(f;') ) is obtained from the quadrature for frozen
diffusivity (Eq. (39)), and the number density per unit volume is
calculated from Egs. (49), (50), and (53), with the appropriate

values of h/h

According to Eq. (49) the initial decay of number density
along the wake axis is caused mainly by the volume expansion of the
flov as p,—» p, . When (2% - & i)/SO - 100, p, = p_, and the
cooling of the wake flow, or its increasing density, means naturally
that the number density falls off less rapidly with downstream distance

than the mass concentration.

As stated before, the swallowing process for the axially-
symmetric turbulent inner wake is virtually completed when (< - ‘:i)r~/

200, so that F, (zf) = 1 when (- ‘fi)>200. Also

-%(“,‘-
.o ™y .

. g ? & )
Zy 277 Ay C AND I_Ko ( ‘§)J

o> . (5.)

’

By comparing Egs. (37) and (47), one sees that

oo H) 2 2 o) s
(4+) Yoo 2 Y () Y.

\- D 4 o )

or

T e e, — . N
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As expected, the normalized mass fraction and complete static enthalpy

are similar once the swallowing process is completed. Thus

Tl

- "( IR
e (n) -

o~

(Similar remarks are applicabie also to the case of "frozen" diffusivity.)

This slow decay of peak cvoncentration along the axis represents
the limiting case of zero or "slow" recombination rate. If the
diffusing species is reactive, the equilibrium concentration ("very fast"
reaction rates) is a function of the temperature and pressure, and is
known once the enthalpy field is known (Section 3.1.). The actual
distribution of the diffusing species along the wake axis lies between
these two extremes, and the methods of the present paper can be
generalized to include finite recombination rates whenever these rates

are known.

I
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L, Distribution of Some Obsexrvables in the Wake: Comparison with

Expexriment

4.1, TInviscid Enthalpy Prof’._~ for Axially-Symmetric Flow and

Initial Conditions for Innexr Wake

Two examples have been calculated in detail for axially-symmetric
flow: (1) M_= 8.5 and p_, = 1 ATM, corresponding to the conditions
for most of the experimental data on wake growth obtained in ballistic
ranges; {2) M_ = 22 at an altitude of 100,000 feet, corresponding to
typical bsllistic reentry conditions. The calculations were divided
into three different regions, beginning at the wake neck and moving
downstream. First, a very short region was assumed to occur in which
pure expansion (no mixing) takes place because of the rapid drop in
pressure immediately behind the wake shock. This effect is so pre-
dominant that it overrides any mixing that could occur until the
pressure is 3-4 times ambient. In that region the entire flow field
vas expanded simply by the volume ratio required to reduce ths neck
pressure to the initial mixing pressure, which was assumed to occur
at p = hpap. (The fact that pressure heavily dominates at first and
then mixing gradually begins to teke hold is brought out clearly by
the wake growth results.) The second region extends from the station
where p = hpa~to the point at which the pressure becomes ambjent. In
this region both pressure drop and mixing occur. In the third and
final region the pressure is ambient everywhere and mixing alone

needs to be considered.
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It is necegsary to determine the neck pressure and fix its decay
to ambient conditions. Characteristics calculations were carried out
at M_= 22 for the geometry shown in the sketch below using the

Wohlwi1) ™3

computer program. Briefly, the pressure P, (see sketch)
immediately behind the weke shock, which depends on Mach number, is
about 2&24)for M =22 (pe'“ 7.5, for M, = 8.5), and the pressure
drops to & value four times ambient in a distance of about six body
dismeters behind the wake shock (only osne diameter is required at
M = 8.5). Since i& < .18 for these conditions, the turbulent

neck
core expands by a fact?r

P 7
(_ﬁ_éi_____) 3

to a value’?} = 4t in this initial region before mixing begins
i
(§f = .25 &t qx>= 8.5). Assuming the neck position to be about

/ T~ P| ,//
-
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1.5 body diemeters behind the nose, the initial stations measured from
the nose where miwing calculations were begun were x/d = 7.5 for

M, = 22 and x/d = 2.5 for Mo: = 8.5. The distance devmstream to the
point where the pressure returns to ambient is also a function of the

free stream Mach number. For M_ = 8.5, (x/'cl)p - = 25 and for

50

=
]
n
no
-
®
S~
fo}
N
i

AL the ivnitiation of mixing, the inviscid enthalpy profile in the
outer wake must be specified. Since the enthalpy is relatively in-
sénsi.tive to pressure in the range 1 = p/p” & It the enthalpy profile
corresponding to ambient pressure is employed in the calculations.

To £ind the inviscid enthalpy profile at p = P_ ‘the shape of the bow
sheck was used as described in Appendix 1. If the shepe is known
gnalyticaliy and 3 is approximated, an analyticel expression for the
dovmstream profile can be found, as shown by kaoudislh. Alternatively,
if the entropy distribution behind the shock is found, the profile at
p=p, can be determined numerically by continuity metheds, as
described by Goula.rdls . In the present peper the continuity method

was used at M = 8.5 and both methods were employed for M_ =22,

The resulting profiles wk=n transformed to the Howarth-Dorodnitsyn

variable by Eq. (1) are shown in Figure.: 5 and 6.

At the axis the slcpe of the profile must be zero, as shown in

Appendix 1. Since the numerical snd analytical shock shapes used

e

-t - -
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for M_ = 22 all agree falrly well in the body nose region (Appendix 1,

Figure 19), the enthalpy profiles also agree quite well near the axis.

Awvay from the axis the parabolic shock gives a higher enthalpy because

the slope of this shock surface 1s somewhat steeper. For computational

purposes the enthalpy profiles were spproximated by combining a

Gaussisn curve near the axis with an exponential curve in the outer

portion, in such a manner that the total drug coefficient was unity, )
and the slopes of the two curves agreed at the matching point. It

should te emphasized that this procedure was employed for convenience

vnly, and exact values from the profiles could be used just as well.

1% was found from the computer program described previously that the

wake shock ralses the value of the enthalpy along the stagnation stream-

line by 5 per cent, Combining these featurrs gives the Tollowing \

equations for the enthalpy, which are also shown in Figures 5 and 6.

M =85 (;:og“:r._ =1 722Y,)

z £.5
2
-2
<-{—‘-——-\) = 4 2e
, X
255 (5ka)
-Z
(_rhs. -, - 5.39e
- {54p)
M =22 | Z=oit =922, )
2«5
| -z* (558)
e 1) = 38, a
7, Y 84 e
2z 2.5
= 1) =49 g7e
\ R - (55b)
Based on the estimates descrihed in Appendix 4, the values of the N\

initial drag contained in the turbulent core were taken as follows:
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8.5 022

22.0 L0077
The effect of different values of (CDf) { on the resultant wake growth
is considered later for one of the examples. The expeicimentad
constant, X, used in the diffusivity was taken as 0.04 (Appendix 3).

Also, the valne of & (Eq. 12) was taken to be 0.9.

L,2, Turbulent Diffusivity

The growth of the turbulent diffusivity for "locally similar"
turbulence has been discussed in a general way in Section 2; we now
examine the numerical results for M_ = 8.5. The exact expression

o~
for & Y. ™ can be obtained from Eqs. (13) and (33) and is given
T Tf

by

gTYT:\_ Watm (o)t G%;,)'TH F.(z)
La45ci = (5L4:“H‘Ciwnu(C§£>w%%ﬁ%?%gg)%?ﬁocimflcx;:+2f ?@m

4y (56)

This quantity compared to its initial value is shown in Figure 7 as
a function of downstream distance from the initial mixing station.

The rapid initial growth in e T Y‘l‘ T 16 ceused by the pressure
f -

decresse and accompanying rapid increase in yf.

x/d".é 10 - 20 illustrates the eurly stages of mixing before the

The region

diffusivity increases rapidly again. The explosive growth of

diffusivity begins at x/d = 40 for the condition shown. For two-
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dimensional flow and the same exuveraal conditions this growth would
occur much later. According to Figure 7 the process of swallowing
enthalpy or momentum defect originally contained in the outer wake is
virtually completed in about 300 body diameters. Far downstream the
diffusivity approaches the asymptotic value given by the relation

™ W .
ﬁud \(*+ = F):.A_-m-ua_ [CDo*‘C‘W‘{‘)"J

Y+l

k.3. CGrowth of the Turbulent Inner Wake

The calculated growth of the turbulent inner wake at a flight
velocity of 9,500 ft./sec. is shown in Figure 8 for both "locally
similar" turbulence and "frozen" diffusivity. Up to x/d = 15-20 the
two limiting cases are practically identical, because the marked
increase in turbulent diffusivity in the "locally similar" case has
not yet begun (Figure 7), end the pressure drop plays an important

role. Downstream of ‘this region the "locally similar" wake grows

il

rapidly to a width of sbout 3 body diemeters at x/d = 100, 5 body

diemeters at x/d = 300, and 8 body diameters at x/d

1,000. Soon
after the swallowing process is completed (x/d;7300) the wake width
approaches the familiar l/3-power growth curve corresponding to the
total drag of the body. Weke widths calculated on the assumption of
"frozen" diffusivity are smaller by a factor of at least two over the

range 200 x/d <4, 000.

These calculations are campsred with experimentel shadowgraeph data

=&
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in Figure 9. Most of the data are supplied by Slatteryl6 and Clay
(9,000 ft./sec.) at the Lincoln Iaboratory (M.I.T.). Some additional
points obtained in the region x/d. 300 were taken from Feldman> (Avco)
(15,000 £t./sec.) and DanaTand Short (CONVAIR) {7,400 ft./sec.).

The experimental scatter is too large to detect any details of a
rapid growch region in the early stages (x/d<:50). The most important
result is that the predicted growth of the inner wake for "locally
similar" turbulence is in good agreement with the shadowgraph measure-
ments in the range 200 < x/d {4,000, while the wake widths calculated
for "frozen" diffusivity are too low by a factor of about two. No
adjustment of the diffusivity constant K was necessary to fit the

data.

The theory (Section 3) indicates s weak dependence of wake width
on flight velocity, and agrees qualitatively with the fact that
Feldmen's dats obtained at 15,000 ft./sec. lies in general above the
computed curve (Figure 9), while the data of Dana and Short at

7,400 f£t./sec. lie below the curve.

At a flight velocity of 22,000 ft./sec. the calculations show
that tlie inner wake grows more repldly in the region x/d<:300 than
at 9,500 ft./sec. (Figures 10 and 11), because of the combined effect
of a larger pressure drop and a higher effective turbulent diffusivity.

However, the wake grows more slowly than the l/3-pow-r during some
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region x/d > 300 - 400, because the core is still much hotter than

ambient (Eq. (37e) ). The enthalpies eolong the axis and the front

x
d

over six times ambient. In fact, the calculated curve of wake

ere shown in Figure 12. At 5 = 1,000 the axis enthalpy is still
growth has not yet taken on the 1/3-power behavior at x/d = 4,000.
0f course very far downstream the wake boundaries for all flight
velocities must eventually coincide (for the examples shown this

occurs at §;>105) if the total body drag coefficient is the same.

4.4, Effect of (ch)i

In ordex to determine how accurately the value of (CDf)i must
be knovn, calculations were made at M__, = 22 for two values of
initial drag differing by a factor of two, namely .0077 and .0155.
The enthalpy increment on the axis of the inner wake was taken to
be the same for both values of (CD )i’ According to Egs. (A.2-8)

b
and (374), if

(Bl/H).OUT'? = (Bl/H).OlSS

then the quantity

(B/H) = —42% h &)
) Cp, + G 2™ (v Pmy_H
(a{,)i Co, H o+
is also the seme. 1In teking Bl = const. we must have the ratio
z m+l
("t = constant; thus if (C_ ), is doubled z, must increase
C : Df i fi
n ‘4
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by sz Then the initial fronts are not quite at the same position and

h (0) hf
neither ———={ 0 ———— have the same values. This discussion
h_, h,
shows that the value of zf must be chosen to be consistent with
i

(ch)i and (131/}1)i .

The growth of the turbulent inner wake is shown in Figure 13 for
initial values of the drag coefficient equal to .0077 and .0155 with
and without pressure effects. The axial ccordinate is measured from
the initial mixing station. Differences in downstreem location for

a given waeke width are large in the initial stages (x/d < 100), but

soon hecome unimportant once the swallowing process igs in full swing.
For these two cases, the values of the integrand of Fq. (38),2}'(zf, H),
vere essentially identical after x/d = 125. The differences in this

function occur only for small z_, and upon integration eventually

b g
become a small contribution.

Here the effect of the pressure drop in shaping the early portions
of the front is very evident, resalting in a paraholic behavior as

opposed to the slow initial growth predicted by mixing alone.

4.5, Mass Diffusion Calculations

Calculations for turbulent méss diffusion at Mca = 22 are shown
in Figure 1k. As described in Section 3.2, this case represents the

limiting behavior in which some species is contained entirely within

- ———————————

——
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the inner wake, and no recombination occurs, so that the total number
of particles remains the same. The behavior with "locally similar"
turbulence and "frozen" diffusivity is shown as computed from Eqs. (48),
(49), and (53). A rapid decrease in concentration occurs first, because
of the pressure drop, but by x/d = 509 the peak concentration along the
axis is faelling slowly because of the slow growth of the wake width

and the cooling effect (Figures 10 and 11). In these calculations,

the pressure drop accounts for a decrease by about a factor of five
while the mixing accounts for about two orders of magnitude up to

x/d = 1,000. The values of peak concentration for "frozen" diffusivity

are almost an order of magnitude above the values for "locally similar”

turbulence.

4.6, Electron Distribution

Electron concentrations in the wake can be found from the enthalpy
and pressure distributions. Representative results are shown in Figures
15, 16, and 17. In these illustrative examples it is assumed that the
flow is in complete thermodynamic equilibrium at least up to the neck
location. The lower curve in Figure 15 shows the axial distribution
of electrons for th = 22 at 100,000 ft., assuming that the electrons
also follow the equilivbrium flow conditions in the wake given by the
"locally similar" turbulence calculations. Here the initial concen-

tration is equal to the value at the neck, or in other words, it is

n
given by the conditions -—%—igl— = .6 stignation and p =24 p

v co (=~
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The pressure drop to ambient has a strong influence for a short
h (0)
h o

distribution crosses the equivalent C~band (5600 mc/ sec; n, =3

distance, after which determines the distribution. The

* ’
3.1x lOll cm3) electron concentration at x/d = 100, L-band .
s

(1300 me/sec; n, 1.7 x 10%° cm3) at (’I‘ =2 200, and the lowest

frequency, UHF (400 mc/sec; ne'g 1.6 x 109/cm3), at x/d = 325.

The curve in Figure 15 labelled "pure diffusion" corresponds ;
to the case of frozen flow in the wake so far as the electrons are |
concerned. The initial conditions are the same s&s for the equi- E
librium case, but the presence of electrons in the outer wake is
ignored. Thus the normalized distribution of number density is

identical with the diffusion results shown in Figure 14. Again

the pressure drop in the initial region accounts for a considerable
portion of the decrease in ne. In fact the differences between the
two limiting cases of frozen and equilibrium flow sre not large for

x/d<100. Downstream of x/d = 150 the electron concentration is

* In rationalized units, the electrons /cm3 are given by

e €y 20 £2
= — = 7))
n, o [A) ——168—— where @ and £ are radar frequencies

in radiens and cycles per second respectively, & is the dielectric
constant of free space, and e and m, are the eleftronic charge and
mass respectively. We consider heré the lengths to be roughly the
distance between the object and the position where the electron
density falls below the value given by this equation for any radar
frequency.
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orders of magnitude larger in the case of pure diffusion, as expected.
As discussed in Section 3.2, these two cases should represent the
limits of behavior, and the actual situation lies between these two

limits.

The third curve in Figure 15 shows the axial electron distribu-
tion for the laminar equilibrium condition as calculated by Feldma.n2
and lykoudis.lh The strong pressure effect initially is similar, but
once the pressure is ambient ( g , 100) the slow time scale compared

with turbulent diffusion is evident.*

In Figure 16 the calculations have been scaled to an altitude
of 200,000 £ft. for illustrative purposes. Here the equilibrium
conditions would indicate no C-band wake. The L-band weke length
corresponds to a value of ’é T 50, while the trail length for UHF

~

corresponds to E = 150. However, the pure diffusion wake would

have a UHF length of x/d T 250.

Finally, the radial distribution of electrons at several axial

stations is shown in Figure 17 sz'hLQ = 22 and Qn= 100,000 ft.,

* The laminar calculations do not account for the initial
heated inner core, hence the difference in the concentrations for

g £100.




under the assumption of equilibrium and "locally similar" turbulent
flow conditions. Near the neck the electrons appear restricted to
a falrly narrow region, but they diffuse outward repidly downstream
of the neck. The total width of the plasma cylinder coxrresponding
to the plasme frequency at L-band remains virtually constant in the
2gion 30<:x/d<llo at about 3.5 body dieameters. The width corre-
sponding to UHF remains practically constant st sbout 5.5 body

diemeters in the region 30< x/d {250.
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5. Conclusions and Future Work

1. At velocities of the order of 9,000 - 10,000 £t./sec., the
predicted growth of the iuner wake for "locuily similer" turbulence
is in good asgreement with shadowgraph measurements of wakes behind
spheres obtained in ballistic ranges. Weke widths calculated for
the opposite limiting case of a "frozen" diffusivity determined
only by the initial drag of the inner wake are too small by a factor
of at least two over the range 200< x/d <U4,000 covered by the experi-
mental data. We conclude that the adjustment time for the scale and
intensivy of turbulence must indeed be short compared to the time
scele for the changes in turbulent diffusivity along the wake axis.
The adjustment is probably made easier by the fact that the process
of swallowing enthalpy or momentum defect originally contained in the
outer wake is almost completed in gbout 300 body diameters. The
constant K appearing in the expression for turbuleat diffusivity in
the present paper corresponds directly to Townsend's "universal”
Reynolds number RT Tfor low-speed turbulent wakes. Tentatively one
concludes that the turbulence mechaniam in the weke with respect to
a fixed observer is probebly quite similar to the low speed case, in
spite of the large meen temperature gradients. Experimental studies
of the structure of turbulence in the wake are required to settle

this point.

Measurements of the growth of the turbulent inner wske behini

blunt-nosed Modies of various nose biluntness ratiocs ab velocikies

5-1
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of the order of 20,000 ft./sec. would help to clarify the influence of

the nose drsg, tne ocuter wske entbalpy distribution, and the hot core

in the inner wake.

2. Once the swallowing process is in full swing the influence of
the initial drag coefficient (ch) 4 is small, because the drag absorbed
from the cuter inviscid wake is so much larger than the initial drag.
However, the "incubation length" required for the inner wake to begin

swallowing momentum defect at an appreciable rate is proportional to

-1/3 -1/b
(CD )i in the two-dimensional case, and to (GD )i in the
£ £
axially-symmetric case. A brief analysis shows that (CD )i varies with

1 £
Reynolds number like (Re)”2 when the free shear layer is laminar, and

a rough estimate establishes the value of (CD )i within a factor of

£
about two. Careful theoreticsl and experimental studies of the re-
compression just behind the body are required if the initial conditions

for the turbulent inner wake are to be specified more precisely.

Theoretical investigations of the stability of laminar flow in the
veke, and extension of hot-wire studies of laminar-turbulent transition
in the axially-symmetric wake would be very helpful in determining the

lower Reynolds number limit for the appesrance of turbulence.

3. Because the fluid in the free shear layer above the zero stream-

line is decelerated and ccmpressed at the 'neck"”, the gas in the inner

L - LN
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wike is much hotter initially than the gas in the outer weke at the
turbulent front. In one typical example (M39= 22, h = 100,000 ft.)

the enthalpy along the wake axis requires a distance of gbout 150

body diameters to cool down to a value equal to the initial enthalpy
in the outer wake at the front. Even at x/d = 1000 the enthaipy on
the wake axis is still about 10 times ambient for a blunt budy such

as a sphere. The axial variation of the enthalpy at the frontv (§'= 5})
is simply a one-to-one mapping of the curve of wake growthﬁyf(§§) on

the original enthalpy distribution in the outer weke.

L, As an exsmple of turbulent mass diffusion the decay of peak
electron density along the axis of the inner wgke is calcvlated for
NLD = 22, h = 100,000 ft., on the assumption that the initial electron
density corresponds to thermodynamic equilibrium, and that the electron-
ion recombination rate in the wake is negligibly small. The pesk
electron density decays from a value of 5 x 1013/cm3 to a value corre-
sponding to the plasma frequency at L-band (£ = 1300 mc/sec;
ne'Z;l.7 p'e lOlO cm3) in a downstream distance of about 1000 body
diameters. This length should be compared with the corresponding
distance of about 200 bedy diameters for complete thermodynamic equi-
librium (very fast recombinetion rates). The actual situation is
expected to lie somewhere between these two limits. In any event the

predicted radar trail length for e blunt body is fairly long, even with

turbulent diffusion.
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5.l

One interesting result for equilibrium flow at M_ =22 and
h = 100,000 £t. is that the width of the plasma cylinder correspond-
« to the plasma frequency at L-band remains virtually constant at
#boibh 3.5 body diameters in the region 304 x/d £ 110, while the width
couxesponding to UHF (400 me/sec; 1.6 x 1o9jcm3) remains practically

constent at about 5.5 body diemeters in the region 30<L x/d<_250.

Similar calculations can be carried ouvt for equilibrium gas
radiation intensity or radiation from an ablating species in the

wake.

5. The results obtained in the present paper are sufficiently
encouraging so that one can begin to think of including the effects
of chemical and electron-ion recombination processes. Clearly these
rate processes and turbulent diffusion interact when streamlines
enter the spreading inner wake, because of the effect of diffusion
on the local mass fractions of the reecting species. Hopefully,

the methods utilized by S. C. Lin 18

and J. D. Teare (and others)
for the outer wake can be combined with the present analysis to give

a more complete pilcture of the wake at hypersonic speeds.
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APPENDIX I

ENTHALPY DISTRIBUTION IN THE OUTER WAKE

We consider the inviscid flow region for g > 25-50 where the static
pressure is virtually equal to the ambient pressure. The enthalpy
profile is independent of axial distence and is specified by the bow
and wake shock shapes. The procedure used here to calculate the
profile is to determine the profile that would exist for a semi-infinite
hemisphere~-cylinder, and then modify this profile slightly to correct
for the wake shock. Feldmana has shown that this correction is small

and for many aspplications could be neglected.

If the bow shock shape is known analytically and 5 is approximated,
an analytical expression for the downstream profile at ambient pressure
can be found, as shown by kaoudisl.‘h Alternatively, given a numerical
shock shape, the mass flux and entropy distributions just downstream
of the shock can be found. Assuming an isentropic expansion to ambient
pressure some distence downstream of the nose, the flow variables can
be found corresponding to the ambient pressure and the entropy values
downstream of the shock. The radial position or distribution of the
streamlines is determined by a continuity balance for the mass flux
entering the bow shock along any given streamline. Goulardls first
applied this method as & means of comparing various flow field

techniques.
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Thus the problem is basically that of determining the correct shock
shape. FEIdman2 used the method of characteristics and computed down-
stream to g = 25 along the hemisphere-cylinder. These values were
subsequently used by himself and the Goulardsl9 to solve the laminar
heat conduction problem in an equilibrium weke flow. However, as
Goulardls pointed out, the characteristics method is subject to
accumulative errors when it is extended to the downstream distances
needed. The present authors have had the same experience with

computer calculations run in conjunction with this investigation.

Considerable care in the programming procedure is necessary.

Blast wave theory indicates that a parabolic shock should exist.
kaoudislh has used this fasct with the decided advantage that a closed
solution was obtained even to the laminar conduction problem. There
are two features which modify this assumption: (1) Because of the
entropy layer, a parabolic shock can not exist for a hemisphere-
cylinder and the exponent must be slightly less than .5. This result
has also been found by Van Hiseao, who used the sonic cone method and
obtained computer solutions to various body shapes. He found the
shock shapes for all the various bodies could be correlated very well
by the equation

- e
4 -96(S)
(A.1-1)
(2) Real gas effects (the Van Hise computer calculations were for

constant ) ) can be important. The density no longer has the given

*This fact was recently pointed out to us by Dr Milton Van Dyke
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maximum ratio g?:%— across the shock, and the shock shape is modified

accordingly.

Regarding the correction for the secondary shock, it has been found
that the body stresmline enthalpy when expanded to P is raised by
about 5% over that on the hemisphere-cylinder surfa.e. The amount in
axially-symmetric flow can be somewhat diffexent from that for two-
dimensional flow, since the free expansion streamline behind the body
in the former case tends to curve inward as the axis is approached,

resulting in a different secondary shock strength.

For the specific examples used in the present work, the experi-
mental shock shapes shown in Figure 18 were employed to get the
entropy and mass distribution for gﬁ): 8.5. The entropy distribution
downstream of this shock was found using the thlwilll3 computer
shock rovtine, and then the continuity balance described before was

used to get the profile at p

p_ . AbM, =22 the Wohlwill'?
computer program was used to get the subsonic and transonic shock
shapes. The result at M_ = 22 is shown in Figure 19 compared with
the shock éhapes given by the Van Hisego and Eykoudislh equations.
For both examples, the final enthalpy profiles when transformed by

the Howarth-Dorodnitsyn varisble are shown in Figures 5 and 6.

The laminar profile exhibits a flat region near the axis followed

by & rather rapid drop in enthalpy. Since this shape contributes to

et it Yoo 5
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the initially slow and then explosive growth of the turbuleat mixing,
one should exemine theoxetically whethexr the initisl slope at the
axis is finite or indeed zero. This point can be investigated by
using the procedure given by Wohlwillel for calculating the gradients
normel to a streamline crossing a shock. We first calculate the
entropy gradient ,

- 45
l, =— =
> Ay T_s

o.

4
dy

|

S
¢

o

(A.1.2)
vhere ', is the stresm function, T, is the temperature behind the
skock and ci) is the shock inclination arigle measured from the axis.

Since

T.ds =dh -d&
v (A-1.3)

and from the Rankine - Hugoniot relations

h=h +Lu, s‘un%[!-(%i)?] (A.1.%)
b = F“” u,a: sLnJCP("‘%)-l- Peo

it follows that

ds P oo > (4.1.5)
Tsd—-cp = U, sm.épc_c.:q‘){l——H
80
T 45 - aad (- zw"clg (A.1.58)
s 55 = Y oen s (] ) 5
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We want
-T d5 d\lr _[)_ (A.1.5b)
.5d.‘. 53y av = ug 5\n,cbcosdp(l— )
For two-dimensional flow,
(A.1.68)
faauincjﬁz =:?LLCYT
and for axially-symmetric flow,
Poo U, Rd4R = g)u.‘rdv (A.1.6b)
o0

where the notstion is shown in the sketch.

¢

A
'}
R /é\/ i

Now <§t5 is a constant along any streamline. Since the pressure is

constant, TdS = dh and we have finglly for two-dimensional flow

Tas _ dn . T(ewus cosd -5 (1.78)
dW‘ dry j}><@z’u1§)F{5

and axially-symmetric flow

Tds _ gh . T(ewrul (- d=) (8-1.70)
dr da—r ~T5 <(,m LLm) Q;

Since (P = 90o for the stagnation streamline, the normal entropy and

enthalpy gradients are always zero for two-dimensionel flow regardless

of the body shape. For axially-symmetric fiow, the gradient is

o
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proportional to tle body radius r, and is zero only if the streamline
returns to the axis, which it does in the present case. Thus the

enthalpy gradient at the axis is zero.

Finally, with the enthalpy profile of the form given by Eq. (2)

(___ _ |) <__. 1) g () = He(») (2)

the value o.’t‘»(m can e found from the drag coefficient CD . When
o]
L‘) < ":'i V*"’ W, the drag coefficient is given by the expression
L+Tn+| it
-~ “m
Cop, = (oc L ?u—(%o““)\j C“j (4.1.8)
™y @ -~ —~
where Do = CD()("%&))%%T . Since h.-h.co-— fau, <u.-u°o) and W =[3¢w
M) 0
b H ™
C, = ——— Am L)Y, AY (A.1.82)
el IO
o ® ™
(b ._|)M o(TM‘ j\?—)i Z
o
Hence
M L‘_mﬂ H 9,“‘_‘_‘
'JL'\» = olc
Y (x_‘) M: C—Do (A 9)
with o
FoLLTm
&e1 | YWF dz (4.1.10)
‘o

Fid
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APPENDIY 2
RELATION BRTWEEN INVISCID AND TURBULENT

MASS FLUX QUANTITIES Y. "1 anp Pe/ Pur ) Yy m+l
£

Le

The rate of entrainment of mass flux by the inner wake is
given by the expression

dm,

dyf
P (& -@f) (A.2-1)
whereF5f is the inclination of the streamline just entering the inner
wake. In the present anulysis the influence of the turbulent inner
wake on the outer wake is regarded as a second-orde~ effect (Section 2).
In other words, ?f, U, and‘bf exe supposed to have the same values
along the curve y = yf(x) as they would have if the outer wake flow
field extended smoothly to the axis. To this approximation Eq. (A.2-1)
states that the rate of increase of mass flux mf contained within the
bounding curve y = yf(x) is also the same; therefore, the inviscid and
turbulent mass flux quantitities at any station differ by a constant,

*
at most.

This constant is readily determined by evaluating the two mass

L

flux quantities at x = x;, where Y m+l ong fo/f;,) Y™ are both
s Te

*Near the neck (dy /dx) and p, may be comparable, and some error
could be introduced by neglecting the interaction effect. However, the
weke flow is "pressure-controlled" in the first 5 - 10 body dismeters
downstream of the neck in any case. Beyond x/d £ 10, F;f << (dyf/d.x).
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{4 1., When Zo <L1l, 1+4 =Q'\.L/'\w)o ;G\{/‘\Q , and according to
Eq. (37‘1):

~ 1
PO (1) =Cr )™ (1w (A.2-2)

or
M-l

Q{'/cc 1]«{-) (\(L{

(A.2-3)

wmmmmwmmmgmhmwmmmmmmcbm

finds on the other hand that

AL Tasrl (“n\-t\)B.G\'m_H\(T:“
RS M

(A.2-4)
H+)
By employing Eq. (19), we have
~
S ™ A=) Mo (Cnp 5
(?‘%‘w B (ﬁ/fco)\{-r.; -+ <m+9 (H+) ,_’_‘fmﬂ (8.2-3)
and by equating the two relations Eqs. (A.2~3) and (A.2-5) for '}'r)f, one
obtains
- (o) Bw ') M .
Yr-jc ((4/@) Yo, e d e Coy, @O
i M+ - et
<ﬂ/ﬁ’—’)o‘“‘ YT.; = "Z-Ir.n - A ‘cg (A.2-7)
where (Egs. (A.1-9) and (A.2-6))
'11\+\ C .
™ ()Y H (o) | (2.2-8)

Ht Co,
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APPENDIX 3

SOME REMARKS ON TOWNSEND'S EXPERIMENTAL RESULTS FOR LOW-
SPEED WAKES: RELATION BETWEEN OUR K AND TOWNSEND'S RT

According to Townsend's experimental result86 T = ?E_T('E)“/ ) g)
near the axis of a symmetrical low-speed wake behind a long cylindrical

rod normal to a uniform air stream, where € _ 1is independent of y.

T
Once the wake flow becomeg "self-preserving" the mean velocity distri-

bution near the wake axis is described by the parabola

Ue—Ww o - 7. 2 “ -
_Ti___u:@-; V=2 (Y /yp) (A.3-1)

where a 1is a constant. Thus

T = —2&?6T(ALL %}

(4.3-2)

where Au = - u{(C). But T= - PEIRF , and the question arises as

'y
to whether Eq. (A.3-2) for T is consistent with the behavior of the

correlation U'Vv" across the wake.

Townsend6 found that the turbulent velocity fluctuations require
a somewhat longer distance behind the rod to reach equilibrium, or
"gimilarity", than the mean axial velocity. Nevertheless this simi-
larity is well established at x/d = 500 (Figures 7.1 and 7.%, p. 135
and pp. 142-143, Reference 6). In Section 2.1 it was pointed cut that
the characteristic length in our case is not the body diameter but the

inner wake momentum thickness, 6. Tnerefore on the basis of Townsend's
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results and our estimates of ei/d, one should expect complete flow
similarity in the inner wake to be established in 5 - 20 body

diameters. Once this similarity exists

1o
- LV

R A %(‘tj/ 1) (A.3-3)

o

and by symmetry

‘}("1/”1%)"’ “1/1” ’ (A.3-3a)

near the wake axis (Figure 7.10, page 152, Reference 6). The quantity

[a)

u'c  is virtually independent of y nesr the wake axis and its magni-
tude decays with downstream distance exactly like’( Zb.v.)2 (Figure T.h4,
page 142, Reference 6). In other words :"é' —~ (Au)e. By combining

this statement with Eq. (A. 3-3) and (A. 3-3a), we find that

T e p W -p(aw (/) (130
Clearly Eq. (A.3-2) and (A.3-4) for T are compatible if & LY,
or if the quantity -é:JT-L— is a universal constant "Heynolés numbzr"
for the symmetrical wake flow. In this particular case, the validity
of the semi-empirical rela.tion?:?e-r@“/c)q) is assured by symmetry and
similarity; in fact one could dispense with it entirely and work directly
with the Reynolds stress. Evidently these same arguments are applicable
to axially-symmetric "similar wakes", and by Reynolds' analogy, to the

turbulent transfer of mass and heat.

The only remaining question is the magnitude of the Reynolds number

—A-”‘Z'U: , vhich must be determined by rough physical arguments gbout the
-
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characteristic size and shape of the large eddies6, or by experimenté.
The procedure adopted here is to meke certain that the relation between
the turbulent diffusivity and the drag coefficient of the wake (Eq. (18a))
reduces to Townsend's relation for isothermsl flow. In this way our K

is releted directly to Townsend's

n_ . oul (8.3-5)

Ry éT
where ’Co is a measure of the wske width. In Townsend's case, the
mean axisl velocity distribution not too near the edge of the wake

is described very closely by the Gaussian distribution

M = I (A.3-6)
U — U(0) exp 2-/202‘ g
Thus (Eq. (14))
AL Trvrl
™t <
Cop = wT (ALY 2 T (LA P 3D
vhere F, = VW2  and F, = 3. By using Eq. (4.3-5) and (A.3-7),
we have
: Lof3) "=(% )4 <ot : (A.3-8)
€ d s, = -l 1 9
( /e )< o K y Zmr Fonan

Now for isothermal wakes of Townsend's type our Eq. (18a) for Eir
(or = T) reduces to the form

4 ™ K‘
Er Yo ) ¥ —— Co (A.3-9)
G

By equating Eq. (A. 3-8) and (A. 3-9) for = ,, one finds that

T
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™
WK = N Y. (» )" (A.3-10)
~m2‘ (Xo/cl) T
2 % Fa
For a two-dimensional wske with a parabolic mean enthalpy profile,
G, = 2/3, and
-1
K = 0.53 (RT) (A.3-10a)

or, taking Townsend's value of RT = 12.5,

K = 0.043 . {A.3-10b)

In the case of an axislly-symmetric wake, the value of K depends
to some extent on the "matching" between the velocity profile selected
for the inner wake in our case and the Gaussian velocity profile for
a low-speed wake spreading into an irrotational flow. By comparison
with the experimental results of Townsend6, and Hall9 and Hislop, the
"best fit" for a parabolic velocity profile is obtained by taking

Y, = 2(120/a). At this point (u_ - u) 0.05 Au for the actual

£
profile (Figure 7.4, Reference 6), and the turbulent intensities
2 .2 2

u'", v'", and w'~ are less than 10 per cent of their peak values.¥*

* The problem of selecting the "best fit" is somewhat similar to
the problem of choosing the “"thickness" of a boundary layer along a
solid surface. One wants to include the bulk of the mesn shear flow,
but not too much of the "external" inviscid flow. Fortunately in the
axially-symmetric case the weke width at a given downstream location
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With this choice of YT , and with G2 = 1/4, and RT = 14.5
f

K = 0.035 = 0.0k (A.3-10¢)
This value of K is utilized throughout the numerical computations

(Section 4).

]
¥ % depends on K (Section 3.1), or on F 7y ) . However, the

= R
downstream location for a given weke width varies inversely with K. It
should be noted that the intermittency factor X is about 0.4 at the
voint Yo = 2,Qo (Figure 7.5, Reference €), and a sensitive hot-wire

£

anemometexr measuring turbulent fluctuations might find a "wake width"

as much as 50 per cent greater than the wake width for the mean flow
quantities.,
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APPENDIX 4

MOMENTUM DEFECT IN THE INNER WAKE AND ORDINARY DRAG;
ESTIMATE OF INITIAL DRAG COEFFICIENT, (ch)i
According to Eq. (18) the effective turbulent diffusivity is
determined by the momentum defect Df in the inner wake measured
with respect to the local flow in the outer wake at the turbulent
front. But the usual aerodynemic drag DaD is measured with respect

to the free-stream velocity, qba. These two quantitiles are con-

nected by the relation

E¥—-Zﬁ) j % T(%-mVH dﬂ

(A.b-1)
-2fm)" 5 feon(t Y = 2" j prite () y My
or,
D = Deo ™ ™ (= ttg) (a.4-2)

where mT is the mass flux in the turbulent inner wake. Even in

the initiasl stages near the neck, where Df is very nearly constant,

Qﬁ increases in the downstream direction because the inner wake is
capturing additional mass flux, and the term mT (qx>- uf) tekes
account of the differences in momentum flux ss measured in the two

different coordinaste systems.
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Once the process of swallowing momentum defect begins Df and
D both vary along the wake axis. Of course the total momentunm
defect is constant when ( p - p_ )<< 3 Pwu"oa , and so is the
difference between the turbulent and inviscid drags of the inner

weke for the same mass flux. This relation can be derived as

follows;

According to Eq. (A.lt-2) the difference ADf can be written

'm~ ks ke m
8= 0| ool sy o)y

. ©

Ta 1
= 2() J( (r Wl ug)y dy _/\ Pty Ayl ()

Now
"‘[ i ” (A.k-k)
D s 2(™) ?TlLT<LLm"‘ w,) qr\dq +f B ul_(wm- LL,_)ymc_lnj = comnst, o
|_° ¢
or
( m['(w ( = Ut ( ™
D = AT P W™ Uy T WU a1
rotaL ~ ) Uo(l b\ )"1 "’1 {fo | Ueo~ U )H Y
(A.h-5)

gt -
_J f;.u.._(\u.w—lx._)q c%’t.‘} = const.

The first integral in Eq. (A.4-5) represents the drag D of the original
flow in the outer wake, and is a constant; therefore the quantity in
{ } , which is identical with ADf, is also a constant. The constant

is determined by evaluating ADf when f&"f {4 1. In that case uL': U,

L/
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T

and 46):
AD_; F ZTT) J‘ PT W <bk_§ - l*-'r) r“‘_m A"«! )

which is exactly the initial momentum defect of the inner wake with
regpect to the local flow in the outexr wake at the front. The fact
that Z&Df is constant can also be verified by utilizing Eq. (20).;
the rate of increase of the first term in Eq. (A.%-3), which
determines the turbulent diffusivity, is exactly balanced by the

rate of increase of the second term.

A precise value of (Df)i or (CDfi) is difficult to determine at
present, but a rough estimate is obtained by equating (Df)i to the
sum of the skin friction drag on the body and the additional mo-
mentum defect produced by the pressure rise at the neck (Figure 1).

According to the momentum equation, this increase in momentum defect

is given by
At om ol
0

vhere Ap is the pressure rise at the neck. Viscous stresses are
neglected because the ccmpression occurs over a short distanceu.
let the subscripts 1 and 2 denote conditions just upstream and
downstream of the neck, respectively. Then AP:P! \._g_'?: _,>
and (Eq. (A.4-6))
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wmiS s NP Pa ( Y (A4-T7)
= B T B (4
/\CD.‘ 2 ( oo ' ooy FGOI = /) d‘ ay

For two-dimensional flow the quantities Py, and pl/p  CoN be
evaluated approximately. C. F. Dewey, Jr.* points out that for an
isentropic compression process N is equal to the pressure on the
body surface at the point where the streamline is parallel to the
free stream direction. By employing a Prandtl-Meyer expansion
from the sonic point on & blunt-nosed body this pressure is evalu-
ated, and by using Chapman's criterion for p2/pl’ Devey finds that
pl/iza 21.3 x 1072 (¥-M. 2). Also p2/p1’2’3 beceuse M Y3,

virtually independent of Moo .

The remaining unknown is the neck width (yf/d)i. This width
is determined by the boundary layer thickness at the sepsration
point on the body surface, plus the subsequent mass flux entrainment
in the free shear layer. A rough estimate of (yf/d) ; for the case
of a circular cylinder is obtained by considering this whole process
to be equivalent to the development of the laminar boundary layer
over g blunt-nosed slab of equivalent length. Since the free shear
layer makes an angle of about l7° with the free stream direction
the neck location corresponds approximately to % = 2.3. Calcu-
lations similar to those made in Reference 22 for a hemisphere-

cylinder yield (cj*/ci)i \)Re(i =18, or (%/\ Vre, =€}’;’—.) \}E‘e;_ = **,

* Private communication.

¥%*  The boundary layer in the two-dimensional case is thicker than
it is on the hemisphere-cylinder by the factor \/ 2.
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This rough estimate is in falr sgreement with measurements of the neck

width in the wake behind a circular cylinder made by C. F. Dewey, Jr.,23

at M®= 5.8.

In the axially-symmetric case the inviseid flow is more complicated
neaxr the neck. For the present, we utilize the estimates for pl/pco
and pa/pl obtained from two-dimensional flow considerations. If the
ratio of mass flux in the inner layer at the neck to the mass flux at
the boundary layer separation point is the same as in the two-dimensional
case, then mass continuity dictates that the quantity (yf/d)i2 must be

equal to the two-dimensional value of (yf/d)i, divided by the factor Va.

Collecting all of these estimates we find that

— Y2 3.7
,ZSCZD§ = 2 -Kfzzzr'
Rey (A.4-8)
Now CD = Cf +ACD s Where Cf is the skin-friction drag coefficient
fi f (/3) 2'\»-\/2
of the body. Roughly C, = — ,
V Rey
so that
- —~ -_Tn/z 5
Cop) =2 - = (A.h-9)

Since the probeble minimum Reynolds number for turbulent flow in the

wake3 is of the order of 5 x 1ou, the maximum relevant value of (CD )

n i
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is about 0.02 in the two-dimensional case, and about 0.028 in the
axially-symmetric case., This condition corresponds to a flight

altitude of about 180,000 feet for a body one foot in diameter at
satellite velocity. At an altitude of 100,000 feet, for example,
Re

d

T 2.5x 106 for the same body, so that (cnﬁ)i =7 0.0033 in the
two-dimensional case and (CDf) i Z70.005 in theLaxially-symetric
case. In the numerical examples of Section 4 the value of

0.022 for (CDf) g 8t M = 8.5 corresponds to & Reynolds number near
the lower limit, while the value 0.0077 for Mm= 22 corresponds to

Red’:B x 10°.
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