=
Y
H

///—p #2. .50

&
U. S. ARMY
TRANSPORTATION RESEARCH COMMI

v

_FORT EUSTIS, VIRGINIA

TRECOM TECHNICAL REPORT 64-11

VISCOUS MIXING OF TWO-DIMENSIONAL
JETS WITH PARTICULAR REFERENCE
TO JETS IN GROUND PROXIMITY

Task 1D021701A04814

(Formerly Task 9R99-01-005-14)
Contract DA 44-177-AMC-71(T)

April 1964

prepared by:

FROST ENGINEERING DEVELOPMENT CORPORATION
" Englewood, Colorado
nDC

110164



DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Govern-
ment procurement operation, the United States Government thereby in-
curs no responsibility nor any obligation whatsoever; and the fact
that the Government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be
regarded by implication or otherwise as in any manner licensing the
holder or any other person or corporation, or conveying any rights or
permission, to manufacture, use, or sell any patented invention that
may in any way be related thereto.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

This report has been released to the Office of Technical Services,
U. S. Department of Cor merce, Washington 25, D.C., for sale to the
general public.

The findings and recommsndations contained in this report are those of
the contractor and do not necessarily reflect the views of the U. S.
Army Mobility Command, the U. S. Army Materiel Command, or the Depart-
ment of the Army.




HEADQUARTERS

U S ARMY TRANSPORTATION RESEARCH COMMAND
FORT EUSTIS. VIRGINIA

Knowledge of the mechanics of an air jet in unsymmetrical pressure
fields while subjected to considerable analysis and experimentation

in recent years is somewhat limited. Simplifying assumptions, of
which inviscid flow is the most common, have been made to facilitate
analysis, yielding results which, although generally in agreement with
experimental data, have produced unexplained discrepancies with ex-
perimental results.

The approach taken in this investigation provides a better understand-
ing of the flow patterns of annular jet and recirculation flow fields
and of their influence on performance and stability characteristics

of air cushion vehicles.
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SUMMARY

This report reviews the existing jet mixing theory and the best avail-
able experimental results. Simple mixing equations are developed and
applied to the following problems,

The average total pressure variation is determined as a function of
distance along a two-dimensional jet from the nozzle.

The momentum flux change due to a static pressure change at some ar-
bitrary distance from the nozzle is calculat-:d.

The theory of induced pressure forces due to free-air entrainment is
developed, and potential flow solutions are given for the case of a
static jet issuing from a plane wall, a jet issuing into a free stream
from the trailing edge of an aerofoil (jet-flap propulsion) and a stat-
ic jet issuing from a wedg~.

The generation of vortices in the cushion region of a GEM is shown to
be due to viscous mixing, and a method of calculating the lift loss
due to this effect is shown to give reasonably good agreement with
experiment., Altogether, these entrainment effects can result in the
actual 1lift of an annular jet GEM being as much as 20 per cent lower
than the lift which would be calculated using presently available
theoretical methods, so that it is important, obviously, to take ac-
count of them in performance calculations,

The effect of jet mixing on the central cushion pressure is also in-
vestigated, using both "thin jet" and '"layered jet'" approaches. The
traditional assumption of constant jet momentum flux is also examined
in this section of the report, and it is shown to be considerably in
error. Fortunately, the effect of this assumption is to underesti-
mate cushion pressure, while the omission of mixing effects gives an
overestimate. Since both have been neglected in most earlier treat-
ments, the two errors tend to cancel out and the equations thus glve
roughly the right value for cushion pressure.

The mixing equations are used to estimate the total head loss in a re-
circulating jet, and good agreement with experiment is obtained. This
means that it is now possible to calculate the power requirements of a
recirculating jet GEM and to optimize its geometry for minimum power
loss.

The report concludes with some experimental observations of the static
pressure distribution in the vicinity of & two-dimensional nozzle of
complex shape.
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SECTION ONwu

INTRODUCTION

1.1 The General Problem.

Because of viscosity, a true velocity discontinuity can never exist
between two streams of air. As soon as an air jet emerges from a noz-
zle, it starts to carry along with it some of the previously station-
ary atmospheric air, and in the process of accelerating this
"entrained" air, gives up some of its own momentum. For this reason
the velocity profile of a jet changes rapidly as it travels downstream
from its nozzle, and accelerates progressively more and more of the
free air around it, until it soon loses all resemblance to a discrete
jet.

Also, since the free air in the immediate vicinity is accelerating to
move with the jet, the pressure distribution over any solid bodies
near the jet will be modified by the secondary airflow, the results of
which may be beneficial or adverse, depending op the nature of the
problem.

The best known example of this effect is the "mixing drag" experienced
by a jet engine in an aircraft, the mechanism of which is illustrated
in Figure 1. Since the free air is accelerated by the jet, an area of
suction is generated over the rear portions of the nacelle.

AREA OF LOW STATIC PRESSURE OVER NACELLE DUE
TO ACCELERATED FLOW OF ENTRAINED AIR

—— ".’
— __‘_- / NOMINAL JET BOUNDARY

— —
= — —
" » = - = —
- — i f’f
= - -
— -
* e : ..":‘-F.-
T —”-’/-A
-—._._._._,—l—l—'_'_‘._ \

RESULTANT DRAG FORCE

Figure 1. Static Pressure Distribution Over Rear of
Jet Engine Nacelle Caused by Free-Air Entrainment.




Since the forces caused by this suction are inclined backwards, due to
the shape of the nacelle, their horizontal component constitutes a drag
which reduces the total thrust of the engine-nacelle combination. In
this case the mixing drag forces are usually quite small, amounting to
perhaps 1 or 2 per cent of the engine thrust. However, it is easy to
see that in the case of a long two-dimensfonal jet whose periphery
might be ten times the periphery of the e iivalent circul-r jet, the
jet drag could amount to from 10 to 20 per cent of the total jet momen-
tum flux under the same free-stream conditions. Obviously, this would
have a large effect upon the determination of optimum jet thickness,
and a significant effect upon the calculated performance.

Kuchemann (Reference 1) has observed that the pressure velocity ratio
in the region of the nozzle exit is given roughly by the empirical
equation

ap
s s -0.0\(E -\)
vap V3 v S
where V is the free-stream velocity and ‘U:, is the jet velocity.

This result is based upon experimental observations made with a finite
free-stream velocity, V , and cannot, of course, be applied to the
static case of V =0 .

A second effect of mixing, and in many ways the most important, is the
effect which it has on the jet. Until the advent of jet flaps and
ground effect machines, aerodynamics was primaril - concerned with the
reaction force obtained from a jet, or its momentum flux, neither of
which was significantly influenced by mixing. In fact, one of the fun-
damental theorems of mixing is that momentum is conserved if the proc-
ess takes place at constant pressure. Total pressure is not concerned,
however, so that when we are concerned with jet characteristics some
way downstream of its nozzle, the picture bears little relationship to
the same problem in inviscid flow.

Finally, we have the problem that if mixing takes place at a pressure
less than ambient, an increase in momentum will be effected when ex-
pansion to ambient occurs. The reverse is true if the mixing pressure
is greater than ambient, and herein lies one explanation of the jet
engine pod mixing drag illustrated in Figure 1.

These, then, are the problems to be investigated. We can obviously do
little to prevent air being entrained in a jet and little to modify the
suction pressure distribution which it induces over the outer surfaces
of the nozzle structure. As indicated in Figure 2, our target must lie
in obtaining an adequate quantitative understanding of the losses due



to free-air entrainment, so that the geometry of the nozzle can be op-
timized to give maximum total lift.

(a) Large Negative Lift, (b) Zero ilegative Lift,
High Cushion Pressure Lower Cushion Pressure

Figure 2. Illustration of the Effect of Nozzle
Geometry Upon Negative Lift Due to Jet Entrainment.

The example in Figure 2 illustrates a possible trade-off in negative
lift acting on a GEM with one other variable which influences total
1lift; namely, the angle ® at which the peripheral jets are inclined
inwards. Increasing © increases the cushion pressure, all other fac-
tors being constant, but may also increase the negative lift component
on the exterior of the nozzle and the lift loss due to tue primary

cushion vortex.

Since the total jet momentum flux must be equal to the total reaction
force associated with it, it follows that 'negative lift" forces will
reduce the momentum flux of the jet in case (a) (in other words, the
"negative lift" suction gives rise to pressure forces which tend to in-
hibit the free acceleration of the entrained air), resulting in a re-
duction of the cushion pressure relative to the calculated value. In
general, this indirect reduction of cushion pressure is more important
than the actual negative lift forces induced around the nozzle

structure,

74



1.2 Types of Jet Flow.

As an initial generalization, jet flow may be divided roughly into four
separate categories, the Reynold's number (Re) of a jet determining
which category best describes its behavior.

Reynold's number is defined as

we
Q

= the jet velocity

the kinematic viscosity )\/?

the viscosity of the fluid

Re

where

the density of the fluid

O dF

= a characteristic length, usually
the minimum dimension across the
jet nozzle.

At very low velocities the flow of a jet is laminar and is described by
the Navier-Stokes equations, which are, for two-dimensional flow,

ou 4y 3 dqwy - _) ¥
dt ?x dy R ¥3x
p-1:3
ax

a
Eéﬁf +4 1{'3”5..}|J' v . _ L
ot dxX Y R (2)
a &
where > = 2 4 2.
¥x? Bga
- the velocities and ordinates being as defined in Figure 3.
The pressure term in‘P can be eliminated by cross-differentiation,
giving
3!5- +. (VR }!:. *- \’ :EIL.;; AEL §7a'-
b x dy e
(3)
r = 3V _DBu
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Figure 3. Fluid Element Geometry
Used in Deriving Equations of Motion.

For Re €€ 1 we can neglect the inertial terms on the left-hand side of
equation (2), and the resulting equations describe 'creeping flow", giv-
ing good agreement with experimental observations. Heedless to say,
this is not a flow condition which has much practical application.

Below Reynold's numbers in the range 25 - 1000, the flow pattern of a
jet is characteristically laminar and of the type illustrated in
Figure 4,
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(a) Laminar Jet From an Orifice (b) Laminar Jet From a Thin Tube
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Figure 4. Typical Laminar Flow Jets,

A few solutions exist for idealized laminar jets, but again the
Reynold's number is so low that the results could only be applied to
extremely small and light model GEM's, since Re = 25 - 1000 implies
W = .004 - 0.16 ft.“/sec. at sea level. The usefulness of laminar
solutions is extended by three considerations, however. At high
Reynold's numbers, when the jet is turbulent, it is surrounded by a
laminar "sheath" in the region where the local velocity is less than
half the maximum jet velocity. Secondly, it is (theoretically) pos-
sible to assume an effective "ed 'yv-viscosity" coefficient which permits
turbulent flow to be represented by the WNavier-Stokes equations. The
"eddy-viscosity" has a much larger value than the true (laminar flow)
viscosity and is not a linear function of shear velocity gradient, so
that its usefulness is very limited.

Finally, it is found that the mixing process in a basically turbulent
jet may be laminar for a short distance downstream of its nozzle, so
that laminar theory may be applied in this area.

keturning to our description of jet characteristics as a function of
Reynold's number, we have seen that the creeping flow which occurs at
very low values of Re becomes laminar as Re increases. A further in-
crease to the region 100 € Re ¢ 6000 causes the jet to become '"ragged"
and periodic, as illustrated in Figure 5.



Figure 5. Periodic Jet Structure in the
"Transition" Reynold's Number Region.

Since the transition Reynold's number region corresponds to the range
.016 {¢W® €0.375, it is easy to see that small models could experience
this phenomenon. If the exit of a peripheral jet were 1/8 of an inch
wide, for example, the jet velocity would have to be about 36,0 ft./sec.
to insure that periodic jet flow did not occur, which would correspond
to a cushion pressure of 1,0 - 1.5 1b./ft.2 Thus, very lightly loaded
models could experience scale effects which would make their performance
quite different than that of geometrically similar but larger models.

The "super-critical" Reynold's number region starts at Re ~~= 6000 and
is of course the region of interest in most practical applications.,
For a two-dimensional jet, the flow picture is roughly as indicated in
Figure 6.

It should be noted that there are two distinct flow regimes and that
the theoretical analysis is quite different in each regime. It should
also be noted, as mentionzd previously, that laminar entrainment may
occur in the immediate vicinity of the nozzle exit plane, as indicated
in Figure 6.



MIXING MAY BE -

LAMINAR IN THIS | e —

REGION W

*
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(®The length of the potential wedyge [or cone, for a circular jet]
varies with Reynold's number and the turbulence in the initial jet.

Figure 6. Approximate Flow Picture ‘or a Turbulent Jet.

P



1.3 Dimensional Properties of Two-Dimensional Jets.

For flows nearly parallel to the x-axis (\ an order of magnitude less
than W, say) we can simplify the ilavier-Stokes equations (2) to
Prandtl's approximate boundary layer equations$

u-?&—-l--\r-b-‘-‘-:-.'.)_’..\.t?&

a

dx Yy R 3d3x Q Ix ()
dw, W
'bac+ \3

Figure 7. Ordinates for a Two-Dimensional Jet.

The pressurep is a function of the external flow fleld and is there-

fore assumed to be known. If¢ is constant, it may be shown that the
momentum integral

‘00

e
4 ds ® constant (5)
- @0

- for any value of x.
We also have to assume that the velocity profile in a jet is geometri-
cally everywhere the same (the similarity hypothesis) for any value of

x. Thus, we can write the following equality, using the methods of di-
mensional analysis, for a jet from an infinitely thin slot:

au(x,y) =x¢5(31°‘-~) (6)

10



In order for this solution to satisfy equation (5), 29 =q,. In order
to satisfy equation (u4), 21-P= 1. Thus, equation (6) can be written
more explicitely as

us= ‘x.i 5(5/3%) (7)

- for a laminar jet., Substituting this result into equation

(%),
3 a
3% gech 24

- where Q Is indeterminate, corresponding to the angle of
spread of the jet. By adjusting (&) to fit experimental results and
by putting the origin of the coordinates upstream of the jet exit
plane, equation (8) is found to give good agreement with practice.

(8)

U w

For a turbulent plane jet from an infinitely thin slot, equations (4)
and (5) are still applicable if for B/@ we substitute the fictitious
scalar "eddy viscosity" € in equation (4)., It can be shown that

29 =, as before, for constant momentum, and Q, = 1 for the conven-
tional postulation of eddy viscosity. Thus

w = -x-* § (y/x) (9)

- for a turbulent jet, the "angle of Spread" again being in-
determinate, ilote that the mass flow varies as J3 for a turbulent
jet, so that the fluid around it is entrained into the jet as if by a
nonuniform line of half-sinks.

Equation (9) applies to the flow from an "infinitely thin" slot, so
that it obviously relates to the zone of established flow in Figure o.

It is possible to calculate the velocity distribution within the jet,
for both zones of Figure 6, in terms of the eddy viscosity € or
Prandtl's "mixing length" concept (References 7 and 8) and then to
determine the value which gives best agreement with experimental obser-
vations. Such a procedure results in a velocity distribution, with re-
spect to Y , which closely approximates a normal (Gaussian) probability
density function, so that it is often more convenient to use the latter.
It should be emphasized that whatever the methods used to attack the
problem of turbulent jets theoretically, we always end up with a con-
stant which must be determined by comparison with experiment. Thus for
practical engineering results we may as well confine our theoretical
analysis to those steps necessary to determine the important variables.

11



such as equation (9), and then determina the appropriste coefficients
from experiment.

If this procedure is followed with the assumption of a Gaussian veloc-
ity distribution, we obtain the results

~[rte, o7 F-2 1]/[ac'(._.

_.li_ e (x <x,) (10)
Y
[ -
Jx < e ) (x %) (11)

- where C, is the arbitrary constant which must be determined
from experiment. In Reference 6, the value

C, = o0.109 (12)

has been determined, based upon aq,/t= 5.2, a result which will vary
somewhat with both Reynold's number and the turbulence of the initial

jet. Using this value, Reference 6 gives

w - 5 y
\osw — = =18.4]0.096 + —=2_ (£ =) (13)
5 =13
= 036 - 1.8 (=l (x> x,) (1)

These results are shown in Reference 6 to be in good agreement with ex-
periment, and for our present purposes there is hardly any point in at-
tempting to derive more sophisticated expressions or in attempting to
predict the variations with Reynold's number and initial turbulence.

However, the excellence of the experiments reported in Reference 6

should not be allowed to blind us to the fact that they are very incom-
plete, even for the static case.

12
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Figure 8. Effect of llozzle Shape on Lntrainment Pattern.

Referring to Figure 8, the Reference 6 measurements correspond to case
(a) and for a limited range of Reynold's numbers only. It is known
that the entrainment details are influe.aced by both the Reynold's num-
ber and the initial jet turbulence. In addition, it is reasonable to
suppose that nozzle profiles of the types sketched in Figure 8 (b) and
(c) will significantly influence the entrainment pattern. Indeed, the
tests reported in Section Five of this report show that the apparent
entrainment close to the nozzle is an order of magnitude greater than
the values given in Reference 6.

In addition to this, the experiments are confined to the static case.

Although we can postulate corrections for motion of the ambient air,
there is a great need for experimental investigations in this area.

1.4 Entrainment in a Two-Dimensional Static Jet.

By integrating equations (10) and (11) with respect to 4 and substi-
tuting equation (12) for €, , we find that the mass flow at any posi-
tion & is, in relation to the mass flow of the basic jet,

) x
— = 1+0.08 — (x< x) (15)

L
o.szﬁ (xY X,) (16)

13
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We define the mass of entrained air as ﬁ\‘= hﬁ'\‘, so that

-.“:l-: (“*\) or N =(-'!-‘--\)
m, ™y
Thus, W = .08 X (x < =x<.)
t
(17)
= 0.62 % - (x > X,)
and the entrainment per unit (%[t )
dn
= .08 X < X)
d (x/t) ( *
= 0.31 (18)

— (:‘ ? xo)

These results are plotted in Figures 9 and 10. It is interesting to
note that the value of dn/d(xM) is constant for & & 5.2, which is
the region of greatest interest for most GEM applications.

ZONE OF -

\ ESTABLISHED FLOW
£ ZONE OF FLOW
5 ESTABLISHMENT
o
Q
g :
= ASSUMED BY
o 9 CHAPLIN IN REF, 17
g L
5 '/
& ,/
P
=
06}

Figure 9. Variation of Entrainment Ratiomn With f .

14



/

ASSUMED EBY

08l v CHAPLIN IN REF, 17

Entrainment Derivative dmn I d(:IQ

c i i N — F1

o 2 w x/p, © )

Figure 10. Variation of Lntrainmept Function

Derivative dn /d(xp) With X/t .

In fact, for many applications, we can obviously take

dn

d.(aclt) = 08 (19)

- as a universal constant.

These values are much larger than those assumed by Chaplin in Reference
17, which are

dn

n= 0 = 0 (for £ < 5.0)
’ d(xit) t
11 x dn _ 0.\ x
n - X _\ = (for £ > 5,0)
§ ¢ ' d(x/t) E E! *
1.5 Entrainment in a Jet With an Axial Free-Stream Flow Field.

When a jet exhausts into an axial free-stream (U. ), we assume, follow-
ing a suggestion made by Kuchemann in Reference 1, that the rate of
mixing is proportional to the shear velocity (W~ Ug ).

15



This amounts to multiplying the x-ordinates by the factor

|
Y% = (20)
;- U, |'-'u9%
so that the entrainment functions become, from equations (17)
and (18)

ns= .08(%)(!- %’) (¢ < Xo)
(21)
- o.szJ -15(\--3:-') -1 (x> %o
d Uo
d(::lt)' +0% (“ rg) (x < x,)
(22)
. J
=j_==_';_:_(l—f) (x y=x,)

Kuchemann's hypothesis is obviously limited to the consideration of
entrainment in the vicinity of the nozzle if we take \J; to be the
nozzle velocity; otherwise equations (21) would give infinite entrain-
ment as A ~—Pp 0O resulting in infinite jet drag. The actual entrain-
ment at infinity can be obtained by assuming'\§ to be the local value,

and substituting
U':_.Lﬁ_u—- (I)xc)
J i+¥n
- into equation (22) and solving the resulting differential
equation.

1.6 Entrainment in a Jet With a Normal Free-Stream Flow Field.

Because of the existence of the jet, a transverse flow field, as such,
cannot occur across it. Instead, an initially normal airflow (of
velocity'Uh) will be arrested by the jet (resulting in a local static
pressure different.i.al of A‘P=V2.QU: ) or will be deflected by the jet
in a manner which will depend upon the strength and size of the jet
and the boundary conditions.




Since the pressure rise AP associated with stagnation of the free-
stream flow will also be transmitted to the jet, there is no reason to
expect that entrainment will be greater than for the static case, at
least until the pressure becomes large cecnough for the fluid to be com-
pressed, Yowever, it is obviously desirable to obtain experimental
verification for this hypothesis as soon as possible,

1.7 Total Pressure Loss Due to Static Mixing.

At constant static pressure, momentum remains constant along a jet, so
that

L
Q j u'd A = constant (23)

If we define m as the mass flow of a jet,

that is, W =(f’udk = §(=x) (2u4)

- then the mean jet velocity \J is defined by
QD
WMy = QY f udA
-

oo
;3 (]
or v = ‘/:“AA - Me e (25)

./;”ud A b

The mean total head in the jet is therefore
2
P=P+s3 QY

p -vriew(®)

(26)

17



Thus the dynamic head in the jet is a unique function of (a¢|¢).

Q ()3 _ x
That is, == = -'—.“- = S‘(?)
®
‘ (
= x < X,)
(\ + .08 X4)? °
(27)
- ) (x b4 xo)
I8 X
This equation is plotted in Figure 11,
1.8 Momentum Change Due to a Static Pressure Change.
The momentum at any point in a jet is defined by
U J 3 (2-9) (28)

- when U and P are the mean velocity and mean total head defined
in the previous section.

Now ?:-% +({'—;) ., = ¥, (x) (29)
" (.'_";. ) ", = §, (%) (30)

At the initial (jet) pressure 'b‘

My = m, S, (31)

S '\'(%’Y‘t. (32)
m - (-'é“-\ Yo (33)
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Figure 1l. Ratio of Dynamic Pressure in Jet To
Initial Value q’ As A Function of Jet Length.
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)

When the static pressure changes suddenly to‘P‘ » at a plane in (3,3'),
the velocity changes suddenly also and becomes

J, . % (2-+)

2 [+ (8] (34)

The momentum flux after the pressure change is

J - Py "':T %E?.—v.) +('—'§“')'q,,] (35)

J . 3 . G-r) (-'i‘-)aq-) (36)
"‘ou.o :ro qao Mo

Obviously if ?.)’ there will be a gain in mementum flux across the
static pressure discontinuity, and a loss if ‘P. (‘P. .

It is also of interest to express the momentum flux in relation to the
value obtained if the jet pressure were ambient (Pg ). This can be
done by assuming either constant mass flow or constant total head at

the nozzle.

When the nozzle mass flow is independent of nozzle static pressure,
equation (36) obviously still applies.

When the nozzle total pressure is the constant quantity with respect to
nozzle static pressure

P,ohtagw *hatiew
So Va [ (%= Pa) (37)
o J %o + '
ﬁ\ag Q AoVa = W, (-%) (38)
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"‘

augd Ja. = !:\‘U'Q = r%,u;(% a (39)

or :" - (?L-‘EQ}. + , (“o)
Yo

S -3 3 JC&TE‘ )+‘ (u1)

% T T [(?. P 4 ,]

In the special case whenP, =P, »

3 SR
oo [Regrae]

(42)

Obviously Ji )J“ so long as the jet entrainment term (ﬁ\lﬁ\. ) is
finite and P, ) Po - Thus we can summarize by saying that momentum
flux is always increased when a jet passes into a reduced static pres-
sure field, and that jet mixing actually increases the gain because of
the 1ncr'ease in mass flow which it contributeses

1.9 Momentum Flux of Entrained Air.

Continuing the gross analysis of the two preceding sections, it is of
interest to calculate the gross momentum flux of the entrained air.
Since from equation (25),

MY, = MY = ﬁs,(un)(%:) Ve (43)

- the entrained air momentum flux

J, = n,u = “ﬁ"(%) =C

In n
Jo (nhev)
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The momentum flux of the air entrained on one side of the jet only (as
in the cushion vortex problem) is, of course, half the value given by
equat .n (u4y4),

22



SECTION TWO

INDUCED FORCES DUE TO FREE-AIR ENTRAINMENT

We may represent the entrainment of air in a jet by a uniform half-
ness simply Ly separating and
rotating the two halves of

line of sinks, the streamlines
associated with which are as
sketched in Figure 12. Since
any streamline may be replaced

0 z//
Figure 12, as shown in Figure
13. The rotation is necessary Figure 12, Half-Line of Sinks.
to allow for the increasing
mass flow and diffusion of the jet as x increases, of course, but will

by a solid boundary (such as
the arbitrarily selected line
most generally have a fairly
small effect on the resulting

X - 0o - x in Figure 12), we

pressure distribution. \
A limit solution is provided

by the case of a two-

dimensional jet issuing from — - —

can calculate the pressure
a plane wall, as indicated

distribution at such a bound-

in Figure 1l4. In this case v s i e
the streamlines into the jet -
are all parallel, and the //}f/{ //)//

velocity is numerically

equal to half the magnitude

ary. Moreover, we can apply
our results to any jet thick-
of the sink5

M ft.3/ft.%sec.

Figure 13. Simulation of a Thick Jet.



=
7

Figure 14, Two-Dimensional Jet
Issuing From a Plane Wall.

The static pressure on the wall is therefore given by

\ a
Ap + ey =0

or A‘P = ~é e 'U'a = -‘\59(%)& (u45)

Thus the '"jet drag" force is

_Af,‘:.“;PIY Maaa teMaY (46)
o

- per unit width.

Now the sink magnitude is related to the entrainment function (¥ ) by
the equation

M- 2h gy S 1)
dx ~ d (x/¢)
g _ ) dn
(so that \—{; = .* d(x't) )
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The jet thrust per unit longth is

T

a
J =Qt'U:-; (48)

Thus the ratio of jet drag to thrust is

-aF o Yev? [ dn ]a

. \ Y dn 2
4 (?) d(x/4) (892

If we use the approximation dh/d(xla) = .08 [from equation (19)]

‘%,F = .006 (.z_)r (50)

Thus ifY =¢, the loss is very much less than 1l per cent.

HWe can extend this simple case to include the in‘luence of a free-
stream velocity U, , as shown in Figure 15 for the case of a jet issu-
ing from a semi-infinite wedge.

T I R R B

T

Figure 15. Two-Dimensional Jet From a Wedge
i F - Fl v it \'p
in a Free-Stream Flow of Velocity U, = /"“Q
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The resultant velocity is given by
a Q Q
VS =2 U +v (51)

and the wedge half-angle by

Yon© + VU
Vo (52)

This analogy is very limited, however, in that, sinceVJ is a function
of (\y- Ue ), we can only obtain a solution for one particular value
of Ug for a given wedge
angle., However, it is
of value in enabling us
to predict the more ———

genet‘al effect of a \ _._.
free-stream velocity,

using the following

reasoning. When no

mixing takes place,

the flow picture is as

é STAGH 3T
shown in Figure 16
with a relatively high > =
static pressure at the
trailing edge. When % —

mixing takes place, on

the other hand, the

air at the trailing

edge is turned through

a smaller angle ®-¢ ,

where sin@ =V/V , so Figure 16. Flow Off a Wedge
that the trailing edge When No Jet Mixing Occurs.
static pressure is less,

resulting in an apparent increase in drag due to mixing.
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2.1 Potential Flow Solution to the Jet Drag Problem.

— \\ CIRCLES OF CONSTANT

ABSOLUTE VELOCITY
rd — \
& :

Figure 17. Flow in an Obtuse Angle.

The potential flow function in rigure 17 is

Q N
uw = =
X 2

P S
On polar coordinates, writing 3. * re

wy- -_h“_r“ (mh@’\"is‘.\m?\

n
giving ¢ SLv o NP
n

‘\y .‘.':..\L‘.‘Amh?

For‘y= 0, sinn@=0,@ =-"T“ "n=0, 1, 2...)

= & (x+ry)  (<n<)

(53)

(54)

(55)

(56)

Thus, one boundary is given by the straight line at Q = 0, the second

atq ='W/n =
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That is, @ = W = @ "IT(\--"_-‘-

so that N\ = ) Y, (57)
\ - b\

The radial and circumferential velocity components are

W=t DY

r @
L\f z 2DV
DY

- so that the resultant velocity

S a =N
V‘.u.a-\-\\!; =‘% (%%) +(-§—"‘F)
- which from equation (56) is

a 3
1 (2][ = [2““ushcp] =Qara(n-0@.\n?

v 2@/ ¥ |n

O30 P

(2] - (o™ sin ng]” < o

2 a aln-1)
V = a'r (58)

Tuus, the absolute velocity is a function only of ¥ , andV -$QOas
¥ -9 oo

Since ‘P = ‘P“ -—aLeVa

or _A4P '-ieva =3_Q Q'a ra(“‘\) (59)

- the pressure distribution is known.

Let us define the velocity at some radius R as

ne~)
UR s Q R (60)
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Then (o ¥

and -— A-P

&Pn-ﬁ-gg - A‘bt'\
30 W%

%)

Integrating between O and R

Car )

and sinuce nis small

" (A?Mr on — an)d"

o 5Q Uiy

|
R {an +aan-1

(an-1) +2an =(an-‘){|+

CA?

Since n

an— 1|

[ o
-

aan

(@n-1)

| - abdn

f" EPuran = EPn 4.

o XQUR R

~-aadn

(an-1)?
\

V= Yy

) + 9y
| - ¥x

29

(61)
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|

$
Also n+ANn = =—'—+—-L"—a
(\~ ¥w)= &/ (\-%=) (-%n)
. g a 5/y
«o SON =
(V-9n)®
dan ~ %
PYIEY (66)
(a“-\)‘ (‘ + /1")
- if S[‘ is small in relation to (1 - 0711). The change in
drag due to the small angular change is of course CAF s\n 0.
The small angular change § is given by
tan® = —L =~ © (67)
Ug
But —~ du (from equation 47)
v =y a
O d(=/+)
= ,04 U:’ (I— 3-: ) (from equation 22)
U
.o. % = .04 lr‘._ (‘—- -2
R vy
a.Ol}(_Yﬂ.—)) (68)
Ur
Thus = .08 Ny o ) (69)
CA? w(ya-W (UR '

- which has the
tion given as equation
tion of jet thrust is

(1). The actual

30

same form as Kuchemann's static pressure equa-

force decrement in the direc-



X 3 .08 , .
Ap,a‘.a'.euag (.A—\)s\ne (70)

wiiro)® \Ug

and since the jet thrust is m ‘U"J b Qth‘

J
oF k(L)(.“_l)‘(&'_;)
J U (71)
.08
where K: ——— (72)
(14 Y%)
For @ = 10° 20° 30° 4° 500
K = .0228 .0206 .0187 .0170 .0156

ard” W = R¢wnO, as shown in Figure 18.

.35 )

I

L]

i
v 0 .8 )

Figure 18. Definition of Geometry and
Sketch of Velocity Ratio Function.
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In Kuchemann's empirical equation (1), if the pressure change AP is
assumed to react over the entire rear end of the nozzle structure, then
the coefficient K = .01, This difference is explainable on the basis
of boundary layer effects, in that entrainment will tend to reduce the
momentum thickness of the boundary layer.

2.2 Momentum Loss Under Static Conditions.

We have already obtained a solution for the limit case of Figure 1lu,
and we now proceed to the more general case depicted in Figure 19,

N

_F.

=t
e,

1
RY

Figure 19. Two-limensional Static
Jet Issuing From a Wedge.

Although, as indicated in Figures 12 and 13, this class . ° problem is
amenable to a potential flow solution, our uncertainty us to the en-
trainment function, and the relatively small forces generated [as ev-
idenced by equation (50)] would seem to render such sophistication out
of place. In other words, although we have measured entrainment func-
tions available for the case illustrated in Figure 14, we have arbi-
trarily to assume that these are also true for the case of Figure 19.
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Ignoring boundary layer effects, the air moving next to the wedge wall,
with a velocity 4f, is entrained in the length AX of the jet immedi-
ately following the nozzle exit plane. From equation (17) the mass of
this flow is

e X w (73)
“md = oO“- t mJ

The thickness of this layer iz AX SWO at the jet so that for conti-
nuity of mass flow

° - A
D X S\“B\’;Q oOt\'—-‘t—t\%Q

Ve Ol (74)
\j, sin ©

- where \fg is the velocity immediately prior to entering the
jet. At some distance away from the jet S £ Up » of course, because
of the assumed flow pattern sketched in Figure 19.

If we ignore this, however, the local pressure differential will be
) a
and the resultant horizontal force (on two wedge surfaces) is

aF = axhxgey(R)

since TJ = et\.!;a

—aF _ .o016 (h/¢)
T sin® 0

(76)

- which agrees with equation (50) for @ = YW/
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In general, because of the acceleration of the entrained flow, equation
(26) should usually result in an overestimate for large values of W/t ,
when the exterior jet surface is (relatively) plane. As shown in Sec-
tion Five, however, discontinuities in the nozzle surface can result in
much higher values of A than would be calculated from equation (76)
if © were measured close to the jet. A great deal more work remains to
be done before this aspect can be clarified.

2.8 Discussion of Thrust Loss in an Axial Stream.

The greatest thrust loss in axial flow is seen to occur whenUg:= *\{, ’
the condition for maximum propulsive efficiency. In this condition,

for h = ‘\’. ’ -A--E = 0.5 per cent
T

for h =S¢, &F— = 2.5 per cent
R

- results which indicate that ti.:. effect is small. In the case
of a jet-flapped wing, however, particularly if the ject flap is par-
tially deflected, the results of mixing can be very much more severe.

Under static conditions, the theory of Section 2.2 predicts a generally
greater thrust loss than for the case of axial flow, rising to as high
as 5 per cent for ® = 10° and h /& = 1.0 (Figure 20). These high
values are by no means unreasonable, a static thyust loss of 5 per cent
having been reported in at least one jet-flapped wing experiment.
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Figure 20. Thrust Loss For h /4= 1.0.
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In addition, while we should not lose ~ight of the essentially heuris-
tic arguments applied to the calculation of static thrust loss, partic-
ularly the assumption of constant velocity over the nozzle fairing, it
should be borne in mind that this is a fair representation of a flow
picture which occurs in many practical cases, due to the proxinity of
the ground, as illustrated in Figure 21.

Figure 21. External Induced Air-Flow.

In such cases, the '"negative lift" can be assumed to be approximately
AL -2 ap siny
- .0003 Quf 2 f‘l‘_‘k (77)

Siha‘e
AL 2\ sin
-— = - ,0008 0.) (78)
or i ( : ) "y (9 ¥4 )

- the limit on @ being arbitrary.
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2.4 Vorticity Induced in the Cushion Region of a GEM.

\ A N N N W W O O O W W A /7
J

r

A?l &%,

~—

& — 3

Figure 22, Ceometry of Primary Cushion Vortex.

We assume that the vis :ous shear between the cushion air and an annular
jet generates a vortex of romentum flux J, , as shown in Figure 22.

Then A‘h = .E’. (\*S'\\\ e) (79)

and for zero energy loss in the vcrtex

AP, - LR

J
But Ap. - Bp —2'-‘:-'- (80)

S Ap = AP, - 3‘.‘&
Ap g '
“ ap, \ %’ (1+3:n0) 81)

In order to predict the loss of lift occasioned by this effect, we

need to know the ratio 3./3:, and the cushion area covered by the vor-
tex. Referring to Figure 23, we see that we can logically expect the
entrainment in region A to be the value associated with entrainment of
staticnary atmosphere in a jet. In region B, however, the entrainment
will pe less than for a stationary atmosphere, because of the effect
postulated in Section 1.5 of this report, occasioned by vortex rotation.
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\ //y }97

Figure 23. Geometry of Vortex tatrainment.

If the vortex is relatively weck, the entrainment ratio for stationary
air may be an acceptable average to the complex entrainment picture ac-
tually occurring.

The length of the inner surface of the jet is _.efined by geometrical
considerations, as indicated in rigure 24,

The circumference of the 9)/
upper section is .

S,=6r (82)

Now \'\

1]

r (14+Sin0)

n
EX3ILN:)

se ¥ (83)

s} is defined as shown,
being

3a = Y'¢ (8u)

Figure 24. Geometry of
Inner Jet Boundary.
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-b-s'me--‘l
r

v

3/4 -(l/u)%'\he (85)

where S'm 4>

Thus the effective jet length is

_h n L
S Tae et (%"*s‘“eﬂ e

- a relationship plotted in Figure 25. Obviously, it is suffi-
ciently accurate to write

S\ + Sa = h \'\
(87)
where R == 0.83
Frcm equation (44) the momentum flux of the vortex is
1
i‘_ - an (88)
J, n+)
From equations (17) anc (87)
N = .08 x 0.82 -\l (89)
2
.0328 hy
so that -E- = X (90)
3 (V+.0es6tyy)
- a relationship which is plotted in Figure 26.
Substituting equation (90) in equation (81),
AP, ' +.0656 M4 (\+sing)
d 6
= |- 068 (92)

X +.0656 (\+Sing)
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where X = -E (‘4"“‘ 9)

In-becard cf the primary cushion vcrtex will be a secondary vortex, as
shown in rigure 27.

.—-\

=T AP,

x\\\;\\\\sx\ \;\\\\L\

Figure 27. Geometrv of Secondary Cushion Vortex.

Makirg the same assumptions as before,
4
S . .an (93)
J, n+)

. 23
A‘P;“A?l ) .—\:1

. aJ
o BPy = &P, — 'T\'L
but OF, = OP, - ..:"". (1 + sin @)
AP, . AP, i ’ _ J3 =]
AP, OFR, 3y (\¥rswe)

\__ Js P P
I J (Vasin®)

R A
=t (q,) | +8\n® (o)

Equations (91) ard (94) are plotted in Figure 28, where it is seen that
the influence cf the seccndary vertex is quite small.
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It should be noted that the theoretical pressure distribution will be

similar to Figure 29,
if the cushion vortex
hypothesis is valid,
so that pressure meas-
urement with a limited
number of static pres-
sure taps may give mis-
leading results., A
measurement at (A)
would give too high a
reading, and at (B)
too low a reading.

It is important to note,
however, that the total
lift will not be in-
fluenced by vortex flow
if it has zero loss and
-1f the vortices are
"square", because the
vertical momentum is
equal to the horizon-
tal momentum.

Figure 29. Theoretical Static Pres-
sure Distribution Under a GEM,

If we assume 100 per cent

momentum loss, the horizontal momentum flux is ¥, instead of 2J, so
that the pressure decrements are half the values given by equations
(91) and (94), and the lift loss would be approximately the value to be
expected from this decrement.

In practice the pressure distribution is not so regular as that sketched
in Figure 29, and tends

to be of the type
sketched in Figure 30,
By assuming a rectangu-
lar primary vortex we
can obtain an average
value for AP, . Some
experimental results
averaged in this manner
are compared with
theory in Figure 31,
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Figure 30.
Cushion Pressure Distribution.
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Figure 31. Calculated Vortex Pressure Compared
With Experiments Reported in Reference 10.
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Although there is apparently a great deal of scatter, particularly at
low lift ratios, the general trends seem tc be in fair agreement.
Moreover, there are so many practical difficulties in experimental work
of this type that it is unsafe to place too much reliance upon the ex-
perimental measurements. For example, the cushion pressure, measured
at the center of the rig, is plotted in Figure 32 for the Reference 1l
experiments. We know from experience that layered jet theory always
gives good agreement with theory under these conditions, so that cush-
ion air leakage must be occurring, to give the effect analyzed in
Reference 12, This is a very common problem with two-dimensional test
rigs, although it is also possible that A?”. is measured some distance
upstream of the nozzle and that significant losses occur after the meas-
uring station.

In either case, we can correct the Reference ll measurements of Ap, by
ratioing the decrement by the values of theory to experiment in Figure
32, The results of such a correction are plotted in Figure 33, and the
agrecment between theory and experiment is now obviously much better
than in Figure 31. The fact that the measured Ap, is less than the
theoretical value at large lift values is explainable by the fact that
we have used equation (15) throughout to calculate entrainment, rather

than equations (15) and (16) together.

We conclude, tentatively, that the primary vortex pressure decrement
can be assumed to act over a distance (h ) in from the nozzle, where
h is the hover height, and that the value given by equation (91)
should be used.
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2.5 The Effect of Raioigl the Cushion Volume.,

If the height of the

cushion (hgy ) is .
greater than the /
height of the jet /
nozzle (hy, ), then
equation (81) becomes

h ‘

B 3 h 5
ah "7 F hGeeen l 1'

indicating that the
vortex pressure

decrement is reduced Figure 34, Increased Cushion Volume.
by the factor h,/hy .

Thus, increasing the cushion volume reduces the lift loss due to cush-
ion vorticity if the present assumptions are correct.

2.6 Loss of Cushion Lift Due to Cushion Vortex Flow,

We are now in a posi- a

tion to calculate the r. =
loss of lift due to V
cushion vorticity,

since we assume equa-
tion (91) to act over
a distance h in from
the nozzle. For a
rectangular cushion

é_\,\ \\u

planform, as shown L
in Figure 35, the h
normal cushion area -
is
Ac = ab Figure 35. Rectangular Cushion Planform.

The area over which the reduced pressure acts is

AA - 2ah +2(b-2h) h

= ah(a +b ~ah) (95)
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The cushion 1lift is

L. = &p, A, —(ap - aR) BA;
Le | _:‘_és[_‘ﬁ’..
ey Ly \ o (96)

Substituting equation (91) for

_ ke (%)a ("\%) {\ *'b&[‘ - a(%)(%)]}. ©7)

Le
AP A \ [} +.0656(2)] 1+ sine)

For a circular cushion planform, of diameter D

a
sA. TP - (p-aw)?

"

Ac »D°
| 4
uf3)-3

(98)

)G -R)B)]

t I/\D £/\D

The ratio Al / &b A,. is plotted in Figure 36 for a circular planform
for © = 30°, Since the theory can only apply if

ah (D

we have a limitation

_h.. { — (99)
t a(t/v)

- the equality representing the entire cushion filled by the
primary vortex. Naturally, we camnnot expect this to occur in practice
because of the rapid acceleration of the vortex air which would be re-
quired near the center of the cushion. Thus the cut-off value of w/te
will be less than that indicated in Figure 36.
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Very cften, as shown in Figure 37, an annular jet is thick enough for
viscuus mixing to have very little effect upon the total 1lift of the

vehicle.

2.7 The Existence of Cushion Vorteces.

Whether or not a vortex pattern is set up in the cushion will presum-
ably depend upon three-dimensionai flow effects which are beyond the
scope of this investigation. When more refined analyses of this flow
are carried out, we can expect to discover parameters which will indi-
cate whether a vortex can exist.

Even when no vortex exists, however, we can expect entrainment of the
cushion air to occur, resulting in a net momentum loss and hence a re-

duction in cushion pressure.
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SECTION THREE

MIXING LOSSES IN AN ANNULAR JET

In this section we shall attempt to solve the familiar problem of the
cushion pressure generated by an annular jet, but with the effects of
mixing included.

We shall also eliminate another approximation; namely, the familiar one
that the horizontal momentum flux is J,(I+ sm@). In fact, referring
to Figure 38, the horizontal momentum flux is

I SN © &+ T (100)
where 3:., ? Tm

- because the mean static pressure of the jet is lower after it
strikes the ground.

3, Thin Jet Theory.

Figure 38, Basic Geometry.
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From Figure 38 the effective mixing length of the outside of the jet is
approximately

§ = r(% + e) (101)

where §- he \'(\ + Sn 9)

Writing 8%t because of entrainment

v - h-t (102)
1+ sn®
and S = (n-O(F +©) (103)
|4 8in0

The mean mixing length is the average of this and equation (87),

that is,Sm = 0,41 + "‘)( +e) (104)
n ‘2.(|+sin )

The relationship f(o) is plotted in Figure 39, and we can obviously take
a mean value of $£(e)= 1l.uk

S )
so that 2™ = 0,41 + 0.72 (1 -&) (105)
= '3

- as plotted in Figure 40,

From equations (17) and (27)

M =1+.0 2.'1_‘"_) (206)
e, hAt

Also T = WU, -(En)(!u. m, Y, z(:“ L"L)Z[m (108)

AR WA Y,
- ! ' i
But AP, > Ap + ?eu:m (109)
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Substituting for 05

TR m(:“)

_ )’ZA‘PI F 94 )+ Aéﬂ—%’]

2 “EZus""&fi

Thus the total horizontal momentum flux gives

o - Tafone +(."‘::::)(r‘2*.’;r)]

uhare (_..._ ( L0
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From equation (109)

3;,. m.lu IN

= t[2 a8y - aq ]l sin 0 + (P54, )(%8;, )]

s(b

,..n_ - %

ofig)r o) +e - o

where

(116)

and of course &‘ < (107)
3 o]

_%p, - OA & o.n(l—ﬁ) (105)



This equation is plotted in Figure 41 for @ = 60° and is seen to give
slightly more cushion pressure than simpls thin jet theory for

< 3 and rather lsss for WA » 4, In other words, at lov hover
heights J, because the mean jet pressure is greater than ambient
prior to s%riking the ground, At higher heights this is more than off-
set by the loss of momentum flux dus to entrainment of cushion air.

3.2 Lazorod Jet Theory,

The effect of eptrainment of cushion air is already incorporated in
layered jet theory, as given in Reference 12, far example. Thus the
only additional factor which nuda to be incarporated is the accelera-
tion of the air due to Ii + Although it 1s ebviously pos-
sible to carry out a det g].ccl analysis of these effecta, the equations
are so complicated that more useful results are cbtained by devising an
expresgion for the mor atum ratie (sinet ) from the thin jet theory of
the previous section. s cbvious rationale for this procedure is, of
course, that mixing oniy becomes important for the larger values of
where thin jet tusory is, in any case, adequate.

Layered jet theory (Reference 12) gives

-In
M |- Qn
AT,

where % = -‘E-(ﬁm o +'&m Q)

and sinof is the ratio of the exhausted momsntum to the total mossle
momentum. In terms of Figure 38,

6n ol = g: Q18)
- since the vortex air recirculates and does not w»educe Q »
such. Thus, from equation (108),

sln o = R, V. @19)
w  Vou
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- and from equations (106) and (113),

en ot o] M 74 Aﬁu(ﬂq")"‘M{‘_(’ﬁ)] (120)

M 24aR, - bp

If this is substituted into equation (117), it is obviously impossible
to solve explicitly. Obviously, it is most convenient, therefore, to
obtain a graphical solution, and this is done by first plotting

. Y T8 T _ %
sin R =(_m.£. ﬁ ZM’ Y-l L™
i |\ — = ?’é‘.,

(121)

h
as a function of g for various values of A% « From equation (117)
we get the relationship IN

% log ' (122)
¢1—- 0
‘ g/AP"n
. . _ [ | | .
d - N ——
S, 8m .i. = oy, ‘_M%? sn © (123)
JN

The intersections of equations (121) and (123) will obviously give the
correct values of sin e , which can then be used in equation (117).

As an alternative (approx:.mate) approach, the ratio of the thin jet
values for &R “ (Figure 41 for example) can be used to ratio the
values obtained from equation (117) provided that this is not done be-
low about h/t = 4,0,

3¢ 3 Calculation of Sinel for Zero Mixing_.

When there is no mixing loss, sin & » 1.0. From Bernoulli,

3
% Q“Jo : AP,N (124)
O = m,u, =m | A% (125)



But from Reference 1lu

m, - S'ZQA‘PJN (1-e ) (126)
%

T - t AP, P (127)
r oS
-x
Sosinol s S . 2 V-e (128)
=%
Ton l-e
-
oo X =28 '—=e L Egne (129)

- an equality to which no explicit solution can be written.

From equation (122) by equating x,

| | .ok \—e E o
2\03‘_._.6_& 2h Tgf;_ + & sne (130)
AR
AR, N
and since e"’"‘ = | - g_".
A%,

“
-
|
Rlg

£ (2A-Igd gnol. 1 !
. { MVA?,,, +8 } 2‘03.._3 (131)

. . AQ ony : 7
Thus we can use this equation to plot /A?‘“ as a function of 7 .
This has been done in Figure 42, for ® = 80° and is seen to give some-
what higher values of AQ than the simple layered jet theory. The
inclusion of mixing losses will reduce these values, of course, as in
Figure 41,
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SECTION FOUR

MIXING LOSSES IN A RECIRCULATING JET

The basic geometry of a recirculating jet is illustrated in Figure 43,
whare entrainment is seen to be possible in three areas. It is pos-
sible for entnainment of the outside air to influence only that part of
the flow which is exhausted outwards, provided that this portion of the
jet is thick enough. In this case there is no total pressure loss in
the recirculating jet, and the effect of entrainment on the outwardly
exhausting air is as discussed in the previous section for an annular
jet.

The effective entrainment in the cavity zone can be zero if a stable,
loss-free vortex is established. In configurations so far tried, how-
ever, therc has been no possibility of such vortex flow, because of the
large diffusion losses which would occur. Thus, present cavity zone
geometries can be regarded as giving the "worst-case" loss of free-air
entrainment in the jet.

Finally, in the third mixing zone, the relatively slow-moving re-
entrant jet can be assumed to experience free-air entrainment on its
cushion side.

We shall now analyze each of these losses in detail, in order to deter-
mine the total pressure loss attributable to all three causes. The
analysis will be restricted to constrained vortex flow,

4,1 Free-Air Entrainment Losses.

This prablem was examined in Reference 15 for the case of 100 per cent
recirculating flow, where it is shown that the length of jet affected
is

S, .= 8 132)
h | — sin®,

This equation is plotted in Figure 44, From equation (107), the dynam-
ic head reduction attributable to mixing over this length ig

9 \
gluu [I + .0 %?f (%})]2:

(133)
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Figure 43, Partially Recirculating Jet.
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If we assume that the static pressure is essentially ambient in the
outer portions of the jet,

\ r 3
AP-'N =2 ( “:»w q’.m

(134)

. a S
Loq, ( %“) Y [1+.c8&)]°

over the outer half of the jet.

4.2 Cavity Zone Entrainment Loss.

Assuming that no cavity vortex flow is generated, we can assume static
entrainment.

* |

#
-

-1
P
I ..

Figure 45. Geometry of Jet Extermal Surface.
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From Figure 45 and equation (102),

LIS
(135)
Re . 1
h |+ sin ©,
From the geometry
2‘. =, WO, + v, cos e, + 3
Z . Ao _ 58 _ cxe, (136)
h h I-8n®, Il+sin@,

(Note that the critical height postulated in Reference 15 is reached
when g = U in this equation.)

The inner jet radii are, approximately,

t
I el
h \-S.\ne‘ ( )
137
WL M=%
h |+sin®,

- assuming that the jet thickness is equal to the exit plane
thickness, for simpliciiy. Thus the periphery in the entrainment zone

is

%\f_ . B, M‘.’i“)... (& +0. )1 -%) (138)

h | — sin ©, ) + Sin®,
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Substituting equation (136) for %,

Sy | ke e _ wre, +(l—°/){-‘l‘—L'° e LY }(139)
h h l-smo, Iﬂmﬁ., I=%n®, \+tn®,

If we assume that the pressure Ag' acts over the inner half of the jet

APJN AR/ + *( JNV

B
y
v

qu

O
|.o
(> 4
d
F
>
;0

(140)

A—"i.: &R, 4B, ﬁ':; [ [|+.os(5 )(.E)]’] *'[\I_Y')]ﬁ

measured at the intake nozzle, over the inner half of the jet.

4,3 Cushion Zone Entrainment Loss.

The jet periphery in the cushion is

w
.és_ = I_+_6L (14l)
h ‘ +~ ﬁn et

Assuming the pressure Ag to act over the outer half of the jet,
: -9
A‘E A cLc.c; - A?JN —qw(' 7< q.m)
- -9 -
q’co = Ag“ q'..N ( : ’Vq J») A%

q,
= AR, - q'iu(l ol qu)- AR (142)

EESO)
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Substituting equation (13u4),
Af, .4 _ 9
AP,, AP, AR,
e ["' = tcr'é] + ‘ h\1]2
AR, L [1+.08(%)F)] [1+.08(3)E)]
|

‘ |
= 7oy L |
I"*“°°(s9ﬁb(5@)j‘{ [1+.08(5%nX")]
- measured at the intake, over the outer half of the jet. The
mean total pressure at the intake 1s obviously the mean of equations

(140) and (143).

(143)

If there is no cavity loss, “he mean will be

AR
s _ )+ 27e, (144)
AP, 2

If there is no free-air loss, due to insulation by the primary air, we
can take 8, = 0.

b4 Comparison With Experiment.

Reference 16 contains some measurements of exit and re-entry total head
for a partial recirculation system, the exit total head varying lin-
early across the exit plane., For the test model (Martin Model #1)

©, =9, = 30°, 2,. = 41,86 in., & = 6.76 in. From equation (136) the
"critical height" would therefore be given by

A . me[ R | ] - 2.3
hevie l-sin@ | +8in®

h P hcvh 2? =

_t& 7‘.— == 2.68,

The experimental data is for values of h/g at, or in excess of, this
critical value.

Assuming no loss in momentum flux attributable to mixing, the theoret-
ical values of cavity and cushion pressure are plotted for this model
in Figure 46, some experimental values of A being plotted for com-
parison. Because both the nozzle pressure distribution and the mass
augmentation ratio "’ vary for the test data, the agreement is not
good, in Figure 46, but the absolute order of the values is obviously

reasonable,
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These calculated values opr‘ and Mav have been used to calculate the
total pressure drop, which is the mean of equations (140) and (143),
the results being plotted in Figure 46. The agreement with experiment
is evidently good, particularly when we remember that, in the model
tests, the exit nozzle total distribution was highly nonuniform,
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Figure 47. Predicted and Measured Total
Head Loss for Martin Model No. 1.
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SECTION FIVE

SOML EXPERIMENTAL MEASUREMENTS OF STATIC PRESSURE NEAR A NOZZLE

A full-scale Frost Fan two-dimensional test rig (Reference 15) was in-
strumented with static pressure taps. Figure 43 shows the location of
the taps relative to the fan inlet and the results obtained are pre-
sented in Figures 49 to 56.

From Reference 15, Appendix E, the Frost Fan gives a momentum flux of

bJ l.675("‘—°%%)t () (145)

<4
n

Rt U:," = 0. 829@% (vost)

From equations (74) and (75) the static pressure decrement near the
nozzle will be

.- -_9&)‘ A _1(& L
A‘P Ze(ﬁne U:) ? sinﬁ)t (14e)
. |
3 7
or S8 J-AP 1250 /3 et
At 1000 r.p.m. 12;01: . 08'2725 X 125 = 115.2
o SN0 = 0932

J:T‘F (1u48)

The pressure decrements close to the nozzle, corrected as (z*.p.m.)2 to
1000 r.p.m., are plotted in Figure 57. Using the mean of these values,
the effective value of @ is plotted in Figure 58. Since the nominal
outside value of ©® is 45°, close to the nozzle, and the inside value

is 90°, it is obvious that the entrainment is much greater than would
be indicated by the local geometry.
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Figure 48. Location of Pressure Taps.
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Figure 49, Static Pressure Measurement
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Figure 50. Series D, Group II, Run No. 10.
(1400 RPM, W = 22.75").
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79




‘A

2
-d-ﬁbL-dh
b
0
-2
R} C
S pe——
D

- = - - JOMIJ4AL CUSHIOJ PRESSURL = 0.95 LB./FT.2

Figure 53. Series D, Group II, Run .lo. 13.
(1000 RPU,h = 9.25").

80




-4

%

J

e e = 30D CUSHIOG PROSSURS = 2.12 L3l /iT.2

Figure 54, Scries J, Grouw) 1I, <un No. 1lu.
(1400 i, W = 9,25"),

81



-_ @ aoam | e e a e e .- - e - e eon e o .- - e, = e -

0
- = - = GJIINAL CUSHIOJ PRUSSJRS = 1.75 L3./.T.2

Fi-ure 55. Series J, Group II, lun Jo. 15.
(L000 R2:1, B = y,5m"),

82




1
PERS a
0
-1 -
I
153
l —Jb—-
0 0
=4 -l
3
uy
—-b—ﬁ——--—-———-dr———qp—-———-
0
_u“

)
- = = = 4OJINAL CUSHIOJ PRUSSURC = 3.58 LD./?P.2

es J, vroup iI, Rua Jo. 16.

riguce 56. Seri
= 4,5"),

(1400 =0, h

83



h8

0.6

O.4

0.2

NOZZLL SURFACL

A IN CUSIIION
\ °
/

©
S
-~ \
\ A
—— _\a_ - -
8
OUTSIDc NOZZLwn
SURFACLE
e ——
10 20 28

HOVER HEIGHT RATIO We

Figure 57. ilozzle Static Pressure Decrement On Internal
and kxternal Surface. (Corr-zted to 1900 R>¥).



S8

oFFECTIVE LATRAINMCT ANGLE ©

16°

120

o]
(=]

Py
o]

OO

OQUTSIDL NOZZLE SURFACL

—

JOZZLE SURFACE
IN CUSHION

10 20
HOVER HEIGHT RATIO "\,1-_.

Figure 58, Lffective tntrainment Angles For frost

Fan Test Rig.



10,

11.

12.

sIBLIOGRAPHY

Kuchemann, Dietrich and Weber, Johanna, Aerodynamics of Propulsion,
McGraw iill, London, wngland, 1953.

Payne, Peter R., "Jet Drag of Wings with Jet Flaps", Aircraft Lngi-
neering, Vol. XXX, No. 349, March 1958.

Stratford, B.S5., "Mixing and the Jet Flap", Aeronautical Quarterly,
Vol. VII, August 195b.

Strattord, B.S., "A Further Discussion of Mixing and the Jet Flap",
Aeronautical Juarterly, Vol. VII, August 195b.

von Karman, Theodore, Theoretical Remarks on [hrust Augmentation,
Reissner Anniversary Volume, J. W. rdwards, Ann Arbor, Mich.,
1949, p. u6l.,

Albertson, M. L., Dai, Y. b., Jensen, K. A., and Rouse, :unter,
"Diffusion of Submerged Jets", Transactions of the American
Society of Civil inginee-s, Yol. 115, 1950,

Tollmein, dalter, "Calculation of Turpbulent Expansion Processes",
JACA TM 1085, Hational Advisory Committee for Aeronautics,
dashington 25, U.C., 1926.

Forthnann, L., "Turbulent Jet Lxpansion'", HACA TM 789, National
Advisory Committee for heronautics, vwashington 25, D.C., 1934.

Liepmann, if. w., Lanfer, J., "Investigations of Free Turbulent
Mixing", WACA TN 1257, .ational Advisory Committee for Aero-
nautics, washington 25, D.C., 1347.

Carmichael, 3. H., "Hovering Two-Dimensional Annular Jet Perform-
ance Lxperiments", Publication .o. V-1053, Aeronutronic, Divi-
sion of Ford Motor Co., .ewport wseach, Calif., Nov. 1960.

Yen, Zen-Chie, "Patterns of Flow Under a Two-Dimensional GEM",
Iowa Institute of Hydraulic Research, OJR Contract Nonr 1509(03),
Iowa University, Iowa City, Iowa, Jan. 1962.

Payne, Peter R., "The Influence of Leakage on the Performance of
an Annular Jet GLi'', Frost iLngineering Report No. 197-3, Contract
DA 4y4-177-AMC-71(T), frost Lngineering Development Corporation,
Englewood, Colorado, Sept. 1963.

86




13.

1y,

15,

16.

17.

Kuhn, R. E., Carter, A. W., "Research Related to Ground Effect
dachines", Pr nceton Symposium on Ground Lffect Vehicles,
Oct. 1959,

Payne, Peter R., "A Note on the Opt mum Thickness and Angle of an
Annular Jet With Zero Translation Velocity'", Frost Engineering

Report o. l42-5, Contract DA .4-177-AMC-5(T), Frost Engineering
Development Corporation. Englewood, Colorado, Feb., 1963,

Payne, Peter R., "Preliminary Studies of the Application of Periph-
eral Fans to Ground Effect Machines'", Frost Report ilo. 1lu42-18,
Contract DA 44-177-AMC-5(T), Frost Englneering Development Corp..,
Englewood, Colo., Oct. 13963.

Jrtell, A., "Recirculation Principle for Ground Effect Machine Two-
Dimensional Tests', TCREC Tech. Report 62-66, U. S. Army Trans-
portation Research Command, lort bustis, Va., June 1962,

Chaplin, Harvey R., "Lffect of Jet Mixing on the Annular Jet",
DTMB Report 1375, David Taylor Model Basin, Washington 7, D.C.,
Feb. 1959.

87



BLANK PAGE




APPENDIX I

AN ANNULAR JET VERY CLOSE TO THE GROU.D

&

/
&p.  h L&k&, — 16

TIrrrirri 17117'”1117”]’7””

Figure 59, Annular Jet Very Close to the Ground.

Consider the case of Figure 58 where h»0. The air in the duct is es-
sentially stationary, so that its static pressure is equal to its
total pressure and

A‘Pe = A'i: (149)

The vehicle thus benaves as a plenum chamber, and the air rnass flow,
for an outer periphery( is

n’b - C'hcmvoe (150)
But A?i, a-s-e\foa so that U = % A?J (151)
ohe ﬁf\J - Ch C.’ JQQA'% (152)

The jet power is = \‘.\‘\JV

a °a %
That is, E\,: Ch C:DE A?J (153)
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APPENDIX II

EFFLCTIVL PERIPHERY OF A CIRCULAKR ANWULAR JET

In the three-dimensional theory of annular jets we use the relationship
Ch A‘Ez:{,(9+5m9) (154)

- to determine the cushion pressure A? . In other words, the
pressured& acts on an areaCh to give the horizontal momentum flux
nel.

J,(m+si

We normally take (U= I, whereD is the outside diameter of the
nozzle, but we shall now estimate this quantity more precisely, using
the assumptions of Figure 59, which follows the theory of Gection 2.4
of this report,

777777777777 J7ITrrrririri

Figure 60. Assumed Jet Geometry.
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obviously, h r (H‘ sin® )+ % t

p.h-lat

. 155
(14 3n6) 120)

Relative to the jet ¢ in the nozzle exit plane, the radius of curva-
ture is centered about a point v sin @ outboard. Thus the jet is a
distances
g - v cosd — rcosd (156)
- inboard of the nozzle ¢ « Thus ifz is the radius to the

nozzle ¢ and 3, the radius to the jet Q , both measured from the
cushion center.

}= Z-S =¢-r (COS¢ -cosO ) (157)

Taking the upper half of the jet first

sing - y/r
s, cos J |- (yr)*
(h-Yat) -
e ]

The incremental vertical area is aﬂs_ds Thus the total vertical area
of the upper half of the jet ¢ is

trend 0 q
AA,, -am [55 re [Z_(l\_.fée_‘)l\_ema'_‘_(m “se]ds

(1 +8ve (V¥ 3in0)

After some manipulation,

: . a
AA - QAW .?._ rsin 6+..!'.. Sin® coSO — .L-Q-] (159)
Vi 3z az
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for the lower half of the jet, exclusive of the area it zn(tﬂ-s'me)
immediately in contact with the ground plane

sz 2ﬂ/rl;z—(m —rcose)] dy

2
2wZE [(\ -\-% CO*G) Ly E‘:i‘ I{'} (160)

Thus the total vertical area is

K- s 1)) L+ id By ]
Ay +(|+S'\n9) \+ (143 % B)sine

h (“"L )?. ) «
- 2 ‘I.[l s\n © cose— 2 4+ CosB— —] (161)
2 (1+3n0) 2 b

When h/€ € 1.0, we take @ = WD, whereD is the diameter of the outer
nozzle edge.

We evaluate this for the case @ = 0 considered in Section 2.4 of this
report.,

C 1+ _ 2 h (_18)()\-E
m—?_h-*(\iﬁ)-*‘z(l 13y (-%)

= 1+ 0258 (rit)

= | + 0.215 -“i[\-— %.(%)('3)]2

(162)
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For the Reference 13 model r'- = 1125,

*'D
° -D"t
..z:

a
_Lx(?;__t_ L D(_x)
h 3\ h h a h D

= 0,44375
:s' = 2,255 E = 0,254
z D

The ratio C’/“']) is plotted in Figure 60 for the Reference 13 model
and is seen to be greater than unity for K/D > 0.3. Thus the cush-
ion pressure will decrease more rapidly with height above this value.
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Figure 61, cffective Jet Circumference For
@ -0, ¢/D = 0.1125
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APPEJNDIX IIl

ANl EXACT SOLUTION FOR A LAMINAR JLT

Schlichting (1) and Bickley (2) jave obtained a laminar solution for a
plane jet issuing from a slot, as sketched in Figure 61,

J

~— —
— e
o >
—
’f_ —
Z T
Z
’

Figure 62, Laminar Jet from a Slot,

Taking X,y ordinates about the jet t , and assuning the jet is infi-
nitely narrow (but of finite momentumMg), they show that the "bound-
ary layer'" approximation to the Javier-Stohes equations is [from (4)]

2u dQur M
“ax TV R e dy?

(i.e., the pressure term is neglected because tlie stream lines are
nearly parallel)

du +.‘£ L N0 (léw)
dx Yy

(1) . Schlichting, "Laminar Strahlansorectung" ZAMN sd. 13, 1933.

and

(2) W. sickley, "Tne Plane Jet," Pnil. MYMag. 7, 23, 1937,
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The boundary conditions are

3=O;U'

"
o
-
1]
c

"
(@]

s =ed; L

From equation (5) the total jet momentum
o0
LWAYE aef u.a ds = constant
= o

The approximate solution to these equations is

. Mo
W 0.45u3 Q"\)I) sec\\ g
o 3
U =0 Jsua(ex‘) (ag Sec\»g tan\\s
N Me \3 7/ Y
where g = 9. 27492 (Q'O.a) 3 (;’%)
The mass flow dcross any section of the jet 1is

™ ‘&Q j::&s- J.JULJQ(Mozx)é

(165)

(166)

(167)

(168)

(169)

(170)

. . L a .
These approxiirations apply if M,::/QV 1s ldarge and cannot therefore
be applied to determine the pressure distridbution on the wall atXx = 0.

C.1 Compdarison Jith a Turbulent Jet.

Laminar flow is characterized vy the .ewtonian relationship

C, du
-)*63

(171)

- where M is the viscosity of tne flvid and is assumed to be a
constant. One approach to turbulent mixing problems is to assume that
the eddy viscosity € is statistically constant, and that laminar solu-
tions can be applied to turbulent phenomena when).\ is replaced by € .



Writing the jet momentum

s a
a ° m
M, - Qtu° = m u, - ..._?:

- we have, from equation (170),

W v 13 (x\§
':‘J 3.302Q Qaﬁ\d (t) (172)

It is immediately obvious that this equation is quite different from
ecuation (16) in the main body of this report, implying that the linear
relationship of equation (171) cannot pe applied to turpulent mixing

processes,
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