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SYMBOLS 

0^ empirical constant in potential flow theory 

or length of rectangular planform HEM 

or substitution used in equation 116 

A cushion area 

b width of rectangular planfom GEM 

or substitution used in equation 116 

C substitution used in equation 116 

C empirical constant in potential flow theory 

CAr jet force drag coefficient 

CW pressure coefficient 

CL» pressure coefficient 

(? drag coefficient 

C outer periphery of plenum chamber 

J) diameter of circular planform GEM 

or diameter of outside «»dge of nozzle 

C. power of jet 

C(aQ) function of 3C 

P force 

|"| hover height of GEM 

I JT 
Q" momentum flux within primary cushion vortex 

(t momentum flux within secondary cushion vortex 

I momentum flux in jet 
w 
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M|0 momentum flux in jet leaving cushion 

R effective jet mixing length in cushion of GEM 

K coefficient, K = •08/lT-»'e 

< characteristic length, used in definition of Reynold's number 

My distance between jets entering and leaving cushion 

My0 effective length of vortex 

LÄ cushion lift 

f|\ mass flow 

m mass flow of basic jet 

WW ma^s flow of jet leaving cushion 

ffXto* mass flow of jet measured at nozzle 

^\ magnitude of sink 

Mp momentum of laminar jet 

1% entrainment function 

^> pressure 

or numerical index In dimensional analysis 

7 total pressure in jet 

fl dynamic pressure 

or numerical Index In dimensional analysis 

^1« dynamic pressure In jet leaving cushion 

Q dynamic pressure in jet measured at nozzle 

X* magnitude of radius vector (T t^> In Figure 17 

or radius of inner surface of jet Impinging on ground 

substitution for ^^/tTC   ~~       /bjj or 



|"ö outer radius of jet entering cushion 

|V0 outer radius of jet leaving cushion 

f! inner radius of jet entering cushion 

t»! inner radius of jet leaving cushion 

R particular value off» (first definition) 

Rl, Reynold's number 

S effective mixing length of outside of jet 

S. circumference of upper half of jet boundary 

S* circumference of lower half of jet boundary 

S^ periphery of cushion 

3- free-air entrainment periphery for recirculating jet 

3^ mean mixing length 

5^ periphery of entrainment zone 

^ time 

or diameter of orifice 

or thickness of jet 

^ thickness of jet entering cushion 

ik» thickness of jet leaving cushion 

^y0 thickness of jet passing under jet 

T jet thrust 

yt, velocity in direction of X axis 

VJL radial component of velocity 

UL axial free-stream velocity o 

VJL velocity at radius R , in "X direction 
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V 

or 

I- 
or 

velocity in direction of a axis 

circumferential component of velocity 

jet velocity 

velocity of entrained air immediatelv prior to entering iet 

resultant velocity, V* ■ VL* •♦• J"* 

frci-stream velocity 

distance along jetf dovmstream from jet 

length of potential wedge or cone 

transverse distance across jet 

complex quantity, a =QC +WS 

radius to jet center-line, measured fr;om cushion renter 

radius to nozzle center-line, measured from cushion center 

AL 

An 

total vertical area   )f upper half of jet 

effective cushion arsa 

jet  force drag 

negative lift due to oroximity of jet to ground 

incremental increase   '.n n 

pressure difference between jet and ambient 

^^^w     cushion static pressures as shown in Figure 27 

Aivj 

AT. ÜO 

basic cushion pressure 

static pressure with vortex 

total pressure in jet leaving cushion 

xii 



A^P   total pressure in cushion, measured at jet nozzle 

Ax   incremental increase in X 

•V <XTC€in (-exhausted momentum  . 
•   total nozzle momentum 

^ eddy viscosity 

8 inclination of peripheral iot 

Q) inclination of incoming jet 

61 inclination of jet leaving cushion 

coefficient of viscositv 

V kinematic viscosit" 

« distance from jet center-line to nozzle center-line 

0 density of fluid 

9 OTCSitN ^/V 

S real part of potential flow function 

'Vb imaginary part of potential flow function 

y^» complex potential flow function, uy« <^+c*^ 

^7 the Laplacian operator, 

> 

Subscripts: 

<X       denotes ambient conditions 

C       denotes conditions within cushion 

Crib    denotes critical condition 

J        denotes conditions within jet 
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JH denotes conditions at jet nozzle 

Q denotes conditions in iet leaving cushion 

or denotes initial or datum condition 

I denotes conditions after entrainment occurs 
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SUMMARY 

This  report  reviews   the existing  jet  mixing theory and the best  avail- 
able  experimental  results.     Simple  mixing equations are  developed and 
applied to the   following problems. 

The  average  total pressure  variation  is   determined as a function of 
distance along a two-dimensional jet   from the nozzle. 

The momentum  flux  change due  to a static  pressure  change  at  some ar- 
bitrary distance   from the nozzle  is  calculated. 

The  theory of induced pressure  forces  due to free-air entrainment  is 
developed,  and potential flow solutions  are given  for the  case  of a 
static  jet  issuing  from a plane wall,  a  jet  issuing into a free  stream 
from the  trailing edge  of an  aerofoil  (jet-flap propulsion)  and a stat- 
ic jet  issuing from a wedg^». 

The  generation  of  vortices  in the  cushion  region of a GLM is  shown to 
be  due to viscous  mixing,  and a method of calculating the  lift   loss 
due to this  effect   is shown to give  reasonably good agreement  with 
experiment.     Altogether,  these entrainment effects  can result   in the 
actual lift  of an  annular jet  GEM being as much as 20 per cent  lower 
than the  lift  which would be calculated using presently available 
theoretical methods, so that it is  important, obviously,  to take ac- 
count  of them in performance calculations. 

The effect of jet mixing on the central cushion pressure is also in- 
vestigated, using both "thin jet" and "layered jet" approaches. The 
traditional assumption of constant jet momentum flux is also examined 
in this section of the report, and it is shown to be considerably in 
error. Fortunately, the effect of this assumption is to underesti- 
mate cushion pressure, while the omission of mixing effects gives an 
overestimate. Since both have been neglected in most earlier treat- 
ments, the two errors tend to cancel out and the equations thus give 
roughly the right value for cushion pressure. 

The mixing equations are used to estimate the total head loss  in a re- 
circulating jet, and good agreement with experiment  is obtained.    This 
means that it is now possible to calculate the power requirements of a 
recirculating jet  GEM and to optimize  its geometry for minimum power 
loss. 

The report concludes with some experimental observations of the static 
pressure distribution in the vicinity of & two-dimensional nozzle of 
complex shape. 



SECTION  ONE 

INTRODUCTION 

1,1 The General Problem. 

Because of viscosity, a true velocity  discontinuity can never exist 
between two streams of air.     As  soon  as  an air jet emerges   from a noz- 
zle, it starts  to carry along with  it  some of the previously station- 
ary atmospheric air, and in the process  of accelerating this 
"entrained" air,  gives up some of its  own momentum.     For this  reason 
the velocity profile  of a  jet  changes  rapidly  as  it  travels  downstream 
from its nozzle,  and accelerates progressively more and more of the 
free air around it, until it  soon loses  all resemblance to a discrete 
jet. 

Also, since the   free air in the  immediate vicinity is accelerating to 
move with  the  jet, the pressure  distribution over any solid bodies 
near the  jet will be modified by the  secondary airflow,  the results of 
which may be beneficial or adverse,  depending op the nature of the 
problem. 

The best known example of this effect  is the "mixing drag" experienced 
by a jet engine  in an aircraft, the mechanism of which  is  illustrated 
in Figure  1.     Since the free air is accelerated by the  jet,  an area of 
suction is generated over the rear portions of the nacelle. 

AREA OF  LOW  STATIC  PRESSURE OVER NACELLE  DUE 
TO ACCELERATED  FLOW OF ENTRAINED  AIR 

NOMINAL JET BOUNDARY 

RESULTANT DRAG FORCE 

Figure  1.     Static Pressure  Distribution Over Rear of 
Jet Engine Nacelle Caused by Free-Air Entrainment. 
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Since the  forces caused by this suction are inclined backwards, due to 
the shape  of the nacelle, their horizontal component constitutes a drag 
which reduces  the total thrust  of the engine-nacelle  combination.     In 
this case the mixing drag forces are usually quite  small,  amounting to 
perhaps  1 or 2 per cent  of the engine thrust.     However,  it  is easy to 
see that  in the case of a long two-dimens'onal jet whose periphery 
might be ten times the periphery of the equivalent  circul-.r jet, the 
jet  drag  could amount to from 10  to 20 per cent  of the total jet  momen- 
tum  flux under the same  free-stream conditions.     Obviously,  this would 
have  a  large  effect  upon the  determination of optimum jet  thickness, 
and a significant effect  upon the calculated performance. 

Kuchemann  (Reference  1)  has  observed that  the pressure  velocity ratio 
in the region  of the nozzle exit  is  given roughly by the empirical 
equation 

CL     «4       ■   -O.OlfÄ   -A nv 
^       VätpV* w       / (1) 

where V is  the   free-stream velocity and V.      is  the   jet  velocity. 

This result  is based upon experimental observations made with a finite 
free-stream  velocity, V  ,  and  cannot,  of course, be  applied to the 
static case  of V   = 0 . 

A second effect of mixing,  and in many ways the most  important,  is the 
effect which  it has on the jet.     Until the advent of jet  flaps and 
ground effect  machines, aerodynamics was primariJ/ concerned with the 
reaction  force obtained from a jet,  or its momentum flux, neither of 
which was significantly influenced by mixing.     In  fact,  one of the fun- 
damental theorems of mixing is  that  momentum is conserved if the proc- 
ess  takes place at constant  pressure.    Total pressure  is not concerned, 
however,  so that when we are  concerned with jet characteristics some 
way downstream of its nozzle, the picture bears  little relationship to 
the same problem in inviscid  flow. 

Finally,  we have the problem that  if mixing takes place at  a pressure 
less than ambient, an increase  in momentum will be effected when ex- 
pansion to ambient occurs.    The reverse is true  if the mixing pressure 
is greater than ambient, and herein lies one explanation of the  jet 
engine pod mixing drag illustrated in Figure 1. 

These, then,  are the problems to be  investigated.     We can  obviously do 
little to prevent air being entrained in a jet and little to modify the 
suction pressure distribution which  it induces over the outer surfaces 
of the nozzle structure.     As  indicated in  Figure 2,  our target must  lie 
in obtaining an adequate quantitative understanding of the losses due 



to free-air entrainment,  so that the geometry of the nozzle can be op- 
timized to give maximum total lift. 

^NN^ 

y^rrjrf 

£SS5S 

(a)     Large Negative Lift, 
High  Cushion  Pressure 

(b)    Zero Negative Lift, 
Lower Cushion Pressure 

Figure 2.     Illustration  of the Effect  of Nozzle 
Geometry  Upon Negative  Lift Due  to Jet  Ent rainment. 

The example  in  Figure 2  illustrates a possible trade-off in negative 
lift acting on  a GEM with one  other variable which  influences total 
lift; namely,  the angle 6   at which the peripheral jets are  inclined 
inwards.     Increasing  8   increases  the cushion pressure,  all other fac- 
tors being constant, but may also increase the negative  lift component 
on the exterior of the nozzle  and the lift  loss due  to tue primary 
cushion  vortex. 

Since the  total jet momentum flux must be equal to the total reaction 
force associated with it, it  follows that "negative  lift" forces will 
reduce  the  momentum flux of the  jet  in case (a)  (in other words,  the 
"negative  lift" suction gives rise to pressure  forces which tend to in- 
hibit the  free  acceleration of the entrained air),  resulting in a re- 
duction of the  cushion pressure relative to the calculated value.     In 
general, this  indirect reduction of cushion pressure is more important 
than the actual negative  lift  forces induced around the nozzle 
structure. 

t 



1.2 Types of Jet  Flow. 

As an initial generalization,  jet flow may be divided roughly into four 
separate categories, the  Reynold's number (Re)  of a jet determining 
which category best describes  its behavior. 

Reynold's number is defined as 

a« 
Re 

where U* - the  jet velocity 

v = the kinematic  viscosity  p'/O 

j*> = the  viscosity  of the  fluid 

A = the density of the  fluid 

JC - a characteristic length, usually 
the minimum dimension across the 
jet nozzle. 

At very low velocities the  flow of a jet  is  laminar and is described by 
the Navier-Stokes equations, which are,   for two-dimensional flow, 

bt *«        *     t^ R    ^3C * J (2) 

where   V* » -2--     + -Ä— 

-  the velocities and ordinates being as  defined in Figure  3. 

The pressure term in^> can be eliminated by cross-differentiation, 
giving 

^ ^ (3) 
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Figure  3.     Fluid Element  Geometry 
Used in Deriving Equations of Motion. 

For  Re «  1 we can neglect  the  inertial terms on the  left-hand side of 
equation (2), and the resulting equations describe "creeping flow",  giv- 
ing good agreement with experimental observations.     Needless to say, 
this  is not a flow condition which has much practical application. 

Below  Reynold's numbers  in the  range 25 -  1000,  the  flow pattern of a 
jet  is  characteristically laminar and of the type illustrated in 
Figure  »♦. 



(a)     Laminar Jet  From an  Orifice     ^b)     Laminar Jet   From a Thin Tube 

Figure  U,     Typical  Laminar Flow Jets. 

A few solutions exist  for idealized laminar  jets,  but again the 
Reynold's number is so low that the results  could only be applied to 
extremely small and light model OEM's,  since  Re  =  25 - 1000  implies 
\xM.   =  •00*+ - 0.16  ft,   /sec.   at sea level.     The usefulness of laminar 
solutions  is  extended by  three considerations,  however.     At  high 
Reynold's numbers, when the  jet  is turbulent,  it  is surrounded by a 
laminar "sheath"  in the  region where the  local velocity is  less them 
half the maximum jet  velocity.    Secondly,  it  is  (theoretically) pos- 
sible to assume an effective "ed y-viscosity"  coefficient which permits 
turbulent flow to be represented oy the Wavier-Stokes equations.     The 
"eddy-viscosity" has a much  larger value than the  true  (laminar flow) 
viscosity and is not  a  linear function of shear velocity gradient,  so 
that its usefulness is very  limited. 

Finally, it is  found that  the mixing process  in a basically turbulent 
jet  may be laminar for a short distance downstream of its nozzle, so 
that  laminar theory may be applied in this area. 

Returning to our description of jet  characteristics as a function of 
Reynold's number, we have seen that  the creeping flow which occurs  at 
very low values of Re becomes  laminar as Re increases.     A further in- 
crease to the region 100 < Re < 6000 causes the  jet to become "ragged" 
and periodic,  as  illustrated in Figure  5. 



Figure  5.     Periodic Jet Structure  in the 
"Transition"  Reynold's Number Region, 

Since the  transition  Reynold's  number region corresponds to the range 
.016 ^<x£ ^ 0.375,  it  is  easy  to see that small models could experience 
this phenomenon.     If the exit  of a peripheral jet were  1/8 of an  inch 
wide,  for example,  the  jet  velocity would have  to be  about  36.0  ft./sec. 
to insure  that periodic  jet  flow did not occur, which would correspond 
to a cushion pressure o^ 1.0 -  1.5  lb./ft.2    Thus,  very lightly loaded 
models  could experience  scale  effects which would make their performance 
quite different than that  of geometrically similar but  larger models. 

The  "super-critical"  Reynold's number region starts  at  Re ^S 6000 and 
is  of course the region of interest in most practical applications. 
For a two-dimensional jet, the  flow picture is  roughly as indicated in 
Figure 6. 

It  should be noted that  there  are two distinct   flow  regimes and that 
the theoretical analysis  is quite different in each regime.     It should 
also be  noted, as mentioned previously,  that  laminar entrainment may 
occur in the immediate  vicinity of the  nozzle exit plane, as indicated 
in  Figure 6. 
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MIXING MAY BE 
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3C0   Ä5 5.\t- ZONE OF ESTABLISH 
FLOW 

(•The length of the potential wedge  [or cone,   for a circular jet] 
varies  with Reynold's number and the turbulence in  the initial jet.) 

Figure 6.     Approximate   Flow Picture   for a Turbulent Jet, 



1.3 Dimensional Properties of Two-Dimensional Jets. 

For flows nearly parallel to the x-axis  (VT  an order of magnitude  less 
than  \JL t say) we can simplify the llavier-Stokes equations  (2) to 
Prandtl's approximate  boundary layer equations: 

-bat      ^ 

- -1  2*  *t.t± 
(H) 

»0 

9  4 
VT 

Figure  7.     Ordinates for a Two-üimensional Jet. 

The pressure«^ is a function of the external flow field and is there- 
fore assumed to be known. If^ is constant, it may be shown that the 
momentum integral 

/. 

400 

constant (5) 

- for any value of x. 

We also have to assume that the velocity profile  in a jet  is geometri- 
cally everywhere the same  (the similarity hypothesis)  for any value of 
x.     Thus, we can write the  following equality,  using the methods  of di- 
mensional analysis,   for a jet  from an infinitely thin slot: 

^UlVj)   «x    S^«^) (6) 

10 



In order for this solution to satisfy equation (5), 2*^ =^, In order 
to satisfy equation (4), 2Q-p= 1. Thus, equation (6) can be written 
more explicitely  as 

u»** SCb/x*0 (7) 

- for a  laminar jet.     Substituting  this result  into equation 
(4). 

- where OL is   indeterminate,  corresponding to the angle  of 
spread of the  jet.     By adjusting (OL)   to fit  experimental results  and 
by putting the  origin  of the  coordinates  upstream of the  jet  exit 
plane, equation   (8)   is   found to give  good agreement  with practice. 

For a turbulent  plane   jet  from an  infinitely  thin slot,  equations   (»♦) 
and (5)  are  still applicable  if fov)*/$ we substitute  the  fictitious 
scalar "eddy  viscosity"^ in equation  (4).     It  can be shown that 
2^  = ^ ,  as before,   for   constant  momentum,   and ^ =   1 for the  conven- 
tional postulation  of eddy viscosity.     Thus 

(8) 

u » x * S (y/*0 (9) 

-  for a turbulent  jet,  the  "angle of Spread"  again being in- 
determinate.     Note that  the mass  flow varies  as Jjc   for a turbulent 
jet,  so that the   fluid around it  is  entrained into the  jet  as  if by a 
nonuniform line  of half-sinks. 

Equation  (9)  applies to the  flow from an "infinitely thin"  slot,  so 
that it obviously relates to the zone of established flow in  Figure 6. 

It is possible to calculate the  velocity distribution within  the  jet, 
for both zones  of Figure 6,  in terms of the eddy viscosity ^ or 
Prandtl's "mixing length" concept  (References  7 and 8)  and then to 
determine the  value which gives best agreement with experimental obser- 
vations.     Such a procedure results in a velocity distribution, with re- 
spect to y , which closely approximates  a normal (Gaussian)  probability 
density function,  so that it is  often more convenient to use the  latter. 
It should be emphasized that whatever the  methods  used to attack  the 
problem of turbulent  jets theoretically, we  always end up with a con- 
stant which must  be determined by comparison with experiment.     Thus  for 
practical engineering results we  may as well  confine  our theoretical 
analysis to those steps necessary to determine the important  variables. 

11 



such as equation  (9),  and then determine  the appropriate coefficients 
from experiment. 

If this procedure  is  followed with the  assumption of a Gaussian veloc- 
ity  distribution,  we  obtain the  results 

4 

- —^   e~**f^ (x>0 (ID 

-  where  C|  is  the  arbitrary  constant  which must  be determined 
from experiment.     In  Reference  6,   the  value 

Cj   =     0.109 (12) 

has been  determined, based upon 3C#/^=   5.2,   a  result which will vary 
somewhat with both   Reynold's number and the   turbulence  of the  initial 
jet.     Using  this  value.   Reference  6  gives 

(13) 

(1*+) 

These results are  shown  in Reference 6  to be  in good agreement with ex- 
periment, and for our present purposes there   is hardly any point  in  at- 
tempting to derive  more  sophisticated expressions or in attempting to 
predict the variations with Reynold's number and initial turbulence. 

However,  the excellence  of the experiments reported in Reference 6 
should not be allowed to blind us  to the  fact  that they are  very incom- 
plete,  even   for the   static case. 

12 



(a) (b) (c) 

Figure   8.     Effect of Nozzle  Shape  on Lntrainment  Pattern. 

Referring to Figure  8, the  Reference  6 measurements  correspond to case 
(a)  and for a  limited range  of Reynold's  numbers  only.     It  is  known 
that  the entrainment details are  influenced by both the  Reynold's num- 
ber and the  initial jet turbulence.     In addition,  it  is  reasonable to 
suppose that nozzle profiles of the  types sketched in Figure  8 (b) and 
(c) will significantly influence  the entrainment pattern.     Indeed, the 
tests reported in  Section  Five of this report show that  the apparent 
entrainment  close  to the nozzle  is an order of magnitude  greater than 
the values given  in Reference 6. 

In addition to this, the experiments  are confined to the  static case. 
Although we can postulate corrections  for motion of the ambient air, 
there  is a great need for experimental investigations in this  area. 

1.*+ Entrainment in a Two-Dimensional Static Jet. 

By integrating equations (10) and (11) with respect to 3 and substi- 
tuting equation (12) for C| • we find that the mass flow at any posi- 
tion X is, in relation to the mass flow of the basic jet. 

• m X 
=     1  +  0.08   — («<   «0 

m, t 

-     0.62]» (x> *.) 

(15) 

(16) 
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We define the mass  of entrained air as tt^ = hlH.»  so that 

m, 
Thus, T> =     .08   i 

(n*0 or   n   = (41 -0 

(17) 

.     0.62 jfT I (X > 3C0^ 

and the entrainment per unit  Cx/'t ) 

din 

dWO 
.08 

0.31 

(x <*•) 
(18) 

These results are plotted in Figures 9  and 10.     It  is  interesting to 
note that  the value of dtv'dC*^1^ is  constant  for 3C K,    5.2, which is 
the  region of greatest interest  for most GEM applications. 

n o 
4-» 
O 

4-» 

•M 
c 

ZONE OF 
ESTABLISHED  FLOW 

ZONE OF FLOW 
ESTABLISHMENT 

Figure 9. 
«V     9ft/« 

Variation of Entrainment  Ratio h  With X 
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Figure  10.     Variation  of Entrainment   Function 
Derivative <in/d(x/t) With X/k . 

In  fact,  for many applications,  we  can  obviously take 

dn 
d(ac/t) 

.08 (19) 

- as  a universal constant. 

These  values  are much  larger than  those assumed by  Chaplin in Reference 
17, which  are 

n =   o , 
dn 

d(ac/t) 
=   o (for 25  <    5.0) 

J5 *       } * 
dLr> 

dCac/t) 
0.» (forS   >     5.0) 

1.5 Entrainment   in a Jet  With  an  Axial  Free-Stream  Flow Field. 

When a jet exhausts into an axial  free-stream (Ü0 ), we  assume,  follow- 
ing a suggestion made by Kuchemann  in Reference  1,   that  the rate  of 
mi xing is proportional to the shear velocity  ( IX — Ü0    ) 
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This amounts to multiplying the x-ordinates by th«  factor 

ur» I 
(20) 

so that the entrainment  functions become,  from equations (17) 
and (18) 

n -   ^(^)(i-^) (x < «•) 

(21) 

0.62 fO-^)-i    c«>x-1 

d(3C/t) ■••('-I) 
0.31    /.       Üo\ 

<X < Xo) 

(X > Ä.^ 

(22) 

Kuchemann's   hypothesis   is  obviously  limited to the   consideration of 
entrainment   in the vicinity of the nozzle if we  take "M^   to be the 
nozzle  velocity; otherwise equations  (21) would give  infinite entrain- 
ment   as   "X   ■    »ttO resulting  in  infinite  jet  drag.     The   actual entrain- 
ment   at  infinity can be  obtained by assuming "VJ^ to be the  local value, 
and substituting 

(X > x0) 

-  into equation  (22)   and solving the resulting differential 
equation. 

1.6 Entrainment  in a Jet  With a Normal Free-Stream Flow Field. 

Because  of the existence of the  jet, a transverse  flow field, as such, 
cannot  occur across  it.     Instead,  an initially normal airflow (of 
velocity U0)  will be arrested by the  jet  (resulting  in a  local static 
pressure  differential of &|> = ^K £ U^   ) or will be deflected by the  jet 
in  a manner which will depend upon  the strength and size  of the jet 
and the boundary conditions. 
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Since the pressure rise A|>   associated with stagnation of the free- 
stream flow will also be transmitted to the jet, there  is no reason to 
expect that entrainment will be greater than for the static case,  at 
least until the pressure becomes  large enough  for the fluid to be com- 
pressed.     However,  it is obviously desirable to obtain experimental 
verification for this hypothesis as soon as possible. 

1.7 Total Pressure Loss  Due to Static Mixing. 

At  constant static pressure, momentum remains  constant along a jet,  so 
that 

^ jf*1' dK =  constant (23) 

If we define m as the mass flow of a jet, 

that is, m = O f adfc = $ (x) 

- then the mean jet velocity \f is defined by 

«00 
»no* = OMJ    adA 

(2U) 

.f.      y# or d A m# IT, or vT    5 =        • w* (25) 

^udLA * 

The mean total head in the -jet is therefore 

(26) 
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Thus the dynamic head in the jet  is a unique  function of (ac|t»). 

i 

(\ 4 .0%ÄA)* 

I 

(x  <   *•) 

(X> Xo> 

(27) 

This equation is plotted in Figure 11. 

1.8 Momentum Change   Due to a Static Pressure  Change, 

The momentum at any point  in a  jet is defined by 

„ .JTTi^)- (28) 

- when (J and x   are  the  mean velocity  and mean  total head defined 
in the previous section. 

No«                  ?    =   1>   +(^<V, '    ^. t«)                                                           <29) 

A=(A)** sSl^                           <30) 

At   the initial (jet) pressure^ 

«ntf =   m, v, öD 

T = t. +(|rf 1. (32) 
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Figure  11.     Ratio of Dynamic  Pressure ^ in Jet To 
Initial Value O      As A Function of Jet  Length. 
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When the static pressure changes suddenly to to , at a plane In (S%^)» 
the velocity changes suddenly also and becomes 

(35) 

(36) 

The momentum flux after the pressure change is 

Obviously if ^>#y^. there will be a gain in momentum flux across the 
static pressure discontinuity, and a loss if ^ ^"^i • 

It is also of interest to express the momentum flux in relation to the 
value obtained if the jet pressure were ambient (^>^)*  This can be 
done by assuming either constant mass flow or constant total head at 
the nozzle. 

When the nozzle mass flow is independent of nozzle static pressure, 
equation (36) obviously still applies. 

When the nozzle total pressure is the constant quantity with respect to 
nozzle static pressure 

(37) 
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It = (Jh - **)     + ) (40) 
3,     %« 

so that    = —   -H JIB v"*> '  Cti) 

In the special case when^ =^LL , 

(«♦2) 

Obviously  7| ^ Ja, so long as the jet entrainment term ( 4)/&« ) is 
finite and ^0 } ^a.  Thus we can summarize by saying that momentum 
flux is always increased when a jet passes into a reduced static pres- 
sure field, and that jet mixing actually increases the gain because of 
the increase in mass flow which it contributes« 

1.9    Momentum Flux of Entrained Air. 

Continuing the gross analysis of the two preceding sections, it is of 
interest to calculate the gross momentum flux of the entrained air. 
Since from equation (25), 

iVf. » mir « •^(»♦M^]^ CU3) 

- the entrained air momentum flux 

3^ « n m.!!"  •  n ^(^j ^ 

and —   s —  (»♦*♦) 
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The momentum flux of the air entrained on one side of the jet only (as 
in the cushion vortex problem) is, of course, half the value given by 
equat ,n (UU). 
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SECTION TWO 

INDUCED  FORCES  DUE  TO  FREE-AIR ENTRAINMENT 

We may represent  the entrainment  of air in a jet by a uniform half- 
line  of sinks,  the  streamlines 
associated with which are as 
sketched in  Figure  12.     Since 
any streamline may be replaced 
by d solid boundary  (such as 
the arbitrarily selected line 
x - o - x in  Figure   12), we 
can calculate the pressure 
distribution at such a bound- 
ary.     Moreover, we can apply 
our results to any  jet  thick- 
ness simply by separating and 
rotating the two halves of 
Figure 12,  as shown  in  Figure 
13.     The rotation is  necessary 
to allow for the increasing 
mass flow and diffusion of the 
most generally have a fairly 
small effect  on the  resulting 
pressure distribution. 

A limit solution is provided 
by the  case of a two- 
dimensional jet issuing from 
a plane wall,  as indicated 
in  Figure  1U.     In this case 
the streamlines into the jet 
are all parallel, and the 
velocity is numerically 
equal to half the magnitude 
of the sink. 
^A ft.3/ft.53ec. 

Figure  13.     Simulation of a Thick Jet. 

Figure  12.    Half-Line of Sinks, 

jet as x increases, of course, but will 
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Li 
-• 

Figure  lU.    Two-Dimensional Jet 
Issuing From a Plane Wail. 

The static pressure  on the wall is therefore given by 

or At» = - 5 ^ va   = -5?(?y 
Thus the Mjet drag" force is 

-AF^p^ MaJa    = JeMaY 

-  ,>er unit  width. 

(»♦5) 

(46) 

Now the sink magnitude  is related to the entrainment  function  (l>   ) by 
the equation 

tA A*- i yf dn 

(so that   —    = —   -. TTTTTS   ^ 

j 

d (*/t,) K, W) 
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The jet thrust per unit length is 

1 ^tv: 
(«♦8) 

Thus the ratio of jet drag to thrust is 

" V It") (d(^ä)J (u9) 

If we  use the approximation <lt%/cl(3CAj^  =   .08 [from equation  (19)] 

-AF . 00»6 m (50) 

Thus if >(   =^ , the  loss is  very much less  than 1 per cent. 

We can extend this simple case to include  the influence of a free- 
stream velocity Um  »  as shown in Figure  15  for the case of a jet issu- 
ing from a semi-infinite wedge. 

TfT ^ 

Figure  15.     Two-Dimensional Jet  From a Wedge 
in a Free-Stream Flow of Velocity LL  ä V/V 
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The  resultant  velocity is given by 

Va » U* + vs 
(51) 

and the wedge  half-angle by 

Vlo (52) 

This analogy   is  very  limited,  however,  in  that,  since IT is  a  function 
of ("\l\ — 0«   ), we  can  only  obtain a solution  for one particular value 
of U©  for a given wedge 
angle.     However,   it  is 
of value  in enabling us 
to predict  the  more 
general effect of a 
free-stream velocity, 
using the  following 
reasoning.     When no 
mixing takes place, 
the  flow picture   is  as 
shown in  Figure  15 
with a relatively high 
static pressure  at   the 
trailing edge.     When 
mixing takes place,  on 
the other hand, the 
air at the trailing 
edge  is turned through 
a smaller angle 0- ^   , 
where sin<^  = ^/V  »  so Figure  16.     Flow  Off a Wedge 
that the trailing edge When Ao Jet Mixing Occurs. 
static pressur*:   is   less, 
resulting in  an  apparent  increase  in drag due to mixing. 
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2.1 Potential Flow Solution to the Jet Drag Problem. 

CIRCLES  OF CONSTANT 
ABSOLUTE  VELOCITY 

/'i/'x'J^>/'/'!/^/x»^^ sJ 

Figure  17.     Flow  in an  Obtuse Angle. 

The potential  flow function  in  Figure   17 is 

(J^- n 
On polar coordinates, writing   ^. . re1* 

U9-      »   JSL r     (coo n ^ 4- JL $JW\ ^^ 

giving    (p a r1 

o^r1 

CPO n ^ 

AJ^   TV 

fcif 

? 

(53) 

(5«+) 

(55) 

(56) 

For'^r= 0,  sinn^=  0,^ = ü  (^ =  0,  1, 2...) 

Thus, one boundary is given by the straight  line  at <p =  0,  the second 
at <p = "V/ix . 
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That is,   6=    IT-^P      •    TT(\-'^") 

so that     n »       i  (57) 
\   -   «/-IT 

The  radial and circumferential velocity components are 

r     ^9 

- so that the resultant velocity 

- which from equation (56) is 

Thus, the  absolute velocity is  a function only ofr ,  andV   ^00as 

Since 

(58) 

* '%-i:^A 

or "^ 'i^* s -a? a* rA(n"0 <59> 

-  the pressure distribution  is known. 

Let  us define the  velocity at some radius R as 

n-i ^   .   aR (60) 
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Then CL    =    —=- 

c-"/ 5^   U* 

= R r     !       s_ i 
lan +a<in-( ar>-t J 

and since ^nis  small 

Since 

An tan- 
■f 

„   3 601 

c^ 
- c ^n dr 

-ÄAti 

Y\ 
\- •/ir     ' 

— 1 s 
> •»• •/ir 

^ -•/I. 

(61) 

A small increase ÜT\ in T> will give 

Integrating between 0 and  R 

(63) 

(6U) 

(65) 
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Also h ♦ ^n ■ ; —•—=—-   s     + ;—r—r. 

a^n         •aVw 
<an-o*       (» +9M* 

-  if ^/n is small in relation to (1 - */rt ).    The change  in 
drag due to the small angular change is of course   CAp   Sm 9. 

The  small angular change & is  given by 

(66) 

(67) 

But ir    -   -vf ^^ (from equation 17) v -- v, 

OU IT   O"""   •     I       (from equation 22) 

(68) 

Thus r s -01 IÄ  -» \ (69) 

- which has the same form as Kuchemann's static pressure equa- 
tion given as equation (1). The actual force decrement in the direc- 
tion of jet thrust is 
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and since the  jet  thrust  is   Itv IT   « O t tT^ 

Sm© (70) 

^ = ►(^(^(Ä-1) (71) 

uh 1U IC                0* i T) \ 

iT(i + e/ii) 
K 12) 

For     8    =    10°                20°                 30° 
K   =     .0228            .0206            .0187 

H0o 

.0170 
50° 
.0156 

^exrä" K    = R«\n6 ,  as shown  in Figure   18. 

IIIIIMIMIIJI MHHX 1 

\     w 

/// mrrrrnp 
iiiiiiijrmiy 

.^5 

mi - ■] 

v». 
Figure 18.  Definition of Geometry and 
Sketch of Velocity Ratio Function. 
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In Kuchemann's empirical equation   (1),  if the pressure  change ^^p is 
assumed to react over the entire rear end of the nozzle  structure, then 
the  coefficient K -   »01.     This difference  is explainable on the basis 
of boundary   layer effects,   in that  entrainment  will tend to reduce  the 
momentum thickness  of the boundary  layer. 

2.2 Momentum Loss  Under Static  Conditions. 

We have  already obtained a solution  for the  limit  case  of Figure   IH, 
and we  now proceed to the more  general case depicted in  Figure  19. 

Figure  19.     Two-Dimensional Static 
Jet  Issuing From a Wedge. 

Although,  as indicated in Figures  12 and 13,  this class     : problem is 
amenable to a potential flow solution, our uncertainty us  to the en- 
trainment   function, and the  relatively small forces generated [as ev- 
idenced by equation (50)] would seem to render such sophistication out 
of place.     In other words,  although we have measured entrainment func- 
tions available  for the case illustrated in Figure  m, we have arbi- 
trarily to assume that these are  also true for the case of Figure 19. 
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Ignoring boundary layer effects, the air moving next to the wedge wall, 
with a velocity'Vf»  is  entrained in the  length ^3C   of the  jet  imnedi- 
ately  following the nozzle  exit plane.     From equation  (17)   the mass  of 
this  flow is 

nm0 - .ov   ^p S (73) 

The thickness of this  layer  is AXSWxO  at the jet so that  for conti- 
nuity of mass flow 

■V&     _ «Oi» (7U) 

- where \r^ i«5 the velocity immediately prior to entering the 
jet. At some distance away from the jet If ^ 1% , of course, because 
of the  assumed flow pattern  sketched in  Figure 19. 

If we  ignore this, however,  the local pressure differential will be 

Af, -  -^V* (75) 

and the resultant horizontal force (on two wedge surfaces)  is 

since    T.    Ä  P* ^5 

-AF .ooic (h/t) 
Y S     Sm* e (76) 

- which agrees with equation (50) for 6 * ^/QL 
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In general, because of the acceleration of the entrained flow, equation 
(26) should usually result in an overestimate for large values of \\/t, 
when the exterior jet surface is (relatively) plane. As shown in Sec- 
tion Five, however, discontinuities in the nozzle surface can result in 
much higher values of &^ than would be calculated from equation (76) 
if 0 were measured close to the jet. A great deal more work remains to 
be  done before this  aspect can be clarified. 

2.3 Discussion of Thrust  Loss in an Axial Stream. 

The  greatest thrust  loss   in axial flow is seen  to occur whenUft-^XT) , 
the  condition for maximum propulsive efficiency.     In this condition. 

for  K    =  "t    ,     —   =0.5 
"5 

per cent 

for K   = S-b , 

- results which indicate that tu%i effect is small.     In the case 
of a jet-flapped wing,  however, particularly  if the   jet flap is par- 
tially deflected,  the  results  of mixing can be very much more severe. 

Under static conditions,   the theory of Section  2.2 predicts a generally 
greater thrust loss than  for the case of axial flow,  rising to as high 
as  5 per cent for 9   -  10° and   h/t.    =  1.0  (Figure 20).    These high 
values are by no means unreasonable, a static  thrust  loss of 5 per cent 
having been reported in at  least one jet-flapped wing experiment. 
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In addition, while we  should not  lose  "ight  of the essentially heuris- 
tic arguments applied to the calculation  of static thrust  loss,  partic- 
ularly the  assumption  of constant  velocity over the nozzle fairing,  it 
should be borne  in mind that this  is  a fair representation of a flow 
picture which occurs  in many practical cases,  due to the proximity  of 
the ground,  as  illustrated in Figure  21. 

Figure  21.    External Induced Air-Flow, 

In  such cases, the  "negative  lift"  can be assumed to be approximately 

A L = -? tk^   sm-v)^ 

or 

-   .0003 

=   -   .0008 /1\    t 
U J   S 

t\r> 

SVnae 
(e » o.\) 

(77) 

(78) 

-    the  limit  on 9 being arbitrary. 
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2.U    Vorticity Induced in the Cushion Region of a GEM. 

vvw \ \ \ \ \ \ \ ^ \ x x \y h r 

*%. 

i 
Figure  22.     Geometry  of Primary  Cushion Vortex. 

We assume  that the  vis ;ou3 shear between  the  cushion  air and an annular 
jet  generates  a vortex of momentum flux  %J1   t  as  shown in  Figure 22. 

Then     £^k       =    3.    (\^S,me) (79) 

and for zero energy  loss  in the  vertex 

But 6t,-^i» (80) 

M>,        * ^      « 

or 
^  =^|-    (l4S\nO) 

(81) 

In order to predict  the  loss  of  lift   occasioned by this  effect,  we 
need to know the  ratio ^\l^   and the  cushion area covered by the  vor- 
tex.     Referring to  Figure 23, we see  that  we can logically expect  the 
entrainment   in  region  A to be the  value  associated with entrainment  of 
stationary atmosphere  in a jet.     In  region b, however,  the entrainment 
will oe  less than  for a stationary atmosphere, because of the effect 
postulated in Section  1.5 of this  report,  occasioned by vortex rotation. 
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Figure  23.     Geometry  of Vortex Eatrainment. 

If the  vortex  is   relatively weak,   the entrainment  ratio  for stationary 
air may be  an  acceptable average  to the  complex entrainment picture ac- 
tually occurring. 

Tho   Length  of the   inner surface  of  the   jet  is   -efined by  geometrical 
considerations,   as  indicated in  Figure  2U. 

The  circumference  of the 
upper section  is 

S^ =   Br (82) 

Now Vi = ^(n-sme) 

.'• r =      - .   ^      (83) 
\ + si* e 

w^ is defined as  shown, 
being 

S^   =   r ^ (8U) 

Figure 2U.  Geometry of 
Inner Jet Boundary. 
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where   Sm S =   —   -  Slh 9 — x      r i|.r 

=    3/4 -(i/u)sm9 (85) 

Thus  the  effective  jet  length  is 

-  a relationship plotted  in   Figure  25.     Obviously,   it  is  suffi- 
ciently  accurate to write 

S,4Sa   - kV> 

(87) 

where   fe   Ätf  0. SÄ 

Frcrri equation   (HU)  the  momentLÜrT fJux  of the  vortex  is 

A.   =  ** 
From equations (17) and (87) 

X\     =      .08 x 0.82 —• 

so that — =  21— 

-  a relationship which  is plotted in   Figure  26, 

Substituting equation  (90)  in equation  (81), 

A-^    s .0656 Vt  

A^ \ + .0656 KA  (\+ Sm •) 

(88) 

(89) 

(90) 

(91) 

. .0654 
=    I -      (92) 

X 4-.0656 O^S'mO) 
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Figure  25.    Effective Jet Mixing Length in Cushion. 
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HOVER HEIGHT RATIO *V^ • 

Figure 26.  Ratio of Momentum Flux in the Primary 
Cushion Vorte ■ To That of the Jet. 
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where i (»-»-1 \t> e) 
h   x 

In-bcard cf  the primary  cushior*  vertex will be   a secondary vortex,  as 
shown  in Figure 27. 

.\\\\\ \\ \ \\\ \ \ \ WWW 

h br+Z 

i 
>* 

t— 
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Figure  27.     Geometry  of  Secondary  Cushion  Vortex. 

Makir.g  the   same  assumptions   as  before, 

-3L »-in. (93) 

but     A^ =   ^p0 

3tJa 
K 

aJi 

h 

I- ^      C^^n«) 

= , ^ (if _A_ (9U) 

Equations   (91)  and  (91)   are  plotted in  Figure   28,  where   it  is seen that 
the  influence  cf the  secondary  vortex is quite   small. 
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Figure 28. Static Pressure in Cushion Vortices As A Ratio 
of Basic Cushion Pressure. (No Momentum Loss). 
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It should be noted that the theoretical pressure distribution will be 
similar to Figure 29, 
if the cushion vortex 
hypothesis is valid, 
so that pressure meas- 
urement with a limited 
number of static pres- 
sure taps may give mis- 
leading results.    A 
measurement at (A) 
would give too high a 
reading, and at  (B) 
too low a reading. 

It  is important to note, 
however, that the total 
lift will not be in- 
fluenced by vortex flow 
if it has zero loss and 
•if the vortices are 
"square", because the 
vertical momentum is 
equal to the horizon- 
tal momentum. 

•-v 
Figure 29.    Theoretical Static Pres- 
sure Distribution Under a GEM. 

If we assume  100 per cent 
momentum loss, the horizontal momentum flux is 7|   instead of 2 71    so 
that th^ pressure decrements are half the values given by equations 
(91) and (9»0, and the lift loss would be approximately the value to be 
expected from this decrement. 

In practice the pressure distribution is not so regular as that 
in Figure 29, and tends 
to be of the type 
sketched in Figure 30. 
By assuming a rectangu- 
lar primary vortex we 
can obtain an average 
value for&^j .    Some 
experimental results 
averaged in this manner 
are compared with 
theory in Figure 31. 

I 
/ 

sketched 

h 

Figure 30.    Idealization of Actual 
Cushion Pressure Distribution. 
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PREFERENCE II (UNCORRECTED) 0 REFERENCE 10 

Figure 31. Calculated Vortex Pressure Compared 
With Experiments Reported in Reference 10. 
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Although there is apparently a great deal of scatter, particularly at 
low lift ratios, the general trends seem to be in fair agreement. 
Moreover, there are so many practical difficulties in experimental work 
of this type that it is unsafe to place too much reliance upon the ex- 
perimental measurements.    For example, the cushion pressure, measured 
at the center of the rig, is plotted in Figure 32 for the Reference 11 
experiments.    We know from experience that layered jet theory always 
gives good agreement with theory under these conditions, so that cush- 
ion air leakage must be occurring, to give the effect analyzed in 
Reference 12.    This  is a very common problem with two-dimensional test 
rigs, although it is also possible that AT^ is measured some distance 
upstream of the nozzle and that significant losses occur after the meas- 
uring station. 

In either case, we can correct the Reference 11 measurements of ftfe. by 
ratioing the decrement by the values of theory to experiment in Figure 
32.    The results of such a correction are plotted in Figure 33, and the 
agreement between theory and experiment is now obviously much better 
than in Figure 31.    The fact that the measured A«^,    is less than the 
theoretical value at large lift values is explainable by the fact that 
we have used equation (15) throughout to calculate entrainment, rather 
than equations  (15) and (16) together. 

We conclude, tentatively, that the primary vortex pressure decrement 
can be assumed to act over a distance (K )  in from the nozzle, where 
K is the hover height, and that the value given by equation (91) 

should be used. 
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Figure 32.    Measured Cushion Pressure From 
Reference 11 Compared With Theory 6   =0. 
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Figure 33.    Reference 11 Vortex Pressure Data 
Corrected For Test Rig Leakage   0=0, 
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2.5   Tht Effect of Raiting the Cushion Volume. 

If the height of the 
cushion (H-| ) Is 
greater than the 
height of the jet 
nozzle (hi ), then 
equation (81) becomes 

s i— 2i Jj« (9U) 

Indicating that the 
vortex pressure 
decrement Is reduced 
by the factor h,/^ . 
Thus, Increasing the cushion 
Ion vortlclty If the present 

11 tlllltlltttUt it tJJ* 

Figure 31. Increased Cushion Volume. 

volume reduces the lift loss due to cush- 
assumptlons are correct. 

2.6 Loss of Cushion Lift Due to Cushion Vortex Flow. 

We are now In a posi- 
tion to calculate the 
loss of lift due to 
cushion vortlclty, 
since we assume equa- 
tion (91) to act over 
a distance h In from 
the nozzle.    For a 
rectangular cushion 
planform, as shown r- 
In Figure 35, the £ 
normal cushion area t_ 
is 

A    s  OlD Figure 35.    Rectangular Cushion Planform. 

The area over which the reduced pressure acts is 

3 ak(0L + b-aK) (95) 
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The cushion lift Is 

_L.   ..^n.^n (96) 
&1.tAe      '    A,   U   M»J 

Substituting equation (91) for 

^e Ae ^j + .o«5e{^] (»+t\n e) 

For a circular cushion planform, of diameter3) 

Ae   ' Hi* 

The ratio 4tc/^Ac ia plotted in Figure 36 for a circular planfonn 
for 6 = 30°.    Since the theory can only apply if 

we have a limitation 

JL X; —!— (99) 

- the equality representing the entire cushion filled by the 
primary vortex.    Naturally, we cannot expect this to occur in practice 
because of the rapid acceleration of the vortex air which would be re- 
quired near the center of the cushion.   Thus the cut-off value of U/* 
will be less than that indicated in Figure 36. 

(98) 
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Figure 36. Loss of Cushion Lift Due to Primary 
Vortex - Circular Planform, 8 ■ 30°. 
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Very often, as shown in Figure 37, an annular jet is thick enough for 
viscous mixing to have very little effect upon the total lift of the 
vehicle. 

2.7 The Existence of Cushion Vorteces. 

Whether or not a vortex pattern is set up in the cushion will presum- 
ably depend upon three-dimensional flow effects which are beyond the 
scope of this investigation.    When more refined analyses of this flow 
are carried out, we can expect to discover parameters which will indi- 
cate whether a vortex can exist. 

Even when no vortex exists, however, we can expect entrainment of the 
cushion air to occur, resulting in a net momentum loss and hence a re- 
duction in cushion pressure. 
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Figure 37. Model Data for Total 
Lift Compared With Theory. 
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SECTION THREE 

MIXING LOSSES  IN AN ANNULAR JET 

In this section we shall attempt to solve the familiar problem of the 
cushion pressure generated by an annular jet, but with the effects of 
mixing included. 

We shall also eliminate another approximation; namely, the familiar one 
that the horizontal momentum flux is Jj (I ^ »in eJ) . In fact, referring 
to Figure 38, the horizontal momentum flux is 

TJM  sin 6   4- T^ (100) 

where 3rJ.>T; JN 

- because the mean static pressure of the jet is lower after it 
strikes the ground. 

3,1 Thin Jet Theory. 

SNNSNVSVSW 

1L 

\VVVA^\^^\\\\\^V\V^^^ 

Figure 38. Basic Geometry. 
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From Figure 38 the effective mixing length of the outside of the jet is 
approximately 

s   = r/^ 4- e) doi) 

where     S- h«  Y^l^ne) 

Writing Swb because of entrainment 

V    =   h"b (102) 

and S    =    (!^i±^ (103) 

The mean mixing length is the average of this and equation (87), 

that is, §0.   = 0.U1 + V'"»wVX'*'   / (10U) 

The relationship £(•) is plotted in Figure 39, and we can obviously take 
a mean value of £(*i)= 1.44 

so that §2 = 0.U1 + 0.72 (1 -£-) (105) 
h h 

- as plotted in Figure 40. 

From equations (17) and (27) 

m6-   =  1 +  .04L22L¥_I1.\ (106) im 
Ä.     =        I ;       , (107) 

V     [U.o.(^X-f)]' 
Also   T^      . m^ ■^1(6""'-Mt-)'- "" 
But     *** •   T"^ +  Tf^i- (109) 
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Figure 39.    Plot offc* )  = (| +•  )/(l + Sin •  ) Against • 

Figure 40.    Mean Mixing Length Ratio t^Jh To 
Point Where Jet Static Pressure is Ambient. 
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Substituting for    ü^^ 

vM 

J       2 AfJM - Afe 

Thus the total horizontal momentum flux gives 

(Mt)>'- where /   "'Jg   \   -U*-\ >     1.0 

(110) 

^   - J^ + ^(^-) 

(112) 

(113) 

^ • "at' <%&%:)] 
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From «quation (109) 

?fc^ 

48. 

hftpv son» maoipulation, this rtducti to 

Khw« 
^ 

^!^W 
4 tin* 

^  »fU.e* .-^ 

and of oourt«   Jilt ■ I 

(115) 

(116) 

C107) 

^Ä  m   0.4I   H-   0*1*(|-^) (10S) 
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This equation Is plotted In Figure 41 for 0 > 60° and Is seen to give 
slightly more cushion pressure than sisple thin jet theory for 
Si  <   3 and rather less for *W >    4»   ?n other words, at low hover 
heights 5^ > %n because the mean jet pressure is greater thin ambient 
prior to striking the ground.    At higher heights this is more than off- 
set by the loss of momentum flux due to entrainment of cushion air* 

3.2 Layered Jet Theory, 

The effect of e^triinroent of cushion air is already incorporated in 
layered jet theory, as given in Refersnoe 19, for example.   Thus the 
only additional factor which needs to be incorporated if the aooelera- 
tlon of the air due to   %. > 3^       ,   Although it is obviously pos- 
sible to carry out a detailed analysis of thee« effects, the equations 
are so complicated that more useful results are obtained by devising an 
expression for the mor itum ratio (sin^ ) from the thin jet theory of 
the previous section.      ie obvious rationale for this procedure is, of 
course, that mixing only becomes iaportant for the larger values of 
^        where thin jet taeory is, in any case, adequate« 

Layered jet theory (Reference 12) gives 

-1x 

where       X    = ^ (^ «*   ♦'***£) 

and sin «4 Is the ratio of the exhausted momentum to the total aoesle 
momentum. In ten» of Figure 38, 

Sin «A  * I* ai8) 

- since the vortex air recirculates and does not reduge 4% 9* 
such.    Thus, from equation (108), ^ 

tin *    s £m~ -Snu- ttl9) 
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Figure *+!.    Comparison of Cushion 
Pressure Theories For 6 = 60°. 

60 



- and from equations (106) and (113), 

&im o( 

2 &M - *% 
(120) 

If this is substituted into equation (117), it is obviously impossible 
to solve explicitly.    Obviously, it is most convenient, therefore, to 
obtain a graphical solution, and this is done by first plotting 

Sin öl   = 
J9 
UM. (121) 

1       ^ss« 

Afe as a function of ^   for various values of     5j^P    *    ^ro,n e(luation (117) 
we get the relationship 

i'-'S. 
-*/* 

s'm e( i2.l. ^TH 
I 

l-^fe. H^. 
—   sin d 

(122) 

(123) 

The intersections of equations (121) and (123) will obviously give the 
correct values of sin oC   , which can then be used in equation (117). 

As an alternative (approximate) approach, the ratio of the thin jet 
values  for Ml/A^     (Figure 11 for example)  can be used to ratio the 
values  obtained from equation (117) provided that this is not done be- 
low about  *W    s '♦•0« 

3.3 Calculation of Sin at for Zero Mixing. 

When there is no mixing loss, sin «( > 1.0.    From Bernoulli, 

2 \    Jo ""^J 

Jo 

JM 

^^JO "JT b&t JM 

(12 U) 

(125) 
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But  from Reference 14 

•\   =  bj2?AP« ('-e-x) (126) 

-2x J
M   -   t ^M   in«! tt27) 

-X 
/. sin o( = 5a = 1 JLlf:— (128) 

— « 

. an equality to which no explicit solution can be written. 

From equation (122) by equating   xy 

I - -* i-V» —J—   = 2Jt *-6      ^  t   «axe 

and since    €~'It' =  | S. 

(130) 

(131) 

Thus we can use this equation to plot   ^/uP^      as a function of /fx . 
This has been done in Figure 42, for 0 - 60° and is seen to give some- 
what higher values of L^   than the simple layered jet theory.    The 
inclusion of mixing losses will reduce these values, of course, as in 
Figure Ul. 
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SECTION  FOUR 

MIXING LOSSES  IN A RECIRCULATING JET 

The basic geometry of a recirculating jet is illustrated in Figure 43, 
where entrainment is seen to be possible in three areas.    It is pos- 
sible for entrainment of the outside air to influence only that part of 
the flow which is exhausted outwards, provided that this portion of the 
jet is thick enough.    In this case there is no total pressure loss in 
the recirculating jet, and the effect of entrainment on the outwardly 
exhausting air is as discussed in the previous section for an annular 
jet. 

The effective entrainment in the cavity zone can be zero if a stable, 
loss-free vortex is established.    In configurations so far tried, how- 
ever, therr  has been no possibility of such vortex flow, because of the 
large diffusion losses which would occur.    Thus, present cavity zone 
geometries can be regarded as giving the "worst-case" loss of free-air 
entrainment in the jet. 

Finally, in the third mixing zone, the relatively slow-moving re- 
entrant  jet can be assumed to experience free-air entrainment on its 
cushion side. 

We shall now analyze each of these losses in detail, in order to deter- 
mine the total pressure loss attributable to all three causes.    The 
analysis will be restricted to constrained vortex flow. 

4.1 Free-Air Entrainment Losses. 

This problem was examined in Reference 15 for the case of 100 per cent 
recirculating flow, where it is shown that the length of jet affected 
is                    ' 

(132) 

This equation is plotted in Figure UU.    From equation (107), the dynam- 
ic head reduction attributable to mixing over this length is 

(133) 

i^^m)] 
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figure 43.    Partially Recirculating Jet. 
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Figure '♦*+,    Free-Air Entrainment 
Periphery for Recirculating Jet. 
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If we assume that the static pressure is essentially ambient in the 
outer portions of the jet, 

dkV UN •5-f tJ1 

■■ *- ■ ik) ?-i% 

rJM 

^-P 
Ü31) 

[«* -"(mi 
over the outer half of the jet, 

4,2    Cavity Zone Entrainment Loss. 

Assuming that no cavity vortex flow is generated, we can assume static 
entrainment. 

Figure U5. Geometry of Jet External Surface. 
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From Figure US and equation (102), 

(135) 

TU      = i 

From the geometry 

i   =  ^r . f£i?i - SS*g^ aas) 

(Note that the critical height postulated in Reference 15 is reached 
when y = 0 in this equation.) 

The inner jet radii are, approximately, 

a- = Ln^a 
(137) 

H t -h sin d|. 

- assuming that the jet thickness is equal to the exit plane 
thickness, for sinjplici..y.    Thus the periphery in the entrainment zone 
is 

h h I — «in 0, I ••• Sin ©1 
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Substituting equation (136)  for   ^V^"», 

If we assume that the pressure 6>p  acts over the inner half of the jet v 

1 
^- = **, +i^ 

l-      [l-OÖ(^)]' 
and      A^,       ^    ^    A^. f, I -) 1 (1"°) 

measured at  the intake nozzle, over the inner half of the jet. 

•+.3 Cushion Zone Entrainment  Loss. 

The jet periphery in the cushion is 

Assuming the pressure &p to act over the outer half of the jet. 

(1W) 
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Substituting equation (13>>), 

f^m$ + [T^Mii üw) 

- measured at the intake,  over the outer half of the jet.    The 
mean total pressure at the intake is obviously the mean of equations 
(1U0) and (1U3). 

If there is no cavity loss, 4:he mean will be 

If there is no free-air loss, due to insulation by the primary air, we 
can take   &p = 0. 

H.i* Comparison With Experiment. 

Reference 16 contains some measurements of exit and re-entry total head 
for a partial recirculation system, the exit total head varying lin- 
early across the exit plane.    For the test model (Martin Model §1) 
•i = •»  =  30°, 2r- m.86 in., b = 6.76 in.    From equation (136) the 

"critical height" would therefore be given by 

CM e\ _!— .4. —!—1     = ^.si 

t 
ri 

critical value. 

'«'fc   -iE—        =    2.68. 

The experimental data is for values of 't   at, or in excess of, this 

Assuming no loss in momentum flux attributable to mixing, the theoret- 
ical values of cavity and cushion pressure are plotted for this model 
in Figure 16, some experimental values of Afe being plotted for com- 
parison.    Because both the nozzle pressure distribution and the mass 
augmentation ratio^{i/ vary for the test data, the agreement is not 
good, in Figure 16, but the absolute order of the values is obviously 
reasonable. 
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These calculated values of A^ and 6^ have been used to calculate the 
total pressure drop, which is the mean of equations (110) and (113), 
the results being plotted in Figure 16. The agreement with experiment 
is evidently good, particularly when we remember that, in the model 
tests, the exit nozzle total distribution was highly nonuniform. 
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Figure UB. Theoretical Cushion and Cavity Pressure 
Tor a Recirculation Test Rig. 6^=9^= 30°. 



0  MARTIN MODEL NO.   1 TEST DATA.     (REF.   16) 

Figure 17.    Predicted and Measured Total 
Head Loss for Martin Model No.   1. 
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SECTION FIVE 

SOME EXPERIMENTAL  MEASUREMENTS  OF STATIC PRESSURE NEAR A NOZZLE 

A full-scale Frost Fan two-dimensional test rig (Reference 15) was in- 
strumented with static pressure taps.     Figure ua shows the location of 
the taps relative to the fan inlet and the results obtained are pre- 
sented in Figures HS to 56. 

From Reference 15,  Appendix E,  the Frost Fan gives a momentum flux of 

bJ=    1-675(618)*      (lb) C1.5) 

From equations (74) and (75) the static pressure decrement near the 
nozzle will be 

(146) 

I 
or      SmB   =  i   A^ .^^^-n— (lu7> 

At  1000  r.p.m. 1250t 0.765        ,rtC       ,,r rt 

-J"     =      7829-    Xl25  ::  115-2 

,*•   SmO    =      .0932 
(1U8) 

The pressure decrements close to the nozzle,  corrected as (r.p.m.)^ to 
1000 r.p.m., are plotted in  Figure 57.     Using the mean of these values, 
the effective value of B is plotted in Figure 58.    Since the nominal 
outside  value of 6 is 45°,  close to the nozzle,  and the inside value 
is 90°,  it is obvious that the entrainment is much greater than would 
be indicated by the local geometry. 
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Figure  49.     Static Pressure Measurement 
Series  D,  Group II, Run Wo.   9.   C1000 RPM.K = 22.75"). 
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Figure  50.     Series  D, Group  II,  Run No.  10. 
(mOO  RPM,h   =  22.75"). 
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APPENDIX I 

AN ANNULAR J£T VERY CLOSE TO THE GROUND 

////in/funi/inniiiinii'umiiiniini 

Figure  59.     Annular Jet  Very  Close  to the  Ground. 

Consider the  case  of  Figure  58 where n-»0.     The  «air in the  duct  is es- 
sentially stationary, so that its static pressure  is equal to its 
total pressure and 

^1>c 
= AT, (149) 

The vehicle thus behaves as a plenum chamber, and the air Mass flow, 
for an outer peripheryC is 

^ = c^c^M 
Jut    69     « j ^ U^      so that   V0 = 

The  j et power is   —  frt   UL 

(150) 

(151) 

(152) 

That  is,    C   =     Ch   C [£     AT. (153) 
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APPENDIX II 

EFFLCTIVL  PERIPHERY  OF A CIRCULAR ANGULAR JET 

In the three-dimensional theory of annular jets we use the  relationship 

C K to. =7,(9 -»-sme) (15*0 

- to determine the cushion pressure ML  .     In other words, the 
pressure Mi    acts  on an areaCh to give  the horizontal momentum flux 
Jjfrp + SUxflf. 

We normally take Q, = T\^ * where^ is  the  outside diameter of the 
nozzle, but we shall now estimate this quantity more precisely, using 
the assumptions of Figure  59, which  follows the  theory of Section 2,U 
of this report. 

•*—♦ 

n/ /I n i nnnni unnTTinn 

Figure 60.  Assumed Jet Geometry. 
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obviously, K = r (I + am 9) + 5 t 

••   ^   =       "     ^.    2^, (155) 

Relative  to the  jet   <£    in the nozzle exit plane, the  radius  of curva- 
ture is centered about a point r sin 0  outboard.     Thus the  jet is a 
distance t 

J  = r cos ^ — r cos Ö (156) 

-  inboard of the nozzle  £   .     Thus if 2 is the  radius to the 
nozzle ^     dn^ a« t:^e radius  to the   jet   (^    , both measured from the 
cushion center. 

^. = Z-J = H-r (cos^ - cosG ) 

Taking the upper half of the jet first 

sm ^ =  $/Y 

(157) 

.••   COS^  -\\-{tyr)* 

-'£!£> F^-'H 
The  incremental vertical area is olTl3.du.     Thus the  total vertical area 
of the upper half of the  jet (L   is 

After some  manipulation, 

AA^.     = airZTrsmOi-t? s'mG CDSÖ- xi§."l (159) 
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for the lower half of the  jet, exclusive of the area   * ^ 2lt(&+rsin9) 
immediately in contact with the ground plane * 

rO 

\2 = ^*^\^~{F::7 -rcose)] ^ 

[6^-e)r-i l] = 2ITZ  h ^-i co*e; r - -~   ^ deo) 

Thus the total vertical area is 

= 1 t ^illill ru(^ii^)5\t.el 

+ h illiilri s\ne co«e- | + cose- 3L] dei) 

When n/^ ^ 1.0, we take C = "HD , whereD is the diameter of the outer 
nozzle edge. 

We evaluate this for the case 9=0 considered in Section 2.H of this 
report. 

= \ + o.i.s i (hi*)* 
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For the Reference 13 model, ^r = .1126, 

*    It 

t 

"D-t 

=   0.4^375 

t t 
—    =   2.265   —   =   0.25U 
* 3> 

The  ratio   C/1T3)   is plotted  in  Figure  60  for the   Reference  13 model 
and is seen to be greater than  unity for   h/^   ^    0,3.     Thus  the cush- 
ion pressure will decrease more  rapidly with height  above  this  value. 
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APPENDIX III 

AN  EXACT  SOLUTIOM  FOR A LAMINAR JLT 

Schlichting and Bickley  '^'  iiave  obtained a laminar solution  for a 
plane  jet  issuing from a slot,  as sketched in  Figure 61. 

Figure   62.     Laminar Jet   From a  Slot, 

TakxngX» U ordinates about the jet (^ , and assuming the jet is infi- 
nitely narrow (but of finite momentumM0)i they show that the "bound- 
ary  layer" approximation  to the .Jdvier-Stokes  equations is  [from (4)] 

u^ + ir^ 
*x *x 

(163) 

(i.e., the pressure  tern  is neglected because  the stream lines are 
nearly parallel) 

and 1^ +*r .o (16U) 

(1) H.   Schlichting,  "Laminar Strahlansürectung"  ZAMiJ üd.   13,   1933. 

(2) W.   dickley,   "Tue  Plane  Jet,"  Phil.   Mac-   7,   23,   1937. 
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The boundary conditions are 

3  =   o; IT =   o.   IJ   =   o 
y    = 00;   a   =     0 

Fron equation  (5)  the  total  jet  momentum 

00 

(165) 

^0= a^/  aad3 constant (166) 
0 

The  approximate solution  to these equations  is 

'(Ft-.f ^ ^    = Ü1+5U3l^f^j     SeCn J (i67) 

\S   = ü.bäüi/JÜÄj.^at Sec\?C-tan\Nt ) (168) 

s ■{&?&) 
Tiie  mass   fiuw acr'osj  any  section   of  the   jet   is 

wnere f    ^ f r^Y^ / ^_ \ U^i) 

(170) 

These  ap^roxirations apply   if   ^©^/^^     ^s  idr6e and cannot  therefore 
be applied to determine  the pressure distrioution on the wall at X =  0. 

C. 1 Comparison  .Jitn  a TurDulent Jet. 

Laminar  flow is characterized uy  the .iewtonian  relationship 

stress     =   U     (171) 

- wnere U is the viscosity of tne fli'id and is assumed to be a 
constant. One approach to turbulent mixing problems is to assume that 
the eddy viscosity € is statistically constant, and that laminar solu- 
tions  can be applied to turbulent phenomena when U is replaced by £ . 
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Writing the jet momentum 

- we have, from equation (170), 

iM iif 3.302  P        ^   .      1      ( — r (172) 

It  is  immediately obvious  that this equation   is  quite different   from 
equation  (16)   in the  main body of this  report,  implying that  the   linear 
relationship of equation  (171) cannot oe applied to turoulent mixing 
processes. 

57 



BLANK PAGE 



DISTRIBUTION 

U.  S.   Army Materiel Command 7 
U.  S.   Army Mobility Command 3 
U.  S.  Strike Command 1 
Office of Chief of RfcD,  D/A 2 
Office of the Asst.   Secy,  of Defense for R8cE 1 
U.  S.  Army Transportation Research Command 64 
U.  S.   Army Research and Development Group (Europe) 2 
U.  S.   Army Human Engineering Laboratories 1 
Army Research Office-Durham 2 
U.  S.  Army Polar Research and Development Center 1 
U.  S.  Army Medical Research and Development Command 1 
U.  S.  Army Combat Developments Command 

Aviation Agency 1 
U.  S.  Army Combat Developments Command 

Transportation Agency 1 
U.  S.  Army Combat Developments Command 1 
U.  S.  Army War College 1 
U.  S.  Army Aviation and Surface Materiel Command 2 
U.  S.   Army Airborne,  Electronics and Special 

Warfare Board 1 
Chief of Naval Operations 1 
Bureau of Ships 1 
Bureau of Naval Weapons 1 
Bureau of Supplies and Accounts 1 
U.  S.  Naval Supply Research and Development Facility 1 
U.  S.  Naval Postgraduate School 1 
U.  S.  Naval Ordnance Test Station 1 
David Taylor Model Basin 1 
Marine Corps Landing Force Development Center 1 
Marine Corps Educational Center 1 
U.  S.  Coast Guard 1 
U. S.  Maritime Administration 1 
Ames Research Center, NASA 2 
NASA-LRC,   Langley Station 2 
Lewis Research Center, NASA 2 
NASA Representative,  Scientific and Technical 

Information Facility 2 
Human Resources Research Office 2 
U.  S.  Army Standardization Group,  Canada 1 
Canadian Liaison Officer, 

U. S.  Army Transportation School 3 

99 



British Army Staff, British Embassy 4 
U. S.  Army Standardization Group, U. K.                                           1 
Defense Documentation Center 10 
U.  S.  Government Printing Office 1 

100 


