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J Summary: 

The general equations of motion for a multicomponent chemically 

reacting flow system are introduced«    The concept of influscid flow 

is presented and the fundamental boundary layer equations appropriate 

for the analysis of the interaction between a flowing multicomponent 

chemically reacting gas and a surface are formulated for a typical 

coordinate system,   f  ) re 
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1.    INTRODUCTION 

In investigating the interaction between a surface and its environment, 

one is concerned with an analysis oi fluid dynamic fields involving the 

simultaneous transport of mass, momentum and energy.    Such problems 

are described by the equations of change which are a coupled system of 

nonlinear partial differential equations.    The equations of change comprise 

the conservation laws for the fluid system and consist of the conservation 

of chemical species« the momentum equation and energy equation.    The 

global form of the conservation of mass, or continuity equation can be 

obtained directly by summing over all of the equations for the conservation 

of chemical species. 

The presence of chemical reactions in multicomponent gaseous flow 

systems greatly complicates the analytical formulation and solution of the 

flow field problem.   The complexity of the problem and the relatively 

small effort expended in this area, as opposed to the voluminous literature 

and effort dealing with classical nonreacting boundary layers and inviscid 

flows, have conspired to limit the current state of our knowledge concerning 

this technically important class of problems.   It is therefore of considerable 

intereßt to consider the general equations of change appropriate to a 

multicomponent chemically reacting flow system, and from these to derive 

the boundary layer equations which describe the phenomena in the 

immediate vicinity of the surface of a body immersed in such a fluid. 
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An interesting point is that in the classical treatment of flow fields, 

the problem is often s^lit into the solution of two problems,  inviscid and 

viscous«    An analogous treatment for reacting fields would be to define an 

11 influscid"    flow field as that region where gradients of velocity, tempera- 

ture,  pressure and species concentration are so small that transport pro- 

cesses related to viscosity, thermal conductivity, thermal diffusion, pressure 

and concentration diffusion may be conveniently neglected.    The " fluscid" 

region is then the boundary layer adjacent to the body, where the afore- 

mentioned gradients are so large that coupled transport processes constitute 

the essential physical phenomena.    It is noted that m the case of a 

reacting flow,  in addition to gradients of velocity and temperature,  species 

concentration gradients also appear near the body surface, due to the presence 

of dissociation, combustion and other forms of chemical reaction.    Conse- 

quently, one must regard the boundary layer as a multidimensional rngion. I 

The mfluscid and fluscid fields can then be solved separately, and 

matching is satisfied by taking the "inner" boundary conditions for the 

influscid field as the conditions as "infinity" for the boundary layer.    Thus, 

in simplifying the analysis, by reducing it to the solution of two problems, a 

complication is introduced in the form of interaction between the influscid 

and fluscid fields.   In the case of a classical non-reacting gas flow, when 

the inviscid flow field is irrotationil, the interaction appears primarily as a 

displacement effect at the wall,  in the form of a thicker body or equivalent 

boundary layer displacement thickness.    However,  when the inviscid flow is 

'' 



roUtiocal, as for example, when there are entropy gradients in the field due 

to curved shocks, then in addition to the displacement effect, there is an 

interaction between the vorticity of the external field and the vortical 

boundary layer.   For the case of weak interaction, it appears that this 

effect may be included in the boundary layer analysis by modifying the 

boundary conditions for the velocity gradient at infinity^. 

In a reacting flow, another type of interaction comes into play in which 

the concentration gradients must be made to match at the outer junction between 

the fluacid and influscid solutions«.   And further, one cannot now take the 

surface conditions independently of the surface mass and energy balance. 

Inf itively, one would expect that all of these co .pling effects could be 

treated by means of an iterative approach. 

In considering the flow of a reacting gas over a surface, it is not 

correct in general, to treat the environment at* a single gas unless at each 

point the diffusion flux set up by concentration and thermal gradients, and 

the convective flux set up by pressure gradient«ö are exactly counterbalanced 

by the influx of species by convection and the production of species by 

chemical reactions,   so that a stationary equilibrium composition can be 

maintained in the flow field.   Hence, if exact solutions are desired, when 

chemical components are free to react, expecially when a new species is 

introduced into the boundary layer by means of mass transfer from the 

surface, due to vaporiaation, sublimation, heterogeneous reaction, or 

direct fluid injection, it appears necessary to evaluate the transport 
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coefficients and thermodynamic properties including viscosity, thermal 

conductivity,  concentration diffusion, thermal diffusion,  specific heat 

and enthalpy at each point in the boundary layer as a function of the 

local composition, pressure and temperature.    Moreover,  it is essential 

that the driving forces for each species  be determined by means of the 

individual equations for the conservation of species,  so that the extent of 

surface reactions can be assessed. 
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2. SYMBOLS: 

a acouatic velocity 

Bi » —~ referred mole fraction of i     species 

Ci mass fraction of species i 

Cp specific heat at constant pressure»    C v specific heat at constant 
volume 

d driving force 

Uxi diffusion coefficient» (multicomponent system) 

tOu diffusion coefficient, (binary system) 

Di thermal diffusion coefficient 

6 thermodynamic internal energy per unit mass, including chemical 

U stagnation internal energy»      E   s   C + i- \r 

r^ external force acting on a unit mass of species i 

h static enthalpy,   h «   6 +   ^P 

n^ static enthalpy of the itJl species» including enthalpy of formation 
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An.p .        enthalpy of formation of i     species 

H stagnation enthalpy,      n  ~ n + jV 

i unit tensor 

Jl * PlYl relative mass flux of species i 

.^* ' f  i V^ absolute mass flux of species i 

Vit * ^i     i relative molar flux of species i 

N coefficient of thermal conductivity 

/ife Bolt ernannt constant 

/C linear dimension, cm« 

"il        molecular weight of species i 

vi m  % X^V^i molecular weight of the (;as mixture 

nAi net molar production of species i per unit volume by chemical 
reaction 

^i moles of i per unit volume 

^t totil number of moles per unit volume 

INx number of molecules of i per unit volume 

j 

i 

I 
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N total number of species 

P static pressure 

Q energy flux vector 

V\ universal gat constant 

U radius of curvature 

»o radius, measured from the centerline to the surface 

T 

time 

temperature 

IA x component of velocity 

V y component of velocity 

Vj absolute flow velocity of species i 

'XT « «L £ flC£i      niass-weighted average velocity of the fluid mixture 
*     Z9   i ! * 

Vj m Yl - 'ü       diffusion velocity of species i 

W^ att mast rate of production of species i per unit volume by 
chemical reaction where     2 w* ■ o 

Xi mole fraction of species i , Xj^ «    !2i f  X X- » 1 i 
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Pi 

P 

i» 

coordinate system 

symmetric rate of strain tensor 

viscous stress tensor 

ordinary viscosity coefficient 

a quantity related to the second viscosity coefficient 

partial density of species if /^ * H^^ci 

density of the fluid mixture,        />   « Kl^ Wl 

pressure tensor 

dissipation function 

Subscripts 

i i"1 chemical species 

total 

Dimensionless Groups 

Pr  - Cp/C 

CpTV 

Prandtl Number 

Lewis Number 

Thermal Lewis Number 

i 

! 
'i 
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3. BASIC RELATIONSHIPS 

Referring to the list of symbols, we observe that the total number 

of moles in a unit volume is obtained by summing over all the contributions 

of each species« i.e. 

i 

The density of the fluid is given by summation over all the partial 

densities of all the species. 

f • Sfi -- 2 KiW-i - 2*Ci 
' i ' i i ' 

The absolute molar flux of species i with respect to fixed spatial 

coordinates is given by: 

h^nce the mass flux of species i with respect to fixed spatial coordinates is 

given by: 

Ji   m   ^i^iUl   s   fCiVi ' f>iZi 0) 

We may thus obtain the mass-weighted-average velocity of the fluid 

by summing over Jj, 

rz* sJi • f/wi (4) 



-10 - 

Thi« velocity   V*     I« the macroecopically observed atream velocity« i.e. 

Z s TT 2 ii  '   £ Z (>& « 1 | n^iVi' ScjVi (5) 

The diffusion velocity     V ^      of specie« i is then defined as the 

difference between the absolute velocity of species i and the obsefved stream 

velocity« 

Yi   "   Vi-r (6) 

It is then possible to define the diffusion flux vector 

Note that the mass weighted average of the diffusion velocity is zero. 

This may be shown quite easily, by summing equation (6) over all p, 

and then introducing equations (2) and (4). 

jZpiYi • jslfr^-jZpx 

j (c^ - $ (P) 

Consequently we may write: 

. 
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4.   CONSERVATION OF SPECIES 

The conservation of species  i    may be written: 

ani    +   V-iHiVi)   «    Mi (9) 

or equivalently 

where the chemical source function   W^   represents the mass rate of 

production of species    i      by chemical reaction and may be determined 

only with great difficulty from chemical kinetics• 

Upon eliminating     \r^     , we obtain: 

!£.+*-l>i(^Yiv!= wi (u) 

If there are N different species in the flow field» only N-l  of 

these equations will be required in addition to the global continuity equation! 

which follows. 

Summing equation (10) over all the species, we find: 

Since mass is neither being created nor destroyed, neglecting reUtivlstic 

efTccts, 

SW^O (13) 
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and the former becomes: 

the fMBlHar global coatlauity equation.   Other forme may aleo be derived. 

These are listed below for convenience. 

JL     +    P ^*^"   * 0 (15) 
dt '        "* 

dk ' at) 

it the •treaming derivative.   Undoubtedly, we have not exhausted all the 

poitibilitiee in repreeenting the coneervation of maee. 

Returning briefly to the flux with reipect to the mass average velocity» 

we note that the flux may be broken down into several parts, i.e. 

ji • W-rW'+YiW^Yi^) 
Here we observe that the mass flux   A ± contains components due to gradients 

in concentration! temperature, pressure, and external forces.   From the 

thermodynamics of irreversible processes, if the situation encountered is 

not too far removed from equilibrium» the flux must be a linear function 

of the driving forces, and the net flux is then the sum of the ind'vidurl 

contributions.   Hirschfelder et al2 gives: 

I 
! 

1 

(17) ^i 
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ii -  ^. 2 ^WjDijd,-V'l"f 

where 

(18) 

-   £if ^ Fi -   In.F.l 
(19) 

For the caee of a binary mixture in which only concentration diffusion and 

(20) 

thermal diffusion are significant, equation (IS) reduces to: 

ji »  Ü^WiWjßij vXj - DJ'vlnT 

and it is then not difficult to show that: 

We observe that no simplifications result upon introduction of mass 

fraction rather than mole fraction« when there are more than two chemical 

components» 

(21) 
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5. THE MOMENTUM EQUATION 

The momentum equation in aerothermochemistry is identical with 

that ueed in aerodynamics for gatei without chemical reactions. 

wlitrt    r ^    it th« axtoraal lore« acting on A unit nut« of tptciet   1    f 

And    IT    it tht pretturt ttntor«   Tht pretturt ttntor may be written: 

I    •     'Pi    +    IlJ (23) 
where   p    it the ttmtic pretture and        ^i\        is the vi»cous ttrett 

tentor«   According to equation (22)9 the macrotcopic velocity of the fluid 

undergoet a change becaute of the gradient In ttatic pretture, the internal 

thear and the external forcet which act on the variout chemical tpeciet 

pre tent.   We may write for   Tu : 

iriiere 

M* it the conventional vitcotity 

A it related to the tecond vitcotity coefficient 

1 it the unit tent or 
mm 

Cn        it the tymmetric rate of ttrain tentor where a typical term is 
** J       given by: 

^      -      ifpl     t   ^N (M-  1.1,3) (ZS) 
N   e)Xj ^xj   / 

•uch that    ^iis€u      , in carte«ian coordinates. 
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If it is assumed that Stokes* postulate holds which is equivalent to assuming 

that we are dealing with a process whose characteristic time is much 

omaller than the viscous characteristic time, then 

^3^"-° (26) 

and there follows: 

Tij - ^Ui) - il*^ (27) 
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6. THE ENERGY EQUATION 

A quite general form of the energy equation, is given by: 

(28) 

Thie aquation U formally aaalogom to the first law of thermodynamics, 

where the internal energy    %    includes chemical energy.   In words, 

this equation states that the internal energy of the mixture    e    , following 

the mean motion, changes due to the combined effects of the energy flux 

vector     Q      , the work of the pressure tensor    IT     and the work done 

by the external forces    F^   9 

The energy equation may be rewritten in many different equivalent 

forms, but before we develop some of these other forms, it will be 

instructive .to examine the energy flux and pressure tensor work terms a 

little mere closely.     The energy flux with respect to the mass average 

velocity,  denoted by   W     may be broken down into its component parts# i.e*, 

Q 8 QCT) + 2
CO,) + 5Cc^ + g* (29) 

which represent contributions due to temperature gradients, diffusion, 

concentration gradients and radiation«   If the effects of radiation can be 

separated out, the remaining ternru are2: 



- 17 - 

The name Fourier is associated with the first term on the right 

hand side, while the third term is related to the Dufour effect«   The 

depends in a detailed manner on the frequency 

and intensity of the radiation and on the fluid properties.   One 

procedure that may be used at present is to evaluate this term after 

having solved the flow field.   Obviously, such a procedure is approximately 

valid only if      |Q(^1  ^< |Ql   ■ 

The work done by the pressure tensor is given by: 

where     $        9 the dissipation function is given by: 

upon having introduced equation (24), 

For example«   in x, y,   z coordinates: 
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Setting     X^-jAA    »nd r«wfir*nging, the diiiipatloß function bacon»«»: 

If Stok«!1 poftplate holds«    ^ ^ O     •   That is«    <&    it ••••ntially 

a positive quantity that vanishes only *hen the fluid motion consists of a 

pure «dilation«   The physical meaning is that viscosity is a method of 

adding internal energy to the fluid at the expense of other forms of energy* 

For a non»8tokesian fluid« consisting of complex molecules« it is 

possible for   if < O • 

Introducing equations (30) and (31) into the energy equation« the 

latter becomes: 

pde Ä - p v-v + i -H V-(KyT) - V- 2 ^iYi^i 
Civ 

The energy equation may also be written in terms of the enthalpy. 

Taking 

C    «   H -    -E (36) 

oquAtion (33) becomes: 
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or expanded: 

^■%n>irL^*v^ ,3,, 

If we conilder that the gaseous system is composed of a mixture of reacting 

perfect gases9 then the caloric equation is simply: 

c- ■ m< 
(39) 

Cv •   Zct^ e • Zctei 
i i 

and hence upon utilising equation (10), the energy equation may be written: 

dT * i- 
(40) 

which may be expanded into the form: 

/^ 71 m  - pv-v + § + V.(KVT) - ^-SftViK 

1 y («) 
-  2 e.wj  f   ? ei (v.^iYO 
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W« can also obtain a aimilar result in terms of the enthalpy. 

We take: 

c" • OH      ^ - ^T> 
Cp «    2 CiCpt la •  2 Cihi 

and thore follows immediately: 

(42) 

(43) 

It should be noted that while e and h contain the chemical er^rgy 

of formation, they don't include either the kinetic energy of the macroscopic 

motion of the gas, or the potential energy associated with the external 

forces ^ 

If wa «Iah to include the kinetic energy, we may do so as follows. 

Premaltiply the momentum equation by   V •    and there is obtained: 

(44) 

Define 

fi   2 

(45) 

I 

», 
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and then  we may write fhe general expression«: 

at * I 

where 

v-(Tz) -  TI:^ + v--(v.ir) 

Also, 

(46) 

(47) 

+ l/'iVi'fi 
We have obviously not exhausted all of the possibilities for representing 

the energy equation« 
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7. THE EQUATION OP STATE 

A rwnoaible approximation to the thermal behavior of the gaseous 

mixtur«: ie the aeaumptioB tiut the equation of atate ia given by: 

P '/^T m 

There also foUowe: 

Some other useful forme of equation (49) are: 

Pi • /^i fciT 
p . ni^lRT • ntRT {51) 

Pf   MJ 
After a iiifficiest number of eolutlona have been obtained in a 

given type of problem utiliaing perfect gat behavior, then it would be 

well to reconsider the effect of non-ideal thermal equation». 
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8.   THE INFLUSCID EQUATIONS 

Up to thi» point, all of the eqiatiom have been rather general. 

Let us now obtain the infhucid equations by neglecting all transport phenomena. 

That is9 diffusion» viscosity and thermal conductivity are eliminated 

from further consideration in the inviscid flow field and there follows 

accordingly: 

Conservation of species 1 

Z3^    s    Wi (52) 
a 

Global Continuity 

!£  +   v(pyr) -o (53) 

Momentum Equation 

at 
-vp + 2/^1 

Energy Equati Ion 

dp 
dt 

at at 
+■ 2^- fi 

(54) 

(55) 

which thowi that only in the steady state is the stagnation enthalpy 

wonatant when follcwing the macroscopic motion of the gas?    (neglecting 

external forces). 
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In the solution of the ioflufcid equationef further difficulties are 

introduced -when one attempts to satisfy the boundary conditions»   This 

situation very clearly exists in a hypersonic flow field since the 

governing partial differential equations are of mixed type.   We will reserve 

our discussion until later»   Let us now proceed to the boundary layer 

equations. 
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9. THE BOUNDARY LAYER EQUATIONS 

The flrel thing we must take cogaisaace of it that the boundary 

layer approximation is not invariant with the coordinate eyetem.   Stated 

another wayt the form of the boundary layer equations together with their 

boundary conditions actually depend on the choice of the coordinate system 

to such an extent that different results may actually be obtained for the 

same physical body when different coordinate systems are utilised1.   Thus« 

for example« if the boundary layer approximation is made with respect 

to the coordinate system sketched in figure l9 the boundary layer equations 

for a reacting multicomponent mixture can be formulated as follows« 

The conservation of species i may be written: 

at ' 
Where the general form of the molar diffusion flux is given by eq. (18) 

and the driving force      Ä j     may be written; 

dj « vXj  -v (Xj- Cj^ vlnp (58) 

if external forces are neglected. The Du are the multicomponent 

diffusion coefficients« of which there are N ~N where Nl is the 

number of species« and the     Xj       are the mole fractions. 
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Defining a referred mole fraction ^i *    ^1/ 9tl the 

diffusion equation may be written: 

f*J*L   + v-j),   -Mi (59) 
dt ^ 1 

On introd cing eqs.  (57) and (58), cq.  (59) becomes: 
! 

P^ifM^M^'r'^]]'^]'^ ('0,     I 
When the boundary layer approximation is made with respect to a 

body-oriented axially-symmetric coordinate system, the diffusion equation 

becomes: 

The energy equation may be written: 

pCpdJ » ^ + j t 7-(<VT^ - 2 Cpi AVi-vT- 2 ^v^ (62)       I 

where the Dufour effect has been neglected and the following notation has | 
k 

been introduced, f; 

^ ■ .K/. + fo
Tc?idT ;   cpi.fe) ; c,- Zc^, <")        j 

I: 
On making the boundary layer approximation there is obtained: j 
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It is again noted that equation (62) merely represents one of several 

convenient forms «since the energy equation can be written in many 

equivalent forms.    Global continuity becomes: 

H * l^r^+ iji^*0 (65) 

Finally upon neglecting external forces the momentum equation yields the 

following x and y scalar equations: 

(66) 

'   V 7>t       Tc   / 5u (67) 

The behavior of the above equations, under the influence of suitable 

constraints, forms the basis for studies of the interaction between a 

surface and a reacting stream« 

It is noted that under certain circumstances, it may be permissible 

to lump the gaseous components whose thermal and chemical behavior is 

similar so that although the gas is actually a multicomponent mixture, its 

behavior may be approximated by a binary mixture.   Further, in formulating 

the governing equations for a two-component chemically reacting boundary 

layer, it may be convenient to utilize mass fractions rather than mole 

fractions in representing the composition of the gas« 

For a binary mixture wc cart introduce eq, (21) so thit the diffusion 
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and energy equations become respectively: 

. 

(69) 

X 

while the global continuity and momentum equations remain unchanged.   Here 

again» all possible forms of the energy equation have not been exhausted. 

For example, another useful form is obtained from eq. (36) 

Note that the Dufour effect and all external forces have been taken 

negligible above* 

We have also assumed that we have a sufficient number of auxiliary 

relation» for the determination of the transport properties of the gaseous 

mixture.   For example! to a good approximation the viscosity of a mixture 

in terms of the viscosities of the pure components^ the binary diffusion 

coefficients and the mole fractions is given by4: 

^ i      Xi1  + ,.335 I   MT 

(70) 

a 
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10. BOUNDARY CONDITIONS 

The unknown dependent variable! in a reacting flow field are the 

three velocity components f (thi» reduces to two for axially symmetric 

flow), the pressure, the temperature and the composition.   Once these have 

been determined» the problem may be considered solved.   Thus, in 

general, the mathematical problem consists of solving for N + 5 unknowns, 

where N is the total number of chemical species.   To accomplish this 

end, we have at our disposal the following system of equations.  N + 5 

in totalf 

N - 1    conservation of species 

1 global continuity 

3        momentum equations 

1 energy 

1 state 

In addition, we must also provide a set of boundary conditions 

which is in agreement with the overall order of the matheknatical system. 

Examination shows that the order of the system and hence its mathematical 

character depends on whether the flow field is fluscid or influscid.   In 

general,   when the flow field is influscid, the system is of the N +   4th order, 

however, when the flow is fluscid, the overall order of the system is 2N + 7, 

and hence the fluscid system requires N + 3 more boundary conditions 

thsji the influscid flow system, in order to properly define the 

mathematical problem. 
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The relevant boundary condition! or compatibility relations for 

a reacting boundary layer must be developed individually for each problem. 

It is remarked that the difficulty at the surface usually lies in the coupled 

mass »energy transport.   Typical treatments of the surface boundary conditions 

for a reacting boundary layer appear in references 4 and 5,   The boundary 

conditions at the outer edge of the boundary layer must be obtained from 

the influscid solution«   It is therefore of the greatest importance that 

solutions be obtained for the non-equilibrium influscid flow field, since 

unless one knows the conditions at the outer edge of the boundary layer, 

on« cannot predict the state of affairs inside the fluscid layer. 

V " 

i 
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11.   CONCLUSIONS 

Our major interest here has been in formulating the boundary 

layer equations and not in determining heat and mass transfer which will 

be considered elsewhere« 

From Oar brief discussion, it is clear that the analytical treatment 

of flow fie As in which chemical reactions are present requires a major 

effort with regard to the solution of the governing equations, subject to the 

^.^appropriate boundary conditions* 

/ 
y While general techniques for obtaining closed form solutions of 

the partial differential equations are desirable, the advent of high speed 

digital and analog computers has made it more likely that particular 

numerical solutions will be obtained, and hence it is anticipated that 

experiments will have to be carefully designed to detect the effects which 

can be treated theoretically« 

Written   by:   /(L^uiMAiL/n  WAlr^ 
Dr. Sinclaire M. Seal* 
Research Engineer 
Gas Dynamics 
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Dr. Henry G. Lew 
Manager 
Gas Dynamics 
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