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Sunaary 

-j/Thls paper gives upper and lover bounds on the rank of the sum 

of two matrices, and discusses their connection with the condition 

that rank be additive over a set of matrices* •o 



1, Introduction 

An important theorem in statistics, due to Cochran, [2], SETS 

that if A.,.,...A  are symmetric n x n matrices for which im 
(I) An+--»+A = I v '    1    m 

(II) rank (Aj+^'+rank (A ) = n, 

then A^. =0, i ^ j. 

Various versions of this theorem have been considered, [l], [3], 

and [A],   Smiley [5] has recently offered another proof. The key point of 

the theorem seems to be that the rank of tne sura is the sum of the ranks, 

and this note was undertaken with the intention of finding necessary and 

sufficient conditions that r(A+B) = r(A) + r(B), for arbitrary A and 

B, Searching for such conditions led to looking for sharp upper and lower 

bounds on r(A+B), and there did not seem to be much in the literature on 

this, other than the trivial r(A+B) < r(A) + r(B), An Improved upper 

bound and a lower bound, which seems to be new, were found; these are given 

in Section A9  Theorem 1. Conditions for r(A+B) - r(A) + r(B), (Theorem 2), 

follow immediately from Theurem 1, so that Theorem 1 appears to be more 

important than the result we set out to prove, hence the title of this note. 

As indicated above, we use r(A) to designate the rank of the matrix A, 

and d(((5f) for the dimension of the vector space Cf*    We also use I and 0 

indiscriminately to represent the identiiy and zero matrix of whatever size 

necessary to fit the other matrices in a particular expression. In the 

usual way, for two vector spaces R, and R0 we let fL  + ii^    be the 

space of vectors p, +p^ with p, eft,  and p? e R?, We also make extensive 

use of the projector of a vector space. The properties of a projector are 

easily established; we summarize them in the next section. 



2, The projector of a space 

Given a vector subspace öf of the space of ixn vectors, there is a unique 

symmetric, idempotent n x n matrix A satisfying 

(I) aA = a if and onüy if a c of. 

(II) rank of A = dimension of öf. 

This symmetric, idempotent matrix is called the prelector of öf. 

If a, ,a2,...,a. are an orthonormal basis of öf, then A = o'a1+»»»-hx'a., 

or if A is a matrix whose rows are a basis of Cf, then A = A^AA')- A. 

Any 1 x n vector ß may be represented uniquely as the sum of a vector in 

6f and a vector in the orthogonal complement of Cft  by writing 

ß - ßA + ß(l - A). The projector of the orthogonal complement of Of 

is I - Ä, and r(A) + r(l - I) = n. 

We will use an overscore to represent the projector—given a matrix 

B, the notation B will mean the projector of the row space of B; thus 

B is the unique matrix satisfying 

(I) B' = B 

(II) BB = B 

(III) B = TB for some T, i.e. the rows of B are in the row 

space of B. 

(IV) BB = B 

(V) r(B) = r(B). 

The projector provides a convenient method for representing the 

rank of a composite matrix as a sum—iTor example, we write 

/;.B+A(I-B)' 

rib  - r 
B    .  B 

/P.B+A{I-B)\ 

and since the rows of AB are in the row space of B, they may he removed 

by elementary row operations; thus 



(1)   r(^) = i/    j =r(B) + r[ACl»B)], 

since the rows cf A(I-5) are orthogonal to the rows of B, 

For the column version of this formula, we write 

r(R,S) = r(S) + r[(l-3^)R] 

where S' is the projector of the column space of S, or the projector 

of the row space of S • • 

A slightly more complicated application of this device gives this 

formula: 

(?) T{f0)  = r(T) + r(S) + r[(I-F)R(I-T)] 

where S' is the projector of the column space of S and T the projector 

of the row space of T. To prove this, we write 

,RSv _ ,RT+R(I-T) SV _ /R(I-T) Sv 
r^T0; - n  T    o; rl T   0'' 

= r(T) + r(R(l-T),S) = r(T) + r(S) + r[(l-rr)R(I-T)]. 

3« Bounds for the rank of a product 

We need the results of this section to prove the main theorem. We 

want bounds on the rank of AB; to get them we write 

r{B) = r(*B) 

then use formula (l) to get 

(3)  r(B) = r(AB) + r[B(l-ÄB)], 



where AB is the projector of the row space of AB. Now If I is the 

projector of the row space of A, then IB(I-AB) = 0, since for some 

T, Ä = TA. Thus (3) may be written 

r(B) = r(AB) + r[(I-5)B(l-AB)], 

which gives these bounds on r(ABj, 

r(B) - r[(I-I)B] < r(AB) < r(B), 

and the weaker result, 

r(B) - r(l-Ä) <.  r(AB) < r(B). 

The latter is known as Sylvester's law of nullity, usually written as 

U) r(A) + r(B) - n < r(AB) < r(B) 

where    r(l-Ä) = n - r(5) = n - r(A), assuming that    A    is    p x n    and    B 

is    n x q, 

4.   Bounds for the rank of a sum 

This  theorem gives upper and lower bounds for the rank of a sum. 

Theorem 1.    Let   A    and    B    be two matrices of the same size, let their 

row spaces  be   K,    and    ft^,  their column spaces   C.     and   C ,    Then 

(5) r(A) + r(B) - d^ fl R2) - d^ f] C2) < r(A+B) 

and 

(6) r(A+B) < r(A) + r(B) - maxfd(ß1 nft2), dC^fK^)]. 



We first prove (6), which is quite easy, then (5),which is not so 

easy. We have 

r(A+B) <.  dCft^) = d^) + d(R2) - d^H^). 

Since d(R ) = r(A) and d(R2) = r(B), we have 

r(A+B) < r(A) + r(B) - dC^H^), 

and a similar argument on the column spaces yields  (6), 

Using the fact that   r(g) = dCR.,^) = r(A) + r(B) - dif^DR^ 

and   r(A,B) = d^+f^) = r(A) + r(B) - d^fl^), we may write (5) in 

the form 

(7) r(^) + r(A,B) < r(A+B) + r(A) + r(B). 

Now none of the five ranks In (7) Is changed if we replace A and B 

by PAQ and PBQ with P and Q nonsingular. Thus we may assume A and 

B have any form obtained by performing identical elementary row and 

column operations on each of them. We may, for example, assume that A 

and B have this form 

/I,    00\ /RSOv 
A={00      Oj B^IT      0     0) 

NO     0     0 / NO     0     i2/   . 

In that case, we have    r(R) = r(I,) + r(S) + r(Ip), and    r(A,B)  = 

r(l-) + r(T) + r(I„),  so that we will prove  (7) if we can prove that 

(8) r(I) + r(S) + r(T) < r(^) + rC1^^), 

dropping the subscript on    I,  assumed to be    n x n.    Using formula  (2), 

we write 



r(5 Q) + rC1^ Q) = 2r(S) + 2r(T) + r[(I-S')(I+R)(I-T)] + r[(I-5')K(I-T)] 

and this leads to the inequalltj 

(9) !•(£ Q) + ri1** I) *  2r(S) + 2r(T) + r[(I-s7)(I-T)], 

since r[(l-S»")R(I-T)] = r[(l-S7)(-R)(I-T)]. Using U) with n = r(I), 

we have 

r[(l-S^)(I-T)] ^ n - r(S) + n - r(T) - n 

and putting this in (9) we have 

r(5 Q) + H1!11 ^ ^ r(S) + r{T) + n- 

This establishes formula (8), and hence (7), which Is equivalent to (5); 

the proof of Theorem 1 is complete. 

5. The rank of the sum and the sum of the ranks. 

Theorem 1 enables us to characterize the condition that rank be 

additive for a pair of matrices: 

Theorem 2. Let A and B be two matrices of the same size, with 

row spaces Ä,, R^ and column spaces 6,,  CL. Then 

r(A+B) = r(A) + r(B) 

if. and only if 

dim(Rinft2) = dimC^D 62) = 0. 

The proof follows immediately from  (5) and  (6). 

The fact that rank is additive for a set of matrices is a strong 

condition.    We will develop some consequences of this condition in a 



few conclusions leading up to Theoron 3, which is a sort of generalized 

Cochran's Theoreo.    First, we point out that if rank is additive on a 

set of matrices, it is additive on subsets: 

Lemma 1»    If rank is additive for a set of matrices; 

r(A;L + A2 + ••• + Am) = r(A1) + r(A2) + ••• + rUJ, 

then rank is additive for sets of matrices formed by adding distinct 

A's from that set — for example, if rU. +•••+ A12)= rU,) +•••+ rCA,^), 

then 

r(A1+A5)+r(A3+Ag+A:L0)+r(A6+A9) = r(A1+A5+A3+A8+-A10+A64A9). 

To give the gist of the proof, consider the example of the theorem. 

Let A = A^+A., B = A.+A^+A... C = A.+A^, and let D be the sum of the 

matrices in A,,.««,A..- not included in A, B, or C, that is, 

D = A +A +A,^+A1 +A . Then 

r(A1)+---+r(A12) = r(A+B+OD)<r(A+B+<;)+r(D)^r(A)+r(B)+r(C)+r(D)^r(AI)+---+r(A12} 

Thus all inequalities are equalities, and    r(A+B+-C) = r(A) + r(B) + r(C). 

The converse of this lemma is not true — rank can be pairwise additive 

but yet not finitely additive, for example, for these three positive 

semi-definite matrices: 

(2   A)'        \}   9/'        [/>    16/' 

rank is pairwise additive but not additive over all three. 

Lemma 2.    If    r(A+B) = r(A) + r(B)    and if   A    and    B    each commute with 

their sum. S = A+B, then   AB = BA = 0. 
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Proof: Since A commutes with S, it commutes with S - A = B. 

Since the row space of AB = BA is in both the row space of A and 

the row space of B, Theorem 2 shows that AB = BA = 0. 

We are now able to give this generalized version of Cochran's 

Theorem mentioned in the Introduction. We find that symmetry has no 

essential role in the theorem, and Condition II, that 2A = I, can be 

replaced by the condition that each A. commutes with 2A.. 

Theorem 3»   Let A1,A-,,.#,A  be square matrices for which rank is 

additive. 

r(A,+'*»+A ) = r(An)+»-»+r(A ), 1    m     1'     x m ' 

and let    S   be their sum;    S = A.+^^+A ,    Then            1 m       

(10) AjA   =0 for   i / j 

if and only if each of the A's commutes with the sum; 

(11) A^S = SA.,   i = l,2,..,,ra. 

Proof:    Condition  (10)  certainly implies  (11).    To prove that  (11) 

implies   (10) we prove that    A..A» = AJL  =0.    Let    A = A.., B = A ,  and 

C = A-+»»'+A .    Using Lemmas  1 and 2, we know that    A(BTC) =  (B+C)* = 0, 

2 
and hence   A    = AS = SA.    Going to a similarity transformation if 

G O 
necessary, we may assume that    A    has the form    (o n)> with    G    non- 

singular.    Then we write    A+B+C=S    in the form 

r oVfBi VT1 C2WSi S2) 



2 
Since A = AS = SA and G Is non-singular, It follows that S 

must have the form | - „ I • Thus 

/Bi B
2\ + /

oi G
2\ /o o \ 

Now according to Lemma 1, r(B+C) = r(B) + r(C), and it follows that 

the rows of    (B1   B«)    and of    (C.  C-)    must all be zero, or else Theorem 

2 would be violated.    By the same argument, the columns of   I      I 
/C\                                                     10    0\ \l 

and I    " I   must be zero.    Thus    B = I I, and   AB = BA = 0. 
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