$\rm ML-TDR-64-53$

20

003%

9

AN INVESTIGATION OF LOW-CYCLE FATIGUE FAILURES USING APPLIED FRACTURE MECHANICS

106 - P. \$ 2.50

TECHNICAL DOCUMENTARY REPORT ML-TDR-€4-53 MAY 1964

MAY 25 1964 UNITED V LEA TISIA B S LABORATORY

AIR FORCE MATERIALS LABORATORY RESEARCH AND TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Project 7381, Task 738101

(Prepared under Contract AF 33(657)-10251 by The Boeing Company, Aero-Space Division, Seattle, Washington 98124; C. F. Tiffany and P. M. Lorenz, authors)

Best Available Copy

FOREWORD

This report presents the work accomplished by The Boeing Company from February 15, 1963 to February 15, 1964, in "An Investigation of Low-Cycle Fatigue Failures Using Applied Fracture Mechanics," Contract AF 33(657)-10251. The work was administered by the Air Force Materials Laboratory, Systems Engineering Group, Research and Technology Division, Wright-Patterson Air Force Base, Ohio. The project engineer is Lt-Robert M. Dunco, MAAE.

Boeing personnel who participated in the investigation described in this report include C. F. Tiffany, project supervisor; P. M. Lorenž, technical leader: and H. L. Southworth, J. N. Masters, F. A. Pall, A. A. Ottlyck, F. C. Fleming, and V. R. Robinson.

The information contained in this document is also released as Boeing Document D2-23141, dated April 1964.

ABSTRACT

Basic principles of fracture mechanics were applied to the investigation of cyclic flaw growth characteristics of Ladish D6A-C steel, tested at room temperature; 6Al-4V titanium, tested at -320 F: and 18Ni(300) maraging steel, tested at room temperature using uniaxially loaded, prc_lawed (fatigue cracked) test specimens. Applicability of such data to prediction of the cyclic life span of biaxially loaded pressure vessels has been verified by testing six 17-inch-diameter, preflawed Ladish D6A=C test tanks.

A brief discussion of technical background illustrates the experimental approach and the significance of resulting test data. A method for utilization of NDT inspection and proof-pressure testing in conjunction with the cyclic flaw growth data for design purposes is also presented.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

FOR THE COMMANDER

Nop Com

W. P. CONRARDY, Chief Materials Engineering Branch Materials Applications Division AF Materials Laboratory

CONTENTS

Introduction		1
Technical Background		3
Critical F Initial Fla Subcritica Applicatio	Taw Size and Fracture Stresses w Sizes and Flaw Growth Potential of Flaw Growth on of Cyclic Flaw Growth Data	6 7 9 11
Materials and	Test Specimens	15
Experimental Procedure		17
Test Conditions		29
Experimental Results		23
Ladish D6A-C Steel 6Al-4V Titanium 18Ni(300) Maraging Steel		23 29 29
Discussion		39
Conclusions		47
References		48
Appendix I	Tables	49
Appendix II	Test Specimens	67
Appendix III	Test Setup	77
Appendix IV	Sample Fractographs	85

Page

ILLUSTRATIONS

Fig. No.	Title	Page
1	Flaw Shape Parameter Curves for Surface and Internal Cracks	5
2	Fracture Mode Transition	5
3	Relationship Between Critical Flaw Sizes and Applied Stress Level	6
4	Flaw Growth Potential as a Function of Proof and Operating Stress Levels	8
5	Cyclic Flaw Growth	10
6	Sample Procedure for Estimating Minimum Cyclic Tank Life	13
7	Fracture Toughness and Tensile Properties of Ladish D6A-C Steel Plate	24
8	Frequency Distribution of Acute Angle Between Flaw Growth Direction and Grain Orientation in Ladish D6A-C	26
9	Combined Cyclic Flaw Growth Data of Ladish D6A-C Steel Plate	27
10	Effect of Depth-to-Thickness Ratic on Measured Fracture Toughness of Ladish D6A-C Steel	28
11	Fracture Toughless of Annealed 6A1-4V Titanium Plate at Various Test Temperatures	30
12	Cyclic Flaw Growth Inta of 6A1-4V Titanium Plate	31
12	Effect of Depth-10-Thickness Ratio on Measured Fracture Toughness	32
14	Tensile Properties and Static Fracture Toughness of 18Ni(300) Maraging Stee	33
15	Cyclic Flaw Growth Data of 18Ni (300) Maraging Steel	34
18	Summary of Pop-In and Crack Growth Data for 18Ni(300) Maraging Steel	36
17	Effect of Flaw Depth-to-Thickness Ratio on Measured Fracture Toughness of 18Ni(300) Maraging Steel	37
18	Minimum Cyclic Life Span Prediction Curves for Ladish D6A-C Steel	-40

Fig. No.	<u>111e</u>	<u>Page</u>
19	Comparison of Cyclic Flaw Growth Data Obtained Using Various Materials Subjected to Different Test Conditions	42
20	Variation of Stress Intensity Along Flaw Periphery	43
21	Smooth Tensile Specimen	68
22	Flat Tensile Specimen	68
23	Sharply Notched Round-Bar Fracture Toughness Specimen	69
24	Surface-Flawed Flat Fracture Toughness Specimen	70
25	Through-the-Thickness Centrally Cracked Fracture- Toughness Specimen	71
26	Weld Test Panel	72
27	Tensile Test Specimen	73
28	Bend Test Specimen	74
29	17-Inch-Diameter Test Shell	75
30	17-Inch-Diameter Test Pressure Vessel	76
31	Trapezoidal Load Programmer	78
32	Schematic Representation of 17-Inch-Diameter Pressure Vessel Setup	79
33	Schematic Representation of Test Fixture for Static and Cyclic Testing	80
34	Photographic Setup for Recording Crack Growth in 18Ni(300) Test Specimen	81
35	Sample Fractographs of Ladish D6A-C Sharply Notched Round-Bar Specimens	84
36	Sample Fractographs of Ladish D6A-C Sharply Notched Round-Bar Specimens	85
37	Sample Fractographs of Ladish D6A-C Steel Surface- Flawed Specimens	86
38	Tensile and Bend Weld Point Specimens of Ladish D6A–C Weld	87
39	Fractured Ladish D6A-C 17-Inch-Diameter Tanks I, II, and III	88
40	Fractured Ladish D6A-C 17-Inch-Diameter Tanks IV, V, and VI	89

vi

•

Fig. No.	Title	Page
41	General Appearance of 17-Inch-Diameter Tank Samples Containing Fracture Origin	90
42	General Appearance of Ladish D6A-C Surface-Flawed Specimen Samples Containing Fracture Origin	91
43	Fractographs of Ladish D6A-C 17-Inch-Diameter Tanks I, II, and III	92
44	Fractographs of Ladish D6A-C 17-Inch-Diameter Tanks IV, V, and VI	93
45	Sample Fractographs of 6A1–4V Titanium Sharply Notched Round–Bar Specimens	94
46	Sample Fractographs of 6Al-4V Titanium Surface- Flawed Specimens	95
47	General Appearance of Fractured 6A1-4V Titanium Surface-Flawed Specimens	96
48	General Appearance of Fractured 18Ni(300) Through- the-Thickness Cracked Specimens	97
49	Sample Fractographs of Surface-Flawed 18Ni(300) Maraging Steel Specimens	98
50	Sample Fractographs of Surface-Flawed 18Ni(300) Maraging Steel Specimens	99
51	General Appearance of Fractured 18Ni(300) Surface- Flawed Specimens	100

TABLES

No.

1

ないとうない

No.		Page
1	Chemical Composition of Materials	50
2	Tensile Properties of Ladish D6A-C Steel Plate	51
3	Static Fracture Toughness of Ladish D6A-C Steel Plate	52
4	Static Fracture Toughness and Cyclic Flaw Growth Data of Ladish D6A-C Steel Plate	53
5	Static Fracture Toughness and Cyclic Flaw Growth Data of Ladish D6A-C Steel Plate	54
£	Relationship Between Direction of Running Fracture and Grain Orientation	55
7	Effect of Variations in Heat Treatment and Test Conditions upon Measured Fracture Toughness of Ladish D6A-C Steel	56
8	Tensile and Bend Test Data of Lvd sh D6A-C Weld Test Panels	57
9	Static Fracture Toughness and Cyclic Flaw Growth Data for Ladish D6A-C Plate	58
10	Tensile Properties of 6Al-4V Titanium Plate in Annealed Conditions	59
11	Static Fracture Toughness and Cyclic Flaw Characteristics of 6Al-4V Titanium Plate	60
12	Čyčlic Flaw Growth Data for 6Al-4V Titanium Plate	61
13	Tensile Properties of 18Ni (300) Maraging Steel Plate	62
14	Effect of Aging Temperature upor Static Fracture of 18Ni(300) Maraging Steel	63
15	Static Fracture Toughness and Cyclic Flaw Growth Data for 18Ni(300) Plate	64
16	Cyclic Crack Growth Data for 18Ni (300) Maraging Steel	65

INTRODUCTION

This program is intended to verify the applicability of basic fracture mechanics principles to the problem of premature, low-cycle fatigue failures of high-strength pressure vessels. Examination of such failures indicates that flaws, notches, or other crack-like defects are invariably present at the fracture origin. With stress cycles, these flaws gradually grow until one of them reaches i size large enough for the onset of rapid propagation and failure.

The approach taken in this investigation is based on the premise that, in the absence of uncontrolled metallurgical and environmental variables such as stress-corrosion, hydrogen embrittlement, etc., cyclic flaw growth can be investigated using the Griffith-Irwin stress parameter (K). Determining stress parameter K and measuring crack extensions in test specimens yield test data directly applicable to high-strength pressure vessels fabricated from the same material and subjected to a similar loading profile. The minimum life span of such pressure vessels can be predicted when the size of initial flaws and the operating stress levels are known.

Initial work on this concept was performed during 1966 (Reference 1), using 17-7PH precipitation-hardening steel specimens and pressure vessels. The investigation in the present program is extended to include three additional materials:

1) Ladish D6A-C steel plate 0.50 inch thick, tested at room temperature;

2) 6Al-4V titanium plate 0.50 inch thick, tested at -320°F;

3) 18Ni(300) maraging steel plate 0.25 inch thick, tested at room temperature.

The program consists of three major phases. Phase I is designed to provide preliminary information on the response of Ladish D6A-C and 18Ni(300) steel to heat treatments and to determine mechanical properties and static fracture toughness of 6A1=4V titanium.

Phase II consists of testing sharply notched round bar and flat surface-flawed tensile specimens made from Ladish D6A-C steel and 6A1-4V titanium, and flat surface-flawed and through-the-thickness-cracked tensile specimens made from 18Ni(300) maraging steel. The first two materials were used to demonstrate that, on the basis of the test data obtained using sharply notched round bar specimens, the conditions under which a flaw will become critical before growing through the thickness may be predicted. The 18Ni(300) maraging steel was used to show that conditions under which a flaw will grow through the thickness are likewise predictable on the basis of fracture toughness data.

Manuscript released by the authors 5 March 1964 for publication as an ML Technical Documentary Report.

1

Phase III is designed to provide verification of the applicability of fracture toughness data to actual pressure vessels. Only Ladish D6A=C was used in this phase. The pressure vessels were 17 inches in diameter and about 52 inches long, with two help/spherical heads. Artificial flaws of predetermined size were introduced into the shell section of all pressure vessels. Two tanks were burst-tested: the remaining four tanks were subjected to cyclic loading of various magnitudes. The cyclic life span of each of the four tanks was then compared with the test data obtained using sharply notched round bars and surface-flawed specimens.

TECHNICAL BACKGROUND

The elastic stress distribution in the vicinity of a crack or sharp-edged flaw tip indicates (References 2 and 3) that the elastic stresses always have the same functional form and differ only by a stress-intensity parameter designated by the symbol K. The stress-intensity parameter, K, is linearly dependent upon the applied gross stress and the square root of the flaw size. With increase in either flaw size or gross stress, the stress intensity increases until it reaches a critical value, when rapid flaw propagation and complete fracture result. The critical K value is denoted as K_c for the plane stress and K_{Ic} for the plane strain conditions.

For surface and embedded flaws, which attain critical size and become unstable prior to growing through the thickness, plane strain or so-called opening mode fracture conditions predominate. For through-the-thickness cracks in relatively thin materials, or for surface and embedded flaws that grow through the thickness before inception of instability, the plane strain conditions are replaced by the plane stress, resulting in a predominantly mixed mode or a shear fracture.

The K_{IC} and K_C values for a material at a specific temperature can be determined experimentally. Probably the most common specimens for K_{IC} determination are the sharply notched round bar and the surface-flawed tensile specimens. The stress field intensity for these specimens has been described by Irwin (References 4 and 5), who gives the following formulas for calculation of the plane strain (K_{IC}) fracture toughness values:

$$K_{I_{c}} = \frac{0.233 \sigma_{n} \sqrt{11D}}{\left[1 - \frac{1}{211D} \left(\frac{K_{I_{c}}}{\sigma_{Y,S}}\right)^{2}\right]^{2}}$$
$$K_{I_{c}} = \frac{1.1 \sigma \sqrt{11a}}{\left[\phi^{2} - 0.212 \left(\sigma/\sigma_{Y,S}\right)^{2}\right]^{Y_{2}}}$$

where:

D = shank diameter in inches

d = net diameter in inches

$$d/D = 0.6 \text{ to } 0.8$$

 σ = gross area fracture stress (ksi)

 $\mathbf{O}_{\mathbf{n}}$ = net area fracture stress (ksi)

 $\sigma_{xx} = 0.2$ percent offset tensile yield strength (ksi)

(sharply notched round-bar specimen) (1)

(surface-flawed (2) specimen)

$$\varphi = \int_{0}^{\frac{\pi}{2}} \left[1 - \left(\frac{C^2 - a^2}{C^2} \right) SIN^2 \Theta \right]^{1/2} d\Theta$$

 \mathbf{Q} — depth of the elliptical surface flaw in inches

2C = length of the elliptical surface flaw in inches

 Θ integration variable

Considering the bracketed quantity in the denominator of Equation (2), it will be observed that for a given stress level, the quantity in the brackets is a function of ϕ , which depends upon flaw shape or its length-to-depth ratio. Designating this quantity by a letter Q and calling it a "flaw shape parameter," Equation (2), after rearranging, takes the following form:

$$K_{Ic} = 1.1 \sqrt{\pi} \sigma (a/Q)^{1/2}$$
(3)

It is readily seen that the plane strain fracture toughness (K_{IC}) is proportional to the fracture stress (G) and the square root of the quantity in brackets (a/Q). The latter, incorporating the flaw depth, a, and the flaw shape parameter. Q, represents flaw size used for calculation of the plane strain (K_{IC}) fracture toughness values in surface-flawed specimens.

The same relation applies to fully embedded elliptical flaws, except that the 1.1 constant is dropped from Equations (2) and (3). The 1.1 constant was originally introduced by Irwin (Reference 6) to compensate for the stress relaxation of the surface flaw at the exposed corners. Figure 1 shows a plot of the flaw shape parameter (Q) as a function of flaw depth-to-length ratios (a/2c) for different fracture stress levels.

For determination of plane stress (K_c) fracture toughness values, through-thethickness, centrally cracked sheet specimens are used. The K_c values are calculated (Reference 7) by the use of the following relationship:

$$K_{\rm c} = \sigma \sqrt{W \operatorname{Tan}\left(\frac{\pi a}{W} + \frac{\kappa_c^2}{2W \sigma_{\rm Y.S.}^2}\right)}$$
 (thin sheet) (4)

where:

 σ = gross area fracture stress (ksi)

2Q = critical crack length as measured at the inception of crack instability in inches

 \mathbf{W} = specimen width in inches

Figure 1: Flaw Shape Parameter Curves for Surface and Internal Cracks

Equation (4) may also be used for calculation of the plane strain value (K_{IO}) by the testing of relatively thick through-the-thickness centrally cracked plate specimens. For the in-between thicknesses, calculated fracture toughness usually represents some intermediate value. Figure 2 illustrates the transition between thin sheet and thick plate in terms of measured fracture toughness.

Figure 2: Fracture Mode Transition

In special cases, when the thickness of the material approaches that required for plane strain conditions, a through-the-thickness crack might become unstable (might "pop") during initial loading prior to complete fracture. The initial instability, whenever it is clearly defined, occurs under plane-strain conditions, and the calculated fracture toughness value at the instant of pop becomes representative of the plane strain (K_{Ic}) fracture toughness (Reference 8).

After brief consideration of various test methods for evaluation of plane stress (K_c) and plane strain (K_{Ic}) values of engineering materials, it is appropriate to extend this brief review to a consideration of the relationship between applied stress levels and corresponding flaw or crack sizes in test specimens and structural components, such as pressure vessels, and to illustrate the concept of flaw growth potential as a function of the proof pressure factor.

CRITICAL FLAW SIZE AND FRACTURE STRESSES

The relationship between critical flaw sizes and applied stress levels for a given fracture toughness value may be derived from Equation (3) for plane strain and from Equation (4) for plane stress conditions. For surface-flawed specimens, the relationship is represented schematically in Figure 3.

Figure 3: Relationship Between Critical Flaw Sizes and Applied Stress Level

6

The solid line in Figure 3 represents the theoretical relationship between critical flaw sizes $(a/Q)_{CT}$, and corresponding fracture stresses, σ , as defined by Equation (3). The relationship is found to hold as long as the applied stresses do not exceed uniaxial yield strength, σ_{yS} , of the material. As the applied stresses and flaw sizes follows some experimentally determined curve (represented schematically by a dotted line) until the ultimate strength of the material, σ_{ult} , is reached. For the present program the applied stresses were selected to be well below the yield strength of the material; consequently, the theoretical relationship between stresses and flaw sizes and flaw sizes and flaw sizes and flaw strength of the material.

As applied to pressure vessels containing inevitable crack-like defects, the critical flaw size represents the size $(a/Q)_{cr}$, required for instability and fracture at a stress level generated by a given internal pressure.

At this point, the flaw exhibits a rapid acceleration in growth, and it can attain a maximum velocity in steel and aluminum alloys of approximately 5000 to 6000 feet per second. If the crack reaches this velocity while the driving forces (stresses) have not diminished, the crack will branch and the pressure vessel will shatter. The more brittle the material the more likely it is that shattering will occur.

In tough or relatively thin materials, the crack velocity is retarded through a combination of local stress relaxation and large plastic deformation, as well as the development of shear lips at the tip of a crack. Under this condition, the limiting velocity may not be reached, and the tank may split rather than shatter. Ensurance against either type of failure requires that the unavoidable sharp flaws or crack-like notches be considerably smaller than the critical size at a given operating stress level. The life span of the pressure vessel will then depend upon the number of cycles or time under sustained loading needed to propagate initial flaws or sharp notches until one of them reaches a critical size.

INITIAL FLAW SIZES AND FLAW GROWTH POTENTIAL

Initial flaws, either pre-existent or introduced during fabrication of pressure vessels. may be determined by nondestructive inspection techniques. As a guarantee against faulty interpretation or an outright error in inspection findings, the maximum possible initial flaw size may be determined by proofpressure testing of pressure vessels. Knowledge of the maximum possible flaw size, together with the flaw growth characteristics of the pressure vessel material, may then be used to predict minimum service life of a pressure vessel.

Using Equation (3). critical flaw size versus applied stress-level curves can be established for various materials in the tank (weld. base metal. forgings. etc.) When symbol $\mathbf{\sigma}_0$ represents operating stress level and $\boldsymbol{\alpha}$ represents proof pressure factor — with $\boldsymbol{\alpha}$ always greater than unity — the critical flaw sizes

7

corresponding to proof stress, \mathbf{x}_{0} , and operating stress, \mathbf{x}_{0} , may be read directly from the curve in Figure 4, illustrating the relationship between maximum possible flaw sizes at proof and operating stress levels.

From Figure 4 it may be observed that the critical flaw size $(a/Q)_{C\Gamma}$, at the proof-pressure stress level may be regarded as the largest possible initial flaw size $(a/Q)_i$ that could be retained in the pressure vessel before it is put in service. Given the ratio of the initial flaw size: $(a/Q)_i$, to the critical flaw size, $(a/Q)_{C\Gamma}$, at the operating stresses, the flaw growth potential may be conveniently expressed in terms of the proof pressure factor. Thus, from Equation (3), for a given K_{IC} value for a material, the critical flaw size at the operating stress level (\mathfrak{S}_0) becomes:

$$(2/Q)_{cr} = \frac{K_{Tc}^2}{1.21\pi\sigma_0^2}$$
 (5)

Likewise, for the same K_{IC} value, the critical flaw size at the proof stress level can be calculated by substituting proof stress (KG_0) in place of σ in Equation (3). But since the very same flaw which was about to become critical at the proof stress level now (upon reduction of stresses from proof (KG_0) to operating (σ_0) stress level) may be regarded as the largest possible initial flaw size which could be present in the tank as it is put in service. Therefore, it may be appropriately called the maximum possible initial flaw (a/Q)_i at the operating stress level in the tank, which has been subjected to the described proof test. Thus

$$\left(\Omega/Q\right)_{i} = \frac{K_{Ic}}{1.2 \sqrt{\pi} (\infty \sigma_{o})^{2}}$$
(6)

When Equation (5) is divided into Equation (6), the ratio of the initial to critical flaw sizes as a function of proof pressure factor is obtained.

$$\frac{(\alpha/Q)_{i}}{(\alpha/Q)_{cr}} = \frac{1}{\alpha^{2}}$$
(7)

The minimum possible flaw growth potential (i.e., inches of flaw growth remaining before failure) of the tank is then $(1-1/\alpha^2)$ multiplied by the critical flaw size at the operating stress level. It is to be noted that the finite critical flaw sizes and thus the flaw growth potential will vary throughout a tank, since the fracture toughness values will likely vary between base metal, weldments, forgings, etc. However, in terms of percent of the critical size, the flaw growth potential is a constant for a given proof factor.

SUBCRITICAL FLAW GROWTH

Although it is recognized that there are several kinds of subcritical flaw growth, the purpose of this program was to investigate only the cyclic flaw growth. For this purpose several sharply notched round-bar specimens are statically pulled to failure to determine the K_{IC} value of the material. Additional specimens are then loaded to various percentages of the critical stress intensity and cycled to failure following a cyclic spectrum believed to be representative of the pressure vessel service loading. The initial stress intensities, K_{II} , are calculated using Equation (1) by substituting the initial net area stress, σ_{I} , in place of the net area fracture stress, σ_{n} . The σ_{I} is calculated by dividing the maximum cyclic load by the initial net area. As cycling progresses, the notch deepens in the same manner as when a flaw grows in a tank under cyclic load and, by virtue of the ever-increasing stress on the net area, the stress intensity increases from the initial value, K_{II} , to the critical value, K_{IC} , at which time failure occurs. Test results are then plotted in terms of K_{II}/K_{IC} versus cycles to failure on semilog paper. A schematic representation of the plot is shown in Figure 5.

Similarly, when surface-flawed specimens are subjected to cyclic loading until failure, a plot of K_{Ii}/K_{Ic} versus cycles to failure for surface-flawed specimens can also be established.

The equivalency between the two plots can be shown to exist by considering Equations (1) and (3). Both equations are used for determination of plane strain (K_{Ic}) fracture toughness. Barring excessive influences of pronounced anisotropy of the material, use of either equation should and does yield the same fracture toughness values. Therefore, it would be appropriate to take Equations (1) and (3) and equate their respective right-hand sides. Solving for $(a/Q)_{cr}$ yields the following relationship:

$$(Q/Q)_{cr} = \frac{.045 D(\sigma_{r}/\sigma)^{2}}{\left[1 - \frac{1}{2\pi D} \left(\frac{\kappa_{Ic}}{\sigma_{Y,S}}\right)^{2}\right]^{2}}$$
(8)

Figure 5: Cyclic Flaw Growth

When a stress lower than the net area fracture stress is applied to sharply notched round-bar specimens, a subcritical stress intensity, K_{Ii} , is generated. The expression for its value, obtained from Equation (1) by substituting $\vec{\sigma}_{ni}$ (initial net stress) in place of $\vec{\sigma}_{n}$ (fracture net stress), takes the following form:*

$$K_{Ii} = \frac{.233 \text{ Ghi } \sqrt{\pi D}}{\left[\frac{1}{2\pi D} \left(\frac{K_{IC}}{\sigma_{vs}} \right)^2 \right]^2}$$
(9)

A subcritical stress intensity (K_{Ii}) of the same magnitude can be also generated in a surface-flawed specimen subjected to a given stress level (\bigcirc) by appropriate selection of less-than-critical initial flaw size, $(t/Q)_i$. The K_{Ii} value is derived directly from Equation (3) by substituting $(a/Q)_i$ in place of $(a/Q)_{cr}$; thus, for surface-flawed specimens

$$K_{Ii} = 1.1 \sqrt{\Pi \sigma (a/Q)_{i}^{1/2}}$$
 (10)

^{*} The discrepancy introduced by using KIc rather than KIi for the yield-zone correction is considered to be negligibly small.

Because the left-hand sides of Equations (9) and (10) were set to be equal, the right-hand sides may be equated, and solving for $(a/Q)_i$ produces the following relationship for initial flaw size:

$$(Q/Q)_{\lambda} = \frac{.045 D (\sigma_{n\lambda}/\sigma)^{2}}{\left[1 - \frac{1}{2\pi D} \left(\frac{\kappa_{zc}}{\sigma_{y.s.}}\right)^{2}\right]^{4}}$$
(11)

The ratio of initial flaw size $(a/Q)_i$, as expressed by Equation (11), to the critical flaw size $(a/Q)_{cr}$, as expressed by Equation (8), results in the following relationship:

$$\frac{(\alpha/\varphi)_{i}}{(\alpha/\varphi)_{cr}} = \left(\frac{\sigma_{ni}}{\sigma_{n}}\right)^{2}$$
(12)

Equation (12) reveals that initial and critical flaw sizes in surface-flawed specimens are related to the initial and critical stress levels in the sharply notched round-bar specimens. The ratio of initial to critical flaw size also represents a flaw growth potential; consequently, Equation (7) shows that complete equivalency between flaw growth potential in sharply notched round-bar specimens, surface-flawed specimens, and proof-tested pressure vessels may be established; i.e.:

$$\frac{(\alpha/Q)_i}{(\alpha/Q)_{cr}} = \left(\frac{\sigma_{ni}}{\sigma_{n}}\right)^2 = \left(\frac{1}{\sigma_{cr}}\right)^2$$

(13)

APPLICATION OF CYCLIC FLAW GROWTH DATA

If the šize, shape, and orientation of actual flaws in a pressure vessel are known, cyclic flaw growth data can be used to estimate cyclic life span of a pressure vessel. Conversely, if a requirement for certain cyclic life span of a pressure vessel is established, then the cyclic flaw growth data can be used to define the largest permissible initial flaw size. In either case, the validity of the estimates strongly depends upon the accuracy of the nondestructive inspection methods, ability to define existing stress levels, and exclusion of uncontrolled metallurgical and environmental variables. Further consideration should be also given to the manner in which a subcritical (initial) flaw grows to critical size.

As applied to pressure vessels there are three general types of subcritical flaw growth. These are discussed in detail in Reference 9 and are summarized below:

- <u>Type I</u> A through-the-thickness crack grows to a critical size with stress cycles, causing failure.
- <u>Type II</u> An initial internal or surface flaw grows through the thickness with stress cycles, and then to critical size, causing failure.

$\frac{\text{Type III}}{\text{flaw grows to critical size with stress cycles, causing failure.}$

For the Type I crack, onset of rapid fracture is governed by the measured fracture toughness related to the material thickness, as shown in Figure 2. As noted earlier, growth of the initial Type II crack is first governed by plane-strain toughness, regardless of material thickness, but after growth through the thickness, behavior is identical to the Type I flaw. Type III flaw growth is by far the most dangerous condition; both the initial growth and inception of instability are governed by the plane-strain (\dot{K}_{IC}) fracture toughness value. No advance warning, such as leakage, is given , and since the \dot{K}_{IC} value is considerably lower than the \dot{K}_{C} value, the critical sizes of embedded or surface flaws can be quite small. Because of the importance of Type III, the major effort in this program was devoted to this type of subcritical flaw growth

With the Type III subcritical flaw growth in mind, consider a pressure vessel that has been proof tested at 40 percent above its operating stress level ($\alpha = 1.4$). The intersection of the 1.4 proof-pressure line with the critical flaw size curve (Figure 6, which has been plotted for a hypothetical 6Al=4V titanium tank to be operated at =320°F) gives a point on the abscissa that represents the largest possible initial flaw size that could be retained in the pressure vessel after the proof test. Obviously, the flaws retained in the pressure vessel could be smaller than the one read off the abscissa but certainly not larger; in that case, the vessel would have but st during the proof test.

The ratio of initial to critical flaw size is directly dependent upon $(1/6)^2$ where 6×16 is the proof test factor (Equation 12), the successful proof test thus indicates that there are no greater initial flaws than $(1/6)^2$ or 51 percent of the critical flaw size at the operating stress level. Since the initial-to-critical flaw ratio $(a/Q)_i/(a/Q)_{CT}$ is also proportional to the $(K_{II}/K_{IC})^2$ ratio, the entire family of constant cycles to failure curves can be constructed as a plot of applied stress versus flaw size (a/Q) using cyclic flaw growth data from sharply notched round-bar or surface-flawed specimens. When these data are applied to the 6AI-4V titanium hypothetical tank, which has been proof-tested to 1.4 of its operating stress level, the expected minimum strength of the tank at any one time during its cyclic life can be established.

The minimum strength at proof test corresponds to point A' on Figure 6. This point gives the maximum possible initial flaw of 51 percent of critical at operating stress. The initial flaw as used from Figure 6A would grow to size B in about 100 cycles and the minimum strength at the end of 100 cycles is equal to B' on Figure 6B. During the additional 40 cycles the flaw grows to point C giving minimum strength at that point equal to C'. At the end of 150 cycles the maximum possible initial flaw will grow to critical size and cause failure.

Sample Procedure for Estimating Minimum Cyclic Tank Life Figure 6:

Mso, the minimum cyclic life span and the remaining strength of the tank may be estimated for different operating stress levels while using the same plot shown in Figure 6A. For example, if after the first 140 cycles the operating stress level is dropped to 80 percent of its original value (Point C" on Figure 6A) and then cycled at this stress level until failure, the tank should have the capacity to sustain at least 120 cycles until failure. The cyclic life span of the tank would, of course, be greater than predicted if the retained initial flaws after proof test were actually smaller than 51 percent of the critical size.

MATERIALS AND TEST SPECIMENS

The Ladish D6A-C steel plates (0.50 by 36 by 60 inches, Heat No. 3950937, and 0.375 by 36 by 60 inches, Heat No. 3950935) were purchased in hot-rolled, annealed, pickled, and oiled condition. Considerable variation in flatness (oil-canning of up to 0.40 inch) was noted in the 0.50-inch-thick plates. Although the deviations from flatness were within acceptable limits of AMS 2252, the plates did require straightening before fabrication of test specimens and 17-inch-diameter tanks. This has been accomplished by stress-relieving the Ladish D6A-C plates at 1225°F for 8 hours between heavy flat steel plates. The deviation from flatness in the 0.375-inch plates could be tolerated because they were to be deep-drawn and hot-spun to make 17-inch-diameter tank heads.

The 6Al-4V titanium plate (0.50 by 36 by 36 inches, Heat No. 321251) was purchased in hot-rolled, annealed, and cleaned condition per AMS 4911. The variation in flatness was also pronounced (waviness of up to 0.25 inch), and the plate had to be straightened by stress-relieving at 1300⁻F for 1 hour between heavy steel plates. Prior to the 1300^oF stress-relieve cycle, the titanium plate was protective-coated with Turco 4367-Pretreat to prevent possible contamination during the stress-relieve.

The 18Ni(300) maraging steel plate (0.25 by 36 by 72 inches, Heat No. 3951003) was purchased in the annealed, pickled, and oiled condition. The variation in tlatness, unlike Ladish D6A-C and 6A1-4V titanium plates, was not pronounced.

The weld wire for welding 17-inch-diameter test tanks was made available from existing stock. Two kinds of weld wires were evaluated prior to final selection. The first was with the very low carbon content produced by the Linde Company under code number M1-88. The other was Ladish D6A-C Armetco Weld Filler wire of slightly less-than-parent-metal carbon content. Chemical composition of the weld wires and all three materials is listed in Table 1, Appendix I.

Configuration of the smooth, round, tensile specimen used for determination of uniaxial tensile properties of Ladish D6A-C steel plate and 6Al-4V titanium plate is shown in Figure 21, Appendix II. The uniaxial tensile properties of 18 Ni(300) maraging steel were determined using the smooth, flat tensile specimen shown in Figure 22. Static fracture toughness and cyclic flaw growth characteristics of Ladish D6A-C steel and 6Al-4V titanium were obtained using sharply notched round-bar and surface-flawed flat specimens shown in Figures 23 and 24, respectively. The surface-flawed specimens of the same basic configuration shown in Figure 24 (except for uniform gage thickness) were used to generate cyclic flaw growth data and to determine plane-strain static fracture toughness values for 18Ni(300) maraging steel. In addition, the through-the-thickness cracked specimen shown in Figure 25 was also used to determine plane stress fracture toughness and develop some cyclic crack growth data for through-thethickness cracks. Weld test panels used for evaluation of weld tiller wires are shown in Figure 26. The edge preparation was adopted directly from the 3/8-inch-thick, 36-inchdiameter production pressure vessels. This to some extent facilitated development of the weld settings. Tensile weld-joint specimens and weld-bend test specimens used for evaluation of weld test panels are shown in Figures 27 and 38, respectively. Initial development of the weld settings for welding 17-inchdiameter test tanks was done using short cylindrical sections (shells) shown in Figure 29. Configuration of the 17-inch-diameter tanks used for the Phase III testing is shown in Figure 30.

1

EXPERIMENTAL PROCEDURE

All Ladish D6A-C specimens were machined with the longitudinal axis of the specimens oriented parallel with the plate-rolling direction. The specimens were rough-machined into blanks, and given the following heat treatment:

Austenitized at 1550 ±25° F for 1 hour

Salt-quenched to 400° F

Held in salt at 400°F for 10 to 15 minutes

Rinsed in boiling water

Air-cooled below 150°F

Double-tempered at specified temperature for 2 hours each within 15 minutes after air-cooling

The normalizing cycle has been omitted in the heat treatment given to the Ladish D6A-C test specimens because during an earlier attempt to heat-treat Ladish D6A-C weld-test panels the material cracked severely (laminated) during aircooling after normalizing at 1650°F for 1 hour. Omission of the normalizing cycle was also considered desirable to minimize distortion in the 17-inch diameter test pressure vessels fabricated from the same material.

The Phase I Ladish D6A-C test specimens, scheduled to provide the preliminary information on the response to heat treatment and to determine the mechanical properties and static fracture toughness of Ladish D6A-C steel as a function of tempering temperature, consisted of five groups. Each group contained four specimen blanks to make two smooth tensile and two sharply notched round bar specimens. The five groups, after being austenitized and quenched in one batch, were then separated and double-tempered at 400, 500, 600, 800, and 1000 ± 10 °F, respectively.

After tempering, all tensile specimens and all sharply notched round bar specimens were finish-machined (Figures 21 and 23). Low-stress, uniaxial, tension-tension cyclic loading was applied to each specimen at room temperature until adequate notch acuity (fatigue extension) was developed in each specimen. For this purpose, an optical microscope was trained at the root of the notch to detect crack initiation and growth. To reduce the possibility of eccentric notch extension, each specimen was frequently rotated around its longitudinal axis.

The Phase II Ladish D6A-C specimens consisted of 8 surface-flawed and 30 sharply notched round bar specimen blanks. The eight surface-flawed specimen blanks were austenitized, salt-quenched, and double-tempered at $600 \pm 10^{\circ}$ F in a single batch. The 30 round bar specimen blanks were similarly heat treated but in a different batch.

The sharply notched round bar specimens were finish-machined and subjected to low stress cyclic loading to extend the initial notch in the manner identical to that for the Phase I specimens. The surface-flawed specimen blanks were finishmachined (Figure 24). The initial surface flaw was introduced using the Electrical Discharge Machine (EDM). The terminating root radius of the EDM flaw was less than 0.003 inch. Subsequently, each surface-flawed specimen was cycled at low tension-tension stress to initiate adequate fatigue extension of the EDM flaw. The optical microscope was used to ascertain adequacy of the fatigue extension. Testing of the specimens usually followed immediately after fatigue extension, using the same tensile machine.

Development of the weld settings for the six Ladish D6A-C 17-inch diameter test tanks used in Phase III testing consisted of two parts. First, a suitable weld filler wire was selected on the basis of tensile and slow bend test results obtained from weld test panels shown in Figure 26. Then, a series of short cylindrical sections 17 inches in diameter and about 6 inches long (shown in Figure 29) were rolled, machined, and welded to simulate weld-joint configuration and welding conditions of the 17-inch-diameter tanks.

A total of three weld panels and six cylindrical shells were fabricated. The first panel was welded with MI-88 Linde weld filler wire. In the second panel the MI-88 wire was used only to make the root pass; the remaining filling passes were completed with Ladish D6A-C Armetco weld wire. The third panel was welded entirely with Ladish D6A-C Armetco weld filler wire. Preheat and postheat cycles of 600 and 900°F, respectively, were used for welding each weld-test panel, cylindrical shells, and later the 17-inch-diameter tanks. The cylindrical shells and the 17-inch diameter tanks were welded entirely with MI-88 weld filler wire because it offered an adequate combination of strength and ductility (see Table 8 and Figure 38), having the capacity of going into general yielding together with the base metal.

Selection of the preheat and postheat cycles was conditioned by prior experience in welding high-strength steels and by suggested procedures in the technical literature. Particular attention was devoted to keeping the parts at the preheat temperature of 600 ±50° F during the entire welding operation, subsequent cooling down to $350 \pm 50^{\circ}$ F to affect more complete transformation to martensite, and postheat to 900 ±50°F for 15 to 30 minutes to temper the transformed martensite immediately upon completion of welding. The 17-inch-diameter tank sut seemblies were also stress-relieved at 1200 ±25°F for 2 hours each after the postheat cycle. Quality of the weld joints in test panels, cylindrical sections, and later in the 17-inch-diameter tank was inspected by X ray and by the Magnaflux in accordance with MIL-I-6865 and MIL-I-6868, respectively. All welds in weld test panels and cylindrical sections were found to be acceptable. One close-out weld in Tank VI was rejected because of inadequate penetration and excessive incidence of porosity. The tank, however, was later accepted to be used "as is" because the size and orientation of porous cavities, together with the lack of penetration, were estimated to be considerably smaller than the largest permissible initial flaw for that section of the weld, I after the tank was burst-tested with the fracture originating at the surface flaw in the base metal.

All 17-inch-diameter tanks were heat-treated according to the same schedule used for Ladish D6A-C specimens: i.e., austenitized at 1550° F for 1 hour, salt-quenched to 400° F, rinsed in boiling water, then double-tempered at 600 ± 10 F for 2 hours each. A special heat-treat harness fixture was built to submerge the tanks during the salt-quench and rinsing operations.

Upon completion of the heat treatment, the tanks were proof-pressure tested at 3750 psi maximum pressure, which was above the expected burst pressures once the surface flaws were introduced into the tanks. The main purpose of the proof-pressure test was to ensure personnel safety during initial fatigue extension of the surface flaws in the tanks. During examination of the surface flaws, the tanks were kept pressurized at 600 psi to facilitate detection of the initial fatigue extensions.

The 6A1-4V titanium specimens scheduled for evaluation of mechanical properties and static fracture toughness as part of the Phase I testing consisted of three smooth tensile specimens (Figure 21) and three sharply notched round bar fracture-toughness specimens (Figure 23). The Phase II tests were conducted using seven additional sharply notched round bar specimens (Figure 23) and four surface-flawed specimens per Figure 24.

Because the 6Al-4V titanium plate was received and was to be tested in the annealed condition during the Phase I and II work, all specimens were finishmachined without heat treatment except for the previously mentioned stressrelieve to reduce waviness in the plate. Sharply notched round bar specimens were subjected to the low-stress cyclic loading to initiate adequate fatigue extension in the manner similar to Ladish D6A-C specimens. In addition to the major (largest) initial surface flaw located in the midportion of the gage area, the 6Al-4V surface-flawed specimens contained two additional (smaller) surface flaws, one on each side along the longitudinal axis of the specimen. All three surface flaws were 3 inches apart. The fatigue extension of the major surface flaw was done by low-stress, uniaxial, tension-tension cyclic loading. Although each of the smaller flaws also experienced the same cyclic loading, the stress intensity (due to their smaller size) was not high enough to start fatigue extension. Therefore, when initial fatigue extension was detected in the major flaw, the specimen was removed from the tension-tension fatigue machine and mounted as a cantilever beam in a specially designed bending fixture. The specimen was then subjected to cylic bending in a manner that generated highest tensile stresses in the region of the first minor flaw. After in-plane rotation of the test specimen, cyclic bending was repeated to generate highest stresses in the region of the second minor flaw until fatigue extension in both minor flaws was detected.

The 18Ni(300) maraging steel specimens (eight per Figure 22 and four per Figure 25) were scheduled to provide preliminary information as part of the

Phase I work on the response to heat treatment and to determine the mechanical properties and static fracture toughness as a function of aging temperature. The specimens were divided into four groups of two smooth tensile and one center-cracked specimen: then the four groups were aged at 800, 850, 900, and 950 $\pm 10^{\circ}$ F, respectively, for 3 hours each.

The Phase II group of 18Ni(300) specimens consisted of two center-cracked specimens (Figure 25) and four surface-flawed specimens of uniform thickness (Figure 24). All specimens in this group were finish-machined after aging at 900 ±10°F for 3 hours in a single batch. The center-cracked as well as surface-flawed specimens were then subjected to low-stress cyclic loading to generate adequate fatigue extension at the tips of center cracks and surface flaws. O'dy one surface flaw per specimen was used.

TEST CONDITIONS

All Ladish D6A-C test specimens were tested at room temperatures. Strain rates of 0.005 and 0.02 inch per inch per minute were used on all smooth tensile specimens. Statically tested sharply notched round bar and surface-flawed specimens were pulled to failure at a loading rate needed to produce a complete failure within 1 to 3 minutes.

With the exception of the initial fatigue extension of EDM flaws and machined notches (initial fatigue extension was done at the rate of 1800 cycles per minute) the cyclic flaw growth data was generated using a trapezoidal loading profile at a cyclic frequency of one cycle per minute. The trapezoidal loading profile was formed by breaking each cyclic period into four equal parts. The first part was spent in going from zero load to maximum load; the second in holding the specimen at a maximum load; the third in unloading; and the fourth part at zero load. Similar loading profile was also applied to 17-inch-diameter test tanks. The trapezoidal load programmer is shown in Figure 31.

All testing of Ladish D6A-C specimens was intended to take place in the ambient atmosphere. However, during the generation of cyclic flaw growth data using sharply notched round bar specimens large scatter of data points led to a suspicion that variations in the relative humidity in the air may be creating an undesirable effect upon flaw growth characteristics. As a check, several specimens were deliberately moisturized by wrapping the notched area with a moist cloth, one end of which was submerged in water. The notch area itself never came in direct contact with the water. The cyclic life span of such specimens was reduced by a factor of more than ten.

Concurrently, some specimens were also tested with the notch or surface flaw area covered with a dehydrating powder. The cyclic life span of these specimens appeared to be slightly higher than that of specimens tested in air. Although variation of relative humidity failed to show any trends, it was decided to dessicate the surface-flawed area in the remaining specimens and in the 17-inch diameter Ladish D6A-C test tanks.

In addition to checking the effect of moisture, several specimens were also tested to check the possible effect of the omission of normalizing cycle upon flaw growth characteristics. Some of these specimens were heat-treated using a normalizing cycle at 1650 $\pm 25^{\circ}$ F for 1 hour in addition to austenitizing at 1550 $\pm 25^{\circ}$ F, followed by a double temper at 600 $\pm 10^{\circ}$ F for 2 hours each. The behavior of these specimens, when subjected to cyclic loading, was not significantly different from that of non-normalized specimens. Consequently, a change of heat-treatment procedure appeared to be unnecessary.

Testing of the 17-inch-diameter tanks consisted of two tanks being burst-tested, while the remaining four tanks were pressure-cycled to failure using a trapezoidal loading profile. The pressurizing medium was hydraulic oil, per MIL 5606. The trapezoidal loading was generated by the same programmer used for cyclic testing of specimens. After initial low-stress fatigue extension, each surface flaw was covered with a pad containing dehydrating powder.

Fatigue extension of surface flaws was first attempted by using the hydraulic system of a Losenhauser Universal Tensile Machine, capable of generating a sinusoidal loading profile at a frequency of about 300 cycles per minute. However, the volumetric oil displacement of the machine operating at this frequency could not produce a large enough amplitude to effect fatigue extension. After two attempts and the loss of one tank because of inadequate fatigue extension, the hydraulic bench used for burst and trapezoidal testing was instrumented to deliver cyclic pressurization with acceptable amplitude and at about 25 to 30 cycles per minute. The changeover from sinusoidal to trapezoidal loading profile in the bench was relatively simple, and each tank was tested shortly after the initial fatigue extension of the surface flaw. Figure 32 shows a schematic representation of the tank test setup.

The applied hoop stress levels in the tanks were calculated using pressure readings and tank dimensions of diameter and thickness. In addition, the first two tanks tested were instrumented with Type A-5 SR-4 strain gages, located 120 degrees apart on a 3-inch radius, with the surface flaw in the center. Because one of the tanks suffered detectable distortion during the heat treatment good correspondence between strain gage readings and calculated hoop stresses on the tirst two tanks was considered sufficient to give full credence to the calculated stress values. The remaining tanks were tested without strain gages.

All 6A1-4V titanium specimens were tested at -320°F in liquid nitrogen, which was admitted into a removable cryostat. Figure 33 schematically shows the test fixture with the cryostat mounted around a sharply notched round bar specimen. A similar arrangement was also used for testing surface-flawed specimens under static and cycric loading conditions. As in Ladish D6A-C specimens, the initial low-stress fatigue extension of notches and surface flaws was done at room temperature, with the sinusoidal loading administered at a frequency of 1800 cycles per minute. Cyclic flaw growth data were determined using a trapezoidal loading profile with frequency of 1 cycle per minute and using the load programmer shown in Figure 31.

The 18Ni(300) maraging steel specimens were tested in the manner similar to Ladish D6A-C specimens except that no additional tests on the effect of moisture were conducted. Furthermore, since there were also through-the-thickness cracked specimens, a 35-mm camera was used to record slow growth during static testing for determination of a total crack length at the inception of crack instability.

The camera setup consisted of one camera being trained at the test specimen while the other was trained at the load dial. Both cameras were actuated by the same electrical control. Satisfactory resolution of the film was achieved using a symmetrically oriented light source with a parabolic reflector and a polarizing screen. The polarizing screen was placed over the camera lens and adjusted by rotation until the contrast between the initial crack and the specimen surface reached its maximum. Figure 34 shows the 35-mm camera setup similar to the one used in this program.

In addition, each of the through-the-thickness cracked specimens and one surface-flawed specimen were instrumented for detection of pop-in (plane strain instability) during loading. The instrumentation consisted of two electrical resistance SR-4 strain gages applied to each specimen near both tips of the crack. The distance from the tip was about 0.10 inch. The strain gages were connected to the X-Y plotters, which recorded and plotted load in pounds versus strain near the crack tip. At the instant of pop-in, whenever one occurred, a sudden increase in strain registered on the X-Y plot. Taking the load at the instant of pop-in and the initial crack length, the plane strain (K_{ic}) values could be calculated.

EXPERIMENTAL RESULTS

LADISH D6A-C STFEL

.

Because of the severe cracking of Ladish D6A-C plate during earlier attempts to heat-treat the steel, several small samples were given various heat-treatment cycles and then were submitted to metallurgical examination. Additional samples were sent to the chemical laboratory for spectrographic and gas analyses.

The results of the spectrographic analysis (shown in Table 1) checked well with the vendor's analysis. The gas analysis revealed only a trace of hydrogen (less than 4 ppm), oxygen 7 ppm, and nitrogen 90 ppm. Metallurgical examination of several sectioned samples failed to reveal any traces of pre-existent micro-fissures or cracks, which could have caused severe cracking and lamination during quenching.

Omission of the normalizing cycle and substitution of 400 °F salt quench in place of quench to room temperature were found to produce uniform microstructure with only a small trace of bainite. The as-quenched hardness of such samples was 57-58 Rc as compared to 58-59 Rc for samples that were normalized and oil-quenched to room temperature. Both samples appeared to be completely homogenized upon subsequent double tempering, and, when examined under a 500-power optical microscope, could not be distinguished from each other.

Tensile properties and static fracture toughness of Ladish D6A-C steel plate are listed in Tables 2 and 3, respectively, and are plotted in Figure 7 as a function of tempering temperature. Table 2 shows a 0.02-percent offset yield strength as well as the conventional 0.2-percent offset yield strength. Cyclic flaw growth data, together with additional static fracture toughness data, are listed in Table 4 for sharply notched round bar specimens and in Table 5 for surface-flawed specimens.

The initial and critical flaw sizes were determined from fractographs taken from each fractured specimen and 17-inch-diameter test tanks. A wide-field optical microscope with a graduated eyepiece was used to facilitate detection of the exact outlines of initial and critical flaw boundaries. Because progression of surface flaws and round note ies was not always consistent with the assumed shapes (semiellipse for surface flaw and cylindrical notch for round bar specimen), the flaw and notch dimensions were calculated with the aid of a polar planimeter.

In the case of sharply notched round bar specimens, the initial and critical notch areas. as measured from the fractograph using a polar planimeter, were used to calculate the equivalent net diameter that would be needed to generate exactly the same area for a truly circular shape. The initial and critical surface flaw areas were used to calculate equivalent flaw lengths (major axis of the

Figure 7: Fracture Toughness and Tensile Properties of Ladish D6A-C Steel Plate

•

ellipse) assuming that the flaw is truly semielliptical with the actual flaw depth being the minor semiaxes. The calculated values were then used in fracture toughness equations for calculation of initial and critical fracture toughness values.

Sample fractographs of sharply notched round bar specimens tested under static and cyclic loading conditions are shown in Figures 35 and 36, respectively. Sample fractographs of surface-flawed specimens are shown in Figure 37 in Appendix IV. Figures 35 and 36 illustrate some of the flaw growth irregularities encountered during cyclic testing of Ladish D6A-C sharply notched round bar specimens.

Possible relationships between flaw growth direction and grain orientation in sharply notched round bar specimens were checked by etching portions of the sharply notched round bar specimens and measuring the included angle between the two. The results are listed in Table 26 and plotted in Figure 8 in the form of a histogram.

Test results on the effect of moisture and variation of heat treatment cycles (normalized versus non-normalized specimens) are listed in Table 7. Tensile and bend test data of Ladish D6A-C weld test panels are listed in Table 8. General appearance of the tensile and bend weld joint test specimens after testing is shown in Figure 38.

The results of burst and cyclic testing of the 17-inch-diameter Ladish D6A-C test pressure vessels are listed in Table 9. General appearance of the six fractured tanks is shown in Figures 39 and 40. A composite view of the tank shell samples containing fracture origin is shown in Figure 41. For comparison, Figure 42 shows general appearance of the sample of the surface flawed specimens after testing.

Fractographs of the six Ladish D6A-C 17-inch-diameter test tanks are shown in Figures 43 and 44.

The combined cyclic flaw growth data obtained from sharply notched round bar specimens, surface-flawed specimens, and the 17-inch-diameter pressure vessels are plotted in Figure 9 in terms of initial stress intensity as a percent of critical K_{Ic} value versus cycles to failure on semilog paper.

Because of the large scatter of test data points for sharply notched round bar specimens, the K_{Ii} K_{Ic} ratio was taken on the basis of individual K_{Ic} value for each respective specimen. In this manner, the scatter was suppressed and the relationship between sharply notched round bar, surface-flawed specimen, and 17-inch-diameter tanks became more apparent. The effect of flaw depth-to-material thickness ratio is shown in Figure 10.

Figure 8: Frequency Distribution of Acute Angle Between Flaw Growth Direction and Grain Orientation in Ladish D6A-C SHARPLY NOTCHED ROUND BAR SPECIMENS

Figure 10: Effect of Depth-to-Thickness Ratio on Measured Fracture Toughness of Ladish D6A-C Steel

TESTED AT ROOM TEMPERATURE

The use of data points resulting from testing eccentric, sharply notched roandbar specimens and the use of actual rather than average K_{Ie} values for Ladish D6A-C to obtain K_{Ii} K_{Ie} versus cycle curves may be justified as follows. An eccentric, sharply notched round bar specimen, because of its eccentricity, will have an initial stress intensity that is higher than that of a concentric specimen. Similarly, after an eccentric specimen sustains a certain number of cycles, the eccentricity will become larger, and the actual stress intensity will again be higher than that of an identical but concentric specimen. There is no simple way to establish the extent of stress augmentation because of eccentricity, but this problem is circumvented by taking the ratio of calculated initial K_{Ii} and the actual measured K_{Ie} values. Of course, the method hinges on the assumption that the percentage of stress augmentation for initial and critical flaw -izes because of eccentricity is comparable.

6Al-4V TITANIUM

Tensile properties of the 6Al-4V titanium tested at -320°F in the environmen of liquid nitrogen are listed in Table 10. Static fracture toughness and cyclic flaw growth data obtained using sharply notched round bar specimens were calculated using planimeter technique and are listed in Table 11. Figure 1° shows a plot of static fracture toughness for annealed 6Al-4V titanium as a function of test temperature. Test data at other than -320°F temperature was obtained in connection with other Boeing programs. Sample fractographs of sharply notched 6Al-4V titanium specimens tested at -320°F are shown in Figure 45.

Cyclic flaw growth data obtained using surface flawed 6A1-4V titanium specimens are listed in Table 12. Figure 46 in Appendix IV shows sample fractographs of 6A1-4V titanium surface flawed specimen tested at -320°F. General appearance of the fractured 6A1-4V titanium surface flawed specimens is shown in Figure 47.

Combined cyclic flaw growth data obtained from sharply notched round bar and surface flawed specimens are plotted in Figure 12. The effect of depth to thickness ratio in the surface flawed 6Al-4V titanium specimens is shown in Figure 13.

15Ni(300) MARAGING STEEL

The tensile properties and static fracture toughness of 18Ni(300) maraging steel tested at room temperature are listed in Tables 13 and 14, and are plotted in Figure 14 as a function of aging temperature. Figure 15 shows a composite plot of crack growth during static testing of through-the-thickness cracked specimens as well as load versus strain as recorded by the X-Y plotters. These were the specimens instrumented for detection of "pop-in" plane strain crack instability during testing to determine the K_{IC} value in addition to the plane stress (K_C) calculated from fracture stress and photographic crack growth records.

Figure 13 : Effect of Depth-to-Thickness Ratio on Measured Fracture Toughness of 6AI-4V Titanium Plate Tested at -320⁰ F

Figure 14: Tensile Properties and Static Fracture Toughness of 18 Ni(300) Maraging Steel

TESTED AT ROOM TEMPERATURE

κ^{!!} (% ∘_t κ^{'c})

In the absence of distinct pop, a point of cangency is sometimes taken to give the K_{IC} value. Although the point of tangency in the present case (specimen MC-4 in Figure 16) is clearly defined, it was not used in the calculation because of the tentative nature of the point-of-tangency approach for determining K_{IC} values. General appearance of fractured through-the-thickness cracked specimens is shown in Figure 45.

Static fracture toughness and cyclic flaw growth data of 15Ni(300) maraging steel tested at room temperature using surface-flawed specimens were calculated using previously described planimeter technique and are listed in Table 15. The MS-1 specimen failed in grip area at 247.0 ksi during static test. The MS-2 specimen failed in grip during cyclic test at the end of 1396 cycles. Both specimens were remachined to 3.5-inch widths and tested. The MS-1 specimen was pulled to failure at a fracture stress of 257.4 ksi. Cyclic testing at 112.6 ksi of the MS-2 specimen was resumed and continued for an additional 2514 cycles until the flaw grew through the thickness. The specimen was then pulled to a failure at a fracture stress of 118.2 ksi. Specimens MC-5 and MC-8 were machined to 3.5-inch widths, then tested. Figures 49 and 50 show sample fractographs of statically and cyclically tested 18Ni(300) surface flawed specimens, respectively.

Cyclic flaw growth data of 18Ni(300) maraging steel tested at room temperature using through-the-thickness centrally cracked specimens were determined from periodic crack growth measurements and post-fracture examination of test specimens, and are listed in Table 16. Figure 51 shows a general appearance of 15Ni(300) surface-flawed and centrally cracked specimens after cyclic testing.

A combined plot of cyclic flaw growth data for surface-flawed and through-thethickness cracked 18Ni(300) specimens are shown in Figure 15. The data are plotted in terms of initial to critical stress intensities versus cycles to failure. For surface-flawed specimens the K_{Ii}/K_{Ic} ratio is used while for the throughthe-thickness cracked specimen K_i/K_c is plotted The initial plane stress intensity (K_i) was calculated using Equation 4 by substituting initial half crack length (a_i) in place of critical crack length (a_i) and using applied stress in place of fracture stress \boldsymbol{G} .

The effect of flaw depth-to-thickness ratio upon measured K_{IC} values for 18Ni(300) maraging seel is shown in Figure 17. Specimen MS-2 is also shown on the plot even though no actual K_{IC} value was obtained. Due to limited amount of surface flawed specimens and complete absence of sharply notched round bar specimens no attempt was made to construct $2 \ C$ versus a Q plot with different cycles-to-failure curves as was done for Ladish D6A-C steel.

100

AZTATACULA

Contraction of the local division of the loc

C'REATING A

CHECKING PR

12122020000000

ADVALUES/MODA

Ē

Figure 17: Effect of Flaw Depth-to-Thickness Ratio on Measured Fracture Toughness of 18 Ni (300) Maraging Steel TESTED AT ROOM TEMPERATURE

DISCUSSION

Several aspects of the present program warrant some additional consideration. The following paragraphs illustrate a possible way of using flaw growth data for design purposes and point out the differences in behavior among various materials in spite of the apparent similarity in loading conditions. The prevalent tendency of fatigue flaws to assume balanced (usually circular) shape may be explained on a purely analytical basis by considering the variation of stress intensity, K, along the periphery of a flaw. The effect of natural barriers such as a pronounced anisotropy or tendency to delaminate will be pointed out as a possible explanation of apparent inconsistencies. Finally, the effect of flaw depth-to-thickness ratio will be discussed, together with some observed effects of environmental variables.

Returning now to the cyclic flaw growth data shown in Figure 9 and considering the lowest boundary of the scatter band, together with the minimum static facture toughness of K_{IC} - 46.0 ksi vin. as obtained from Figure 10, a minimum cyclic life span family of curves for different operating stress levels and various initial flaw sizes may be constructed. Such a family of curves is plotted to scale and is shown in Figure 18.

The process of constructing such curves consists of selecting a series of points for a different number of cycles to failure on the abscissa of Figure 9; then taking corresponding readings on the ordinate in terms of percent of minimum K_{IC} , which was found to be equal to 46.0 ksi Vin. Using Equation (3), a plot of applied stress ($\boldsymbol{\sigma}$) versus initial flaw size (a/Q) for each selected number of cycles to failure is then obtained.

It should be noted that since such a plot is based upon <u>minimum</u> values in terms of cyclic flaw growth and static fracture-toughness data, the predictions deduced from the plot will also represent a <u>minimum</u> cyclic life span of a component containing a known initial flaw size and subjected to a given cyclic loading.

Usefulness of the method for design purposes would be further enhanced by establishing required confidence limits for the original data shown in Figures 9 and 10, as well as by providing refined NDT inspection capabilities for definition of initial flaw shapes and sizes in the structural components.

Not to be overlooked of course are various metallurgical and environmental variables whose effect may significantly alter either flaw-growth characteristics or the actual fracture toughness of the material to the extent of making the comparison very difficult.

Of no less significance are the inherent differences in behavior of various materials. While being exposed to similar loading and under seemingly constant

a ser a ser parte barte beste beste beste beste beste beste for the part of th

environmental conditions, significant differences in behavior were noted. The K-N plots (cyclic flaw growth data) shown in Figures 9, 12, and 16 are compared in Figure 19 with the previously obtained cyclic flaw growth data for other materials. The K-N curves plotted for various materials represent average values as obtained from the experimental scatter band. Since only a limited number of test specimens were used to generate the data, the relative values are not firmly established. Nevertheless, such comparison suggests significant variance in the behavior of different materials. Some degree of variance may also be expected as a result of variations in heat treatment or other process variables.

Now the attention will be directed to the prevalent tendency of relatively shallow surface (or embedded) flaws to grow faster in a certain direction until some balanced shape is assumed and then continue to propagate while maintaining the relative shape. Of course, some strongly pronounced directionality in material properties and possible variations in load distributions may have a decided effect on the final shape of the flaw. But before this facet of the problem is taken into account, consider Figure 20, showing the variation of stress intensity, K, along the flaw periphery (Reference 5) for different flaw depth-to=length ratios. The flaw shapes are all elliptical and are subjected to a uniaxial stress. Actual stress levels are irrelevant because the plots are made in terms of K/K max

This plot is of interest for several reasons. For the thing, the plot shows that the stress intensity, K, is always maximum at $\phi = 0$ or at the deepest point of the flaw. It also shows that at the extremities of the flaw (the end points of the major axis, 2c) the stress intensity, K, is lowest. Finally, it shows that the transition from K_{max} to K_{min} is reducible to a functional form and depends upon the flaw depth=to=length ratio.

Consider now a relatively shallow surface flaw, such as that shown in Figure 46 for Specimen TS=3. Since the differences in stress intensity, K, at the exposed corners of the surface flaw and at its deepest point are large, the flaw, under cyclic loading, would be expected to propagate in depth, with very little growth along the surface. This will continue until the depth-to-length ratio increases, giving a higher K value at the corners (note the increase of K at the corners between flaws, with a/2c ratios of 0.10, 0.20, and 0.30 in Figure 20). At this point the flaw growth will be somewhat equalized along the entire periphery although the tendency to grow faster in depth continues to prevail until a completely circular shape and an even stress distribution along the flaw periphery are achieved.

The preceding discussion, while being simplified by ignoring higher restraints at the more advanced (deeper) flaw regions and the arresting tendencies of stress relaxation at the exposed corners of the-flaw, serves to emphasize that certain tendencies for preferential flaw growth are inherent by virtue of differences in flaw shapes. This, however, is by to means the only phenomenon associated with changing flaw shapes.

Attention is once more directed to the relatively shallow surface flaw. As the flaw begins to assume a more balanced shape (a larger a/2c ratio), the flaw shape parameter, Q, changes, bringing a corresponding change in the K_{max} value at the deepest point in addition to changes associated with the increasing a/2c value.

Summarizing, a shallow flaw grows faster in depth because of the large differences between K_{max} and K_{min} , as seen in Figure 20. The increase in the flaw shape parameter, Q, reduces the increase rate of K_{max} , while the increase rate of K_{min} continues to rise. Finally, the K_{max} begins to increase by virtue of increasing flaw size value, a/Q_i , until an equilibrium between the three influences is reached. Applying this consideration to a material with pronounced anisotropy, still another factor must be added.

For example, the 6A1-4V titanium plate, when tested using sharply notched round bar specimens yielded an average K_{IC} value of 54.5 isi Vin. (this is the average of all 6A1-4V titanium round bar specimens), while surface-flawed specimens gave a considerably higher value ($K_{IC} = 69.4$ ksi Vin.). Fracto= graphic examination of sharply notched round bar specimens revealed that each of these specimens failed, with the fracture traversing the notch diameter along the grain direction ($\phi = 0$ in Figure 8). The surface-flawed specimens because of the geometry, were imposing conditions that forced propagation of the flaw into ($\phi = 90$) and across the grain layers, which met with greater resistance, as indicated by higher K_{IC} values for surface-flawed specimens.

Ladish D6A=C plate, on the other hand, did not appear to have grain orientation problems of any consequence. Figure 8 suggests almost complete randomness in flaw propagation tendencies in sharply notched round bar specimens resulting in a fairly close correlation between sharply notched round bar and surface= flawed specimens.

The 18Ni(300) maraging steel plate once again appeared to have noticeable anisotropy, as seen by the differences in K_{IC} values obtained from pop-in in through-the-thickness cracked specimens ($K_{IC} = 70.9$ ksi Vin.) and K_{IC} of about 120.0 ksi Vin. obtained from the surface-flawed specimens. But in addition, as seen from Figure 50, some specimens (see Specimen MC-8) also delaminated in some regions ahead of the flaw front, thus providing natural barriers in the profile of the flaw growth and resulting in higher fracture toughness.

The built-in anisotropy of the material creates still another problem as a shallow surface flaw grows deeper into the material, creating conditions under which an edgewise propagation is facilitated, which then affects not only the flaw growth characteristics but also the final fracture toughness value.

The effect of depth=to-thickness ratio of surface flaws is shown in Figures 10, 13, and 17 for Ladish D6A=C steel, 6AI-4V titanium, and 18Ni(300) maraging steel respectively. The decrease of measured fracture toughness as the flaw

exceeds approximately one half of the material thickness is suspected to be caused by stress augmentation resulting from the restriction ereated as the space between the flaw front and the opposite surface becomes smaller. However, as seen in Figures 10 and 17, the trend appears to be reversing itself as a flaw approaches the opposite surface, apparently because of the associated stress relaxation caused by yielding in this local region just before the flaw grows all the way through the thickness. Both of these phenonema are under study now, and present descriptions of deep flaw growth mechanics would need additional substantiation.

An interesting observation may be made by comparing Ladish D6A=C Specimen LS-6 in Table 5 and 18Ni(300) maraging steel Specimen MS=2 in Table 15. Both specimens were subjected to trapezoidal cyclic loadings at room temper= ature, both specimens contained the same flaw size, and the maximum cyclic stress in both specimens was selected to be at the same percentage of their respective yield strengths. However, because of the lower fracture toughness of Ladish D6A-C as compared to 18Ni(300), the surface flaw in the Ladish D6A-C specimen became critical as it reached the 0.114=inch depth (a/Q = 0.068) at the end of 558 cycles, while in the 18Ni(300), the flaw grew all the way through the thickness without failure. While this observation is quite obvious and not at all surprising, if considered from the fracture mechanics point of view, it is rather odd, if viewed in the light of the respective yield strengths of the two materials as a criterion of comparison.

Another of the 18Ni(300) maraging steel surface-flawed specimens (MC=5 in Table 15) was instrumented to check experimentally the so-called "second line defense" contention advocated by Irwin (Reference 7). Briefly, it was suggested that while a surface flaw reaches its instability under plane strain (K_{Ic}) conditions, there is a built-in chance of arresting this rapidly running flaw as it propagates through the thickness. The stress relaxation occurring at that instant and the increasing influence of the K_c (plane stress) fracture toughness, which is considerably higher than the \overline{K}_{Ic} value governing the initiation of instability, may be sufficient to arrest the running flaw, thus providing a second line of defense against catastrophic fracture.

The surface flaw in Specimen MC-5, Table 15, upon reaching the 173.0 ksi stress level, became unstable, popped through the thickness, and was arrested long enough for the observer to see (a faulty switch prevented it from being filmed) and remained arrested until the stress level was raised to 177.8 ksi, at which level the specimen fractured.

The effect of moisture and variations in heat treatment falls into the general category of environmental and metallurgical variables and was not intended to be looked into in this program. Additional testing was done to safeguard against introduction of new variables, not to investigate them. Nevertheless, the pronounced effect of moisture cannot escape the attention as well as the fact

exceeds approximately one half of the material thickness is suspected to be caused by stress augmentation resulting from the restriction ercated as the space between the flaw front and the opposite surface becomes smaller. However, as seen in Figures 10 and 17, the trend appears to be reversing itself as a flaw approaches the opposite surface, apparently because of the associated stress relaxation caused by yielding in this local region just before the flaw grows all the way through the thickness. Both of these phenonema are under study now, and present descriptions of deep flaw growth mechanics would need additional substantiation.

An interesting observation may be made by comparing Ladish D6A=C Specimen LS=6 in Table 5 and 18Ni(300) maraging steel Specimen MS=2 in Table 15. Both specimens were subjected to trapezoidal cyclic loadings at room temperature, both specimens contained the same flaw size, and the maximum cyclic stress in both specimens was selected to be at the same percentage of their respective yield strengths. However, because of the lower fracture toughness of Ladish D6A=C as compared to 18Ni(300), the surface flaw in the Ladish D6A=C specimen became critical as it reached the 0.114=inch depth (a/Q = 0.068) at the end of 558 cycles, while in the 18Ni(300), the flaw grew all the way through the thickness without failure. While this observation is quite obvious and not at all surprising, if considered from the fracture mechanics point of view, it is rather odd, if viewed in the light of the respective yield strengths of the two materials as a criterion of comparison.

Another of the 18Ni(300) maraging steel surface-flawed specimens (MC-5 in Table 15) was instrumented to check experimentally the so-called "second line defense" contention advocated by Irwin (Reference 7). Briefly, it was suggested that while a surface flaw reaches its instability under plane strain (K_{Ic}) conditions, there is a built-in chance of arresting this rapidly running flaw as it propagates through the thickness. The stress relaxation occurring at that instant and the increasing influence of the K_c (plane stress) fracture toughness, which is considerably higher than the K_{Ic} value governing the initiation of instability, may be sufficient to arrest the running flaw, thus providing a second line of defense against catastrophic fracture.

The surface flaw in Specimen MC-5, Table 15, upon reaching the 173.0 ksi stress level, became unstable, popped through the thickness, and was arrested long enough for the observer to see (a faulty switch prevented it from being filmed) and remained arrested until the stress level was raised to 177.8 ksi, at which level the specimen fractured.

The effect of moisture and variations in heat treatment falls into the general category of environmental and metallurgical variables and was not intended to be looked into in this program. Additional testing was done to safeguard against introduction of new variables, not to investigate them. Nevertheless, the pronounced effect of moisture cannot escape the attention as well as the fact

CONCLUSIONS

While fully appreciating the limitations imposed by variations in material properties and environmental and loading variables, together with the significant influences of flaw shape and size relationship with respect to material thickness, the following conclusions have been reached.

- Experimental correlation between cyclic flaw growth data generated using uniaxially loaded, sharply notched round bar and surface-flawed fracture toughness specimens has been obtained for Ladish D6A-C steel and 6Al=4V titanium alloy.
- 2) Applicability of basic principles of fracture mechanics to prediction of the minimum cyclic life span of biaxially loaded pressure vessels on the basis of uniaxial cyclic flaw growth data has been verified by testing six 17-inchdiameter, surface-flawed Ladish D6A=C test tanks.
- 3) Utilization of proof=pressure testing or a refined NDT inspection procedure for defining maximum=possible initial flaw size in conjunction with the static fracture toughness and cyclic flaw growth data for design purposes appears to be possible.
- 4) Limited experimental support of the "leak-before-break" and "second line defense" criteria was provided by cyclic and static testing of surface flawed 1SNi(300) maraging steel specimens.

REFERENCES

- 1. <u>An Approach to the Prediction of Pressure Vessel Minimum Fatigue Life</u> <u>Based Upon Applied Fracture Mechanics</u>, Boeing Document D2-22437
- 2. Williams. M. L., "On the Stress Distribution at the Base of a Stationary Crack," Journal of Applied Mechanics, March 1957
- 3. Irwin, G. R., "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," Journal of Applied Mechanics, September 1957
- 4. Irwin, G. R., "Crack Toughness Evaluation Using Circumferentially Notched Round Bars," Note for Meeting of the ASTM Committee on Fracture Testing of High-Strength Metallic Materials, May 1961
- Irwin, G. R., "Crack Extension Force for a Part-Through Crack in a Plate," Transactions of the ASME, Journal of Applied Mechanics, Paper No. 62= WA-13, November 1962
- Irwin, G. R., "Fracture," <u>Handbuch der Physik</u>, Vol. VI, pp. 551-590, J. Springer Virlag, 1958
- 7. "Fracture Testing of High-Strength Sheet Materials," <u>ASTM Special</u> Bulletin, January 1960
- Boyle, R. W., Sullivan, A. M., and Krafft, J. M., "Determination of Plane Strain Fracture Toughness with Sharply Notched Sheets," <u>Welding Journal</u>, Vol. 42 (9), Research Supplement, p. 428, 1962
- ASTM Committee on FTHSSM, "Progress in the Measurement of Fracture Toughness and the Application of Fracture Mechanics to Engineering Problems," <u>Materials Research and Standards</u>, Vol. 4, No. 3, March 1964

-18

APPENDIX I

TABLES

Table 1: CHEMICAL COMPOSITION OF MATERIALS

t: :5 Bal e. ĝ . Эо́ .ñ ā : : 3 0 ł 1 0.10 10 ÷= 3 1 : ţ ; ù 1 1 0.15 **3** 85 8 0.25 70x ; 1 ŧ : : 3 0.06 0.06 0.09 0.58 Tax 0.05 *0* ; ; 30.0 ; 1 1 0.15 7**0** Ř CHEMICAL COMPOSITION (% by weight. 00 0 0 0 0 0 0 0.90 0.58 0.20 ۍ ب : ŝ 1.10 0.58** 0.90 0.25 max 1 с: С - 00 ð 0.59° <u>ଟ</u> ନ 0.50 0.40 8.80 : Ż 0.30** 0.24 0.15 0.15 ن. د 1 5 0.006 0.007 0.015 70x 0.010 1 0.000 _v, 0.008 C. 00£ 0.00 0.015 max ł 0.00 đ 0.84 0.82** ດ ເ ເ 0.0 8.8 5.0 2 °So 5 °So 5 0.2¢ 0.32 3.0 6 0.44 **C.** 22 U Ladish D6A-C Armetco Weld Filler Aire (0.00 in, alam) Ladish DeA-C 0.375 r Bola 60 in. Piare 0.250 + 36 + 72 in. Piate Lacis- JeA-C Stee Hot-mileo, Anneoled 0.50 × 0.36 × 0.66 °n. Heat No. 355937 Mi-88 Lince Viela Filler Vire 10,00 diam 6.55 + 6.26 + 7.3e ⁻r. Heot Ne. 32125: Plate per AMS 451. Heat No. 3451003 Hear No. 3950935 5AI-4V Timnur MAJERIAL 18N1 (300) (10) pcs (8) DCS

... Spectrographic Check Upon Receipt of the Material As Cerrified by Ataterial Suppliers

.....

Table 2: TENSILE PROPERTIES OF LADISH D6A-C STEEL PLATE Tested at Room Temperature in Various Heat Treatment Conditions

	* * *							
en number	ING Ature (°f)	DIRECTION*	ER OF REA (in.)	TE TH (ksi)	yië Strenc	LD STH (ksi)	ATION in.)	ION OF
SPECIME	TEMPER	GRAIN	DIAMET GAGE A	ULTIMA. STRENG	Offset 0.2%	Offiset 0.02%	ELONG (% in 1	REDUCT AREA. (%
Ś-1	400	L	0.2509	309.3	219.4	167.8	11	38
S-2	400	L	0.2489	316.8	Ž24.4	175.2	9	20
S+3	500	L	0.2479	292.9	257.8	239.0	7	25
S-4	500	L	0.2485	292.7	256.4	242.2	11	45
S-5	600	Ŀ	0.2492	278.4	247.2	240.1	9	37
S-6	600	L	0.2467	279.0	246.8	238.7	10	44
S-7	800	L	0.2495	250.3	232.1	224.9	11	44
S-8	800	L	0.2465	249.8	231.0	224.1	11	49
S-9	1000	L	0.2488	225.1	212.1	207.0	11	41
S-10	1000	L	0.2494	226.6	215.5	212.0	12	51
•	1		1	1			1	

* L = Longitudinal grain direction

2 An Thi MMT (program () +) 4 4 5 7 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9			1		ch	ch		ue			e N	- *
		REMARKS	Blunt Notch		Eccentric Not	Eccentric Not		Broke in Fatig			Broke in Fatig)
1ESS	() C HV	<mark>к^{1с} (к₂і∧<u>іч</u> квест∩ве то∩</mark>	79.8	51.8	48.3	49.6	63.1	1	76.9	82.9	*	86.8
	***	a N atio	1.13	0.77	0.63	0.64	0.85	1 1 2 1	1.05	1.13	0 8 9 9	1.24
3	aUT:	NET AREA FRAC STRESS (ksi)	250.8	171.2	161.7	165.2	209.1	8 8 8 8	245.2	260.7		266.0
CH R (in.)		After Fatigue	0.351	0.350	0.322	0.340	0.351	1 5 6 1	0.353	0.348	1 1 3 3	0.350
DIAMETE		gninidacMattiving	0.351	0.351	0.352	0.350	0.353	0.355	0.356	0.350	0.353	0.354
(.ni)	LEK (SHANK DIAME	0.5015	0.5030	0.5009	0.5009	0.5007	0.5024	0.5011	0.5012	0.4995	0.5019
5UE **	Run	Cycles (1000)	1	28	t I	;	28	_	8 1	;	1	1
CH Y FATIO	2nd	Max Net Stress (ksi)	8	60	1	1	50	70	8	1	1	6
SION B	Run	(1000) sələy C	5	47	14	18	100	50	50		23	=
INITIA EXTEN	lst	Max Net Stress (ksi)	6	4	60	60	4	°09	60	60	60	99
*	NOI	GRAIN DIRECT		<u>ب</u>	ب	1		ب			<u>ب</u>	ئىم
ອ	(9F) (9F)	DOUBLE TEMPE TEMPERATURE	400	400	500	500	600	600	800	800	1000	1000
٤	WBEI	SPECIMEN NU	- 2	R-2	R-3	R-4	R-5	R-6	R-7	8- <u>8</u>	R-9	R-10

GIMUM STRESS TATIO OF U. UO *** Ratio of the net area fracture stress over the average 0.2% offset yield strength

Table 4: STATIC FRACTURE TOUGHNESS AND CYCLIC FLAW GROWTH DATA OF LADISH D6A-C STEEL PLATE Tested at Room Temperature (Sharply Notched Round Bar Specimens)

JUMBER	INITIAL EXTENSI BY FATI	NOTCH ION GUE	METER	NOTO	TH DIAN	AETER	(IELD IH	MAX. TRAPEZ NET ST	ZÕIDAL RESS	TRESS				FAIL RE
SPECIMEN N	Max. Net Stress	Cycles (1000)	SHANK DIA	After Machining	After Initial Fatigue	After Trapezoidal Loading	UNIAXIAL Y STRENGI	Initial o _{ni} (ksi)	Criticalı, o _n (ksi)	NET AREA FRACTURE S (ksi)	K _{li} (ksi√ĩn.)	Klc (ksi√in.)	Kli/Klc (%)	CYCLES TO
Ř-11	70	7	Ô.5Ô0	0.354	0.349		247			177.6		53.5		
R-12	7 0	2	0.501	Ô.350	0.347	Ô.332	247	149.0	163.1	163.1	44.4	48.9	90.8	112
R-13	70	2	Ó.501	Ó.353	0.352		Ż47			176.2		53.0		
R-14*				~-										
R-15	<i>7</i> 0	2	Ô.5ÔŻ	0.355	0.350	0.325	247	117.4	136.8	136.8	34.7	40.7	85.Ž	651
Ř-16	7Ô	2	Ô.500	Ō.356	0.352	0.329	247	132.2	150.7	150.7	39.1	45.0	86.9	<u>3</u> 31
R-17	70	2	0.501	0.354	0.352	0.348	247	160.3	164.7	164,7	48.0	49.4	97.2	21
Ř-18	70	2	0.500	0.355	0.350	0.337	247	143.4	154.8	154.8	42.7	48.0	88.9	188
R-19	70	7	0.502	0.354	0.346		247			171.2		51.4		
R-20	70	6	0.501	0.354	0.320	0.316	247	130.4	134,4	134.4	38.7	39.9	97.0	6
Ŕ-21	70	2	Ó.501	0.352	0.347	0.342	247	170.8	177.5	177.5	51.3	53.4	96.1	84
R=22+	ت.	=-					==							
R-23	70	6	0.501	0.354	0.330	0.323	247	123.2	128.5	128.5	36.6	38.1	95.8	30
R-24	70	6	0.500	Ò.350	0.340	0,290	247	115.5	136.6	136.6	34.1	40.6	84.0	<u>866</u>
Ř-25	70	Ž	0.500	Ō.354			247]		225.0		69.7**	<u>م</u> ت	
R-26	70	6,5	0.500	0.355	0.326		247	114.2		114.2		33.7***		
Ř-27	70	7	0.500	0.355	0.349	0.306	247	109.7	142.8	142.8	32.4	42.5	76.2	745
Ř≈28	70	Ž	0.500	0.354	0.350		247			186.2	عد ا	56.2		
R-29	70	7	0.502	0.353	0.343		247			145.7		43.4		

*Not tested

2 #

~ ?

**Inadequate fatigue extension

***Eccentric notch

Tested at Room Temperature (Surface Flawed Specimens)

		-	-	_								
	CYCLES TO FAILURE		f	l		• / / /	1	0.49 r r 0	208	1322	816	
	(૬₀) ^{>} I _X ∕ ‼ _X		100.0	0 001	7.00	ו••	0.00	0.00	7.0	84.2	85.2	
	κ ^{ις} (κει <u>Λίη.</u>)		<u>5</u> 0.0	45.4	55			20.02	2.00	0.00	47.2	
	K ^{1!} (k²! <u>ʌ!ײַ'</u>)		1	1	40 7	2 . 1	45 2	1 27	- C - C - C - C - C - C - C - C - C - C	30 0	40.2	
(i2>	AAX STRESS AT FRACTURE (I		119.8	80.2	108 8	128.4	108 2	08.2	· · · · ·		68.0	
ipAL IDAL	MAX TRAPEZO		I	1	99.3		108.2	98.2	000	68.0	68.0	
:LAV:	Flaw-Shape Parameter, Q		i	,	1.770	, 1	1.735	1.680	3005	1.730	1.846	
SIZE	Length, 2c (in.)		ł	1	0.343	I	0.331	0.352	0 337	0.473	0.568	
CRIT	Depth, a (in.)		ł	1	0.120	1	011.0	0.114	0, 136	0.158	0.207	
ENGTH LD	UNIAXIAL YIE MATERIAL STRI (ksi)		247	247	247	247	247	247	247	247	247	
AW:	Flaw-Shape Parameter, Q		1.450	1.575	1.505	1.425	1.665	1.565	1.615	1.637	1.730	
TIAL FL SIZE	; 2c , dtgna J (, ni)		0.252	0.453	0.243	0.256	0.237	0.272	0.255	0.457	0.473	
Ī	Depth, a; (in.)		0.066	0.132	0.066	0.065	0.076	0.079	0.078	0.141	0.158	
FLAW ON GUE	(1000) Cycles		10	15	14	14	30	30	30	13		
INITIAL EXTENSI BY FATIO	Stress (ksi) Max Gross		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0		
X en Cin.	м (фрім		6.02	6.02	6.02	6.02	6.02	6.02	6.02	6.02		
SI 75	1 (ssaudoid)		0.246	0.248	0.248	0.248	0.247	0.248	0 248	0.249		
ตายหนา	N INID JUS		L-S-1			LS-4	12-21	9-5- 1	L5+7	L 5-8		

54

> ** No Failure — Test interrupted for 3.8 hours due to equipment failure; specimen was left under sustained stress of 9.7 ksi

RELATIONSHIP BETWEEN DIRECTION OF RUNNING FRACTURE AND GRAIN ORIENTATION L KUTERT Andre Ċ. • : دور الح الحرار . 0 Spe. Tree • • • • • • • • • • • • Ż N.C.R. LL . Ladish D6A-C Sharply Notched Round Bar Specimens (Degrees) Angle <u>•1</u> 00 Static Test Specimen å S-4. (Degrees) Angle 57 Cyclic Test Specimen S-64* S-65 R-21 R-22 R-24 R-27 **R-20** R-15 R-16 R-17 R-18 NONNORMALIZED ° Ž R-14 **R-1**2 (Degrees) Angle 85 62 58 33 Static Test ن Specimen S-66* R-10 R-11 R-13 R-19 R-25 R-26 R-26 °No. R-2 R-3 R-4 R-5 R-7 R-8 R-1 Table

** Dessicated . Moise

7: EFFECT OF VARIATIONS IN HEAT TREATMENT AND TEST CONDITIONS UPON MEASURED FRACTURE TOUGHNESS OF LADISH D6A-C STEEL Table

Sharply Notched Round Bar Specimens

p					9			
ZIFO8E	CACIES TO FA		256	58		14	157	ľ
	روي) ⁽ (رو) (93.4	88.1	1	0.69	93.3	:
	k ^{1¢} (k³!∧!ײַ)	84.4*	45.8	40.4	39.3	35.1	37.4	35.2
	K ^{I!} (ksi√in.)	1	42.8	35.6	ł	34.9	34.9	1
553	(k si) FRACTURE 218 MET AREA	268	153.5	136.1	132.5	119.J	122.9	119.0
MUM OIDAL TRESS	Critical, a _{ni} (ksi)	ł	153.5	136.1	1	119.5	122.9	-
MAXI TRAPEZ NET S	initial, a _{ni} (ksi)	t - T	143.6	120.2	132.5	113.0	118.0	119.0
٦٨	CONDITIONS ENVIROMENT	Air	D ₁ ,	Dy	Wet	Wet	Air	Wet
103	MTA 391 - TA 3H	Δ	Δ	$\underline{\wedge}$	Δ	\bigwedge	\square	\triangle
Aeter Aeter	Loading Lobic sequit Loading	8	0.335	0.325	8	0.347	0.342	;
	After Initial Fatique	0.357	0.346	0.346	0.328	0.349	0.349	0.348
010 Z	Machining Machining	0.357	0.351	0.352	0.348	0.352	0.353	0.352
IE LE K	("") WVIG XNVHS	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	(0001) sataya	120	0	<u> </u>	0	\$	\$	Ŷ
NUTLA NOTO Exten By fa	tav , koM (izä) seart2	Q	70	60 70	70	70	01	20
กพยะห	SPECIMEN NI	1	S-2	S-3	S-4	S-64	5-65	S-66

Inadequate fatigue extension

**Eccentric fatigue extension
Normalize at 1650°F for 1 hour, austenitize at 1550°F for 1 hour salt quench to 400°F, double temper at 600°F for 2 hours each

except normalizing cycle was omitted

Same as [

56

8: TENSILE AND BEND TEST DATA OF LADISH D6A-C WELD TEST PANELS Table

Tested at Room Temperature

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				4 1.1 1.4 177			· · · · ·		
	- - - - - - - - - - - - - - - - - - -		No Failure							
	an an an an Alla	510 9	8	8	258.5	i 1 1	1	266.0) 	
• * * •	$\left\{ \left $	197.6	1	t t t	229.2	1	1 (ko 1) (ko 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	232.7	1	
· · · ·	DECRETO EEMD VHOLL		30	<u>O`</u>		20	22)))	35	50
DE) IC(U)	(LEMSION CIL BEMD DIRECT	4 8 9	Face	Root	8	Face	Root	ł	Face	Root
		0.488	00.1	1.00	0.500	00.1	1.00	0.494	1.00	1.00
	1 122-44-12141	0.355	0.339	0.339	0.362	0.339	0.339	0.352	0.343	0.343
- X ISMU	SPECIMEN IN	L.	щ	R	21	2F	2R	31	ЗF	36
	MELD WIRE	MI-88			MI-88 +	ARMETCO		ARMETCO		
BER	PANEL NUM				8			e		
•			7							

Table 9: STATIC FRACTURE TOUGHNESS AND CYCLIC FLAW GROWTH DATA FOR LADISH D6A-C PLATE

Tested at Room Temperature (17-inch: Diameter Tanks)

	iseitiv	1.01 1.00	T			<u>.</u>	•			•1	• • •	, ĝ	
	, in 1-0, in	a, 19a	╀			1.	•	 ,		t		ۍ د پ	
			+-			ين بر س	, , 	•		0 ⁻	(1) 	. Z.	
1	41, A 134	і ^н я				Ş		:			-¥	10 10 10	<u>.</u>
4	wi Aisi	(j. 11.)j				7 . -7 -7		*		() () ()	् भू	+ 90 17	ł
d	(154) 5 2011 - 1	53812 53813				;		168.8		t 1	4	:	64 [2
(151) (2511)	stress JM CA	MIXAM 2 900H	1			104,9		ţ		96. c	5 7 7	<u>ب</u>	:
N A	رج (ad	oriz-woii Internotoria				1.630		• •		1.585	1.005 0	1.585	2 9
MCAL FL	30	('ui) 'ytonal				0.300	e	;		0.326	0.540	0.393	P 1
CRI	0	(i.r.) (i.r.)				0.098		:		0.106	0.174	0.148	*
1110 47 (iz	1 (1 1) 141 10 (17 (1 17 (17 (17 (17 (17 (17 (17 (17 (17 (17 (KAINU W3912 931AM			æ	247.0	-	247.0		247.0	247.0	247.0	247.0
·	0 1 	លាក់។ «សូវ ។ កេះកាយលេង				- 1		1.345		1:670	1.605	1.530	1.860
1141 FLA 5126	1.2	Erug) Taitaing				0.275		0.260		0.300	0.427	0.267	0.500
1741	t _o	(ni) (.ni)				0.067	-	0.060		0.000	0.127	0.082	0.151
N N N	۶.	n 40	30,000	50,000		12,000		1 70,000	148,000	10,000	6, 250	¢, 226	6,000
TIAL F ATENSH FATIG	Strew 5	muminiM	19.2	<u>ج</u>	0	10.1		29.6	с. 8	.0.	۰ <u>۲</u> ۵	10.1	8.5
Żωξ	Cyclic	mumikoM	25.4	33.6	168.6	50.5		33.9	33.5	50.7	0. 9	7. 3	७. द
SIZE	191917	Dia de Ria (m)	17.07					17.05	17.00		17.10	17.06	17.10
TANK Go	4. ⁴ 1	reachaean (.n.)	0.253					0.250	0.253	2	0.252	0.254	9.251
NBE K	VON >	10141	-						Ξ		2	>	5

Unsuccessful attempt to burst-test

"Inodequate fatigue extension, calculated V 68.9 ksi V ir."

58

÷

Table10:TENSILE PROPERTIES OF 6A1-4V TITANIUM PLATE IN
ANNEALED CONDITIONS
Tested at -320°F in Liquid Nitrogen

靈靈

-

Î

- - -

.7.18

د **غ**

.....

÷

Thursday.

EN NUMBER	DIRECTION*	ER OF .REA (in.)	re TH (ksi)	YIE STREi (ks	LD NGTH i)	AIION in.)	TION OF %)
SPECIMI	GRAIN	DIAMETH GAGE A	ULTIMAI STRENG	Offset 0.2%	Offset 0.02%	ELONG (% in 1	REDUCI AREA (9
T-1	L	0.2484	224.3	212.1	189.4	8.0	17.9
Ť-2	L	0.2485	223.7	210.7	189.0	7.5	22.9
Ť-3	L	0.2493	224.1	214.1	194.6	8.5	18.4
						<u>-</u>	
		Averagĕ	224.0	212.3	191.1	8.0	19.7

* L = Longitudinal Grain Direction

FICS OF 6AI-4V	
FLAW CHARACTERIS	Rar Snerimenc)
AND CYCLIC	Intched Round
E TOUGHNESS	20°F (Sharnly N
TANIUM PLATE	Tested at -3
II: SI	
able	

		EVILURE CYCLES TO	195	60	!	;	24	470	;	168	4 9	0	
		K ^{II} ∕K ^{IC} (%)	85.5	90.5	;	;	96.0	30.8		88.5	о. 8	с. ЭВ. 1	-
		K ^{IC} (FSI 7 <u>11</u>)	50.5	52.5	63.1	60.2	55.4	42.1	63.5	म	57.3	57.2	
S)		لا _{لة} (لانت <u>\نت</u>))	43.2	47.5	;	;	53.2	33.6	1	38.4	51.5	56.1	
cimen	386	NET AREA FRACTL STRESS (ksi)	166.7	172.0	203.8	195.4	181.5	5.181	205.0	144.3	187.0	186.7	
Sar Spe:	UM OIDAL RESS	ڪينينجمار، هن. (ادين)	166.7	172.0	1	1	č.181	140.4	ł	144.3	187.0	1	T
Round E	MAXIMI TRAPEZ	tnitial, ani (ksi)	144.2	157.3	1	ţ	174.8	113.3			167.9	183.5	
lotched		UNIAXIAL YIELD HTOMBAT2	212.3	212.3	212.3	212.3	212.3	212.3	212.3	212.3	212.3	212.3	
harply N	ETER	fibiosequitienta pribool	0.325	0.335	8	;	0.343	0.313	:	0.331	0.326	0.342	
20°F (S	TCH DIAM	toitint sette Foitius	0.349	0.350	0.353	0.353	0.350	0.348	0.352	0.351	0.345	0.345	
ed at -3	O Z	า ง11A อุณีตมีสวอM	0.353	0.353	0.354	0.354	0.354	0.352	0.353	0.354	0.352	0.353	
Teste	(i) :	AJTJMAIQ XNAH2	0.499	0.501	0.501	0.501	0.501	0.501	0.500	0.498	0.500	0.501	
		C مرداده	1205	1000	800	753	0001	1000	703	1021	2500	2000	Tperatur
	INITIA NOTO Exten 34 FA 31 R.I	Maximum Net Stress (ksi)	ç	, 9	ទុ	9	ç	ş	ଟ୍ୱ	न	ទ	ទ	foor le
	EK	SPECIMEN NUMB	 	8-2	s-3	2-4	- <u>-</u>	8-6	7-5	(0) - ()	0 1 0	3-10	÷.

60

...

Table 12: CYCLIC FLAW GROWTH DATA FOR 6AI-4V TITANIUM PLATE

Tested at -320[°]F (Surface Flawed Specimens)

1		+						 	
lafi	ÇACEEZ TO EMI			0	317	;			
	KIL KIC (JA		ν. 	£7.2	62.0	1			
	K ¹⁰ (1917 A.1917)			 	56.0	69.1			
	(<u>191</u> 7 154) ¹¹ N	, i	0 i	2.10	10. 14	. 1			
(!?) 55 1	ATZ MUMIXAM AT FRACTURE (, c,			75.0	150.2			
e (rei) descoidar	ART MUMIXAM 223872 BJIRUBT	1 301		1.42	75.0	ŧ			
N 7	Parameter, C	1002		000.1	1.505	;			
ICAL FL	(in.) LENGTH, 20	cc 7 0	770.0	0.032	G. 709	ľ I			
CRIT	0 (H1930 (.ni)		0.134	0.	0.190	;			
מו	UNIAXIAL YIE STRENGTH OF MATERIAL (LGI)	5 616	212.2	C.212	212.3	212.3	-		
WA	Parameter, C Parameter, C	211 t	201 1	(77.1	1.330	1.045			
TIAL FL SIZE	(!u^) _feudyr' sc!	0 562	0.436	0, 1, 10	0.639	0.450			
2	(in.) Depth, a;	0.081	001 0	5	0.134	0.058			
FLAW USION TIGUE R.T.	(0001) salayo	4) t·		1-	7		 	
EXTER EXTER 34 FA	Sterio (Ical) Sterio (Ical)	Û,		?	0°	20°			
2	w (albiW	ی به ۲	e S v		¢.00	6.01			
SPECIES CONTRACTOR	ા પ્રાયમ મુખ્યત્વે છે.	0.257	0.255		0.206	0.252			
VVPEK	UPT PERMITS HAVE			,	(7) 10 10	12-11			
	A second s		-		_			 	

R. I. - Room temperature . Average alt ratio . Average K_{TC} value for the average alt ratio for initial and critical flaw depths as read from Figure 13.

Table

13: TENSILE PROPERTIES OF 18Ni (300) MARAGING STEEL PLATE Tested at Room Temperature (Flat Tensile Specimens)

	·									
ELONGATION (25)	dtgnal ageð (1.010.1)	16	15	15	17	16	16	14	14	
	6-գցе Լеրց1) (i č.0)	25	28	28	28	28	28	22	22	
	HARDNESS, R _c	52.0	51.0	52.0	52.0	53.0	53.5	53.5	53.5	
YIELD STRENGTH (ksi)	0.02% Offset in 2-in. Gage, 9pl	219.8	223.8	233.1	231.0	248.7	239.3	246.7	247.9	
	0.2% Offset in 2-in. Gage, Øys	248.0	248.0	260.0	260.6	277.6	273.5	283.5	284.7	
(ksi) STRENGTH ,ø _{ult} ULTIMATE		257.2	257.1	268.9	268.9	284.5	283, 1	291.7	291.5	
AGING TEMPERATURE (°F) 3 HOURS		800	800	850	850	600	900	950	950	
GRAIN DIRECTION				ب	لیے 	لب.	ب	لب		
SPECIMEN SIZE (in.)	₩ 'HIbiW	0.498	0.503	0.503	0.502	0.502	0.503	0.504	0.503	
	t , trickness, t	0.285	0.287	0.288	0.289	0.290	0.291	0.291	0.292	
SPECIMEN NUMBER		I-TM	MT-2	MT-3	MT-4	MT-5	MT-6	MT-7	MT-8	

62

日本の Table 14: EFFECT OF AGING TEMPERATURE UPON STATIC FRACTURE OF 18NI (300) MARAGING STEEL

Tested at Room Temperature (Centrally Cracked Flat Specimens)

· · · · · · · · · · · · · · · · · · ·		
	K ^c (ksi ∧i <u>n</u> .)	 109.4 213.5 191.5
(<u>`</u> سِار	606-IN K ^{IC} (K ² !	8.2 20.1 70.9
(!	MAX, STRESS AT FRACTURE (k1	76.5 75.7 119.9 108.6
	MAX, 578E55 AT POP-IN (ksi)	76.5 54.4 54.5
	UNIAXIAL YIELE STRENGTH (ksi)	248.0 260.3 275.5 284.1
ATURE (°F)	AGING TEMPER	850 850 950 950
¥ u	At Inception of Instability (Fracture)	1.04 1.29 1.80 1.82
AL CRAC NGTH, 2((in.)	After Initial Fatigue	1.04 1.04 1.05 1.03
101	After EDM Machining	0.80 0.80 0.80 0.80 0.80
CRACK ISION TIGUE	reles	1,550 2,000 4,000 8,000
INITAL EXTEN BY FA	Max, Gross Stress (ksi)	34. 55 2. 45 2. 5. 45 2. 5. 5.
EN SIZE	~ '4iÞiM	5.94 5.94 5.94 5.94
SPECIM (in.)	Thickness, 1	0.291 0.292 0.284 0.284
NBER	SPECIMEN NUA	MC-1 MC-2 MC-3 MC-4

15: STATIC FRACTURE TOUGHNESS AND CYCLIC FLAW GROWTH Table

Tested at Room Temperature (Surface Flawed Specimens) DATA FOR 18Ni (300) PLATE

<u>г</u>	والمحمول المحمول المحمو	an a						
	CACLES TO EALLINE	:	1396 *) 2514**		232			
	(e,) ²¹ א, ¹¹ א, ¹¹ א	:		1	0.08			
Kl; (ksi in.) Kl _c (ksi in.)		118.5	 82.3 ⁺)	94.8 ⁻) 97.4	121.8			
		::	48.7	;;	97.4			
	223972 MUMIXAM AXIMUM STRESS AND SARACTURE (123)	247.0* 257.4		173.0 ⁻⁾	220.0			
) 1 v 0 1C	MAXIMUM TRAPEZO TENSILE STRESS (L.)	; ;	112.6	ł	220.0			
CRITICAL FLAW	Flaw Shope Parameter, Q	::		1	1.705			
	(iu∶) reu∂iµ` Sc	: ;		1	. 390			
	Depth, a; (in.)	; ;		!	. 138			
	UNIAXIAL YIELD STRENGTH, ₁₃ (154)	275.5 275.5	275.5 275.5	275.5	275.5			
INITIAL FLAW	Flaw Shape Flaw Shape	1.415 1.415	1.575	1.566	1.425			
	(ini) (ini) (ini)	.273	.271	104.	. 252			
	v ,htqs0 (in.)	970. 970.	.077	.123	.073			
INITIAL FLAU EXTENSION BY FATIGUE	Cycles	33,000	30,000	28,000	30,000			
	Max, Gross Stress (ksi)	0.0 1	30.0 1	30.0	30.0			
SPECIMEN SIZE	₩ 'HIÞ!M	6.01 3.50	6.01 3.51	3.50	3.50			
	Thickness, t	. 289	ଛ଼ିଛ	. 288	.290			
SPECIMEN NUMBER		ws-1	MS-2	MC-5	MC-8]		

64

*Grip failure at 247.0 ksi, specimen remachined to 3.5-inch wide gage area, then pulled to failure

*)Specimen failed in grip, then remachined to 3.5 gage area whatmand subjected to the same cyclic stress

"Flaw grew through the thickness -)At the instant of pop

-) As calculated using 112.6 ksi stress
K! (K' ()		U (V) 7 Q 7 T
(°4) ≜is 1) ⁽³ N		235.5
К ^{те} (вов) (гч. Л. гч.)		
к! (rei^isa) !ж		
VE EBVGENBE (F?!) WVXIWNW ZEBEZZ		140.0
AT POP-IN (Isi) AT POP-IN (Isi)		
TADIOS 29A ST. MUMIXAM (124) 223 STE 3112 D 31 TENSILE STRESS (124)		0.04
STRENGTH (L.S.I) UNIAXIAL YIELD		0' 0 0' 0 10' 5 3' 5
TCTAL CRACK LENGTH, 2a* (in.)	autonil 14	1.50 2.50
	Ratique : Fatique :	.502 .550
	Mag nada poinidooM	
INITIAL CRACK EXTENSION BY FATIGUE	(0001) Salay C	in m
	22010 ×10M (iza) 22012	ы К С
SPECIMEN SIZE fir	M. (HIPIM	6.012
	1. issonabidī	0.286
ZBECIWEN NOWBER		S S

Table 16: CYCLIC CRACK GROWTH DATA FOR 18Ni (300) MARAGING STEEL

Best Available Copy

APPENDIX II

Ļ

TEST SPECIMENS

Dimensions in Inches

Figure 22: Flat Tensile Specimen

*The root radius is machined on a lathe using carefully ground tool bits. The specimen is then subjected to low-stress tension-tension to terminate the initial notch in a fatigue crack extending around the entire periphery of the initial notch.

Figure 23: Sharply Notched Round Bar Fracture Toughness Specimen

Figure 24: Surface Flawed Flat Fracture Toughness Specimen

Figure 25: Through-the-Thickness Centrally Cracked Fracture-Toughness Specimen

Figure 26: Weld Test Panel

Dimensions in Inches

Figure 28: Bend Test Specimen

Figure 29: 17-Inch Diameter Test Shell

APPENDIX III

TEST SETUP

Figure 31: Trapezoidal Load Programmer

Figure 32: Schematic Representation of 17-Inch Diameter Pressure Vessel Test Setup

Figure 33: Schematic Representation of Test Fixture for Static and Cyclic Testing

Figure 34: Photographic Setup for Recording Crack Growth in 18 Ni(300) Test Specimen

APPENDIX IV

SAMPLE FRACTOGRAPHS

INADEQUATE FATIGUE NOTCH (HIGH K_{Ic} VALUE)

ECCENTRIC INITIAL AND FINAL CYCLIC FLAW EXTENSIONS

ADEQUATE FLAW EXTENSIONS

Figure 36: Sample Fractographs of Ladish D6A-C Steel Sharply Notched Round Bar Specimens (Cyclic Test)

37: Sample Fractographs of Ladish D6A-C Steel Surface-Flawed Specimens TESTED AT ROOM TEMPERATURE

Figure 38: Tensile and Bend Weld Point Specimens of Ladish D6A-C Weld

TEST PANELS WELDED WITH DIFFERENT WELD WIRES

TANK I

TANK II

TANK III

TANK IV

TANK V

TANK VI

~ 1

Figure

Figure 41: General Appearance of 17-Inch Diameter Tank Samples Containing Fracture Origin

Figure 42: General Appearance of Ladish D6A-C Surface-Flawed Specimen Samples Containing Fracture Origin

TANK I

TANK II

TANK III

Figure 43: Fractographs of Ladish D6A-C 17-Inch Diameter Tanks I, II, and III

TANK IV

TANK V

TANK VI

Figure 44: Fractographs of Ladish D6A-C 17-Inch Diameter Tanks IV, V and VI

Figure 45: Sample Fractographs of 6AI-4V Titanium Sharply Notched Round Bar Specimens TESTED AT -320°F

Figure Sample Fractographs of 6AI-4V Titanium Surface-Flawed Specimens 46:

TESTED AT -320°F

Figure 47: General Appearance of Fractured 6A1-4V Titanium Surface - Flawed Specimen

TESTED AT -320°F

Figure 48: General Appearance of Fractured 18 Ni(300) Through-the-Thickness Cracked Specimens

TESTED AT ROOM TEMPERATURE

Э

Figure Sample Fractographs of Surface-Flawed 18 Ni(300) 50: Maraging Steel Specimens

TESTED AT ROOM TEMPERATURE (CYCLIC TEST)

Best Available Copy

Figure 51: General Appearance of Fractured 18 Ni(300) Surface - Flawed Specimen

TESTED AT ROOM TEMPERATURE