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BIVARIATE REGRESSION WHEN BOTH VARIABLES ARE RANDOM

In dealing with certain estimation problems in biological and

chemical research it is frequently necessary to compute a regression

equation which can be used to predict values of a variable Y for selected

values of another variable X. The standard procedure calls for select-

ing a fixed set of values of X and then sampling Y. If this procedure

is followed, then the resulting regression equation is

Y' =a +bX (1)

where

n nb• ( xi X) (Y i Y) (X /L xi _( 2)

i=l i* I

a,-ýY b IX. (3)

This family of equations is classically used in computing the regression

equation for Y on X.

If, on the other hand, it is desired to select a set of Y values,

sample X and then construct the regression function for X on Y, the

resulting equation is
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X' -a 2 +b 2 Y, (4)

where

n n
b- 2 (x-2 (Y i / 2 (5)

i:~l j.:l

a 2 -X -b Y. (6)

The above formulas are obtained using the method of least squares.

Furthermore, if one is willing to assume that for the first situation Y

is normally distributed with a common variance about the regression

line, and for the second situation X is normally distributed with a com-

mon variance about the regression line, then the estimates above are

also maximum likelihood estimates.

Unfortunately, in practice it is impossible always to control the

independent variable X or Y, as the case may be. In these situations,

then, both variables will be subject to errur, or random variation. (For

example, in estimating a dose-response function, both the dose and the

proportion responding to that dose may be random variables, since dose

frequently cannot be measured precisely. ) When such a sampling situation

arises it seems advisable to consider using orthogonal regression
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techniques. In this caF, the sum of squares of the perpendicular

distances to the regression line will be minimized. If, furthermore,

the variances for X and Y can be standardized in some sense, then

the estimates which follow are also maximum likelihood estimates. Thu

following equations assume that X will be used to predict Y. An inter-

change of the X and Y values will make it possible to arrive at the

equation for predicting X from Y. The necessary formulas are:

Y' - a 3 + b3X, (7)

where

-2 2 + -2 4 l)) (8)

b 3 n

27 x Aii~l x-.

a 3L Y b3X, (9)

and

Yi " (Yi - Y-), xi (Xi - X). (10)

(Two references on estimation when both variables are subject to random

error appear at the end of this memo.)
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An Example

To illustrate the kinds of results which can be obtained, the following

example has been selected from Reference 3. The data represent the

heights and weights of 12 men:

X (height in
inches): 60 60 60 62 62 62 62 64 64 70 70 70

Y (weight in
pounds): 110 135 120 120 140 130 135 150 145 170 185 160

The four regression equations are now summarized:

(1) Regression of Y on X, standard:

Y -179.36 + 5. 029 X

(2) Regression of X on Y. standard:

X I 40.6It+ . 164Y

(3) Regression of Y on X, orthogonal:

Y'- -245.57 + 6. 066 X

(4) Regression of X on Y, orthogonal:

X' 40.48+ .165 Y.
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For this particular illustration it should be noted that the results

for one case (X on Y) are quite close together, while for the other case

(Y on X) the differences could be significant in any inferential treatment

of the data.

Su Vmary

This memo presents the method of orthogonal regression and com-

pares the standard linear regression procedures with orthogonal linear

regression procedures. Care should be exercised in using the standard

methods when both X and Y are subject to random variation.

rihe cun m-p-'ogra=m d-ecription and Ahe- 0Lutrn•.n program adre

attached.
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A. IDENTIFICATION

Title: Orthogonal Regression

Identification:

Category:

Programmer: Freida E. Robey

Date: October, 1963

B. PURPOSE - This program computes the mean X(X), mean Y(Y),

the correlation coefficient (R), the orthogonal regression line

for Y on X and X on Y, and the sum of the minimum residuals.

C. USAGE

I. Operational Procedure

This program is in FORTRAN

(a) Machine load Compiler tape [U (the interpreter) at

P - 0000. Check sum - 0000.

(b) Clear, position the binary object tape in the reader

and run (from P -- 0000).

Error Stop: P - 0052 Parity error stop. Usually

indicates punch trouble.



(c) The FORTRAN object program is in memory and ready

to be executed. Turn on the punch, position input tape

(data) in the reader and run (fron. P : 1020).

2. Data

The first value on the data tape is N: the number of

pairs of data. The next values on the data tape are X andn

Y pairs.n

Format Definition Example

[3 N 3/
2F20. 8 XY 60 /110.

60. /135. /
60. /120.-

3. Output

The output is punched in flexowriter code. and includes

X. Y. R (the correlation coefficient), the equations of the

regression lines Y on X and X on Y and the sum of the mini -

mum residuals. The equations used for computation are:

A ~2 - i i2 [L 2z x2]*yix2

2 IXxiy.



where

y Y.1
X =X. -X",

a VY bX.

Regression line Y on X is:

A

Y' a + bX

x 2 
- Zx i + Yi  i + 4(zxiYi)2

a= 2 4xxiYi

a. YX - aY.
1

Regression line X on Y is:

X' i a1 + aY
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Minimuir residuals:

4 2
(Y. -a - bX.)

I +b

2 X-a-a I

S+a
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C ORTHOGONAL REGRESSION
10 FORMAT (13)
11 FORMAT (2F20 8)
12 FORMAT (6HXBAR=;, F14. 8, 7H;YBAR=;, F 14. 8, 7H;;;;R=;, F 14. 8)
13 FORMAT (2OHREGRESSION; EQUATIONS!)
14 FORMAT (17HREGRESSION; Y;ON;X/)
15 FORMAT (8HYPRIME=;, F14. 8, 4H;;+, F 14. 8, HEX)
16 FORMAT (17HHEGRESSION;X;ON;Y/)
17 FORMAT (8HXPRIME=;, F14. 8, 4H;+;,,F 14. 8, 1 HY)
18 FORLMAT (I 7MINIMUM; RESIDUALS/)
19 FORMAT (I 9HSUM;D(I);SQUARED;=; F 14. 8/

DIMENSION X(1 00), Y(l 00)
1 XES=O

YES=O
SUMX=O
SUMY=0
SUMXY=O
SUMINI =0
SUMIN2=0
READ 10, N
READ 11,X(I), Y(), I=1, N)

C COMPUTE SUMS
DO 20 1=1, N
XES =XES+X(I)

20 YES =YES+Y(I)
XBAR=XES /N
YBAR=YES/N
DO 25 I=1,N
Y(I) =Y(I) -YBAR

SrMX=SUMX+X(I) 'X(I)
SUMY=SUMY+Y(I) 'Y(I)

25 SUMXY=SUMXY+X(I)'Y(I)
C COMPUTE REGRESSION COEFFS

DIFSSQ=SUMY-SUMX
RADCAL--SQRTF(DIFSSQ' DIFSSQ+4. 'SUMXY 'SUMXY)
DENOM=2. 'SUMXY
EHAT =(DIFSSQ+RADCAL) / DENOM
A =YBAR -BHAT 'XBAR
DIFSSQ=SUMX -SUMY
AHAT =(DIFSSQ+RADCAL) /DENOM
Al -XBAR-AHAT'YBAR

C COMPUTE R
R=SQRTF(BHAT 'AHAT)



C COMPUTE MINIMUM RESIDUALS
DENOM= 1. +BHAT 'BHAT
DO 40 I=1,N
Y(I)= Y(I)+YBAR
X(I) =X(I)+XBAR
BNUMY(I) -A -BHAT 'X(I)
BNUM2-BNUMl+BNUM2

40 SUMINi =SUMINI+BNUM2
SUMINI-SUMINL /DENOM
DENOML 1-:1. +AHAT'AHAT
DO 50 I=1hN
ANUM-X(I)-Al AHAT'Y(L)
ANUM2 =ANUM'ANUM

50 SUMIN2=SUMIN2+ANUM2
SUMIN2=SUMIN2/ DENOM1
PUNCH 12,XBAR, YBAR, R
PUNCH 13
PUNCH 14
PUNCH 15, A, BHAT
PUNCH 16
PUNCH 17, A1, AHAT
PUNCH 18
PUNCH 19, SUMINI
PUNCH 19, SUMIN2
PAUSE 0001
GO TO 1
END
END
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