
0

THE JOHNS HOPKINS UNIVERSITY
i ~ APPLIED PHYSICS LABORATORY CM-1040

8621 Georgia Avenue, Silver Spring, Maryland

Operotng under Con~troc NOw 62-0604< .,*th the
t,,.au ot Naval Weapons Depo.,im.n of the Navy Copy No.

9-3

IONOSPHERIC CONTRIBUTIONS
TO THE DOPPLER SHIFT AT VHF
FROM NEAR-EARTH SATELLITES

by W. H. Guier

July 1963



CM-i1040
July 1963

Ionospheric Contributions
to the Doppler Shift at VHF
from Near-Earth Satellites

by W. H. Guier

THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
SILVER SPRING, IWARYLAND



The Johlm Ho&irs Unvetrsity
APPLIED PMYSICS LAUSEATORY ~~,

Silver M l a.-.

ABSTRACT

The ionospheric contributions to the non-relativistic Doppler

shift at VHF from satellites above the ionosphere are considered to O(1/f)

-whereAf- is the satellite transmitter frequency and the vacuum Doppler shift

is considered of .- It is shown that to O(1/± ), the phase of the

electromagnetic radiation field fro he-satellite cannot be approximated

by the usual Fermat integral of geometric optics. g nsideration

of the characteristics of an ideal doppler tracking zemeiver boundary

conditions are imposed on the solution to the wave equation containing the

ionosphere electron contribution to the refractive index such that the

solution to (1/fs) in the phase is obtained. It is shown that to this

order Fermat's principle can still be applied if the index of refraction is

modified by terms containing gradients of the electron density. This

generalized Fermat's principle is used to obtain the ionospheric contributions

to the Doppler shift to O(1/fs) at VHF. Upper bounds for the various terms

are estimated. It is shown that: 1) additional terms not given by the

geometrical optics approximation are negligible so that geometrical optics

theory is valid at VHF to O(1/f s, and 2) except for very disturbed conditions

in the ionosphere, the use of the two frequency doppler data to eliminate

the first order refraction contributi ,n should yield negligible higher order

refraction errors so long as the lower of the two frequencies is above

100 mc/s.(

The principa, conclusions of this paper are reported in

reference 10.
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IONOSPHERIC CONTRIBUTIONS TO THE DO-PPIER SHIFT AT VEF

"FROM NlEAR EARTH SATELLITES

SINTRODUCTION

Considerable effort is being spent on developing methods for using

accurate measurements of the radio Doppler shift for satellite tracking and

geodesy. (1f,23) The satellite frequencies, fs, cutrrently being employed

are predominantly in the 50 to 500 mc/s region where the ionosphere

contributes significant additions to the vacuum Doppler shift. Accurate

doppler measurements have utilized the dispersive nature of the ionosphere

to eliminate the first order ionospheric refraction contribution which is

of the order of !/f s . This is done by receiving two coherent frequencies

transmitted from the satellite (usually a factor of two to six apart) and

combining them experimentally to eliminate the first order ionospheric

contribution on a data-point-by-data-point basis. 4) With the use of only

two frequencies the re.ulting "vacuum" Doppler shift still contains all

contributions that depend upon higher powers of (1/f s). In particular,

the Faraday rotation contribution remains as well as contributions resulting

from sharp gradients in the ionosphere electron density.

To this date, there is some experimental evidence that ionospheric

contributions higher than 0(i/fs) are significant for frequencies above 100

mc/s.(9) However, because of the low powe- levels transmitted from those

satellites containing multiple, coherent, frequencies, the noise level in the

experimental doppler data is sufficiently high that combining three or more
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satellite frequencies to accurately measure the higher order contributins have

not been as definitive as one would like.

The principal objective of this paper is to consider theoretically the

refracted Doppler shift to 0(1/fs) in order to determine whether contributions

higher than 0(1/fs) should be significant. * The principal motivation for this

study is to aid in the experimental justification that two coherent satellite

frequencies are adequate to yield accurate Doppler shift data for tracking and

geodesy.

The computatic., of the ionospheric contributions to 0(1/f3) at VHF

frequencies is made relatively easy because the transmitter frequencies are

far above any significant resonance frequencies in the ionosphere. However, it

is shown in Section. II that to 0(1/f3) the usual optics approximation (through

using Fermat's principle) is not sufficient and c'nsequently the more difficult

task of finding the actual solution to Maxwell's equations to 0(/f3) in the

phase is required.

Section I considers in some detail the expression for the vacuum Doppler

shift when the ionosphere is assumed to be absent. In this section the character'

istics of an idealized doppler tracking receiver are considered to a sufficient

extent to derive special boundary conditions on the vacuum electromagnetic

field created by the satellite transmitter. The resulting analysis yields

an expression for the vacuum field at an orbitrary point in space which can f

itself be used as a boundary condition for the refracted electromagnetic field.

In Section II, the solution to Maxwell's equations for an arbicrary ionospheric

electron density is obtained tu 0(1/f3) in the phase for frequencies near the

*The vacuum Doppler shift is 0(f8 ) so that contributions of 0(1/f3) are of 4th

order in 1/fs.

-2-
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satellite transmitter frequency. The Fourier synthesis of the refracted frequency

components is matched to the vacuum field expression in Section III. The two

fields are matched in the region of the satellite, where it is assumed that

the satellite is sufficiently above the ionosphere that the electron density

is negligible. Section III also presents the detailed results of the expansion

of the phase in powers of 1/f tu O(1/sf), and the expression for the refracted

Doppler shift that results. Section IV presents an estimate of the magnitude

of the higher order terms in the expression for thie Doppler shift where it is

shown that except possibly for Faraday rotation and extremely sharp electron

density gradients, the higher order terms are most likely negl-gible at VHF.

Appendices I and II present some of the more tedious analysis.

jt - 3
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I. The Vacuum Doppler Shift

Figure 1 indicates schematically an ideal doppler tracking receiver. It

is assumed that the antenna is circularly polarized and tracks (in angle) the

satellite to minimize fading due to ionospheric Faraday rotation. In Figure 1,
I

the circularly polarized component of the satellite's transmitter field that

matches the polarization of the antenna is labled Est). The output of the V

receiver has a phase representel by

exp[ i t + i C % (t)]

which is fed to the tracking loop. The signal from the receiver is mixed with

the signal from the VCO to produce a nearly constant angular frequency output

at (u3F - aiF). This signal is passed through an IF-amplifier, BIF(AL) ,

centered at (.iF - CO), whose bandwidth is A oand whose phase response is

made as linear as possible. The phase of the signal after passing thr.,ugh the

IF-amplifier is represented as

exp[ic A (t) - (COIF - F)t]

in Figure 1.

This signal i- fed to a phase detector along with a reference signal

whose angular frequency is ( -IF and the output of the phase detector is

presented by

cs
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This phase difference is then fed through a servo amplifier with response

T(t - t') producing a phase error in Figure 1 by

C s

This phase error alters the phase (time dependent frequency) of the VCO in

such a way that the tracking loop produces as small a phase error _s W t).,

as practicable In particular, the servo amplifier, R(t - t'), has enough

prediction and long enough time constants that, for frequency changes typical

of satellite Doppler shifts, the phase error remains very small once the loop

has "locked on". The doppler data is then taken as the time derivative of the

phase of the output signal from the VCQ.

For present purposes, it is sufficient to neglect noise contributions

to the phase and to consider the tracking loop as ideal, so that

5 (t) = a(t) = o.

For this idealized case, the phase error, M(t), can be represented to a

sufficient approximation by:

o(t) I b s(t t. -nF(t - tD )

where tD is the time delay in the tracking loop IF amplifier and is the order

of the reciprocal of the IF bandwidth, &o. Consequently, to a sufficient

approximation:

(t + tD) -- F(t) _ s §s(t) =0 (1A)

-6 -
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and the experimental Doppler shift is:

-(t) 1 WOs d

Af(t)=- - dt F - 277 c dt (t). (1B)

Present day tracking loops have their IF amplifier bandwidth, Am,

between approximately 5 kc/s and 5 mc/s. Thus the time delay in the instrumenta-

tion prior to detection of the phase error is no greater than

1 10-4
tD = 0(--lm-) see. (2)

Consequently, the doppler tracking receiver must 'sample' the field created

by the satellite transmitter for times of the order of 100 microseconds around

the current time, t . In particular, components of the field radiated from the

satellite during a time interval of about 2 tD centered around the time

R s(to)(3
to = t -tD - V(to0)  ()

where Rs(to) is the slant range from station to satellite and v(t0 ) is the

average speed of propagation from satellite to trackiig station; and frequency

components within about 1/tD of the satellite frequency are the only contributions

to the transmitter field that need to be considered. Since the satellite moves

a negligible distance in time intervals of the order of tD, and no significant

ionosphere resonance occur near the satellite transmitter frequency, the

calculation of the transverse radiation field is considerably simplified.

Consider now the field created by the satellite transmitter in the

absence of the ionosphere and in a coordinate system at rest with respect to

the tracking station. From the preceding discussion, only the appropriate

- 7-
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circularJV polarized component of the transvrerse radiation field need be

corsidered. For the purposes of this paper, the non-relativistic expression

suffices, and

E(,)=1 f Ev(Gt) [ __Rrto)_

ir R(-r,tO) Jx ~, (I)J-

where

EV(-it) = circularly polarized component of vacuum radiation field from
3atellite transmitter at the space point, r, and at the current
time, t, in a coordinate system at rest with respect to the
tracking station,

s (to) = position of the satellite at the time, to,

R(r,to) = Pe - is(to)I = slant range from the satellite to the space point ,r,

and where

it - to- tD - R j't°)

io D c

is negligible.

*The relativistic field can be obtained by assuming a spherical outgoing wave in

a reference system at rest with respect to the satellite, and then transforming
to the coordinate system in which the station is at rest. In this transformation,
it is sufficient to use as the relative velocity of the two coordinate systems:

# d (to(
v dt s o

0

The additional terms of O(v 2 /c 2 ) do not contribute significantly to the ionospheric
contributions. Consequently the additional complication of including relativistic
corrections has been avoided.

-8-
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To evaluate Ev(c,t 0 ) , consider the space point, ', to be placed at

the antenna of the tracking station, rT . From the preceding aiscussion, it

is sufficient to choose Ev(uto) such that the field E(rT, t - tD) is very

small for times far outside the region

R(t 2tD t-t <t +R(t

0 C 0 c

and for angular frequencies far away from co = 211fs" For convenience,

EV(C,to) is now chosen to be

2

EV(m,to) = exp 2( - + jmt 0 (5A)

which yields

R i "R(to0) ]][x 1 Itt -t - t)

t1 eD to c

E( t tD R(t)
R 0 22TtD

I[ Rso(to) 1'

Iexp~ s 1t - tD t t (B)L-9



The JoIvw Hopkins Ui"T"Sity
APPLI[K PMYSI LAlONATORV

SNW 5ring, Mkyl.d

where

rT = position of antenna of tracking station,

Rs(to) = slant range from tracking station to satellite.

The phase of the tracking filter is obtained by taking the expression for the

phase in equation (5B) and substituting equation (3) with v = c into the

argument of Rs(to).

c s F(t - ) = R c

Consequently, from equations (1), the non-relativistic expression for the

vacuum Doppler shift becomes

1 0 d (s  ) + (2 '\

Af 7 dt cR t c + c2  " 50

The results of this section, while not new in themselves, will be

used in the following sections where the ionospheric contributions to the Doppler

shift are evaluated to 0(1/w ) . In particular, the same idealized dopplershift

tracking receiver will be assumed and the equation for the vacuum field,

equation (4), together with equation (5A) for Ev(o,to) at an arbitrary space

point, will be used as a boundary condition for the refracted field when in

the region of the satellite.

- 10 -
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II. Refracted Field for Single Frequency Compone its at VHF

In this section the solution to Maxwell's equations is presented to

O(1/c 3 ) in the phase for a single frequency component, u, near ws which obeys

the radiation condition. The principal result of this section is that the phase

to 0(1/(z3) cannot be assumed to be given by Fermat's integral

r
WS() = 1 d r n(7'rtlo)

c c jt '0

where the path is taken such that S(r) is an extremum. but can be represented by

r_

- -= Tdr' • r ,  r 1)
c s c0

7 s(t0)

where f(*rt 1o) is given by equation (10) of this section and the path is taken

such that 5 (r) is an extremm. The appendices contribute to the proof of this.

Let

p(rt) = ionosphere electron density where it is assumed that it changes
sufficiently slowly with time that its change during the
transmission time from satellite to station is negligible,

B(r) = Earth's magnetic field which is assumed to have negligible time

dependence,

e = charge of the electron in M.K.S. units,

m = Mass of the electron in M.K.S. units,

e 0 = permittivity and permeability respectively of free space in
M.K.S. units,
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E ( t 10) = circularly polarized component of transverse hfeld at'tae angular

frequency, to, emitte4 from the sate-if1e at nearly the time to,

= unit vector in the direction of signal propagation,

nGr,t om) = equivalent index of refraction for the ionosphere at the frequency
n, time t o , and space point r.

The wave equation, for each frequency component, Es(r,to Ic) , is

S- (,t0 IM) + 2 n r:,t 0 co) E 5(r.,t 0j(0) = 0 ,(6A)
C

where

2 (e 2/mro Co
n (rtol) = 1 - F e )) (6B)

L / -

and where the sign depends upon which circularly polarized component is

considered. Let the solution for arbitra- y r be represented by:

rEo(,t 0  ) C (A

Es(rt 0 ICU) R(?,t ) exp i-1 - -

where

=-R(r, t o 0 r - s 1(to 0

-12-
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In equation (7A) the functions Eo(rtolc) and 1(, toI) are chosen to be real and:

,!I (,tI f (T B)l

r5 (t)

where the path of' the line integral is such that is an extremum. So far,

f'(r, too) is arbitrary.

Substituting equations (7) into equations (6), and then equating real

and imaginary terms:

2

.2E -VE + - (n2 -E 0 (8A)0 0 2 s o
C

2V o_ 2  R • - + EV0 (8B)
s R s o s

A R(,t o )R~r, =r -r (t) R R=8C
so0 R('r,t 0) ()

In Appendix I it is shown that

(r,to0C) = (r) f(r,to0C) (8D)

13



The .Iw s I4.k. ). Ut, lmloy
APPL16S PNVS LA"RATORY

Thus, equations (8) can be written in the form:

A -.
R-VE 2

- 2 R 0 + W 2-(n 2 f2)E0 =0 , (9A)

o RE o "o2f9 - 2 - •E0 R f s(B

In Appendix II, it is shown that

A(r) = t°) + 0 (,t°jc)
!i1 + *,.

where

' =0' =0(~-

and

2 f2 O( )n - =

Since

"14

- 14 -
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then

Finally, since E0(r.t 1w) should have a very slow dependence upon R, assume that:

IE 0l = 0(-12
CI)

IV 2 E0I = 0~~

Using the above relations, it can now be seen that:

AS + ' + O0
0I)

S VE = VE + 0
0 0)

o o

/. S" I + o(0 -

o.C)

V2 + ,+ o(- 1

A A -.
s f 5 o-

- 15-
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Consequently, equation (9B) reduces to:

"- o  ""VE R - f+ '] + (-!-)

Substituting this equation into equation (9A) and neglecting terms of o(Vo)~0

the following differential equation results for f(r,tol).

c2  [A *+ -4'
f (rto0w) n (r't0 1) + 2 R +0(

However, since,

Vf =Vn + 0
CO

the expression for f(;,tolc) finally reduces to:

2 A ~ V -§

f(rtoIM) = n( 7 ,toI)+ + n( (10)
2 R

ot From equations (7) and (10), it can be seen that to 0( ) the phase

of the field is given through integrals of the Fermat type if the integrand

contains the function, f(r,t w.), instead of the index of refraction, n(rtoIC).

To difference between f( I) and the index of refraction is00
CD

2 A
S6 Vn+V

-16-
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The first term depends upon the gradient of the index of refraction along the

geometric path. From Appendix II, the vector, '(rt 0 w), is the gradient of

the deviation of the optical path from the geometric path taken in the direction

of the geometric path. Therefore, the second term in the difference between f

and n is also proportional to the spatial change of the index of refraction.

Consequently, the 'corrected index of refraction' is proportional to the spatial

change in the index of refraction and can become large if the electron density

in the ionosphere is not a slowly varying function of position.

Substituting equation (10) into equation (7B), evaluating the

'corrected optical path', and then performing the integral along this path,

r r

s~r~t ° 8  , sA(r, )  R • n +V' •ra ) :fr -• (') n(r',to1(0) + fd S6)--+ o(-

r s(t0) s(to)

i

fHowever, it is shown in Appendix II that the optical path deviates from the

geometrical path by an amount, §(,toIc) = 0(--) Thus, to 0( 2 -

geometrical path can be used in integrating the corrections to the index of

*It should be noted that equation (10) was derived assuming the satellite frequen

) is significantly above any ionospheric resonance frequency. This expression is
1. not valid for frequencies near to or at any of the ionosphere resonance frequenc

Equation (10) should not be used, for example, in the consideration of ionosonde
data. See, for example, reference (6).

17
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geometric path. From Appendix II, the vector, r'(rt 0 ), is the gradient of

the deviation of the optical patn from the geometric path taken in the direction

of the geometric path. Therefore, the second term in the differe.ce between f

and n is also proportional to the spatial change of the index of refraction.

Consequently, the 'corrected index of refraction' is proportional to the spatial

change in the index of refraction and can become large if the electron density

in the ionosphere is not a slowly varying function of position.

Substituting equation (10) into equation (7B), evaluating the

'corrected optical path', and then performing the integral along this path,

r r

rs t I) =jdr -• (r') n(r',tojw) + I2 r As(r') R +r+o0(l).

7s(to) 0s(to0

However, it is shown in Appendix II that the optical path deviates from the

path ~ ~ ~ bya monw (t ) = 0( -- ) Thus, to 0(- ) thegeometrical pt ya mut (,~o

geometrical path can be us2d in integrating the corrections to the index of

*It should be noted that equation (10) was derived assuming the satellite frequency

is significantly above any ionospheric resonance frequency. This expression is
not valid for frequencies near to or at any of the ionosphere resonance frequencies.
Equation (10) should not be used, for example, in the consideration of ionosonde
data. See, for example, reference (6).

- 17 -
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refraction in equat1on (-v), a.id the bAiae gi e b. :

r

- s to = r •r -()n('r',to1m)

7(to)

r A--

F R 'n(r',t 0 ) + ' '(r',t 0 Co)++d 0(---)
+ o R(rl,to) +

rs (t0)

(u)

where the usual optical path can now be used in the first integral in equation (lli.

Equations (10) and (ii) are the principal results of this section. If

the usual form of Fermat's principle is used, the phase is given by

-4

r

-44

s(r) = cfdr, • 9(r,) n(rI',tolW)

r s (t 0 )

y
where the path, s(r), is taken such that this integral is an extremum. From

es.

equation (11), it can be seen that

-18-

IA



The johm M90;op mnirverslY
APPLIED PHYSICS LASMEATORY

C s '0 R(vit )

o ) 0

and the right hand side of this equation must be negligible before the usual

optical approximation for the ionosphere can be used if results to O(13-) are

desired.

- 19 -
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III. Expression for the Refracted Doppler Shift

In this section the single frequency components are combined to yield

the expression for the field. The evaluation of the resulting Fourier inteL -al

is performed in the following way.

1. Assume that the satellite is sufficiently above the ionosphere that in a

region near the satellite the electron density is negligible,

2. match the expression for the refracted field to the vacuum field at space

points close to the satellite,

3. assume that when the space point is placed at the tracking station antenna,

no singularities are introduced into the amplitude of each frequency

component for frequencies near the satellite frequency, and then

4. evaluate the integral over the frequency domain by the method of

steepest descents.

The resulting expression for the phase is then exiManded to 0(1/os3) and the time

derivative taken to yield the expression for the refracted Doppler shift to

0(1/Ws 4 ) of the vacuum Doppler shift itself. Appendix II contains a detailed

calculation of the extremum path for the phase function, , which is requiredS

for the final evaluation of the phase in powers of 1/Ws

From equation (7A), the expression for the fe at an 0"1. p ..

point is:

"~~ Ed E(rlt°co)1 (,t

Es(r Itt)= d 0 - t exl[-iw[t -to - - ICU)]]s 0R(r~to 0 c 0

.. (12)

-20-
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Now assume that the satellite is sufficiently above the ionosnphere that a region

in the vicinity of the satellite can be found where the far field pattern of the

radiation field is still essentially the vacuum field and the electron density is

negligible. For space points r , in this region the refraction index is unity

and eauation (12) reduces to:

(r,t(,o) exp - - to c - Ev(rt0)2

where

R(7,to) <<R(t) = IrT - (t

From equations (4) and (A), it can be seen that within this region,

= 2Eo rto, C exp 2 -- )

R(,t o) << Rs(t)

Let the field point now be placed at the antenna of the doppler tracking

station, r = , and assume that for frequencies in the complex plane 
near the

(real) satellite frequency, co s no singularities or branch points appear in

EI(rT,toIc), where:

- 21 -
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E E ,to) - ,tO) exp

It is shown in Appendix II that no singularities or branch points appear

in the phase for o near cos , and therefore the integral in equation (12) for

the radiation field can be evaluated by the method of steepest descents.

Equation (12) then reduces to:

[exp 1 t - t - -- ( 2,j)]]
El ('rtoitlt s) exT 0 o tDa

s R S~tojtj R t)
% 2rt tD

(13)

exp [I s [t - to - -+- 5(It 5) ]

The time interval, tD, is the order of 10-4 sec. and in this time

the satellite moves a negligible amount. Thus, in the phase, the time, to,

can be identified with the time, t, by the expression

t = t (r T [s (14A)

The Doppler shift is proportional to the time derivative of the phase, and

thus the refracted Doppler shift is represented by:

06

-22-
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Af (t) = 1 s d I 1B

2T c dt S rt 0 s

It now remains to evaluate the function in detail.s

In Appendix II, it is shown that the optical path deviates from the

geometrical path by an amount of O(i/ s 2 ). Thus, from equation (6B),

(,t ) =1- _1 e2  ± e3  Po t s(to)R(r., 2m 1 PCr.,to +  (r.'to (tE(r )

2 2m 2(2,t 0  3 22 eo
S S

4 4  2 (to o(-k- .)
- ] 8m2 e 2 pr 0(s me02 o s

.r- rs(t o )
A ~ rTRs(t° N I- -+s(i)

Substituting this expression into equation (i0), and defining:

2
a2 ("'t,) 2m e p(0,to) (IA)

y-sjo) t e3  P 0o

P( a(;t)= 3 (15B)
a3(t o  = 0 p(,t o) Rs(to) "E(r)(1B

2m2  2o

-23 -
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I2 e- 2 R (t ) p(r,to)
a4or t°) 8 02  2  p-r'to) + I - s(to)l

2 2

+ 2 I - (t o~

r tIcs)becomes:

the expression for f( t01s)

1 ~ .t1 a~ k~( rto) +0( 5) (16)
f 0( os k-

k=2 s s

Also in Appendix III the integral of this function over the optical

path is given to 0(l/ 4 ) by:

rT
s(r'toICU) dr'" Rs(to) [f(rI t o ) - to )12] +  ( (17A)

7s 0(to

where &s(to) •~ (rtolCs) = 0, and each of the two components of =

are given by:
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71B

-- -.-

rD S ( 0)

r' R (t 1d iRt tot0 SOP 1
J=0

rrt (L r (t

k =1,2.
r

Th smbl, dr •Rs(to) denotes taking the integral along the geometric

r s(to0

path. The derivatives

:aR(. III

=? 0 k 1 .1 2 .

denote taking the gradient of al(to) in two orthogonal directions, both

orthogonal to the direction of the geometric path, and evaluated on the geometric

path.

-25-
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Fn y, ......t .... cquat o n ( -6) into e u tion (17A) and letting

T
r

,T

1 A

3 (Rs,to) = .(2t) 0 A (18B)

r s(to)

IT

A 2
14(Rs to) ' " a4(r t t s (r s

(21T) 4

r s(t)0 s(ito)
(18C)

it can be seen that the phase is given by:

4( )

¢(E,tolc ) Rs( t ) + /k(Rs,t ) + 0 (19)

k=2

where fs = cus/2r has been used.

-26-



The Johiw HO;n, Uni trity
APPLIES PHYSICS LASIATORY

S~ivt Sprk, ltAwynd

To order v/c (non-relativistic approximation), the time derivative

of the phase(to give the Doppler shift)is given by taking the time derivative

of the phase with respect to t and then substituting the value of t given0 0

by equation (14A). letting

Afk(to c d - (Rsjto I (20A)

0

the expression for the refracte& Doppler shift becomes

Af(t) = of (t ) + + ok(-C-) + (20B)

k=l 
S

where, from equations (14A) and (19), to o(V/c):

t = t Rs(t) + (k-l) (Rst) + 0 ! 5 (20C)to c - k kf

k=2

Equations (20), together with equations (15), (17B) and (18), provide t.,e required

expressions for the non-relativistic refracted Doppler shift. The expressions

are valid to 0(1/f 3 ) or to O(1/f 4 ) of the vacuum Doppler shift itself. Section

IV contains a summary of these results and some numerical upper bounds to aid in

estimating the significance of the various terms.

- 27 -
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IV. Summary and Conclusions

The equations given in Section III for the refracted Doppler shift

are written in a notation especially chosen to display those variables important

in matching boundary conditions. This previous notation is somewhat awkward

for purposes of discussion and the final equations of Section III will now be

rewritten in a slightly different notation. Figure 2 schematically sho-s the

geometry of the satellite motion during a small time increment, At , relative

to the tracking station. For convenience, the origin of the new coordinate

system is taken at the tracking station antenna. From Figure 2, it can be seen

that the velocity vector, s(t) , lies in the plane defined by the position and

velocity vectors of the satellite, rs(to) and rs(to) respectively, and is normal

to rs(to). Finally, it can be seen that the new unit vector, r s , is just the

negative of the unit vector, Rs(t.), used in the previous sections-4 -+ Ar^ .
With this notation, for an arbitrary function, g(,to) and r =

rs(t)r o

[d'r Rs(t) g(r',to) = fdr' g(rrsto)s t

s 0o

r s(t)0 r

Also letting

2me

Ti,(r,t 0 ) (02 2 g(r,to)
1)22

= 1,2,

the various expression for the refracted Doppler shift can be written in the

following way.
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AA
*st +At Ae . drs e~olA 2

d to

A dr, (t)
dto

A d r.(~
r5 (to) A

A dt0
A s(fo) At

TRACKING STATIOY'

Fig. 2 G2WcYFOR 'SMALL CHANGE~ IN t0
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Af(t 0 ) -Afv (to) + : fk (21A)
kf1 s

k=l S

where

Sfv ( t
0 ) = vacuum Doppler shift, (21B)

Aft k+l Cr , k = 1,2,3, (21C)

to t t 0 ) (22A)0 v
p

V1p C 1 fs2 2( st ) + 0 , (22B)

rs(t O )

e2(rs,to) e dr'( r't) (23A)
2 (2)2 2me rf ' o0

0

rs(t o )
13r~o e3  Po P( to

=(st0 T) dr'P(rsr', o r " HE('r s r ' )  y(23B)

(2rr) 3  2m2  
0 s

0

*If the relativistic expression is desired, the relativistic vacuum doppler
expression should be Af (to) and equation (22A) altered to be the corresponding
relativistic expression. The refraction correction terms, Afk(to) , are

sufficiently small that the non-relativistic expressions are still valid.
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r o(t)

4-4(rst°)r= 1) 8mr'pJr; 't 0) 2- r 'to)

(20) 8m 0

0

(23c)

r (t o )

1 C2e 2  dr' [ pAtrt)
(2 T) 4 cm~ 0 (rs(t o0) rr ')rl t

0

1 1 r r2(r r + t0

o.=o

rs(t o)

= fdr -- p~r' +q,(r~t°0) r I p (rsr' + '.to0)

gt=O

(23D)

r (t ) rs (t )

1 fdrt r p(As r" +
r rs()- 31

r r ' =

-31 -
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In these expressions, the following identity can be used.

rs (t O ()d r drs(t°)

dt r' t) = dt h(rs(to),to) +

r

(24)

r (t 0

fdrF | f 0 Ah I A
- + 0

r

where, by assumption number 1 of Section III, the first term is zero when the

function h(rs(to ),t ) is proportional to the electron density or its gradients

evaluated at "s (to). Except possibly in Af1(to), the explicit time dependence
h

of the electron density can be neglected, so that usually (- -- ) can be
0

neglected in equation (24).

Equations (21) through (23) are the non-relativistic expressions to

O(1/f) for the Doppler shift corresponding to a circularly polarized receiving

antenna. Admittedly they are rather complicated. As expected, the lead term is

the vacuum Doppler shift, evaluated at the satellite position corresponding to

the retarded time, t - rs(to)/V ,p where vp is the average signal velocity to

O(1/s). Higher corrections to the signal velocity are negligible when

considering the non-relativistic Doppler shift,

The first order refraction term, Afl(to)/fs, is the term that is

eliminated when two-frequen(.y doppler data is used. From equation (23A) it can

-32-
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be seen that this first order term is proportional to the time rate of change

of the total number of electrons in a tube of unit cross-section e-tending

from the tracking station to the satellite. Figure 3 shows a typical set of

experimental data taken from the satellite 1960 ETA 1. On rare o-asions,

Af 1 (to) x 10-8 has been observed to be as large as 10 (cps)2

The -econd order contribution Af2 (t0 )/fs , can be seen from equation (23B)

to correspond to the same term in the ionospheric refractive index that gives rise

to Faraday rotation since its sign depends upon whether the antenna is left or

right circularly polarized. From equations (23A) and (23B), it can be seen

that Af 2 (to)/f 2 has an upper bound which is approximately

Af I e E Afl I
f2 < -2TTm. f f I

S' I -S '

Choosing an upper bound for AfI x 10-
8 of 10 (cps) ,

fX 1016 < 0.14 (cps)3

or at fs = 100 mc/s, Af2/fs < 0.14 cps. Under normal ionosphere conditions, the

magnitude of this term should be a factor of three or four smaller.

- 33 -
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From equation (23C) the third order contribution is composed of four

distinct terms.

rs(to)

1 e4 / 2r84,2(rsto) 4 2 * fdr p s(rt) (26A)

0

rs ( 0O )

e 4 2

4,2(r 0,to)  (2) 4 8m20 2 drl (1(r to0 + 2 (r t 0 (26B)

0

rs(t0)
2 c2e2 drl p(^sr',t 0 (26C)

4 3(rsto 0 (27) m -0 (rs (t0 r  8r

0

r (t) -

22 11 ce dr' 1 + 2 (26D)
rs = 4 7mo (r (to)- r') 1 -2 (o(27T 0 -s 1 3

where the (rt ) are given by equation (23D).
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The first term arises from the fourth order term in the expansion of the refractive

index in powers of 1f The second tcrm represents the contribution to 0(1/f3)

of the difference between the optical path and the geometric path. The last -two

terms of equations (26) represent the additional terms obtained from the solution

of the wave equation that are not obtained when the geometrical optics approxi-

mation is used. Crude upper bounds to the magnitudes of their contributions

to the refracted Doppler shift are now given.

From equation (24), neglecting the explicit time derivative,

r

s (tdt t4 1(r2sto 4 2 2 dr srto) rs(to) • - (rr

1 0 e /irz0 11 ,ri (2nT) 4m e s o0 j
0

r -

5

1 e 2 pdrax. e
2 25 ~dr V

(2T)2 2m0 (2u)2 2m0 r s

0

< f2 1 0 2 f1 e2p max
max I dt max - 2 2me12r() o

where f is the maximum plasma resonance frequency in the ionosphere;
max

f <15 nmc/s.

max -
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From equation (21C), using an upper bound for Afl(to) x 10- 8 of 10 (cps)2,

2
Af ,(to ) I f( f2 1 e P max-(7

<f2 (t) ~ i ALl(to)I , _ e2max , (271)
-0 max 10max (2)2

or

l 3,1(to), x 1O-24 < .23 (cms)4

From equations (24) and (26), it can be seen that the remainder of

the terms depend upon various derivatives of the electron density. To obtain

approximate upper bounds, it is assumed that over a distance of about one

kilometer, the electron density can change by no more than its maximum value

and that its second derivative can be no larger than ten times the maximum

electron density.

Accordingly, assume:

*p( r~to) < pma 6(r- rg) (28A)

'j (orto)I < 10 Pmax 6(r - rg) (28B)

Jg

I
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From equations (24) and (28A),

rs(to) rs(t) rs(to )
1drI 6(r r dr :rr" )

1
-r 0
-r r r?

[i )] I1r - r

< pmax - S(rg i - -9(to) L = 1,2,

where S(r ) is the unit step function at r = rg Thus,

r
(t) 2 + 1 rn g 2 rs(to)

S 2 max rs(t) s r

so that

f2

1 4 4 ,, ma rs(t o )

Substituting this expression into (21C), and using the fact that the vacuum

Doppler shift at 100 mc/s is not greater than about 2500 cps,
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f;2

~f3,2 (to) < .. ax f(t)l

or: (29)

Af (to0), xl - 24 < .08(cps)4

Employing similar analysis using equations (28), it can be shown that

SAf3,3(to) I  lO-24 <O[l0-(cps)4]

IAf 3,4(to) x 1[-24 < 0[lO- 4 (cps) ]

Therefore, unless the satellite is below VHF (near the plasma resonance

frequencies), the two terms not obtainable from the geometrical optics

approximation are negligible. The fact that these two additional terms are

negligible affords a proof that for each circularly polarized component of

the received signal from the satellite, the Doppler shift at VHF is given to

0(1/f3 ) to sufficient accuracy by

Af = d_ (t) f nds (30A)dt

where the integration path is the optical path which makes I an extremum. From

equations (21), (22), and (23), it can be seen that to 0(i/f2),

Af= ndr (30B)

- 39 -
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where this integral is taken along the geometric path.

Table I summarizes the results pertaining to upper bounds on the

various contributions to the refracted Doppler shift. Assuming that these

bounds are realistic, the second and third order refraction contributions may

be significantly large. It is believed that the upper bound for Af 2 (t 0 ) is

correct to within a factor of two, so that if the ionosphere is unusually dense

and the propagation path is parallel to the earth's magnetic field, the Faraday

contribution should not be ignored at the lower end of the VHF region. The

estimated upper bound for Af3 ,1(t 0 ) may be in error by a factor of five since

it is dependent upon the square of the electron density.

The upper bound for Af3 ,2(t0 ) is very difficult to estimate. It is

relatively easy to show that if the ionosphere electron density contains no

sharp gradients, Af3,2(t0) is negligible. Consequently, only unusually large

gradients can contribute significantly, and equations (28) iere assumed to aid

in establishing upper bounds to the contributions from regions of sharp density

gradients. However, equations (28) assume that only a single region cDntributes

at any one time. When the ionosphere is unusually disturbed, for example during

a severe magnetic storm or in auroras, there could be many such regions

contributing along the transrission path. If these should constructively

contribute (have the same sign) the contributions from density g.7adients could

be considerably higher. Such cases should be rare, however, since there is

the probability that if there are many regions of large gradients they would

contribute with random signs and partially cancel.

Table I contains a summary of the estimated maxima. Except for the

Vacuum term, typical values are probably a factor of three to ten snuller. If

very accurate measurements of the vacuum Doppler shift are required, uLQly time

40 -
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periods when the ionosphere is normal should be used. For such carefully

selected periods, contributions higher than first order should be negligible.

Table II presents estimated maxima of the second and third order

contributions to the 'vacuum' Doppler shift when dual frequency data are

combined to eliminate the first order refraction contribution. Letting the

two transmitter frequencies be f and f and the corresponding experimental
1 2

data be AfE and AfE , the combined Doppler shift becomes:
1 E2

Sf f
IflAf E f 2AfE Af s f

f 1 2 ff+IlE 2 Ef 2  fl f-

s[ 2 2 A f2 fl 2  (f 2  
2f f

+ "f3 fof2-+ (31)
Sfs \ f2/ -

where fs is a chosen reference frequency. Table II lists three typical

combinations where the entries in the table have been converted from frequency

shift to errors in the range rate in meters per second. From this table, it

can be seen that if the lower of the two frequencies is not less than lOOmc/s

and the ionosphere is not extremely disturbed, the second and third order

refraction contributions should be negligible.
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TABLE I

ESTIMATED MAXIM CONTRIBI

DOPPER Sl

(Entries are i

f' 2
(mc/s) s f s

50 1,200 20.0 .60

00 2,500 10.0 .15

I-

150 3,700 6.7 .07

200 5,000 5.0 .04

300 7,500 3.3 .02

400 10,000 2.5 .01

500 -12,500 2.0

I



RIBUTIONS TO REFRACTED

R SHIFT

re in cps.)

Af3,1 __ __ 3______Af_,
_____32 3,4

f 3 S f3 f 3 f 3
S S S S

1.92 .63 -

.23 .08 -

.04 .02 -

.03 .01 - -

.01 --

I - t - -

4 _______ ________________
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periods when the ionosphere is normal should be used. For such carefully

selected periods, contributions higher than first order should be negligible.

Table II presents estimated maxima of the second and third order

contributions to the 'vacuum' Doppler shift when dual frequency data are

combined to eliminate the first order refraction contribution. Letting the

two transmiteeZ frequencies be f 1 and f2 and the corresponding experimental

data be Af and Af , the combined Doppler shift becomes:E E1 2

f1 f f
1 E AfE *Af2 fl f

~l~ 1  2'2 2
f2 2 =Af +( 32

.' s

2f -  fs - \12

where f is a chosen reference frequency. able II lists three typical

combinations where the entries in the table have been converted from frequency

shift to errors in the range rate in meters per second. From this table, it

can be seen that if the lower of the two frequencies is not less than lOOmc/s

and the ionosphere is not extremely disturbed, the second and third order

refraction contributions should be negligible.
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TABLE

ESTIMATFD MAXIMUM COaTRIB

DOPPLER

(Entries are in

fl I f2 2nd Order

(m n/s)

50 300 .10

100 300 .05

150 400 .02



.IEIl

MRIUTIONS TO DUAL FREQUENCY

'LER D-ATA

in meters/sec.)

3rd Order

.26

.01

II .01
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APPENDIX I. Proof of Equation (8D).

While well known, the author has not found in the current literature

a detaAled proof of the fact that if the line integral,

r1

/-A

= dr s(r) f(7) (Al.1)
ffr)

r 0

is taken over that path going from the point r to the point r 1 which makes

an extremum, then

f( ) s(r I ) (Al.2)

where i(r) is the unit vector tangent to the path of integration at the

point r Equation (Al.1) is given as equation (8D) in the main body of

the paper. A proof is given in this appendix for the benefit of the reader.

Let a parameter, a , vary from zero to one when following the path

-4 -4

fromr to , and let the path be specified by:

-= -(0,r1) = x(a,7l) y(o,71) r

fro r° a rI ri (Gl

*This theorum forms the basis of the transition from electromagnetic theory to
geometrical optics. See, for example, references (5), (7), and (8).
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Writing

do

ad

the line integral can be written in the form

f da L(ri'r,o)

0

With this notation the path, r or 1), is the extremuma path when

-4

= xrl,r,)

da 0

(Ai.4k

z x(0, 1 1

with similar equations in y(,r) and z(srh The fact that r(,r depends

upon the end points has been excpli-itly noted so far as the upper end point

is concerned.

1

x_ xA2- _
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Now consider the change of @ with a change in the value of :k. xl(1l ,

where a new extremum path is chosen corresponding to the new value of x,

1 1

0 0

1

+ a _x 1  + - z

0

Partially integrating and using equations (Al.4):

6§ 1 x 6L 6 y L + 6z 6L.iL: ix . - + 14i -a L- x - -i =

At the end points, with a change in only xI  6 1 with all other

similar partials being identically zero. Thus,

~ 1 Xl f(rL
- - OX x (l

1Vt + Jt + 01 (Al.)

: ax(rl) f(rl)

- A3 -
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where sfrl is the unit vector tangent to the extremum path at the point r1

Partial derivatives with respect to y- and zI yield equations similar

to (Al.5). Consequently, the three partial derivatives combine in vector

notation to give:

rl s(rl f(r )

- A4 -
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APPEWDIX II. Evaluation of the Fnase Integral and Extremum Path.

In this apendix, the line integral,

4k4

r

= sr (r) rG (A2.1)

- -4

r .(to0)

is evaluated to 0( 4 together with the deviation , , of the extremum math

from the geometrical path to 0t1 Let:

= unit vector from r (t to r

= l' 2 = vector difference between the extremum -ath and

-. A
geometrical path, R = 0

It is assumed that the function, f(r) , is of order unity and that

Vf-9(6) o0 -

It will be shown that

The vector integration variable in equation (A2.l) is given by:

-4A
r' =r'R+(r') , o<r' R= I )

- A5 -
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where, at the end voiuts of the integration,

§(o) = §(R) 0

It can be seen that

dr _ r + d§ (R+§Ar

where
A..

dr

Therefore,

(r') =R + § (A2.2)

so that

dr, * s(,- dr V +

and equation (A2.1) can be written in the form.

R

Sdr,Vl + 'I2  f(r, (r1)) (A2.3)

0
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By definition, 6 is an extremum if the extremum path, "(r'), is such

that

_d' f0, f(r., k =1,2.

Since, f =0(1) and 1vif = o(- , I 'I =  2) and the above equation

to O(1/w2) can be written in the form:

dr [V(r) fr,-)] -- f(r,-) + 0  k =k1,2.

Consequently, should also be of 0(1/6 2

Assuming both s and ' are small, and expanding equation (A2.4)

to 0(1 2 ) ,

d f (r, o f (r., + o (A .44-[% (r) f'(r,o)] = (: Tq- +0 (A,
dr

0 k 1,2.

Integrating this equation with respect to r and re-expanding to 
0(1/W) ,

r

(r) = Jdrn -a- (rt§(r)f + K(O) ,(A2.5)

o =0 k = 1)2.

- A7 -



The johns Ho;*Ins UnivewstY
APPLIKO PUYSICS LAOIATORY

Silvw SW;Y,fg Mryl"n

Integrating this equation and using the fact that at the end points of the

integration must be zero:

0= fd f f (r", It + R ko

o 0 § 0

or.,

R

0 0 § 0

Substituting this equation into equation (A2.5),

r R r

(r) = r dr' dr 3f (A2.6)

0=o o o 0 k=l,2.

Finally, integrating this equation,

r r' R r'

(r) = r dr If 3- ri fr 6f (A2.7)

j H.
o o =0 o o 0 k :1,2,

which is of 0(l/(2 )0 justifying the above assumption.
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To evaluate the phase integral , given by equation (A2.3), expand

the integrand te 0(l/). Then,

R
[dr' f(r',o) + o)~ + • f(r',o)] + 0

2 

\ /

0

Partially integrating,

P R

dr ' f(r',o) 1- r ' d r \r f, o +

0 0

Therefore, since 0 = ' at the end points,

R

r 1 d
= jr [f(r',o) + •()(2',o) - 2 dr'

0

Partially integrating once more after substituting from equations (A2.4), the

final expression becomes:

R

= dr' f(r',o) 1'l - )+ (A2.8)

0

where the g (r') are given to sufficient order by equation (A2.6).
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