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PREFACE

Mathemwatical studies of biologlcal processes have many nonlinear
functionel equetions. This study shows that the method of successive
approximations, coupled with the numerical inversion of Laplace
transforms, provides an effective computational.approach.
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nonlinear differential-difference equation and a nonlinear diffusion
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equation are considered.




SUMMARY

\ It is shown that Laplace transform can be effective in the

3
numerical solution of nonlinear functional equations.__f; 7,6’
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I. INTRODUCTION

In the previous Memoranda in this series ,(1-3 ) ve have demon-
strated the effectiveness of the Iaplace transform in obtaining the

numerical solution of linear functional equations. In I, we con-
sidered the renewal equation, in II, difi’erential-difference.equa-

tions, and in III, the heat equation.

Here we wish to consider the possibility of using numerical
inversion of the Iaplace transform plus successivc approximations
to treat nonlinear functional equations. To illustrate our tech-

niques, we consider the nonlinear differential equation

u/ = -u - u2, u(o) = ¢, (1)

the nonlinear differential-difference equation
u’(t) = - u(t-1) - ua(t), u(t) =¢, -1t <0, (2)
and the nonlinear heat equation

\ 2
k(X)ut = l&x + bu

(3)
u(x,0) = ¢ sin =@, u{0,t) = u(l,t) =0 .

Numerical results are given, as well as times of execution.




II. DIFFERENTIAL PQUATIONS

To jllustrate the general approaci in its simplest form, let
us take th® nonlinear differential Eq. (1). Taking Laplace trans-

forms, we have

L(u’) = - L{u) - L(u), 4)

(s41) L(u) = ¢ - Lu?),

c-Lu2
) = Syt

We solve this equation numericelly by means of successive

(5)

approximations plus numerical quadratures in the following fashion.

The functiozn uo(t) is taken as tke solution of the equation

L(w) = 5 - (6)

Ignoring the Tact that we can find u(t) explicitly, we use the
quadrature techniques presented in I, IX, and III to obtain the
values {uo(ri)}.

Next we write
Cc - I.(u ) .
L) = —o—55—- (7)

(2]
To evaluate L(u';) » we employ the sare quadrature formula

N
L(u2) = 21 w w7t (8)
{=

We now determine uy using quedrature techniques and the explicit

inversion formula.




Continuing in this fashion, we generate a sequence of functions

{un(t)} evaluated at the points §, = - log r,, 1=1,2,...,N, with

i

e - L)
La ) =~ il 9

Faturally, the procedure will converge only if |c| is suffi-
ciently small. Subsequertly, we shall discuss what techniques can

be used in the genersl case.

III. NUMERICAL RESULIS

Ten successive approximations for each value of ¢ can be
accomplished in 6 sec of execution time on the IBM 7090. Graphs

of the solutions are given in Figs. 1 and 2.

IV. DIFFERENTIAL-DIFFERENCE EQUATIORS

Similarly, starting with Eg. (2), we have

L(u’/(t)) = - Llu(t-1)) - L (t)), (10)
whence
1
L(u) (s+®) = ¢ - J' ce 8% at - L(u?‘). (11)
(o]

Hence, we compute uo by means of

c - i c:e_ﬂt dat
L) = —2— (12)
and then from 1
e c - Jce'st at - L(ui)
L(w ) = —=2 (13)

(s+e”®)




We see that despite the great increase in complexity of a
differential-difference equation over an ordinary differential equa-
tion, the camputational time and effort using this procedure is
virtually the same for both types of equations. Once again, we
have ccnvergence of this iteration procedure only if |c| is suf-

ficiently small.

V. NUMERICAL RESULTS

Fifteen seconds of execution time ar2 required for ten successive
approximations. Graphs of the numerical results are given in
Fig. 3. For some reasons which we have not as yet understood, all
of the values obtained following the procedurz given above are in
excellent agreement with the actual solution, except for the very

last value of +. This will be investigated at a later time.

VI. HEAT EQUATICN

Consider next the nonlinear heat equation

k(x)u.t =u  +D g(u),
u(0,t) = u(1,t) = 0, (l,"‘)
u(x,0) = h(x).

Using the Laplace transform, we readily obtain
L(u)" - 8 k(x) L(u) = - k(x)h(x) - b L(g(u)), (15)

with the two-point boundary condition




L(u) = 0, x = 0,1, (16)

Here ’ denotes d/dx.

As above, we employ successive approximations. Iet u, be the
solution of

L(uo)" -8 k(x)L(uo) = - k(x)n(x),
(17)

L(uo) = 0, x - 0,1.
¥irst we solve the differeatial equation numerically for a set of
s-values, s = 1,2,...,N, and then we use the Iaplace inversion
technique. Storing the values {uo(x,ri)} for x = 0,A,24,...,M=1,

we then solwve the equation

L(w)" - & k(x)L(y) = - k(x)h(x) - b L(g(u))).
(18)
L(ul) =0, x=0,l1.

Continuing in this wxy, we obtain a sequence of values {un(x,ri)}.

VII. NUMERICAL RESULTS

Five successive approximations require 6 min 10 sec of IBM 7090

execution time, and the mumerical agreement was quite satisTactory.

b

Results of this method are shown in Figs. 4 and 5.




VIII. CONVERGENCE ASPECTS

From the standpoint of rapidity of couvergence, we would prefer
to use quasilinearization procedures (cf. Refs. L-6). For example,
in treating the differential equation of Section II, we would

prefexr to use successive approximations in the form

L(w) = - L(w) - Lo, +2u (w-u ). (19)

This, however, compli:ates the matrix inversion sspects. Consequently,
we feel that it is better to use the simpler, but less efficient
approximation technique.

There is also the problem that the initial function, the solution
of the lineer equation, may have too large a norm for couvergence.
Provided that the soiation of the nonlinear problem exists; we can

often use extrapolation technianes (cf. Ref. 7).

For example, we can replsuce

k(x)u, =w, + ve (20)

k(x)ut =u_ + bue, (21)

and use the new procedures for small b. The solution u(x,t) = u(x,t,b)
can then be determined for larger values of b Ly using extrapolation

formilas.
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* XEQ
* LIST
* LABEL
CNONLIN
C NCN LINEAR DIFFERENTIAL EQUATION
D DIMENSION R(15)sW{15)9A(15515)sT(15),5U(15)+B(15)
10 FORMAT(112)
11 FORMAT(1H1s4X11HDIMENSION =+13)
13 FORMAT(//5X32HROOTS
15 FORMAT(//5X32HWEIGHTS
16 FORMAT(//5X16HEXPLICIT INVERSE//)
17 FORMAT(5X6E2U»8)
151 FORMAT(//5X32AT = -LOG R
102 FORMAT(E12.8)
103 FORMAT{//10X4HC = sF5.2)
32 FORMAT(//5X32HLAPLACE TRANSFORM
21 FORMATY(//5X32HINITIAL APPROXIMATION OF U(I)
42 FORMAT (//5X23HVALUE OF U(I) AT STAGE » 12
C
C I INPUT
C
READ 10, NA
READ 10,N
PRINT 11N
DO 12 I=1sN
D CALL DBLRED(X)
D 12 R(I)=X
PRINT 13y (R(I)+I=1,NY
DO 14 I=1»sN
D CALL DBLRED(X)
O 14 vW(l)=X
PRINT 155 (W{(I)aI=15N)
D CALL EXPINV (NsRsWsA)
PRINT 16
DO 18 i=1sN
18 PRINT 17y (A(IsJ)sJ=1sN)
DO 19 I=1>N
D 19 T(I)=-LOGF(R(I))}
PRINT 1021 (T(I)sI=1sN)
1CG READ 102, C
PRINT 103, C
C
C IT INITIAL APPROXIMATION
C
DO 20 I=1,N
D 2vu U(I): C*R(1I)
PRINT 21s (U(I)sI=1sN)
C
C IIl TRANSFORM
C
DO 30 K=1sNA
DO 31 I=1sN
D S=1

12

/(5X6E20.8))
s (5X6E2048))

/(5X6E2048))

/(5X6E2048))
/ (5X8E208))
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31

41

13

3(11=C/(S+1.)

DO 31 J=1,N
BD)=B(I)=(W(JI*¥R(J)**([=-1)*Y(J)¥*2)/(S+]s)
PRINT 32, (B(I)sI=1sN)

IV NE~N APPROXIMATION

DO 41 I=1sN

UlI)=s6.0

DO 41 J=1»N

Ul =U{I)+A(I,J)1%B(J)
PRINT 42y Ko (U(I')sI=1sN)

G CONTINUE

GO TO 1Co
FND




