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ABSTRACT

The present report is the fourth part of a series bearing
the general title of "Distortions and Stresses of Paraboloidal Surface
Structures.”" Asymptotic integration methods are used to obtain
solutions for shells which are deeper than those treated in Part III.
A large number of specifie configurations has been analyzed and the
numerieal results are presented in the form of dimensionless plots.
The discussion is focused on the deformation behavior under gravity
loads as it is affeeted by the span of the shell, the direetion of
the gravity vector, and the boundary eonditions. There are also
contour plots of defleetions relative to the Tace-up positicn which
depiet the change in the shapes of the paraboloidal surface as the

directicn of the gravity vector is ehanged.

Acceptled for the Air Force
t'ranklin C. Hudson, Deputy Chief
Air Force Lincoln Leborateory Cffice
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NOMENCLATURE, SYMBOLS, AND ASSORTED MARKS

rectangular Cartesian coordinates

general curvilinear coordinates

general coordinates on middle surface of undeformed
shell

coordinate normal to middle surface of undeformed shell

polar parameters on middle surface of undeformed shell

cartesian parameters on middle surface of undeformed
shell

radius of revolution of middle surface of undeformed
paraboloid

angular coordinate of middle surface of undeformed
paraboloid

slope of meridian tangent to middle surface of
paraboloid

angle which meridianal tangent makes with tangent plane
to apex of paraboloid (see figure 2.1.3)

focal length of middle surface of paraboloid

radius vector to point on middle surface of undeformed
shell

radius vector to point in undeformed shell
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radius vector to point on middle surface of deformed
shell

radius vector to point in deformed shell

covariant base vectors of middle surface of undeformed
shell

contravariant base vectors of middle surface of un-
deformed shell

unit normal to middle surface of undeformed shell

covariant. base vectors of undeformed body

contravariant base vectors of undeformed body

covariant metric tensor of undeformed body

contravariant metric tensor of undeformed body

covariant metric tensor of middle surface of undeformed
shell

contravariant metric tensor of middle surface of
undeformed shell

covariant base vectors of deformed body

contravariant base vectors of deformed body

covariant base vectors of deformed middle surface of
shell

viii



A‘,/\z - contravariant base vectors of deformed middle surface

of shell
N - unit normal vector to deformed middle surface
Ry{,Ro - principal radii of curvature of middle surface of

undeformed shell

byi» Pygs bgg - second fundamental quadratic covariant tensor of
undeformed middle surface of shell

L .3 .1
by, b,, by, bf - second fundamental quadratic mixed tensor of undeformed
middle surface of shell

m ymn
biindy 4 - strain tensors

mn m
0, Omny, 9n - stress tensors

fdla - stress resultant tensor of shell
m*A - moment resultant tensor of shell
q“ - transverse shear resultant tensor of shell
fqdﬂ - physical components c¢f force resultants tensors referred
to Eﬂ €% coordinate system (units of force per unit
length)
h4¢ﬁ - physical components of moment resultants tensors E{,@z
coordinate system (units of force-length per unit length)
1
Qg - physical components of transverse shear tensor &, Ez co-
ordinate system (units of force per unit length)
i,, 12. 13 - unit base vectors asscciated with y', yl, yJ
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€ag - covariant permutation surface tensor
Edﬂ - contravariant permutation surface tensor

NpsNg, N.g - force-resultants referred tor,d coordinate system
(units of force per unit length)

M., M0= M,,g - moment-resultants referred to r,8 coordinate system
(units of force-length per unit length)

Q. Q9 - transverse shear resultant referred to r, § coordinate
system (units of force per unit length)

{ - focal length of parabola
£ 43 5447 - powers of f, the focal length
u.r) w. - displacement tensors of middle surface
wa; W - rotation tensors of middle surface
w - displacement of middle surface along £ (units of
length)
u,:_ - displacement of middle surface along tangent to meridian
(units of length)
u.oo - displacement of middle surface along tangent to latitude
(units of length)
Yc:ﬂ - strain tensor of middle surface
ka,a - strain-curvature tensor of middle surface



=

E
2(1+v)

v

Po

extensionsl strain along meridian (dimensionless)

oextensional strain along latitude (dimensionless)

shear strain (dimensionless)

extensional strain of middle surface along meridian
(dimensionless)

extensional strain of middle surface along latitude
(dimensionless)

shear strain of middle surface (cimensionless)

extensional strain-curvature_ of middle surface along
meridian (units of (length)'l)

extensional strain-curvature of middle surface along
latitude ( wunits (length) =1 )

shear strain-curvature of middle surface (units of
(length) =1 )

thickness of undeformed shell (units of length)
Youngs modulus (units of force per unit area)
shear modulus (units of force per unit area)
Poissons ratio (dimensionless)

weight-density (units of force per unit volume)

Xi
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NK)NY:Nny

M, :M\prv

Qx)Q\'

‘VH? Ta
(7)

powers of v , Poissons ratio
coordinate normal to middle surface of deformed shell
thickness of deformed shell (units of length)

force~-resultant vectors (units of force per unit length)

moment-resultant vectors (units of force-length per
unit length)

tensor components of body force vector

body force vector (units of force per unit area)

physical components of body force vector (units of
force per unit area)

force-resultants referred to cartesian parameters
(units of force per unit length)

- moment resultants referred to cartesian parameters

(units of force-length per unit length)

transverse shear resultant referred to cartesian
parameters (units of force per unit length)

bounding latitudes of paraboloidal shell

signifies quantity under bar is a vector

vertical slash before subscript signifies covariant
differentiation with respect to metric of deformed body

xii
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comma before subscript signifies covariant differen-
tiation with respect to metric of undeformed body

Christoffel symbols of second kind of undeformed body

Christoffel symbols of second kind of the middle surface
of undeformed body

Christoffel symbols of second kind of deformed body

Christoffel symbols of second kind of the middle
surface of deformed body

dot between two vectors signifies scalar product

cross between two vectors signifies vector product

second fundamental tensors of deformed middle surface

second fundamental tensors of undeformed middle surface

nth Fournier components of displacement of'u;, Ug and
w, respectively

Fourier integer in sin n © ,cos n ©

Differential operators associated with momentless
behavior (1,3 = 1,2,3)

Differential operators associated with edge zone
behavior (i,j = 1, 2, 3)

7y Fourier expansion for surface load51Di (¥, o)

coefficients of differential operators

extensional stiffness g (R)2
bending stiffness

&

; large parameter

Auxiliary functions
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- Roots of characteristic equation; i =1, 2, --8

@ - Fourth roots of -1; i =1, 2, 3, k

4

i = A/ 1 .p?* - inconvenient constant

TN -
W/—é"f'\/l+b/2 d¥ - exponent of e

c - Constants (real) of integration i =1, 2, 3,-—-8

1, ..,10)

gi( ¥) - Auxiliary functions (i

l) 2) 3)

i‘i( ¥) - Auxiliary functions (i

Superscript e signifies edge zone portion of solution.

Subscript O signifies axi-symmetric solution (n 0).

Subscript 1 signifies anti-symmetric solution (n = 1).
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8.1 INTRODUCTION

Since an exact solution to the set of shell equations
developed in Chapters I through V [32] does not seem possible, re-
course must be taken to solutions which will adequately describe the
behavior of a shell under suitably restricted conditions. In
Chapter VI [33],the shell was assumed to carry the applied loads
by a momentless or membrane type of action. In Chapter VII [34],
the shallow shell theory,while including the bending actions, restricts
application to shells whose middle surface slope is small. Unlike
these earlier efforts, the present chapter will attack the entire
set of shell equations. Thus, although the solution to be obtained
is approximate, the restrictions inherent in the membrane and shallow
shell analyses have been removed.

Let us write the equations of static equilibrium of
forces (4.4.1.14), (4.4.1.15) and (4.4.1.16) in terms of the middle
surface displacements. For a complete shel] of revolution, all
quantities involved must be periodic in the circumferential direction,

and Fourier series expansions of these quantities in © are in order.

00
L () sin nd&
W Py Wrn g {QOS ne 8.1.1
o0
o Cos ne
W, = nzjo uenﬁﬁ){sm ne} 8.1.2
& Sin N8
w = Z Wn (8)%c05 ne} Belisd
n=o

The set of three partial differential equations of force equilibrium
can then be reduced to a system of 3n ordinary differential equations.

For the nth harmonic of the expansions, the equilibrium equations



read as follows.
L G+ L G+ L )]
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where
4

% = 12(—%)2 8.1.7
m==af 510" 5w 8.1.8

/PLH(ZS) being the nth coefficient of the Fourier expansion for

the surface loads p (?{6) HEatEen s
sin ne}

$, (16)= Z = (¥) {cos ne
,pz(zﬁe): Z:'O *Pzn(a){(;?; Qg}

Pz (v,6)= nfjo P3n (5)3\2\"32 ::% B.1.9

The linear operators L, ; and L’i‘ 5 are
2
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The coefficients a, j’ 13° cij’ a;j’ °j, Clj (i; J= L

2 and 3) of the above linear differential operators are all analytic
functions of ¥ (04Y4®©) and contain in them the parameter n from the
Fourier expansions. In what follows, attention will be restricted

to n« k. Only those coefficients needed in the subsequent develop-

ment are given here. The remaining ones can be found in the appendix.
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It is seen that the left hand sides of equations (8.1.4),
(8.1.5) and (8.1.6) are divided into two groups of terms. One group
which is multiplied by k-h is associated with the bending behavior
while the other is associated with momentless or membrane behavior.
The fourth power of the parameter k is in reality proportional to
the ratio of extensional stiffness to bending stiffness multiplied
by a factor porportional to the square of a representative magnitude,

R, of the radii of curvature, i.e.,

khog

extensional stiffness ( R )2
bending stiffness

In a homogeneous shell of thickness h, the ratio of the stiffnesses
is inversely proportional to the square of the thickness while the
radii of curvature for a paraboloid is proportionel to 2f. For a
thin shell the parameter k is therefore larger than unity since by
definition (see Section 4.2) the ratio of 2f/h is larger than 10.

In general, large antennae have ratios of 2f/h larger than 200 which
leads to a value of k greater than 25.

The magnitude of k (for sufficiently thin shells) and the
form of the differential equations makes appropriate an asymptotic
analysis of the solution to the differential equations. The asymptotic
behavior of a linear system such as given by equations (8.1.1),
(8.1.2), and (8.1.3) has been investigated by H. L. Turrittin [35]

and the results of his study form the basis of the present investigation.



8.2 THE ASYMPTOTIC BEHAVIOR OF A LINEAR SYSTEM CONTAINING A
IARGE PARAMETER

Consider a real function g(k) of a real variable k defined

over some interval including infinity. A formal power series in k'l
(denoted by Pg(k) )

8.2.2
with partial sum fsrn (k)
_ m "L.
CRUSH P

(m=0,1,2---) 8.2.2

is said to be an asymptotic expansion for g (in the given interval
of k) as | k|—> o0 (denoted by g‘ﬂJPg) if for every m = 0, 1, 2, ===~
there exists some constant Krr such that

i

t41-5 0] « L

T

ro
N

as \kl-é»as uniformly. Note that if the series Pg converges to g,
then it is the usual laurent series representation of g; but in

general Pg(k) is not necessarily a convergent series.

o K
g(k) = ---%1—(.—)-—- 8.2.4
Bg(k)
and if s )
k) = B
g(x) ~ P (k) LZO £k 5

then we write

5}1(%%/ ?2(4?)% (k)= cfﬁ)é 2 £ 5o

vhether or not 8, and 85 have their own asymptotic expansions In
the event that 85 (and therefore gl) does not have an asymptotic

expansion, (8.2.6) is to be interpreted as



k
g(k) « ju—fv P (k)
8, (k) €

It is not difficult to see from the preceding definition that
if g has an asymptotic expansion, then the expansion is unique. For
if g has two different asymptotic expansions Pl(k) and P,(k),

%)-Z/p 4

t=0

S2aT

&
a Z %‘ 8.2.8

then H\m]sm(vf‘)- Szm(’g‘), b \ﬂm \ (1%—7320)*% <"P11 _/Pm)

) s

where Slm and 82m are the partial sums of P

But by (8.2.3), we have

" 1m0 5,0 0 LI SinglSomgl] € S 022

1 and P2, respectively.

| K|
Therewith
4" |(1b1o oo TPy Pk 2 P )t "_8 —
Taking m = 0, 1, 2 ---- (in that order) and letting k go to infinity
for each m, we get p;_ = p, for all m.

On the other hand, two functions &1 and &5 which are not
identical in a given interval of k may have the same asymptotic
expansion. For instance, if equation (8.2.5) holds, then

g(k) + e K o~ Pg(k) since

-4l
K |ﬁ|m € =D 8.2.13

1| ->o00
form =20, 1, 2, 3, ----.



It can also be shown that (cf. [36], [37] )

i} Tf g; (k), i =1, 2, ~--, m are functions of k which
all have asymptotic expansions, giA/Pi, in the same
interval of k, and fp (xl, ----- 5 Xh) is a polynomial
in m variables, then F(k), defined by

F(k) = % (g, (k),=---, g (k) ) 8.2.1}4
i.e., replacing x; in fp by gi(k) has an asymptotic
expansion in the given interval and is calculated as

if all the expansions were convergent series.

(2) 1f g (k) is continuous for k > k, and possesses an

asymptotic expansion,

L ,pﬁf‘. 8.2.15

(=0

%(ﬁ)w

then

G(&F/:[g(r)-%—ﬁt"]&f~)§ Pog™  gae

L
(3) 1If the derivative of g exists and is continuous and

if g' has an asymptotic expansion, equation 8.2.15,

then

‘g S .
? _ J%N —LZ::Q(L-O P, * 8.2.17

In the subsequent analysis, these results will be used frequently and
tacitly.
Next, let us consider the second order differential equation

d’x (04 0] -
y 5 +qux—0 8.2.18

2
where q) (t) is either positive or negative for all t, a< t € b, and



k2 is a large parameter such that
2 A2
19r(t)| 4% 6% )] 8.2.19

for all t in the given interval. Intuitively, the first two terms in
(8.2.18) constitute the most significant portion of the differential
equation as the third term is negligible by definition. The above
observation naturally suggests a solution of the form

+ RS OZO

—ﬂ:
o Yj (&) % 8.2.20

xt)~e

where

f(t)=/t¢(t)d’f 8.2.21

and Yj(t) can be computed from a recurrence relation derivable from
(8.2.18) and (8.2.20). Since the series on the right hand side of
(8.2.20) is not necessarily a convergent series in k for a < t = b,
it is therefore (formally) an asymptotic representation of x(t). For
discussions of the asymptotic behavior of (8.2.18), readers are referred
to [38], [39], (40} ana [k1].

As a natural extension of the results obtained for the single
ordinary differential equation (8.2.18), Turrittin investigated the
asymptotic behavior of a set of simultaneous linear (real) ordinary

differential equations

/= —(i—x=_’£(m°
X = At +) x 8.2.22

where moé.l is an integer; x' and x are m x 1 column matrices; A is
an m x m square matrix; k is a real number which is large relative to
unity. Each element oK 13 (t,k) of the matrix A (t,k) is assumed to

have an asymptotic expansion in k



& 4
o By~ L o(.j. (+) 8.2.23
E I=0 i

where the o(fj (t)'s are infinitely differentiable in t. Denote the

matrix whose elements arecx‘zj(t) by Ao(t), - T

A )= [« ;. ) 8.2.24

and the characteristic roots of Ao(t) by )\q(t), q=1, 2, ---, m.
For a system for which Ao(t) has the same number of distinct charac-

teristic roots for all t, a <t <b (i.e., if)\i(t) and Xj(t) are two

roots, then either

)\-l(t)'i /\,}(t) 8.2.25

or

)\-L(’cHé )\?' (t) 8.2.26

for all t, b4 t €£a). Turrittin showed that there exists a solution

x(J)(t) (x(J) is a column matrix) of the system (8.2.22) such that

()

(t), has an asymptotic expansion of the form
i

o Pre 4y

each of its elements, x

({;)

Eve 2_ P, P (t) & 8.2.27

r=0
for |k|>>1, where
(4)
Ci% (4) -m ]
+ 1 B S
=4" [ q,1 Or A "y )k 8.2.28

pgi) (t) and qij)(t) are computed by a certain algorithm. As j varies
from 1 to m (to account for all the m characteristic roots), we will

have the desired asymptotic expansions of the m linearly independent

solutions to the given system of differential equations.

10



8.3 THE EIGENVALUES OF Ac(t)

As the first step in the application of the results of
Section 8.2 to our shell problem, we must find the characteristic roots
of the matrix corresponding to A farthe system of equations Sulledhy B.1.5,
and 8.1.6. 1In order to do this, we will convert our system of differ-

ential equations into the form of (8.2.18). With no loss in generality,

we may write

urﬂn—? 8.3.1
_5
Lon + 8.3.2
Wn = fB 8.3.3
du., _ ﬁ
dy 4 8.3.4
du ﬁ
en = 5
8.5,
dy * e
dVVn - —#ﬁg 8.5.6
dy ¢ 7
d*w, - 42
dKQﬁ /k /37 8.5.7
dw,. 3
d53n B ’ﬁ 68 8.3-8

where the k in these equations is the shell parameter defined by

9
equation (8.1.7), and the /8L5 take on the role played by x, in
section 8.2. We then have the following system of homogeneous first

order differential equations which is equivalent to the set of shell

%x&" %/54 8.3.9

alel

equations.



_jﬂ;= * £, 8.3.11
dy .

%%L‘ ‘f{%g;rO(%ﬂ'ﬁé o 5% 12
e - {[2 0] o[ O] o
Q&: &57 8.3.1k4
ay

%%: //gﬂs - 8.%.15
ek o o[ o] A

%@ - {&i - ’kA/@= * {“iﬂ %\ﬁ}} 8.3.17

where _i

0 ¢ 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 o
A (t,K)7 |0 0 0 0 o 85 0 0
: 8.3.18
12 >
-a%, -l
0 0 LI 0 0 0
Poo  Ppp
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
..a° _c°
¥ © %0 3 o 0 0 o
aBu 8.31‘_

B,
s e

12



The eight characteristic roots of this matrix are
NM=A M= A= A 10 s

and /\5(5’), )\6( ¥), )\,_(.(X ), and }\8(5’) which are the four roots of

0 0 fo)
)\4_ aﬂ C,_31 — a_iQ =)
(6 SPR 5 6 Q
34~ 12 54

8.3.20

Note that these roots satisfy the conditions (8.2.25 and 8.2.26).
Moreover, they are independent of n, the parameter from the Fourier
expansions. With these characteristic roots, we may proceed to compute
the asymptotic solutions to our system of differential equations in
accordance with an algorithm outlined in [35]). Inasmuch as this
algorithm is rather involved, we shall adopt a simpler procedure

which is possible because of the nature of our system of equations.

Observe that for our problem, m_ = 1 (ef. 8.3.17) ); the

equation corresponding to (8.2.28) is therefore reduced to

di(p=4</\ (¥) JP() 8
T i X+gr1 ¥ 3.22

for all j. With no loss in generality, we set aij) (¥ ) = O because

it does not involve k; therewith

(1)
EANR :
i M?m 8.3.23

(8.2.27), and (8.2.28) for the case at hand then combine to yield
X ,
(4) KA, & @) -r
(5.3(5,&)% I 3 (3‘}(5)% 8.3.24
L r=p LI
i (j)
for i, j = 1, 2, ---, 8 and /8;£>take on the role of.#?uf . In other

words, the work of Turrittin assures us that there exist solutions

to (8.1.4), (8.1.5), and (8.1.6) having (8.3.24) as their asymptotic

13



expansions. We will see later that these asymptotic solutions divide
themselves into two groups. The leading terms of the expansions
associated with the four zero roots (8.3.20) will identify themselves
with the membrane and inextensional solutions (i.e., displacements
associated with the homogeneous solutions to the membrane force
equilibrium equations and to the strain-displacement equations). The
second group of the asymptotic solutions associated with the non-zero
roots (8.3.21) will be shown to be significant only in a region near
the edge(s) of the shell since their mégnitudes decay rapidly with
distance from the edge(s) and is thus referred to as the edge zone
solutions. Consequently, the membrane and inextensional solutions
dominate the behavior of the shell interior and together they are
referred to as the interior solutions. We will discuss separately these

two groups of solutions in the following two sections.

1k



8.4 THE INTERIOR SOLUTIONS
For )\L(b’), i=1,2, 3and 4, i.e., the zero eigenvalues,

(8.3.24) becomes

ﬁ?-(ﬁe)m :Zjo 6?—3(3)1%-5 8.k.1
LLM(M)“ Z\jo ﬁ,s(a)‘fﬁ_s_1 8.k.2
5<0
aenw,%)"’ go @zsm#a-s—g“ 8.4.3
and 20 &
w, (1K)~ SZ_;O Bas (VK 8.k .k

To find the asymptotic homogeneous solution to the given system of shell
equations, we substitute (8.4.2), (8.4.3) and (8.4.4) into (8.1.4),
(8.1.5) and (8.1.6) with the forcing terms (i.e., the right hand side)
suppressed and collect coefficients of the same power of k. Equating

these coefficients to zero, we get

Lms(ﬁm)'“‘o 8.4.5
L iz (Bsr) L (Bo)=0 8.4.6
b Sl Lo L (B 8.4.7

and for ©S=23

Lms (/655)+ L mﬂ.<@2.3'2) ¥ LYM <ﬁ15‘1> =
B} {L s (Bas-)t Ulna (Bus-0 )+ LT, <(g,5-5>§ 8.1.8

where m = 1, 2 and 3. Quantities with a negative subscript should be

taken as zeros. In general, can not satisfy the three equations
30 .
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given by (8.4.5). Therefore, we must have

630(8)50 8.4.9

Similarly, ﬁgjl and Fglo in general can not satisfy the three equations

given by (8.4.6); therefore

31<K>§ ﬂw(b’)fo 8.4.10

In view of (8.4.8), (8.4.9) and (8.%.10), we may now (with no loss in

generality) rewrite (8.4.2), (8.4.3) and (8.4.4) in the form of

u,mU,%)NSZ:O B 4" 8.4.11

-45

w, (k)™ B B (0% 8.4.12

S=0
and
-45

wn(x,@/vz B, (N * 8.4.13
520
so that (8.4.7) and (8.4.8) become

; LM({@ZO%O 8.4.14

and = <2 "
2 Lot B L, ), (s20) B

for m = 1, 2 and 3. The set of equations given by (8.4.14) upon
comparison with the complete set of shell equations (8.1.k4), (8.1.5)
and (8.1.6) can be recognized as the membrane equations (written in
terms of the middle surface displacement components by way of the
strain-displacement relations) since the terms containing k are not
present. The four linearly independent solutions to these equations
(corresponding to the fact that zero is a quadruple root) are the same
as those previously obtained in Chapter VI. Since two of these

linearly independent solutions are the homogenébus solutions of the

16



strain-displacement equations while the other two are associated with
the homogeneous solutions to the membrane force equilibrium equations,
they are often referred to as the inextensional and membrane solutions,
respectively. While in principle the higher order terms in the ex-
pansions can be obtained by way of (8.4.15), the calculations are,in
general, tedious. Since the additional terms are of order l/kh and
higher, we will only be interested in the leading term of each expansion
in the subsequent development, i.e., we will only be concerned with

the above described solutions to (8.4.14).
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8.5 THE EDGE ZONE SOLUTIONS
For >\L(b’ ), 1 =5, 6, 7Tand 8, i.e., the non-zero eigenvalues

(8.3.25), we have

(0 ‘fap\gdx & ; i
ur; - %‘o (3’1(1') VLI 8.5.1
© AN S @ ea
U.en’VC ?Zxo /‘))2# <X)’k 1 8.5’2
and @ «kﬂwc‘b’i i -
W, e % 53?. (1 % 8.5.3

Again we substitute these expressions into (8.1.4), (8.1.5) and (8.1.6)
and collect the coefficients of the same power of k. Equating each of

these coefficients to zero, we have the following recurrence relations:
17 16 15 14 1% 12 1 10
¢7. +¢,_1 + ¢1"l+-¢j'-6 + ¢?._4 +¢4'5+¢7‘-(.+¢1-7=O 8.5.4
¢'.%+ ¢_25 + ¢ 24 ¢ 13 ¢ 22 u 20 8
J i1 42 + ?-_3 + 7-_ ¢ ¢ =0 oD

26 55
¢? ¢?1+¢7-2+¢ 5+¢ ¢ 5'f‘¢,1> ¢ 8.5.6
where

7 o © y :
¢3- -l f,@} (1) ,5” 8.5.7

w _ o «)/ o ) - EICH
¢ T @ g A + lfC,Z ﬁ

{}"l 1" 5# 10 f

b0 00 By b VB e g o B e B 89

C, f+c f)ﬂm 8.5.8
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47 b B, B f
g1 - [&54 <f9“+ g fuf + c5 VB
¢;f’ (I, [ea % a,, 307] B

! :'/6(0/ 5°ﬁ? 8.5.2%

W/

&.5.21

8.5.22

P - bay (10" B, 57" 40, T+ 0y 7] 6

i 't
+ [(4 71" 3(1M%) g, F I 't a‘sz(jﬂ)z] 3;)
0 L3 ©
> bso 2?' T Ly (1) ﬁ% 8.5.24

«yn

RN
w
O

]

G, Tﬁawﬂ— 5[20, f—ra, f](@ [40, T%—SCL P
+4a32f]ﬁ;)/ [ " a T"ra, % a, T }/@j

+3(10%,, ? - [3e,, 71" ¢, (39°] 5,;’
8.5.25
¢ 32 wn () n (w o )
jos = a,, ﬂ%’ + Qg ? +a,, 5 * a,, /35? + asoﬁa}-
vby, (98 + fﬁ“’” w38y, + 27C,, ] 7

" )
- \:C T - -r Cs :}
23 /g? 8.5.26

= 2b, fﬁz“” [b ik, f] ¢ oy ﬁ;‘””

C (L)// (L)/ (f)
* 31 ﬁ? 3o 1

ok
.
!

?'-5

8.5.27
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4 @/ " W/’
Bl m S0, V8, BT e, (T ]gsé 3

)
i b10 2

8.5.10
4l e, Ty 37 20, 7 18

n Vi © na 0)
s e I"r 0, 7" 0, 7 ]/55} cn VB,
&.5.21
()

no_ Y 1 @
¢,}-5 T Gy ﬁsa Gy /55? Ty /6 = S 55
20N "
t2C, fﬁ%‘ * [Ciz 1M e, ]ﬁq‘

8.5.12
b £ g0 i B ] -
/gz Ca /61? 1t ﬂ19 t (3’3 G55
i) {
7_ L>11 ﬁz() 10 ﬁ | 8.5.14
() (‘) (L)
a,, ﬁ - L’ H) ﬂ 8.5.15
R
¢ ” ) (f/} ‘9 QU b (t)8 5 16
s Lo /5 ﬂ’“é = ﬁ’"? B &18
5.17
23 (O / @
¢4,_3 = f ﬁ% [ Ay, + a’lif :[ (633 8.5:18

l

2L o )/ © (o 0
¢}‘—+ 212 s " 2 (43} N ﬁq + b, (T i fﬂ

84518
o/ p (L) (0 (t)
¢?5 b ¢ [b I+ b f] 21ﬁ? 20(61}

8.5.20

20



(L)// )/ (()
losz ﬂz ﬁ/} r bao /627‘

&:5-28

f=/>\L dy

8.5.29

Quantities with negative subscripts are again to be taken as zeros.

and

respectively.

For j = 0, equations (8.5.7), (8.5.8), and (8.5.9) become
o] e} \=
)\i (an ﬂ30+ cm)‘ifgm) o 8.5.30
& 0 0
O“zo ﬂao+ >\L (Ai bzz ﬁzo1L c21 /510) =0 8.5.3:1

[Q ()\ 1/2 + C : ﬁ1o= 0 8.5.32

(8:5.30) , €8.5:31) 5 and (8.5.52) have nontrivial solutions

for'ﬁglo, ﬁgQO’ and ﬁ?BO because the determinant of the coefficients

vanishes:

[«] o}

A o[ty 2y g 5.5.53

54C

which is assured by (8.3.21).

For j = 1, (8.5.7), (8.5.8), and (8.5.9) become

0 o) ) 4 o
[0‘11 ﬁBI S e )\iﬂuJ >\i Ty 95 t Qi (30

+2N. C,, /@w [c Nt €, A ] -
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51+b (\) 61+C201>\Lﬂ11+2b202>\L(glo/
e [bzz >\i ¥ Em }\L] ﬁwﬁ- Czow 1:3 & sz @o =0 Pk
nd
[Q34>\f+a,3o] gm* Ca A B 40“34)\? 63;
[60. >\ /\2 0 )\] C;; /151;1— C;;/Sm:O 8.5.36

where ( ) )

The first and third equations yield (keeping in mind the results for

} 6 56 6 A O
i ﬂ (¥) = exp{ f[ C’)\L + %33 - (Cq ?1o+ 4y Csx0)
& N Qg Crp Qze N

: 0 ] o o/

+ C51 Q'14 + Ly C s (Cﬁ' Cn ] dK} 537
° 4
Cro Qze A (€)% @ga A

From (8.5.30) and (8.5.31), we have

/510“): Cn)\ /630 8.5.38

and

|
zom: b;z )\-Lz (a;o ﬁso+czo1 )\i /:"10> 8.5.39

Terms associated with higher powers of (k)ml to each expansion can
again be computed by way of the recurrence relations (8.5.4) through
(8.5.6), although the computations are not only tedious but may be

very difficult because new sets of differential equations arise. Since
k is large, these higher order terms are negligibly small in comparison
with the leading term and therefore will not be considered in the

subsequent development, i.e., we will consider only (610, (320, and/gzo.
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8.6 THE PARTICULAR SOLUTION
For a shell under gravity loading, the components of the load
intensity vector are [ef. [33) )

%’% = #_i-z[smx}’ Sine"?fcoﬂf]_ 8.6.1

Vi+Y

492,:439 /Doh sin Y Cose

846.2

435 ,Pn ﬂLh[ ¥ Sin¥ Sme-cos“V] 8.6.3

The form of the corresponding Eﬁn(ﬁ ) (1=1, 2, 3) suggests that

any particular integral of the dependent variables cannot contain a

*£(%)

factor e for any F (¥ ) which is not identically zero. Thus we

will seek particular asymptotic solutions of the form

MP(H{)’V ZO Snl.(zs)‘f%-4?f (n =0, 1) 8.6.k4
-

P<M)N§o S ?.m{*?' (n = 1) 8.6.5

<H<)v Z 8 (Zf)’k i (n = 0, 1) 8.6.6

Substituting (8.6.4), (8.6.5), and (8.6.6) into (8.1.4), (8.1.5), and
(8.1.6), collecting coefficients of the same power of k and equating

them to zero, we get for n = O

4f*0-v% "
LSl (8, )= eh cosvﬁom 8.6.7
L (S b (s 3= 800 o),
33" 030 31030 Eh f% 8.6.8
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and

)

03§

)+ er <So1s)= - [L:.’»(Soss—)*L:1<6ons-1)] (5a|) 8.6.9

m3

where m = 1 and 3; and for n = 1

_ 41*(1-v%) ph sin v ’
Lus(sno)+L12(31zo)+L11(311o)= Eh [¥*]

8.6.10
— 4*(1-09ph sin¥
L23(81so)+Lzz(8120)+Lz1(5110)= Eh [X W]
Sl
. 4f*0-v)pch sy ¢ s
L 35( 5150>+ L32<8120)+|‘31<5110) R E\y’f i ]
8.6.12

and
3]

2L, (8

)
== x

) 1iS)— é Lmi (5“-3_1) (S?-1> 8.6.13
where m = 1, 2, and 3.

Clearly, the leading term of the expansions given by (8.6.%4),
(8.6.5), and (8.6.6) can be identified as the particular solution to
the corresponding middle surface displacement in the membrane analysis
of a shell loaded by gravity. Higher order terms of these expansions

can be obtained from (8.6.9) and (8.6.13). However, since these

A
additional terms are of order 5 or higher, (small in comparison
k

with the leading term) they are therefore omitted from further con-

siderations.
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8.7 SOME RELEVANT RELATIONS
Some of the relations derived in Chapters I through V will

be recapitulated here in a form suitable for the purpose of asymptotic

solutions.
No= %){—[zf(tlal)’-’/ﬂ— ’ 2#@]“’*?&7 g
v e
i =(1E-52) H zf(lzaz)m . ZfV11+5Z]W ' W au'; 2
* T %%xn " %6}

N = Eh i | dup_ wy . d 5ue}
re  201+w) [ 2fy 06  2fvfi+y®  2f {w% Y .
i s

M = —Dg | dw ., v o +[v—(1—v)x”] oW

TR L0He?) 0¥F 0 ¥t 06*  y(1+xm)* oY
e B dug , | oup , [1-3-0)¥*] u}
i I e 50 ) Y (1+32)3 :

M = D v oW +_1sz +[1+(1‘U)52]i\y
& 42 (5% or®  yFo6®  y(+rt)* oY

1 Oug v ouy , Dr(-301*] }
rR— + w
yVi+¥2% 06 ! (1+52)% of Y(1+¥%)3 !

Tk

BT
M= —D(I*v)% 1 d'w [ ow " 1 O
re T 4f% [xVies? o¥08  wVieyr 06 | 2(M¥%) Oy
0L ) N ! QU
A(1+r)* 8 20(1+A) ¥ g
B.7.6
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o) 1 {a(zfmm) 4 VM) 2”%?

Af*piey® (o 08 L
= 1 O(2F¥Mr) | 3(af Vivy*Mpe) _
G Wawi o %6 ZMG}
8.7.8
o W 1 éw}
B {23((1”2)3/" T 24 Y% oY
8.7:9
I A bw}
Wg~ [ 2fVIHY*: 2y o6
8.7.10
where E‘_ .
- h
D 12¢i~22) B
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8.8 THE LEADING TERM OF THE ASYMPTOTIC EXPANSION FOR THE EDGE ZONE
SOLUTIONS

We shall consider in this section asymptotic solutions
for a paraboloidal shell of revolution corresponding to the four charac-

teristic roots >\L(X ) which are not identically zero.

x .
/ Ai(x)dnwim/bv"'wz dy 8.8.1
where

V(i-0%) 8.8.2

and CU( is the appropriate root of the equation

W +1 = 0 8.8.3

For the nth harmonic of the Fourier expansion, the leading terms of

the expansions (8.5.1), (8.5.2) and 8.5.3) are

() (1+7%) 3/8
/850 i ; ¢ 8.8.4

© _ [(+0)+vv? = Q%
g - L dp el o,

and

-5/8
©  +n(1+¥%) ,14C
B = —mnz(x)a/z [(t+0)+ (20 0) ¥ ]{Z{Z% 8.8.6

where C is a complex constant of integration. Retaining only the leading
terms of the asymptotic solutions, the relevant edge zone stress resultants
and bending moments can be obtained from the middle surface displacements

by way of the relations listed in section 8.6. 1In what follows, the
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superscript e attached to a dependent variable means the edge zone part
of that dependent variable. Similarly the superscript i refers to the

interior.

e (1”2)3/3 T , ‘f[ . 3N Ne
W= 3¢ [(15003’(.‘+Cé51nt]+6 C7COST+C8S|nY] Cos ne

(3

e (1 xﬁ)-%[(l Yewrz]f T T i
o S tU)+ v T el
w, = {c [cscos(”c F)r e sin(r-3 ]

e " [C7cos (T+1I)+ € 5|'n(t+7z'_)]§ {S"” ne%

cos ne

’ 8.8.8
e 2 "9/8 2 T .
L& 20 ()7 [+ (2v by ]éc [C’S Sin ¥ - ¢, cos 7:]
8 (k)2 7
=t A CoS ne
8.8.9
€.  Dm#)* L o s
Mm T () ge [cs Sin T-C, o3 "C]
_'t .
-¢ “[e, sin T, cos r]}{igg ?f;%
) ) 8.8.10
Men a2
Sr8rdil
e FaDU-mBn”® (7T T T
Mrenw 442 (x)¥* = [Cs Lo (T“*)*'Cé Sin (v +3 )}
i — Cos ne
-e [c7cos CE=% )+ C8 Sty (= L'E)B{sfn ne%
. 8.8.12
N & ~ 0 _1_) N i
A (k rn
. Eh { " | 8.8.13
-T[ sin ne
+ € C,C0S T +C,5inT|eos ne
8.8.1k

28



€ + 2\ V8
i S (o B

e i ot S CoS ne
ot Bee, s B 3

8.8.15

L e D(m'fi)s i _IT _T
an 63 17 (1+y2)% gé [65 cos(v-g)+e, sin(r 4)J

g [C7 cos (v+I-) + C, SN (“CJ:*I)B{SM ne}

cos ne
8.8.16
e tnD(m%)* T .
QOY] - 8f353/‘7’<1+32)‘/3 e {C5 Sin T ‘CQCOS ’t}
~ "C’[ : cos n92
= C;3IN T=CgqC0s t} Sin ne
. ) o . 9 < g
o~ Fnity¥ ) e [ .
on  2f iR CsCOST + ¢, 5In ¥
‘f[c i : cos ne
# 7 T L SN TN 5in ne
17 8.8.18
e -(mR)(+¥*)®) T - _ e
W, VT € | wnlrvgjve Snrs s )
_‘t’ .
_ _Tr ; T Sin Ne
e [07 cos (x"z)+Cg Sin (T~ 7‘)]}{005 ne?
8.8.19

/k, 4
where T= %/\/“mz &
¥
-_-_4/_‘7'%3_& W)/VW CIX 8.8.20

c; =5, 6, T, 8 are constants of integrations.

The leading term of Ni is proportional to k-l. Since we
shall have no need for it, the explicit expression for Ni will not be
given here. To compute the coefficient associated with this leading
term would necessitate the derivation of the second term of the ex-

pansions (8.5.1) and (8.5.3). On the other hand, the error accrued to
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the neglect of Ni is of the order (k_l) in the presence of Ni, the
interior solution corresponding to )\i £ 0. Observe that the effects
of the solutions obtained in this section due to the presence of
f?i-t are of significance only in a region near the edges of the
shell; hence, they are often referred to as the edge zone solutions.
In many situations, the edge zone is only a small percentage of the

span of the shell.
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8.9 THE LEADING TERMS OF THE ASYMPTOTIC SOLUTIONS FOR AXI-SYMMETRIC
GRAVITY LOADING

In this section the interior solution (section 8.4 and
chapter VI), the edge zone solution (section 8.8),and the particular
solution (section 8.6 and chapter VI) will be combined for a paraboloidal
shell under axi-symmetric gravity loading. It should be recognized that
the result represents only the leading terms (section 8.4 and 8.5) of

the asymptotic solution to the shell equations 8.1.4, 8.1.5, and 8.1.6.

“ v
LA 3;%%(Hv)(/m-%z){é‘ii)azul54 (10§ )[2@ » zr‘ . wz]
¢ {-(w)in (T_‘“;/’_W) i (1+v)] ) 62}

(1+¥%) 8

i3
2
uroNﬁ%{(”v)[UM‘%]*(%) vz

g Zf[ V)ﬁn(ﬁm) +v)1—;fw— H‘Uz]fczb'}

-+

i - _
ge [CSCOS“C +C65m “CJ+C [C7c05t+c8 Sin ”[_‘B

«Je

8.9.2
- proh Vity* 21\ 3/2
Mg 5 e (1+5%) +C1§
: - 5.59.5
Y - 2
Nes fo)oh{] 5% i+ [(M) +C1H
- Eh 1 L '
. {*/‘ - 1/@%% e |C o5 T+C 3N T
+ € t[c COS T+ C, Sin T:l
it 8 8.9.4
: .
% D (m4)° %e [Cs S5 =€, €os tJ
ro 4f2 ].f.h/J.)VS
g
—~& [C75mt-c8 cost])g
8.9.5
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2D (m4)* {t ,
M90N4fzﬁ(]+?fl>1/8 & [C‘S S T COS ’t_J

-T ;
-~ [c., Sin T = ¢, oS T:B
Dk’ ¢ B
QPO 8f3v5‘(1+32)3/5{6 [C,J. cos(T-F)+c, sin(T-4 )]

. |
o [C7 cos (T+T) + ¢, Sin (T+T_:>]

9.7

In addition, we will also be interested in the rotation a)r

~km (112" | v .
~ M)—{CL [C,J. cos (t+%)+ ¢, sin (Tf{%)]

Wy el

-7 | T
=8 [c7cos (T~§)+c8 sin (T™% B
8.9.8

ui and N: have been omitted in the expressions (8.9.2)
and (8.9.3) for u and N_, respectively, because they are of the order
k-l iﬁ the presence of the interior solution (see equations (8.8.8) and
(8.8.13) ). 1In contrast, G)i, Mi ,Mé , and Qi which are of order k—l,
k-2, k-e, and k-B, respectively, relative to the edge zone solutions,
cannot be neglected on the relative order of magnitude basis because
they are the domindnt terms in the interior of the shell. Nevertheless,
these same terms which represent the bending actions of the shell have
been omitted since, relative to the membrane actions, they do not con-

tribute significantly to the stresses and distortions of the shell. An

alternate derivation of the above results can be found in [12].

The six real constants of integration Cl’ C2, 05’ C6’ C7

and C8 can be chosen in such a way that an admissible set of edge

conditions is satisfied. Considered herein are boundary conditions
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which are commonly called (a) simply supported, (b) clamped, and (c) free

The simply-supported edge at a fixed value of 0 requires
the following:

¥ B.5.
u,r 9.9
w=0 8.9.10
M. =6 8.9.11

r
The clamped edge at a fixed value of ¥ requires the
following:

“’Lr- =) 8.9.12

w =0 8.9.13

a)r =0 8.9.1l
The free cdge at a fixed value of 3/ requires the

following:

. 8.9.15

~ 8.9.16

8.9.17

Far a more detailed explanation of the boundary conditions,
see Section T7.1ll.
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8.10 THE LEADING TERMS OF THE ASYMPTOTIC SOLUTIONS FOR ASYMMETRIC
GRAVITY LoADING ( V¥ = 1; )

The leading terms of the asymptotic solutions of a shell
whose axis of revolution is perpendicular to the gravity vector are

8f 5
W, —ff—gq%(m €441 +c3?3(2r)+C43,o(?f)+?,,<?f)} Bl G

(11,52)3/8 v - | .
+ VE [C COSTTC,Sin 7:]+€ 7c05trc63|n Clrsine
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. o~ 81P 7
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8.10.
—L&{C,?,(rﬂc 10
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Me1N AP (1059) e{c [05 Sin T=C, o3 ’C]"C [cpmt—cscosr]%sme
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8.10.20
|l _ _ ) -
?8(5)—75%5(5) Yi+5* ?(a) ( D) ;
8.10.21
Y (. oyt
? (¥) = A,—WL%\H-E }
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%10(07 Viry* 8.10.23 :
s ) U o Z % £+(1-rb‘2)2+v(1+32)5 L
g}”(a) x{c(nm Vi+y %(u) vz {2 o " J
8.10.24
_ z| ¥ _ (1+p)
() = Vi+y [2 K j{
e 8.10.25
— 1 - .
AN Q:"—”;—!'—”—[1-%]+('Zv)d[ln<V1+r’~-l>-,Zn<z<)j
B : 8.10.26
- (=0)¥ (+v) _ (+0) _ (40t292) | 5 g
][3(&) 3 jn(zf)ﬁ“ﬁb,s =1 0 Y+ =
8.10.27

In the derivation of the above results, terms of the
order (k)-m m =1 are again neglected in the presence of unity for the
various reasons discussed in section (8.9). The eight constants of
integration Ci’ i=1l, - - - -, 8, are to be determined by the boundary
conditions which are commonly called (a) simply supported, (b) clamped,
and (c) free.

The simply-supported edge at a fixed value of § requires

the following:

u, =0 8.10.28
Uy = 0 8.10.29
w = 0 8.10.30
MP= 0 83651

The clamped edge at a fixed value of ¥ requires the

following:
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following:

@Z =9 8.10.32

U, = O 8.10.33
=10 8.10.34
coP=O 810,35

The free edge at a fixed value of B’requires the

NP =g 8.10.36
_M& " = 8.10.37
Zf Vit §? re

il =0 8.10.38
Qp =i 8.10.39
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8.11 THE LEADING TERMS OF THE ASYMPTOTIC SOLUTIONS FOR A SHELL UNDER
UNIFORM PRESSURE

The membrane behavior of a paraboloidal shell of
revolution under uniform pressure has been investigated in [53]. The
results presented there coupled with the results given in section 8.7
(with n = 0) constitute the leading terms of the asymptotic expansions
of the stress resultants, bending moments, and mid-surface displacements
which describe the shell behavior under uniform pressure. If the
intensity of the pressure is -g(o with respect to the mid-surface of

a shell whose normal is assigned to be positive when directed inward,

we have f
) B ] 1+ Y1+8%
w ™ _E_;?—Q{< )(HJ )+ <1+U)[ 52 Vit52 [ﬂ( f >]
¢ +zf‘)3/8 -
2
+W§ COST*—CGSIHT]
=G
+€ [c7 oS T + Cg sin “c]}
BTl
2F %o (20-1) (2v+2) _ (1+)
“ R { LA e A
B (1+v)1f[n(1+x/17ﬁ>]+ Czb’}
A1+ y2 § Vi+y* 8.11,2
N~ %f{—w;? , c{v_*””}}
o ¥
B=L1.5

Ay 1+2.?f2 ¢, _ Eh
N, %f{ Virg? | 51«(1+—xz} {zf\/?('mz)’/a%
T . i
{C {CS C05t+cé5m ”C]+C [C7003t+085m T]}

M~ D(m$)? { ‘t'[ ) . el Labh
4T (et & LEs M T TG T

_'t .
e [C7Sm T + C_. COS T]%

8
<
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D(m*)* T .
Pl = 4]]2 Wm(Hxl)’/s %e [(35 Bl B = £, €05 TJ

—e—T[c., SIN T = Cg COS 't}

D(m $)° %
Q.~ SF T (1459 {c [cs cos (T-F)+ ¢, sin (T‘-%_)}

a8
-¢ {c7 cos (T+5)+ Cg St (”cﬂ;‘:)]}

—(mﬁ)(ml)%{
r Zfﬁ

= TE gl
ol [07605( 4)1-68510(‘(3 ZB 8.11.8

B:11.6

Bed T

=)

T
¢ [cs cos(T+3)+C, sin (rﬂzr)]

where T, k, and m are defined by (8.7.20), (8.1.25), and (8.7.2),

respectively. C , i = 1, 2, ----8, are constants of integration.
4
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8.12 THE SINGUIARITY AT THE APEX
The presence of a large parameter kh has led to an

asymptotic analysis of the solution to the shell equations. Implicit
in this analysis is an assumption concerning the order of magnitude of
the coefficients associsted with the differential equations. Observe
et if, dp (8.2.18),; ¢>2(t) vanishes for some t_, a £ t_< b, while

qo(to) # 0, then whatever the magnitude of k2, the term k2<P 3 fails
to remain significant relative to ? at t = to. In fact, If ¢>2 is
continuous, then for a fixed finite k, however large, there exists a

0 such that
EREOIE |4t g0,

for |t‘tol‘-3 + Thus, forlt-to[4 d , the formal asymptotic solution
(8.2.20) would cease to be meaningful.

An examination of (8.1.k4), (8.1.5), and (8.1.6) reveals

that some of the a? b;j, and c°, vanish at § = 0, i.e., the apex of

iy’ ij
the shell, while the corresponding aij’ bij’ and cij do not. Thus,
there will be some neighborhood surrounding the apex in which the
asymptotic solutions obtained in section 8.8 cannot be used to describe
the behavior of the shell. A method of asymptotic integration has been
developed by R. E. Langer, yielding a solution which is valid at the
singularity ¥ = O (ef. [40), [L41) ). Using Langer's results, C. N.
DeSilva investigated the axi-symmetric deformation (including the trans-
verse shear deformations) of a paraboloidal shell of revolution and
derived the leading terms of the asymptotic representations of the

rotation, Gjr(K ), and the horizontal stress resultant, H (¥ ), which

are valid for O ¢ a4¥b<x©[L42], The other stress resultants, bending

Lo



moments and middle surface displacements are derivable from cor and H.
These quantities are all in the form of the appropriate Bessel functions
with argument k A (¥ ) where A—=> 0 as ¥~ 0 . It is not difficult to
verify that the results given in section 8.8 for n = 0 are just those
obtained by DeSilva with the Bessel functions replaced by the first term
of their asymptotic expansions and the transverse shear deformability
suppressed. While the asymptotic representations of the Bessel functions
cease to be meaningful as f—=o0 , the Bessel functions themselves remain
unaffected.

An asymptotic solution to the shell equations which is
valid at the apex and without the restriction of axi-symmetry has also
been obtained by C. R. Steele (cf. [43] ). But, since the region in
which our asymptotic solutions (given in section 8.8) are erroneous is
extremely small for a thin shell (see discussions of results) and since
the exact behavior of the shell at the apex can be deduced from the
differential equations, the behavior near the apex can be obtained to
a good approximation by simple interpolations. For engineering purposes,
it is not necessary to perform the proposed refined asymptotic analysis,
although such an analysis would offer a better understanding of the
behavior of the shell near and atthe apex. For instance, it can be con-
cluded from the results of this refined analysis that the condition of
finiteness at ¥ = 0 requires the vanishing of the constants C7 and C8
in the results listed in section 8.7. The relatively large amount of
computer time needed for the use of the double precision Bessel function
subroutines was also a strong factor in our decision not to extend the

present analysis.
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INTRODUCTION TO NUMERICAL RESULTS

Numerical calculations are presented in curve form in the sub-
sequent nine sections. It is, of course, impossible to anticipate all the
configurations which may be of interest to the antenna designer. However,
a fairly wide range of sizes are covered and, additionally, the results
are presented in normalized form. These results can be used to determine
the magnitude of displacements (and stresses) for purposes of preliminary
design. A more detailed analysis of a specific configuration can be made
by use of the digital computer programs which have been developed for this
report.

The results, in addition to being used for numerical data, also
illustrate the behavior of paraboloidal surface structures. Most of the
text accompanying each of the nine groups discusses various aspects of
the shell behavior which have been revealed by the numerical calculations.
In general, the shells exhibit the same qualitative behavior as that given
by a shallow shell analysis(reference Part III) but there are some signifi-

cant differences.

An attempt has been made to present the results in a uniform
manner but deviations will be noted to accommodate the specifics of each
group. Dimensions and boundary conditions are presented in tables. Both
the symmetric and anti-symmetric behavior under gravity loads are shown
with the former corresponding to a pointing angle of ¥ = 0° and the
latter to Qk = 90°. The curves, in addition to three groups of numbers,
bear the letter s, meaning symmetric and a, meaning anti-symmetric, e.g.,

figure 8.13.1.1s and figure 8.1%.5.la. Some of the parameters such as
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Q: and M; tend to overlap if plotted on the same scale. These have been
scparated in the interest of identifying each curve but there may be some
confusion regarding the scales. However, a careful second examination of
cach figure should be sufficient to relate each curve with the proper

ordinate and abscissa scales.

The normalizing factors are as follows (see section 7.12):

N-%: NQ
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8.13 Group I -- Four Closed Shells with Outer Edges of
¥= .20, .ko, .80, 1.20

The Group I results presented in this section illustrate the
behavior of four shells, closed at the apex, which differ only in their
outer radii. Dimensions and other pertinent data are presented in
Table 8.13.1. The four outer radii are 230.4, 460.8, 921.6, and 1382.4
inches which, since the focal length is 576 inches, result in slopes at the
outer edges of ¥ = .20, .40, .80, and 1.20, respectively.

An examination of figure 8.13%.1s reveals the very interesting
result that the maximum deflections are a somewhat unconventional function
of the outer radius. A table of maximum deflection (w;ax) for different
shells under symmetric loading vs. the position where it takes place (K/m)

is shown below:

= Table 8.13.2
wmax Symmitric Loading
2 Ymax Xm
.20 - 417 Jhh
Lo S i .348
.80 -.609 0
1.20 -1L0b3 0

We observe that case 2s with the outer edge at X2 = .40 experiences a
w;ax which is actually less than that experienced by the smaller shell
(case 1s). Furthermore, case bs. which is a shell having a diameter three
times that of case 2s, experiences deflections only 2.5 times that of

case 2s. Generally speaking, with the same relative increase in length,
the transverse deflections of beams and plates which vary as the square

of the span length would yield deflections nine times greater. Hence,

these results clearly illustrate the stiffness advantage of a shell

L



structure over that of beams or plates.

Note also that the edge zone behavior for the two smaller shells
causes a hump in the deflection curve which places the maximum deflection
near the outer boundary. The hump is more pronounced in case ls than in
2s. The edge zone behavior is also clearly visible for the two larger

shells although the hump is overshadowed by the interior behavior.

A better indication of the edge zone behavior is given by the
*
plots of M%, Mﬁ , and Qr' We observe that d, the width of the edge zone,
is approximately the same for all four sizes and agrees well with the

result, RZ .006° (see equation 7.12.1.1) given by

4
2f
P RPYAY 8.13.1
of 2f

The maximum values of these gquantities which characterize the bending
behavior occurring in the edge zone, i.e., MZ 5 Mi , and Qi , decrease
as the outer radius increases. This means that the bending stresses will
be larger for a smaller shell.

The manner in which the curves of Ni and N; coincide should
also be noted. This, again, illustrates the membrane behavior of the
shell. As has been previously described (see sections T7.12.1) the shell
prefers to carry the applied loads by membrane action; bending action
takes place near the edges in order to satisfy practical geometrical
constraints. Hence, the interiors of shells will develop nearly the
same values of Ni and N; providing the edge zone widths are not a major
proportion of the total radii.

The anti-symmetric results are shown in figures 8.13.5 through

8.13.11. We note for all except the smallest shell that the displacements
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for the anti-symmetric gravity loading are larger than for the symmetric
situation. For the two larger shells, the maximum anti-symmetric deflections
are more than twice as large. This can be attributed to the unfavorable
orientation of the gravity vector relative to the surface of the shell
resulting in appreciable components of loading in the radial and tangential
directions (see equations 8.6.1, 8.6.2, and 8.6.3). These components cause
larger membrane loads which, in turn, make more severe the bending action

at the boundary. It should be borne in mind that the asymmetric shell

behavior varies either as sin © or cos © (see section 8.10).

There are some additional interesting differences and similarities
between the symmetric and anti-symmetric behavior to be observed. The force-
results N; ” N; , and N;Q again coincide for the four sizes. The widths
of the edge zones as shown by the curves of Mi and M; and Q; are
essentiaglly identical. However, unlike the symmetric case, the maximum
values of the bending guantities increase significantly rather than decrease
with the size of the shell. The maximum radial and tangential components
of displacement are the same order of magnitude as the normal component.

Thus, the calculation of the resultant deflection of a point con the shell

: Fhie * * *
must consider the vector addition of u”, v, and w .

The quantities Q; and MS have not been displayed because of

their small magnitudes. For example, for case U4s, the maximum value of

*

o » the maximum velue is -.0040Lk. Both of these

Qg is -.0038 and for M
values are at least an order of magnitude smaller than the values for the

other transverse shear and bending moments, respectively.
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Table 8.13.1

Case R R B.C. at Rl B.C. at R, Loading
(inches) (inches)

ls* 0 2304 -—--- Simple support Symmetric-gravity
2s " 460.8 i " "
3s ! 921.6 ——-- " "
Ls B 1382.4 s " "
la e 230.4 -——— " Anti-sym.-gravity
2a " 460.8 s " "
38 . 921.6 ——-- . "
La " 1382.4 i " "

7
Note: Material properties are E = 10 p.s.i., U = .3, /2)= .10 1b. per
cubic inch.

Focal length f = 576 inches, shell thickness h = 1 inch.

% Calculated from shallow shell routine (see Chapter T).
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8.14 Group II - Five Shells with an Outer Radius of 460.8 Inches

The results in this section illustrate the behavior of five shells
all open at the apex and with the same outer radius of 460.8 inches but
terminating at various inner radii. All the shells are simply supported
along both edges. Dimensions and other pertinent data are presented in
Table 8.14.1. The outer radius is equivalent to a slope of 5, = .40 while
the inner radii correspond to K = .16, .20, .25, .30, and .35. Both the
symmetric and anti-symmetric behavior under gravity loads are presented
with the former corresponding to a pointing angle 7P = 0° and the latter
to 7P = 90°. The curves, in addition to the heading of three groups of
numbers (e.g. 8.14.1), bear either the letter s, signifying symmetric
behavior or a, signifying anti-symmetric behavior. Results are all in

normalized form (see page 43 of this report).

The deflection results shown in figure 8.14.1 for the behavior
under a symmetric gravity loading show the same trend as that exhibited
by the shallow shells studied in section 7.12.3%; namely, that the maximum
deflections increase as the span of the shell (we shall define the span
to be the difference between the outer and inner radius of the shell) gets
smaller. This somewhat unexpected deformation behavior is due to the
interaction of the membrane behavior in the interior of the shell and the
bending behavior in the edge zones at the boundaries (see section 7.12.3).
As can be seen from Table 8.14.2, the deflections for the purely membrane
behavior increase with decreasing span. In order to correct the inherent
shortcoming of the membrane solution, the asymptotic solution can be
visualized as superimposing transverse shear, moments and in-planc forces at

the boundaries onto the membrane solution so as to meet the requirement of
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zero w¥ displacement at the edges. These edge loads induce inextensional
behavior (cf. references [44], [45) ) in the interior of the shell and it
is the inextensional behavior which causes the curves of w* (see figure

8.14.1) to exhibit humps near the edges.

The curves of the bending moments M? and M; shown in figures
8.14.3 and 8.14.4 give a clear illustration of the widths of the edge zone
at the boundaries of the shell. It is interesting to note that the
shapes and magnitudes of each set of the bending moment curves are essen-
tially the same in the edge zone except for case 5s which does not have
an edge zone. This latter case exhibits essentially "plate" behavior in

that the deformation is predominantly bending. The curve of Qt in

figure 8.14.5 for case 5s also indicates "plate" behavior.

The curves for the anti-symmetric behavior in this section are
self-explanatory. In all cases, the magnitudes of the various parameters

are smaller than their counterparts under symmetric loading.

62



Table 8.14.1
Group 11 Examples

Case Rl R2 B.C. at Rl B.C. at R2 Loading
(inches) (inches)

1s 184.32 L60.8 simple support Simple support Symmetric-gravity
25 230 )+ " L " "

BS 288 o " ” " "

)'I"S 3)4,‘5 6 " n ” "

55 )4‘05 . 2 w " b id "

6s e " oo " n

la 184.32 " Simple support " Anti-sym.-gravity
28. 230 )+ " " ” "

38. 288 O 1" " " "

l+a 345 6 " " " "

58. )+03 2 1] 9 " "

Note: Material properties are E = lO7 Pedadey D = T, f% = .10 1b.

per cubic inch.

Focal length f = 576 inches, shell thickness h = 1 inch.



Table 8.14.2

Membrane Solutions for Cases

Case ls

Case 2s

Case k4s

g

1B
.22
.28
.3k
4o

.288
325
L]
RTele

. 300
325
350
375
400

6k

-.413
-.hog
-.hok
-.398
=u 300

-7
- b1k
-. 409
-.405
=399

w*

-.b21
-.k19
-.416
-.413
-.409

+51Y4

55
.548

480
ko8
.513
.528
542

489
. 502
ST,
.523
o
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8.15 Group III - Five Shells with an Outer Radius of 691.2 Inches

The results in this section illustrate the behavior of five shells
with the same outer radius of 691.2 inches but terminating at various inner
radii. Dimensions and other pertinent data are presented in Table 8.15.1.
The outer radius is equivalent to ¥ = .60 while the inner radii correspond
to a shell closed at the apex and to slopes of ¥ o= w205 L0, +50 and .55
Both the symmetric and anti-symmetric behavior under gravity loads are
presented with the former corresponding to a pointing angle of W = 0° and
the latter to 7P Z 90°. The curves, in addition to the heading of three
groups of numbers (e.g. 8.15.1), bear either the letter s, signifying
symmetric behavior or a, signifying anti-symmetric behavior. Results are

all in normalized form (see page 435 of this report).

In general, the results are comparable to those shown in section
8.14 and the same discussion is pertinent. However, unlike the results of
the previous section, the anti-symmetric behavior for the larger span
shells (cases 1 and 2) of this group results in larger values for the

force resultants, moments, and deflections than for the symmetric behavior.
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Case

1s
2s
3s
hs
5s

la
2a
3a
ey

5a,

Note:

Teiblke 6.15:1
Group III Examples

Rl R2 B.C. at Rl B.Cs &t R2
(inches) (inches)

e 691.2 - Simple support
230.4 K Simple support "
460.8 " " "

576 Hi L] b4
655 . 6 4] Li] "

"

230.4 S Simple support
)4-60 . 8 1 1] 1 1] "

576 n " "
655 ) 6 " " tH

Material properties are E = lO7 Plile, W) =5

per cubic inch.

Loading

Sym.

2

-gravity

n

n

Anti-sym.-gravity

.10 1b.

Focal length f = 576 inches, shell thickness h = 1 inch.
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8.16 Group IV - Seven Shells with an Outer Radius of 921.6 Inches

The results in this section illustrate the vehavior of seven
shells with the same outer radius of 921.6 inches but terminating at
various inner radii. Dimensions and other pertinent data are summarized in
Table 8.16.1. The outer radius is equivalent to ¥ = .80 while the inner
radii correspond to a shell closed at the apex and to slopes of X z 32,
4o, .50, .60, .66, and .75. Both the symmetric and anti-symmetric behavior
under gravity loads are shown with the former corresponding to a pointing
angle of 1” = 0° and the latter to 7V = 90°. The curves, in addition to
the heading of three groups of numbers (e.g. 8.16.1), bear either the
letter s, signifying symmetric behavior, or a, signifying anti-symmetric

behavior. Results are all in normalized form (see page 430r this report).

In general, the Group IV results are comparable to the Group II
and III results for shells with smaller outer radii and to the Group V
results for shells with a larger outer radii (read discussion in section
8.14). The deflections are larger for the Group IV shells than for the
smaller Group II and III shells. Note, however, that the quantities
associated with the bending behavior such as edge zone width, Mﬁ b Mg s
*

Q; o Qg , etc. have substantially the same magnitudes.
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Table 8.16.1

Group 1V Examples

Case Ry R, B.C. at R B.C. at R, Loading
(inches) (inches)

1s 368.64 921.6 Simple support Simple support  Sym.-gravity
2s 460.8 " " ® .

3s 576 " ) i ;

ks 691.2 i . . o

5s  806.h0 " b . i

6s 86L.00 ! : . "

Ts —_— . - . 2

la 368.64 ¥ Simple support . Anti Sym.-gravity
2g, 560.8 i B o "

a 576 " " " "

La 691.2 . . . i

Sa  806.L40 i i J n

ba 86L4.00 ! ! . :

Ta TR 2 - . .

Note: Material properties are E = 107 BeEadle, B 5, /%)-.10 1b.

per cubic inch.

Focal length f = 576 inches, shell thickness h = 1 inch.
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8.17 Group V - Ten Shells with an Outer Radius of 1382.4% Inches

The results in this section illustrate the behavior of seven
shells with the same outer radius of 1382.4 inches but with different inner
radii. Dimensions and other pertinent data are summarized in Table 8.17.1.
The outer radius is equivalent to ¥ = 1.20 while the inner radii correspond
to a shell closed at the apex and to slopes of ¥ = .30, .ko, .48, .60, .75,
.90, 1.05, 1.075 and 1.15. Both the symmetric and anti-symmetric behavior
under gravity loads are shown with the former corresponding to a pointing
angle of @U = 0° and the latter to 7P = 90°., The curves, in addition to
the heading of three groups of numbers (e.g. 8.17.1), bear either the
letter s, signifying symmetric behavior or a, signifying anti-symmetric

behavior. Results are all in normalized form (see page‘450f this report).

In general, the Group V results exhibit the same trends as the
results for Groups II, III, and IV which are shells with smaller outer
radii. The deflections are larger for the Group V shells because the
outer radius is the largest of all the groups. Note, however, that the
quantities associated with bending behavior such as edge zone width, M: 3

Q? , etc. do not vary appreciably between the four groups.
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Case

la
2a
3a
La
5a
6a
Ta
8a
9a

10a

Note:

Ry

552.96 1382.L4

691.2

864
10%6.8
1209.6

1296.0

552. 96
691.2
864
1036.8
1209.6
1296.0
345.6
460.8
1%24.8

Material properties are E = 10

per cubic inch.

R

2
(inches) (inches)

"

1

"

"

Table 8.17.1

Group V Examples

B.C. at Rl B.C. at R2

Simple support Simple support

Simple support

Simple support

" 1

7 Peisnde g L) &

Loading

Sym.-gravity

Anti-Sym.-gravity

o5 (% = .10 1b.

Focal length f = 576 inches, shell thickness h = 1 inch.
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FIGURE 8.17.9
GROUP V ANTI - SYMMETRIC
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8.18 Group VI - Four Shells Which are Free at the Inner Boundary

The results in this section illustrate the behavior of four
shells with the same outer radius of 460.8 inches but with different inner
radii. In this section, each shell is simply supported along the outer
edge and is free at the inner edge. Dimensions and other pertinent data
are summarized in table 8.18.1. The outer radius is equivalent to § = .k
while the inner radii correspond to slopes of V= d6, 20, 255 and 30

Only w¥ and Mi have been shown.

It is observed that the deflections for the symmetric loading
increase as the span of the shell decreases. This is contrary to the usual
behavior of planar structures and dramatically illustrates the manner in
which a shell derives its rigidity. The missing part of the shell (i.e.,
the part which was removed to make the hole) supplies support to the
remainder of the shell. (One can visualize what would happen to a simple
cable if a piece of it were removed.) Since the shell is a two dimensional
structure, it will not collapse because the loss of the "cable action" is
compensated by an increase in the hoop action. This mode of behavior is
not as efficient as the "cable action” and hence, leads to larger dis-
placements. The trend of increasing deflection with decreasing span does
eventually reverse (as it must) but at a span which corresponds to a very
narrow ring (see shallow shell results). Notec that the bending moment

*

Mr exhibits a rather slow variation with changing span.

In general, the results are the same as those previously shown

for shallow shells (see sections 7.12.4 and 7.12.5).
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The anti-symmetric case does not exhibit the same trend of in-
creasing deflections with decreasing span. In the anti-symmetric case,
the larger components of the gravity load vector are aligned along the
tangent plane rather than along the surface normal. This means that there
is less bending action in the anti-symmetric loading, and it is the

bending action which leads to the results which have been discussed.

12k



Table 8.18.1
Group VI Examples

Case Rl R2 B.C. at Rl BsC» &t R2 Loading

(inches) (inches)

1s 184.32 460.8 free Simple support Sym.-gravity
2s 230.4 & B i &

55 288 d ; . .

bs 345.6 E = R F

la 184.32 460.8 . il Anti-Sym.-gravity
2a 2%0.k4 " £ . "

%a 288 " " ¥ "

ha  345.6 ¥ & " "

Note: Material properties are E = 107 DaBela, T ® 3, f% = 0 1b.

per cubic inch.

Focal length £ = 576 inches, shell thickness = 1 inch.
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FIGURE 8.18.4
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8.19 Group VII - Five Shells which are Free at the Inner Boundary

The results in this section illustrate the behavior of four
shells with the same outer radius of 921.6 inches but with different inner
radii. As in section 8.18, each shell is simply sup<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>