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ABSTRACT 

The present report is the fourth part of a series bearing 

the general title of "Distortions and Stresses of Paraboloidal Surface 

Structures." Asymptotic integration methods are used to obtain 

solutions for shells which are deeper than those treated in Part III. 

A large number of specific configurations has been analyzed and the 

numerical results are presented in the form of dimensionless plots. 

The discussion is focused on the deformation behavior under gravity 

loads as it is affected by the span of the shell, the direction of 

the gravity vector, and the boundary conditions.  There are also 

contour plots of deflections relative to the face-up position which 

depict the change in the shapes of the paraboloidal surface as the 

direction of the gravity vector is changed. 
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NOMENCLATURE, SYMBOLS, AND ASSORTED MARKS 

u'T M. \ KL
3
     - rectangular Cartesian coordinates 

*', *\  xJ  - general curvilinear coordinates 

9,5     - general coordinates on middle surface of undeformed 
shell 

£     - coordinate normal to middle surface of undeformed shell 

y,9 - polar parameters on middle surface of undeformed shell 

x, M.    - cartesian parameters on middle surface of undeformed 
1       shell 

- radius of revolution of middle surface of undeformed 
paraboloid 

6 -  angular coordinate of middle surface of undeformed 
paraboloid 

y » —-   - slope of meridian tangent to middle surface of 
**     paraboloid 

- angle which meridianal tangent makes with tangent plane 
to apex of paraboloid (see figure 2.1.3) 

- focal length of middle surface of paraboloid 

7#     - radius vector to point on middle surface of undeformed 
shell 

- radius vector to point in undeformed shell 

vii 



R0      - radius vector to point on middle surface of deformed 
she] 1 

R       - radius vector to point in deformed she]3 

°"1 » °"2.    " covariant base vectors of middle surface of undeformrd 
shell 

- i  - x 
(L  , <L     - contravariant base vectors of middle surface of un- 

deformed shell 

h       - unit normal to middle surface of undeformed shell 

ä  4 ,5.   - covariant base vectors of undeformed body 

a.' ? a.   ? a    - contravariant base vectors of undeformed body 

Q.       - covarjant metric tensor of undeformed body 

a       - contravariant metric tensor of undeformed body 

CL_„     - covariant metric tensor of middle surface of undeformed 
shel] 

CL       - contravariant metri c tensor of middle surface of 
undeformed shell 

G^G^G-j   - covariant base vectors of deformed body 

&1- (rA, G3  - contravariant base vectors of deformed body 

A1 , Ai    - covari.ant base vectors of deformed middle surface of 
shell 

Vlll 



A , A      - contravariant base vectors of deformed middle surface 
of shell 

N       - unit normal vector to deformed middle surface 

R, ,R2     " principal radii of curvature of middle surface of 
undeformed shell 

^11» ^12» ^22  ~ second fundamental quadratic covariant tensor of 
undeformed middle surface of shell 

,i ,2 .i     ,2 
"i)b2i D2i M  " second fundamental quadratic mixed tensor of undeformed 

middle surface of shell 

^mn'^n >^    " strain tensors 

<ymn, Cmn» an      " stress tensors 

2°"^ -  stress resultant tensor of shell 

ma/9      - moment resultant tensor of shell 

I01 -  transverse shear resultant tensor of shell 

Nofyg      - physical components cf force resultants tensors referred 
to 51, £ coordinate system (units of force per unit 
length) 

Mft/g       - physical components of moment resultants tensors 5 j? 
coordinate system (units of force-length per unit length) 

Q,x      - physical components of transverse shear tensor £ , t;  co- 
ordinate system (units of force per unit length) 

•    ~ 1    Z    3 11 » l2 » L3    - unit base vectors associated with y , y   , v 

i x 



t&ß - covariant permutation surface tensor 

£ * - contravariant permutation surface tensor 

^t->^9 > ^tO       ~  f°rce-resul'^ants referred to r, 0 coordinate system 
(units of force per unit length) 

MfytAg,tAy.Q      - moment-resultants referred to tyt coordinate system 
(units of force-length per unit length) 

Qr •» Qo -  transverse shear resultant referred to r, 6  coordinate 
system (units of force per unit length) 

•f - focal length of parabola 

-f , -f 7 -F , -f - powers of f, the focal length 

U. , u,^ - displacement tensors of middle surface 

Or^ ix/g. - rotation tensors of middle surface 

wr      - displacement of middle surface along £      (units of 
length) 

o 
r - displacement of middle surface along tangent to meridian 

(units of length) 

o 
-0      - displacement of middle surface along tangent to latitude 

(units of length) 

y* - strain tensor of middle surface 

^•a/3 " strain-curvature tensor of middle surface 



£ ^      - extensiori3l strain along meridian (dimensionless) 

£ß -  extensional strain along latitude (dimensionless) 

€,.£      - shear strain (dimension.!ess) 

€°       - extensional strain of middle surface along meridian 
(dimensionless) 

€Q - extensional strain of middle surface along latitude 
(dimensionless) 

€ rg - shear strain of middle surface (dimensionless) 

K r - extensional strain-curvature of middle surface along 
meridian (units of (length)-1) 

K Q - extensional strain-curvature of middle surface along 
latitude ( units (length) -1 ) 

K L.g - shear strain-curvature of middle surface (units of 
(length) -1 ) 

h - thickness of undeformed shell (units of length) 

E - Youngs modulus (units of force per unit area) 

E 
jtL a -—-—- _ shear modulus (units of force per unit area) 

2.M+V) 

- Poissons ratio (dimensionless) 

- weight-density (units of force per unit volume) 

XI 



V      - powers of V  , Poissons ratio 

* 
£ - coordinate normal to middle surface of deformed shell 

h* - thickness of deformed shell (units of length) 

X',jt* - force-resultant vectors (units of force per unit length) 

ft1, m - moment-resultant vectors (units of force-length per 
unit length) 

r , r - tensor components of body force vector 

P - body force vector (units of force per unit area) 

f  ) -fn, -p   - physical components of body force vector (units of 
force per unit area) 

N. >Ny,^vi  - force-resultants referred to cartesian parameters 
(units of force per unit length) 

^* »^OJ^JIW  " momen* resultants referred to cartesian parameters 
*        (units of force-length per unit length) 

Q > Q .    - transverse shear resultant referred to cartesian 
"      parameters (units of force per unit length) 

y  y     - bounding latitudes of paraboloidal shell 

( )      - signifies quantity under bar is a vector 

|, oj- L   - vertical slash before subscript signifies covariant 
differentiation with respect to metric of deformed body 
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.  or , -    comma "before subscript signifies covariant differen- 
tiation with respect to metric of undeformed body 

n •& \        - Christoffel symbols of second kind of undeformed body 

ß y 
0 

in 

(A 

ß y 

Christoffel symbols of second kind of the middle surface 
of undeformed body 

- Christoffel symbols of second kind of deformed body 

Christoffel symbols of second kind of the middle 
surface of deformed body 

dot between two vectors signifies scalar product 

cross between two vectors signifies vector product 

(Aß > *3/5 - second fundamental tensors of deformed middle surface 

O^/j, IO>A     " second fundamental tensors of undeformed middle surface 

wn (If). 

rr)      )   - n  Fournier components of displacement of V.", 111    and 
^en ^ M     w, respectively 

n     - Fourier integer in sin n ö , cos n 9 

L.     - Differential operators associated with momentless 
ij behavior   ( i,j « 1,2,3) 

L*.    - Differential operators associated with edge zone 
IJ behavior (i,j = 1, 2,  3) 

th A).   (^ )  -    n  Fourier expansion for surface loads JO.   ( 0,  Q) 

a..,b..,c  x 
l.l  ij  i,i ) 
0      or" coefficients of differential operators 

a..,b..,c.    \ 
ij' i.r 1.1-^ 

v^ - in f —\      ^.      extensional stiffness    /^\2  , . k -^    \~)      **      bending stiffness   x <R>  J large parameter 

ß .(y)  - Auxiliary functions 

Xlll 



A .     - Roots of characteristic equation; i = 1, 2,  --8 

(O. - Fourth roots of -1; i » 1, 2, 3, k 

m 

r 

4 , 
Y 2 _-JJ

Z
    -  inconvenient constant 

km_ cm /_ 
iT J Vi + y        d^f   -    exponent of e 

c.     - Constants (real) of integration i = 1, 2,  3,— 8 

g.(Y)  - Auxiliary functions (i = 1, ..,10) 

f.( 0 )  - Auxiliary functions (i s 1, 2,  3) 

Superscript e signifies edge zone portion of solution. 

Subscript 0 signifies axi-symmetric solution (n = Q). 

Subscript 1 signifies anti-symmetric solution (n • l). 

xiv 



8.1 INTRODUCTION 

Since an exact solution to the set of shell equations 

developed in Chapters I through V [32] does not seem possible, re- 

course must be taken to solutions which will adequately describe the 

behavior of a shell under suitably restricted conditions. In 

Chapter VI [33],"the shell was assumed to carry the applied loads 

by a momentless or membrane type of action.  In Chapter VII [3^3> 

the shallow shell theory,while including the bending actions, restricts 

application to shells whose middle surface slope is small. Unlike 

these earlier efforts, the present chapter will attack the entire 

set of shell equations. Thus, although the solution to be obtained 

is approximate, the restrictions inherent in the membrane and shallow 

shell analyses have been removed. 

Let us write the equations of static equilibrium of 

forces (4A.1.1*0, (4.^.1.15) and (k.h.l.l6)   in terms of the middle 

surface displacements.  For a complete shell of revolution, all 

quantities involved must be periodic in the circumferential direction, 

and Fourier series expansions of these quantities in Ö are in order. 

o*D 

^ - £->  u-^MWc^J 8.1.1 >    ^r0 ^m"u' Icos ne 

oO '-cos ne 
V  t0 "•en^ismnej Q-^ 

= L    Wn0O jCos nej 8.1.3 

CO 

n=o 

The set of three partial differential equations of force equilibrium 

can then be reduced to a system of J>n  ordinary differential equations, 

For the n  harmonic of the expansions, the equilibrium equations 
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read as follows. 

[L/aJ+Lia(u^ + Lls(vn)J 

.L31(arn)+L32(u.enVL53(wn) 

where 

.^[L^aJ.L-UJtL^wi^R . 0-u2)n  3-1-6 

Eh   x3n 

*4->ltf)' 8.1.7 

ptn(»>--invi+P f-nu) 8.1.8 

-t)- (^) "being the n  coefficient of the Fourier expansion for 

the surface loads -JD^fi) ,   i.e., 

fift.e>*fe0 fin
(rtlcosnaj 

fW I f»«{~ nil 
^3 (y'e^Sof3n(5Hcos n( 

sin ne 
e 

The linear operators L.. and L* are 
ij 

.„•   d 

ij 

o    d 
1—11     Sz d*2        11 d*        10 

I      = U° d      u° 
Ha     bii"I7+ bio 

L,=aod       * 
13 11 d* T aio 

JL = 
L11   ""  C1zd)fZ + CHd^ ' IO 

L,, _ i>„ dY+ bio 

d 
L13  "  ai3^+audF   +aH   di  i'ai0 

8.I.9 



and 

i o    d o 
s   r>     ——  +. r 

I       =   I   °    dz        I o   d      |   o 

i    •*• _        d 
L 21   : ;   C21 "Jfl    +   C20 

I    * =  U     dz    LL    d       I 
L22~    b22"3P   +b2lW+b^0 

j 2 i 

^ 23  = a22   d^  + a^T? + a• 

L    =coltc° 

I »    I   ° 
L 3Z        D30 

_        « 

Lo1 L33  ^3 + L32jy* +C31dy+   C30 

L u   =   ^34~^4  +  ^zTT* +  Q-aoTl   + G"<iT7 + a 
33 54 jy* 33 jy3 3-^dy d* 50 

The coefficients a.., b.., c... a?., b?,, c?. (i, j • 1, 

2 and 3) of the above linear differential operators are all analytic 

functions of % (0^*-°°)  and contain in them the parameter n from the 

Fourier expansions. In what follows, attention will be restricted 

to n « k.  Only those coefficients needed in the subsequent develop- 

ment are given here. The remaining ones can be found in the appendix. 



a to 

a. 

a 10 

a 50 

a 

a 

55 

34 

0 
0 

21 

ka 

c„ = 

=  y^(4-hya) 

(1 + )f4)3A 

0+**)^ 

2(l-Hr*)V2 

1 
0+ir*) AN 3/2 

c 

r    - 

y 
Yi+r 

± TL (5-7J) 
2X 

c 2.1 

S = 

± n (l + u) 
2 

Of- tjf x1) 

Of yft)V» 



It is seen that the left hand sides of equations (8.1A), 

(8.I.5) and (8.1.6) are divided into two groups of terms. One group 

-k 
which is multiplied "by k  is associated with the bending behavior 

while the other is associated with momentless or membrane behavior. 

The fourth power of the parameter k is in reality proportional to 

the ratio of extensional stiffness to bending stiffness multiplied 

by a factor porportional to the square of a representative magnitude, 

R, of the radii of curvature, i.e., 

k oc extensional stiffness x ( R )2 

bending stiffness 

In a homogeneous shell of thickness h, the ratio of the stiffnesses 

is inversely proportional to the square of the thickness while the 

radii of curvature for a paraboloid is proportional to 2f. For a 

thin shell the parameter k is therefore larger than unity since "by 

definition (see Section k.2)  the ratio of 2f/h is larger than 10. 

In general, large antennae have ratios of 2f/h larger than 200 which 

leads to a value of k greater than 25. 

The magnitude of k (for sufficiently thin shells) and the 

form of the differential equations makes appropriate an asymptotic 

analysis of the solution to the differential equations.  The asymptotic 

behavior of a linear system such as given by equations (8.1.1), 

(8.1.2), and (8.1.3) has been investigated by H. L. Turrittin [35] 

and the results of his study form the basis of the present investigation. 



8.2 THE ASYMPTOTIC BEHAVIOR OF A LINEAR SYSTEM CONTAINING A 
LARGE PARAMETER 

Consider a real function g(k) of a real variable k defined 

over some interval including infinity. A formal power series in K. 

(denoted by P (k) ) 

PM)- 2 JO^~ 
\ L-0 

with partial sum  j  (k) 

ft  * 8.2,1 

m 

5m(£) = 2 jpA L        (m-0,1,3./--)      8.2.2 

is said to be an asymptotic expansion for g (in the given interval 

of k) as | kj--*.oC (denoted by g ~P ) if for every m = 0, 1, 2,   
g 

there exists some constant K such that m 

U(*)-5m(*)|*-^a- 823 

as |k|->°° uniformly. Note that if the series P converges to g, 
g 

then it is the usual Laurent series representation of g; but in 

general P (k) is not necessarily a convergent series, 
g 

If     . .      g,(k) 
g(k) =    1

/ 8.2. It 
g2(k) 

and if f^    ,-£ 
g(k) ^ P (k) = 2_, -p. \ 8-2»5 

6     L--0   rL 

then we write 

?,<*>-^«PjW-^Zfj-T 8.2.6 
whether or not g and g? have their own asymptotic expansions. In 

the event that g_ (and therefore g,) does not have an asymptotic 

expansion, (8.2.6) is to be interpreted as 



g(k) „  _±  rsj   p (k) 
82(k)       s 

It is not difficult to see from the preceding definition that 

if g has an asymptotic expansion, then the expansion is unique. For 

if g has two different asymptotic expansions P,(k) and P„(k), 

os 

1     i-o Ml 8.2.7 

P.w-2-fej-T z L«o raL 8.2.8 

then   hri^ij^-52rnu)i-i-firic^IO--pao)+^(^)1-^1) 
1 + " ' ^^(f^f^l     8-2-9 Ü 

H^ii^w-s^^i-ftrtiv^i^i]* ^ 8.2.10 

where S,  and S„ are the partial sums of P and P_, respectively. 

But by (8.2.3), we have 

K, 

Therewith 

Taking m = 0, 1, 2   (in that order) and letting k go to infinity 

for each m, we get p..  - p  for all m. 

On the other hand, two functions g, and g„ which are not 

identical in a given interval of k may have the same asymptotic 

expansion. For instance, if equation (8.2.5) holds, then 

— k g(k) + e   r^j   p (k) since 

ii'm     \i\m e      =0 8.2.13 

for m = 0, 1, 2, 3,  . 



It can also "be shown that (cf. [36], [37] ) 

(l) If g. (k), is 1, 2, —, m are functions of k which 

all have asymptotic expansions, g.^p., in the same 

interval of k, and f (x,, , x ) is a polynomial 

in m variables, then F(k), defined "by 

F(k) - fp (gl (k),—-, g^k) )    8.2.3A 

i.e., replacing x. in f by g.(k) has an asymptotic 

expansion in the given interval and is calculated as 

if all the expansions were convergent series. 

(2) If g (k) is continuous for k ^ k and possesses an 

asymptotic expansion, 

M)^ U  -ja--ft l 8.2.15 

then 

G(^=Z°0[f(l)-fo-fiT",]cjT'VS ^*~'     8'2-l6 

(3) If the derivative of g exists and is continuous and 

if g* has an asymptotic expansion, equation 8.2.15, 

then 

i'-A^'l^^-X      8.2.17 
In the subsequent analysis, these results will be used frequently and 

tacitly. 

Next, let us consider the second order differential equation 

LA + [Wit)*^)}*  =0      8.2.18 
2 

where (p (t) is either positive or negative for all t, a — t — b, and 

8 



2 
k is a large parameter such that 

|<f(t)|*lV+*(t)| 8.2.19 

for all t in the given interval. Intuitively, the first two terms in 

(8.2.18) constitute the most significant portion of the differential 

equation as the third term is negligible by definition. The above 

observation naturally suggests a solution of the form 

x(0~e ZYjM** 8.2.20 

where 

/(t)-/V(t)dt 8.2.21 

and Y.ft) can *be computed from a recurrence relation derivable from 
J 

(8.2.18) and (8.2.20). Since the series on the right hand side of 

(8.2.20) is not necessarily a convergent series in k for a ^ t ^-b, 

it is therefore (formally) an asymptotic representation of x(t). For 

discussions of the asymptotic behavior of (8.2.18), readers are referred 

to [38], [39], UO] and [lH]. 

As a natural extension of the results obtained for the single 

ordinary differential equation (8.2.18), Turrittin investigated the 

asymptotic behavior of a set of simultaneous linear (real) ordinary 

differential equations 

X'.^.^AM« 8.2.22 
at 

where m ^ 1 is an integer; x' and x are m x 1 column matrices; A is 

an m x m square matrix; k is a real number which is large relative to 

unity. Each element d\  . . (t,k) of the matrix A (t,k) is assumed to 

have an asymptotic expansion in k 



oo 

L1 

-I   t 

1-0 4 
<. .(t)~Z -A" *:. i 8.2.23 

where the o(. .,  (t)'s are infinitely different iable in t. Denote the 

matrix whose elements are (X  . *(t) by A (t), i.e., 

AM) - *°.(t) 8.2.21+ 

m. and the characteristic roots of A (t) by Aa(t), q = 1, 2, -• 

For a system for which A (t) has the same number of distinct charac- 

teristic roots for all t, a -£= t £. b (i.e., if X-(t) and X,(t) are two 

roots, then either 

8.2.25 A:(t)sUt) 1 1 
or 

AL(t^At(t) 8.2.26 

for all t, b ^ t *= a). Turrittin showed that there exists a solution 

x^'(t)  (x^' is a column matrix) of the system (8.2.22) such that 

each of its elements, x.   (t), has an asymptotic expansion of the form 

x(i)(t)-( -m 
8.2.27 

-m. 
8.2.28 

for  |k| ^1, where 

p.   (t) and a/  (t) are computed by a certain algorithm. As j varies 

from 1 to m (to account for all the m characteristic roots), we will 

have the desired asymptotic expansions of the m linearly independent 

solutions to the given system of differential equations. 

10 



8.3 THE EIGENVALUES OF A (t) 

As the first step in the application of the results of 

Section 8.2 to our shell problem, we must find the characteristic roots 

of the matrix corresponding to A far the system of equations 8.1.U, 8.1.5> 

and 8.1.6.  In order to do this, we will convert our system of differ- 

ential equations into the form of (8.2.18). With no loss in generality, 

we may write 

 — 
8.3-1 

8.3.2 

8.3.3 

8.3.4 

8.3.5 

8.3.6 

8.3.7 

dyT- ' " Pe 8.3.8 

where the k in these equations is the shell parameter defined by 

equation (8.1.7), and the fo.S take on the role played by x. in 

section 8.2. We then have the following system of homogeneous first 

order differential equations which is equivalent to the set of shell 

equations. 

U-rn 

^©n 
.A 

Wn = N 
durn . 

- ft 

du-en - ft 
dv 4 

dwn 

d* -M 
0  Wi, 

4^ 
-•*>, 

d3wn . = -fc3« 

a^.^ 8.3.9 

11 



dir 

dir 
dÄ 
dir 

Ms. 
it 

61 
&.- 
dif 

o(IM . _^ 

n 
r    ° 

LD2-2. 

dil 
&--•* >'0&,S 

LÖ-34 

+ 
c 

L     34 
-*o& 

8.3-10 

8.3.11 

8.3.12 

»4(, 8.3.13 

8.3.1^ 

8.3.15 

0 \ X 8.3.16 

more concis siy> 

dY 
= ft- -*A|5- *KU/y 

where 
0 0 0 1 000 

0 0 0 0 100 

0 0 0 0 010 

A0(t,k)- 0 0 0 0 0     -aii      0 

0 0 
a20 

b22 

-c° G21 
b22 

CI2 
0             0             0 

0 0 0 0 0             0             1 

0 0 0 0 0             0             0 

0 0 -jo -C?l 0              0              0 

ß- • .) 

a34 a3^ 

ßl 

8.3.17 

0 

0 

ü 

0 

0 

1 

8.3.18 

8.3.19 

12 



The eight characteristic roots of this matrix are 

\to)*Kz(i)* \5(D* \4(ir>=o 8.3.20 

and \   ( $ ), Ag( ft ), A?( Y ), and \Q( %  ) which are the four roots of 

8.3.21 

Note that these roots satisfy the conditions (8.2.25 and 8.2.26). 

Moreover, they are independent of n, the parameter from the Fourier 

expansions. With these characteristic roots, we may proceed to compute 

the asymptotic solutions to our system of differential equations in 

accordance with an algorithm outlined in [35l. Inasmuch as this 

algorithm is rather involved, we shall adopt a simpler procedure 

which is possible because of the nature of our system of equations. 

Observe that for our problem, m = 1 (cf. (8.5.IT) )j the 

equation corresponding to (8.2.28) is therefore reduced to 

-%- =-fcA,-. (K)+ä \ (y) 8.3.22 

for all j. With no loss in generality, we set q|J' (ft ) • 0 because 

it does not involve k; therewith 

(8.2.27), and (8.2.28) for the case at hand then combine to yield 

for i, j = 1, 2, , o and nj   take on the role of ^D-      .     In other 

words, the work of Turrittin assures us that there exist solutions 

to (8.1.4), (8.I.5), and (8.1.6) having (8.3.24) as their asymptotic 

13 



expansions. We will see later that these asymptotic solutions divide 

themselves into two groups. The leading terms of the expansions 

associated with the four zero roots (8.3.20) will identify themselves 

with the membrane and inextensional solutions (i.e., displacements 

associated with the homogeneous solutions to the membrane force 

equilibrium equations and to the strain-displacement equations). The 

second group of the asymptotic solutions associated with the non-zero 

roots (8.3»21) will be shown to be significant only in a region near 

the edge(s) of the shell since their magnitudes decay rapidly with 

distance from the edge(s) and is thus referred to as the edge zone 

solutions.  Consequently, the membrane and inextensional solutions 

dominate the behavior of the shell interior and together they are 

referred to as the interior solutions. We will discuss separately these 

two groups of solutions in the following two sections. 
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8.4    THE  INTERIOR SOLUTIONS 

For  A-(y)>   i = 1;  2,  5 and 4,   i.e.,  the zero eigenvalues, 

(8.3.24) "becomes 

1 5=o      i 

or 

f 5 = 0 

oO -5-1 
urn(ir/ft)~Z! /3ts(J)"A" a.if.s 

aen(^^|0^
Wi_"" 8'^ 

-3-SL. 

5 = 0 

and ^£ 

wn(^)^2   /63S(V)^ 8.4.4 

To find the asymptotic homogeneous solution to the given system of shell 

equations, we substitute (8.4.2), (8.4-5) and- (8.4.4) into (8.1.4), 

(8.I.5) and (8.1.6) with the forcing terms (i.e., the right hand side) 

suppressed and collect coefficients of the same power of k. Equating 

these coefficients to zero, we get 

Lm3(/S50) = 0 8.4.5 

Lmi(fa) + Lm(fa)-0 8.4.6 

Lm3^3^
L

t„^>Lmi((Sn)=0       8.4.7 

and for 5^3 

where m = 1, 2 and 3. Quantities with a negative subscript should be 

taken as zeros.  In general, n       can not satisfy the three equations 
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given "by (8.4.5). Therefore, we must have 

ßo(!r)a0 8A.9 
Similarly, p ,, and A... in general can not satisfy the three equations 

given "by (8.4.6); therefore 

|^5i (*)S ^>,o^E° 8.4.10 

In view of (8.4.8), (8.4.9) and (8.4.10), we may now (with no loss in 

generality) rewrite (8.4.2), (8.4.5) and (8.4.4) in the form of 

oO 

u,rn(ir,*~£ ^H"45 8.4.11 

and 
CO 

wnU4)~£ iS«U)-ft +s 8.4.13 
so that (8.4.7) and (8.4.8) become 

3 

L KM'0 **•* 
and      3 3 

for m = 1, 2 and 3. The set of equations given by (8.4.14) upon 

comparison with the complete set of shell equations (8.1.4), (8.1.5) 

and (8.1.6) can be recognized as the membrane equations (written in 

terms of the middle surface displacement components by way of the 

strain-displacement relations) since the terms containing k are not 

present. The four linearly independent solutions to these equations 

(corresponding to the fact that zero is a quadruple root) are the same 

as those previously obtained in Chapter VT. Since two of these 

linearly independent solutions are the homogeneous solutions of the 
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strain-displacement equations while the other two are associated with 

the homogeneous solutions to the membrane force equilibrium equations, 

they are often referred to as the inextensional and membrane solutions, 

respectively. While in principle the higher order terms in the ex- 

pansions can be obtained by way of (8.4.15), the calculations are,in 

general, tedious.  Since the additional terms are of order 1/k and 

higher, we will only be interested in the leading term of each expansion 

in the subsequent development, i.e., we will only be concerned with 

the above described solutions to (8.4.14). 
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8.5 THE EDGE ZONE SOLUTIONS 

For A   (% ),  i - 5> 6>  7 and 8, i.e., the non-zero eigenvalues 

(8.3.25), we have 

(0  .    _-*A;dir ' ..^e— M (O*-'" 
oC 

ft) -*/M* y       a) ;_x 
<V,~£ frtfj•*1 8.5.2 

and -*Acdj °° 

Again we substitute these expressions into (8.1.4), (8.1.5) and (8.1.6) 

and collect the coefficients of the same power of k. Equating each of 

these coefficients to zero, we have the following recurrence relations: 

*;'• *£+*£ - *;, - ^ • *;.s ••£*#,- ° 8-5A 

^;+ */.; • ^ • ^• ^ + ^g • 0».0 8.5.5 

where 

q-<f%+WisZ 
1L °      /JCi)/ °    /?(<-) .10    „(l)' 
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til ko ^ 
(0 

-Ti 

) 
a,4(^    +a

5°0 

ff) o    «*/ x? (0 

8.5.21 

8.5.22 

V 
55 --4^X''+Kr(f)^(^*^ :> 

(i) 

: ) 

i 34 

0      . ft)/ c 

2 /J ff)// 

8.5.25 

L-A K/^f+^'K^ *»*]/* (0/ 

3*1 

8.5-21+ ^'-^V, 
0 

0 33 _ 

;t ? 

+ -2a.: / 32 

A 2 

CO' 
t 

-^/w _?/// -fil V      /? aM1 +an1 ra^Ud^l \fs5- 

+ 3«')c!5/6 
UV 

'34  ~ ~35 

>/ -pH 5Ci51U  dJD /\2 

;.) 

ff) 

/ 
8.5.25 

V 
/) a!// Si   CO' /O   "• COM ^fO/// CO 

3^ 

i 

1 8.5.26 

^3^'A;-kf+L^']A;i,+c^, 
ff)// 

C«   Pu       +   C3, fy     +    C50  ,-, 
ff)/ ff) 

i 8.5.27 
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}5 
^(rf^ff/v^^trt^^b,;^' 

13 

b,; £ 
o    ^ (0 

8.5-10 

j   13 V /? CO// »II . -f1/)^ (()' 

[a)3r-   A«/'*   ^yJ/^C12(rt^ 

CO/// (0// A')/ 

2 ^ CO 

8.5.H 
CO 

<» 1" + c, '' 
/      „ (0 

?. 

0 
II 

r4 

10 

b„ fy" • e 
ft')// >oW/ 

+ c- fy 

co 

11 ri. 
ü)' \>..e.r*i>nfi 

(0 

I 

8.5.12 

8.5-15 

8.5-1^ 

T A W   \   • I 
a    «v+ k" (f)^.aV c/ *'"tl) 0 CO 

20   I   3j 11 
8.5.15 

A ^ 1 ° y/ifo'   I".   0 _w/   1   o f M  x>(0       o ^ ft')/       o   ^ a-) 

8.5.16 

£ 
£4 ,W 

25 

^^/C-^^r^:^^^; 1 
8.5.17 

1» * /« 
(0/ 

3-l *«+ s/ 
fa •^ 8.5.18 

A 2 * (0 _, I/O ft) A   ^ /? (0" A (til a W       ,       /-f'\2aM     „     -f'ü^ 

r 
it 

*» 

CO y, CO/ 
8.5.19 

ft') 

8.5.20 
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4 70 •>- ?:•;• K ft., 
where 

(0/ ,   a (i) 

30 / XA 

1- IX. it 

8.5.28 

8.5.29 

Quantities with negative subscripts are again to be taken as zeros. 

For j = 0, equations (8.5.7), (8.5.8), and (8.5.9) become 

\K/V vi 'trio/ 8.5.30 

and 

\A>
4+vl #0 * c»° \ ft. • °   8-5-32 

respectively.  (8.5-50)>   (8.5»3l)> and (8.5-32) have nontrivial solutions 

for/?io' U\ P» , and (6-,^  because the determinant of the coefficients 

vanishes: 

A4fA+(ri-14^44- 
I \   I a*Cia a 54 

= 0 8.5.33 

which is assured by (8.3.21). 

For j • 1, (8.5.7), (8.5.8), and (8.5.9) become 

S ft,+ c« \ f3 \+ K ft«+ %1 
c., X. + c   A. = 0 

8.5.34 
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and 

KK*< Ä,*<W«*4a»^* 
•[LO.„\[K^,A]^C« /»•+CAo=° 8->-* 

where 

The first and third equations yield (keeping in mind the results for 

J   •  0) 

c° a0/ 

dt ) 8.5-37 

From (8.5.30)  and  (8.5.31),  we have 

/V«>- - < 
c«A 30 8.5.38 

and 

^«•""biX»"(<C|8,^«\^)    8.5.59 

Terms associated with higher powers of (k)~" to each expansion can 

again he computed hy way of the recurrence relations (8.5.^) through 

(8.5-6), although the computations are not only tedious hut may be 

very difficult because new sets of differential equations arise. Since 

k is large, these higher order terms are negligibly small in comparison 

with the leading term and therefore will not be considered in the 

subsequent development, i.e., we will consider only  /61(v P20'  ani^ßv) 
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8.6 THE PARTICULAR SOLUTION 

For a shell under gravity loading, the components of the load 

intensity vector are [cf. [33] ) 

T1   1r       ^1 + 

1 

sin Y sme-y C05Y 
If 8.6.1 

Jpz=-fe 
=   Ah  sinY cose 8.6.2 

and 

^"frrl^b51^   Sine-COSY]    8.6.3 

The form of the corresponding I • ( If )  ( i • 1, 2, 3) suggests that 

any particular integral of the dependent variables cannot contain a 

factor e  * ' for any J° (If ) which is not identically zero. Thus we 

will seek particular asymptotic solutions of the form 

o -4, 
Urtt,-K)~E $ni ;(»)*" *      (n»0, 1)   8.6.4 rnp     ,=0 

n'J- 

UÄ  (H)^ Z! S -ti)i    * (n = 1) 

oO 

"'* 

8.6.5 

(n = 0, 1)   8.6.6 

Substituting (8.6.4), (8.6.5), and (8.6.6) into (8.1.4), (8.1.5), and 

(8.1.6), collecting coefficients of the same power of k and equating 

them to zero, we get for n - 0 

k(U^,^oj 4fad-^) 
cosY pM V E h  UUD T f' 

35   030     31  030       Q_h /° 

8.6.7 

8.6.8 
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and 

kA>^/U--[C^>L:,M (»»') 8.6.9 

where m = 1 and 3J and for n = 1 

8.6.10 

L„(U-Ln(S>L,(u--^y^[»y^] 
8.6.11 

LJ^LB(^LM(U-^-y"^-W 
8.6.12 

and 

SL«;««a>""^
L«i««-«-^   <**0  8.6.13 

where m = 1, 2, and 3. 

Clearly, the leading term of the expansions given by (8.6.k), 

(8.6.5), and (8.6.6) can be identified as the particular solution to 

the corresponding middle surface displacement in the membrane analysis 

of a shell loaded by gravity. Higher order terms of these expansions 

can be obtained from (8.6.9) and (8.6.13). However, since these 
1 / additional terms are of order —p or higher, (small in comparison 

with the leading term) they are therefore omitted from further con- 

siderations. 
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8.7 SOME RELEVANT RELATIONS 

Some of the relations derived in Chapters I through V will 

be recapitulated here in a form suitable for the purpose of asymptotic 

solutions. 

N - M (_r V 
r    (I-TJ

2
-)! [i{(\+r~)y*      zfimt-y"    zfrVw*   ^ 

v 

>r     + -V du» 
2ffi+^    dX        zti   de 

d   (i-ua) I L 2/Cn- 
vy + 

8.7.1 

IX, s*)V2.      2/vTTö^J        2/r/H^ "r 

8.7.2 
~v        du^    .       1     du© 

2/Vi+Jr1    djr ^F   de j 

N =    E^ b u. r — li. a Ue 
re    2()+^){2/y  <3e     zfifi+i*    zfi\nz   M 

8.7.3 

i!^.+ ^i^L , [^-(1-^y2] d 
r   4f*Ui+w dtz    *2<)e*     *(m2) 

w 

a if 
t) ^ + 

YVH?
1
   <)e      (H-**)* 

M e   4f2[o+s2) on2 
X»       (^ w    ,    1   d w [I + (1-L0*

2
] c)vv 

8.7.4 

ae 

yVitF  be      (1 
-U        bllr  f  D+-(1-3X)^]   ^  j 

+52)2 <3if tfd-H*)5      rJ 

M re 

8.7.5 

4f2   UVRF dm    ffM1 de      2IFFI a* 

- (n-at8-) 1     _duJ 
2Ui+r2)^   e     2^(1+^)^   de ] 

8.7.6 
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We  4fÄfViHH    öy de ~    reJ 

^"^jyiTFl    ÖY de r   eJ 

LL^ 1 ÖW 
&V    l2f(ity2pA +  2^-yjT^ ay" 

^     + _i_ £ w 
Oe~   ^fVTtr1      2/y   ae 

where 

D-     ^ 
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8.7.9 

8.7.IO 

12(l-u2) 8.7.11 



8.8 THE LEADING TERM OF THE ASYMPTOTIC EXPANSION FOR THE EDGE ZONE 
SOLUTIONS 

We shall consider in this section asymptotic solutions 

for a paraboloidal shell of revolution corresponding to the four charac- 

teristic roots A(0 which are not identically zero. 

/Y v 

where 

m= V(i-v2) 

8.8.1 

8.8.2 

and (jj-   is the appropriate root of the equation 

G)  + 1 • 0 

th 

8.8.3 

For the n  harmonic of the Fourier expansion, the leading terms of 

the expansions (8.5.1), (8.5'2) and 8.5-3) are 

ß 
<«       ((Htx) 

V8' 

^0 VT 
C 

and 

*M  _    [(Hv)+VtZ]   r        ,-,-7/8/0.) 

„CO     +n(lt^)"5/8r zl{C 

8.8.1* 

8.8.5 

8.8.6 

where C is a complex constant of integration. Retaining only the leading 

terms of the asymptotic solutions, the relevant edge zone stress resultants 

and bending moments can he obtained from the middle surface displacements 

by way of the relations listed in section 8.6. In what follows, the 
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superscript e attached to a dependent variable means the edge zone part 

of that dependent variable. Similarly the superscript i refers to the 

interior. 
e   (its2)3/8Lrr 

w ~ n Y7 jc5C051T+ csin X]+ e   [c7CosTi-c sin t 
fsm nej 
/cos ne 

• -fimVF 1 
-r 

8.8.7 

TTN 

IX 

c7co5(rt^-)tc85i*n(r+V) 

e^ tn(1+ya)"5/8[(1^)^(^i»ya]f^' 

'sin ne) 
'cos nej 

8.8.8 

2.5/2 
•t 

-e 
Mr* 
J"c7 Sin T ~ Cg cos T 

Cc 5int -c, cos r 

(Cos ne 
)Si'n ne 

M. DM)2     fe
rj-c^ 3)nr-C6C03T 

m     4^#(1+^)/6 

-e    [c7 sm r - cg cos r 

1 'en       "' Vn 

8.8.9 

5in ne" 
cos ne 

8.8.10 

e 

pen 
nbo^x^iXM")8 r Tr 

8.8.11 

*nnsA 4f«) 
in 

c cos(r+4)-t-c sinfr+f) 

•t if 

N    ~ oA) N 
rn \n/     rn 

C7cos(t-4;+C8Sin(tr-i)Jj|s/n n6<j 
8.8.12 

e 
N 

'Eh t r 
en       ^VTO+^ie    ^COST^SinTr 

-r 

8.8.13 

+ € c^ cos t + ca sm r 
sin ne 

i cos ne 
8.8.1A 
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• T r 
c7cos(r+^)+c6si'n (T+T) 

c5cc5(t-?)+ Ct5/n(T-f) 

-e cos  ne 
sin  ne 

Q D(m-fe); 

rn      6f3ff (l+yx)?/e 

8.8.15 

|c5cos(r-^) + c,sin(r-f) 
r 7T 

-r 
-e TT c7cos(r+-^) + c 5in (T+J) 

irN|M5in nej 
C05 fiel 

Q 
±nD(^): r r 

8.8.16 

en      8f3j%(i^z)'/« 

-e c7 sin tr- cQ cos r 
^cos n©j 
>si'n ner 

8.8.17 

C, Cosr + c, 5i n r 

•t 

+ e c7 cos r 1-Cg sin T 
(cos ne' 
/sin ne 

.ft 

&   ~  -77=—je 
8.8.18 

TT* c5 cos(t+ 4-)tc 5in (r+4 ) 

-r 
-e _TT Tn c7co5(-t-4

L)rC8 sin (tr--•$•) 
sin ne 
cos ne 

where fy\iTz   oV 

-]f¥</5(]-V")J  </) + ^    d* 

8.8.19 

8.8.20 

c, i = 5> 6, 7> 8 are constants of integrations. 

e -1 
The leading term of N is proportional to k . Since we 

shall have no need for it, the explicit expression for N will not be 

given here. To compute the coefficient associated with this leading 

term would necessitate the derivation of the second term of the ex- 

pansions (8-5«l) and (8.5.3)•  On the other hand, the error accrued to 
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the neglect of N is of the order (k ) in the presence of N ,  the 

interior solution corresponding to A. - 0. Observe that the effects 

of the solutions obtained in this section due to the presence of 

<S ~      are of significance only in a region near the edges of the 

shell; hence, they are often referred to as the edge zone solutions. 

In many situations, the edge zone is only a small percentage of the 

span of the shell. 
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8.9 THE LEADING TERMS OF THE ASYMPTOTIC SOLUTIONS FOR AXI-SYMMETRIC 
GRAVITY LOADING 

In this section the interior solution (section 8.4 and 

chapter VI), the edge zone solution (section 8.8),and the particular 

solution (section 8.6 and chapter VI) will he combined for a paraboloidal 

shell under axi-symmetric gravity loading. It should he recognized that 

the result represents only the leading terms (section 8.4 and 8.5) of 

the asymptotic solution to the shell equations 8.1.4, 8.1.5; and 8.1.6. 

+ c\-(\+v)l (^f^) + V^ (Hv) 

Yr 

t c, 

je     C5C057TtCfc5 
-r 

+ e C7C05T + C  sin X 

a ro ^7^r|(^)[riny-{] + (^^3t^ 
3.9.1 

•cj {\fv)L 
i-t-ViTT^ 

)t (It7j) -pr - Yitr 

N    ~ Vo 
2f/0oh    VlTF ¥ ;r 

^ W^TWM + 4 

tCz* 

0.9.2 

8.9.3 

+ e 

2/ [vT (IH*)1/S 

-r 

t r 
CK C05 T+ c, Sin T 

c7 cos r +• cQ sin T 
8.9.4 

M t>(m-fO: 

ro       4f2VT(l+^) ye 
C„ SinT -C, cos t 

•t 

e      c7 sin. x -c  cos T 

8.9.5 
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M do    AfiJO + X*-) ,/g ] c     C5 sin t- COS t 

cv 5m T - ce cos r 
8.9.6 

Qro~ef5YF(iuT/8{e  [c5co3(T-?)+cÄsm(x-t) 

C7C05(T+^)tC85i'a(T+T) 
9.7 

In addition, we will also "be interested in the rotation 60. 

CO ro 
-•im (Wtz)V8 {  fl"     /  -n-.     •    /     1L\ 

-je    [C5C05(T+^-)+C 5in(T+4) 2f VT 

-e~r[c7 cos (r-^) + c  sin (tHf) 
8.9.8 

u and N have been omitted in the expressions (8.9.2) 

and (8.9.3) f°r u an(i N , respectively, because they are of the order 

k   in the presence of the interior solution (see equations (8.8.8) and 

(8.8.13) ). In contrast, 6J , M , M , and Q  which are of order k , 

-2  -2      -3 
k , k , and k , respectively, relative to the edge zone solutions, 

cannot be neglected on the relative order of magnitude basis because 

they are the dominant terms in the interior of the shell. Nevertheless, 

these same terms which represent the bending actions of the shell have 

been omitted since, relative to the membrane actions, they do not con- 

tribute significantly to the stresses and distortions of the shell. An 

alternate derivation of the above results can be found in [12]. 

The six real constants of integration C, , C?, C^, C/-, C7 

and Cn can be chosen in such a way that an admissible set of edge 

conditions is satisfied. Considered herein are boundary conditions 
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which are commonly called (a) simply supported, (t>) clamped, and (c) free. 

The simply-supported edge at a fixed value of (j requires 

the following: 

LLr " 0 8.9-9 

W = 0 8.9.10 

hr 
= 0 8.9.11 

The clamped edge at a fixed value of 0 requires the 

following: 

Ur - 0 8.9.12 

w = 0 8.9.13 

63 = 0 8.9.1U 

The free edge at a fixed value of 0 requires the 

following: 

Nr-o 8.9.15 

Mr = o 8.9.16 

Q=o 8.9.17 r 

For a more detailed explanation of the boundary conditions, 

see Section 7.H« 
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8.10 THE LEADING TERMS OF THE ASYMPTOTIC SOLUTIONS FOR ASYMMETRIC 

GRAVITY LOADING ( T = ^r ) 

The leading terms of the asymptotic solutions of a shell 

whose axis of revolution is perpendicular to the gravity vector are 

H c,^)tc^ft)+c5j,w+c4j/ir)^/r)^.ae 
-;- 

*  W~r |C5cosrtC<5lat:l+<2 |c7co5tt(^inr 

v ^.^^«-zfeS^W •e 

sine 

8.10.1 

a ^ c, r 
61 E    (c>?.flr,+ c*?*flr,+     2   +C4+?S^ 

8.10.2 

8.10.5 

n V0  1 15J3 2K J5   ] 

N ~-»f^4t^t-^ C* 
z     i5ir3     üj-yi+T5-      y5VJ+T 

8.10.4 
Sine 

EW      fe* C5 C05 t+C ' sin t|+( 
•r 

DM)2 

c7cosr+c0siar Jam 6 

M n    4faV?(n-^)V6 e c5 sin t~cfecosr -e 

8.10.5 

8.10.6 

C,5int-C.C03t 

_£ DM): 8.10.7 
T Mer4fV?(f^),/8(e [CySihT-qcosT 

M 

i   -r 
-c c,sinr-cacosr 

~bO-xOM)(w-v*)M r 

Tei 4f^a)3/2 

-T" 
c7co5 (T-4-) +-C- sin (T-4 ) } cos e 

8.10.9 
C5C05(Tr + J) + Ct Slhft + 'J) 

8.10.9 

Sine 

sine 

^ IM^-ft)5     ( tr _. 

~e   Tc7cos(T+;F)
+

C851 n (t+•£)]( 3m0 

8.10.10 
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8^ 
Mmir 

r 

t 

Oe 

e     i c SirxX'  '  '   C051 
/ b 

cos e 
8.10.11 

—TT" i I 

C,C05(t + ^:)+q 5in (T+-) 

-e 
•T TT, 

5i n. e 

6) 

C7COS(T-^)+C35ia(T-4) 
8.10.12 

c1^7(^)+c^/y)i-c5?/«i-c^jüw^1](r)] 

VS 

where 
ff 

-t, 
e (c5 cos r+ cfe 5i"n xjte   (c7O05T+c.5in"c) 

8.10.13 
cos e 

t?A 

^^-M Vn-,f;,-+iii(Vn-^-i)-i/ia) I 

f/^°;p^^-.-^^(l+^) 
8.10.11+ 

(i+i;Xl+f*>% 

2J' 
8.10.15 

Xfc- (4Q+2f7j)  ,4 -(H-T))-(l-f) ^2 + y 
M~^0~ 94D      *" ^ 30 JfÄ tZO ntf 

Q-a) .*_ (H^) 
[id   '        5 

8.10.16 

7*v     TirF   YFF       ^ 

/ x    cu(y)- i^* t ^H-uxwa^O+y4)^2- 
Yl+tf' 15 If" 

?7a)=i{^)-VHFT,ö)-ü«a-^ 

,(»- { U jW-yi+i1 »,(»)-4J(I
+
")"^ 

/"•wi'-f 

8.10.17 

8.10.18 

8.10.19 

8.10.20 

8.10.21 

8.10.22 
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10 
(y) ~ YHT^ 8.10.23 

yi)-4{,tW.V!^,s«-^f^^ 

&»>- VI + !f 2 r 

8.10.24 

8.IO.25 

/,«' 
. (n-u)Vn-yz 

'2.      If 

,£i 

1- 
(l-p)J 

5 6 
^(Vi+r*-iWn(irt 

/3w    3   ^w^--^ ör~* 

8.10.26 
5" 

!f 
to 

8.10.27 

In the derivation of the above results, terms of the 

-171 
order (k)   m ^ 1 are again neglected in the presence of unity for the 

various reasons discussed in section (8.9)-  The eight constants of 

integration C, i 5 1, • • - -, 8, are to be determined by the boundary 

conditions which are commonly called (a) simply supported, (b) clamped, 

and (c) free. 

The simply-supported edge at a fixed value of ft requires 

the following: 

ur=o 

ue=0 

w = 0 

8.10.28 

8.10.29 

8.10.30 

M =0 
r 

8.IO.31 

The clamped edge at a fixed value of Y requires the 

following: 
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following: 

LL = 0 8.10.32 r 

Ua - 0 8.10.33 

w= 0 8.10.34 

63r = 0 8.10.35 

The free edge at a fixed value of Jf requires the 

K- 0 

M re 
Ä/V: I4-^Z 

Mr = 0 

8.10.36 

+ N    =0       8-10-57 
re 

8.10.38 

Q=o 8.10.39 
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8.11 THE LEADING TERMS OF THE ASYMPTOTIC SOLUTIONS FOR A SHELL UNDER 
UNIFORM PRESSURE 

The membrane behavior of a paraboloidal shell of 

revolution under uniform pressure has been investigated in [33]- The 

results presented there coupled with the results given in section 8.7 

(with n • O) constitute the leading terms of the asymptotic expansions 

of the stress resultants, bending moments, and mid-surface displacements 

which describe the shell behavior under uniform pressure.  If the 

intensity of the pressure is -a,Q   with respect to the mid-surface of 

a shell whose normal is assigned to be positive when directed inward, 

we have 

w 
Eh 

u. ~ 

yn-8- 
-r 

*f 

X 

Yr 
C5 COS T •«- C   5 n t 

C„ C05 ttC.sin *c 
7 o 

2A.f(2D-i)  3   (zv-tx) ,    „ r,   (it 
8.11.1 

Vi+irz      y*Yi+irzJ     U/V7(1t^)1/8J 
Eh 

8.11.2 

8.11.3 

lC* 
M 

-4 

r    4f2VT(ltF)Ve 

+e 
-r 

r 

C-C05 r -f-CQSin T 

8.11.4" 

Cr 51 n t - C, COS T 
0 b 

-c c7 sin T + c   cos r 
8.11.5 

38 



M i' bMY t 

e     4f?n{\+^) y-c C* 5in t - C, COS T 

1 
lc7 suit- cg cos r 

T 

8.11.6 

r\ "D(^~K) 

-T .IT e    [c7cos("t + ;4)+c65m(-t-t~) 

CO, 
-Cm-fOO+tt*) ft( r 

8.11.7 

c5co5Cr+"5) + cfesi'n (rr"5)J 

-e"T("c7co5(t-T)i-cfi5in(T-^)]' 8.11.8 

where X , k, and m are defined "by (8-7.20), (8.1.25), and (8.7-2), 

respectively. C , i = 1, 2,  8, are constants of integration. 
1 
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8.12 THE SINGULARITY AT THE APEX 

k 
The presence of a large parameter k has led to an 

asymptotic analysis of the solution to the shell equations. Implicit 

in this analysis is an assumption concerning the order of magnitude of 

the coefficients associated with the differential equations. Observe 

that if, in (8.2.18), $   (t) vanishes for some t , a ^ t <=  b, while 

Q (t ) ^ 0, then whatever the magnitude of k , the term k <p      fails 

to remain significant relative to 4 at t • t . In fact, if <p     is 

continuous, then for a fixed finite k, however large, there exists a 

a     such that 

for |t~t0|*d . Thus, for |t~t0| * <5 , the formal asymptotic solution 

(8.2.20) would cease to be meaningful. 

An examination of (8.lA), (8.1.5), and (8.1.6) reveals 

that some of the a?., b?., and c?, vanish at & = 0, i.e., the apex of 

the shell, while the corresponding a.., b.., and c.. do not. Thus, 

there will be some neighborhood surrounding the apex in which the 

asymptotic solutions obtained in section 8.8 cannot be used to describe 

the behavior of the shell. A method of asymptotic integration has been 

developed by R. E. Langer, yielding a solution which is valid at the 

singularity tf = 0 (cf. [ko],  [kl]   ). Using Langer's results, C. N. 

DeSilva investigated the axi-symmetric deformation (including the trans- 

verse shear deformations) of a paraboloidal shell of revolution and 

derived the leading terms of the asymptotic representations of the 

rotation, Cd  (ft ),  and the horizontal stress resultant, H ( t ),  which 

are valid for 0 ^ a^b^<*>[42]. The other stress resultants, bending 

to 



moments and middle surface displacements are derivable from 60    and H. 

These quantities are all in the form of the appropriate Bessel functions 

with argument k A ( ft ) where A-> 0 as ti —>  0 . It is not difficult to 

verify that the results given in section 8.8 for n = 0 are just those 

obtained by DeSilva with the Bessel functions replaced by the first term 

of their asymptotic expansions and the transverse shear deformability 

suppressed. While the asymptotic representations of the Bessel functions 

cease to be meaningful as 0 —> 0 , the Bessel functions themselves remain 

unaffected. 

An asymptotic solution to the shell equations which is 

valid at the apex and without the restriction of axi-symmetry has also 

been obtained by C. R. Steele (cf. [kj>]   ). But, since the region in 

which our asymptotic solutions (given in section 8.8) are erroneous is 

extremely small for a thin shell (see discussions of results) and since 

the exact behavior of the shell at the apex can be deduced from the 

differential equations, the behavior near the apex can be obtained to 

a good approximation by simple interpolations. For engineering purposes, 

it is not necessary to perform the proposed refined asymptotic analysis, 

although such an analysis would offer a better understanding of the 

behavior of the shell near and at the apex. For instance, it can be con- 

cluded from the results of this refined analysis that the condition of 

finiteness at o = 0 requires the vanishing of the constants C„  and Co 

in the results listed in section Q.J.    The relatively large amount of 

computer time needed for the use of the double precision Bessel function 

subroutines was also a strong factor in our decision not to extend the 

present analysis. 
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INTRODUCTION TO NUMERICAL RESULTS 

Numerical calculations are presented in curve form in the sub- 

sequent nine sections.  It is, of course, impossible to anticipate all the 

configurations which may be of interest to the antenna designer. However, 

a fairly wide range of sizes are covered and, additionally, the results 

are presented in normalized form.  These results can be used to determine 

the magnitude of displacements (and stresses) for purposes of preliminary 

design. A more detailed analysis of a specific configuration can be made 

by use of the digital computer programs which have been developed for this 

report. 

The results, in addition to being used for numerical data, also 

illustrate the behavior of paraboloidal surface structures. Most of the 

text accompanying each of the nine groups discusses various aspects of 

the shell behavior which have been revealed by the numerical calculations. 

In general, the shells exhibit the same qualitative behavior as that given 

by a shallow shell analysis(reference Part III) but there are some signifi- 

cant differences. 

An attempt has been made to present the results in a uniform 

manner but deviations will be noted to accommodate the specifics of each 

group.  Dimensions and boundary conditions are presented in tables.  Both 

the symmetric and anti-symmetric behavior under gravity loads are shown 

with the former corresponding to a pointing angle of ^ = 0° and the 

latter to ty  - 90°° The curves, in addition to three groups of numbers, 

bear the letter s, meaning symmetric and a, meaning anti-symmetric, e.g., 

figure 8.13.1.1s and figure 8.13*5-la.  Some of the parameters such as 
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Q* and M* tend to overlap if plotted on the same scale.  These have been 

separated in the interest of identifying each curve "but there may be some 

confusion regarding the scales. However, a careful second examination of 

each figure should be sufficient to relate each curve with the proper 

ordinate and abscissa scales. 

The normalizing factors are as follows (see section 7-12): 

*_    N, 
N T 

<-     zieh Hß 

N*= 

re      2 ffoh 

h 

re      2fp0h 

^0 

"> 

"« 

4f> 

</>. 

<? r 
Q, 

^hviyh 

Ä. 

«V. 2/r„     V2| 

«; 
^ £ 

"*3 



8.1J Group I -- Four Closed Shells with Outer Edges of 

Y= -20, .1+0, .80, 1.20 

The Group I results presented in this section illustrate the 

behavior of four shells, closed at the apex, which differ only in their 

outer radii.  Dimensions and other pertinent data are presented in 

Table 8.I3.I. The four outer radii are 230.h,  1+60.8, 921.6, and 1382.I+ 

inches which, since the focal length is 576 inches, result in slopes at the 

outer edges of 3 • .20, .1+0, .80, and 1.20, respectively. 

An examination of figure 8.13.1s reveals the very interesting 

result that the maximum deflections are a somewhat unconventional function 

of the outer radius. A table of maximum deflection (w  ) for different v max 

shells under symmetric loading vs. the position where it takes place ( 0 ) 

is shown below: 

Table 8.I3.2 
Wma  Symmetric Loading 

* 2 "max *m 

,20 -.417 .3M 

.1+0 -All .3I+8 

.80 -. 609 0 

1.20    -101+3      0 

We observe that case 2s with the outer edge at 0? = .1+0 experiences a 

w*  which is actually less than that experienced by the smaller shell 

(case Is). Furthermore, case Us, which is a shell having a diameter three 

times that of case 2s, experiences deflections only 2.5 times that of 

case 2s.  Generally speaking, with the same relative increase in length, 

the transverse deflections of beams and plates which vary as the square 

of the span length would yield deflections nine times greater.  Hence, 

these results clearly illustrate the stiffness advantage of a shell 

kk 



structure over that of beams or plates. 

Note also that the edge zone behavior for the two smaller shells 

causes a hump in the deflection curve which places the maximum deflection 

near the outer boundary. The hump is more pronounced in case Is than in 

2s. The edge zone behavior is also clearly visible for the two larger 

shells although the hump is overshadowed by the interior behavior. 

A better indication of the edge zone behavior is given by the 

plots of M*, M* , and 0 . We observe that d, the width of the edge zone, 

is approximately the same for all four sizes and agrees well with the 

result, — m  .006° (see equation 7.12.1.1) given by 

JL ^ 2\[^ 8.15-1 
2f      V 2f 

The maximum values of these quantities which characterize the bending 

*   -x       -x 
behavior occurring in the edge zone, i.e., MQ , M , and Q , decrease 

as the outer radius increases. This means that the bending stresses will 

be larger for a smaller shell. 

•x-     * 
The manner in which the curves of N  and N„ coincide should 

r     0 

also be noted. This, again, illustrates the membrane behavior of the 

shell. As has been previously described (see sections 7»12.l) the shell 

prefers to carry the applied loads by membrane action; bending action 

takes place near the edges in order to satisfy practical geometrical 

constraints. Hence, the interiors of shells will develop nearly the 

*     * 
same values of N and NQ providing the edge zone widths are not a major r     y 

proportion of the total radii. 

The anti-symmetric results are shown in figures 8.13.5 through 

8.I3.IL We note for all except the smallest shell that the displacements 

V) 



for the anti-symmetric gravity loading are larger than for the symmetric 

situation.  For the two larger shells, the maximum anti-symmetric deflections 

are more than twice as large.  This can "be attributed to the unfavorable 

orientation of the gravity vector relative to the surface of the shell 

resulting in appreciable components of loading in the radial and tangential 

directions (see equations 8.6.1, 8.6.2, and 8.6.5).  These components cause 

larger membrane loads which, in turn, make more severe the bending action 

at the boundary. It should be borne in mind that the asymmetric shell 

behavior varies either as sin 0 or cos 9 (see section 8.10). 

There are some additional interesting differences and similarities 

between the symmetric and anti-symmetric behavior to be observed. The force- 

results N , N„ , and N ~ again coincide for the four sizes.  The widths 

JL        JL        -x- 
of the edge zones as shown by the curves of M  and M„ and Q  are 

r      o      r 

essentially identical. However, unlike the symmetric case, the maximum 

values of the bending quantities increase significantly rather than decrease 

with the size of the shell.  The maximum radial and tangential components 

of displacement are the same order of magnitude as the normal component. 

Thus, the calculation of the resultant deflection of a point on the shell 

must consider the vector addition of u , v , and w . 

The quantities Q? and M* have not been displayed because of 

their small magnitudes.  For example, for case ks,  the maximum value of 

Q* is -.OO38 and for M* , the maximum value is -.OO^O^. Both of these 

values are at least an order of magnitude smaller than the values for the 

other transverse shear and bending moments, respectively. 
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Table 8.I3.I 

Case Rl             R2 
(inches)(inches) 

B C.   at R               B.C.  at R 

Is* o       230.1+                 Simple  supp 

2s 1+60.8 11 

33 921.6 11 

ks I382.I+ 11 

la 230.1+ 11 

2a 1+60.8 11 

Ja 921.6 11 

im 1382.1+ 11 

Loading 

Anti-sym. -gravity- 

Note: Material properties are E = 10 p.s.i., f = .3; P0~   .10 lb. per 

cubic inch. 

Focal length f = 576 inches, shell thickness h = 1 inch. 

* Calculated from shallow shell routine (see Chapter 7)• 
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8.l4 Group II - Five Shells with an Outer Radius of 460.8 Inches 

The results in this section illustrate the behavior of five shells 

all open at the apex and with the same outer radius of 460.8 inches but 

terminating at various inner radii. All the shells are simply supported 

along both edges.  Dimensions and other pertinent data are presented in 

Table 8.14.1.  The outer radius is equivalent to a slope of  0 = .40 while 

the inner radii correspond to 0 = .1.6,   .20, .25, .30, and .35- Both the 

symmetric and anti-symmetric behavior under gravity loads are presented 

with the former corresponding to a pointing angle y  - 0° and the latter 

to If -  90°-  The curves, in addition to the heading of three groups of 

numbers (e.g. 8.14.1), bear either the letter s, signifying symmetric 

behavior or a, signifying anti-symmetric behavior.  Results are all in 

normalized form (see page 43 of this report). 

The deflection results shown in figure 8.1.4.1 for the behavior 

under a symmetric gravity loading show the same trend as that exhibited 

by the shallow shells studied in section 7-12.3; namely, that the maximum 

deflections increase as the span of the shell (we shall define the span 

to be the difference between the outer and inner radius of the shell) gets 

smaller. This somewhat unexpected deformation behavior is due to the 

interaction of the membrane behavior in the interior of the shell and the 

bending behavior in the edge zones at the boundaries (see section 7-12.3)• 

As can be seen from Table 8.14.2, the deflections for the purely membrane 

behavior increase with decreasing span, In order to correct the inherent 

shortcoming of the membrane solution, the asymptotic solution can be 

visualized as superimposing transverse shear, moments and in-plane forces at 

the boundaries onto the membrane solution so as to meet the requirement of 

01 



zero w* displacement at the edges.  These edge loads induce inextensional 

behavior (cf. references [hh],  [h^]   )   in the interior of the shell and it 

is the inextensional behavior which causes the curves of w* (see figure 

8.1^.1) to exhibit humps near the edges. 

*     -*• 
The curves of the bending moments M  and M  shown in figures 

8.14.3 and 8.1^.4 give a clear illustration of the widths of the edge zone 

at the boundaries of the shell.  It is interesting to note that the 

shapes and magnitudes of each set of the bending moment curves are essen- 

tially the same in the edge zone except for case 5s which does not have 

an edge zone. This latter case exhibits essentially "plate" behavior in 

that the deformation is predominantly bending. The curve of Q* in 

figure 8.1I+.5 for case 5s also indicates "plate" behavior. 

The curves for the anti-symmetric behavior in this section are 

self-explanatory.  In all cases, the magnitudes of the various parameters 

are smaller than their counterparts under symmetric loading. 
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Table 8.14.1 

Group II Examples 

Case R,      RQ     B.C. at R-. 

(inches) (inches) 

B.C. at R. Loading 

Is 184.32 

2s 230.4 

3s 288.0 

4s 345.6 

5S 403.2 

6 s _-_ 

la 184.32 

2a 230.4 

3a 288.0 

4a 345 = 6 

5a 403 0 2 

184.32  460.8  Simple support  Simple support Symmetric-gravity 

Simple support Ant i - sym.-gravity 

f° 
•7 

Note: Material properties are E = 10 p.s.i., V   - .3» 

per cubic inch. 

Focal length f = 576 inches, shell thickness h = 1 inch. 

10 lb. 
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Table 8.14.2 

Membrane Solutions for Cases Is, 2s, 3s and 4s 

Case Is tf u* 
r 

V* K 
.16 0 -.411 .466 

.22 -.0040 -.407 • 495 

.28 -.0054 -.402 • 515 

• 34 -.0041 -.395 • 533 

.40 0 -.386 • 552 

Case 2s K * 
u 
r 

* 
V N* 

.20 0 -.413 .472 

.25 -.0031 -.409 .495 

.30 -.0040 -.404 .514 

• 35 -.0031 -.398 •531 

.40 0 -•391 .548 

Case 3s K # 
u 
r 

* w K 
.250 0 -.417 .480 

.288 -.0019 -.414 .498 

.325 -.0025 -.409 .513 

.363 -.0019 -.405 .528 

.4oo 0 -.399 .542 

Case 4s I * 
u 
r 

w* K 
.300 0 -.421 .489 

.325 -.0009 -.419 .502 

• 350 -.0012 -.416 .513 

• 375 -.0009 -.413 .523 

.4oo 0 -.409 • 534 
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FIGURE 8.14.2 
GROUP II  SYMMETRIC 
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FIGURE 8.14.3 
GROUP II SYMMETRIC 
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FIGURE 8.14.4 
GROUP II SYMMETRIC 
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FIGURE 8.14.5 
GROUP II SYMMETRIC 
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FIGURE 8.14.11 
GROUP II ANTI-SYMMETRIC 
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FIGURE 8.14.12 
GROUP II ANTI-SYMMETRIC 
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8.15 Group III - Five Shells with an Outer Radius of 691.2 Inches 

The results in this section illustrate the behavior of five shells 

with the same outer radius of 691.2 inches but terminating at various inner 

radii. Dimensions and other pertinent data are presented in Table 8.I5.I. 

The outer radius is equivalent to 0 = .60 while the inner radii correspond 

to a shell closed at the apex and to slopes of ft = .20, .k0,   -50 and .55. 

Both the symmetric and anti-symmetric behavior under gravity loads are 

presented with the former corresponding to a pointing angle of "f =0° and 

the latter to y   -  90°'  The curves, in addition to the heading of three 

groups of numbers (e.g. 8.15.1), bear either the letter s, signifying 

symmetric behavior or a, signifying anti-symmetric behavior.  Results are 

all in normalized form (see page nDof this report). 

In general, the results are comparable to those shown in section 

8.l4 and the same discussion is pertinent. However, unlike the results of 

the previous section, the anti-symmetric behavior for the larger span 

shells (cases 1 and 2) of this group results in larger values for the 

force resultants, moments, and deflections than for the symmetric behavior. 
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Table 8.I5.I 

Group III Examples 

Case Rl 
(inches) 

R2 

(inches) 

B.C. at R B.C. at R_ 

Is   691.2 ___ Simple suppo: 

2s 250A n Simple support 
1! 

3 s 460.8 M 11 (1 

Its 576 !! »i n 

5s 633.6 n »1 11 

la — n   n 

2a 230. k n Simple support 1! 

3a 460.8 n n H 

Ua 576 »• H II 

5a 633.6 11 II n 

Loading 

Ant i-sym.-gravity 

7 
Note; Material properties are E = 10' p.s.i., V    =.J>,     P0   -   .10 lb. 

per cubic inch. 

Focal length f -  576 inches, shell thickness h = 1 inch. 
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FIGURE 8.15.2 
GROUP III SYMMETRIC 
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FIGURE 8.15.4 
GROUP III SYMMETRIC 
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FIGURE 8.15.5 
GROUP III SYMMETRIC 
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FIGURE a 15.9 
GROUP III ANTI-SYMMETRIC 

M * 
r 

(at e = ^) 

0 
5a v ) 

-005 
V J 

4a 
0 

-0.05 

0 

3a 

'^N 

\ 1 
-005 

V J 
r \ 

C 
1» \ s. 

N 
\ 1 

-0.05 \ J 
\/ 

la 
0 

-005 

-010 

0.20 0 25 0 30 0 35 0 40 0 45 0 50 0 55 0 60 

X 



M, 

3-71-18081 

FIGURE 8.15.10 
GROUP III ANTI-SYMMETRIC 
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FIGURE 8.15.11 
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8.16 Group IV - Seven Shells with an Outer Radius of 921.6 Inches 

The results in this section illustrate the behavior of seven 

shells with the same outer radius of 921.6 inches "but terminating at 

various inner radii. Dimensions and other pertinent data are summarized in 

Table 8.16.1. The outer radius is equivalent to 0 = .80 while the inner 

radii correspond to a shell closed at the apex and to slopes of 0   = .J>2, 

.k0,   .50, .60, .66,  and .75. Both the symmetric and anti-symmetric behavior 

under gravity loads are shown with the former corresponding to a pointing 

angle of ^   =0° and the latter to ty    =90°. The curves, in addition to 

the heading of three groups of numbers (e.g. 8.16.1), bear either the 

letter s, signifying symmetric behavior, or a, signifying anti-symmetric 

behavior. Results are all in normalized form (see page 43of this report). 

In general, the Group IV results are comparable to the Group II 

and III results for shells with smaller outer radii and to the Group V 

results for shells with a larger outer radii (read discussion in section 

8.14). The deflections are larger for the Group IV shells than for the 

smaller Group II and III shells. Note, however, that the quantities 

associated with the bending behavior such as edge zone width, M* , M* , 

Q* >  Op )  etc.  have substantially the same magnitudes. 

92 



Table 8.16.1 

Group IV Examples 

Case EL R, "1      il2 
(inches) (inches) 

B.C. at Rn B.C. at Rr Loading 

368.6^  921.6  Simple support Simple support  Sym.-gravity Is 368.64       921 

2G 460.8 

53 576 

4s 691.2 

5s 806.4o 

6s 864.00 

7s —             " 

la 368.64 

2a 560.8 

3a 576 

4a 691.2 

'.'a 806.40 

(>a 864.00 

7a — 

Simple support Anti Sym.-gravity 

n 
Note: Material properties are E * 10 p.s.i., "V -  .3,     O  - .10 lb. 

per cubic inch. 

Focal length f - 576 inches, shell thickness h = 1 inch. 
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FIGURE 8.16.2 
GROUP IV SYMMETRIC 
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FIGURE 8.16.4 
GROUP IV SYMMETRIC 
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FIGURE 8.16.5 
GROUP IV SYMMETRIC 
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FIGURE 8.16.10 
GROUP IV ANTI-SYMMETRIC 
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FIGURE 8.16.11 
GROUP IV ANTI-SYMMETRIC 
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FIGURE 8.16.12 
GROUP IV ANTI-SYMMETRIC 
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8.17 Group V - Ten Shells with an Outer Radius of 1J82.4 Inches 

The results in this section illustrate the "behavior of seven 

shells vith the same outer radius of 1582.1<- inches hut with different inner 

radii. Dimensions and other pertinent data are summarized in Tahle 8.17.I. 

The outer radius is equivalent to 0 = 1.20 while the inner radii correspond 

to a shell closed at the apex and to slopes of 5 = .30, .kO,   . U8, .60, .75} 

.90, 1.05, 1.075 and 1.15. Both the symmetric and anti-symmetric behavior 

under gravity loads are shown with the former corresponding to a pointing 

angle of "^ =0° and the latter to Tf = 90°. The curves, in addition to 

the heading of three groups of numbers (e.g. 8.17.1), bear either the 

letter s, signifying symmetric behavior or a, signifying anti-symmetric 

behavior.  Results are all in normalized form (see page TJof this report). 

In general, the Group V results exhibit the same trends as the 

results for Groups II, III, and IV which are shells with smaller outer 

radii.  The deflections are larger for the Group V shells because the 

outer radius is the largest of all the groups.  Note, however, that the 

quantities associated with bending behavior such as edge zone width, M  , 

Q* , etc. do not vary appreciably between the four groups. 
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Table 8.17.I 

Group V Examples 

Case Rl 
(inches) 

R2 

(inches) 

B.C.  at R               B.C.   at R2 Loading 

Is 552.96 1382.4 Simple support    Simple support Sym.-gravity 

2s 691.2 11 ti                                  ti it 

3s 864 11 tt                                           n 11 

Its 1036.8 11 ti                                          11 it 

5 s 1209.6 11 11                                          11 11 

6 s 1296.0 n it                                          11 it 

7s — 11 ti 11 

la 552.96 11 Simple support Anti-Sym.-gravi 

2a 691.2 11 it                                  it 11 

5a 864 H 11                                  it H 

IM 1036.8 1» 11                                  it ti 

5a 1209.6 II 11                                  tt 11 

6a 1296.0 II tt                                  tt H 

7a — II tt ti 

8a 345-6 II Simple support ti 

9a 460.8 tl 11                                  n H 

10a 1324.8 II n                                           tt ti 

n 
Note:  Material properties are E- 10 p.s.i., V   • .3, PQ 

per cubic inch. 

Focal length f = 576 inches, shell thickness h = 1 inch. 

= .10 lb. 
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FIGURE 8.17.3 
GROUP V SYMMETRIC 

M* 
e 

0 I, rj 
6s 

0 
4s 1/ r' - xt 

0 
3s [/ ' V 

2s \y ' V 
002 \s 

0 

\ 

V 
U.Ud \ 

0 40 0.50 060 0 70 0.80 0 90 100 1.10' 120 

111 



1- 

OO 

r— 

FI
G

UR
E 

8.
17

.4
 

G
RO

UP
 V
 S

YM
M

ET
R

IC
 

N
* r 

\\ 
\\ V 
V 

\ 

w w 
\\ \\ L 

\\ V 
IV L 
\\ V v A 
\ \ 
\ A v \* 

\ N 
\ 

• 

y 

o O o o o o o o o o 
CO o CO ID •* OJ oo <* ID 

O O 

z 

o o o 
1 

o 
t 

o 
1 

112 



Mr* 

3-71-1828 

FIGURE 8.17.5 
GROUP V SYMMETRIC 
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GROUP V SYMMETRIC 
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FIGURE 8.17.11 
GROUP V ANTI - SYMMETRIC 
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FIGURE 8.17.12 
GROUP V ANTI-SYMMETRIC 
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FIGURE 8.17.13 
GROUP V ANT 1-SYMMETRIC 
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8.l8 Group VI - Four Shells Which are Free at the Inner Boundary 

The results in this section illustrate the behavior of four 

shells with the same outer radius of U60.8 inches hut with different inner 

radii.  In this section, each shell is simply supported along the outer 

edge and is free at the inner edge«  Dimensions and other pertinent data 

are summarized in table 8.18.1. The outer radius is equivalent to X -   .k 

while the inner radii correspond to slopes of 0 = .16, .20, .25, and .JO. 

Only w  and M  have been shown. 

It is observed that the deflections for the symmetric loading 

increase as the span of the shell decreases. This is contrary to the usual 

behavior of planar structures and dramatically illustrates the manner in 

which a shell derives its rigidity.  The missing part of the shell (i.e., 

the part which was removed to make the hole) supplies support to the 

remainder of the shell.  (One can visualize what would happen to a simple 

cable if a piece of it were removed.) Since the shell is a two dimensional 

structure, it will not collapse because the loss of the "cable action" is 

compensated by an increase in the hoop action. This mode of behavior is 

not as efficient as the "cable action" and hence, leads to larger dis- 

placements. The trend of increasing deflection with decreasing span does 

eventually reverse (as it must) but at a span which corresponds to a very 

narrow ring (see shallow shell results). Note that the bending moment 

M* exhibits a rather slow variation with changing span. 

In general, the results are the same as those previously shown 

for shallow shells (see sections 7.12.1+ and 7.12.5). 
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The anti-symmetric case does not exhibit the same trend of in- 

creasing deflections with decreasing span. In the anti-symmetric case, 

the larger components of the gravity load vector are aligned along the 

tangent plane rather than along the surface normal. This means that there 

is less bending action in the anti-symmetric loading, and it is the 

bending action which leads to the results which have been discussed. 
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Case 

Table 8.18.1 

Group VI Examples 

R-, EL 1       2 
(inches)  (inches) 

Is 184.52   460.8 

2s 230A     " 

3s 288 

4s 3^5.6 

la 184.32 

2a 230.4 

3a 288 

4a 345.6 

B.C. at R-, 

free 

B.C. at It Loading 

460.8 

Simple support  Sym.-gravity 

Ant i-Sym.-gravi t y 

7 
Note: Material properties are E = 10 p.s.i., "%)  • .3, 

per cubic inch. 

Focal length f = 576 inches, shell thickness • 1 inch. 

.10 lb. 
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FIGURE 8.18.2 
GROUP VI     SYMMETRIC 
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FIGURE 8.18.4 
GROUP VI     ANTI-SYMMETRIC 
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8.19 Group VII - Five Shells which are Free at the Inner Boundary 

The results in this section illustrate the behavior of four 

shells with the same outer radius of 921.6 inches but with different inner 

radii. As in section 8.18, each shell is simply supported at the outer 

radius and is free at the inner radius. Dimensions and other pertinent 

data are summarized in table 8.19.1. The outer radius is equivalent to 

0  = .8 while the inner radii correspond to slopes of Y = *32, .kO,   .50, 

.60, and .70. Only w  and M* have been shown. Results are presented in 

normalized form. 

The Group VII results are similar to those of Group VI and the 

discussion in section 8.18 is applicable. 
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Table 8.19.1 

Group VII Examples 

!ase Rl R2 B.C.  at R 

(inches) (inches) 

Is 368.64 921.6 free 

2s 460.8 11 11 

3s 576 11 n 

Us 691.2 11 11 

5s 806.1* M » 

la 368.64 II 11 

2a 460.8 II 11 

3a 576 II 11 

Ua 691.2 11 11 

5a 806.4 II ti 

B.C. at Er Loading 

Simple support  Sym.-gravity 

Anti-Sym.-gravity 

Note: Material properties are E * 10 p.s.i., V  -   .3, Po ~ 

per cubic inch. 

Focal length f - 576 inches, shell thickness h = 1 inch. 

10 lb. 
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FIGURE 8.19.2 
GROUP VII ANTI-SYMMETRIC 
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GROUP VII ANTI-SYMMETRIC 
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8.20, 8.21, 8.22 Group VIII - Asymmetrie Behavior of Three Shells Simply 
Supported at the Outer Boundary 

In previous sections, the symmetric behavior and anti-symmetric 

behavior which correspond to pointing angles If  of 0° and 90° were pre- 

sented. In this section, the deflection patterns for the shell at pointing 

angles of If = 15°, 30°, k^°, 6o°, and 90° are shown in the form of polar 

plots. 

As has already been discussed (see section 7»12.7 of part III) 

large antennae will generally be erected in the face-up position ( "^ "0°) 

Thus, it becomes of interest to determine the deflections of the antenna 

relative to the face-up position. The displacements normal to the middle 

surface for gravity loads are given by 

•w ( y ,  6) = w  ( ft" ) cos ip    + w ( %   ) sin "^ sin 9 
S 3. 

8.20.1 

where 

w (% )    -    symmetric part of the solution 
s 

w (X )  = anti-symmetric part of solution at 0 = £_ 
a 2 

'The plots in the preceding sections are of w  and w . 
s      a 

Let w ( 0 , 9) be the deflection relative to the antenna in its 

face-up position, i.e., relative to Y  • 0.  Then 

W U, 9)  = w ( 8% 6) - V (ft) 8.20.2 
5 

which leads to 

w ( y, 9) = wg(cos T - 1) + w& sin If sin 9 Q^Q 

The three shells analyzed in this section have the same dimen- 

sions as shells previously considered.  Dimensions and other 
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pertinent data are as follows: 

7 
E - 10' p.s.i. 

V.     .3 

P0-     .10 lb. per cubic inch 

focal length f = 576 inches 

shell thickness h = 1 inch 

All three shells are closed at the apex and the boundaries correspond to 

radii of 460.8 inches, 691.2 inches and 921.6 inches, respectively. 

The results are presented in the form of contour plots wherein 

lines of constant "w* are shown. A polar representation has been used in 

which the horizontal radius is the coordinate on the shell given by 9 = 0. 

Radii emanating from the origin are lines of negative 9 below the horizon- 

tal and positive 9 above the horizontal.  Each plot constitutes the 

deflected shape of the shell in the normal direction relative to the 

face-up position, i.e., of%*  , for various pointing angles Tf . Since 

the behavior is symmetric about a vertical plane, only the region of the 

shell, ~"p~" —6 — "5"  has been shown. 

The curves are self-explanatory.  Each contour is roughly in 

the shape of a U with the legs approximately horizontal. Positive values 

mean that the shell has deflected inward. Note that the largest values 

are positive and occur in the upper half of the shell. 
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