UNCLASSIFIED

AD NUMBER

AD596166

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to DoD and DoD contractors only; Foreign Government Information; AUG 1971. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.

AUTHORITY

DSTL ltr dtd 12 Dec 2006; DSTL ltr dtd 12 Dec 2006

THIS PAGE IS UNCLASSIFIED

			116 A 9 1314
	ERDE TR 79	and the second s	ERDE TR 79
		CONFIDENTIAL	
		DISCREET	25
0			PD20010
			DK28810
0			-
-	YANGE		
\odot	DIAL TO MUNDON		
			Decl OADR
03	MINISTRY OF DEF	ENCE	
100	EVDLOOMEC	DECEADOR	
	EXPLUSIVES	RESEARCH	
	AND DEVELO	PMENT ESTABLISH	MENTAR
6			STITANTUA MOLA MOLA C
L	TECHNICAL RE	PORT No. 79	FADING; DOD DIR 5200.10
		Diote	POLS_NOT_AFTIL
1 5	3	PICATINNY ARSENAL	
-	Droliminany A	SCIENTIFIC AND TECHNICAL INFORM	ATION BRANCH
	Freininary A	ssessment of p-Nitro-N	-metnylaniline as
	Stal	oiliser in CDB Propellai	nts (C)
		and the last	.78
	2 1 2		DDG
	10°	GA Palmer	GORGERIUCIN
	C C		1972
	a s		13 OCT 1312
	A		INGUENT LU
			D
	2	THIS DOCUMENT IS THE PROPERTY HER BRITANNIC MAJESTY'S GOVERNM	OF IENT
-	100	It is issued for the Information of such persons only as contents in the course of their official duties. Any pers	need to know its
	9	authorised holder, upon obtaining possession of this do or otherwise, should forward it together with his name	cument by finding a and address in a
0	1 9	closed envelope to . SECURITY BRANCH, MINISTRY OF DEI	FENCE
00	200	ST. GILES COURT, ST. GILES HIGH STREET, LOP	NDON, W.C.2.
4	2	Letter postage need not be prepaid, other postage ALL PERSONS ARE HEREBY WARNED THAT THE L	WIII be refunded. JNAUTHORISED
-	100	OFFENCE AGAINST THE OFFICIAL SECRETS AC	T.
1	1 J. J.		
		CT	CEE INCIDE COVER
9	FUK UVEF	FASE CONDITIONS	SEE PRAIDE COVER
	WALTHAM ABBEY		August
	ESSEX	3× 3	1971
			here's
			りず
		CUNHDENTIAL	S E
		CONFIDENTIAL DISCREET	62
		CUNHDENTIAL DISCREET	6055
1:273	# 112-8 c~ 1	CONFIDENTIAL DISCREET	Sec.

RELEASE CONDITIONS FOR OVERSEAS DISTRIBUTION

Α

- 1. THIS INFORMATION IS RELEASED BY THE UK GOVERNMENT TO THE RECIPIENT GOVERNMENT FOR DEFENCE PURPOSES ONLY.
- 2. THIS INFORMATION MUST BE ACCORDED THE SAME DEGREE OF SECURITY PROTECTION AS THAT ACCORDED THERETO BY THE UK GOVERNMENT.
- 3. THIS INFORMATION MAY BE DISCLOSED ONLY WITHIN THE DEFENCE DEPARTMENTS OF THE RECIPIENT GOVERNMENT AND TO ITS DEFENCE CONTRACTORS WITHIN ITS OWN TERRITORY, EXCEPT AS OTHERWISE AUTHORISED BY THE DEFENCE RESEARCH INFORMATION CENTRE. SUCH RECIPIENTS SHALL BE REQUIRED TO ACCEPT THE INFORMATION ON THE SAME CONDITIONS AS THE RECIPIENT GOVERNMENT.
- 4. THIS INFORMATION MAY BE SUBJECT TO PRIVATELY-OWNED RIGHTS.

B

- THIS INFORMATION IS RELEASED BY THE UK GOVERNMENT TO THE RECIPIENT GOVERNMENT FOR DEFENCE PURPOSES ONLY.
- 2. THIS INFORMATION MUST BE ACCORDED THE SAME DEGREE OF SECURITY PROTECTION AS THAT ACCORDED THERETO BY THE UK GOVERNMENT.
- 3. THIS INFORMATION MAY BE DISCLOSED ONLY WITHIN THE DEFENCE DEPARTMENTS OF THE RECIPIENT GOVERNMENT AND TO THOSE NOTED IN THE ATTACHED LIST, EXCEPT AS OTHER-WISE AUTHORISED BY THE DEFENCE RESEARCH INFORMATION CENTRE. SUCH RECIPIENTS SHALL BE REQUIRED TO ACCEPT THE INFORMATION ON THE SAME CONDITIONS AS THE RECIPIENT GOVERNMENT.
- 4. THIS INFORMATION MAY BE SUBJECT TO PRIVATELY-OWNED RIGHTS.

С

- 1. THIS INFORMATION IS RELEASED BY THE UK GOVERNMENT TO THE RECIPIENT GOVERNMENT FOR DEFENCE PURPOSES ONLY.
- 2. THIS INFORMATION MUST BE ACCORDED THE SAME DEGREE OF SECURITY PROTECTION AS THAT ACCORDED THERETO BY THE UK GOVERNMENT.
- 3. THIS INFORMATION MAY BE DISCLOSED ONLY WITHIN THE DEFENCE DEPARTMENTS OF THE RECIPIENT GOVERNMENT, EXCEPT AS OTHERWISE AUTHORISED BY THE DEFENCE RESEARCH INFORMATION CENTRE.
- 4. THIS INFORMATION MAY BE SUBJECT TO PRIVATELY-OWNED RIGHTS.

D

- 5. THIS INFORMATION IS RELEASED FOR INFORMATION ONLY AND IS TO BE TREATED AS DISCLOSED IN CONFIDENCE. THE RECIPIENT GOVERNMENT SHALL USE ITS BEST ENDEAVOURS TO ENSURE THAT THIS INFORMATION IS NOT DEALT WITH IN ANY MANNER LIKELY TO PREJUDICE THE RIGHTS OF ANY OWNER THEREOF TO OBTAIN PATENT OR OTHER STATUTORY PROTECTION THEREFOR.
- 6. BEFORE ANY USE IS MADE OF THIS INFORMATION FOR THE PURPOSE OF MANUFACTURE, THE AUTHORISATION OF THE DEFENCE RESEARCH INFORMATION CENTRE. MUST BE OBTAINED.

AD-596166

20090108 012

12 A D5 96166 111 MANitor - N-Methylaniline IV NAA S 68. But - Stabeliner (agail) Stabilizery (agents) Ri-Alte is **北**街1.30 APE CALLER WAT WERE MINISTRY OF DEFENCE

8.75

CONFIDENTIAL/DISCREET Palmer, G

EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT, G. S. Kris.

Technical Report No 79

uble bare rocket pupellants,

5 August 1971

Preliminary Assessment of p-Nitro-N-Methylaniline as

Stabiliser in CDB Propellants (C)

by

4 G A Palmer

SUMMARY

A review has been made of the results of tests on cast double-base propellants containing para-nitro-N-methylaniline (NMA) as a stabiliser. The review is based on 80°C Silvered Vessel (SV) tests and stabiliser consumption trials carried out at both ICI and ERDE. The available evidence shows that NMA is adequate as a replacement for 2-nitrodiphenylamine (NDPA) for some uses although not as good in ultimate stabilising power. An initial one per cent minimum of NMA may be suitable as sole stabiliser in conventional double-base propellants but slightly more may be required for unfavourable compositions or where a Service Chemical Life much in excess of 10 years at 32°C is required. It is found that composite modified compositions require resorcinol in addition to NMA for adequate chemical stability. Clarification is needed of Land Service requirements to enable the required figures for Service Chemical Life to be specified.

Further copies of this technical report can be obtained from Defence Research Information Centre, Station Square House, St Mary Cray, Orpington, Kent. BR5 3RE

Page No

CONTENTS

1	Introduction	1
2	Results	2
3 3 3 2	Discussion Silvered Vessel and Sealed Bottle Tests Service Chemical Life from Stabiliser Consumption Tests	2 2 4
4	Conclusions	8
5	Acknowledgements	8
6	References	8
	Tables 1 to 7	9 - 1 6
	Nomenclature	17

Reference: WAC/189/01

1 INTRODUCTION

This subject has been reviewed at the request of the CDB Working Party and the results summarised in this report represent some years of mainly routine work. The first experimental large cast double-base (CDB) charges made in the UK showed poor storage potential owing to internal cracking being caused by gas accumulation on hot storage, and this problem was found to become more serious when additives such as sucrose octa acetate (SOA) were included to reduce the burning rate.

Laboratory work at ERDE and elsewhere^{1,2} had shown that the main cause of propellant rupture was nitrogen gas, due to its low solubility in the propellant and slow diffusion to the outside of the charge. Various ingredients reacted with the nitric esters and their decomposition products to give nitrogen, so that it was necessary to reduce their amounts greatly, or to eliminate them altogether. Of the usual stabilisers, carbamite gave the most gassing, 2-nitrodiphenylamine (NDPA) gave less gassing in some compositions but it was not universally satisfactory. In addition, NDPA tended to give higher burning rates, and was liable to give "blooming" during hot storage if used in amounts around 2 per cent.

When para-nitro-N-methylaniline (NMA) is involved, the para-nitro group polarises the methyl substituted amino group, thus minimising the denitration of nitric esters. This was demonstrated by American work³ which showed a negligible change in the viscosity of nitrocellulose in a single-base composition stabilised with NMA, and elimination of nitrogen evolution from the stabiliser reaction with NO₂. NMA was first proposed for use in UK CDB propellant by ICI who had used it in other double-base propellants many years earlier. It was introduced into the AID series of propellants via the casting powder to improve the cracking life of the Foxhound sustainer charge for Seaslug Mark I. At the time it was considered wise and it was also convenient, to have some NDPA in the CDB by retaining NDPA as stabiliser in casting liquids. Since this successful application, the use of NMA has been steadily extended to other casting powders, especially those used for modern case-bondable compositions where escape of gas is restricted because the propellant is bonded to the motor case. Apart from some experimental compositions, NDPA has been generally used as stabiliser in the casting liquid. Although the solubility of NMA is only 1.67 per cent in 75 NG/24 TA casting liquid at 21°C, experiments at ERDE at an NMA concentration of 1.0 per cent, which is the normal concentration for stabiliser in casting liquid, have shown that no recrystallisation occurs down to -20°C, so that its solubility is adequate at this level. It should be emphasised that this report deals with the properties of propellants in simple systems; the presence of new types of inhibiting materials will introduce further complications which in general tend to lower chemical stability of the propellant unless special attention is devoted to these aspects.

2 RESULTS

The results available from a number of Silvered Vessel (SV) and storage tests are given in the attached Tables.

Table 1. SV test results at 80[°]C when various proportions of current stabilisers and NMA replace Mineral Jelly in the cordite Mk I composition (ICI Ardeer).

Table 2. SV test results at 80[°]C when cordite Mk I is heated with pure NMA and with added typical impurities (ERDE).

Table 3. Small SV and Sealed Bottle test results at 80°C with typical compositions with current stabilisers and NMA in the presence of pyritic particle contamination (ERDE).

Table 4. SV test results at 80[°]C with typical case-bondable compositions of ATN and BDI types containing NMA as sole and joint stabiliser (ERDE).

Table 5. Residual stabiliser contents after storage of ATN variants, modified BDI(D1), and CRU compositions containing NMA, for up to 24 weeks at 70°C. These tests were conducted on cast propellant cut into $\frac{1}{4}$ inch pieces stored in a glass bottle with a foil-covered cork carrying a fume tube. (ICI Ardeer.)

Table 6. Residual stabiliser content after storage of BDI, ATN, AID and ARA variants for up to 12 months at 60°C or 24 months at 49°C. (Propellants manufactured at IMI Summerfield and at ERDE are indicated by "IMI" or "CPA" respectively.) Most of the charges in these tests were 150 mm in diameter and inhibited with cellulose acetate, and were stored vertically inside a closely fitting aluminium tube with tight-fitting polythene end-caps, except as indicated at the foot of the table.

Table 7. Compositions of propellants quoted in this Report. The available results involve compositions under development for weapon applications rather than special compositions to assess NMA in particular.

3 DISCUSSION

3.1 Silvered Vessel and Sealed Bottle Tests

In the standard 70 gram SV test at 80^oC with Mark I cordite containing 5 per cent mineral jelly as stabiliser, the normal SV figure as indicated by brown fumes or a 2 degC temperature rise is between 500 and 600 hours. Although lower figures than this have been obtained in some tests (eg 224 - 268 in Table 1) they were associated with experimental Mark I cordite, and are not regarded as typical; nor is the low figure of 292 hours with 1 per cent NMA replacing the mineral jelly in a Mark I cordite mix (P 33398, Table 1). In general, the results indicate that 1 per cent NMA as the sole stabiliser in a Mark I cordite mixture is about equivalent to 5 per cent mineral jelly as stabiliser. Carbamite gives about twice the SV figure, and NDPA slightly

more. However, in the case of large propellant charges the poorer cracking life associated with NDPA, and particularly carbamite, prevent full advantage being taken of the increased ultimate stabilising power. Table 1 also shows that lead compounds themselves often have stabilising properties, which vary with the type of compound.

In another series of tests (Table 2) 5 per cent of NMA added to Mark I cordite was shown to improve the SV figure considerably. The presence in the NMA at 0.2 and 1 per cent level of p-nitroaniline as a potential impurity had only a small effect.

The miniature SV tests (15 - 18 g samples) (Table 3) give higher figures than the standard test which involves 70 g samples in correspondingly larger vessels. Considered on a comparative basis, the miniature SV tests show that NMA at a level of 0.5 per cent in compositions having a high NC content and containing lead 2-ethyl hexoate, gives lower SV figures than carbamite or NDPA in the presence of pyritic particle contamination, which is known to cause local decomposition centres in the contaminated double-base propellant. The SV figure is reduced by 29 per cent (CPA 2352/3) in contrast to the virtually unchanged figures given by compositions stabilised with carbamite or NDPA. In an AID composition containing NMA/NDPA the SV figure was reduced by nearly 22 per cent in the presence of pyritic particle contamination (CPA 2383/4). The sealed bottle tests (Table 3) show NMA to compare favourably with carbamite or NDPA, but the results are not so consistent as the, generally lower, figures given by the miniature SV tests. The situation is complicated further by the presence of lead compounds, lead 2-ethyl hexoate in the first 6 compositions, and lead stearate in the AID-type compositions. Table 1 shows that both these lead compounds have stabilising power in a double-base matrix. Hence it cannot be stated categorically that NMA on its own would deal with pyritic particle contamination. However, the chances of pyritic particle contamination occurring during modern manufacture of propellants is remote, and in the event all conventional CDB propellants contain one or more lead compounds. The special case of composite modified cast double-base (CMCDB) is discussed under Section 3.2.2.

SV tests on the low nitrocellulose case-bondable CDB such as ATN-type compositions (Table 4) show that 1 per cent NMA as sole conventional stabiliser compares satisfactorily with the 1 per cent NDPA originally used and the 0.7 per cent NMA, 0.3 per cent NDPA combination arising from the usual NDPA-stabilised NG/TA casting liquids. The comparison is less favourable with the BDI-type compositions where the SV figure for the NMA/NDPA stabilised BDI-type propellant is less than half that of NMA/NDPA stabilised ATN-type compositions, and, for the NMA-stabilised BDI-type propellant only one third to one fifth that of the ATN-type compositions stabilised with 1 per cent NMA. However, 600 hours may be regarded as adequate for some usages. Also, some Ardeer vacuum flask tests at 80°C (not reported in detail) have given results in the region of 2000 hours for BDI-type compositions, but a direct comparison between the two locations cannot be made readily as there are differences from the standard ERDE Silvered Vessel procedure. The greater stability shown at ERDE of the ATN-type propellant in contrast to the BDI-type propellants may be due to the superior stabilising effect of the easily nitrateable lead salts in the ATN.

3.2 Service Chemical Life from Stabiliser Consumption Tests

3.2.1 Standards

Well established temperature coefficients are lacking for the newer stabilisers, and in this report estimates of life at the test temperature are quoted together with a calculated value for storage at $32^{\circ}C$ ($90^{\circ}F$). The following temperature coefficients are assumed on the basis of 1.8 for 5.5 degC (10 degF) for up to $49^{\circ}C$ and 2 for 5.5 degC (10 degF) above $49^{\circ}C$.

70°C	to	60°C	3.5
60°C	to	49°C	4.0
49°C	to	32°C	6.1

In the Ardeer work (Table 5), a fume venting tube was provided for the cut propellant samples, there was no cellulose acetate inhibition, and no close confinement of a propellant mass. The ERDE propellant packing in closed tubes is thought to be closer to Service rocket charge conditions, and it is considered that valid estimates can be made for Service Chemical Lives from Table 6. Unfortunately no identical samples were tested, so that a direct comparison is not possible between the two sets of conditions. Consequently the results of Table 5 have been regarded as self-comparative.

As far as chemical stability is concerned, Service Chemical Life has been defined as the time at which the stabiliser is reduced to half its initial value, so that the amount of the residual stabiliser will depend upon the initial level. For newer propellants with low stabiliser contents it is probably better to consider Service Chemical Life in terms of the minimum level of residual stabiliser.

The following arbitrary criteria for the end of Service Chemical Life have been used for Table 6:

Residual NMA below 0.5 per cent (as reaction products are regarded as having little stabilising power).

Residual NDPA below 0.2 per cent (as reaction products have stabilising power).

Residual NMA and NDPA totalling 0.3 per cent (when the initial amount of NDPA is not less than 0.3 per cent).

It should be emphasised that the conclusions drawn depend upon the reliability of sampling and chemical analysis for determining these small amounts of stabiliser in aged propellants. It has also been noticed that there is visual bleaching of aged propellant near surfaces exposed to the air, which requires further study.

3.2.2 Conclusions from Table 5

Compositions of the ATN-type with one per cent NMA only (Items 1 - 4) show acceptable residual stabiliser figures after 12 to 16 weeks at 70° C: there were no ignitions in 24 weeks at 70° C. The addition of 0.6 per cent resorcinol reduces the rate of NMA stabiliser consumption, so that the estimated Service Chemical Life would be equivalent to 19 weeks at this temperature.

One per cent NMA alone seems an unsuitable stabiliser for composite modified double-base formulations (Items 12 and 13) but the addition of 1.0 per cent of resorcinol doubled the estimated Service Chemical Life for the casting powder and trebled that for the cast propellant at this temperature (Items 15 and 14 respectively).

3.2.3 Conclusions from 6-inch Charges (Table 6)

The recent practice to obtain maximum resistance to cracking has been to use NMA in proportions ranging from 0.6 to 1.3 per cent with 0.3 per cent NDPA from the casting liquid. In propellants containing mixtures with NDPA, NMA reacts preferentially so that the concentration of NDPA is relatively constant until most of the NMA is used up. Thus stabilisation is effectively due to NMA for most of the Chemical Safe Life so that the stabilising reactions of NMA have the predominant effect on propellant cracking caused by internal gas evolution. Items 6 and 7 show that resorcinol also reacts preferentially to NDPA and will act with NMA in having the predominant effect on propellant cracking. Only one composition with NMA as sole stabiliser has been tested. Service Chemical Lives have been estimated graphically using the criteria given in Section 3.2.1, and are summarised below.

				Estimated Service Chemical Life				
Item No	Composition Type	Stabilise %	er,	Moi	nths at	Year	rs at	
				60 ⁰ C (a)	49 ⁰ С (Ъ)	32 (a)	2 ⁰ С (Ъ)	
4	BDI(D1)	NMA	1.2	9	26	18	13	
3	BDI(D2)	NMA NDPA	0.6 0.4	5	27	10	13불	
10,12	AID(M15)	NMA NDPA	1.1 0.3	11,10	59*,39*	22,20	30,20	
14,15	ARA(D4)	NMA NDPA	1.3 0.3	11,11	46 ¹ / ₂ *,47 ¹ / ₂ *	22	23 ¹ /2,24	
18,19	BDI(D1)/ARA(D4) Blends (SRS 38/15 & 20)	NMA NDPA	0.8 0.3	7 2 ,7 1	42*,42*	15	21	
7	ATN(D27)	NMA NDPA Resorcinol	0.6 0.3 0.7	10 <u>3</u> *	46 2 *	22	23 2	

*Extended extrapolation

One low result from AID(M15) type compositions has been recorded on an IMI charge (Item 9) but this does not follow the normal pattern for the rate of consumption of NDPA, and unfortunately only one figure is available after 29 months at 49° C. An approximate estimation suggests a life of the order of 13 years at 32° C for this sample. This figure is regarded as abnormal for AID variants. In general, estimates of life at 32° C from the trials at 49° C and 60° C agree reasonably in view of the considerable extrapolations required in most cases to estimate the life at 49° C from the two-year results at this temperature.

In the cases of Items 7, 12 and 13, the six-inch diameter solid charges have cracked internally at 60° C before the end of Service Chemical Life. This effect, arising from internal gas evolution, is a separate consideration and varies with composition and charge design, and also the hot storage requirements of the rocket motor, but it would be a limiting factor for some charges. The only test with NMA as sole stabiliser, 1.2 per cent in BDI(D1), suggests a Service Chemical Life of 13 to 18 years at 32° C.

The tests at 49°C with ATN(D27) suggests a Service Chemical Life of 23 years at 32°C.

A good Service Chemical Life is also obtained for the AID(M15)-type propellants, and in fact there have been no adverse reports on their chemical stability under Service conditions, ie in Foxhound and Wolfhound motors. ARA(D4) propellants indicate an equally good Service Chemical Life.

3.2.4 Service Requirements

The Naval Service has detailed the probable Service history of certain GW motors such as Retriever, and a suitable Service Chemical Life can be deduced.

In the Land Service the periods of use and storage under the various specified environments are not clearly defined, and WOPS 100 represents extreme ambient temperatures for tropical conditions. The current Technical Requirements for the Land Service Troy motors involve packaged storage for $2\frac{1}{2}$ years (with possible extension to 3) at a cycle between 32 and 60°C which might be equated thermally to about 49°C, or assuming the accepted temperature coefficient, to about 15 or 18 years at 32°C. It is important that this requirement should be clearly defined since the present results indicate that whilst ATN(D27) is acceptable, the Service Chemical Life of BDI(D2) would be less than 15 years at 32°C on the basis of the proposed criteria. IMI Summerfield has reported "bleaching" of propellants beneath the blue Hypalon inhibition* of the Pointer charge, extending inwards to a depth of about 1 inch. The "bleaching" is associated with depletion of NMA stabiliser (nominal 0.8% NMA, 0.3% NDPA) and enhanced burning rate. The phenomenon is not yet understood, but it is thought that the "bleaching" effect is due to the formation of an almost colourless nitroso derivative of the NMA which appears to be more rapidly depleted in the peripheral regions of the charge. Aerial oxidation may be a factor. It is well known from earlier work that a limited access to air gives the greatest rate of stabiliser consumption and development of acidity in carbamite cordites, as compared with no air or unlimited air. There is also some recent evidence that NMA migrates readily into blue Hypalon (CL8436) inhibition at the expense of the peripheral regions of the propellant charge, in which case the Service Chemical Life of a rocket charge may be less than that of the propellant, either on its own, or coated with the "traditional" cellulose acetate which is considered in this Report.

Further work is clearly necessary with specific compositions including new inhibitors etc and to determine temperature coefficients for the newer stabiliser combinations. The usage of Land Service weapons under the various specified environments requires further consideration in Technical Requirements so that the required Service Chemical Life for a given motor and propellant can be defined.

*Not used in latest design.

4 CONCLUSIONS

4.1 NMA reacts preferentially to NDPA, and is not as good as carbamite or NDPA in ultimate stabilising power.

4.2 For NMA as sole stabiliser the minimum initial concentration will depend upon the propellant composition, and the Service usage required. In favourable circumstances, under Naval storage conditions, the minimum could be as low as 1.0 per cent, particularly in the presence of stabilising lead compounds. However, if a Land Service Life requirement of more than about 13 years at 32°C is required for the BDI-type propellant, the NMA content would need to be increased to say 1.5 per cent, or alternatively augmented with resorcinol if this were acceptable ballistically.

4.3 NMA alone is unsatisfactory for use in composite modified double-base propellants but it appears that the required stability might be obtained in combination with at least an equal amount of resorcinol. Work on other combinations is in hand.

4.4 Extensive stabiliser consumption tests should be carried out on novel NMA-stabilised compositions proposed for Service use, in order to cover possible adverse effects arising from the use of new ingredients, the omission of ingredients with supplementary stabilising properties, and to cover locations close to the inhibitor and charge surface.

4.5 Current compositions suggested for Land Service use should be reviewed carefully since it is indicated that, on the criteria in this Report, some BDI-types hardly meet the required Service Chemical Life of 15 to 18 years at 32°C implied by the Troy Technical Requirement.

4.6 Greater precision is required in Land Service Technical Requirements to decide the safe Service Chemical Life required for the propellants.

5 ACKNOWLEDGEMENTS

The author acknowledges with pleasure the co-operation of ICI (Nobel Division), Stevenston, Ayrshire, in providing results of their work; IMI Summerfield, for supplying some of the cast double-base charges for assessment at ERDE; and SGC, ERDE for stabiliser analyses.

6	REFERENCES	
1	Rosser R J	ARE Report No 19/49, December 1949
2	Davies N	ERDE Report No 10/R/58, June 1958
3		USP 2,696,430
4	,	Private communication, Research Department, ICI (Nobel Division) Stevenston, Ayrshire, dated 11 10 57

8

TABLE 1

ASSESSMENT OF STABILISER PERFORMANCE BY SV TEST AT 80°C

Sample Reference No (Ardeer)	Additives replacing Mineral Jelly in Cordite Mk 1	SV at 80 ⁰ C (hours to brown fumes)
P33398	1% NMA	292
P33395	1% NMA + 5% lead 2-ethyl hexoate	1192
P33396	1% NMA + 5% lead citrate	712
P33397	1% NMA + 5% lead carbonate	1864
P33533	1% NMA + 7.5% adiponitrile	1040
ST1	1% carbamite	1056
ST2	2% carbamite	1850
ST3	3% carbamite	2000
ST4	5% carbamite	1972
ST16/0	5% mineral jelly (control)	268
ST5	1% NDPA	1228
ST6	2% NDPA	> 2000
ST7	3% NDPA	> 2000
ST8	5% NDPA	> 2000
ST16/1	5% mineral jelly (control)	264
ST9	1% NMA	528
ST1C	2% NMA	616
ST11	3% NMA	678
ST12	5% NMA	1030
ST16/2	5% mineral jelly (control)	526
ST13	0.5% carbamite, 0.5% NDPA	1152
ST14	0.5% carbamite, 0.5% NMA	720
ST15	0.5% NDPA, 0.5% NMA	624
ST16/3	5% mineral jelly (control)	224
ST17	2% NMA, 0.5% carbamite	944
ST18	2% NMA, 0.5% NDPA	836
ST23	0.5% NMA, 0.5% NDPA, 0.5% carbamite	1028
ST27/0	5% mineral jelly (control)	504
ST19	2% carbamite, 0.5% NMA	1916
ST20	2% carbamite, 0.5% NDPA	1604
ST21	2% NDPA, 0.5% carbamite	> 2000
ST22	2% NDPA, 0.5% NMA	1772
ST27/1	5% mineral jelly (control)	492

/continued

TABLE 1 (continued)

Sample Reference No (Ardeer)	Additives replacing Mineral Jelly in Cordite Mk 1	SV at 80 ⁰ C (hours to brown fumes)
ST24	5% lead stearate	1252
ST25	5% lead carbonate	964
ST26	5% white lead	1432
ST27/2	5% mineral jelly (control)	504

TABLE 2

ASSESSMENT OF THE EFFECT OF $_{\rm P}\text{-}{\rm NITROANILINE}$ IMPURITY IN NMA BY SV TEST AT 80 $^{\circ}{\rm C}$

Sample Details (ERDE)	SV at 80 ⁰ C (hours to fume)
Cordite Mk I (WACX 995) control	626
Cordite Mk I + 5% pure NMA	1906
Cordite Mk I + 5% NMA containing 0.2% p-nitroaniline	1842
Cordite Mk I + 5% NMA containing 1.0% p-nitroaniline	1842
Cordite Mk I + 5% pure p-nitroaniline	832

TABLE 3

ASSESSMENT OF STABILISER PERFORMANCE AT 80°C IN THE PRESENCE OF PYRITIC PARTICLE CONTAMINATION

By SV Test (15 - 18 g sample)
By Sealed Bottle Test (40 g sample piece)

Sample Details (ERDE)	Test at 8 (hours to	30 [°] C fume)
CDB Propertants	(1)	(2)
Carbamite stabilised - control - CPA 2349 Carbamite stabilised - with pyritic particles CPA 2348 NDPA stabilised - control CPA 2351 NDPA stabilised - with pyritic particles CPA 2350 NMA stabilised - control CPA 2353 NMA stabilised - with pyritic particles CPA 2352	2009 2016 1659 1736 2043 1448	1440 2640 3050 1920 1248 1248
<pre>AID(M11)/5 - carbamite stabilised - control CPA 2385 AID(M11)/5 - carbamite stabilised - with pyritic particles CPA 2382 AID(M15)/5 - NMA/NDPA stabilised - control CPA 2384 AID(M15)/5 - NMA/NDPA stabilised - with pyritic particles CPA 2383</pre>	3388 4152:3417 2516 1972	3408 2496 3000 2664

NOTE ON TABLE 3

The first 6 compositions were all high in NC (63% pyro), low in stabiliser (0.5%), contained lead 2-ethyl hexoate, and were chosen to be as sensitive as possible to pyritic particle contamination as judged by past experience.

TABLE 4

ASSESSMENT OF NMA AS TOTAL AND PARTIAL STABILISER IN TYPICAL CASE-BONDABLE CDB BY SV TEST AT $80^{\circ}C$

Sample Details (ERDE)	SV at 80 [°] C
CDB Propellants	(hours to fume)
ATN/19 (CPA 4055) ATN(Mod)/19 (Casting Powder NMA stabilised) (CPA 4775) ATN(Mod)/4(Mod) (ATN with NDPA completely replaced by NMA) (CPA 4543) ATN(D26)/19 (Casting Powder NMA stabilised) (CPA 5619) ATN(D26)/19(Mod) (NMA stabilised) (CPA 5645)	2136 1968 1896 2184 3048
BDI(D1)/25 (Mod ₂) (CPA 5716)	840
BDI(D1)/25 (Mod ₁) (NMA stabilised) (CPA 5717)	600

TABLE 5

STABILLISER CONSUMPTION TESTS AT 70°C

				Stabil	isers	Re	sidual	Stabili	ser (Pe	r cent)	
Item	Composition	Identification Number	Platonising Agents	:	Nominal			Weeks a	t 70°C		
ON		(Ardeer)	(Lead Compounds)	Names	(Per Cent)	0	4	ø	12	8	24
-	ATN(D27) Casting Powder	01.62	Salicylate B-Resorcylate	NMA	1.0	26.0	0.92	0.88	0.81	0.30	0.15
~	ATN(D27)/33	S915	Salicylate <i>B</i> -Resorcylate	NHA	1.0	1.05	0.88	0.65	0.54	0.21	0.03
М	ATN(D20)/33-Type	¥3705	Salicylate B-Resorcylate	NMA	1.0	0.92	0.88	0.56	0.68	Г	0.17
4	ATN(D20)/33-Type	¥3707	Salicylate B-Resorcylate	NMA	1.0	0.91	0.80	0•49	02.0	I	24.0
5	ATN(D20)/47-Type	¥3706	Salicylate B-Resorcylate	NMA Resorcinol	1.0	0.90	0.88	0.58	0.72	ı	0.34
Q,	ATN(D20)/47-Type	¥3708	Salicylate β -Resorcylate	NMA Resorcinol	1. 0 0.6	0.89	0.84	0.52	0.72	I.	0.38
2	ATN(D26)/4	Y3765 (5% Aluminium Present)	Salicylate A-Resorcylate	NMA NDPA	0.7	0.61	0.42	0.19 0.24	0.13	11	0.05
00	ATN(D20)/33-Type	T2039 (DEP Present)	Salicylate β -Resorcylate	NMA NDPA	0.3	0.67	0.46	0.24	0.10	1 1	0.05
σ	ATN(D26)/4 + 7% Kieselghur	7413O	Salicylate B-Resorcylate	NMA NDPA	0.3	0.73	0. 00	0.54	0.38		
9	ATN(D26)/47	¥4153	Salicylate β -Resorcylate	NMA NDPA Resorcinol	0.0	0.72	0.58	0°46	0.28	11	0.03
1	BDI(D1)/25 + 1.3% Kieselghur	Y4120	Citrate Phthalate	NMA NDPA	0.3	0.70	0.42	0.36	0.28	ы	0.22
1	CRU-Type CMCDB	\$854	None	NMA	1.0	1.08	0.88	0.27	0.26	(a)	
13	CRU-Type CMCDB Casting Powder	\$855	None	NMA	1.0	1.18	1.19	0.49	0.41	0.27	1
44	CRU-Type CMCDB	\$900	None	NMA Resorcinol	1°0	1.09	0.81	0.75	• 28	0.54	6450
15	CRU-Type CMCDB Casting Powder	\$905	None	NMA Resorcinol	1.0	1.02	1.03	0.90	0.83	0.42	0.41

1

Cast propellant stored as cut $\frac{1}{4}$ -inch pieces in a glass bottle with a foil covered cork carrying a fume tube.

(a) Sample ignited after 17 weeks.*Sample removed after 17 weeks due to low concentration.

TABLE 6

		60°C	6		-								. 11
	t)	hs at								i			00
	s (Per cen	Mont	9	0.51		22 wks (cracked) 0.16 0.05	0.8			20 wks (cracked) 0.17 0.30 0.40			0.29
	bilisers		б		0.51	0.29			0.50	40 40 0 0 0 0	0.43		0.29
	idual Stal		24	0.39		0.21 0.16	0.55		0.50 2.80 2.80	0.45 0.30		29 mths 0.05 0.15	0.28 0.66
	Resi	at 49°C	18	15 mths 0.50 0.36		0.28	15 mths 0.80		0.34 0.6	0.33 0.31 0.40			0.31
		onths	12	0.51		0.29	0.87		0.39	0°.40			0.31
		W	9			0.29			0.56 0.35 0.55	0.57			0.27
		cent	Control	0.57 0.60	0.54	0.52 0.60	1.18		0.64 0.32 0.65	0.52 0.33 0.60	0.50 	0.4 1.0	0.30
	ilisers	Per	Nominal	0•6 0.6	0.55	0°4	1.2	1°0	0.0	0.00	0°9 00°3	0.3	0.3
	Stat	;	Names	NDP.A NMA	NDPA NMA	NDPA NMA	NMA	Resorcinol NMA	Resorcinol NDPA NMA	Resorcinol NDPA NMA	Resorcinol NDPA NMA	NDPA NMA	NDPA NMA
		Platonising Agents	(Lead Compounds)	Citrate Phthalate	Citrate Phthalate	Citrate Phthalate	Citrate Phthalate	Citrate Phthalate	Salicylate β-Resorcylate	Salicylate β-Resorcylate	Salicylate β -Resorcylate	Stearate	Stearate
D 60°C		Identification Number	(ERDE, except IMI)	CPA 5776 (49°C)	CPA 6362	978 (49°C)) 980 (control)) IMI 979 (60°C))	CEA 5717	CPA 5327	CPA 6549 (49°C) CPA 6548 (Control) CPA 6550 (60°C)	7004 (49°C)) 1006 (control)) IMI 1005 (60°C))	CPA 6361	E6769 (IMI)	CPA 6546 (49°C) CPA 6363 (Control) CPA 6547 (60°C)
ISER CONSUMPTION TESTS AT 49°C ANI		Composition		BDI(D1)/25 (Mod ₂)	BDI(D1)/25 (Mod)	BDI(D2)/25	BDI(D1)/25 (Mod,) NMA in liquid and powder	BDI(D1) Mod + 2% Resorcinol in Powder/19 (Mod NMA for NDPA)	747/(727)/147	ATN(D27)/47	Trn(D27)/47	AID(H15)//5	AID(M15)//5
STABILI		Item	2	-	N	м	4	Ś	9	~	Ø	6	9

0.23 0.67 0.40

0.18 <0.05

4

CONFIDENTIAL/DISCREET

14

43 wks (cracked)

TABLE 6 (continued)

				Sta	bilisers				Resi	dual Stal	oilisere	(Per cent)		
Item	Composition	Identification Number	Platonising Agents		Per	ent		lonths	at 49°C			Months	s at 60°C	
ONT		(ERDE, except IMI)	(Lead Compounds)	Names	LanimoN	Control	9	12	48	24	б	9	6	12
7	AID(M15)/5	CPA 6363	Stearate	NDPA	N.0	0.28					0.26			
				VILAT	•	6							34 WKB	
12	AID(M15)/19	CPA 6557 (49°C) CPA 6556 (Control) CPA 6558 (60°C)	Stearate	NDPA	0.35	0.35	0.32	0.31	0.31	0.29	0.70	0.31	0.24	
5	olo(N2K)/5	CPA 6544 (Control) CPA 6545 (60°G)	Stearate	NDPA	1.5	1.48					1.16	23 wks (cracked)		
14	ARA(D4)/19	CPA 6602 (49°C) CPA 6601 (Control) CPA 6603 (60°C)	Stearate Phthalate	NDP A NMA	0.34	0.32	0.27	0.30	0.32 0.80	0.32	0.34	0.30	0.24	0.18 <0.05
5	ARA(D4)/19	1050 (49°C)) 1052 (Control)) IMI 1051 (60°C))	Stearate Phthalate	AGUN	0.34	0.34	0.31	0.27	0.31 0.80	0.29	0.32	0.26 0.60	0.22	0.18 <0.05
16	ARA(D4)/19	CPA 7055 (49°C) CPA 7057 (Control)	Stearate Phthalate	NDP.A NMA	0.3 6.1	0.35	0.34	0.33	0.34 0.85	0.31 0.83	0.34	0.31	0.56	0.25 0.30 mths
4	ARA(D4)/19	CPA 6360	Stearate Phthalate	AGUN	0.0 	0.33		8.8	15 mths 0.30 1.0	0.29 0.80	1.10	41 mths 0.29 1.03	6 mths 0.29 0.90	74 9 0.33 0.21 0.80 0.65
9	(10,000,000,000,000,000,000,000,000,000,	CPA 6708 (49°C) CPA 6707 (Control) CPA 6707 (Control)	Citrate Phthalate Stearate	NTPA	0°.0	0.31	0.31	0.27	0.31	0.31	0.31	0.27	0.17 <0.05	41 wks (cracked) 0.06 <0.05
19	(ADA(D4) 20% / 4 SBSS8/15/4 (BDI(D1) 85% / 4 (BDI(D4) 15% / 4	7079 (49°G)) IMI 7021 (Control)) IMI 7020 (60°G))	Stearate Citrate Phthalate	NDP A NMA	Ю. 00	0.29	0.29	0.25	0.28 0.45	0.30	0.32	0.22	(cracked) 0.12 Nil	

NCTE: All charges cellulose acetate inhibited, six inch diameter solids, stored vertically inside close-fitting aluminium tubes with tight-fitting polythene end caps, excepting items 1, 2, 4, 5, 8, 9, 11 and 17 which were part charges in sealed containers.

	Propellant Type and Powder Lot		Carbante Stabilised "NPA Stabilised "" " " (with pyritic particles) NPA Stabilised " NFA Stabilised " NFA Stabilised " (with pyritic particles) NFA Stabilised " (with pyritic particles) ADD(H1)/5 cmbante stabilised ADD(H1)/5 cmbante sta	
-	phite OH		66666666666666666666666666666666666666	-
\vdash	rbon Br.k	une .	ưưưởi ở ở ở ở ở ở ở ở ở ở ở ở ở ở ở ở ở	-
-	guhr Ca			-
	Kiesel		e per 1 e per 1 a per 1 a per 1 1 - 0 1 - 0 1 - 0 1 - 0	
	nium Viorate		Marticle Marticle Marticle Marticle Marticle Marticle Marticle Marticle Marticle Marticle Marticle Marticle Marticle	
-	Ammol	3 [_
	Atomice	T 177 mm T W	80 PJ 80 PJ 80 PJ 3.1 3.1 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	
	ot assium	androiter	6°11 6°11 0°20 0°20 0°20 0°20	
	ATA P	0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-
		hthalate	1.66 1.66 1.65 1.65 1.65 1.65 1.65	
	-	citrate F	1.66 1.65 1.55 1.55	-
	102	Salicylate	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	-
	Lead of	β-Resorcylate	2.0 2.0 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	
		tearate	2.2 2.9 2.1 2.1 2.1 2.1 2.2 0.2 2.0 0.2 2.0	
		2-Ethyl	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_
	Recorcinol		6°1 6°0 0°1 0°1 0°1 0°1 0°1 0°1	
	NOPA		600 000 000 000 000 000 000 000 000 000	_
-	VHN C		0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	_
	SOA		ν ν ν ν ν ν ν ν ν ν ν ν ν ν	_
-	430			-
-	10 T.			_
	NC	2. 690N	いいのののかれ、たちかんなどになっていたないない。 いいのかい、ういいの、いいいい、いいい、いい、いい、いい、いい、いい、いい、いい、いい、いい、	-
-	-		2010 2010	

TABLE 7

PROPELLANT COMPOSITIONS (NONINAL PERCENTAGE)

NOMENCLATURE

CDB	Cast Double-Base
CMCDB	Composite Modified Cast Double-Base
DEP	Diethyl Phthalate
DMP	Dimethyl Phthalate
EC	Ethyl Centralite (Carbamite)
MMA	Methyl Methacrylate
NC	Nitrocellulose
NDPA	2-Nitrodiphenylamine
NG	Nitroglycerine
NMA	para-Nitro-N-methyl aniline
SOA	Sucrose Octa Acetate
SV	Silvered Vessel
TA	Triacetin

S No 26/71/MG/BS/SP

REPORT AND THEIR LOCATION SHOULD BE RECORDED ON THE INSIDE OF THE BACK COVER

CONFIDENTIAL/DISCREET Technical Report No 79 Explosives Research and Development Establishment PRELIMINARY ASSESSMENT OF p-NITRO-M-METHYLANILINE AS STABILISER IN CDB PROPELLANTS (C) Palmer G A August 1971 August 1971 I 7 pp, 7 tabs, no figs	CONFIDENTIAL/DISCREET Technical Report No 79 Explosives Research and Development Establishment PRELIMINARY ASSESSMENT OF p-NITRO-N-METHYLANILINE AS STABILISER IN CDB PROFELLANTS (C) Palmer G A August 1971 17 pp, 7 tabs, no figs
A review has been made of the results of tests on cast double-base propellants containing para-nitro-N-methylaniline (NMA) as a stabiliser. The review is based on 80 C Silvered Vessel (SV) tests and stabiliser consumption trials carried out at both ICI and ERDE. The available evidence shows that NMA is adequate as a replacement for 2-nitrodiphenylamine (NDPA) for some uses although not as good in ultimate stabilising power. An initial one per cent minimum of NMA may be suitable as sole stabiliser in conventional double-base propellants but slightly more may be required for unfavourable compositions or where a Service Chemical Life much in excess of 10 years at 32°C is required. It is found that composite modified compositions required resorcinol in CONFIDENTIAL/DISCREET	A review has been made of the results of tests on cast double-base propellants containing para-nitro-N-methylaniline (NMA) as a stabiliser. The review is based on 80°C Silvered Vessel (SV) tests and stabiliser consumption trials carried out at both ICI and ERDE. The available evidence shows that NMA is adequate as a replacement for 2-nitrodiphenylamine (NDPA) for some uses although not as good in ultimate stabilising power. An initial one per cent minimum of NMA may be suitable as sole stabiliser in conventional double-base propellants but silghtly more may be required for unfavourable compositions or where a Service Chemical Life much in excess of 10 years at 32°C is required. It is found that compositions require resorcinol in CONFIDENTIAL/DISCREET
CONFIDENTIAL/DISCREET Technical Report No 79 Explosives Research and Development Establishment PRELIMINARY ASSESSMENT OF p-NITRO-N-HETHYLANILINE AS STABILISER IN CDB PROFELLANTS (C) Palmer G A August 1971 17 pp, 7 tabs, no figs	CONFIDENTIAL/DISCREET Technical Report No 79 Explosives Research and Development Establishment PRELIMINARY ASSESSMENT OF p-NITRO-N-METHYLANILINE AS STABILISER IN CDB PROPELLANTS (C) Palmer G A August 1971 17 pp, 7 tabs, no figs
A review has been made of the results of tests on cast double-base propellants containing para-nitro-N-methylaniline (NFA) as a stabiliser. The review is based on 80°C Silvered Vessel (SV) tests and stabiliser consumption trials carried out at both ICI and ERDE. The available evidence shows that NFA is adequate as a replacement for 2-nitrodiphenylamine (NDPA) for some uses although not as good in ultimate stabilising power. An initial one per cent minimum of NFA may be suitable as sole stabiliser in conventional double-base propellants but slightly more may be required for unfavourable compositions or where a Service Chemical Life much in excess of 10 years at 32° C is required. It is found that composite modified compositions require resorcinol in CONFIDENTIAL/DISCREET $/$	A review has been made of the results of tests on cast double-base propellants containing para-nitro-N-methylaniline (NMA) as a stabiliser. The review is based on 80°C Silvered Vessel (SV) tests and stabiliser consumption trials carried out at both ICI and ERDE. The evaluable evidence shows that NMA is adequate as a replacement for 2-mitrodiphenylamine (NDPA) for some uses although not as good in ultimate stabilising power. An initial one per cent minimum of NMA may be suitable as sole stabiliser in conventional double-base propellants but slightly more may be required for unfavourable compositions or where a Service Chemical Life much in excess of 10 years at 32°C is required. It is found that composite modified compositions require resorcinol in CONFIDENTIAL/DISCREET

THESE INDEX CARDS ARE SUBJECT TO THE SAME SECURITY REGULATIONS AS THE PARENT

CONFIDENTIAL/DISCREET addition to NMA for adequate chemical stability. Clarification is needed of Land Service requirements to enable the required figures for Service Chemical Life to be specified. CONFIDENTIAL/DISCREET	addition to NMA for adequate chemical stability. Clarification is needed of Land Service requirements to enable the required figures for Service Chemical Life to be specified.	CONFIDENT IAL/DI SCREET
CONFIDENTIAL/DISCREET addition to NMA for adequate chemical stability. Clarification is needed of Land Service requirements to enable the required figures for Service Chemical Life to be specified. CONFIDENTIAL/DISCREET	CONFIDENTIAL/DISCREET addition to NMA for adequate chemical stability. Clarification is needed of Land Service requirements to enable the required figures for Service Chemical Life to be specified.	CONFIDENT FALL DISCRET

.

1

DETACHABLE ABSTRACT CARDS

The Abstract Cards detached from this document are located as follows:

1.	Section	Signature	Date
2.	Section	Signature	Date
3.	Section	Signature	Date
4.	Section	Signature	Date

sit

JAN 1 5 1973

CONFIDENTIAL DISCREET

[dstl]

Information Centre Knowledge Services [dsti] Porton Down, Salisbury Wilts SP4 0JQ Tel: 01980-613753 Fax 01980-613970

Defense Technical Information Center (DTIC) 8725 John J. Kingman Road, Suit 0944 Fort Belvoir, VA 22060-6218 U.S.A.

AD#: 596166 Date of Search: 12 December 2006

Record Summary:

Title: P-nitroN-methylaniline as stabiliser in CDB propellants Covering dates 1971 Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years Former reference (Department) ERDE TR 79 Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967.

The document has been released under the 30 year rule.

(The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.