# UNCLASSIFIED

## AD NUMBER

AD524988

## CLASSIFICATION CHANGES

TO:

unclassified

FROM: confidential

## LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

## FROM:

Distribution limited to U.S. Gov't. agencies only; Test and Evaluation; Feb 73. Other requests for this document must be referred to Director, Naval Research Lab., Washington, D. C. 20375.

# AUTHORITY

NRL notice, 27 Dec 1995; NRL notice, 27 Dec 1995

# THIS PAGE IS UNCLASSIFIED

 $(\cdot)$ 

 $\odot$ 

 $\bigcirc$ 

Control of

ち い い NRL Report 7511

## Range Navigation Using the TIMATION II Satellite [Unclassified Title]

J. A. BUISSON, T. B. MCCASKILL AND J. E. THOMPSON

Space Metrology Branch Space Systems Division

February 12, 1973





NAVAL RESEARCH LABORATORY Washington, D.C.

# NAVAL E CONFIDENTIAL

CONFIDENTIAL, classified by DIRNRL. Subject to GDS of E.O. 11652, Auto. downgraded 2-yr intervals and doclass. on Dec. 31, 1978.

Distribution limited to U.S. Government Agencies only; that and evaluation; Poinvary 1973. Other suggests for this document must be referred to the Director, Navai Research Laboratory, Washinson, D.C. 20375.

## NATIONAL SECURITY INFORMATION

Unauthorized Disclosure Subject to Criminal Sanctions.



R

Ì

#### CONTENTS

| Abstract   ii     Problem Status   ii     Authorization   ii |
|--------------------------------------------------------------|
| INTRODUCTION 1                                               |
| THE TIMATION II SATELLITE 1                                  |
| TIMATION RANGING CONCEPT 3                                   |
| SATELLITE TRAJECTORY CALCULATIONS                            |
| RANGE NAVIGATION TESTS 4                                     |
| RANGE NAVIGATION RESULTS 5                                   |
| CONCLUSIONS                                                  |
| ACKNOWLEDGMENTS                                              |
| REFERENCES                                                   |

i

#### ABSTRACT (Confidential)

The TIMATION (Time Navigation) technique of passive ranging can be employed to provide a worldwide navigation and time-transfer service. Passive ranging is accomplished by measuring the time difference between electronic clocks located within the satellite and the navigator's receiver. Navigation results were obtained with a prototype system consisting of the TIMATION II satellite and four ground stations. The results indicate a CEP position-fixing capability of 33 meters (100 feet) using dual-frequency range measurements. The analysis of the data includes ionospheric refraction, instrumentation error, and the effect of satellite trajectory position error in both the observed and predicted regions.

#### PROBLEM STATUS

This is an interim report on one phase of the problem; work on this and other phases is continuing.

#### AUTHORIZATION

NRL Problem R04-16 Project A3705382 652B1F48232751

Manuscript submitted Oct. 18, 1972.

#### CONFIDENTIAL

1

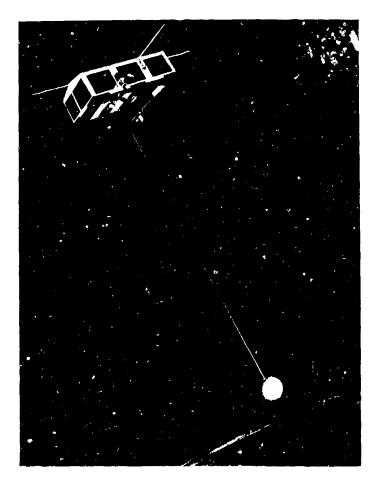
Ċ

# RANGE NAVIGATION USING THE TIMATION II SATELLITE (Unclassified Title)

#### INTRODUCTION

(U) The TIMATION (<u>Time</u> Navi<u>gation</u>) experiment for satellite navigation is now being developed under the sponsorship of the Naval Material Command, PM-16. When the TIMATION II satellite was launched Sept. 30, 1969, the project was sponsored by the Naval Air Systems Command. 'TIMATION II transmits range and doppler signals near 150 and 400 MHz. These signals can be used to correct range or doppler for first-order ionospheric refraction. Four U.S.-based ground stations are used to track the satellite and to collect telemetry information from the sensors on board the satellite. Other ground stations are used to control the satellite subsystems, including its ability to tune (in phase and frequency) the on-board quartz crystal oscillator.

(U) The overall physical configuration for TIMATION II is given in Fig. 1. TIMATION II is equipped with a high-precision quartz crystal oscillator capable of frequency stabilities on the order of a few parts in  $10^{11}$  per day. TIMATION II is equipped with active thermal control of the oscillator environment, which effectively eliminates oscillator frequency fluctuation due to temperature changes.


(U) Ranging information is provided by means of coherent modulation of the carrier, with modulation frequencies within the range from 100 Hz to 1 MHz. The range receiver synthesizes a similar set of frequencies which are phase compared with the received signal.

#### THE TIMATION II SATELLITE

(U) The TIMATION II satellite has an overall configuration similar to the TIMATION I satellite (1); hence only a summary of its features will be given in this report. The satellite weighs approximately 125 pounds and consumes an average of 18 watts of power, furnished by solar cells and batteries. Two-axis gravity-gradient stabilization is provided by using an extendable boom. Temperature control is achieved by (a) careful design of the satellite (2) to provide a temperature range from  $0^{\circ}$ C to  $\pm 20^{\circ}$ C inside the satellite, and (b) active temperature control of the quartz-crystal frequency standard to maintain its external temperature to within a fraction of a degree. Linearly polarized dipoles are used for the 150- and 400-MHz antennas. A separate telemetry antenna is used. This antenna is mounted on the side and has more than 40 dB of isolation from the main antennas. In addition, a magnetometer is used to sense attitude changes of the satellite.

(U) The frequency of the oscillator may be electromechanically tuned in discrete steps of approximately  $3.6 \times 10^{-12}$  parts per pulse. The phase of its transmissions may be advanced or retarded in discrete steps of 33.3 nanoseconds per pulse. These two features provide control over the satellite clock synchronization and clock rate.

(U) TIMATION II is in a 500-naut-mi, near-circular orbit which has an inclination of 70 degrees to the equatorial plane. With this orbit, several passes of 12 to 16 minutes duration each will be available during the day at each of the four TIMATION tracking stations.





CONFIDENTIAL

#### NRL Report 7511

#### TIMATION RANGING CONCEPT

(U) The TIMATION II satellite carries a highly stable crystal oscillator, from which nine modulation frequencies of the two carriers of 150 and 400 MHz are obtained. The modulation frequencies are 100 Hz, 312.5 Hz, 1 kHz, 3.125 kHz, 10 kHz, 31.250 kHz, 100 kHz, 312.5 kHz, and 1 MHz. The transmitted modulation frequencies can be received and phase compared with a similar set of coherent tones synthesized from an oscillator, or "clock," at the receiver site. This system is thus a frequency interferometer which will measure the time difference between the received signal and the local time with ambiguities of 80 milliseconds, based on the highest common divisor of 12.5 Hz, and which has an accuracy based on the precision of the phase comparison of the highest tone (1 MHz). In the system, the resolution of the phase comparison is 1 percent of a period, giving a time resolution of 10 nanoseconds when using the 1-MHz tone. The error of the time comparison of the received and local signals is slightly more than 10 nanoseconds, due to phasemeter zero adjustment, nonlinearity, differential phase shift in the receiver, noise, and other lesser factors. This measurement may be converted to ranging information by multiplying by c, the speed of light in a vacuum. This conversion shows that 10 nanoseconds is within 15 percent of 10 feet. This ranging information, which depends on the navigator's position, also includes information on the time difference between the satellite clock and the navigator's clock.

(U) The actual time difference between the received signal and the local reference is the time difference between the satellite oscillator, or "clock," and the ground clock, plus the propagation time required for the signal to propagate from the satellite to the receiver. The time indicated by the components of the received signal is subject to some error due to the dispersive effect of the ionosphere.

(U) The user's time base is obtained from the user's frequency standard, using suitable countdown and comparison circuitry. The timing requirements for the ground-station clock are higher than for the user's clock. The ground stations are equipped with cesiumbeam frequency standards which are kept in time synchronization with the UTC time base.

(U) The system user, or navigator, is not required to have a frequency standard of the same precision as required for use in the satellite. For example, quartz-crystal frequency standards with stabilities on the order of a few parts in  $10^{10}$  per day would be suitable for use by a TIMATION II user.

#### SATELLITE TRAJECTORY CALCULATIONS

(U) The satellite trajectory computation is made by the Naval Weapons Laboratory (NWL), using doppler tracking data obtained from the TRANET tracking network. The orbit determination is performed on the NWL computer using their ASTRO (3) program, which performs a statistical estimate of the dynamic and observational parameters of the state variables at epoch. The force model accounts for accelerations from the following sources: (a) earth gravitational accelerations, (b) sun and moon gravitational accelerations, (c) solar and lunar tidal bulge effects, (d) atmospheric drag, and (e) radiation pressure. The earth's gravitational acceleration includes coefficients for the earth's gravitational potential as a function of longitude as well as latitude. Other parameters, such as drag and the positions of the tracking stations, are included in the model. A weighted least-squares estimate is then performed based on observational data, obtained over time arcs ranging from two to four days.

(U) The first-order ionospheric refraction can be measured by means of the dual frequencies in the TIMATION II satellite. With the inclusion of the ionospheric refraction, NWL determines the position of TIMATION II to  $\pm 10$  meters during the observation span. The positional accuracy outside of the observed data span remains near  $\pm 10$  meters for extrapolations on the order of 12 to 24 hours. Beyond one-day extrapolations, the error may grow rapidly.

(U) For operational purposes the satellite ephemeris would require updating on a frequent basis. However, for the purpose of analyzing the Timation system performance, the analysis is done using the satellite trajectory during the observed data span. This choice minimizes the contribution of satellite positional error to the total navigational fix error.

#### RANGE NAVIGATION TESTS

(U) Range observations on the TIMATION II satellite are taken at four receiver sites— Ft. Collins, Colorado; Perrine, Florida; Chesapeake Bay, Maryland (CBD); and Naval Research Laboratory, Washington, D.C. These data are read at one-minute intervals and sent via phone lines to a time-sharing computer service, where it is stored for processing. Some initial preprocessing and internal system checks utilize the time-shared computer, but the range-navigation computations are made on the large NRL computer. The computations include a least-squares solution (4) which uses the range measurements for each pass to solve for latitude, longitude, and clock correction. The latitudes and longitudes are compared to the surveyed values for the receiving sites to determine navigational accuracies. The clock corrections are used to study the satellite and station oscillator behavior and to make time transfers and station synchronizations between pairs of ground stations.

(U) The following criteria are followed for data selection. For the range-navigation solutions, only those passes meeting the following restrictions are used: (a) maximum elevations between 15 and 70 degrees, (b) symmetrical data, and (c) at least two minutes of data on both sides of the point of closest approach.

(U) Navigation solutions are performed using three different combinations of range data: (a) 400-MHz data only, (b) 400- and 150-MHz data, and (c) 400-MHz data using a theoretical model of the ionosphere and troposphere to determine refraction effects. Use of 400-MHz data with no refraction correction results in a navigation fix which may be in error up to several hundred meters, due to ionospheric refraction. When the 400-MHz data are corrected using a theoretical model of the atmosphere (5), more accurate results are obtained. The Chapman model, which is used for this purpose, uses the method of ray tracing called the "linear layer" method. This method involves two principal ideas - first, tracing the ray through the troposphere, and second, tracing the ray through the ionosphere. For the theoretical correction, a table of range-error values for the 150-MHz and 400-MHz frequencies at different elevation angles was calculated and included in the navigation program. For the required elevation angle, an interpolation is done to find the corresponding range error. A more accurate way to remove the first-order ionospheric refraction effects is to combine the 150-MHz and 400-MHz range measurements (4). This procedure will be referred to as the dual-frequency-correction method.

(U) In addition to inclusion of corrections for the refractive effects of the atmosphere, the frequency differences between the oscillator in the satellite and the oscillators at the ground stations are computed and included in the navigation solutions. For the time span covered in this report, the difference in frequency is  $\pm 9$  parts in  $10^{10}$ .

#### NRL Report 7511

(U) Two stations use the dual-frequency method of refraction correction. CBD had the first 150-MHz receiver; then in April 1971 a 150-MHz receiver was installed at Colorado. The Colorado receiver was subsequently moved, in September 1971, to Florida.

#### RANGE NAVIGATION RESULTS

(U) The statistical measures used for computing the navigational accuracies of a set of passes are the circular error probable (CEP) and the root mean square (RMS). The CEP is defined as the value of the radius of a circle that contains 50 percent of all data samples. In this report, TNAV, or total navigation error, is defined as the square root of the sum of the squares of the errors in latitude and longitude for a given pass—that is, the differences in latitude and longitude between the computed and the surveyed position of the station antenna.

(U) A summary of navigation results is given in Tables 1 through 4. Included are results from the four field stations previously mentioned. One location, included in Table 1, but not mentioned earlier, is Fort Valley, Virginia. The CBD station was moved to this site for approximately one month near the end of 1970. This move is of significance as a reference point in discussing the CBD navigation results. In Figs. 2 through 4, three time spans are covered. They are (a) before moving to Fort Valley, (b) the time at Fort Valley, and (c) the time after leaving Fort Valley. These three groups of graphs include all the observed data covered in Table 1. An analysis of these navigation solutions shows that the best results were obtained while at Fort Jalley. This outcome is possibly due to the lack of electronic interference at the Virginia site. On examining just the CBD data, the time prior to the move to Fort Valley produces better navigations than the period after returning to CBD. One possible reason for this is a change of the 150-MHz receiver; a new one was installed at CBD after the station was reopened. Another possibility is the increased interference observed from newly activated transmitters located near the CBD site.

(U) Each of these three time spans is represented by three graphs (Figs. 2 through 4). Consistently, navigation fixes using the dual-frequency method are an improvement over the navigation solutions using only the theoretical models, and both of these results are better than the results using no ionospheric correction. To further illustrate the importance of the need for a correction for ionospheric refraction, consider the first graph of each set (400-MHz range, no correction). On these graphs, approximately 75 percent of the passes within a circle scribed with a radius (TNAV) equal to 150 meters are night passes. This fact illustrates that the effects of the ionosphere are less at night than during the day, resulting in more accurate nighttime navigations. Use of the Chapman model brings the day passes toward the origin to a greater degree than the night passes. The results show that in the second graph (400-MHz range, navigation with refraction correction) of each set, no distinction exists between the TNAV's of the day and the TNAV's of the night passes. When the dual-frequency method is used, all the passes are brought closer to the crigin. The results again show no discernible difference between night and day passes.

(U) In Tables 1 through 4, the navigation runs are in groups of 75 passes or less. There are two reasons for this. First, the navigation program was written so that it cannot solve more than 75 passes at a time. Second, the magnetic tapes that store the trajectory information contain approximately 200 passes, and only one tape can be used per computer run. Not all of these 200 passes are taken at each station, and of the ones taken not all can be used in the navigation runs. From the 200, perhaps less than 75 can be used; of if more than 75, the data must be divided into two runs. Examples of typical navigation runs over the time covered by this report are given in Figs. 5 through 8.

(U) The criteria used in selecting acceptable passes were mentioned previously in this report. First mentioned were requirements for maximum and minimum elevation angles. CBD will be used as an example here (Table 5). Any of the other stations would show similar results. The data again are separated relative to the move to Fort Valley, Virginia. The data are separated according to maximum elevation angle within each time span for the three corrections used. The first separation is by thirds; under 30 degrees, and over 30 degrees and under 60 degrees, and over 60 degrees. These divisions do not alter the navigation results. The answers are independent, within the limits originally set, of maximum elevation angle.

(U) From November 1970 through July 1971, navigation solutions were made using a predicted orbit, in addition to the observed orbit from which the previous results were obtained. The orbit is determined by data from the 15 TRANET tracking stations. For the observed region, orbit fits of ten meters or less are realized. The uncertainty in the position of the satellite increases as a function of the length of time into the predicted orbit region. This uncertainty shows up in poorer navigation solutions.

(U) The satellite trajectory data sent from NWL consists of two days of observed data, followed by seven days of predicted data. During this nine-month period the trajectory was sent every fourth day; in the navigation runs a cycle of two days of observed data, then two days of predicted data were used. When computing an orbit, the fit of ten meters no longer holds in the predicted region. A graph depicting the increasingly poorer answers is presented in Figs. 9a and 9b. These examples show how TNAV increases as a function of time into the predicted region. The stations used in this example are NRL and Florida. The days in these graphs were chosen because for each two-day period, at least four passes were taken at both of the stations. The same days are used to illustrate the similarity in overall slope for each two-day run. For each station the four passes used are not necessarily the same, which indicated that the trajectory for this predicted period is the reason for the resulting increased navigation errors.

(U) Figure 10 is used to compare the navigation error resulting from the use of orbital data in the observed and predicted regions. In making the comparison of observed versus predicted data, it is useful to know the orientation of the satellite velocity vector at the time the satellite is at maximum elevation with respect to the ground station. The TIMA-TION II satellite has an inclination of 70 degrees, and the ground stations are located at mid-latitudes (30 to 40 degrees). These parameters result in a north-to-south orientation. with a small east component, of the velocity vector of the satellite at the maximum elevation point. The positional error due to the use of predicted satellite trajectory has its largest error component along the track of the satellite orbit, which results in a navigation error that displaces the station along the direction of the velocity vector and appears primarily as a latitude error of the station. A cross-track error appears primarily as a longitude error. The observed data span shows cross-track, longitude errors. In the predicted region, the predominant error is along-track, or latitude, errors. These errors are summarized in Table 6. For all the stations and all the corrections, the CEP's of the longitudes and latitudes are given for both the observed and predicted regions. These CEP's were calculated by taking the magnitude of the error in latitude or longitude for all the passes and computing an average. When these results, for the observed and the predicted time spans, are compared, the latitude CEP consistently shows the greater change. Figure 11 combines the CEP's of latitude and longitude to give graphic representations of these changes. When comparing the predicted to the observed runs, the similarities are evident at all the stations for the corrections used.

#### CONFIDENTIAL

Í,

#### NRL Report 7511

#### CONCLUSIONS

(C) Of the three navigation solutions calculated, the solution using the dual-frequency ionospheric correction provide the best navigations, with an average CEP position-fixing capability of 48 meters. The single-frequency method, using a theoretical ionospheric model, is next best, with an average CEP position-fixing capability of 68 meters. The least acceptable results use the simple single-frequency solution, with an average CEP position-fixing capability of 156 meters. The best navigation results were from the dualfrequency solution at Fort Valley, Virginia, with a CEP position-fixing capability of 33 meters. The navigation errors caused by use of a predicted orbit are a result of the uncertainty in the position of the satellite, especially along the track of the orbit. This bias results in more latitude than longitude error. The accuracy of the navigation solutions is independent of their maximum elevation angles.

#### ACKNOWLEDGMENTS

The authors acknowledge the guidance and encouragement of Mr. R. L. Easton, Head of the Space Metrology Branch and Mr. D. W. Lynch, Head of the Advanced Techniques and Systems Analysis Section. The authors are indebted to Mrs. Cecelia Burke for her contribution in the data compilation for this project. The authors further acknowledge the members of the Space Metrology Branch who designed and constructed the TIMATION II satellite and range receivers. The authors also acknowledge the Bendix Field Engineering personnel who operated and maintained the TIMATION field stations and the Space M. trology Branch personnel who operated and maintained the NRL ground station.

Special thanks are extended to Mr. R. J. Anderle, Mr. Robert Hill, and Mr. Lawrence Beuglass of the Naval Weapons Laboratory for their assistance in the calculations of the TIMATION orbit trajectories.

#### REFERENCES

- 1. NRL Space Metrology Branch, "The TIMATION I Satellite" (Confidential Report, Unclassified Title), NRL Report 6781, Nov. 18, 1963
- 2. Easton, R. L. and Bartholomew, C. A., "The Thermal Design of the TIMATION I Satellite," NRL Report 6782, Jan. 1969
- 3. "Documentation of ASTRO Mathematical Processes," NWL Tech. Report TR-2159
- 4. McCaskill, T. B., Buisson, J. A., and Lynch, D. W., "Principles and Techniques of Satellite Navigation Using the TIMATION II Satellite," NRL Report 7252, June 17, 1971
- 5. Lamont V. Blake, "Ray Heigh: Computation for a Continuous Nonlinear Atmospheric Refractive-Index Profile," Radio Science, Vol. 3, No. 1, 85-92, Jan. 1968

#### CONFIDENTIAL

| Time of Year<br>(Days)     Time of Year<br>(Days)     Number of<br>Passes     Single Frequency (400 MHz)     Single Frequency (400 MHz)     Duance (10)     Duance (10) <thd< th=""><th></th><th></th><th>Range</th><th>Range Navigation Summary</th><th>omary</th><th></th><th></th><th></th></thd<> |                                       |           | Range                     | Range Navigation Summary | omary                         |                             |                                 |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|---------------------------|--------------------------|-------------------------------|-----------------------------|---------------------------------|-----------------|
| Passes     CEP     RMS     CEP     RMS       (CBD)     23     173     226     87     108       31     172     206     70     1110     113       57     209     264     71     1113     113       57     209     264     71     1113     113       57     209     264     71     1113     113       23     134     183     264     71     1113       255     120     183     264     71     1113       266     133     181     210     71     1113       255     1210     283     183     49     97       38     174     185     74     97     71       38     174     185     74     97     71       38     174     185     56     104     97       48     144     185     56     104     97       48     144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The second second                     | Number of | Single Frequei<br>No Corr | icy (400 MHz)<br>ection  | Single Frequer<br>Theoretical | acy (400 MHz)<br>Correction | Dual Frequency<br>(150/400 MHz) | quency<br>MHz)  |
| (CBD) 23 173 226 87   31 172 206 70   31 172 206 70   32 134 181 226 87   52 134 181 226 70   53 134 181 236 70   54 71 182 62 62   55 133 181 243 92   255 152 181 243 92   56 133 161 85 74   31 106 181 85 74   31 106 188 45 74   32 146 177 89 45   14 122 188 45 74   31 106 188 45 56   12 101 117 66 45   36 167 166 45 56   67 167 196 95 56   36 155 252 50 56   36 155 252 50 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Days) (Days)                         | Passes    | CEP<br>(meters)           | RMS<br>(meters)          | CEP<br>(meters)               | RMS<br>(meters)             | CEP RMS (meters)                | RMS<br>(meters) |
| 23 173 226 87   31 172 206 70   32 156 192 75   57 209 264 71   57 209 264 71   57 209 264 71   23 181 226 70   23 181 206 70   23 181 210 210   255 210 281 210   256 133 161 85   38 174 188 45   38 174 188 45   38 174 188 45   38 174 188 45   38 174 188 45   38 174 188 45   38 174 188 45   38 166 43 117   36 161 117 85   36 166 45 56   36 166 45   36 166 45   36 166 93   36 155 93   36 155 93   36 <td><b>OBSERVED REGION (CBD)</b></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>OBSERVED REGION (CBD)</b>          |           |                           |                          |                               |                             |                                 |                 |
| 31 172 206 70   39 156 134 181 77   57 209 156 192 77   57 209 264 71   57 209 264 71   23 181 210 71   23 181 236 182   23 181 236 181   23 181 236 264   71 189 243 92   25 133 161 88   133 166 117 88   144 118 177 88   131 117 188 45   56 167 117 88   143 117 118 56   57 101 117 86   56 155 56 45   56 157 156 62   56 156 177 88   56 167 117 86   56 156 95 56   57 95 95 95   50 55 95 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173-183(1970)                         | 23        | 173                       | 226                      | 87                            | 108                         | 44                              | 53              |
| 39 156 192 75   57 209 156 192 75   57 209 264 71   57 209 264 71   23 181 210 71   25 181 210 264   26 181 210 264   71 189 243 92   25 133 161 86   36 146 1177 89   144 1122 186 74   38 174 188 74   38 174 186 74   38 174 188 74   177 188 177 89   18 174 188 74   28 1177 188 74   12 101 117 62   36 166 95 56   36 155 56 56   37 167 176 62   38 167 177 62   39 167 176 62   36 156 95 56   36 156 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 185-205                               | 31        | 172                       | 206                      | 02                            | 110                         | <del>4</del> 0                  | 51              |
| 52 134 182 57     57   57   134   182     57   233   181   23     57   233   181   23     23   181   23   243     25   210   264   71     25   210   265   210   264     25   210   263   264   71     25   155   133   161   81   71     38   174   133   161   85   74     38   174   183   66   74   71     38   174   183   177   89   68     117   183   176   117   86   68     12   101   117   86   63   64   74     36   167   117   86   63   65   66   63     36   156   96   95   66   95   66   95   95   95   95   95   95   95   95   95   95<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 209-232                               | 30        | 156                       | 192                      | 75                            | 104                         | 43                              | 49              |
| 57 209 264 71   23 181 210 189 210   25 181 221 210 71   25 152 152 161 85   36 146 177 89 263   38 174 181 263 68   38 174 181 85 174   38 174 185 74 49   38 174 185 74 49   38 174 185 74 49   38 174 185 74 49   38 174 185 74 49   131 106 186 45 45   36 167 117 62 45   36 155 56 45 56   36 155 252 95 56   36 155 95 95 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 233-267                               | 52        | 134                       | 182                      | 62                            | 113                         | 47                              | 61              |
| 23 181 210 71   25 10 189 243 92   25 152 152 92 92   26 133 161 85 92   36 146 177 89 92   38 174 181 85 177   38 174 185 74 92   38 174 185 74 95   38 174 185 74 86   38 174 185 74 85   38 177 188 45 177   38 161 185 74 85   50 161 117 62 45   36 167 116 62 45   36 155 56 95 56   36 155 252 50 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 268-302                               | 57        | 209                       | 264                      | 71                            | 113                         | <del>4</del> 0                  | 53              |
| 10 189 243 92   25 152 152 181 49   25 152 133 161 85   36 146 177 89 68   38 174 181 49   31 106 118 85   38 174 185 74   31 106 118 55   48 143 166 45   48 143 166 45   50 101 117 62   36 167 196 95   36 155 256 95   37 156 95   36 155 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54- 63(1971)                          | 23        | 181                       | 210                      | 11                            | 110                         | 43                              | 58              |
| 25 210 263 68   25 152 133 161 85   36 146 177 89 85   38 174 181 85   31 106 117 89   33 161 85 74   31 106 118 55   48 143 166 45   12 101 117 62   36 167 196 62   36 155 56 56   57 196 93 93   36 155 252 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65-70                                 | 10        | 189                       | 243                      | 92                            | 112                         | 36                              | 47              |
| 25 152 181 49   56 133 161 85   36 146 177 89   38 174 185 74   38 174 185 74   31 106 118 85   32 146 177 89   31 106 118 54   48 143 175 56   48 143 175 56   48 143 175 56   57 101 117 62   67 167 196 45   56 155 56 95   50 252 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70-82                                 | 25        | 210                       | 263                      | 68                            | 112                         | 30                              | 63              |
| 56 133 161 85   36 146 177 89   38 174 185 74   31 106 118 54   31 122 188 45   14 122 188 45   12 101 117 62   67 167 196 43   167 166 43   67 167 196   67 167 196   36 155 56   36 155 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84-118                                | 25        | 152                       | 181                      | 49                            | 88                          | 61                              | 66              |
| 36 146 177 89   38 174 185 74   31 106 118 54   31 122 188 45   28 131 175 56   48 143 166 45   12 101 117 62   67 167 196 95   36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119-140                               | 56        | 133                       | 161                      | 85                            | 100                         | 51                              | 68              |
| 38 174 185 74   31 106 118 54   31 122 188 45   28 131 175 56   48 143 166 45   12 101 117 62   67 167 196 95   36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143-174                               | 36        | 146                       | 177                      | 89                            | 97                          | 61                              | 12              |
| 31 106 118 54   14 122 131 175 56   28 131 175 56 45   48 143 166 45 56   12 101 117 62 45   67 167 196 95 62   36 155 252 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 175-200                               | 38        | 174                       | 185                      | 74                            | 67                          | 20                              | 15              |
| 14 122 188 45   28 131 175 56   48 143 166 45   57 101 117 62   67 167 196 95   36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 237-253                               | 31        | 106                       | 118                      | 54                            | 74                          | 53                              | 55              |
| 28 131 175 56   48 143 166 45   12 101 117 62   67 167 196 95   36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255-265                               | 14        | 122                       | 188                      | 45                            | 86                          | 47                              | 80              |
| 48     143     166     45       12     101     117     62       67     167     196     95       36     155     252     50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 268-290                               | 28        | 131                       | 175                      | 56                            | 104                         | 46                              | 8               |
| N (CBD) 12 101 117 62 67 167 196 95 35 36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 291-324                               | 48        | 143                       | 166                      | 43                            | 57                          | 43                              | 54              |
| N (CBD)<br>67 167 196 93<br>36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 343-355                               | 12        | 101                       | 117                      | 62                            | 11                          | 28                              | 11              |
| 67 167 196 93<br>36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PREDICTED REGION (CBD)                |           |                           |                          |                               |                             |                                 |                 |
| 36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141-202(1971)                         | 67        | 167                       | 196                      | 93                            | 138                         | 85                              | 124             |
| 36 155 252 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBSERVED PEGION<br>(Fort Valley, Va.) |           |                           |                          |                               |                             |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 309-334(1970)                         | 36        | 155                       | 252                      | 50                            | 107                         | 33                              | 47              |

Table 1 (C) Navigation Su

CONFIDENTIAL

l

8

#### Buisson, McCaskill, and Thompson

NRL Report 7511

|                  | Flori     | Table 2 (C)<br>Florida Range Navigation Summary | )<br>ation Summary                          |                                                      |                             |
|------------------|-----------|-------------------------------------------------|---------------------------------------------|------------------------------------------------------|-----------------------------|
| Time of Year     | Number of | Single Frequency (40<br>No Correction           | Single Frequency (400 MHz)<br>No Correction | Single Frequency (400 MHz)<br>Theoretical Correction | ncy (400 MHz)<br>Correction |
| (Days)           | Passes    | CEP<br>(meters)                                 | RMS<br>(meters)                             | CEP<br>(meters)                                      | RMS<br>(meters)             |
| OBSERVED REGION  |           |                                                 |                                             |                                                      |                             |
| 185-207(1970)    | 36        | 186                                             | 218                                         | 88                                                   | 153                         |
| 209-238          | 64        | 153                                             | 204                                         | 64                                                   | 88                          |
| 239-265          | 45        | 108                                             | 189                                         | 69                                                   | 136                         |
| 267-302          | 60        | 291                                             | 357                                         | 110                                                  | 209                         |
| 303-334          | 69        | 206                                             | 254                                         | 97                                                   | 124                         |
| 338- 49(1971)    | 53        | 63                                              | 197                                         | 71                                                   | 95                          |
| 52-83            | 51        | 176                                             | 242                                         | 75                                                   | 117                         |
| 84-140           | 62        | 119                                             | 197                                         | 62                                                   | 113                         |
| 143-196          | 48        | 120                                             | 171                                         | 69                                                   | 111                         |
| 237-290          | 75        | 134                                             | 184                                         | 66                                                   | 92                          |
| 291-320          | 39        | 93                                              | 141                                         | 66                                                   | 104                         |
| PREDICTED REGION |           |                                                 |                                             |                                                      |                             |
| 335- 51(1971)    | 56        | 248                                             | 326                                         | 164                                                  | 270                         |
| 86-114           | 21        | 182                                             | 319                                         | 163                                                  | 203                         |
| 142-202          | 42        | 150                                             | 209                                         | 100                                                  | 146                         |
|                  |           |                                                 |                                             |                                                      |                             |

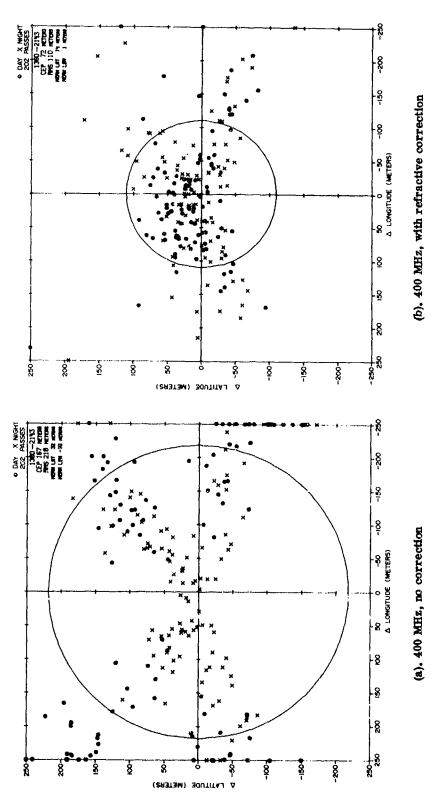
9

|                        | NRI        | Table 3 (C)<br>NRL Range Navigation Summary | C)<br>ion Summary                    |                                                    |                                                      |
|------------------------|------------|---------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------------------------|
| Time of Veer           | Niimher of | Single Frequency (400 MHz)<br>No Correction | Frequency (400 MHz)<br>No Correction | Single Frequency (400 MB<br>Theoretical Correction | Single Frequency (400 MHz)<br>Theoretical Correction |
| (Days)                 | Passes     | CEP                                         | RMS                                  | CEP                                                | RMS                                                  |
|                        |            | (meters)                                    | (meters)                             | (meters)                                           | (meters)                                             |
| <b>OBSERVED REGION</b> |            |                                             |                                      |                                                    |                                                      |
| 185-204(1970)          | 51         | 219                                         | 274                                  | 156                                                | 196                                                  |
| 209-225                | 45         | 185                                         | 232                                  | 101                                                | 108                                                  |
| 226-238                | . 31       | 158                                         | 249                                  | 67                                                 | 112                                                  |
| 239-250                | 32         | 135                                         | 176                                  | 80                                                 | 108                                                  |
| 250-266                | 42         | 116                                         | 149                                  | 87                                                 | 113                                                  |
| 267-298                | 70         | 184                                         | 272                                  | 128                                                | 152                                                  |
| 299-302                | 10         | 192                                         | 243                                  | 116                                                | 132                                                  |
| 303-320                | 52         | 267                                         | 307                                  | 165                                                | 184                                                  |
| 320-334                | 31         | 239                                         | 279                                  | 141                                                | 164                                                  |
| 337-358                | 34         | 171                                         | 213                                  | 106                                                | 124                                                  |
| 8- 49(1971)            | 64         | 166                                         | 301                                  | 113                                                | 230                                                  |
| 52-69                  | 42         | 203                                         | 218                                  | 117                                                | 162                                                  |
| 70-83                  | 39         | 187                                         | 265                                  | 111                                                | 147                                                  |
| 84-126                 | 62         | 130                                         | 160                                  | 81                                                 | 66                                                   |
| 127-140                | 36         | 152                                         | 176                                  | 103                                                | 117                                                  |
| 143-174                | 46         | 134                                         | 169                                  | 110                                                | 133                                                  |
| 175-200                | 42         | 168                                         | 189                                  | <b>9</b> 5                                         | 116                                                  |
| 237-270                | 59         | 138                                         | 163                                  | 76                                                 | 97                                                   |
| 270-290                | 48         | 151                                         | 312                                  | 113                                                | 245                                                  |
| 291-324                | 57         | 161                                         | 186                                  | 83                                                 | 113                                                  |
| PREDICTED REGION       |            |                                             |                                      |                                                    |                                                      |
|                        |            |                                             |                                      |                                                    |                                                      |
| 335-356(1970)          | 32         | 291                                         | 404                                  | 243                                                | 357                                                  |
| 360- 51(1971)          | 62         | 206                                         | 307                                  | 134                                                | 251                                                  |
| 86-114                 | 25         | 183                                         | 267                                  | 170                                                | 227                                                  |
| 141-201                | 20         | 145                                         | 166                                  | 103                                                | 130                                                  |
|                        |            |                                             |                                      |                                                    |                                                      |

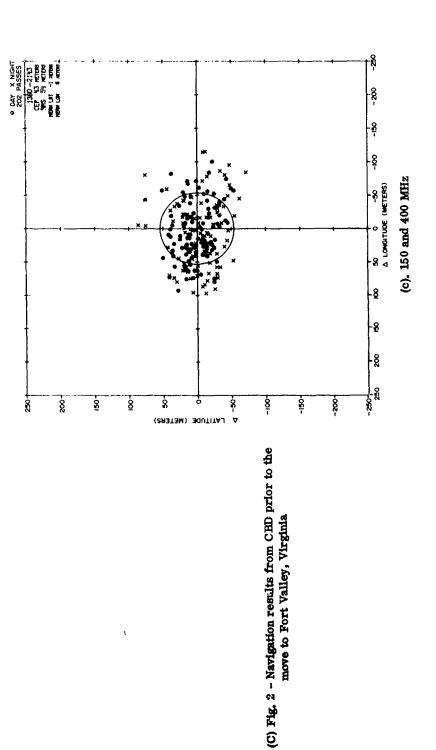
Table 3 (C)

#### CONFIDENTIAL

10

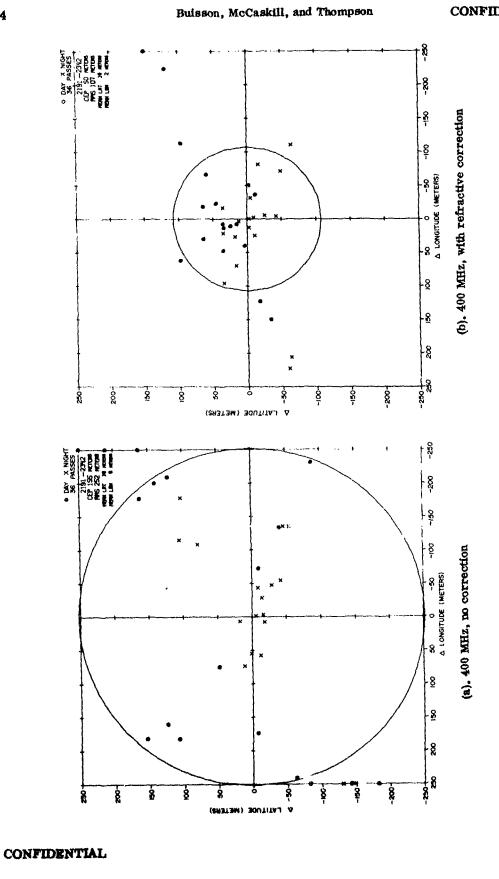

#### Buisson, McCaskill, and Thompson

NRL Report 7511

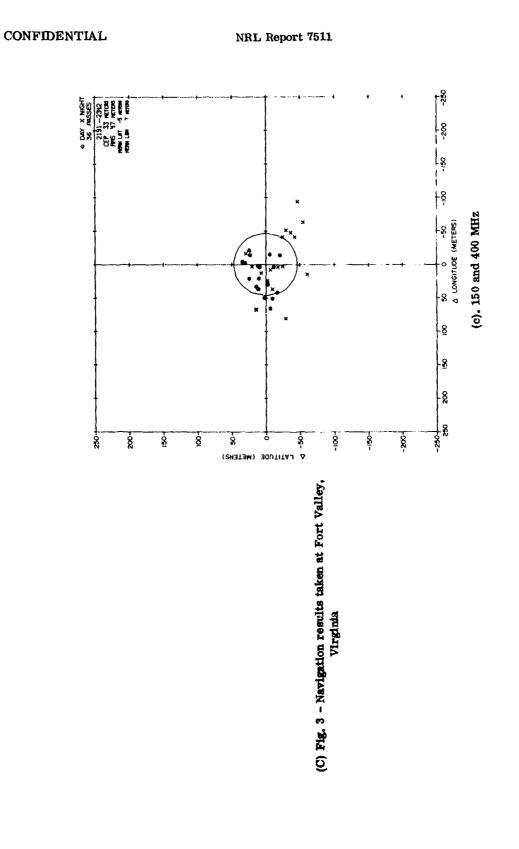

|                                                  | ency<br>IHz)                                         | RMS<br>(meters)   |                        |               |         |         |         | •••-    |         |         |             |        |       |        | 179     | 153     | 206     | 172     |         |         |                  |               |               |        | 314     | 257     |
|--------------------------------------------------|------------------------------------------------------|-------------------|------------------------|---------------|---------|---------|---------|---------|---------|---------|-------------|--------|-------|--------|---------|---------|---------|---------|---------|---------|------------------|---------------|---------------|--------|---------|---------|
|                                                  | Dual Frequency<br>(150/400 MHz)                      | CEP<br>(meters) ( |                        |               |         |         |         |         |         |         |             |        |       |        | 78      | 86      | 88      | 109     |         |         |                  |               |               |        | 150     | 110     |
|                                                  | ty (400 MHz)<br>orrection                            | RMS<br>(meters)   |                        | 283           | 112     | 88      | 133     | 118     | 118     | 139     | 245         | 108    | 109   | 172    | 168     | 148     | 209     | 155     | 136     | 133     |                  | 306           | 298           | 235    | 303     | 248     |
| )<br>ica Summary                                 | Single Frequency (400 MHz)<br>Theoretical Correction | CEP<br>(meters)   |                        | 106           | 78      | 51      | 72      | 83      | 82      | 59      | 72          | 81     | 81    | 94     | 85      | 85      | 26      | 66      | 107     | 94      |                  | 204           | 175           | 178    | 185     | 128     |
| Table 4 (C)<br>Colorado Range Navigatica Summary | L                                                    | RMS<br>(meters)   |                        | 292           | 160     | 123     | 338     | 268     | 244     | 112     | 324         | 183    | 210   | 222    | 220     | 245     | 213     | 188     | 146     | 132     |                  | 326           | 326           | 272    | 343     | 330     |
| Colorado                                         | Single Frequency (400 MHz)<br>No Correction          | CEP<br>(meters)   |                        | 181           | 126     | 76      | 215     | 208     | 142     | 11      | 107         | 159    | 140   | 159    | 125     | 105     | 136     | 119     | 108     | 106     |                  | 234           | 278           | 283    | 142     | 143     |
|                                                  | Number of                                            | Passes            |                        | 28            | 58      | 11      | 64      | 53      | 36      | 19      | 44          | 41     | 39    | 24     | 45      | 13      | 41      | 75      | 21      | 74      | <u></u>          | 19            | 41            | 13     | 16      | 31      |
|                                                  | Time of Year                                         | (Days)            | <b>OBSERVED REGION</b> | 185-208(1970) | 209-238 | 239-267 | 267-302 | 303-320 | 321-334 | 338-353 | 4- 49(1971) | 52- 69 | 69-83 | 84-117 | 118-140 | 143-209 | 155-196 | 237-276 | 281-290 | 292-324 | PREDICTED REGION | 334-356(1970) | 360- 51(1971) | 86-114 | 141-202 | 157-167 |

CONFIDENTIAL

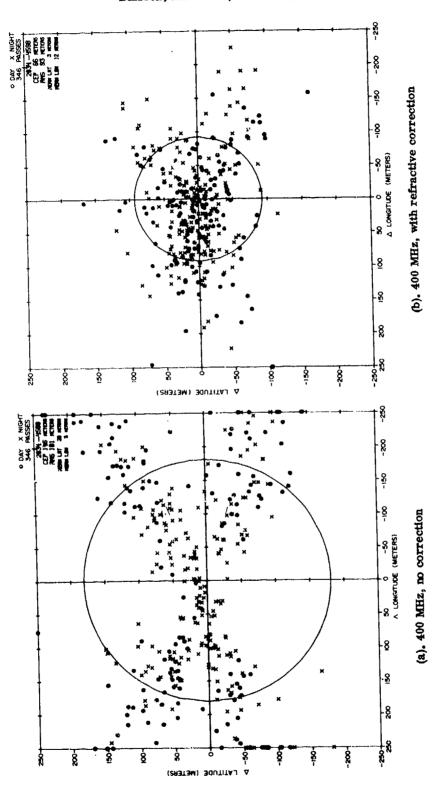
CONFIDENTIAL

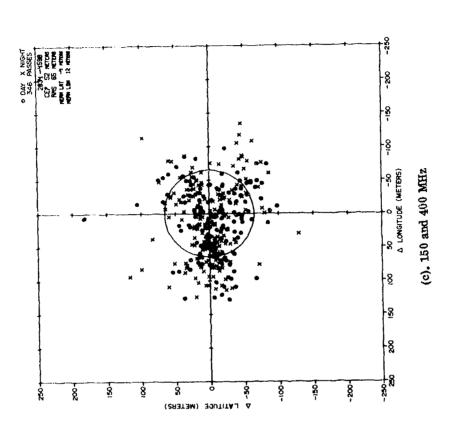



CONFIDENTIAL




1


NRL Report 7511




14

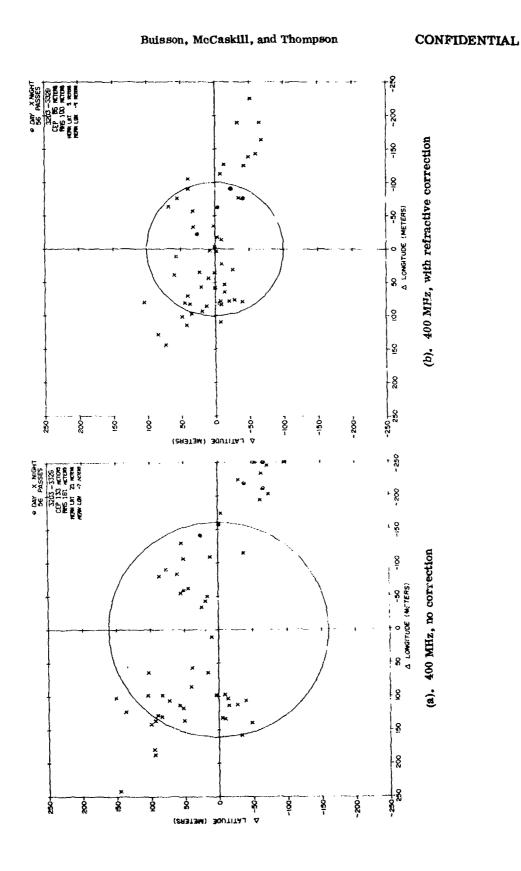


CONFIDENTIAL





(C) Fig. 4 - Navigation results from CBD following the move from Fort Valicy, Virginia

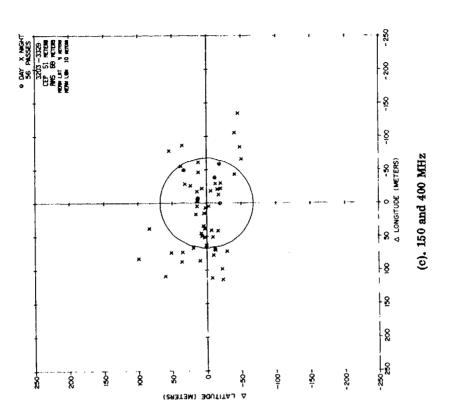

. **1**.

CONFIDENTIAL

CONFIDENTIAL

¥# ;

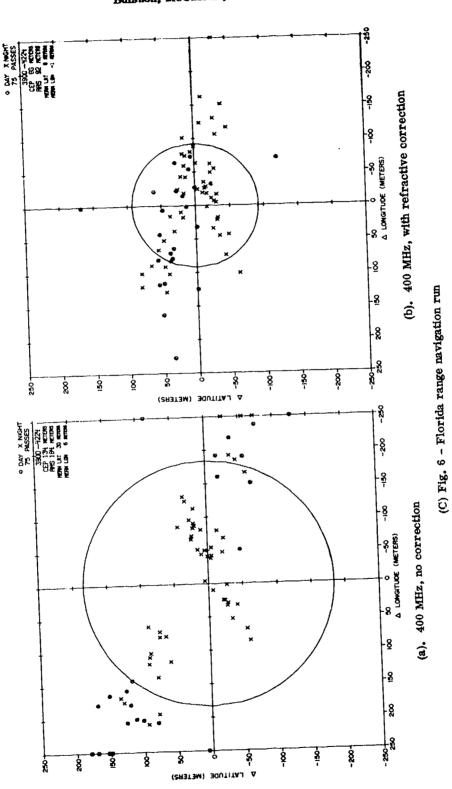
NRL Report 7511




...

1. 1. 2.

CONFIDENTIAL


NRL Report 7511



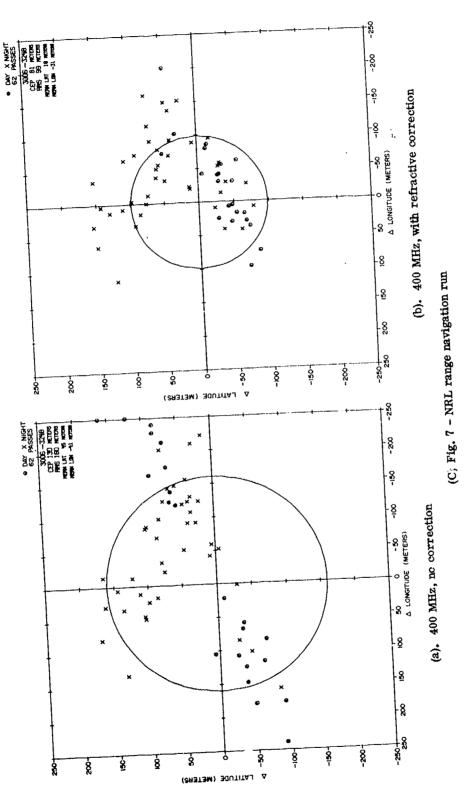
(C) Fig. 5 - CBD range mavigation run

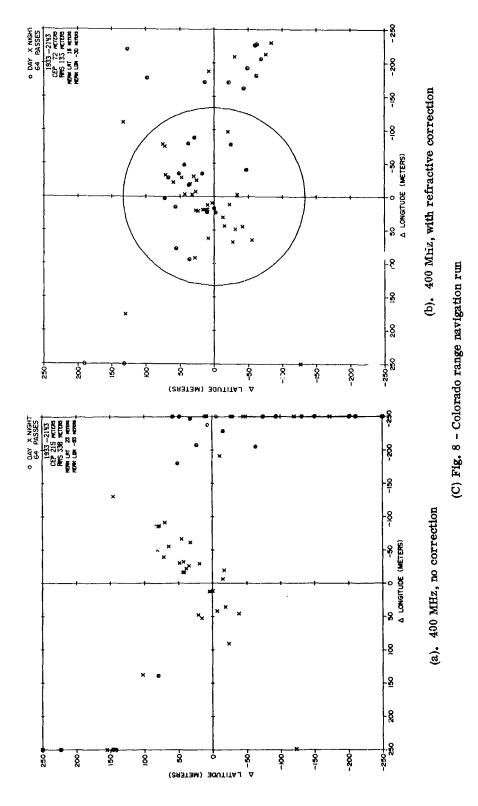
#### CONFIDENTIAL

ł



....


CONFIDENTIAL


## CONFIDENTIAL

١...

105 45 44

ŕ

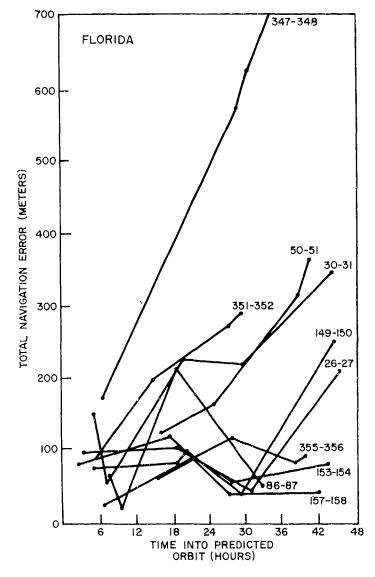




CONFIDENTIAL

arts -

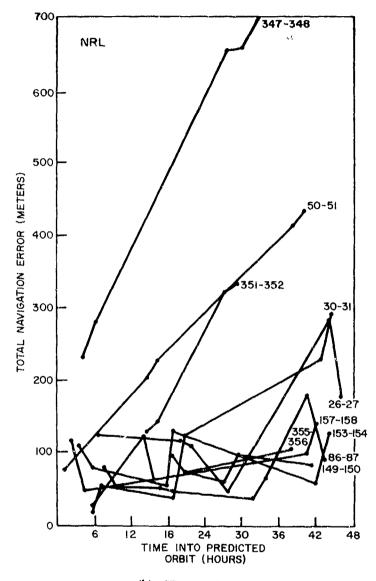
| Relationship Between Navigation Accuracies and Maximum Elevation Angles for Passes Taken at CBD Station   Passes 1360-2143     Passes 1360-2143   Passes 2834- | cation Ac<br>asses Ta<br>Pas | Navigation Accuracies and Maxin<br>for Passes Taken at CBD Station<br>Passes 1360-2143 | nd Maximu<br>Station<br>143 | m Elevati<br>Pas | vation Angles<br>Passes 2834-4598 | 598               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------------------------|-------------------|
| Angles                                                                                                                                                         | No. of<br>Passes             | CEP<br>(meters)                                                                        | RMS<br>(meters)             | No. of<br>Passes | CEP<br>(meters)                   | RMS<br>(meters)   |
| Frequency, No Correction                                                                                                                                       |                              |                                                                                        |                             |                  |                                   |                   |
| °<br>and Under 60°                                                                                                                                             | 54<br>110<br>38              | 156<br>165<br>203                                                                      | 185<br>213<br>271           | 116<br>182<br>49 | 120<br>154<br>200                 | 140<br>178<br>259 |
|                                                                                                                                                                | 113<br>89                    | 155<br>200                                                                             | 188<br>251                  | 226<br>120       | 134<br>170                        | 156<br>220        |
| Single Frequency, With Correction                                                                                                                              |                              |                                                                                        |                             |                  |                                   |                   |
| °<br>and Under 60°                                                                                                                                             | 54<br>110<br>38              | 73<br>62<br>91                                                                         | 114<br>95<br>141            | 116<br>182<br>49 | 56<br>73<br>83                    | 78<br>88<br>133   |
|                                                                                                                                                                | 113<br>89                    | 72<br>71                                                                               | 103<br>118                  | 226<br>120       | 63<br>76                          | 83<br>109         |
| Dual Frequency, 150/400 Correction                                                                                                                             |                              |                                                                                        |                             |                  |                                   |                   |
| °<br>and Under 60°                                                                                                                                             | 54<br>110<br>38              | 48<br>46<br>46                                                                         | 61<br>50<br>5 <b>4</b>      | 116<br>182<br>49 | 48<br>51<br>67                    | 67<br>63<br>70    |
|                                                                                                                                                                | 113<br>89                    | 44<br>41                                                                               | 57<br>50                    | 226<br>120       | 52<br>50                          | 66<br>64          |


Table 5 (C)

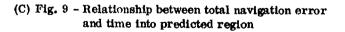
.

NRL Report 7511

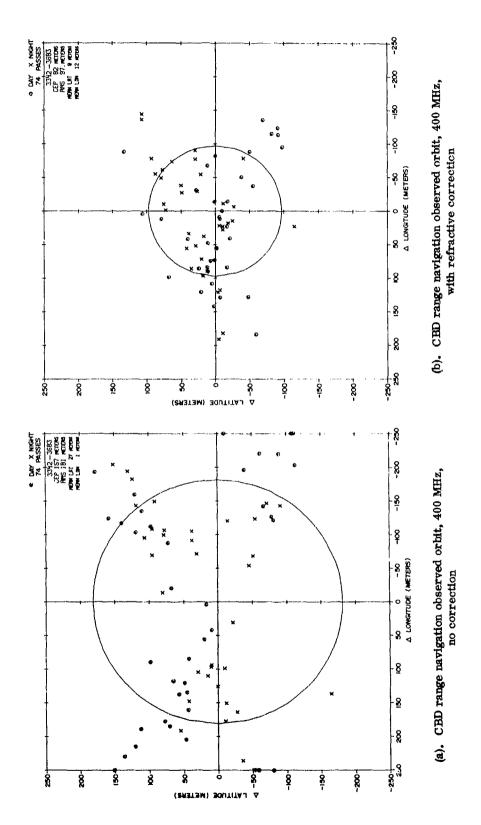
CONFIDENTIAL


CONFIDENTIAL

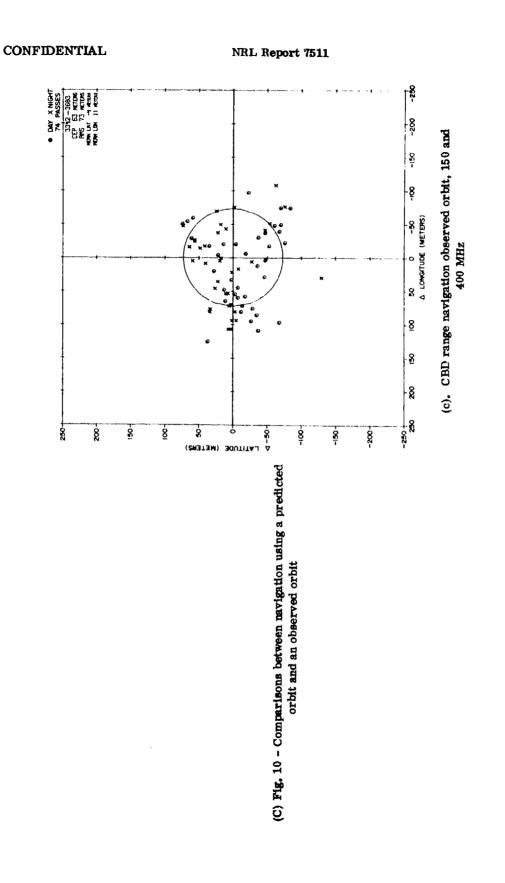


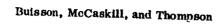

(a). Florida predicted

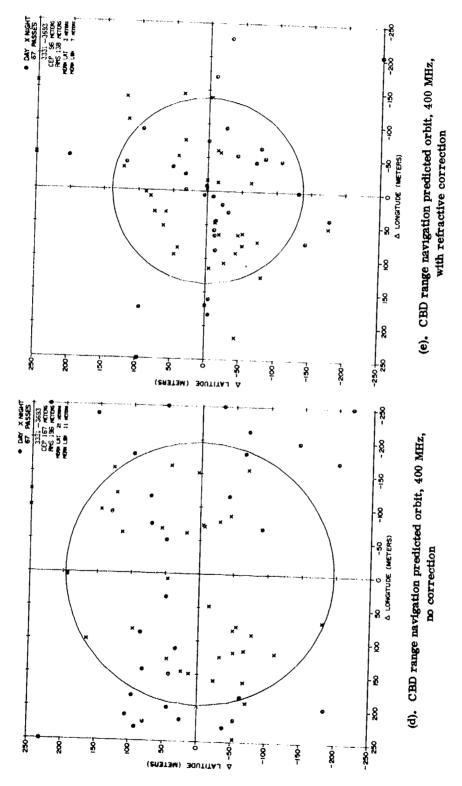
CONFIDENTIAL


2.1.



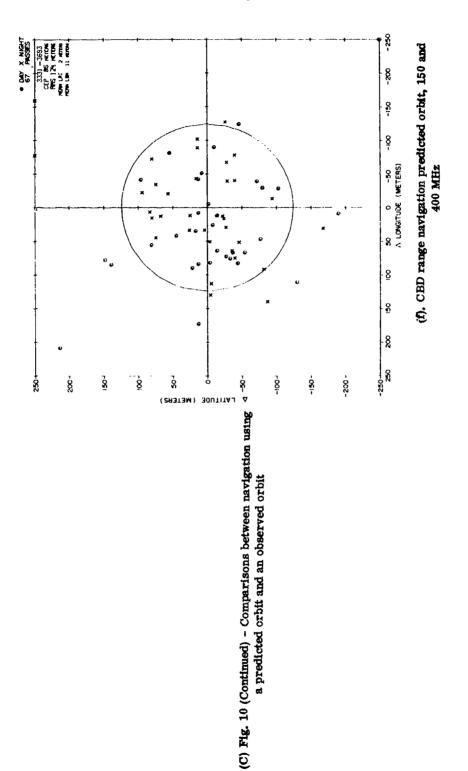

(b). NRL predicted





CONFIDENTIAL

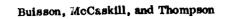


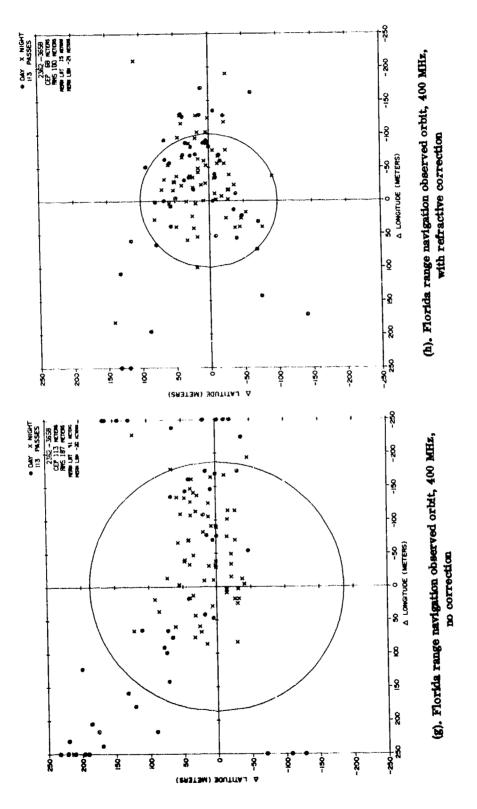
#### Buisson, McCaskill, and Thompson

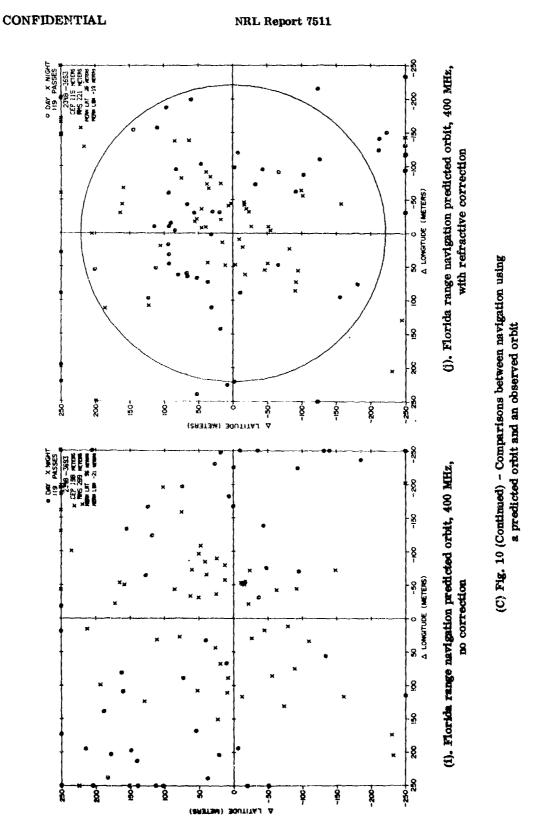






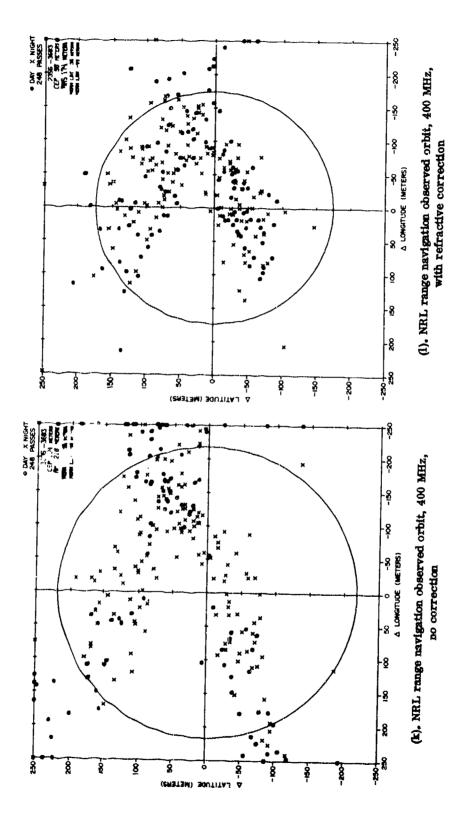


.


NRL Report 7511




CONFIDENTIAL

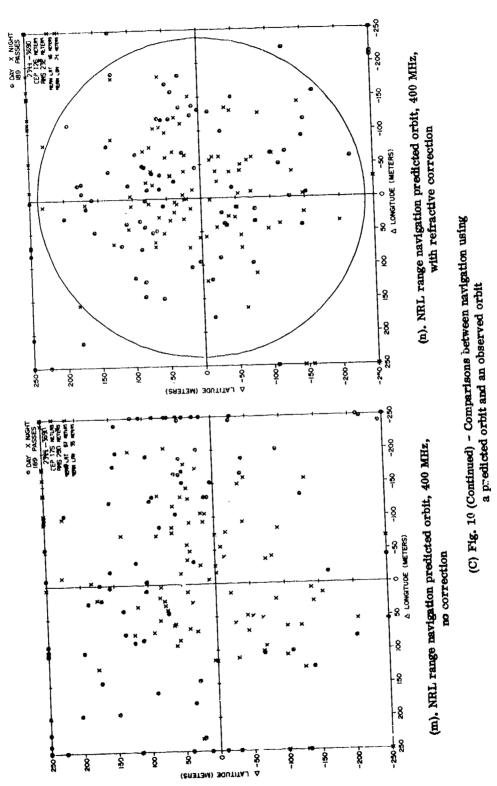
· · · · · ·





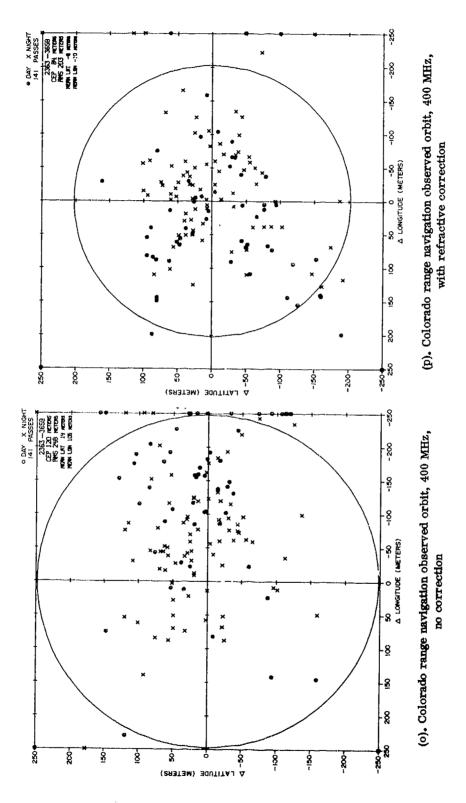



i T T


CONFIDENTIAL



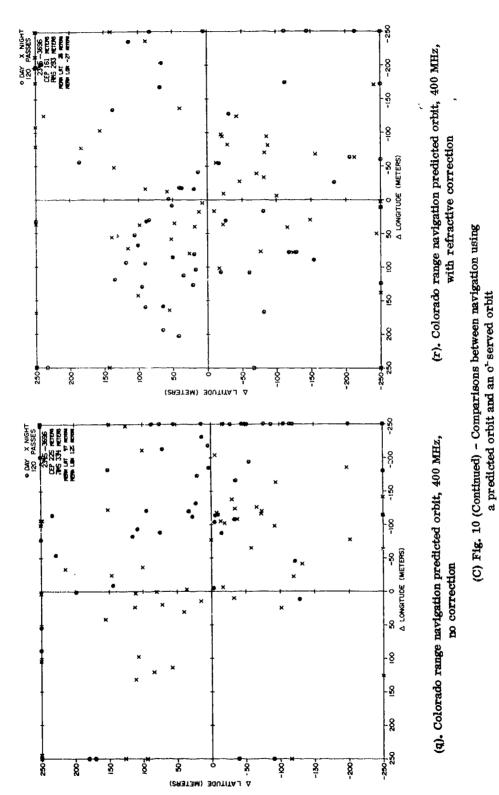
CONFIDENTIAL


. •

NRL Report 7511



CONFIDENTIAL


CONFIDENTIAL



22.125

CONFIDENTIAL

NRL Report 7511



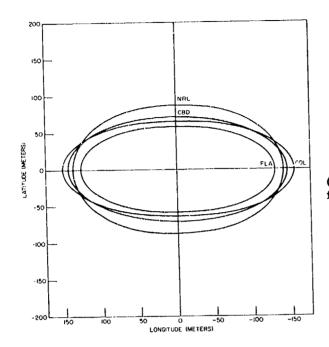
CONFIDENTIAL

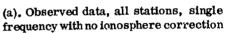
| Comparisons Between Predicted and Observed CEP's                   | s Between P | redicted ar          | nd Observed             | CEP's      |                      |                        |
|--------------------------------------------------------------------|-------------|----------------------|-------------------------|------------|----------------------|------------------------|
|                                                                    | Number      | Predicte<br>CI       | Predicted Region<br>CEP | Number     | Observe<br>CJ        | Observed Region<br>CEP |
| Stations                                                           | of Passes   | Latitude<br>(meters) | Longitude<br>(meters)   | of Passes  | Latitude<br>(meters) | Longitude<br>(meters)  |
| Colorado                                                           |             |                      |                         |            |                      |                        |
| Single Frequency (Theoretical)<br>Single Frequency (No Correction) | 120<br>120  | 141<br>140           | 140<br>195              | 141<br>141 | 69<br>64             | 97<br>153              |
| Florida                                                            |             |                      |                         |            |                      |                        |
| Single Frequency (Theoretical)<br>Single Frequency (No Correction) | 119<br>119  | 129<br>138           | 91<br>168               | 113<br>113 | 39<br>58             | 65<br>128              |
| NRL                                                                |             |                      |                         |            |                      |                        |
| Single Frequency (Theoretical)<br>Single Frequency (No Correction) | 189<br>189  | 132<br>141           | 97<br>147               | 248<br>248 | 69<br>87             | 79<br>139              |
| CBD                                                                |             |                      |                         |            |                      |                        |
| Single Frequency (Theoretical)                                     | 67          | 65                   | 77                      | 74         | 38                   | 68                     |
| Single Frequency (No Correction)<br>Dual Frequency                 | 67          | 63<br>63             | 144<br>65               | 74<br>74   | 71<br>34             | 146<br>50              |
|                                                                    |             |                      |                         |            |                      |                        |

Table 6 (C)

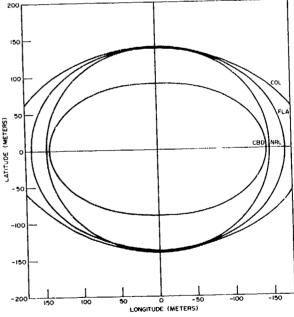
# CONFIDENTIAL

7


l


36

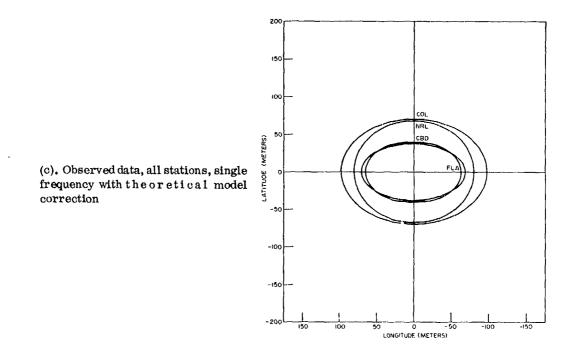
### Buisson, McCaskill, and Thompson

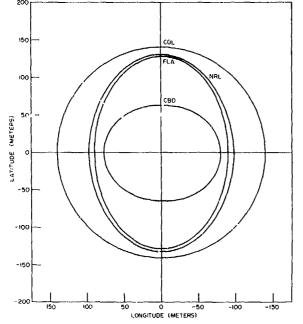

ų.

NRL Report 7511



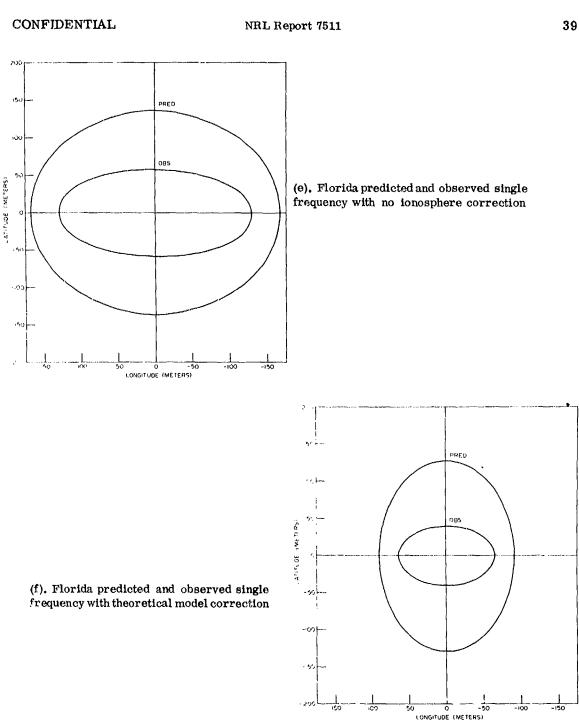



(b). Predicted data, all stations, single frequency with no ionosphere correction




(C) Fig. 11 - Combined latitude and longitude CEP's for observed and predicted data, all stations, and all corrections

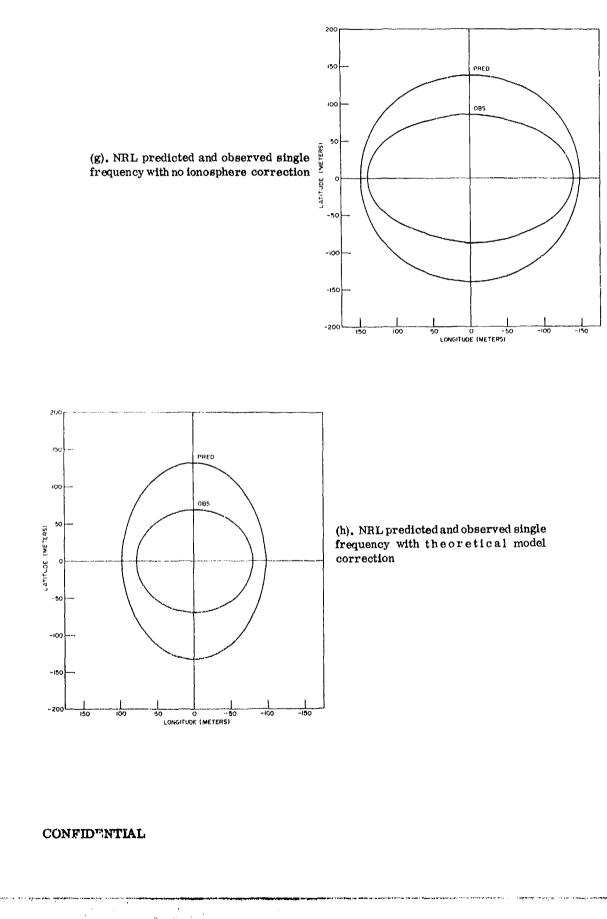
16


CONFIDENTIAL



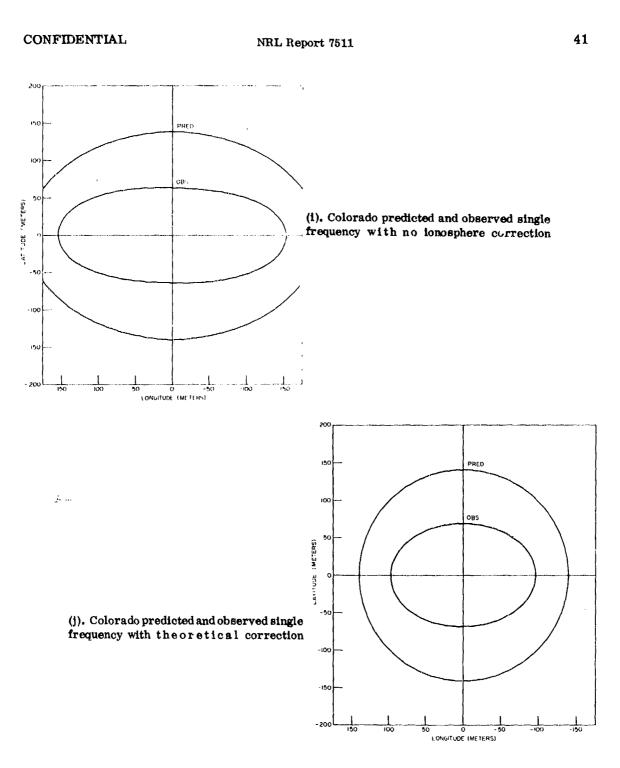


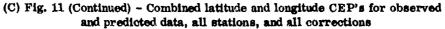
(d). Predicted data, all stations, single frequency with the oretical model correction


# CONFIDENTIAL

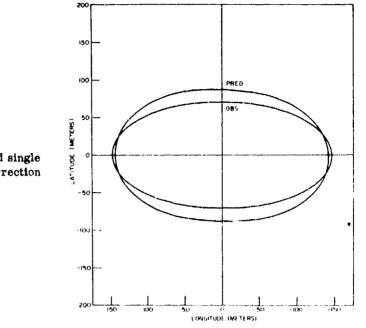


(C) Fig. 11 (Continued) - Combined latitude and longitude CEP's for observed and predicted data, all stations, and all corrections


Ù

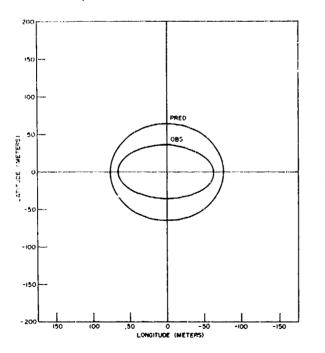

CONFIDENTIAL




· ..

40






CONFIDENTIAL



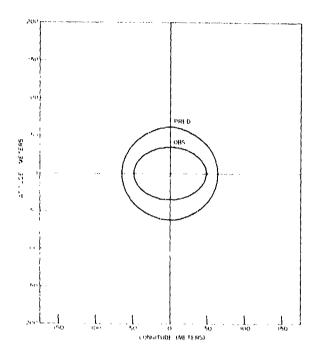
(k). CBD predicted and observed single frequency with no ionosphere correction

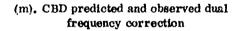
٢



(1). CBD predicted and observed single frequency with theoretical correction

### CONFIDENTIAL


. •


## CONFIDENTIAL

ういてき あい

NRL Report 7511

43 (Page 44 Blank)





(C) Fig. 11 - Combined latitude and longitude CEP's for observed and predicted data, all stations, and all corrections

|                                                                                                                                                                                                                | ENT CONTROL DATA - R & D                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                | ENI CUNIKUL DAIA - K & D<br>and indexing annotation must be entered when the overall report is classified)                                                                                                                                                                                                                                                                                                                                                                         |
| ORIGINATING ACTIVITY (Corporate author)                                                                                                                                                                        | 28. REPORT SECURITY CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Naval Research Laboratory                                                                                                                                                                                      | Confidential                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Washington, D.C. 20375                                                                                                                                                                                         | 2b. GROUP<br>GDS-74                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REPORT TITLE                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RANGE NAVIGATION USING THE TIM                                                                                                                                                                                 | MATION II SATELLITE (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DESCRIPTIVE NOTES (Type of report and inclusive dat<br>Interim report on the NRL Problem.                                                                                                                      | ice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AUTHORISI (First name, middle initial, last name)                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| J.A. Buisson, T.E. McCaskill, and J.)                                                                                                                                                                          | E. Thompson                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| REPORT DATE<br>February 12, 1973                                                                                                                                                                               | 74. TOTAL NO. OF PAGES 75. NO. OF REFS<br>48 5                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . CONTRACT OR GRANT NO.                                                                                                                                                                                        | 94. ORIGINATOR'S REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NRL Problem R04-16                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| b, PROJECT NO.                                                                                                                                                                                                 | NRL Report 7511                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A3705382 652B1F48232751                                                                                                                                                                                        | 95. OTHER REPORT NO(5) (Any other numbers that may be assigned                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ···                                                                                                                                                                                                            | this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| d.                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                | 12. SPONSORING MILITARY ACTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. ADSTRACT / ComPLA-14-14                                                                                                                                                                                     | Department of the Navy<br>Naval Material Command<br>PM-16                                                                                                                                                                                                                                                                                                                                                                                                                          |
| worldwide navigation and time-transformeasuring the time difference between<br>navigator's receiver. Navigation result<br>the TIMATION II satellite and four group<br>capability of 33 meters (100 feet) using | Department of the Navy<br>Naval Material Command<br>PM-16<br>technique of passive ranging can be employed to provide<br>ter service. Passive ranging is accomplished by<br>on electronic clocks located within the satellite and the<br>pults were obtained with a prototype system consisting of<br>und stations. The results indicate a CEP position-fixing<br>ing dual-frequency range measurements. The analysis of<br>ion, instrumentation error, and the effect of satellite |

|

CONFIDENTIAL Security Classification

ig.

.\*

| 4  | KEY WORDS                 |    | ROLE | WT     | LIN<br>ROLE | WT          | LIN  | WT         |
|----|---------------------------|----|------|--------|-------------|-------------|------|------------|
|    |                           |    | NOLE | W Í    | RULE        | <b>17</b> 1 | NOLE | <b>T</b> 1 |
|    |                           |    |      |        |             |             |      |            |
|    | TIMATION                  |    |      |        |             |             |      |            |
|    | Satellite navigation      |    |      |        |             |             |      |            |
|    | Passive ranging           |    |      |        | 1           |             |      |            |
|    | Clock correction          |    |      |        | 1           |             |      |            |
|    | Ionospheric refraction    |    |      |        |             |             |      |            |
|    | Dual frequency            |    |      |        |             |             |      |            |
|    | Observed orbit            |    |      |        | ]           |             |      | 1          |
|    | Predicted orbit           |    |      |        |             | ļ           | 1    |            |
|    | Quartz crystal oscillator |    |      |        |             |             |      |            |
|    | Elevation angle           |    |      |        | ł           |             | 1    |            |
|    | -                         |    |      |        |             | ţ           |      |            |
|    |                           |    |      | 1      |             |             |      |            |
|    |                           |    |      | Į      | 1           |             |      |            |
|    |                           |    |      |        | 1           | Ì           |      |            |
|    |                           |    |      | 1      |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        | 1           | 1           |      |            |
|    |                           |    |      |        |             | ļ           |      |            |
|    |                           |    |      | 1      |             | 1           |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             | 1           |      |            |
|    |                           |    |      | 1      |             | Į           |      |            |
|    |                           |    |      | 1      |             | ]           |      |            |
|    |                           |    |      |        |             |             | 1    |            |
|    |                           |    |      |        |             |             | 1    | 1          |
|    |                           |    |      |        | 1           |             |      |            |
|    |                           |    |      |        | 1           | ļ           |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             | 1           |      |            |
|    |                           |    |      |        |             |             |      |            |
|    |                           |    |      |        |             | 1           |      |            |
|    |                           |    |      | 1      | 1           |             |      |            |
|    |                           |    |      |        |             | 1           | 1    |            |
|    |                           |    |      |        |             |             |      | 1          |
|    |                           |    |      |        |             | 1           | 1    |            |
|    |                           |    |      | 1      |             |             | 1    |            |
|    |                           |    |      |        | 1           |             |      | 1          |
|    |                           |    |      | 1      |             |             |      |            |
|    |                           |    |      |        | 1           |             |      |            |
|    |                           |    |      | 1      |             |             |      |            |
|    |                           |    |      | 1      |             | 1           |      |            |
|    |                           |    |      | 1      |             |             |      |            |
|    |                           |    |      |        |             |             |      |            |
| ī  | D 1 NOV 1473 (BACK)       | 46 |      | <br>CO | NFIDE       | NTTAL       |      |            |
| (D | AGE 2)                    | 40 |      | Securi | ty Classi   | fication    |      |            |
| 11 | NUL 41                    |    |      |        |             |             |      |            |

11.11

......

alfrend -



NRL Report 7511

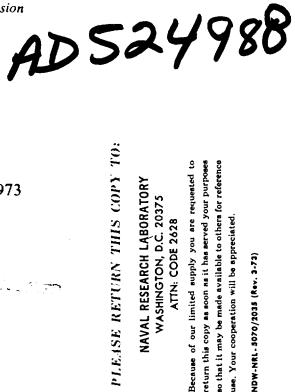
Cy / 2

use. Your cooperation will be appreciated

Completel 21 mar 2000 R.W.

NDW-NRL- 5070/2035 (Rev. 3-73)

R


Range Navigation Using the TIMATION II Satellite [Unclassified Title]

J. A. BUISSON, T. B. MCCASKILL AND J. E. THOMPSON

Space Metrology Branch Space Systems Division

DECLASSIFIED: By authority of DONAVINGT 5519.14, 29 AM 88 Cite Authority Date 1221 C. ROLENS, 12/27/95 Entered by KRL Code

February 12, 1973



ATTN: CODE 2628

5000

TACLASSIFIED



NAVAL RESEARCH LABORATORY Washington, D.C.

CONFIDENTIAL

APPROVED FOR PUBLIC 1977 (P A 81) DISTRIBUTION UNLINITED