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1.0 SUMMARY

(S) The purpose of this program is to deve.op, on an apgproximately
2.3 yoar time scale, al - 2 MW average power, variable pulse repetition
rate diffraction-limited CO laser opcrating at an electrical efficiency of
50% or more, The work covered in this contract involves the design of
intermediate power CO laser devices, the development of the required CO
laser technology, and the construction of an intermediate power CO laser

device.

(U This program encompasses, on a best effort basis, the fcllowing

major tasks:

(U) 1. The development of both steady state and transient kinetic
models in order that realistic theoretical predictions of high energy device

characteristics can be made,

() 2. Measurements of basic parameters of the CO laser at low
pressures including: gain, saturation intensity, rates of vibrational cross-
relaxation between CO molecules, transfer rates of CO and N;,, discharge

characteristics, and spectral characteristics,

(U) 3. Measurements and characterization of a high pressure E-beam
excited pulsed laser to experimentally determine transient operating

parameters for high energy extraction,

() 4. The design and construction of a 500J/pulse diffraction-limited

CO laser oscillator.

(U) 6. The development of line selection techniques for controlling the

oscillator spectral output,
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(o The characterization and modeling inveat'igation of the CO laser
kinetics have been quite successful in the lact quarter, With extensive
experimental data, ccvering a wide range of parameters, the agreement
between our theoretical model and the experimental results cppears to be
adequate for E-beam stabilized pulsed discharge laser performance pre-
dictions. The Jeffers and Kelley VV rate model (with appropriate truncation
of the probabilities) coupled with a possible range of optical cross section
values show reasonable agreement with cw small signal gain measurementr
and E-beam pulsed laser output data, Adequate time resolved spectral

data are not yet available for comparison with the kinetic model. Data of
integrated output spectra obtained to date are also in reasonable agreement
with the theory., These results and comparisons with theory are reviewed in
Section 2,0 and 3,0, In Section 2,0, using the computer model, performance
predictions of pulsed devices at various operating conditions are also
described., It is shown that vibrational band selection can be achieved by the
appropriate choice of CO partial pressures, electrical pumping rate, and
pulse duration (to control temperature rise). The introduction of the
characteristics of a water vapor cell (obtained from measured values) in
the analytical model shows an effective rotational line selection method,

The results with the water vapor cell line selection indicate near 50%
efficiency and emission lines having an average attenuation coefficient

one half of that of CO;,

(U) Extensive experimental data were obtained with the E-beam pulsed
device (nominal one liter) at various operating conditions, The No=throp
constructed E-beam gun, used during the last quarter, is operated at 180 kV
and at 40 mA/cm? output current der jities, Several problems have been

id «ntified in the operation of this laser near liquid nitrogen temperatures
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and pressures above 200 iorr. Modifications aze currently being made

to the device to improve its operation at the low temperature and high
pressure regime. - A review of thu problems, the corrective steps taken and
some of the experimental results t> date are reviewed in Section 4.0. Tha
table on the next page summarizes :h1e results of the experimentally
measured laser output characteristics compared to the objective per-
formance characteristics of a CO pulsed laser. With the modifications
being introduced, we anticipate the demonstration of output characteristics

closer to the objective values listed in the table.

(U) The construction of the 10 liter device is nearly complete and the
testing of the components has been started, The 10 x 100 cm, area cathode
E-beam gun has been constructed and tests have begun., A review of the
status and the characteristic of the E-gun is given in Section 5.0. In
addition, the results of calculations made of electron beam scatter due to the

foil and the laser gas are discussed,
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2.0 PARAMETRIC STUDIES WiTH THE KINETIC MODEL

(U) Recent work in development of the molecular kinetic model now
includes a modification in the computar code to allow for kinetic and
rotational heating. Using the current version of the model, a variety
of calculations have been carried out to compare the theory with
experimental data obtained from E-beum laser output, transient gain
measurements, and previous small signal gain results, With suitable
interpretation, reasonable agreement has been obtained in these

1 Furthermore, several assumptions upon which the theory

comparisons,
has been based have been modified to test their sensitivity on the predicted
output. Calculations for several cases have been carried out, using the
currently accepted rate constants, to determine estimated performance
for future devices, Finally, sample calculstions that include a realistic
(but at present nonoptimized) water vapor cell for intracavity line selection

are also presented.

2.1 Comparisons with F.-Beam Results. (U) Several cases correspond-

ing to actual E-beam experimental shots have been run under the present
version of the kinetic code, Due to the uncertainties in the (CO-Nj3) and
(N2-N3) VV rates, comparisons were limited to gas mixtures containing
only CO and Ar. The plasma parameters n and T, were adjusted self-
consistently to reproduce the experimentally observed rise and fall times
for the electrical input power, as described previouslyl' 2‘ A variety of
gas mixture ratios and excitation powers produced reasonable agreement
in the temporal behavior of the output radiation intensities, as shovm in
Figures 2,1 - 2. 6. Since spectral data are presently very limited and
difficult to obtain, it is not yet possible to make conclusive comparisons

of the time resolved spectral distribution with the theory.
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2.2 Sensitivity Tests. (U) A variety of tests have been made to

determine the sensitivity of the model to certain rate constants and
input parameters, and predictions have been made of what can be expected

from future devices based on the currently accepted rate constants.

(0) Variation of the plasma characteristics showed that detailed
predictions of spectral output as a function of timewmre very insensitive to
several different changes, provided that the adjustment of n, and T,
reproduce the correct input power. Such changes include trade-oifs
between n, and T,, inclusion of excitation processes originating from
levels greater than v = 0, and actual modification of the Boltzmann
assumption, In comparing theory with experiment, the form of the input
power as a function of time is known. Thus, because of the insensitivity
of the molecular kinetics to the form of the electron distribution, the

present approach, which utes a self-consistently adjusted Boltzmann

distribution produces very good results,

(V) This method is, for example, preferable to using an exact solution
obtained at t = 0 for f(E), and assuming it to be constant throughout the
pulse, Physically, such an approximation can be seen to be inadequate,
since the electrical pumping of the vibrational levels raises their vibrational
temperatures. Thus, the inelastic vibrational collisions become less
effective for limiting the electron energies for a given E/N, and this must
be reflected by a change in the distribution as a function of time. Secondly,
because of the insensitivity, even an cxact time varying solution to the
electron boltzmann equation cannot produce significantly more accurate
results for describing the molecular kinetics, and may even be worse if the
several approximations required for its solution lead to a result which does

not accurately reproduce the temporal input power,

12
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() Of course, independent plasma calculations fcr the electron
distribution are important and useful for other aspects of the problem,

For example, obtaining electron energy balance relations to determine

the percentage of total electrical excitation into vibrations, electronic
states, ionization, etc,, requires the plasma kinetic calculations., They
are also necessary for obtaining average electron.energies ana drift velocities
as a function of E/N and gas mixture. Such calculations are important, of
course, for estimation of sustainer current, and of values for the
paramneters n, and T, (0) to be uscd in the kinetic model. The orly
point of the present discussion is that, if the form of the input power is
known, use of a Boltzmann distribution with reasonable values of n:

and T, (0) and self-consistent adjustment of these quantities as a function

of time, provides a very good description of the electrons,

(m Some tests of the sensitivity to VV rates have also been made,
although only a few general conclusions can be drawn from these comparisons
at present, Use of the Jeffera-Kelley3 theory as opposed tn only a short
range SSH theory produced the contrasting results shown in Figure 2.7,

It would appear, based on this comparison as well as on the theoretical
modeling of the transient gain relaxation data described in Section 3.0,

that the long range dipole-dipole contributions of J:ffers.Kelley theory are
required for the VV rates. The Jeffers-Kelley theory fits the experimental
data of Hancock and Smith at 300°K. but does not agree with low temperature
data (100°K) obtained by W ttig and Smith (which seems to suggest that the
probabilities are nol a2 sanaitive finction of temperature), Ir order to assess
this possible defe~t in the theory, a 150°K case was run using the exothermic
Jeffers-Kelley probabilities corresponding to 300°K, but retaining the
factors fo. detail=d balance at 15997 to chtain the endothermic rates,

This did not produce significant chunges in the radiative predictions from

the molecular kinetic model.

13
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(U) he effects of pressure are illustrated in Figure 2. 8, for three
different cases corresponding to a fixed e2lectrical input power. The
cffects of clectrical input power for a fixed gas mixture are shown in
Figure 2.9, which is simply a combination of Figures 2.4 - 2,6

to show the comparison, Note the earlier turn-on times and higher output

intensitiee for increased electrical excitation,

2.3 Predictions of the Madel, (U) Figure 2.10 and 2,11 present

resalts for a 1/2 atm and a ! atm case respectively, with different pumping
rates illustrated in Figure 2.11. In Figure 2,10, the effects of different
rise tirnes are illustrated, along with display of the increcase in kinetic
temperature rise as a function of time, For a 20 #sec pulse, the energy
and efficiency results for Figure 2,11 are summarized in Table II, The
atmospheric case was used to make comparisons between a free-running
and a line selected oscillator. The water vapor cell was assumed to
contain 400 torr of H,O at 420°K, with a path length of 71 cm. Power
transfer percentage curves which illustrate the comparison are presented
in Figure 2,12, Note the effect that the additional absorption presented

by the water vapor cell has on energy output and efficiency, and also the
more erratic time dependence of the optical output, which is a reflection
of the fact that the losses are frequency dependent and the spectrum is
changing through the pulse, The output spectra as a function of time for
the two cases are shown in Figure 2,13 for the first six bands. Note

the '"clamping'' effect that the line-selected oscillator exhibits, in contrast
to the steady spectral evolution displayed by the free running oacillator.
These cases are presented only as examples, and do not represent an
optimumn choice of parameters, Hcwever, they do illustrate the necessity

for pumping at a much lower rate to minimize the temporal heating during

the pulse,

15
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(U) TABLE IlI, Parameters for Figure 2,11,

20u4SEC PULSE

o 125 kW/cc

E, =1950 J/f
in
Eout = 1176 J/§
n = 60T,
0,
AT . =57°K
mol
o 64 kW/cc
E, =953 J/ e
Eout = 493 J/¢
’7 = 52”‘.,
AT . =19k
mol
@ 26 kW/cc .
E, =390J/f
in
Eout =114 J/¢
n =29%

AT = 59K
mol

20
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Free Runnine Oscillator ]
P=1,0atm, CO/Ar =1/3
T (0) = 100°K
mol -
L =im, T = 40%, ¥ = 5% /pass /
80 /‘)dt (E) / ~1 200
Optical Output / i
- — /
b 20 Msec pulse: /
360
3 E, =19503/4
in /
(V]
o‘: out - 1176 J/¢4
E i n = 60% /
-
c .
"
[
H 4
[ 5
N Temperature
o 07— h (Tmol = Trot) —1 150
o / Optical Absorption
- Heating
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0 10 20 30

Figure 2.12a

Percentage of electrical power transferred to all

mechanisms as a function of time for an atmospheric

pressure, pulsed oscillator,
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Line Selected Oscillator

o
Tmol (0) = 100K

L =1m, T =40%, 7 = 5%/pass

Temperature
(T =T _ ) /./7
rot mol

/ d/dyE . )

Optical

Output Optical

Absorption

/ 20 psec gulse:
E, =1950J/1
n

Eout = 891 J/2 -

Ui = 46%

P=10atm, CO/Ar =1/3 z

200

FH87ACU

100

] ]

10 20 30

Percentage of clectrical power transferred to all

mechanisms as a function of time for a line selected
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(U) A realistic device will require much lower partial pressures

of CO to obtain a lower v-band apectral output, and more moderate
pumping rates to insure that the spectrum is reasonably constant over
most of the pulse duration. Two further examples of free running and line
selected oscillators at 77°K are presented to illustrate how certain
desirable characteristics can be achieved., The line selection was
produced with a 71 cm intracavity cell containing 500 torr Hzo at 420°K.
Output coupling was assumed to be provided by a 60% reflecting mirror,
with a cavity containing an additional 5%/pass loss over a total gain length

of 1 meter.

(U) Figure 2,14 and 2,15 summarize the operating conditions assumed

and the transient power transfer percentages for the two cases, As is

apparent from both of these figures, steady state is attained after a few

microseconds. When an intracavity water vapor cell is introduced into the

calculation, the ratio between output coupling and absorption decrecases,

Temperature rises are modest for pulse lengths 20 - 50 us under these

conditions, Output spectra are presented which illustrate the line

selective properties of the water vapor cell, as contrasted to free-running

oscillators, in Figure 2,16 and 2.17. Note that the output spectrum is

reasonably constant over the pulse length for Figure 2.17b and that the lines
rrespond to those whose atmospheric transmission characteristics are
.sonably good, Calculations based on the selection of a single line

(- 4-+3 P(8)) using an extra loss of 20% round trip (e.g., from

a grating) with the same conditions of Figure 2.17 resulted in poor energy

effic: 'ncy (~15% for a 30 us pulse). However, it should be noted that

the sumed 20% loss of the grating is in the oacillator only, and thus would

not preclude the possibility of attaining higher output conversion efficiencies

in a MOPA arrangement,
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all mechanisms for an atmospheric pressure oscillator. (U)
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3.0 VV CROSS RELAXATION RATE

(U) A concerted effort has been made to obtain a VV rate matrix
which would consiatently fit b: -h the transientzand the steady state gain
data reported in the previous quarterly report. A more coherent set of

VV rate values appear to be emerging from these efforts.

(U) It was reported ear‘lier2 that the probability of vibrational

energy transfer per collision predicted by the Jeffers and Kelley theory3
had to be truncated somehow since probabilities become greater than unity
for moderately high vibrational bands. The probabilitv iruncation deemed
necessary to fit the steady state gain data was 0. 01 while that needed to fit

the transient gain data was ~1,0, We now propose a resolution to this

inconsistency.

(U) Kellew,v5 has postulated from theoretical analysis that the probability
should be truncated at 0,3, The transient gain data fit quite well with this
truncation as shown in Figure 3,1, It is also obvious from Figure 3.1

that truncation at a lower value, viz., 0,05 does not provide a good fit to
the transient gain curve; truncation at 0,01, used in the previous reportz

to fit the steady state gain data, zZives an even worse fit.

(U) At this point, it was suspected that the CO partial pressure
measurements corresponding to the steady state gain data reported pre-
viously may not have been accurate, These pressures were measured by

a variable reluctance electrical pressure gauge, A more absolute method

is provided by calibrating the gas flow meter:- with actual collection of

gas samples for a known period of time. The two methods indeed gave
different values of the partial pressures under the same operating
conditions, Since the method of pregsure measurement by sample collection
is more accurate, the partial pressures of CO were remeasured, and the

correct values are shown in Table III below,
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The experimental curve gives the time variation of
gain for V = 9 . V = 8 in the presence of a saturating
pulse of 2.4 W:.\t:ts/cmZ in the transition V =8.V =7,
The curve labeled P£0.3 shows the transient gain
obtained by theoretical modeling with probability
truncation at 0,3, The curve P£0, 05 is also obtained
theoretically by probability truncation at 0, 05, (U)
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(U) TABLE II. CO Partial Pressures in Torr (U)

Previous Measurerments Corrected Measurernents
[]
0.1 0.19
0.2 0,33
0.3 0, 47
0.4 0.61
(U) Theoretical modeling to obtain the population density distribution

was carried out with the corrected partial pressures and the probability
truncation at 0.3, The results obtained for the 0.19 torr CO partial
pressure casc are shown in Figure 3.2 (Curve B). For comparison, the
experimental population densities derived from gain measurements (reported
earlier) are shown by Curve C. It is evident from the figure that the nopula-
tion densities obtained by theoretical modeling (Curve B) are much too high
at the higher vibrational levels, as compared to the experimental popula-

tion densities (Curve C).

(U) After careful examination of the different parameters, it was
observed that the theoretical population density will be close to that

obtained experimentally if the optical broadening cross section was

assumed to be higher at the higher vibrational levels, The experimental
popalation densities reported previously were derived from the steady

state gain data with an optical broadening cross section that was assumed

to be constant for all the v levels. This assumption was made ir the absence
of any reported data on how the broadening cross secticn of a diatomic mole-
cule varies with the vibrational levels, However, measurements of
broadening cross section for the CO fundamental vibrational band (1—-0)
indicate that this cross section can differ by as much as a factor of 2

just from a change in the rotational quantum number, It would, therefore,

be more appropriate to assume that the broadening cross section should
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2 Curve A and C pive population densitics obtained from
pain measurements: C with constant optical broadening
cross section, A with higher optical broadening cross
sections at higher V level., Curve B gives the population

densitics obtained by theoretical modeling, (U)
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change with v levels as weil, Intuitively it seems reasonable that an
anharmonic molecule like CO may have a larger optical broadening
cross section when it vibrates with a larger amplitude at a higher v

level than at the ground vibrational level.

(U) Accordingly, a tantative functional dependence for the broadening

cross section ¢ was assumecd to be

v el

=1+ z

o ]01

Vo val - ()

(U) The experimental population densities derived from the steady

state gain data by using the above functional dependence of ¢ is showm

in Figure 3,2 (Curve A). The closer agreement of this experimental
population density with those obtained by theoretical modeling with the
larger optical broadening cross section at higher v levels appears to
support this assumption. A similar trend is exhibited by the data at CO
partial pressures of 0, 33 torr, 0.47 torr, and 0, 61 torr shown reapeétively

in Figures 3.3, 3,4 and 3,5,

(V) The above agreement is not exact, possibly due to one or more of

the following factors:

1. The tentative functional dependence of ¢ may not be quite

correct, The exact dependence should be determined experimentally,

2, Inclusion of deactivation by wall collision would change the theoretical
population densities, At present there is no data to indicate how
many vibrational quanta are lost by wall collisions, or the pro-

babilities of deactivation per collision.
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Figure 3.3 Curve A and C give population densities obtained from
gain measurements: C with constant optical broadening
cross section, A with higher cross section at higher
V level. Curve B gives the population densities obtained
by theoretical modeling. (U)

Pco ° 0.33 torr
PHe = 10 torr ,
n = 6x 109%cm
€ 4 0
'I‘e = 107 K
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Figure 3.4 Curve A and C give population densities obtained from

gain measurements: C with constant cptical broadening
cross section, A with higher cross section at higher

V level. Curve B gives the population densities obtained
by theoretical modeling. (U)

Pco ° 0.47 torr
Pye = 10 torr
n, = 6x lO"/cm3
A== X T, = 10*%
\ T = 160%K

V ot
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(U') Figure 3,5 Curve A and C give population densities obtained from

10

10

14

13

gain measurements: C with constant optical broadening
cross section, A with higher cross section at higher

V level. Curve B gives the population densities obtained
by theoretical modeling. (U)

Pco ° 0.61 torr
PHe = 10 torr .
n, = 6x 10Yem
A ,\ = 104 °K
e
C—=e\ T 175°K
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2 4 6 8 10 12 14 16 18 20 22 24
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3, VT rates may be higher at higher vibraticnal bands. There are
some iuclicatiom7 that this may be true since vibrational
population of higher v levels, obtained by chemical reactions,
seem to be deactivated equally irrespective of collision partners,
However the effect of higher VT rates will change the populations

only at higher v levels without any significant change in the low v

levels,

() Figure 3,6 illu itrates some extremec cases of the factors listed

al yve, Curve A gives the theoretical population densities for CO partial
pressure of 0.19 torr. The dotted part of Curve A is obtained if the log of
the VT rate is linearly increased to make the rate 100 times larger at v = 40,
Curve B is obtained if wall collisions deactivate all quanta with a probability
of 1 per collision at a rate determined by the time of diffusion from the

center tu the wall in a tube of 1 ¢cm radius,

() Clearly the correct identification of VV rates cannot completely

be resolved bef ore more experiments are performed to determine the
functional dependence of ¢, effect of wall collisions and the magnitude

of VT ratee at higher v levels, However, from the analysis carried out so
far, the rate matrix generated by including both long range and short

range forces and truncating the probability per collision at ~0.3 appears

to yield relatively consistent results with several experimental measurements

s 1,2,4
over a significant range of parameters,
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Solid curve A gives the population densities obtained

by theoretical modeling; the dotted part shows the effect
of increasing VT rates to be 100 times larger at V = 40,

Curve B gives the population densities under the same

conditions as in solid curve A, but with the inclusion of

wall deactivation of all quanta with a probability of 1.
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4.0 E-BEAM LASER EXPERIMENTAL RESULTS

(U The experimental configuration of the E-beam stabilized CO laser
has been described previously, along with the results for various gas

12,8 Results of some of the experimental

mixtures and pump powers,
parametric data are plotted in Section 2, 0 where they are compared

with theoretical calculations, As was indicated in the last report, the peak
power and efficiency increase as the electrical pumping rate is increased,
and CO/Ar mixtures appeared to give better results than CO/N2 mixtures.
Additional experimental evidence of this is shown in Figure 4.1. In all
three photographs the top traces are the laser output intensity, the center
traces are the total electron gun current, and the bottom traces are the

sustainer current,

(U) Figure 4.1a, for a CO/N; mix, and 4.1b, for a CO/Ar mix, illustrate
the results with peak pump powers of 1.0 kW/cma. Threshold for the CO/Nj
mixture occurs much later than for the CO/Ar mixture and results in a lower
energy output and lower efficiency. Note also the longer tail with the

CO/N2 mixture due to the transfer of excitation from Nj to CO, Figure

4.1c is again a CO/N; mixture but the electrical pumping rate was increased
to 2.1 kW/cm3. With this increased pump rate the threshold time, efficiency
and energy output are all approximately equivalent to the result for the CO/Ar

mixture shown in 4.1a.

4,1 Spectral Data. (U) Considerable effort has been expanded to measure

integrated and time resolved spectral characteristics of the E-beam device.
The spectrurmn emitted from *he laser needs to be identified for line selection
investigations and is also required to provide insight about the gas kinetics

and excitation processes. Time resolved spectral measurements have been
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(U) Figure 4.1 Typical axperimental results illustrating the effect of gas
mixtures and electrical pumping rates on the laser output. (U)
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made by placing an AuGe detector at the cutput of an optical engineering
spectrometer, Typical results are illustrated in Figure 4.2. In each
photograph the top trace is the spectrally integrated laser output, the

center trace is the spectromet.z output at the indicated wave number

and the lower trace is the sustainer current, The general trand for all

gas mixtures and pump rates studied was the same (most are .ow pump rates).
The lowest vibrational bands reached threshold first and then turned off
quickly, The '"middle' vibrational bands turned on somewhat later but othere-
wise resembled the integrated trace, Finally, the after pulse consisted
almost entirely of the higher vibrational bands, The range of ' ands emitted
shifted downward with increased electrical pumping but the tret 1 just described
was always obaer-réd.. In the example illustrated, Figure 4, 2a siows the
output from all bands 6-5 and balow obtained by placing the detector behind

a diffuser intercepting these lines, Figure 4,2b is the output fron

the transition 10-9P(17) and Figure 4,2c is the output from all bands 12.11

and higher,

() Shifting of the emitted bands with time appears to be a result of
competition betweern the direct electrical excitatit;n of the lower levels

and excitation of the higher levels by VV pumping, However, the same
result could occur if the heating rate was much greater than the rate .
indicated from theoretical predictions (typically 10% or less). For this
reason, an experiment was set up to measure the gas temperature as a
function of time by observing the fluorescence from nitrogen excited by an
electron beam. Preliminary experiments at 300°K indicate that the tempera-
ture can be measured qQuite accurately and that the heating is not excessive,
These experiments will be carried out more thoroughly at the cryogenic

temperatures where the device is normally operated,
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(U) Figure 4,2 Timee-resolved comparison of various spectral bar.4s (central
trace on each photograph) with the spectrally integrated output

(upper traces).
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4,2 Device Development, (U) Problems with window seals and flow

inhomogeneities in the nominal one liter device-have limited experiments

to temperatures of approximately 150°K and pressures of ~300 torr, To
alleviate these problems, a new cooling jacket was constructed and modifica-
tions were made to the anode to improve flow uniformity. Failure of a
cryogenic valve during initial testing of these changes resulted in con-
siderable damage to the structure, necessitating rework which is presently
in progress. Modifications have also been made to the gun to increase
output current density and climinate the possibility of loss of bias due

to gun sparks,

The 10 liter device is nearing completion. The laser plenum is in final
assembly, The heat exchanger for the laser gas has been constructed

and tested, Temperature stability of approximately 0.1°C was attained
which is well within the experimental requirements. Mediurm homnageneity
measurements will begin shortly. The 10 x 100 cm area‘cathode gun has
been succeasfully tested for vacuum integrity and the diagnostic equipment
for uniformity measurements has been completed, Hot tests of the gun

‘vill commence shortly.
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5.0 AREA CATHODE E-GUN DEVELOPMENT

(U) All of the major subassembly components of the area cathode E-gun
have been completed, and initial testing of these components has commenced,
A test program has been established to test the vacuum integrity, the high
voltage isolation and the E-beam performance parameters of the design,

The present projected schedule indicates that final E-gun testing should

occur during the first half of November,

5.1 Experimental Tests, (U) Leak testing of the E-gun vacuum chamber has

begun, Although pumping will be by an ion pump during normal E-gun
operation, the preliminary pump down and helium leak testing is being done
with a 4' diffusion pump utility system. A helium leak detector is being
utilized to ensure that all of the heliarc welded joints and the O-ring seal on

the E-beam window are leak tight,

(U) Helium leak probing of the E-gun vacuum envelope in the low 10'5

torr region indicates that the window O-ring seal, the heliarc welded joints
and the metal gasketed flanges are all leak free, This testing was performed
with a 12 mil thick window foil which will now be replaced with a 1 mil thick

foil; the foil planned for use during E-gun cperation,

() Upon completion of the vacuum tests, the high voltage components,
which include the high voltage feedthrough, the support ceramics and the
cathode-control grid shroud, will be installed for the purpose of high voltage

testing, The system will be evaluated for corona and breakdown points.

() After the vacuum and high voltage integrity of the system has been
established, the impregnated cathodes will be activated and the eiectren
beam performance parameters will be evaluated. Of primary interest will

be the current density and the current uniformity, The E-beam tests are
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alsc expected to establish the performance parameters of current versus
bias voltage control, voltage droop, window scafter and window thermal

loading.

5.2 Theoretical Calculations of Electron Transport Processes, (U) As part

of the ongoing effort to evaluate the E-gun laser cavity system, two computer
programs have been developed to calculate the effects of the window and gas
scatter upon the primary electron beam profile as it penetrates the laser
cavity, These calculations to date have confirmed qualitative observations of
E-beam scatter observed in the one liter device, The program will be refined
and applied to the 10 liter device so as to evaluate ionization density, sustainer

field uniformity and lasing mediu'm energy deposition.

() The electron beam experiences many small angle-small energy loss
collisions with the window and gas electrona an it is gloved down. Because
of the large interaction cross section, or short mean free path, the E-beam
experiences an average divergence of 25° whea pacsing through the E-gun
window foil. The laser gas, although less dense, is thicker in the same

proportion so that it contributes a comparable amount of scatter.

() The scatter distribution from the pencil beam experiment can be

approximated quite well by a Gaussian function, because of the many small

angle scaitters,

£8) = —— exp(- 62/25%)

1
Ver 6
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where @ is the average width of the scatter distribution which comes
from experimental or theeretic... results, One convenient emperical relation

which correlates well with exper mental data i39

0 = 56.6° (d/Ro)”3

where

R = electron range in mg/ecm

2
scatterer thickness in mg/cm

Q.
"

Typical values of 6 for 250 keV electrons are

= 259 for 1 mil Ti foil window

| D

= 15° for 1 cm of N,:CO gas at ]l aim and 100°K

() The model used to calculate the primary E-beam spread resulting
from foil and gas scatter is illustrated in Figure 5.1. The width of the beam
has been divided into increments, 4x wide, which are then treated as pencil
beams. The scatter distribution at the elevation 4y away from the scatter
planc is obtained by summing the scatter contribution at each 4x of the new

plane from all of the Ax's of the previous plane.

5.3 Primary E-Beam Profile, (U) On the vacuum side of the E-gun

window the current distribution is assumed to be flat over the entire beam
width, This is illustrated by the curve marked O in Figure 5.2 which is the
normalized priinary beam current plotted as a function of the transverse
position across the laser cavity, At a distance of 1 ¢m into the cavity, the
primary current density profile is illustrated by curve #1. The roll-off

at the beam edges io a result of the window scatter, which is uniform
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ELECTRON BEAM DIVERGENCE ANALYSIS

A) ELECTRON SCATTER DISTRIBUTION:

Incident Electron
Beam

Scatterer - thickness much

o less than electron range

Scatter distribution in
polar coordinates

.

Scatter Distribution Function: (@) = — uxp(-Oz/Z 'o'z)
{Gaussian) 2m 0

0 = Average width of scatter distribution which comes {rom
experimental and theoretical results

B) WINDOW AND GAS SCATTER MODEL:

{L N T — / 7J/ +§

.......

i
Trrrrty T T

0.1 S4x < 0.2 cm

a
—
%

3
}

0.25€4y < 1 cm

E ay

(U) Figure 5.1 Window and Gas Scatter Model (U)
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over the entire area. The center scatter is ;:ompenoated for by scatter
from the Ax's adjacent to the center so that the centerline intensity is
not affected at the | cm level. At successively greater distances into
the laser cavity the primary beam intensity is diminished by continued

scatter, with the reiultant effect as illustrated in Figure 5.2,

(o) The laser cavity geometry used for the calculated primary E<beam
profiles of Figure 5.2 is the present one liter device, The configuration is
typical of E-beam stabilized lasers in that therc is scatter from the window,

the gas layer between the window and the laser cavity, and the cavity itself,

5.4 Cavity Electric Field. (U) From the primary E-heam intensity

and profile data of Figure 5.2, it is possible to calculate the .ustainer power
supply electric field acruss the height of the cavity. Because of electron-ion
recombination within the laser gas, the ionized gas charge carrier density

is proportional to the square root of the primary E-beam current denaity.

(U) Initial calculations of the laser cavity sustainer electric field were
made using an average primary E-beam current intensity at each distance in
the cavity (the average over the entire width of the cavity at that distance).
This is an approximatior which does not take into account the variation in
primary E-beam intensity across the width of the cavit;, but it does yield

quantitative results,

(M The data plotted in Figure 5. 3 is the sustainer field at increasing depths
into the laser cavity., The sustainer field is normalized to be 1 kV/cm for
uniform ionization, Deviations from the i kV/cm field r=sult from the window
and gas primary electron beamn scatter. At the top of the cavity where

the beam density is high, the gas ionization is also high so that the medium

cannot rupport as high a field at the bottom where the ionization is less,
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DEVICE #1
150 keV Electrormns
100°K Gas
760 torr
2.6 _
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300 torr
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100 torr
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o 1 2 3 4 5 6
Depth into Laser Cavity - cm

(U) Figure 5.3 Laser Cavity Sustainer Field (U)
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(U) A program is being developed at the present time to treat the jonized
gas of the laser cavity as a resistance network. This should yield more
accurate 1lculations of the gas ionization density, the sustainer field

distribution, and the sustainer energy deposition.

5.5 Cavity Aspect Ratio, (U) The amount of E-beam scatter out of he

laser cavity is determined in large part by the cavity aspect ratio, the ratio
of the width to the height, The results discussed were for a cavity of aspect
ratio l. By making the cavity width larger than its depth, the electron
scatter loss area, as a proportion of the cavity surface area, is reduced.

The effect is a more uniform ionization and thus more uniform distribution,

(o The results of calculations for laser cavities of varying aspect
ratios sre illustrated in Figure 5.4, Here it can be seen that ratios of

even 2:] yierld suitable field uniformities,
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SUSTAINER FIELD VARIATION FOR CAVITIES
OF DIFFERENT ASPECT RATIOS
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(U) Figure 5.4 Sustainer Field Uniformity (U)
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