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ABSTRACT

The objective of this study was to find optimum design features for deep
underground protective structures in rock. A computer program was developed to
determine survival distance, optimum depth, total construction costs, and costs per
usable volume for protective structures in rock. The program was applied to structures
with inner radii of 3, 6, and 9 meters; concrete liners 0.5, 1, 2, and 3 meters thick
and a steel liner 2.54 centimeters thick were investigated. In the.example, the rock
field was assumed to be either of sandstone or granite. The influence of the effective
longitudinal seismic velocity between the detonation point and the structure was
studied. Survival distances, survivabilities, optimum depths, and pertinent costs were
found for true surface bursts of 100 and 1,000 kilotons.

It was found that a concrete structure in sandstone can provide full protection
against a weapon yield no larger than 100 kilotons, and then only if the structure has
a sufficient soil cover. Full protection against a weapon yield of 100 kilotons is pro-
vided by a structure with a steel liner in granite irrespective of the composition and
stratification of the rock above. Full protection against a weapon yield of 1,000 kilotons
can be provided by structures with steel liners in granite, at depths less than 300 meters,
only when the effective longitudinal seismic velocity between the detonation point and
structure is 2,000 meters per second, or less. In all the cases where full protection
cannot be achieved, the optimum depth is between 100 and 300 meters.



CONTENTS

INTRODUCTION . . . . . . + v v v v v v o o v &

THEORY . . . & ¢« o ¢ o o o o & o b b & o o s ab
Determination of Stress Distribution . . . . . . .
Determination of Rock Strength and lL.iner Material .
Determination of Survival Distance . . . . . . . . .
Determination of Survivability . . . . . . . . . . .

Determination of the Gross Construction Costs and
Costs Per Usable Volume Unit . . . . . . . . . . .

COMPUTER PROGRAM . . . . . v . v v v v o v o v v
DETERMINATION OF OPTIMUM DESIGN CONDITIONS. . .
Example of Protective Structure . . . . . . . . . .

Optimum Design Conditions in a Rock Body of the
Same Rock Type . . « . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o v o o o

Optimum Design Conditions in a Rock Body Consisting
of Different Types of Rocks . . . . . . « . + + . .

FINDINGS . . ¢« o ¢« ¢ o v ¢ ¢« ¢ o v o o o o s o o o o
CONCLUSIONS . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s & o ¢ o s o s o o o &
ACKNOWLEDGMENTS . . . . . o ¢ ¢ ¢« ¢ o o o o o o &
REFERENCES . . . ¢ « ¢« ¢« ¢ v v ¢ v v o v o o o o o
APPENDIXES

A —Stress Distribution Caused by the Overburden. . .

page

10

10

11

13

14

14

16

29

32

37

38

39

41



B —Determination of the Pressure Pulse., . . . . .

C —=Determination of the Effective Seismic Velocity
of a Layered Rock System . . . . ... . . .

D Derivation of the Stress Distribution Caused by
an Incident Harmonic Wave . . . . . . . . .

E —=Derivation of the Fourier -Transformed Potential
of the Triangular Pressure Pulse . . . . . . .

F—Derivation of the Stress Distribution Caused by a
Triangular-Shaped Pressure Pulse . . . . . .

G-=Derivation of the Allowable Stresses for Rock .
H—Derivation of the Single-Shot Survivability . . .
1-—Cost and Cost-Effectiveness Computation, . . .

J—Description, Flow Chart, and Listing of the
M.in pro'r‘m L] L] [ ] L] L) L] [ ] L[] L L] L[] L] L] . .

iv

45

51

61

72

79
81
83

90

102



INTRODUCTION
The purpose of this report is to:

1. Obtain, from fundamental solutions of mechanics and available
test results, data on the protective ability of structures in
rock,

2. Determine the construction costs, and
3. Establish the costs for various levels of protection.

The protective ability of a structure can be measured by the distance
between the structure and the point of a nuclear detonation. If the ac-
curacy of the attacking weapon system is taken into account, the pro-
tective ability can be expressed by the probability of survival (the sur-
vivability). Both the survival distance and the survivability are depend-
ent upon:

l. Characteristics of the attacking weapons,
2. Geological environment, and

3. Structural design.

These factors are embodied in a computer program and an
example configuration is used to illustrate the influence of the princi-
pal parameters on the survival distance, survivability, and cost effec-
tiveness.

Different optimum configurations exist for underground protec-
tive structures because of various weapon characteristics, geological
features, and structural geometries. The trend toward optimum con-
ditions has to be found to establish guidelines for site selection and
design and to determine the cost effectiveness for underground protec-
tive structures in rock, based upon military requirements.

For protection, the guidelines for site selection should contain
numerical values for the significance of rock types and tectonic con-
struction patterns. Guidelines for designing underground protective



structures should contain the optimum depth, size of cross section, type
of liner material, and liner thickness for the various cases. The eco-
nomic evaluation should indicate, for a particular protective purpose,
whether it is better to have one structure of a higher single-shot sur-
vivability and higher unit cost, or to have several structures of lower
single-shot survivability and lower costa. An economic evaluation also
might determine, to some extent, the most economical direction for
further studies. No single source containing solutions or information
on the entire problem was found in a survey of available unclassified
literature on the design of protective structures in rock. However,
many books, reports, and papers together contained all the parts of
the problem. The main informational sources for this research were:

1. Reference l-rock mechanics,

2. Reference 2—statically caused stress distribution around
openings, and

3. Reference 3—dynamically caused stress distribution around
openings.

Since References 2 and 3 were basic to the information in this re-
port, both static and dynamic load on underground protective structures
were considered so the influence of the structural depth could be studied.
However, the application of References 2 and 3 placed an important
limitation on this investigation; that is, that the liner material and the
surrounding rock up to a thickness of 3 cavity diameters is assumed
to behave elastically.

In spite of this limitation, the computational procedure based on
the elastic behavior of material is of theoretical and practical signifi-
cance. It is the first step toward improved procedures that may include
the plastic range, and it can be used directly for designing protective
structures capable of resisting several attacks. The second limitation
placed on this study is that only the directly induced ground shock is
taken into account. Consequently, this report deals only with pro-
tective structures located at depths in which only the directly induced
ground shock is critical.

Optimum conditions are ascertained by seven major steps:

1. Determination of the stress distribution around the opening
in the liner and in the surrounding rock,
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2, Determination of the stress-dependent strength of the liner
and the surrounding rock,

3. Determination of the survival distance,

4. Determination of the survivability, based on survival distance
between detonation point and structure,

5. Determination of the gross construction costs and costs per
usable volume unit, based on the allowable design dimensions
of the structures and the construction procedures,

6. Assembly of a computer program, and

7. Determination of optimum design conditions.

THEORY
Determination of Stress Distribution

The load on an underground protective structure consists of re-
sidual forces in the rock body, the weight of the overburden, and the
ground shock. Since they are unpredictable, residual forces have been
neglected for this feature study. However, residual forces may be in-
troduced, as in overburden, into the stress computation if they can be
measured in a particular case,

The weight of the overburden is to be considered not only because
of its contribution to the stress distribution around the opening but also
because of its effects on the strength of rock and liner materials,

Determination of Stresses Caused by Overburden. To compute
the stress distribution caused by the static load of the overburden
weight, Savin's? solution was used. His solution is the only one known
that considers a plane distributed load on a lined circular opening in
an elastic field. Other solutions, as in Reference 1, are related 1o

a circular distributed load.
The equations of the stresses are given in Appendix A. The in-

fluencing factors are depth of the structure, inner radius of the liner,
outer radius of the liner, specific gravity of rock, Poisson's ratio of
rock, Poisson's ratio of the liner material, elastic modulus of rock,

and elastic modulus of the liner material.




The stresses caused by the overburden may reach the yield
stresses. Thus, the computer program is organized so that the first
computed static stresses are checked against the yield stresses before
the dynamic load is brought into play.

Determination of Stresses Caused by Ground Shock. The stresses
caused by ground shock are determined in two steps by deriving, first,
the impinging pressure pulse and, second, the time-dependent stress
distribution.

Determination of Pressure Pulse, The empirically based pro-
cedure in Reference 4 is used to calculate the peak radial particle ac-
celeration, peak radial particle velocity, and peak radial displacement
of the free field at the location of the structure. According to Hugoniot's
Equation, the free-field stresses are approximately proportional to the
particle velocity in the elastic range:

c:p. caov

where 0 = free-field stress
p = density
ca = longitudinal seismic velocity
v = particle velocity

The plots of velocity-time dependence and pressure-time dependence
can be assumed to be triangles as shown in Figure 1.

- oo real curve
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Figure 1. Approximation of the pressure-time dependence by a triongle.



The impinging pressure pulse is fixed with these approximations:

s vmax
t =
a a
max
2:d
t = max
8 vmax

where O ax peak free field pressure

Ve ax peak particle velocity

a ax "’ peak particle acceleration

d = peak radial displacement
max

Magnitude and history of the pressure pulse are dependent upon the en-
ergy coupling of the detonation, weapon yield, energy-conducting prop-
erty of the rock, and distance from the detonation point. The energy
coupling of fully contained bursts, contact surface bursts, and true sur-
face bursts is provided in the computer program. Empirical formulas
for the conversion of nominal weapon yields into effective weapon yields
pertaining to these three kinds of detonations are given in Reference 4.
The procedure for determining the pressure pulse is described in
Appendix B,

The energy-conducting ability of the rock mass is represented in
the empirical formulas for ground motion by the seismic velocity. In
layered rock systems, the seismic velocity and the conductibility changes
at each interface. Since the incident wave and all emergent waves are
reflected and refracted at each interface, mathematically pursuing the
complex energy flow is difficult and time consuming. Reference 5 pro-
vides an approximation using an effective seismic velocity for the rock
body between detonation point and structure. The effective seismic
velocity is defined as the quotient of the distance Ry and the shortest
transit time from the point of detonation to the structure (Figure 2):

R

c_ = =
P tmi.
where c_ = effective seismic velocity



Rs = distance between point of detonation and structure

shortest transit time.

min

A method for determining the effective seismic velocity is described
in Appendix C.

S

t ti i
detonation point structure

path of the fastest ray
Figure 2. Layout for computing the effective seismic velocity for a layered system.

Determination of Dynamically Caused Stress Distribution. Mow3
describes a solution for computing the stress distribution caused by a
traveling harmonic wave in a liner of arbitrary thickness and in the
medium around the liner. In spite of the analysis being limited to ho-
mogeneous and isotropic media strained within the elastic range, Mow's
method was found to be accurate and promising for further development.
Therefore, it was used for the computer program,

The previously mentioned limitation to the elastic range applies
only to the medium in the vicinity of the opening (~3 diameters) and to
the liner material. The computational treatment of the pulse propaga-
tion from the point of detonation to the vicinity of the structure is not
based on the elastic behavior of the rock media.

Combining the choice of Mow's method with the assumption of
homogeneous, isotropic, and elastic media, less energy-absorbing be-
havior is indicated than in real materials. This means that the appli-
cation of Mow's solution regarding stress values is conservative.

The incident wave (Figure 3) is described by its potentials:

longitudinal wave ¢ = ¢° . ei(& x - wt)
shear wave v=0
@ = circular frequency

a w/ca = wave number
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Figure 3. Tunnel liner with impinging stress wave.

The incident wave is reflected and refracted at the interface between
rock and liner and is reflected at the inside of the liner. Each reflec-
tion and refraction causes a longitudinal and a shear wave that again
can be reflected and refracted. All these waves contribute to the
particular motions and to the stress distribution,

The boundary conditions that guarantee consideration of these
waves are:

1.

2.

The radial stresses in the interface between rock and liner
are equal,

The shear stresses in the interface between rock and liner are

] equal,

3.

4.

5.

The radial displacements in the interface between rock and
liner are equal,

The circumferential displacement in the interface between
rock and liner are equal,

The radial stresses at the inner face of the liner are zero,
and

The shear stresses at the inner face of the liner are zero,



These six boundary conditions are sufficient to solve the problem. The
derivation of the stress equations is given in Appendix D.

The approximately triangular-shaped pressure pulse caused by
the ground shock can be considered the sum of an infinite number of
harmonic waves, as shown in Appendix E. The nonzero potential of
the pressure pulse can be formulated by using the Fourier Integral:

w(w)‘—f¢( t)e cat

The time-dependent potential ¢ (x,t) and the frequency-dependent
potential ¢ (w) can be computed for the pressure pulse by a method
given in Reference 6. Stresses in terms of the potential are given in
Appendix F. Subsequent retransformation of the stresses from the
w -space to the t-space leads to no major difficulties:

o (x-t) = [Fo (x,w)e @0y

Superposition of Static and Dynamic Stresses. The calculation of
static and dynamic stresses results in radial normal stresses, circum-
ferential normal stresses, and shear stresses. As is permissible in
the linear elastic case, the superposition is accomplished by summing
the pertaining stresses:

o s cr static * o dynamic

= +
c9 s ca static 09 dynamic

= T
Tes - 'rfstatic ¥ r@ dynamic

For further use, an advantage is having the principal stresses available.
For the static, dynamic, and superimposed case, the principal stresses
are determined by the equation:

o +0
o =gt et fard e, ae)f



Determination of Rock Strength and Liner Material

Mohr's Theory of Failure was chosen as failure criteria for both
the rock and the liner material. The Air Force Special Weapons Center !
and the Geological Society of America8 published test results proving
that the envelopes of Mohr's circles for most rocks can be considered
straight lines. This simple relationship between the state of stress and
the strength of rock, known as the Mohr-Coulomb-Navier's Theory, was
accepted for the computer program. The equation for the allowable
maximum principal stress is derived in Appendix G. The value of the
allowable maximum principal stress is influenced positively by the
minimum principal stress, the cohesive strength of the rock, and the
angle of internal friction., The American Society for Testing Materials
recommends a curved line as Mohr's envelope for concrete. Follow-
ing this proposal and information given by the Concrete Division of
the Waterways Experiment Station in:Vicksburg, Miss., the allowable
maximum principal stress is taken as:

1%
Callowable [ M

d
o -L]N

where o, = minimum principal stress

N = constant = 1. 37

L = ft = tensile strength of concrete
f
=t
M SN

f
c

fc = compressive strength of concrete

In steel construction, the increase of strength with increasing confine-
ment is not used for designing construction members. Information

about Mohr's envelope of steel is given in Reference 10. The published
test results do not show an angle of internal friction for steel. The en-
velope is parallel to the major stress axis; steel is considered a 'von
Mises'' material. For computational convenience, the equation of Mohr's
envelope for steel was written in the form of the corresponding

equation for concrete:



1

o, - L N
O allowable | M

where N=M =1

L= ¢Fy = yield stress of steel

Determination of Survival Distance

Since the strength of the rock and liner material depends on the
state of stress in these media, a strength distribution as well as a
stress distribution will occur around the underground opening. There-
fore, it is necessary to check the state of stress against the state of
strength around the opening. Should stress exceed strength anywhere
at any time, the underground protective structure is considered a
violation of the prerequisite condition of elastic behavior of all
materials. As previously mentioned, the check of stress against
strength is made twice for each point and time:

1. The state of stress caused by the overburden is checked
against the strength, and

2. The state of stress caused by overburden and ground shock
is checked against the strength.

If the first check is negative, the calculation will be stopped before the
dynamic stresses are considered. The calculation also will be stopped
if the second check is negative. A negative result for this second check
means that the structure failed during ground shock. The computer pro-
gram is organized in such a manner that the weapon, geology, and struc-
ture values, and the depth of the structure are kept constant for each
calculation while the horizontal distance from the detonation point to

the structure increases for each loop as long as the structure does not
fail. The result of one calculation cycle is the horizontal survival
distance for a preselected structure with given values of cross-
sectional size, liner material, liner thickness, depth, geology con-
dition, and threat attack procedures.

Determination of Survivability

The effectiveness of a protective structure is denoted by the
single-shot survivability. Single-shot survivability means the probability

10



of survival of a protective structure undergoing a single attack.

For this determination of survivability, the entire structure is
assumed to fail even if failure will occur only in one of its cross sec-
tions. The survivability is influenced by weapon values and system
parameters. The main weapon values are the hit accuracy and the
damage range. The hit accuracy is introduced into the computation of
the survivability by the standard deviations of the weapons system in the
longitudinal and transverse direction, respectively. If the standard de-
viations are the same in both directions, the accuracy of the weapon
system is expressed by the Circular Error Probable (CEP). The re-
lationship between standard deviation and CEP is:

o = 0. 84932 CEP

The horizontal damage range of a weapon for a particular structure
equals the horizontal survival distance of the structure calculated in
the design computation. The horizontal survival distance R determines
the aim area of the underground structure at the surface (Figure 4),

section plan
]

Figure 4. Aim area of on underground protective structure.

If the design weapon hits inside this area, the structure will fail, The
calculation of the survivability is derived in Appendix H. For this der-
ivation, References 11, 12, and 13 were used.

Determination of the Gross Construction Costs
and Costs Per Usable Volume Unit

Information about estimating costs for tunnels in rock was given
by the Department of Water Resources of the State of Californial¢ and
the Metropolitan Water District of Southern California (unpublished

guidel_ines). The information given by the Department of Water Resources

n



is based upon data compiled from 99 tunnel projects around the world.
For the most part, this information was used in the computer program.
The guidelines of the Metropolitan Water District were used as basic
information about the costs of steel liner and for checking and updating
the figures furnished by the Department of Water Resources.

The cost estimation procedure is due specifically to conventiona!
tunneling methods. Under certain limitations, machine excavating
costs for tunneling are estimated at 60% of the costs of conventional ex-
cavating. This estimate is based on information given in Reference 15,

The total construction costs are the sum of the costs for a main
tunnel, access tunnels, and access shafts. The total cost for each
structure comprises liner costs and excavation costs. The liner costs
are calculated by "unit costs in place. ' The excavation costs are spec-
ified in costs of labor, equipment, energy, explosives, drill bits, and
rods, The specified costs are classified according to the size of tunnel
sections and according to rock strength. The rock strength has been
described thus:

Type 1: Dry, massive, moderately jointed or dry intact rock

Type 2: Dry, stratified or schistose rock

Type 3: Dry, moderately blocky and seamy rock

Type 4: Dry, very blocky and seamy rock.
This classification has to be expressed numerically to be used in the
computer program. The approximate numerical classification assumed
for the program is based on the cohesive strength of rock:

Type 1: K > 200 kp/cm®

Type 2: 200 kp/cmz >K 2> 100 kp/cmz

Type 3: 100 kp/cm2 >K> 50 kp/cmZ

Type 4: 50 kp/em® > K .
Besides the variables of tunnel length and radius, the provision of ma-

chine tunneling depends upon the kind of rock. The limitsl5 of machine
tunneling are assumed as:

12



180 kp/cm2 > K >60 kp/cm&
L >2000 m
b< 5 m
where L = length of the tunnel
b = outer radius of the tunnel
Comparable unit construction costs are obtained by dividing the total
construction costs by the usable volume of the main tunnel. A measure

of the cost effectiveness of the protective structures is the quotient of
unit construction costs per unit of survivability:

_ C
Cett °V_. 5
us
where C = cost effectiveness

eff
C = total construction costs
v = usable volume

us
S = survivability

Since n = 1/S, the number of structures necessary to provide 100%
survivability for one of them, the cost effectiveness quotient can be
interpreted as the costs for sure protection of one unit, The cost
computation procedure is derived in Appendix I. In all the cost
equations, an adjustment factor is provided for updating and trans-
forming into foreign currencies.

COMPUTER PROGRAM

Many portions of the analysis do not require the effective seis-
mic velocity between detonation point and structure location. So, in the
interest of economy and clarity, two separate programs were written,
The main program computes the survival distance, the survivability,
and the economic features. The second program determines the ef-
fective seismic velocity between detonation point and structure loca-
tion in a layered rock system. The second program can be introduced
easily into the main program as a subroutine,

13



Both programs are written in FORTRAN IV language, The time
necessary for one run of the main program using the CDC 6600 is 40
seconds. The description, the flow chart, and the listing of the main
program is given in Appendix J. The flow chart and the listing of the
program for computing the effective seismic velocity of a layered rock
system is given in Appendix K.

DETERMINATION OF OPTIMUM DESIGN CONDITIONS

Example of Protective Structure

The total structure consists of the main tunnel, the two access
tunnels, and the two shafts (Figure 5) with lengths:

Length of the main tunnel 100.0 m
Total length of the access tunnels 100.0 m
Inner radius of the access tunnels 2.0m
Inner radius of the shafts 2.0m
Inner radius of the main tunnel Variable

access shoft ~.

_

J '\ \ |

main tunnel access tunnel

Figure 5. Configuration sample for an underground protective structure in rock.

The main tunnel, access tunnels, and access shafts are lined by the
same material, either reinforced concrete or steel. The liner thick-
ness T, of the access tunnels is:
Tm . Ra
TSl —————

a R
m

and at least 15,0 centimeters for concrete of 1.27 centimeters for
steel where T, = liner thickness of the main tunnel

14



R inner radius of the main tunnel

R,

m
inner radius of the access tunnels

The thickness of the shaft Tg liner is:

T = 15T

and at least 20.0 centimeters for concrete or 1.91 centimeters for steel. These
determinations are based on rules of conventional mining and engineering. For
reinforced concrete liner, these properties are assumed.

Compressive strength 350 kp/cm2 (5,000 psi)

Reinforcement ratio 1%
Tensile strength 50 kp/cm?
Specific gravity 24
Poisson’s ratio 0.19
Elastic modulus 3.5 * 105 kp/cm?
The properties for the steel liner are:
Yield stress 2.52 - 103 kp/em? (36,000 psi)
Specific gravity 7.85
Poisson’s ratio 0.25
Elastic modulus 2.05 106 kp/em?2

Two conditions for the rock were assumed:

1. The entire rock body between detonation point and structure
location consists of the same rock type.

2. The earth body under consideration consists of different rock
types or upper layers of soil.

For both cases, a particular sandstone and a particular granite were selected
as the directly surrounding structure. The properties of the sandstone are:

Specific gravity 2.5
Poisson’s ratio 0.15
Elastic modulus 3.0 - 105 kp/em?2

16



Longitudinal seismic velocity 3,525 msec

Factor of internal friction 1.5
Cohesive strength 100 kplcm2
Tensile strength 30 kp/em?
The properties of the granite are:
Specific gravity 2.6
Poisson’s ratio 0.20
Elastic modulus 4.0 - 105 kp/cm?
Longitudinal seismic velocity 4,100 m/s
Factor of internal friction 1.5
Cohesive strength 140 kp/cm?
Tensile strength 60 kp/cm?

The detonation is assumed to be a true surface burst. Computations are made
for 100- and 1,000-kiloton weapon yields. The protective structure is considered to be
the target itself; the middle of its target area is Desired Ground Zero. The CEP of the
attacking system is assumed to be 402.25 meters (quarter of a mile). In subsequent
comparisons, the influence of rock type, liner material, liner thickness, and cross-sectional
size are presented.

Optimum Design Conditions in 8 Rock Body of the Seme Rock Type

Protective S with Concrete Liner in Sandstone. For an inner radius of
the main tunnel of 6 meters and a weapon yleld of 100 kilotons, the concrete liner
thickness was varied from 0.5 to 3 meters as & fupetion of survivability. The surviva-
bility, which is dependent upon the structure depth, is shown in Figure 6. The
increasing liner thickness does not affect significant]y the survival distance for values
between 110 and 120 meters and & survivability of about 92%.

The curves of Figure 6 show that only in the depth range from 50 to 100
meters does the survival distance decrease with an increase of depth. Further increases
in depths beyond 100 meters are not advantageous. Figure 7 illustrates the total costs
for protection. The lower parts of the curves represent the depth range from 50 to
100 meters. Increased expenditure in this range results in more protection, in a decrease
of survival distance, and in an increase of survivability.

16
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Figure 6 (C). Survival distonce in a rock body of the same rock type (V).
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Inner Radius of Structures: é m
Weapon Yield: 100 KT
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Figure 7 (C). Total costs for concrete structures in sandstone
with different liner thicknesses (U).
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Obviously, the slope of the curve for the liner thickness of 0. 5
meter is less than the others, This means:

l. For the same amount of additional money, the structure with
the smaller liner thickness offers more additional protection.

2. Planning concrete structures with a liner thickness of 0.5
meters for a survivability of 50% is not economically
reasonable since a relatively small increase in the cost in-
creases the survivability to 91%.

Figure 8 exhibits the cost per usable volume and the costs per
usable volume related to the survivability. The difference between
these two cost values is smallest for the liner thickness of 0.5 meter
and thus demonstrates the economic superiority of this design feature
as compared to the others, Considering the previously mentioned ad-
vantages, only the liner thickness of 0. 5 meter was chosen for a com-
parative study of the cross-sectional sizes of concrete structures
having inner radii of 3, 6, and 9 meters.

Figure 6 shows that within the range considered, the section

gadius does not have a substantial influence on the survival distance
and survivability, The figure also shows that the optimum depth

(optimum in relation to the survival distance and survivability) changes
only slightly with the cross-sectional size (the optimum depth values for
the inner radii of 6 and 3 meters can be considered the same), The op-
timum depth for the inner radius of 9 meters is about 120 meters for a
weapon yield of 100 kilotons and about 220 meters for a weapon yield of
slightly 1,000 kilotons deeper than the others having a depth of 100 and
200 meters, respectively, Figure 6 makes numerically comprehensible
the influence of the weapon yield on the survival distance and surviva-
bility. The survival distance of concrete structures increases from 120
meters for 100 kilotons to 220 meters for 1, 000 kilotons. Assuming
the CEP equals 402,25 meters, the survivability decreases from about
92 to 77%. This means a change from a high to a medium survivability.
The difference in the survivability becomes even larger when the CEP
of the attacking system is smaller,

Figure 6 illustrates that the larger weapon yields require a
greater depth for optimum survival distance. The economic aspects
of varying the cross-sectional size is illustrated in Figures 9 and 10,
Considering the total cost, the structure with the inner radius of 3
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Figure 8 (C). Costs per usable volume for concrete structures in
sandstone with different liner thicknesses (U).
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Concrete Liner of 0.5 m thickness
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Figure 10 (C). Costs per wsable volume for structures in sandstone
with different inner radii (U).
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meters is least expensive; however, structures of larger radii yield
favorable costs per usable volume, These economic considerations
indicate:

1. Small cross-sectional sizes should be preferred for the pro-
tection of installations with small space requirements.

2. For volume-oriented installations (for instance, as depots), a
smaller number of structures of larger cross-sectional size
is, even considering survivability, more economical than a
larger number of structures of smaller cross-sectional size.

Protective Structure with Steel Liner in Sandstone. The steel
liner is assumed to be a tube of equal thickness. And the space between
the rock and steel liner is filled with concrete. For the scope of this
study, consideration of a liner thickness of 2, 54 cdntimeters (1 inch)
was sufficient,

Figure 6 shows the survival distance is dependent upon the struc-
ture depth and the weapon yield, For both the cross-sectional sizes
with inner radii of 9 and 6 meters, the survival distance decreases
with increasing depth to the optimum depth of 150 meters for a weapon
yield of 100 kilotons and to 250 meters for a weapon yield of 1, 000
kilotons. The cross-sectional size with an inner radius of 3 meters
has an optimum depth of about 250 meters for 100 kilotons and offers
a smaller survival distance and higher survivability. This size effect,
however, is lost for the 1, 000-kiloton weapon yield. With the higher
values, the weapon yield becomes the more dominant influencing factor.

The comparison between concrete and steel liner demonstrates
the superiority of steel liner, The survival distance for the considered
steel liner is about 50 meters less than that for a concrete liner. The
superiority of a steel liner is corroborated by its economical features,
as given in Figures 11 and 12, In spite of the higher material unit costs,
steel liner is less expensive than concrete (Figures 13, 14, and 15) be-
cause expensive excavation costs can be reduced.

Protective Structure with Steel Liner in Granite. The curves for
the survival distance of structures in granite with a steel liner (Figure
6) show that full protection against a 100-kiloton weapon yield can be
provided for the three considered cross-sectional sizes at a depth of
about 190 meters. The surrounding granite provides better protection
than sandstone from a 100-kiloton weapon, However, the superiority
of granite to sandstone almost vanishes during a shock wave of a 1, 000-
kiloton weapon. The optimum survival distance is about 160 meters,

p<
CONFIDENTIAL



CONFIDENTIAL

*(N) 11P0J J8UUY JUBIELIP YiIM BUCISPUDS U) SBINIONLS JO) $I5OD |40 (D) || SnBig

W GZ°Z0¥ = 43D 0 AnjigEAtang 30N
(%) 0y Ay1j1qoajaing

05§ 00 % o s o o 06 26 %6 96 86 66 00
' | | ! R — 1 | | 1 1 L
OYC OZE 00E 08Z 09Z OYZ 0ZZ 00Z 08l 091 Ol OZL 00l 08 09 Or OZ 0
' z°0
%.. o
4 s 0
> 0% 3 9°0
A
] #[/0 lq.lﬁj 80
01t
ﬂ -
- N —
gl‘ :n
1
91
i’ l-
: 0z

BRIy WO P57 JO Jeur] IS

(s 901) $180D) |00

CONFIDENTIAL



CONFIDENTIAL

Costs per Usable Volume ($/m°)
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Figure 12 (C). Costs per usable volume for structures in sandstone
with different inner radii (U).
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The optimum depth for granite is slightly less than that for sandstone.
The economic features of structures in granite with a steel liner are
shown in Figures 16 and 17, They emphasize that full protection can
be obtained against a 100-kiloton weapon yield with the same amount
of money that is necessary to provide high, but limited, protection in
sandstone,

Optimum Design Conditions in a Rock Body
Consisting of Different Types of Rocks

Structures are assumed in this part of the study to be embedded
in either the same sandstone or granite as in the previous section. How-
ever, the rock faces make changes in the rock body between the detona-
tion point and the structure location. Figure 18 illustrates two possibili-

ties of such structures,
Two cases are investigated: a structure of an inner radius of 6

meters embedded in: (1) sandstone with a concrete liner and (2)
granite with a steel liner. For both cases, the effective longitudinal
seismic velocity between detonation point and structure location is
varied in 1, 000-meter-per-second steps from 1,000 to 6,000 meters

per second.
Protective Structure with Concrete Liner in Sandstone. The sur-

vival distance and the survivability are graphed in Figure 19. For the
weapon values of 100 and 1, 000 kilotons, the survival distance increases
with increasingly effective seismic velocity. Accordingly, the survivabil-
ity decreases with increasingly effective seismic velocity. Full protec-
tion is given for an effective seismic velocity of 1, 000 meters per sec-
ond and a weapon yield of 100 kilotons. The optimum structure depth
increases slightly with decreasingly effective seismic velocity. This
increase of the optimum depth is more distinct in Figure 6 for the case
with a 1,000-kiloton weapon yield.

Figures 20, 21, and 22 show the economic features. The curves
demonstrate that the expenditures for protective structures in a rock
body of different types of rocks produce greater protection if the effec-
tive seismic velocity is small. This result shows numerically the sig-
nificance of proper site selection.

In the case of a 1,000-kiloton weapon yield, the curves of the
costs per usable volume as related to the survivability have minimum
values for the seismic velocities of 2,000, 4,000, 5,000, and 6,000
meters per second. The cost effectiveness is the highest for the sur-
vival distances and depths pertaining to these minimum values.

CONFIDENTIAL



*(N) 11POs J3uUl JUIIYIP YHM 341uDsb u) sBInyOnYys 40§ 54500 |Dyo) (D) 9| by

W GZ°ZO¥ = d3D 0§ Aul|igoataing 130N
(%) 210y Asjigoaraing
§S 09 g9 0L SL 08 S8 06 T6 ¥6 9% 86 66 001
| I 1 1 | [ | | | | |

1 |
(w) @adouDysi] |JoAIAING
O¥t OZE OOE 0BZ 09Z OvZ OZZ 0OZ 08l O9L Ovl OZI OOL 08 09 OFr OZ O

CONFIDENTIAL

0
Z°0
-
0% g.u
j 9= 8'0
0"l
#ll..l z°1

rf
ri
91
8"l
! 0°Z
1> 0001 13 001

SRR IYY WO pG° 7 JO Jeur] 199§

CONFIDENTIAL

30

($ 901) $150D (0401



CONFIDENTIAL

L=

+ Steel Liner of 2.54 cm thickness
e gctual costs
= == == == == costs related to survivability
- 100KT ! 1000KT
!
280
250
240
% 2
S
g 200
X ~
> Iml
= 3o |
3 o = 4
£ w0
- .
3. I!ﬂF
100 —
N ‘*
80 =y Tﬁ.ﬂ
ad —6.0
9.0
— Iu
40
20
l 20 40 ZO 80 165 15'140 160 180 500 220 240

Survival Distance (m)

R R R R SN RN B R

Survivability Rate (%)
Note: Survivability for CEP = 402,25 m

Figure 17 (C). Costs per usable volume for structures in gronite
with different inner radii (U).
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Figure 18, Rock bodies consisting of different types of rock.

Protective Structure with Steel Liner in Granite. Figure 19
shows that full protection can be reached against a 100-kiloton weapon
yield for all values of the effective seismic velocity. However, a small
seismic velocity is advantageous here, too, because full protection can
be realizea for less depth and, therefore, for less cost. In the case of
a 1, 000-kiloton weapon yield (Figure 19), full protection is given for
values of the effective seismic velocity of 1,000 and 2, 000 meters per
second. The curves for the other values of the effective seismic vel-
ocity show more explicitly that the optimum depth decreases with in-
creasingly effective seismic velocity. The cost curves in Figures 20,
21, and 22 show that structures in granite with steel liners are more
economical than structures in sandstone with concrete liners.

FINDINGS

1. Dee.p underground protective structures can be designed for
high degrees of survivability and even for full protection.

2. Steel is a better liner material than concrete for protective
structures in rock. A liner 2, 54 centimeters (1 inch) thick

satisfies the requirements for protection against a true sur-
face burst of 1, 000 kilotons,
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3. The weapon yield is the dominant factor influencing the survi-
val distance and optimum depth. Its influence was determined
numerically for the 100- and 1, 000-kiloton values. The results
are shown in Figures 6 and 19,

4. The influence of the type of enveloping rock appears to be more
significant for the smaller weapon yield of 100 kilotons.

5. The rock interfaces between the detonation point and the struc-
ture are of great importance since the survivability increases
greatly when the effective seismic velocity of the rock body de-
creases, The influence of the rock interfaces, represented here
by the seismic velocity, is shown numerically in Figure 19,

6. No significant influence of the cross-sectional size on the survi-
vability could be found for structures with concrete liners.

7. For structures with concrete liners, the increase in resistance
of liner thicknesses greater than 0.5 meter was found to be
insignificant,

8. With a steel liner, tunnels having an inner radius of 3 meters
provided greater survivability than those with inner radii of
6 and 9 meters,

9. Steel liners provide greater survivability than concrete liners.

10. Structures with steel liners are less expensive than those with
concrete liners,

CONCLUSIONS

From the foregoing study of deep underground tunnels in rock, it
can be concluded that:

l. An increase in the depth of cover does not always lead to an
increase in survivability. There are optimum depths which,
if exceeded, will increase the survival distance and decrease
the survivability,

2. The optimum site profile consists of a thick soil layer over a
strong basement rock,

The computer program described herein gives the location, with respect
to ground zero, of a tunnel with a preselected survivability, It also pro-
vides unit and total costs,
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APPENDIX A
STRESS DISTRIBUTION CAUSED BY THE OVERBURDEN

Figure 23, Tunnel conflguration.

Notation:

H = depth of the structure in meters

a = inner radius of the liner in meters

b = outer radius of the liner in meters

r = coordinate radius in meters

@ = coordinate angle in degrees

Y = specific weight of the overburden in Mp/m3
E:l = elastic modulus of surrounding rock in kp/mZ
'Ez = elastic modulus of liner material in kp/mz
v, = Poisson's ratio of surrounding rock

¥, = Poisson's ratio of liner material
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= radial stress in rock caused by the overburden in kp/mZ

cr(l)nt
o = circumferential stress in rock caused by the overburden
6(1)st 2
in kp/m
‘r‘_“).t = shear stress in rock caused by the overburden in kp/mZ
9. (2)st = radial stress in liner caused by the overburden in kp/mz
o = circumferential stress in liner caused by the overburden
0@2)st . 3
inkp/m
TrO(Z)ot = shear stress in liner caused by the overburden in kp/mZ

The specific weight is the average specific weight divided by the
entire depth H. The elastic properties E| and v, of the surrounding
rock are the respective values of the rock body, within 3 cavity diam-
eters, around the structure. The stress equations are:

Tr(1)ae i I[ ‘%"-1 (%)Z]
oo (®) -3y 8) el

28 1o o))

%9(1)st

Teo(l)st -~ 2

52 [l -

or(Z)lt 2
f 2 4
220,00 - 302 o2
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%9(2)st

Tro(2)st

where
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APPENDIX B

DETERMINATION OF THE PRESSURE PULSE

\ - :

Notation:

.
]

H

'N

Figure 24, Tunnel location with respect to ground zero.

depth of the structure in meters

horizontal distance between detonation point and structure in
meters

slant distance between detonation point and structure in
meters

effective longitudinal seismic velocity for the rock body
between the point of detonation and the structure in meters

per second

longitudinal seismic velocity of the rock body of three tunnel
diameters around the structure in meters per second

free rock field peak radial particle acceleration in g's

free rock field peak radial particle velocity in meters per
second

free rock field peak radial displacement in meters
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t = rise time of the pressure pulse in seconds

a
t d = duration of the pressure pulse in seconds

tb = decay time of the pressure pulse in seconds
Wn = nominal weapon yield in kilotons

Three kinds of atomic weapon bursts are distinguished and con-
sidered. The fully contained burst is assumed to have an energy
coupling for the ground shock of 100%. The effective weapon yield
We is equal to the nominal weapon yield Wp:

W =W
e n

The contact surface burst detonates a small but finite distance above
the ground surface:

0.018

W. = Wn(O. 0z - 5

log wn)

The true surface burst detonates coincident with the ground surface:

w° = o. 01 wn(bu 00 =, log wn) L

The true distance between the detonation point and the center of the
structure is:

2 2
R.= +H

The true distance is converted into the scaled distance:

R
s

)1/3

R (w.

The scaled distance is the variable in the equations for free-
field peak radial particle acceleration, velocity, and displacement.
These equations are obtained from the graphs in Reference 4:



Peak radial particle acceleration.

a
max,
C < 1800 m/s

r 2‘ c ¥ if
1525 P
a
maxi 2
(C ) if 1800 m/s <C & 3600 m/s

a B 2
max 2440

3 max

. 2 .
L, 21 (C ) if
4880

3600 m/8s < Cp

where amax; depends upon Cp and R, thus:

c R log *max,
_r Re i
Cp £ 1800 m/s Re € 130 m  -4.4064 log Re + 9.1425
c s 1800m/s R¢ > 130 m -1.9991 log Re + 4.0456
P
1800 m/& < Cp < 3600 m/s R, € 200 m  -3.9798log R _ ¢ 9.3843
1800 m/s < Cps 3600 m/s Re> 200 m -1.8143 log Re+4.4104
3600 m/s < c, _R_$ 105m -2.6394 log R_ + 6.9549
Re > 105 m -4, 8804 log Re +11.4999

3600 m/s < C
P

A7



Peak radial Erticle velocity.

v

max

r

Vi

v

max

i

1525

i

2440

~ 1880

if

if

if

Cp £ 1800 m/s

1800 m/s < C s 3600 m/s
p a

3600 m/s < C_ .
P

where me depends upon Cp and Re' thus:

C
4

Cp < 1800 m/s

i

R
=g

R $105m
e

C £1800m/s R >105m
P e

1800 m/s < Cp £ 3600 m/s

1800 m/s < Cp < 3600 m/s

3600 m/s < Cp

3600 m/s < Cp

R £7m
e

R >m
e

R £120m
e

R >120m
™

log vmax1

. =3,6860 log Re + 6.8244

-1.3497 log Re +2.0926

-2.9822 log R + 6.0408

-1.6660 log Re + 3.5528

-2.4134 1og R_ +5.2966



ST T

L

4

Peak radial particle displacement.

Likewise, dmn: depends upon Cp and Re’ thus:

C
P

C_€ 1800 m/
P m/s

_Cp € 1800 m/s

1800 m/s < CP € 3600 m/s

1800 m/s < Cp £ 3600 m/s

<C
3600 m/s =

R
e

R 8 100m
e

R >100m
e

R £150m
e

R >150m
e

o
! gdm&x

=3.7901 log Re +5,.7939

-1.3722 log R_ + 0.9520

The free-field stresses are approximately proportional to the
particle velocity (Hugoniot Equation)s

o = Pe C°° v , and

max - P’ Ca: Vmax

where ¢ = free-field radial stress in kp/mz

p = mass density = sz . 1000

For the triangular-shaped load impulse (Figure 25), the rise

time is
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and the pulse duration is

For further computations, it is convenient to have the decay time
expressed as:

tb:td-ta'

’ Irqul" % ';d f

Figure 25, Stress and velocity pulse.
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APPENDIX C

DETERMINATION OF THE EFFECTIVE SEISMIC VELOCITY
OF A LAYERED ROCK SYSTEM

Figure 26, Direct and indirect rays from the point
of detonation to the structure,
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Notation:

H = depth of the structure in meters

R = horizontal distance between detonation point and structure
in meters

Rs = slant distance between detonation point and structure in
meters

Tk = thickness of layer k in meters

'I‘D = thickness of layer package between point of detonation and
structure in meters

Lmax = maximum thickness of the layer packages penetrated by the

indirect rays in meters

o = acute angle between ray and the normal of the refracting
plane in degrees

€ = angle of layer inclination

0 = angle between horizontal distance (R) and slant distance
(Rs) in degrees

C = seismic velocity of layer k in meters per second

C = effective seismic velocity for the distance between point of
detonation and structure location in meters per second

=
i

ordinal number of the layers

The effective longitudinal seismic velocity is the quotient of
the slant distance from the point of detonation to the structure and the
shortest time necessary to travel this distance:

I T

P tmin
The structure can be hit directly by a pressure ray (ray group I through
layers 6, 7, 8, and 9) going through the layers between the point of
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detonation and the structure, indirectly by ray group Il which penetrates
into layers above the structure and returns after having traveled parallel
in one of the layers above, and indirectly by ray group 11l which pene-
trates into layers below the detonation point and propagates to the
structure after having traveled parallel in one of the layers below,

The travel times of the direct ray and all the indirect rays are com-
puted and compared., By Snell's Law, the direct ray has to yield these
conditions:

in a C
Sin k i} K

S Sl
and

n

=X

2 Xy

m
where

X = R*cos ¢ + H*sin ¢

Xk = Tk- tgctk

The path of the direct ray must be found by iteration. The loop
is initiated by the ray that starts into the straight-line direction from
the detonation point to the structure:

a =90 - (¢ - 6) .

1
A direct pressure ray does not exist if its path leaves the surface of
the half space (Figure 27).

s ”’ ”’ s

- -~ ~
Gz f, , - . *

-*__, i

/structure-"'"
Figure 27. Path of ray leaving the half space.
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The travel time is:

k=n T
k
t = Z
y . C
k=m Sl2S ak k

In the example of Figure 27, m = 9 and n = 6.
The computation of the refraction angles a, . since the indirect
rays start with the one that is 90 degrees, is:

a = 90°
r
sing = 1
r

) C

smak S k
C

r

The path length traveled parallel to the layers is:
k=n
2 S xk-kz_:jxk

For ray group III in Figure 26, m =10, j= 11, and n = 6. If an
assumed ray's length, Xg, is negative, that ray never can be the fastest

one and is to be ignored.

The travel time for an indirect ray is:

k=j T k= T
= ﬁ + ZJ e S ¥ — Lk
= - C
Cr o SO8 oy Ck K= cos a, C

For computational convenience, the detonation point and the structure
locations are assumed to divide their particular layers by an imaginary
cut into two layers of the same seismic velocity.

To simplify the computation and the use of the program, the half
space is considered to consist of four areas as shown in Figure 28. The
areas are limited by the relations:

Area A: € is positive and 0 < § < (90 - ¢)
Area B: € is positive and (90 - €) < § <90
Area C: € is negative and |€] < § < 90
Area D: € is negative and 0 < 6§ < |¢| .
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Figure 28. Partition of the half space in areas related to
layers' inclination and structure location.

This distinction is based on the following sign convention:
Distance R is always positive,
Depth H is always positive.
Location angle § is always positive.

Layer inclination € is positive if the detonation point is located

""above the layers'' and is negative if the detonation point is
located ''below the layers,"

""Above the layers'' means that an observer moving into the direction
of R meets lower, in general earlier sedimented, layers. ''Below
the layers' means that the observer meets higher, in general later
sedimented, layers (Figure 28).

With this area and sign convention, the previously given expres-
sions for this distance X and for the first approximate angle change to:

Area A: X=RA-cos€-HA- sin €

al=90- €-6A
Area B: X=RB- cos € -HB' sin €

al=6B+€-90
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Area C: X

RC- cos € + HC sin ¢

°‘1=90+€'6c
B £ . € 4 i
Area D X RD cos +HDsm€
al—90-(+6D

All the rays that are supposed to hit the structure travel between the
perpendiculars from the point of detonation or the location of the
structure to the layers. A ray traveling beyond a perpendicular cannot
cross the perpendicular because the signs of both sides of the basic
law:

slma,.1°¢© 1

are the same and, in the case of refraction, the angles are allowed to
change only from 0 to 90 degrees.

Because of these relations, ray group II does not exist for area
A, To penetrate the first layer above the detonation point, the rays
would have to travel beyond the perpendicular in area D and from there
they cannot return to area A by refraction.

Besides the layer package between the detonation point and the
location of the structure, layers above and below this package are
significant in selecting the shortest travel time. The program user
will want to know how many layers above and below to consider (Figure
29). The maximum thickness of the layer package above may be
determined by the assumption that the layers penetrated do have the
minimum seismic velocity for rock of 1, 000 meters per second and
that the layer in which the ray travels parallel does have the maximum
seismic velocity in rock of 6,500 meters per second.

From Figure 29 it can be seen that:

UR.Z + H2

tdirect 1000
: ) 2 , X , L+ Ty
indirect = 1000 cos @, 6500 * 1000- cos o
(o}
. _ 1 1000 _
sin a, = _—6500 = 0.1539
2
cos ozl = 0.9881
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Figure 29. Maximum thickness of the layer package above and below
the directly penetrated layers.

tan Otl = 0,1557
X = R'cos ¢ + H sin ¢
X = (R*cos € + Hsin¢) -L-t:anoz1 - (L + TD)- tan al
s
= (R'cos € + Hsing¢) - 0,1557(2° L + TD)
1:direct - tindirect
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\, 2 2 4
I + H L Xs b I‘D

= + . _
000~ 1000-0.9881 ' 6500 ' 1000° 0. 9881

R+ H R-cos € + H- sin € 0.987 - T
= YT 972 ' T1.974 - 6.5 t T 974

D

Since -R *sin € + H * cos € = 0
L - -R+ sin ¢ + H - cos €
1.974 + 6.5

o

!
tan € =

-R*cos € - H sin €
1.974 + 6.5

L‘l =
If 0s € s 90
L < 0

H
LB (¢ = arctan R) = Lmax

1 R
cos € = = e —
\/1;an2 €+l VRZ + H2
sin€ = _ftan6._. . _H
Vt:an2 €+1 \/R2 +H2
/2
R +H2 R2 + H2 TD
L = + +
max Vet o2
1.974 1.974° 6.5 VR +H 2
Lmax = 0,585 - RS + 0.5 TD
Lmax ~ 0.6 Rs + 0.5° TD
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Parallels to the layers in the distance Lmax fromn either the
detonation point or the location of the structure determine the lower
and upper boundary of the rock body which has to be taken into con-
sideration (A, B, C, and D in Figure 29)., In the demonstration case
of Figure 29, however, the distance Lmax on the perpendicular into
the upper layers exceeds the ground surface. Therefore, the real
upper boundary is the ground surface itself. So layer T; is the
upper boundary layer and layer T|g is the lower boundary layer.

The direct rays in areas A and D and the indirect rays of
group Il in areas B, C, and D have to be checked against leaving the
half space. For the check, a critical Xp of each layer is computed
(Figure 29).

Figure 30. Propagation areas.

Rays in area A are considered real if the condition:

z xk * xak

is met. The previously mentioned rays in areas B, C, and D are
considered real if the condition:

P
Lx % %0

is yielded.
The input to the program is organized in such a manner that
the layers of the considered rock body are denoted by a continuous
row of arabic numbers starting with '"1'". The upper boundary
layer, generally the geologically youngest layer, is layer number "1',

Summarization of the rules for preparing the geology input:

1. Determine the sign of the inclination angle.
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. Determine the side boundaries of the rock body to be con-
sidered by drawing the perpendiculars to the layers through
the point of detonation and the location of the structure.

. Determine the upper and lower boundaries by parallels to
the layers in the distance Lmax = 0.6Rg + 0.5 Tp from the
point of detonation and the location of the structure.

. Check whether the ground surface substitutes the upper
parallel as upper boundary.

. Divide the layers in which detonation point and structure are
located by an imaginary cut into two layers each,

. Enumerate the layers of the rock body to be considered, start-
ing with ""1'' for the upper boundary layer (generally the
geologically youngest layer).

. Order the layers penetrated by:

Ray Group I to the input notation NLF,

Ray Group II to the input notation NLB1, and
Ray Grodp III  to the input notation NLB2,
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APPENDIX D

DERIVATION OF THE STRESS DISTRIBUTION CAUSED BY AN
INCIDENT HARMONIC WAVE

gy

X

Figure 31. Stress wave intercepting cylinder.

Notation:

r = coordinate radius in meters

a = inner radius of the structure in meters

b = outer radius of the structure in meters

Ca = longitudinal seismic velocity in meters per second
Cﬁ = transverse seismic velocity in meters per second
0. = radial stress in kp/m

g * circumferential stress in kp/m2

T - shear stress in kp/m2
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1 as a subscript denotes the rock medium

2 as a subscript denotes the liner.

STRESS TENSOR

The differential equation governing the motion of an elastic, iso-
tropic, and homogeneous medium is:

A+u)vy ru+tpyg u=pu

where
Y = Lame's 1. constant of the medium
i = Lame's 2. constant of the medium
P = density of the medium
u = displacement vector

The displacement vector can be expressed by the derivatives of a
scalar potential and a vector potential:

u =v¢+vxE

The potentials satisfy the wave equation:

2 S
¢

<
S
]

<

]
W N||—o
|

where

longitudinal displacement potential

S
il
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distortional displacement potential

c - Atlu
o o
¢y JE
B o

The stress tensor is related to the displacement vector by:

©
1

longitudinal seismic velocity

distortional seismic velocity

it

; X(V-G)I:+u(v;+;v)

where

1 unit tensor
For the assumed plane strain problem, the vector-displacement
potential is directed into the axis of the cylinder:

b = e, b

The vector potential is the scalar product of the unit vector ;z and the
magnitude ). Substituting the potentials into the stress tensor, the
stress equation in cylindrical coordinates can be written as:

2 2
- 2 2¢ 1 3y 1 Y
0'r = AV 0 +2“( 2 +r 33T -2 39)
yr r
2 1 aZQ 1 3¢ 1 ang Y
Tq =”°’+2“(—5 2+;ar'?ara9+_?-ae)
r 3f r
1 3% 1a¢.lap.1 a9 1.2
e * 2“(—1:31‘36 '?ae 3 +? 862-—v 'b)

The equations for the displacement are:

r r r 36
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20 _ Y
36 oar

u

-

A

STRESSES

The potentials of an incident, longitudinal, harmonic wave propa-
gating in the x- direction are:

: ilgx - wt)
¢ B
» =0
where
¢o = amplitude
w = circular frequency
g E _C‘H. = wave number of the longitudinal wave
(44

The nonzero potential can be written in cylindrical coordinates as:

- iax - wt) < .n -igt
¢ 9 e ¢°§ ¢ i J (ar)cos (ng)e
where
I, = Bessel function of first kind of order n
€ = 1lforn=20
n
‘n = 2fornk O

The incident wave is reflected at the liner. The outward-propa-
gating longitudinal and shear waves are determined by:

(R) - (1)

_ it
) ° ngo A H " (qt) cosnge



(1)

- ) L gt
d‘(l) Z Bnlln (ﬁll)bm ng ¢

The waves propagating through the liner towards the inner boundary are
represented by:

@

i) 2 -it
" :;) z Mn”rﬁ ) (azr) cos n@ e 'w
n=0
(i) - (2) . it
b (2) = ; Nan (ﬁzr) sin ng e w

The refracted wave is reflected at the inner face of the liner., The re-
flected waves propagate outward:

R < 1) it
@:2)) Z RnH:x (qzr) cos nfe @
n=0
R) _ ¢ (1) -iwt
;b(z) = ngo San (pzr) cos n@e
where
H('l) = Hankel function of first kind of order n (for inward-
n propagating waves)
H:lz) = Hankel function of second kind of order n (for outward-
propagating waves)
o = —é"z- = wave number of longitudinal wave
o
8 = —C“L = wave number of shear wave
B
w = circular frequency
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A, Bn, M, N, R, and S are coefficients that have to be deter-

n n n n n o
mined by using the boundary conditions:
At the interface between rock and liner,

r = b
Or(1) T %2)
Tral) T Tre(2)
Yriy T Yr2)
Yoy T Yg(2)

the innerface of the liner has to be stress-free

r = a
or2) - °
Tr62) 0

Superposition of the effects of the incident reflected and refracted
waves respectively leads to the stress equations:

_ -2 ¢ n (i) (R) =(R)
c’r(l) B Z“lr n§ ¢o€nl anr * An anr ¥ Bn anr
X (cos nee- wt)]
-2 g n (i) (R) —(R))
Z“lr z ¢oen1 anr +An anr - Bn anr

%8(1)
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-2 o n (i) g 1}(1{;) , -igt)
T 2 : < : .
rg(l) uyt Z‘kwocnl anr +Anl nr n l nr (bm e & )

_ o, D) (R), o DR
"r(Z) h Zj 2 nr nZ nr RnZDnr +sn2 nr)

X(cos nee- wt ]

- (1) ‘(1) (R) DIR)
%9(2) z(j nZ nr nZ nr RnZFnr - SnZ nr
X (cos nge wt ]

_ -2 o (i) (i) = (R) ;;(R))
TrG(Z) - 2“21‘ ngjmnzmnri’anenr-i-Rn?.Enr +Sn2 nr

X (sin nge” iwt)]

where
i) (2 12 2
1 "(“ tn-3gt )Jn (o) 7) )77 (e 7)

(2) (2)

1 2 12 2
2 x(1) = (n" 4 -2B T ) Hyy ™) -0 PH (0, )
(R) ([ 2 1.2 2).(1) (1)
anr _( Ak Zpl r )Hn (alr) -aern-l(alr)
(R 1.2 2y..(1) (1)
2Dnr (n tn--g5 T )Hn (@, ™) ~a,tH_ " (a,7)
i _, 2
1Bpe =0 ¥ J oy7) - ng T (1)
i) 2 2 2
ZEr(llr = (n + n) H:l )(azr) - naerr(l-)l (O‘Zr) -
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(R) _ 2 (1 L
(E. =" +n)H (@,r) - no rH_ " (o 7)
R 2 1
. f\r) (n" + n) HI(1 )(azr) - naer _)l(azl')
2 2 2
1 1(111)- =-(n® +n - "’?;’2 +EIBI' )Jn(alr) torJ e
2 22, 1,22 2
2 2 1 1 1
1Fx(1p;) ={n" +n- alrz +38,) H o)t “1’“51-)1“’1”
B) (240 g2 4 Jg22 L
ZFnr ='(n tn- + ) H r) * aZan- l(azr)
PR 0?4 ny ) (g x) 4 ng e (8 r)
DR -+ m ul (g0 +np ) (g,0)
Z :111)' = -(n + n) H( (pzr) + nper (pzl')
(R) 2 (1)
lEnr --(n +n- zpl )H ﬂ r) + pern-l (ﬁlr)
R 2 1,2 2y (1 1
ZEx(u) =-(n®+n- 385" H:l )(’zr’ * ﬂer:!-)l 8,7
_(1) e 1,2 2y ..(2)
2"nr =-(n® + - 28T )Hn (B,¥) * BT H ) B,)

The coefficients An’ Bn' Mn’ Nn’ Rn’ and Sn
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where

()"

[1J]|H ) :bx

(R) =(R) (l) —(i)
V1P v 1Pnb 2Pnb 2Pab
(R) =(R) (1) T
VlEnb lEnb 2 nb Z nb
(1) (1) (2)!
o bH " (D) nH (g b) aPH " (oyP) nH pzb)

on(ll) b) ple plb) nH( )( b) psz(z) pab) nH( )( b) prH

(i)
° ° ZDna
(1)
° ° Z na
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=(i)
ZDna

E(i)

2 na

(R) —=(R)
ZDnb ZDnb
(R) =(R)
ZEnb ZEnb

(1)' (1)
(o,b) nH_"(B,b}

(n'

(Qb)l
(R) =(R)
ZDna ZDna
(R) =(R)
ZEna ZEna




and

and

(i)
v 1P

(i)
v lEnb

1
alen(aIb)

n Jn(alb)
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The expressions

.X(Y) or .X(y)
j na j nb

denote the values of

_x(y)
j nr

for r=aorr=D>b, respectively,

After determining the coefficients, the stress can be calculated
from the stress equation,
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APPENDIX E

DERIVATION OF THE FOURIER-TRANSFORMED POTENTIAL
OF THE TRIANGULAR PRESSURE PULSE

THE FOURIER TRANSFORM IN GENERAL

The Fourier transform f(w) of the pulse f(t) is
l @
__1 iwt
fw) =5 J' £(t) ' at
-0

Because the pulse is considered to start on times greater than zero,
the one-sided Fourier transform:

i(t) et at

o 8

f(w) = -2—11;

will be used.
If the function f(t) is approximated by straight-line segments in
the increments of Atj , the function can be written as:

Af.(t)
f(t) = fj_l(t) + Atj (t - tj_l)
for
tj-l €t < tj
where
£.(t) = £.(t) - £, _(t
BE (M = (1) - £ (1)
At, =t -t e
j i -1
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The first derivative of the approximating function:

df (t)  Af.(t)
] J

dt At
J

is continuous inside the interval At, . At the limit arguments, ]
and tj the first derivative is discountinuous, The function of the’
first derivative is a step function,

The second derivative inside the interval is zero:

but is undefined in this form for the limiting arguments of the interval.
The second derivative for the limiting arguments can be determined by
the Dirac impulse:

d d f(t) _

dt2

Af(t)6 (t-t)

if t= tj, where

df, _(t)  df.(t)
’ ___Jtl J
af (tj) T dt Todt

Since the Dirac impulse is zero for arguments different from zero:

6 t-t. -
( )
If # « 8

t t

the second derivative for the interval and its limit on the right may be
written:

£ = Af' (¢, t-t,
(t) A (J)G( J)

t, <tst,
j-1 j
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The Fourier transform of f(t) is:

fw) = -2'—" J (1) @t qt
0
1 3 J i
fw =5- 2 Af(t) 6 (t-t) et at
j=1 tj-l J J

Using the definition of the Dirac function:

o® . iwt.
I elwt S(t-t)dt = e ]
0 J

the transform of f'(t) is simplified to:

iwt,

n
£ (w) % 3 Af'(tj) e
j=1

The second derivative of the harmonic wave form is:

Fw = -w fw)

Therefore, the transform of f(t) can finally be obtained as follows:

fw) = -
w
L B A L5
flw) = =
2 j§l _wZ

where, according to prior definition:

£, .(t) - £.(t)  £.(t) - £, _(t
- G- 50 6m -6,
j t, . -t t, - t,
i+l i -1
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APPLICATION OF FOURIER TRANSFORM
j

omax

0 ta td

' "

Fi.gure 32, Stress pulse,

The free-field stress o (t) can be approximated:

o (i)

_ “max 0
o(t) P t s ts ta
a
(1)
Y (t,-t)
max ‘' d
o(t) T m——— s t stc< t
N d
(td ta) a

The derivative differences with the arguments t = tj are;

t. =0
J
o(i)
Af’ (0) —
a
t = ¢
j a
p iy (1L , 1
Af (ta) - max(t +t )
b a
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(i)
(04
max

%

Af7(t))

The free-field stress as a function of the circular frequency w now can
be expressed by:

q(i) . iwt iwt
max 1 iwt 1 1 a 1 d
o (w) = _——2. r . e [o) T + ..t— e + ?_ e
2ne w L a b a b

ri,
a

o (w) 2
2m-w L\ b

(i) ; )
1
% max ( TR T N e T
__max e 2 1 _Td_ 1
t t
b a

Since the particle velocity is bound to the free-field stress by the
relationship:

(+}
v =
p-C,
where
p = density of the free-field medium
C = longitudinal seismic velocity of the free-field medium
44

the particle velocity as a function of the circular frequency can be written:

(i) . -
o'ma,x 1 1 1“"ta, 1 l"‘,td 1
v{w) z ——— +—]e Ay e - t_
b a

2n wzp . Ca tb ta
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The Fourier transformation delivers:

vy = [ viw . ety
0

or, in a more general form:

a

v (t) = f v(w) - e @t dw
0
and
(i) . .
b4 (V] iwt iwt .
o o] ) g
0 2n wp:* ¢ b a b a

a

DISPLACEMENT POTENTIAL AS A FUNCTION
OF THE CIRCULAR FREQUENCY

The transform between ¢(t) and ¢ (w) is:

el(ax-wt) b

B(t) =% o (w)

o8

By taking the partial derivative with respect to x, the displacement
equation is:

u(t) = I«p(w)iae
0

i x-wt) dw

By taking the derivative of the displacement expression with respect to
time, the velocity equation is:
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vit) = fw(w)awei(ax'wt)dw
0
and, wmith ¢ = w/ca , the form is:
T 0@ o? faxet) 4,
0

By comparing this equation with the last one of the previous section,
the frequency-dependent potential now can be determined:

(i) ] .
oln) = —max (L +;),“"‘a__l_ Jot 1
2y w‘p b ta % t

or

v c iwt iwt
¢ (w) = 20 (l+tl)e S
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APPENDIX F
DERIVATION OF THE STRESS DISTRIBUTION CAUSED BY A
TRIANGULAR-SHAPED PRESSURE PULSE

The potentials of the incident triangular-shaped pulse that propa-
gates in the x- direction are:

® ilox - wt)

%) = 1[«) (w) e dw
[

) =0

where

¢ (w) = Fourier transform of ¢

w = circular frequency

o = Cl = wave number of the longitudinal wave.
o

The nonzero longitudinal potential ¢¢ can be expressed by a Bessel
function series:

e =/ plwe @ gy - [e (w)%I[cnin’n&rr)cos(ne)e'i"’t]dw

which yields stresses as follows:

s 2§ o () R), 5 =R
c’r(l)dy - Zult £n§0K¢0(w)€n1 anr+An anr +Bn anr)

X (cos ne@ e iwt dw)]
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%o(hdy 2“1’-22 ngu[(“’o‘w’fni"anfl*‘me.':’- By iDnr
X (cos neo e-i("’t dw)]

T ra(l)dy” zulr'?‘z ;ok ¢’o(“")‘ni" lEfxix)' ks 1E$) v 1-F:$)
 (inno ot o)

Or2)dy . Z ng [(M sz:: +N_ Ds D4R zD(R) + anDS:))

2[(M )y pi,p pR_g PR
0

n2 nr nZ nr nZ nr nZ nr

L, 21 . (i) =) R),s FR)
T ro(2)dy 2M2T L;:j 280 PN, Fnr tRLE,, 15 E nr)

X (sin no e-iwt dw)] .
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APPENDIX G

DERIVATION OF THE ALLOWABLE STRESSES FOR ROCK

74 c
n 1
Figure 33. Straight-line envelope of Mohr's circles.

Notation:

K = cohesive strength in kp/m2
"] = angle of internal friction
o, = major principal stress

c, = minor principal stress

o. = radial stress

%% = circumferential stress

T.g = shear stress.

ALLOWABLE MAXIMUM PRINCIPAL STRESS
IN AN ISOTROPIC MEDIUM

According to Mohr-Coulomb-Navier's Theory, the envelope of
Mohr's circles is the straight line: '
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T =tge- o tK

From Figure 32, it can be read:

01'0
Tn = 2 cos
9 to, 9,-0; e
On - 2 2
%1% . _sine 90 '% 9% ol o
2 L2 cos 2 2 il

Manipulations lead to the representation of the envelope related to the
principal stresses:

_2Kcos(p+l+sin<p
0‘1 " 1-sin @ 1-3s8ing "2

The last equation means that for a certain g, , the value of g, is just
the allowable limit. Therefore, the equation should be written:

_2Kcoso® 1+ sin @
"1-sin® " 1-sing 2

Oallowable
The actual, maximum, principal stress o, has to yield the condition:

%) < %)lowable.
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APPENDIX H

DERIVATION OF THE SINGLE-SHOT SURVIVABILITY

y A

circle 2

circle 1

Figure 34, Plan for probability analysis.

Notation:

Desired ground zero is the origin 0 of the coordinate system

D = distance between desired ground zero and the center of the
structure in meters

a = location angle for the center of the structure in degrees

L = length of the tunnel in meters

8 = angle between tunnel direction and D direction in degrees
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R = failure distance of the tunnel from GZ
o = standard deviation in x direction

o = standard deviation in y direction

P = probability of failure

S

probability of survival (survivability)

The idea is to determine the target area, to divide the target area in
narrow rectangles of width Ax and of length y - y_ to determine

the probability of failure for the narrow rectanugles, to find the prob-
ability of failure over the entire target area by summation of the prob-
abilities of all the rectangles, and to determine the survivability out of
the probability of failure.

DETERMINATION OF THE TARGET AREA

Center C :
c

xC = D.cos o
C
Yo = D. sin «
c
Point Hl:
- L
Xy =xXe =3 cos (o - B)
1 c L
= - —. in {4 -
Vg = V¢ 5+ sin (& - §)
1 c
Point HZ:
Xy =xH + L+ cos (- B)
2 1
YH =YH +L'Sin(d-ﬂ)
2 1
Point CI:
xC1=xH1+R . sin (@ - B)
yCl=yH1 -R . cos (¢- B)



Point CZ:

Xc =%y tR . sin(a - @)

2 H2
Yo Yy -R - cos (a- B)
C, 'H,
Point C3:
X, =X -R: sin (@ - g§)
C3 H2
Y =y +R . cos (@ - B)
€, 'H,
Point C4:
X~ X, -R. sin (a- B)
C, 'H B
YC =YH +R -+ cos (- 8)
4 1
BOUNDARIES

Equation of circle 1:
1/2

I 2
Y-[R -(x-xH)] +YH
1 1
Equation of circle 2:
2 21 1/2
V=|R-(x-xH)] t vy
2 2
Equation of straight line S 12°
Ye .7 7€
y= 2 1 (x-x.)+y
X, -Y C C1
CZ Cl 1
Equation of straight line S3 4
L Ak (o
y= ——2 x-x_ )ty
xC3 - xc4 C4 C4
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PARTITION OF THE TARGET AREA IN NARROW RECTANGLES

The width of the rectangles is:

Ax %
oy

The divisor A determines the width of the rectangles in relation to the
weapon accuracy expressed by the standard deviation in the x - direc-
tion., The usual problems for the resultant accuracy (probability result)
was found to be sufficient if A was chosen:

A =100
2.3
A“‘loo

and the error was less than one percent.
To get the length of the rectangles the target-area boundary is
divided into a lower boundary B].CleB2 and an upper boundary

B2C3C4Bl (Figure 34). The length of rectangle 1 then is:

A &
L=y, (k+5) -y &+ )
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