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ABSTRACT 

The objective of this study was to find optimum design features for deep 
underground protective structures in rock.   A computer program was developed to 
determine survival distance, optimum depth, total construction costs, and costs per 
usable volume for protective structures in rock.   The program was applied to structures 
with inner radii of 3, 6, and 9 meters; concrete liners 0.5, 1, 2, and 3 meters thick 
and a steel liner 2.54 centimeters thick were investigated.   In the example, the rock 
field was assumed to be either of sandstone or granite.   The influence of the effective 
longitudinal seismic velocity between the detonation point and the structure was 
studied.   Survival distances, survivabilities, optimum depths, and pertinent costs were 
found for true surface bursts of 100 and 1,000 kilotons. 

It was found that a concrete structure in sandstone can provide full protection 
against a weapon yield no larger than 100 kilotons, and then only if the structure has 
a sufficient soil cover.   Full protection against a weapon yield of 100 kilotons is pro- 
vided by a structure with a steel liner in granite irrespective of the composition and 
stratification of the rock above.   Full protection against a weapon yield of 1,000 kilotons 
can be provided by structures with steel liners in granite, at depths less than 300 meters, 
only when the effective longitudinal seismic velocity between the detonation point and 
structure is 2,000 meters per second, or less.   In all the cases where full protection 
cannot be achieved, the optimum depth is between 100 and 300 meters. 
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INTRODUCTION 

The purpose of this report is to: 

1. Obtain,  from fundamental solutions of mechanics and available 
test results, data on the protective ability of structures in 
rock, 

2. Determine the construction costs,  and 

3. Establish the costs for various levels of protection. 

The protective ability of a structure can be measured by the distance 
between the structure and the point of a nuclear detonation.    If the ac- 
curacy of the attacking weapon system is taken into account, the pro- 
tective ability can be expressed by the probability of survival (the sur- 
vivability).    Both the survival distance and the survivability are depend- 
ent upon: 

1. Characteristics of the attacking weapons, 

2. Geological environment, and 

3. Structural design. 

These factors are embodied in a computer program and an 
example configuration is used to illustrate the influence of the princi- 
pal parameters on the survival distance,  survivability, and cost effec- 
tiveness. 

Different optimum configurations exist for underground protec- 
tive structures because of various weapon characteristics, geological 
features, and structural geometries.    The trend toward optimum con- 
ditions has to be found to establish guidelines for site selection and 
design and to determine the cost effectiveness for underground protec- 
tive structures in rock, based upon military requirements. 

For protection, the guidelines for site selection should contain 
numerical values for the significance of rock types and tectonic con- 
struction patterns.    Guidelines for designing underground protective 



structures should contain the optimum depth,  size of cross section, type 
of liner material,  and liner thickness for the various cases.    The eco- 
nomic evaluation should indicate, for a particular protective purpose, 
whether it is better to have one structure of a higher single-shot sur- 
vivability and higher unit cost,  or to have several structures of lower 
single-shot survivability and lower costs.   An economic evaluation also 
might determine, to some extent, the most economical direction for 
further studies.    No single source containing solutions or information 
on the entire problem was found in a survey of available unclassified 
literature on the design of protective structures in rock.    However, 
many books,  reports, and papers together contained all the parts of 
the problem.    The main informational sources for this research were: 

1. Reference 1—rock mechanics, 

2. Reference 2—statically caused stress distribution around 
openings, and 

3. Reference 3-dynamically caused stress distribution around 
openings. 

Since References 2 and 3 were basic to the information in this re- 
port,  both static and dynamic load on underground protective structures 
were considered so the influence of the structural depth could be studied. 
However, the application of References 2 and 3 placed an important 
limitation on this investigation; that is, that the liner material and the 
surrounding rock up to a thickness of 3 cavity diameters is assumed 
to behave elastically. 

In spite of this limitation, the computational procedure based on 
the elastic behavior of material is of theoretical and practical signifi- 
cance.    It is the first step toward improved procedures that may include 
the plastic range, and it can be used directly for designing protective 
structures capable of resisting several attacks.    The second limitation 
placed on this study is that only the directly induced ground shock is 
taken into account.     Consequently,   this  report deals   only with pro- 
tective structures located at depths in which only the directly induced 
ground shock is critical. 

Optimum conditions are ascertained by seven major steps: 

1.  Determination of the stress distribution around the opening 
in the liner and in the surrounding rock, 
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2. Determination of the stress-dependent strength of the liner 

and the surrounding rock, 

3. Determination of the survival distance, 

4. Determination of the survivability, based on survival distance 
between detonation point and structure, 

5. Determination of the gross construction costs and costs per 
usable volume unit,  based on the allowable design dimensions 
of the structures and the construction procedures, 

6. Assembly of a computer program, and 

7. Determination of optimum design conditions. 

THEORY 

Determination of Strew Distribution 

The load on an underground protective structure consists of re- 
sidual forces in the rock body, the weight of the overburden,  and the 
ground shock.   Since they are unpredictable, residual forces have been 
neglected for this feature study.    However,  residual forces may be in- 
troduced,  as in overburden,  into the stress computation if they can be 
measured in a particular case. 

The weight of the overburden is to be considered not only because 
of its contribution to the stress distribution around the opening but also 
because of its effects on the strength of rock and liner materials. 

Determination of Stresses Caused by Overburden.    To compute 
the stress distribution caused by the static load of the overburden 
weight.  Savin's^ solution was used.    His solution is the only one known 
that considers a plane distributed load on a lined circular opening in 
an elastic field.    Other solutions, as in Reference 1, are related to 
a circular distributed load. 

The equations of the stresses are given in Appendix A.    The in- 
fluencing factors are depth of the structure, inner radius of the liner, 
outer radius of the liner,   specific gravity of rock, Poisson's ratio of 
rock,  Poisson's ratio of the liner material, elastic modulus of rock, 
and elastic modulus of the liner material. 



The stresses caused by the overburden may reach the yield 
stresses.    Thus, the computer program is organised so that the first 
computed static stresses are checked against the yield stresses before 
the dynamic load is brought into play. 

Determination of Stresses Caused by Ground Shock.   The stresses 
caused by ground shock are determined in two steps by deriving, first, 
the impinging pressure pulse and,  second, the time-dependent stress 
distribution. 

Determination of Pressure Pulse.    The empirically based pro- 
cedure in Reference 4 is used to calculate the peak radial particle ac- 
celeration, peak radial particle velocity, and peak radial displacement 
of the free field at the location of the structure.    According to Hugoniot's 
Equation, the free-field stresses are approximately proportional to the 
particle velocity in the elastic range: 

a =p•   c    • v 

where     O = free-field stress 

p ■ density 

c   - longitudinal seismic velocity 

v s particle velocity 

The plots of velocity-time dependence and pressure-time dependence 
can be assumed to be triangles as shown in Figure 1. 

ff,v ••■■•■•real curve 

approximation 

a d 
Figure 1.  Approximation of the prefture-time dependence by a triangle. 



The impinging pressure pulse is fixed with these approximations: 
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Z • d max 
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where      0 = peak free field pressure max 

v = peak particle velocity 

a = peak particle acceleration max    r       •^ 

d ■ peak radial displacement max    r "^ 

Magnitude and history of the pressure pulse are dependent upon the en- 
ergy coupling of the detonation, weapon yield, energy-conducting prop- 
erty of the rock, and distance from the detonation point.    The energy 
coupling of fully contained bursts, contact surface bursts, and true sur- 
face bursts is provided in the computer program.   Empirical formulas 
for the conversion of nominal weapon yields into effective weapon yields 
pertaining to these three kinds of detonations are given in Reference 4. 
The procedure for determining the pressure pulse is described in 
Appendix B. 

The energy-conducting ability of the rock mass is represented in 
the empirical formulas for ground motion by the seismic velocity.   In 
layered rock systems, the seismic velocity and the conductibility changes 
at each interface.   Since the incident wave and all emergent waves are 
reflected and refracted at each interface, mathematically pursuing the 
complex energy flow is difficult and time consuming.    Reference 5 pro- 
vides an approximation using an effective seismic velocity for the rock 
body between detonation point and structure.   The effective seismic 
velocity is defined as the quotient of the distance R8 and the shortest 
transit time from the point of detonation to the structure (Figure 2): 

R 
s 

P        tmiv; 

where   c     =   effective seismic velocity 



Hs       - distance between point of detonation and structure 

t - shortest transit time, mm 

A method for determining the effective seismic velocity is described 
in Appendix C. 

detonation point ~ .^    _ „, ^*- ^**^ ^^ structure 

path of the fastest ray 

Figure 2.   Layout for computing the effective seismic velocity for a layered system. 
3 

Determination of Dynamically Caused Streee Dietribution.   Mow 
describes a solution for computing the stress distribution caused by a 
traveling harmonic wave in a liner of arbitrary thickness and in the 
medium around the liner.   In spite of the analysis being limited to ho- 
mogeneous and Isotropie media strained within the elastic range. Mow's 
method was found to be accurate and promising for further development. 
Therefore, it was used for the computer program. 

The previously mentioned limitation to the elastic range applies 
only to the medium in the vicinity of the opening (~3 diameters) and to 
the liner material.   The computational treatment of the pulse propaga- 
tion from the point of detonation to the vicinity of the structure is not 
based on the elastic behavior of the rock media. 

Combining the choice of Mow's method with the assumption of 
homogeneous, Isotropie, and elastic media, less energy-absorbing be- 
havior is indicated than in real materials.    This means that the appli- 
cation of Mow's solution regarding stress values is conservative. 

The incident wave (Figure 3) is described by its potentials: 

longitudinal wave 0 = 0   • e 

shear wave 0=0 

where      $       =   amplitude 

di     =   circular frequency 

a      =   a?/c    =   wave number 
a 
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Figur« 3.  Tuniwl ltn«r with impinging itrau wov«. 

The incident wave is reflected and refracted at the interface between 
rock and liner and is reflected at the inside of the liner.   Each reflec- 
tion and refraction causes a longitudinal and a shear wave that again 
can be reflected and refracted.   All these waves contribute to the 
particular motions and to the stress distribution. 

The boundary conditions that guarantee consideration of these 
waves are: 

1. The radial stresses in the interface between rock and liner 
are equal, 

2. The shear stresses in the interface between rock and liner are 
equal, 

3. The radial displacements in the interface between rock and 
liner are equal, 

4. The circumferential displacement in the interface between 
rock and liner are equal, 

5. The radial stresses at the inner face of the liner are zero, 
and 

6. The shear stresses at the inner face of the liner are zero. 

. 



These six boundary cunditiuns are sufficient tu solve the prublem.     The 
derivation of the stress equations is given in Appendix 0. 

The approximately triangular-shaped pressure pulse caused by 
the ground shock can be considered the sum of an infinite number of 
harmonic waves, as shown in Appendix E.    The nonzero potential uf 
the pressure pulse can be formulated by using the Fourier Integral: 

1    «<o iUit 
0(u>) = ^T |   0 (x, t)e      -at 

The time-dependent potential 0   (x, t) and the frequency-dependent 
potential V>(tt)) can be computed for the pressure pulse by a method 
given in Reference 6.    Stresses in terms of the potential are given in 
Appendix F.    Subsequent retransformation of the stresses from the 

(JC -space to the t-space leads to no major difficulties: 

a(x.t) = fo {x,u))e'luidu 
.OD 

Superpoiition of Static and Dynamic Stretaes.    The calculation of 
static and dynamic stresses results in radial normal stresses, circum- 
ferential normal stresses, and shear stresses.    As is permissible in 
the linear elastic case, the superposition is accomplished by summing 
the pertaining stresses: 

r s       r static       r dynamic 

B • ~   6 static       6 dynamic 

rOs ~   rö static rB dynamic 

For further use, an advantage is having the principal stresses available. 
For the static, dynamic, and superimposed case, the principal stresses 
are determined by the equation: 

0+0 

'..z'-VM^K-'ef 
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Determination of Rock Strength and Liner Material 

Mohr's Theory of Failure was chosen as failure criteria for both 
the rock and the liner material.    The Air Force Special Weapons Center' 
and the Geological Society of America" published test results proving 
that the envelopes of Mohr's circles for most rocks can be considered 
straight lines.    This simple relationship between the state of stress and 
the strength of rock, known as the Mohr-Coulomb-Navier's Theory, was 
accepted for the computer program.    The equation for the allowable 
maximum principal stress is derived in Appendix G.    The value of the 
allowable maximum principal stress is influenced positively by the 
minimum principal stress, the cohesive strength of the rock,  and the 
angle of internal friction.    The American Society for Testing Materials 
recommends a curved line as Mohr's envelope for concrete.    Follow- 
ing this proposal and information given by the Concrete Division of 
the Waterways Experiment Station in Vicksburg, Miss., the allowable 
maximum principal stress is taken as: 

-   PLl 
allowable        L    M 

N 

where     ff. = minimum principal stress 

N   = constant = 1. 37 

f  = tensile strength of concrete 

M 
is. 

c 

f    = compressive strength of concrete 

In steel construction, the increase of strength with increasing confine- 
ment is not used for designing construction members.   Information 
about Mohr's envelope of steel is given in Reference 10.    The published 
test results do not show an angle of internal friction for steel.   The en- 
velope is parallel to the major stress axis; steel is considered a "von 
Mises" material.   For computational convenience, the equation of Mohr's 
envelope for steel was written in the form of the corresponding 
equation for concrete: 



1 allowable 

where   N = M = 1 

VL 

M 

± 
N 

L = 0F    = yield stress of steel 
y 

Determination of Survival Distance 

Since the strength of the rock and liner material depends on the 
state of stress in these media, a strength distribution as well as a 
stress distribution will occur around the underground opening.   There- 
fore, it is necessary to check the state of stress against the state of 
strength around the opening.    Should stress exceed strength anywhere 
at any time, the underground protective structure is considered a 
violation of the prerequisite condition of elastic behavior of all 
materials.   As previously mentioned, the check of stress against 
strength is made twice for each point and time: 

1. The state of stress caused by the overburden is checked 
against the strength, and 

2. The state of stress caused by overburden and ground shock 
is checked against the strength. 

If the first check is negative, the calculation will be stopped before the 
dynamic stresses are considered.    The calculation also will be stopped 
if the second check is negative.   A negative result for this second check 
means that the structure failed during ground shock.    The computer pro- 
gram is organized in such a manner that the weapon, geology, and struc- 
ture values, and the depth of the structure are kept constant for each 
calculation while the horizontal distance from the detonation point to 
the structure increases for each loop as long as the structure does not 
fail.   The result of one calculation cycle is the horizontal survival 
distance for a preselected structure with given values of cross- 
sectional size, liner material, liner thickness, depth, geology con- 
dition, and threat attack procedures. 

Determination of Survivability 

The effectiveness of a protective structure is denoted by the 
single-shot survivability.   Single-shot survivability means the probability 

10 
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of survival of a protective structure undergoing a single attack. 
For this determination of survivability,  the entire structure is 

assumed to fail even if failure will occur only in one of its cross sec- 
tions.    The survivability is influenced by weapon values and system 
parameters.    The main weapon values are the hit accuracy and the 
damage range.    The hit accuracy is introduced into the computation of 
the survivability by the standard deviations of the weapons system in the 
longitudinal and transverse direction,  respectively.   If the standard de- 
viations are the same in both directions, the accuracy of the weapon 
system is expressed by the Circular Error Probable (CEP).    The re- 
lationship between standard deviation and CEP is: 

9 = 0. 84932 CEP 

The horizontal damage range of a weapon for a particular structure 
equals the horizontal survival distance of the structure calculated in 
the design computation.    The horizontal survival distance R determines 
the aim area of the underground structure at the surface (Figure 4). 

Figur« 4.  Aim ana of on underground protective structure. 

If the design weapon hits inside this area, the structure will fail.   The 
calculation of the survivability is derived in Appendix H.   For this der- 
ivation. References II, 12, and 13 were used. 

: 

Determination of the Groit Construction Costs 
and Costs Per Usable Volume Unit 

Information about estimating costs for tunnels in rock was si 
t Department of Water Resources of the State of California1^ 

liven 
by the Department of Water Resources of the State of California1^ and 
the Metropolitan Water District of Southern California (unpublished 
guidelines).    The information given by the Department of Water Resources 

1 

:: 
it 



is based upon data compiled fron» 99 tunnel projects around the world. 
For the most part,   this information was used in the computer program. 
The guidelines of the Metropolitan Water District were used as basic 
information about the costs of steel liner and for checking and updating 
the figures furnished by the Department of Water Resources. 

The cost estimation procedure is due specifically to conventional 
tunneling methods.    Under certain limitations, machine excavating 
costs for tunneling are estimated at 60% of the costs of conventional ex- 
cavating.    This estimate is based on information given in Reference 15. 

The total construction costs are the sum of the costs for a main 
tunnel, access tunnels,  and access shafts.    The total cost for each 
structure comprises liner costs and excavation costs.    The liner costs 
are calculated by "unit costs in place. "   The excavation costs are spec- 
ified in costs of labor,  equipment,  energy,  explosives,  drill bits,  and 
rods.    The specified costs are classified according to the size of tunnel 
sections and according to rock strength.    The rock strength has been 
described thus: 

Type 1: Dry, massive, moderately jointed or dry intact rock 

Type 2: Dry, stratified or schistose rock 

Type 3: Dry, moderately blocky and seamy rock 

Type 4: Dry, very blocky and seamy rock. 

This classification has to be expressed numerically to be used in the 
computer program.    The approximate numerical classification assumed 
for the program is based on the cohesive strength of rock: 

2 
Type 1: K a 200 kp/cm 

2 2 
Type 2:   200 kp/cm   > K a 100 kp/cm 

Type 3:   100 kp/cm2 > K a    50kp/cm 

2 
Type 4:     50 kp/cm   > K 

Besides the variables of tunnel length and radius, the provision of ma- 
chine tunneling depends upon the kind of rock.   The limits^ of machine 
tunneling are assumed as: 

12 



180 kp/cm    > K >6ü kp/cm2 

L >t000 n\ 

b<  5 m 

where      L - length of the tunnel 

b = outer radius of the tunnel 

Comparable unit construction costs are obtained by dividing the total 
construction costs by the usable volume of the main tunnel.    A measure 
of the cost effectiveness of the protective structures is the quotient of 
unit construction costs per unit of survivability: 

c     -     c 
eff     V      •  S 

us 

where      C  .. = cost effectiveness eff 

C      = total construction costs 

V      = usable volume 
us 

S       = survivability 

Since n = 1/S, the number of structures necessary to provide 100"(, 
survivability for one of them, the cost effectiveness quotient can be 
interpreted as the costs for sure protection of one unit.    The cost 
computation procedure is derived in Appendix I.    In all the cost 
equations,   an   adjustment factor is provided for updating and trans- 
forming into foreign currencies. 

COMPUTER PROGRAM 

Many portions of the analysis do not require the effective seis- 
mic velocity between detonation point and structure location.    So,  in the 
interest of economy and clarity, two separate programs were written. 
The main program computes the survival distance, the survivability, 
and the economic features.    The second program determines the ef- 
fective seismic velocity between detonation point and structure loca- 
tion in a layered rock system.    The second program can be introduced 
easily into the main program as a subroutine. 

13 



Both programs are written in FORTRAN IV language.    The time 
necessary for one run of the main program using the CDC 6600 is 40 
seconds.    The description,  the flow chart,  and the listing of the main 
program is given in Appendix J.    The flow chart and the listing of the 
program for computing the effective seismic velocity of a layered rock 
system is given in Appendix K. 

DETERMINATION OF OPTIMUM DESIGN CONDITIONS 

Example of Protective Structure 

The total structure consists of the main tunnel, the two access 
tunnels,  and the two shafts (Figure 5) with lengths: 

Length of the main tunnel 100. 0 m 

Total length of the access tunnels 100.0 m 

Inner radius of the access tunnels 2.0 m 

Inner radius of the shafts 2.0 m 

Inner radius of the main tunnel Variable 

access shaft 

T T 
main tunnel access tunnel 

Figure 5.   Configuration sample for an underground protective structure in rock. 

The main tunnel, access tunnels, and access shafts are lined by the 
same material, either reinforced concrete or steel.    The liner thick- 
ness Ta of the access tunnels is: 

T     • R 
T     = 

m 

m 

and at least 15.0 centimeters for concrete of 1.27 centimeters for 
steel where T m liner thickness of the main tunnel 

14 



Rni   ■   inner radius of the main tunnel 

Ra    ■   inner radius of the access tunnels 

The thickness of the shaft Ts liner is: 

T      =   1.5 • T •s '-^    ■a 

and at least 20.0 centimeters for concrete or 1.91 centimeters for steel. These 
determinations are based on rules of conventional mining and engineering. For 
reinforced concrete liner, these properties are assumed. 

Compreuive strength 350 kp/cmz (5,000 psi) 

Reinforcement ratio 1% 

Tensile strength 50 kp/cm2 

Specific gravity 2.4 

Poisson's ratio 0.19 

Elastic modulus 3.5 • 105 kp/cm2 

The properties for the steel liner are: 

Yield streu 2.52 • 103 kp/cm2 (36,000 psi) 

Specific gravity 7.85 

Poisson's ratio 0.25 

Elastic modulus 2.05 • 106 kp/cm2 

Two conditions for the rock were assumed: 

1. The entire rock body between detonation point and structure 
location consists of the same rock type. 

2. The earth body under consideration consists of different rock 
types or upper layers of soil. 

For both cases, a particular sandstone and a particular granite were selected 
as the directly surrounding structure.  The properties of the sandstone are: 

Specific gravity 2.5 

Poisson's ratio 0.15 

Elastic modulus 3.0 • 105 kp/cm2 

15 



Lungitudinal seismic velocity 3,525 msec 

Factor of internal friction 1.5 

Cohesive strength 100 kp/cm2 

Tensile strength 30 kp/cm2 

The properties of the granite are: 

Specific gravity 2.6 

Poiison's ratio 0.20 

Elastic modulus 4.0 • 105 kp/cm2 

Longitudinal seismic velocity 4.100 m/s 

Factor öf internal friction 1.5 

Cohesive strength 140 kp/cm2 

Tensile strength 60 kp/cm2 

The detonation is assumed to be a true surface burst.   Computations are made 
for 100- and 1,000-kiloton weapon yields.  The protective structure is considered to be 
the target itself; the middle of its target area is Desired Ground Zero.   The CEP of the 
attacking system is assumed to be 402.25 meters (quarter of a mile).   In subsequent 
comparisons, the influence of rock type, liner material, liner thickness, and cross-sectional 
site are presented. 

Optimum DMign Conditions in • Rock Body of tho Sam* Rock Typ« 

Protective Structures with Concrete Liner in Sandstone.   For an inner radius of 
the main tunnel of 6 meters and a weapon yield of 100 kilotons, the concrete liner 
thickness was varied from 0.5 to 3 meters as a function of survivability.  The surviva- 
bility, which is dependent upon the structure deptlj, is shown in Figure 6.  The 
increasing liner thickness does not affect significantly the survival distance for values 
between 110 and 120 meters and a survivability of about 92%. 

The curves of Figure 6 show that only in die depth range from 50 to 100 
meters does the survival distance decrease with an increase of depth.   Further increases 
in depths beyond 100 meters are not advantageous.   Figure 7 illustrates the total costs 
for protection.  The lower parts of the curves represent the depth range from 50 to 
100 meters.   Increased expenditure in this range results in more protection, in a decrease 
of survival distance, and in an increase of survivability. 
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Figur« 6 (C).  Survival dUtane« In a rock body of th« tarn» rock typ« (U). 
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Figure 7 (C).  Total costs for concrete structures in sandstone 
with different liner thicknesses (U). i 
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Obviously,  the slope of the curve for the liner thickness of 0. 5 
meter is less than the others.    This means; 

1. For the same amount of additional money, the structure with 
the smaller liner thickness offers more additional protection. 

2. Planning concrete structures with a liner thickness of 0. 5 
meters for a survivability of 50% is not economically 
reasonable since a relatively small increase in the cost in- 
creases the survivability to 91%- 

Figure 8 exhibits the cost per usable volume and the costs per 
usable volume related to the survivability.    The difference between 
these two cost values is smallest for the liner thickness of 0. 5 meter 
and thus demonstrates the economic superiority of this design feature 
as compared to the others.    Considering the previously mentioned ad- 
vantages, only the liner thickness of 0. 5 meter was chosen for a com- 
parative study of the cross-sectional sizes of concrete structures 
having inner radii of 3, 6, and 9 meters. 

Figure 6 shows that within the range considered, the section 
radius does not have a substantial influence on the survival distance 
and survivability.    The figure also shows that the optimum depth 
(optimum in relation to the survival distance and survivability) changes 
only slightly with the cross-sectional size (the optimum depth values for 
the inner radii of 6 and 3 meters can be considered the same).   The op- 
timum depth for the inner radius of 9 meters is about 120 meters for a 
weapon yield of 100 kilotons and about 220 meters for a weapon yield of 
slightly 1,000 kilotons deeper than the others having a depth of 100 and 
200 meters,  respectively.    Figure 6 makes numerically comprehensible 
the influence of the weapon yield on the survival distance and surviva- 
bility.   The survival distance of concrete structures increases from 120 
meters for 100 kilotons to 220 meters for I, 000 kilotons.   Assuming 
the CEP equals 402.25 meters, the survivability decreases from about 
92 to 77%.    This means a change from a high to a medium survivability. 
The difference in the survivability becomes even larger when the CEP 
of the attacking system is smaller. 

Figure 6 illustrates that the larger weapon yields require a 
greater depth for optimum survival distance.    The economic aspects 
of varying the cross-sectional size is illustrated in Figures 9 and 10. 
Considering the total cost, the structure with the inner radius of 3 
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Inner Radius of Structures:  6 m 
Weapon Yield:   100 KT 

actual costs 
costs related to survivability 

Survival Distance (m) 
J L 

94 92 90     . 85 
Survivability Rate (%) 

Note:  Survivability for CEP = 402.25 m 

80 

Figure 8 (C).   Costs par usable volume for concrete structures in 
sandstone with different liner thicknesses (U). 
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Concrete Liner of 0.5 m thickness 
100 KT 1000 KT 

J 
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1 
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Survival Distance (m) 

ito irk A ^^fe fr ft ^ ^r ft fe 
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Note: Survlvdblllty for CEP « 402.25 m 

Figure 10 (C).   Cosh per usable volume for structures in sandstone 
with different inner radii (U). 
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meters is least expensive; however, structures of larger radii yield 
favorable costs per usable volume. These economic considerations 
indicate: 

1. Small cross*sectional sizes should be preferred for the pro- 
tection of installations with small space requirements. 

2. For volume-oriented installations (for instance,   as depots), a 
smaller number of structures of larger cross-sectional size 
is.  even considering survivability,  more economical than a 
larger number of structures of smaller cross-sectional size. 

Protective Structure with Steel Liner in Sandstone.    The steel 
liner is assumed to be a tube of equal thickness.    And the space between 
the rock and steel liner is filled with concrete.    For the scope of this 
study,  consideration of a liner thickness of 2. 54 centimeters (I inch) 
was sufficient. 

Figure 6 shows the survival distance is dependent upon the struc- 
ture depth and the weapon yield.    For both the cross-sectional sizes 
with inner radii of 9 and 6 meters, the survival distance decreases 
with increasing depth to the optimum depth of 150 meters for a weapon 
yield of 100 kilotons and to 250 meters for a weapon yield of 1, 000 
kilotons.    The cross-sectional size with an inner radius of 3 meters 
has an optimum depth of about 250 meters for 100 kilotons and offers 
a smaller survival distance and higher survivability.    This size effect, 
however, is lost for the 1, 000-kiloton weapon yield.    With the higher 
values, the weapoh yield becomes the more dominant influencing factor. 

The comparison between concrete and steel liner demonstrates 
the superiority of steel liner.    The survival distance for the considered 
steel liner is about 50 meters less than that for a concrete liner.    The 
superiority of a steel liner is corroborated by its economical features, 
as given in Figures 11 and 12.    In spite of the higher material unit costs, 
steel liner is less expensive than concrete (Figures 13,   14,  and 15) be- 
cause expensive excavation costs can be reduced. 

Protective Structure with Steel Liner in Granite.    The curves for 
the survival distance of structures in granite with a steel liner (Figure 
6) show that full protection against a 100-kiloton weapon yield can be 
provided for the three considered cross-sectional sizes at a depth of 
about 190 meters.   The surrounding granite provides better protection 
than sandstone from a 100-kiloton weapon.   However, the superiority 
of granite to sandstone almost vanishes during a shock wave of a 1, 000- 
kiloton weapon.   The optimum survival distance is about 160 meters. 

23 

CONFIDENTIAL 



CONFIDENTIAL 

tt 9oi) ••»«o Pt»l 

1 

1 
c 

i 
i 
I 
u 

I 
y 

.1 

24 

CONFIDENTIAL 



: 

CONFIDENTIAL 

1 
1 
5 

1 
1 

.. 

Steel Liner of 2.54 cm thickness 
•actual costs 

—»-■»•— —costs related to survivability 
1000 KT 

0     20    41   "^0    80    100   120 140   160   180  2(ß~&!  2^0 
Survival Distance (m) 

100 
I      I 

99   98 
X X X 
96    94     92  90 85 

Survivability Rate (%) 
Note:  Survivability for CEP ■ 402.25 tn 

80 75 

Figure 12 (C).   Cost« per usable volume for structures in sandstone 
with different inner radii (U). 
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The optimum depth fur granite is slightly leas than that for sandstone. 
The economic features of structures in granite with a steel liner are 
shown in Figures 16 and 17.    They etuphasi^e that full protection can 
be obtained against a lOO-kiloton weapon yield with the same amount 
of money that is necessary to provide high, but limited,  protection in 
sandstone. 

Optimum Design Conditions in a Rock Body 
Consisting of Different Types of Rocks 

Structures are assumed in this part of the study to be embedded 
in either the same sandstone or granite as in the previous section.   How- 
ever,  the rock faces make changes in the rock body between the detona- 
tion point and the structure location.   Figure 18 illustrates two possibili- 
ties of such structures. 

Two cases are investigated:   a structure of an inner radius of 6 
meters embedded in: (1) sandstone with a concrete liner    and (2) 
granite with a steel liner.    For both cases, the effective longitudinal 
seismic velocity between detonation point and structure location is 
varied in I, OOO-meter-per-second steps from 1,000 to 6,000 meters 
oer second. 

Protective Structure with Concrete Liner in Sandstone.   The sur- 
vival distance and the survivability are graphed in   Figure 19.    For the 
weapon values of 100 and 1,000 kilotons, the survival distance increases 
with increasingly effective seismic velocity. Accordingly, the survivabil- 
ity decreases with increasingly effective seismic velocity.    Full protec- 
tion is given for an effective seismic velocity of 1,000 meters per sec- 
ond and a weapon yield of 100 kilotons.   The optimum structure depth 
increases slightly with decreasingly effective seismic velocity.   This 
increase of the optimum depth is more distinct in Figure 6 for the case 
with a 1, 000-kiloton weapon yield. 

Figures 20, 21, and 22 show the economic features.   The curves 
demonstrate that the expenditures for protective structures in a rock 
body of different types of rocks produce greater protection if the effec- 
tive seismic velocity is small.    This result shows numerically the sig- 
nificance of proper site selection. 

In the case of a 1,000-kiloton weapon yield, the curves of the 
costs per usable volume as related to the survivability have minimum 
values for the seismic velocities of 2,000. 4,000, 5,000, and 6,000 
meters per second.    The cost effectiveness is the highest for the sur- 
vival distances and depths pertaining to these minimum values. 
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Figure 17 (C).   Costs per usable volume for structures in granite 
with different inner radü (U). 

31 

CONFIDENTIAL 



CONFIDENTIAL 

GZ 

ummmmmmmmmmmm 

GZ 

w&mwmmm 
granit« 

Figur« 18.   Rock bodiM contUHng of differonf typos of reek. 

Protective Structure with Steel Liner in Granite.   Figure 19 
■hows that full protection can be reached against a 100-kiloton weapon 
yield for all values of the effective seismic velocity.   However, a small 
seismic velocity is advantageous here, too, because full protection can 
be realized for less depth and, therefore, for less cost.    In the case of 
a 1,000-kiloton weapon yield (Figure 19), full protection is given for 
values of the effective seismic velocity of I, 000 and 2, 000 meters per 
second.    The curves for the other values of the effective seismic vel- 
ocity show more explicitly that the optimum depth decreases with in- 
creasingly effective seismic velocity.   The cost curves in Figures 20, 
21. and 22 show that structures in granite with steel liners are more 
economical than structures in sandstone with concrete liners« 

FINDINGS 

1. Deep underground protective structures can be designed for 
high degrees of survivability and even for full protection. 

2. Steel is a better liner material than concrete for protective 
structures in rock.   A liner 2. 54 centimeters (1 inch) thick 
satisfies the requirements for protection against a true sur- 
face burst of 1,000 kilotons. 

32 

CONFIDENTIAL 



CONFIDENTIAL 

E 
o 

■ 

t u 
s 

I 

J 

o 
c 

5 
> 

to 

U 
CK 

e 

I  §  § § '0  §  §  S  I 
(ui) 44d«a 

33 

CONFIDENTIAL 



CONFIDENTIAL 

8 

5 

S 

id • 
8 

8& 

| i3 

I* 
■a I 

to § 

SI 

8: 

8 

0) 

o 
Z 

^ 

II I 

11 
3? «   II 11 

S.I 
«I 
l-S 
11 
M      > 

6     V 
•*• J3 

8 

.2> 

($ 90l) «««O P*0! 

34 

CONFIDENTIAL 



f I 
I 
: 

o 

.: 

.: 

:: 

„ 

. 

CONFIDENTIAL 

i 
5 HS 
I 
E 
J * 

Si 

o 

S 

o 

E 

It 

n u   _ 

1 
11 

* •* |i 
si 

ft 
^  I 

• • 
I 
Z 

c 
I 
8 

H 
•E 

8: 

8 

11 
IS 
U 

& 
§> 

($ ^01) «««O P*0! 

35 

CONFIDENTIAL 



CONFIDENTIAL CONF 

1*88 
lm/%) «umjOA »l^n '«^ »4»3 

IJ s 
Q 

1 
I 

2 

s 

■8 
-s- 

-a 

(p1"/!) »"»"IOA »i^nj»^ MM 

Figur« 22 (C).  Costa p«r usable volume for structures in sandstone and granite in 
different rock types between detonation point and surrounding stri 

36 

CONFIDENTIAL 



CONFIDENTIAL 

( ui/j) MIO|OA »iqwi '•* «»D 

STTPT 
^UI/D «tmiOA »WBin *•* »l»D 

E 

« 

ii 

a. 
8 
i 

I 
i 
I 

i wnditon« and granit« in CCMM of 
i point and surrounding itrueturo (U). 

CONFIDENTIAL 

n> 



' 

i. The weapon yield is the dominant factor influencing the survi- 
val diatance and optiimuu depth.    Its influence was determined 
numerically for the 100-  and It.000-kiloton values.    The results 
are shown in Figures 6 and 19. 

4. The   influence of the type of enveloping rock appears to he more 
significant for the smaller weapon yield of 100 kilotons. 

5. The rock interfaces between the detonation point and the struc- 
ture are of great importance since the survivability increases 
greatly when the effective seismic velocity of the rock body de- 
creases.    The influence of the rock interfaces, represented here 
by the seismic velocity,   is shown numerically in Figure 19. 

6. No significant influence of the cross-sectional si/.t- on the survi- 
vability could be found for structures with concrete liners. 

7. For structures with concrete liners, the increase in resistance 
of liner thicknesses   greater  than  0.5  meter  was found to be 
insignificant. 

8. With a steel liner, tunnels having an inner radius of 3 meters 
provided greater survivability than those with inner radii of 
6 and 9 meters. 

9. Steel liners provide greater survivability than concrete liners. 

10. Structures with steel liners are less expensive than those with 
concrete liners. 

CONCLUSIONS 

From the foregoing study of deep underground tunnels in rock,  it 
can be concluded that: 

1. An increase in the depth of cover does not always lead to an 
increase in survivability.   There are optimum depths which, 
if exceeded, will increase the survival distance and decrease 
the survivability. 

2. The optimum site profile consists of a thick soil layer over a 
strong basement rock. 

The computer program described herein gives the location, with respect 
to ground zero, of a tunnel with a preselected survivability. It also pro- 
vides unit and total costs. 
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APPENDIX A 

STRESS DISTRIBUTION CAUSED BY THE OVERBURDEN 

:; 

Figur« 23.  Tunrwl configuration. 

Notation: 

H « depth of the structure in meters 

a s inner radius of the liner in meters 

b ■ outer radius of the liner in meters 

r s coordinate radius in meters 

6      ■  coordinate angle in degrees 
3 

y     =   specific weight of the overburden in Mp/m 

2 E.    =   elastic modulus of surrounding rock in kp/m 

E.   =   elastic modulus of liner material in kp/m 

V.    -   Pols son's ratio of surrounding rock 

Wj    s   Pols son's ratio of liner material 
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r(l)«t 
radial stress in rock caused by the overburden in kp/m 

re(i)«t 
circumferential stress in rock caused by the overburden 
in kp/m2 

r{l)»t 

rr(2)8t 

re(2)st 

=   shear stress in rock caused by the overburden in  kp/m 

2 
=   radial stress in liner caused by the overburden in kp/m 

=   circumferential stress in liner caused by the overburden 
in kp/m2 

re(2)st s   shear stress in liner caused by the overburden in kp/m 

The specific weight is the average specific weight divided by the 
entire depth H. The elastic properties Ej and f. of the surrounding 
rock are the respective values of the rock body, within 3 cavity diam- 
eters, around the structure.   The stress equations are: 

r(l)8t 
2U1 

2 2  -1 Vr/ 

'-»a2-K,a4 
cos 2 6 

re(i)tt 
-iJl i + K.(!) 

lUl) cos 2 e 

re(l)st 
S.3^H ■-.(*)-K^) sin 2 0 

'l/bZ 

'.-f-'if) 

f-".^)-K,e) cos 2 6 
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APPENDIX B 

DETERMINATION OF THE PRESSURE PULSE 

• 

structure 

. . Notation: 

H 

R 

a    a 

max 

max 

Figur« 24.   Tunrwl location with retpoct to ground zoro. 

depth of the structure in meters 

horizontal distance between detonation point and structure in 
meters 

=   slant distance between detonation point and structure in 
meters 

=   effective longitudinal seismic velocity for the rock body 
between the point of detonation and the structure in meters 
per second 

longitudinal seismic velocity of the rock body of three tunnel 
diameters around the structure in meters per second 

free rock field peak radial particle acceleration in g's 

free rock field peak radial particle velocity in meters per 
second 

d =   free rock field peak radial displacement in meters max r r 

45 



t ■   rise tüne of the pressure pulse in seconds 

t =   duration of the pressure pulse in seconds 
d 

t ■   decay time of the pressure pulse in seconds 

W ■   nominal weapon yield in kilotons 

Three kinds of atomic weapon bursts are distinguished and con- 
sidered.   The fully contained burst is assumed to have an energy 
coupling for the ground shock of 100%.   The effective weapon yield 
We is equal to the nominal weapon yield Wn: 

W    = W 
e        n 

The contact surface burst detonates a small but finite distance above 
the ground surface: 

W   = W (0.02 -^r^ogW  ) 
en 5 n 

The true surface burst detonates coincident with the ground surface: 

W    = 0.01 W  (6.00 - log W  )   . 
en n 

The true distance between the detonation point and the center of the 
structure is: 

R   »   ^2 + H2 

The true distance is converted into the scaled distance: 
R 

R 1/3 •   K) 
The scaled distance is the variable in the equations for free- 

field peak radial particle acceleration, velocity, and displacement. 
These equations are obtained from the graphs in Reference 4: 
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Peak radial particle acceleration. 

max. 
r—f (c /    if 

1525 F 

C     4   1H0Ü IU/H 

P 

max. 

max 2440 

a max. 

i-(C   )2        if      I800m/«<C     <   i600 m/B 
2 p P 

v  i-{C   ) if      3600m/»<Cp 

48802 P 

where   amaXi depends upon Cp  and Re. thus: 

C    1   1800 m/s     R   <   HO m 
P e 

c    «1800 m/s    R   > 130 m 
P 

log a max. 

-4.4064 log Re + 9. 1425 

-1.9991 log R    + 4.0456 

/.<C     <   3600 m/s     R<200m       -3. 9798 log Re + 9. 3843 
1800 m/« ^ ^D -     e 

1800 m /s < C    *   3600 m/s     R    > 200 m 1.8143 log R    + 4.4104 

3600 m/s < C 

3600 m/s < C 

R    i   105 m 
e 

R    > 105 m 
e 

-2.6394 log R    +   6.9549 

-4. 8804 log R    + 11.4999 
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Peak radial particle velocity 

V nai 

1525-V 
:  v max. 

max 

if C     *   1800 m/s 
P 

if 1800 m/i <  C    «  3600 m/e 
P 

if 3600 m/t < C    . 

where V depend« upon C    and R  , thue: w  w max. O • 

!i 
log V max. 

C    < 1800 m/a     R   <  105 m 
P e 

3.6860 log R    +6.8244 

C    <  1800m/a    R   > 105 m      -1.3497 log R    + 2.0926 

1800 m/« < C    < 3600 m/a     R^ * 75 m        -2.9822 log Re ♦ 6.0408 
P e 

-1.6660 log Re + 3.5528 

.2.4134 log R    +5.2966 

1800 m/e < C   « 3600 m/e     R   > 75 m 
P " 

3600 m/« < C 

3600 m/s < C 

R   *  120 m 
e 

R   > 120 m 1.2544 log Re +2.8790 
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i 
i 
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: 

:; 

:: 

: 

D 

P«»k r*dUl particle diipUcenrwnt. 

Likewise,  d depends upon C    and R , thus: 
max p e 

log d max 

C    € 1800 m/i     R   c 100 m 
P • 

C    * 1800 m/s    R   > 100 m 
P e 

1800 m/e < C    < 3600 m/s R   < 150 m 
P • 

1800 m/s < C    < 3600 m/s R   > ISO m 
P • 

3600 m/s < C 

• 3.7901 log R    +5.7939 

-1.3722 log R 

-1.4312 log R 

-1.1358 log R 

-1.6436 log R 

+ 0.9520 

♦ 1.7842 

+1.1393 

+ 2.1860 

The free-field stresses are approximately proportional to the 
particle velocity (Hugoniot Equation): 

a = o« C • v , and r   a 

a       = p'C 'v 
max    r    a   max 

where 9 = free-field radial stress in kp/m 

p = mass density = ^^ • 2— 1000 

For the triangular-shaped load impulse (Figure 25), the rise 
time is 

2»v 
t   S_JB»*  
a     a -9.81 max 
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and the pulie duration is 

2-d 
max 

d      V max 

For further computations, it is convenient to have the decay time 
expressed as: 

W'a  • 

v#a 

Figure 25.   Streu and velocity pulse. 
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APPENDIX C 

DETERMINATION OF THE EFFECTIVE SEISMIC VELOCITY 
OF A LAYERED ROCK SYSTEM 

Figur« 26.   Diraet and Indlracf rayi from th« point 
of dttonotion to th« ttructurt. 
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Notation: 

H a   depth of the structure in meters 

R *   horizontal distance between detonation point and structure 
in meters 

R =   slant distance between detonation point and structure in 
meters 

T, =   thickness of layer  k in meters 
k 

T =   thickness of layer package between point of detonation and 
structure in meters 

L =   maximum thickness of the layer packages penetrated by the 
max j. • , indirect rays in meters 

a =   acute angle between ray and the normal of the refracting 
plane in degrees 

f =   angle of layer inclination 

6 =   angle between horizontal distance (R) and slant distance 
(R   ) in degrees 

s 

C, =   seismic velocity of layer k in meters per second 

C =   effective seismic velocity for the distance between point of 
detonation and structure location in meters per second 

k =   ordinal number of the layers 

The effective longitudinal seismic velocity is the quotient of 
the slant distance from the point of detonation to the structure and the 
shortest time necessary to travel this distance: 

F mm 
The structure can be hit directly by a pressure ray (ray group I through 
layers 6, 7, 8, and 9) going through the layers between the point of 
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detonation and the structure,  indirectly by ray group 11 which penetrates 
into layers above the structure and returns after having traveled parallel 
in one of the layers above,  and indirectly by ray group 111 which pene- 
trates into layers below the detonation point and propagates to the 
structure after having traveled parallel in one of the  layers below. 
The travel times of the   direct ray and all the intiirect rays are com- 
puted and compared.     By Snell's Law,   the direct ray has to yield these 
conditions: 

sin c*. 

sin a.    ,      C,    , 
kfl k+1 

and 

where 

n 

m 

X 

x. 

= X 

R' cos c + H'sin e 

The path of the direct ray must be found by iteration. The loop 
is initiated by the ray that starts into the straight-line direction from 
the detonation point to the structure: 

a, = 90 - (e - 6) . 

A direct pressure ray does not exist if its path leaves the surface of 
the half space (Figure 27). 

Figure 27.   Path of ray leaving the half space. 
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The travel time is; 

k^n        T, 
=    -r-    k  

, t-*   cos a, • C 
k-m k     k 

In the example of Figure 27,   m = 9 and  n - 6. 
The computation of the refraction angles  o   ,   since the indirect 

rays start with the one that is 90 degrees,   is: 

a r 

sin a 
t 

sin a. 

=   90° 

C" 

c 

The path length traveled parallel to the layers is: 

X 
k=j k=n 

= * - E V E. \ 
k-m k= j 

For ray group III2   in Figure 26,  m = 10, j * 11,  and n = 6.    If an 
assumed ray's length,   Xs,  is negative,  that ray never can be the fastest 
one and is to be ignored. 

The travel time for an indirect ray is: 

X 
 i 

C 

k=j 

^Tf+S k=mC08VCk 

k=n        T, 
+ E  ^T" 

k=jCOSakCk 

For computational convenience, the detonation point and the structure 
locations are assumed to divide their particular layers by an imaginary 
cut into two layers of the same seismic velocity. 

To simplify the computation and the use of the program, the half 
space is considered to consist of four areas as shown in Figure 2 8.   The 
areas are limited by the relations: 

Area A 

Area B 

Area C 

Area D 

C  is positive and 0  ^  6 < (90 - c) 

f   is positive and (90 - €) s  6 < 90 

e  is negative and  | f | =£ 6 s 90 

f   is negative and 0  s 6 < |e|   . 
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Figure 28.   Partition of the half space in areas related to 
layers' inclination and structure location. 

This distinction is based on the following sign convention: 

Distance R is always positive. 

Depth H  is always positive. 

Location angle Ö   is always positive. 

Layer inclination c   is positive if the detonation point is located 
"above the layers" and is negative if the detonation point is 
located "below the layers. " 

"Above the layers" means that an observer moving into the direction 
of R meets lower, in general earlier sedimented, layers.    "Below 
the layers" means that the observer meets higher, in general later 
sedimented,  layers (Figure 28). 

With this area and sign convention,  the previously given expres- 
sions for this distance  X  and for the first approximate angle change to: 

Area A: X = R     • cos   f - H. •  sin  c 
A A 

ai = 90 "   € ' 6A 

Area B: X = R     •  cos   e  - H    •  sin  C 
B tJ 

ttj = 5B + € - 90 
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Area C: X = R    • cos   € + H     sin  c 

Ot^ 90 + € - 6C 

Area D: X = R    • cos C + H    sin c 

ttj = 90 - c + 6D 

All the rays that are supposed to hit the structure travel between the 
perpendiculars from the point of detonation or the location of the 
structure to the layers.    A ray traveling beyond a perpendicular cannot 
cross the perpendicular because the signs of both sides of the basic 
law: 

8inai+1 

are the same and, in the case of refraction, the angles are allowed to 
change only from 0 to 90 degrees. 

Because of these relations, ray group II does not exist for area 
A.   To penetrate the first layer above the detonation point, the rays 
would have to travel beyond the perpendicular in area D and from there 
they cannot return to area A by refraction. 

Besides the layer package between the detonation point and the 
location of the structure,  layers above and below this package are 
significant in selecting the shortest travel time.    The program user 
will want to know how many layers above and below to consider (Figure 
29).   The maximum thickness of the layer package above may be 
determined by the assumption that the layers penetrated do have the 
minimum seismic velocity for rock of 1,000 meters per second   and 
that the layer in which the ray travels parallel does have the maximum 
seismic velocity in rock of 6,500 meters per second. 

From Figure 29 it can be seen that: 

VR^H2 

t 
direct 1000 

X             L + T 
L ,      s    1                D 

indirect 1000« cos a, 

Cl      1000 

r 6500     1000«cos a 

sinaj C       6500 
0. 1539 

cos a = 0.9881 
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.. 

I 

! 

I 

f 

I 

I 

Figure 29.   Maximum thickness of the layer package above and below 
the directly penetrated layers. 

tan a. = 0. 1557 

X 

X 

= R« cos f + H sin c 

= (R-cos c + H sin c) -L-tana    - (L + TD)-tan C 

= (R-cos c + H sin e) - 0. 1557{2-L + T   ) 

t = t.   ,. direct indirect 
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1000 1000« 0.9881      6500       1000-0.9881 

v/R     t H R- COS € + H • ain (      0. 987 •  T 

1.974     '       1.974 •  6.5 4 1.974 97 

Since   -R " sin € + H "  cos e = 0 
, -R-  sin e + H •  cos c 

1.974 •   6.5 

H 
tan e      = - 

M -R' cos C  - H sin c 
1.974-6.5 

If   0 s   c   s   90 

L" < 0 
pi 

L_ (C = arctan - ) = L 
B R'        max 

1 R 
cos C 

sin € 

Vtan2 f i 1 VR
2
 + H2 

tan g . H 

72 „2       ,       TT2 
^R    + H2 R"       +      H" TD 

L = "    + — + 
max , r;     ; 

1.974 1.974 •  6.5  VR    + H 2 

L =   0.585 • Rc + 0.5 • T 
max a u 

L ^   0.6 • R„ + 0.5 • T 
max a u 
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Parallels to the layers in the distance   Lmax  from either the 
detonation point or the location of the structure determine the lower 
and uuper boundary of the rock body which has to be taken into con- 
sideration (A,  B, C, and D in Figure 29).    In the demonstration case 
of Figure 29, however, the distance  Lmax on the perpendicular into 
the upper layers exceeds the ground surface.    Therefore, the real 
upper boundary is the ground surface itself.    So layer   T^  is the 
upper boundary layer and layer  T i Q  is the lower boundary layer 

The direct rays in areas  A and  D and the indirect rays of 
group II in areas B,  C,  and  D have to be checked against leaving the 
half space.    For the check, a critical XA of each layer is computed 
(Figure 29). 

Figure 30.   Propagation areas. 

Rays in area A are considered real if the condition: 

1 \ S X
ak 

is met.   The previously mentioned rays in areas B, C, and D are 
considered real if the condition: 

2 Xk 2 Xak 

is yielded. 
The input to the program is organized in such a meinner that 

the layers of the considered rock body are denoted by a continuous 
row of arable numbers starting with "1" .    The upper boundary 
layer,  generally the geologically youngest layer,  is layer number "1", 

Summarization of the rules for preparing the geology input: 

1.  Determine the sign of the inclination angle. 
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2. Determine the side boundaries of the  rock body to be con- 
sidered by drawing the perpendiculars to the layers through 
the point of detonation and the location of the structure, 

3. Determine the upper and lower boundaries by parallels to 
the layers in the distance   Lmax = 0.6RS 4 0. 5 TQ from the 
point of detonation and the location of the structure. 

4. Check whether the ground surface substitutes the upper 
parallel as upper boundary. 

5. Divide the layers in which detonation point and structure are 
located by an imaginary cut into two layers each. 

6. Enumerate the layers of the rock body to be considered,  start- 
ing with "1" for the upper boundary layer   (generally the 
geologically youngest layer). 

7. Order the layers penetrated by: 

Ray Group I        to the input notation NLF, 

Ray Group II       to the input notation NLB1, and 

Ray Group III     to the input notation NLBZ. 
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APPENDIX D 

DERIVATION OF THE STRESS DISTRIBUTION CAUSED BY AN 
INCIDENT HARMONIC WAVE 

Figure 31.   Stress wave intercepting cylinder. 

Notation: 

a 

b 

C 

'ß 

'e 

rS 

= coordinate radius in meters 

= inner radius of the structure in meters 

= outer radius of the structure in meters 

= longitudinal seismic velocity in meters per second 

=   transverse seismic velocity in meters per second 

2 
=   radial stress in   kp/m 

2 
=   circumferential stress in kp/m 

2 
=   shear stress in kp/m 
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1 as a subscript denotes the rock medium 

2 as a subscript denotes the liner. 

STRESS TENSOR 

The differential equation governing the motion of an elastic,  Iso- 
tropie,  and homogeneous medium is: 

- 2-        - 
(X + U)VV   •   U+|L17   u=pu 

where 

X =   Lame's 1.    constant of the medium 

fj =   Lame's 2.    constant of the medium 

> i 
p =   density of the medium 

u =   displacement vector 

The displacement vector can be expressed by the derivatives of a 
scalar potential and a vector potential: 

u =   V0   + VX^) 

The potentials satisfy the wave equation: 

2 1      " 
7     0     -   —T—    0 

2T l    T 

where 

0 =   longitudinal displacement potential 
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u 
&       =   tiistortional diaplacement potential 

C      =  J^^ 
Ct \     D 

C      =  ^/—■—     =   longitudinal seismic velocity 

C _    =4r^ -   distortional seismic velocity 
P       > 0 

The stress tensor is related to the displacement vector by: 

a     =X(V'u)l+u(vu + uv) 

where 

I       =   unit tensor 

For the assumed plane strain problem,  the vector-displacement 
potential is directed into the axis of the cylinder: 

j|)       =   e    it 

_ 
The vector potential is the scalar product of the unit vector e    and the 
magnitude ty.    Substituting the potentials into the stress tensor, the 
stress equation in cylindrical coordinates can be written as: 

rr       -   XV   * +2M    r2   +r mr      ,2  Sfl / 

xv2  +2hjL*+lJto .I-SJL+i -ai) 
\r2 *fl2      r  9r      r  3r^fl     r    39 / 9 - " SB 

rfl     = zJl^.l-M.lM +±201,1^] 
re M\rar3e      r2 39      rar      r2ae2     2VUJ/ 

The equations for the displacement are: 

u        = 1A. +1 M. 
r ^r       r  39 
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= 1 ZUi _Zji 

STRESSES 

The potentials of an incident,   longitudinal,  harmonic wave propa- 
gating in the x-   direction are: 

-    *    ei(aX "   Wt) 

!/)       =0 

where 

0      =   amplitude 
o 

to      =   circular frequency 

&       =  -*■■    =   wave number of the longitudinal wave 

a 

The nonzero potential can be written in cylindrical coordinates as: 

0       =0e"        w      =02.CiJ  iar) cos (ne)e   * 
o o Q    n       n 

where 

T =   Bess el function of first kind of order n Jn 

C =   1 for n = 0 
n 

€ =   2 for nafe 0 
n r 

The incident wave is reflected at the liner.    The outward-propa- 
gating longitudinal and shear waves are determined by: 

*(1)    =    lAnUn    (^r) cos nee   w 

n=ü 
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(in r in -i,.t 
«i.   , ' Y    B    ll1 " ,«   r) 8in nee   ^ 

n  U 

The waves propagating through the liner towards the inner boundary are 
represented by: 

(i)    -    r   ^x  ^(2)^    ^   _A   -iojt =    y   M  H      (a ,r) cos n9 e 
1   ' n-0 

*m     '     ^    NnH^^r|Si„„ee-^ 
n=0 

The refracted wave is reflected at the inner face of the liner.    The re- 
flected waves propagate outward: 

*(2)    =     ^RnHn    V^08"*6 

where 

n-0 

n=0 

H =   Hankel function of first kind of order n  (for inward- 
propagating waves) 

(2) H    '    =   Hankel function of second kind of order n  (for outward- 
propagating waves) 

a =   r~    =   wave number of longitudinal wave 
a 

ß -   -~   -   wave number of shear wave 

& ~   circular frequency 
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-A 

A   ,   B  ,   M ,  N  ,   R  ,   and S     are coefficients that have to be deter- 
n       n       n      n      n n 

mined by using the boundary conditions: 
At the interface between rock and liner, 

ar(l) =   "HZ) 

Tre(i) =   Tre(2) 

Ur(l) =   Ur(2) 

ue(i) ^ ue(2) 

the innerface of the liner has to be stress-free: 

"rU,        -   0 

Trep)    = 0 

Superposition of the effects of the incident reflected and refracted 
waves respectively leads to the stress equations: 

r(l) 1 -a*  0 n    1   nr n 1   nr       n 1   nr / 

X (cos nge'100 / 

1r-2i[«ein
lF">+A .F'^-B ,0«') 

1 -rJ: 0  n     1   nr       n 1   nr        n 1   nr  / 

X   (cos nöe-iwt)l 

ae(i)     = ^ 
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re( 
-i Lu      a ,,(1)       ,,(1)  ,    r-(i<)\/. 

n = 2U  r      T|0 €  i      L.   '+A]El' + B     E'    '(sin 
1) 1        ^J   on     Inr       nlnr       n 1  n r / \ 

sin nfle    w  ) 

. 
"W)      ■ Z        »«jy    n«:   nr        n<:   nr       n<:    nr        n ^   nr 

x(cos n0e-iwt) 

re(2) 
^y2iL F(i).N B^+R F

(R)
.S 5w 

2        ~J^    n2   nr        n2   nr       n2   nr        n2   nr 

X \cos nQe        / 

where 

r .m'^^zlfM 2E
(i' + N J'hK 2E(R)

+s   EW) r9(2)       "2        fcJ\    n2   nr       n2  nr      n2   nr        n2  nr / 

x(sinn9e"iwt) 

lDnr    =(n2+n■^^2)Jn(«lr)-«lrJn-l(alr, 

" 

1C=(»2--i^>iV>-<..'Hl1.,1<«1'' 

. 

, 

lEnr   V-fiyc.D-n^rJ^fajr) 

2Enr   ='"2 + °'Hi2)<V,-"«2rHn2ll<«2r| 
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_ 

1E
(R)   = (n2 + n) ^'(ft.r) - n« . rH(1 ^ (» , r) 

1    nr n 1 1      n-1      1 

,E(R)   - (n2 + n) H(1)(o(_r) - n0  rH01, {a_r) 
2   nr n       2 2      n-1 ^ 

2   nr        v 2 2r2     '     n       2 2     n-1    2 

jD»1  =-(n2 + „)H^(»2r)+„„2rHW(42r) 

2DW    = -(n
2 + B, H^2' (V) + n?2r H^, (^r) 

X»     ^(n2.»-^2)^2'^,.^^.,^, 

The coefficients  A ,  B„,   M ,  N ,  R  ,  and S^  can be determined from: n       n'      n      n'     n n 
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hi] • c. 
I J I I   i I 

I 

where 

N 

n(R) n(R) 

V.E 
1   nb 

(R) v{R) 
»'rnb 

2< 2   nb 

E(i) 

2Enb 

2   nb 

E(i) 

2  nb 

D(R) 

2   nb 

E(R) 
2   nb 

D(R) 

2  nb 

E(R) 

^bH^^b)  nH^i^b) ^bH^'^b)  nH^^^b)  CfebH^'^b)  nH^^b) 

,(1). ,(!)', ,(2) (2)', ,(n; ,(1)', 
<'(«lb) ^^n'^^ nHn6'^b> ftbHn&'^b) nH;i^b)   ^T ^ 

2   na 

2   na 

2^ 

2  na 

mi 
2   na 

2Ena 

25
(R) 

2 na 

E(R) 

2Ena 

I 

I 

i 

[ 

i 

1 
69 



and 

- B n 

hl= 
M 

N n 

R 

- 

and 

KI=*o-Vin 

v
lDnh 

«ibj;(«ib) 

n J^Ca.b) n    i 

«* 
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The expressions 

j   na j   no 

denote the values ol 

(y) 
J   nr 

for  r = a or r = b,   respectively. 

After determining the coefficients,  the stress can be calculated 

from the stress equation. 
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APPENDIX E 

DERIVATION OF THE FOURIER-TRANSFORMED POTENTIAL 
OF THE TRIANGULAR PRESSURE PULSE 

THE FOURIER TRANSFORM IN GENERAL 

The Fourier transform f(io)  of the pulse f(t) is 

£(a))  -± \ me' Wtdt 

Because the pulse is considered to start on times greater than zero, 
the one-sided Fourier transform: 

f(W)    =2^   /  f(t) eltÜtdt 

will be used. 
If the function f(t) is approximated by straight-line segments in 

the increments of Atj   , the function can be written as: 

for 

where 

Af.(t) 
f(t)  -Wt)+'-ir{t-tH) 

t.. <t^ t. 

Af.(t) = f.(t) - f. .(t) 
J J J-l 

At.     = t. - t. , 
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1 
■ 

The first derivative of the approximating function: 

df.(t)       Af.(t) 
_J L_ 

dt ^t. 
J 

is continuous inside the interval ^t. . At the limit arguments, t. 
and tj , the first derivative is discontinuous. The function of the 
first derivative is a step function. 

The second derivative inside the interval is zero: 

%'= 0 
dt2 

but is undefined in this form for the limiting arguments of the interval. 
The second derivative for the limiting arguments can be determined by 
the Dirac impulse: 

2 
^P-= Af(t.) 6 (t- t.) 

dt2 J J 

if t = t.,  where 
J 

df      (t)       df(t) 

^V=-^- -ir 
Since the Dirac impulse is zero for arguments different from zero: 

6(t.t.)=  0 
J 

If  t jt t. , 

the second derivative for the interval and its limit on the right may be 
written: 

f"(t)   = Af'a.) e (t-1.) 
J J 

t,     ,   < t s t. 
J - 1 J 

73 



.jft- 

The Fourier transform of f" (t)  is: 

CO 

e       dt 

^(W)        =■£■    Z Af' (t.) 6 (t - t.) exwl dt 

Using the definition of the Dirac function: 

f   eiü,t6(t.t.)dtS   e^ 
0 J 

the transform of f*(t) is simplified to: 

.     n ia)t. 
f'(w)        «~   J   Af'lt.) e     3 

2ir  j=l J 

The second derivative of the harmonic wave form is: 

?{(ü)       = -W2f(a)) 

Therefore, the transform of f(t) can finally be obtained as follows: 

,     n    A£'(t.)eiwt 

f(w)       *~-  I  L  
Äir   j=l -co^ 

where, according to prior definition: 

£.+1(t) - f.(t)     f(t).f    (t) 
Af'(t)      =-Jii J J tl— 

j t.xl  - t. t. - t.   . 
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■ 

APPLICATION OF FOURIER TRANSFORM 
a 

max 

Figure 32.   Stress pulse. 

The free-field stress a (t)  can be approximated: 

a(t) 
max . 
    •  t 0 <;  t s t 

t a 

a(t) t   s t S t, 
a d 

The derivative differences with the arguments  t = t.  are: 

t. =0 

Af (0) 
max 

=  t 

Af' (t )   = a v a max ^     (-   +-) 
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t. 
J 

= t 

Af'(td) 
max 

The free-field stress as a function of the circular frequency w  now can 
be expressed by: 

aim) 
max 

Zir-  CO 

i(Ot e       o fe-t) 
IWt iu)t 

a ,   1 d 
e + T- e 

b 

a(ü)) 
r"1 
max 

2ir • to   L (t-r) 
ia}ta      1     iwtd      1 

b a 

Since the particle velocity is bound to the free-field stress by the 
relationship: 

p • C 
Q 

where 

= density of the free-field medium 

C = longitudinal seismic velocity of the free-field medium 

the particle velocity as a function of the circular frequency can be written: 

v(u)) 

(i) a  max 

2ir cü p • C 

/ 1       1 \   '"'a      1     '""d      1 
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. . 

The Fourier transformation delivers: 

v (t) -     I   v(aj) •  e   w     w 'da) 

0 

or,  in a more general form: 

00 

v (t) =   J    v (W) *   elW   dw 

and 

v(t) J 
(i) 
max 

0   2ff a) p •   c     I M iwt. 1    iwtd t] e      du) 

DISPLACEMENT POTENTIAL AS A FUNCTION 
OF THE CIRCULAR FREQUENCY 

The transform between  0(t)  and ^) (a)) is: 

(»(t) if.,   i(ax-ci)t) j 
= 2^ J <p (W) e '       w ' du 

By taking the partial derivative with respect to x, the displacement 
equation is: 

m f    /  » •     Max-tot) , u(t) =   | ^(w) ia e v ' da? 

By taking the derivative of the displacement expression with respect to 
time,  the velocity equation is: 
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v(t)    = T^^aw^^^d« 

and, with a = (ti/c    ,   the form is: a 

(t)    = — j ^ (a)) a)   e w da) 
a   0 

By comparing this equation with the last one of the previous section, 
the frequency-dependent potential now can be determined: 

or 

9((i})   = 
0mL ["/1   +i\ iWt«    J. e

iü,td    J.1 
2irto)p|^b       a/ D aj 

V(ta))   = 
v        c 
max cr 

, 4 
A        1 \  lw,a      1     '""d      1 1 
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APPENDIX F 

DERIVATION OF THE STRESS DISTRIBUTION CAUSED BY A 
TRIANGULAR-SHAPED PRESSURE PULSE 

.. 

. 

The potentials of the incident triangular-shaped pulse that propa- 
gates in the x-   direction are: 

* 

00 i(orx - wt) 
(w) e dU) 

0 = 0 

where 

ipioo) - Fourier transform   of   0 

03 = circular frequency 

O = -T—   = wave number of the longitudinal wave. 
ca 

The nonzero longitudinal potential </j   can be expressed by a Bessel 
function series: 

0        = ?<p((0)ei(aX-wt)   dw = f «pto)!^ inT (ar)cos(ne)e-iwt]d<o 
i» io» 0 L 

which yields stresses as follows: 

"iUA   -2^'2l iL^C f^+A ^W + B  3{R)] r(l)dy      Hl       J    "Jl 0'      n     1   nr      n 1   nr       n 1   nr / 
oo n=üLx 

X (cos n 9 e dco) 
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a9(l)dy      l ■n .y »(00). in,F(U + A   .F^-B    5<RI 
o        n     1   nr       n 1    nr        n 1    nr 

^cos n 9 e 'w' dto 
iojt 

)| 

r6 l)dy      wl        j    ^»Jy   o        n     1   nr       n 1   nr        n 1  nr / 
oo n=Ui 

X   \8in n 9 e ''*'' do) •kot 
)| 

' „>H     =2u,r-2f   ||M   yl)
+N     S('>+R   2D'R»+S   25<R>) r(2)dy        w2        J    **  \    n2   nr       n 2   nr       n2   nr n2   nr' 7 oo n-Qv 

X   \co8 n 9 e oü)/ 

,(R)   .,     zAR) 
r9(2)dy 2       J   ^Jl    n2   nr       n2   nr        n2   nr      n2   nr 

OD n=0LV 

X    (cos n 9 e dcü/l 

.„.. =2u,r-J? UM ,B<l'+N  J(l,
+R   2E,R'+S   J(R») r9(2)dy     w2       J   ~J\    n2   nr      n2 nr       n2   nr       n2 nr / 

X     (sin n 9 e'1<ü   do)/    . 
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APPENDIX G 

DERIVATION OF THE ALLOWABLE STRESSES FOR ROCK 

2 "n ,', wl 
Figure 33.    Straight-line envelope of Mohr's circles. 

Notation: 

I 

! 

K 

IP 

rre 

= cohesive strength in kp/m 

= angle of internal friction 

= major principal stress 

= minor principal stress 

= radial stress 

= circumferential stress 

= shear stress. 

■• 

ALLOWABLE MAXIMUM PRINCIPAL STRESS 
IN AN ISOTROPIC MEDIUM 

According to Mohr-Coulomb-Navier's Theory,  the envelope of 
Mohr's circles is the straight line: 

81 



T = tg ^ •  a + K 

From Figure 32,   it can be read: 

T 
n 

a1-az 

2 
cos p 

an 

ffl+(T2 
2 

al-a2     . 
-        2          sin V 

 COS( 
8in<P /    1        2 1        2 «1 .  «• t(p=   -  s n (p   + K 
cosp \      2 2 / 

Manipulations lead to the representation of the envelope related to the 
principal stresses: 

2 K cos (p       1 + siny? 
1 1 - sin <p       1 - sin 9     2 

The last equation means that for a certain (y, .   the value of a,   is just 
the allowable limit.    Therefore,  the equation should be written: 

a   ii        vi 2 K co8<p       1 + sin <p 
"allowable     = — : r +^ ;—    Ü-, 

1 - sin (P       1 - sin (p    2 

The actual,   maximum,  principal stress ff.   has to yield the condition: 

1 allowable. 
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APPENDIX H 

DERIVATION OF THE SINGLE-SHOT SURVIVABILITY 

circle 2 

Figure 34.    Plan for probability analysis. 

Notation: 

Desired ground zero is the origin 0 of the coordinate system 

D =   distance between desired ground zero and the center of the 
structure    in meters 

Q. =   location angle for the center of the structure in degrees 

L =   length of the tunnel    in meters 

ß =   angle between tunnel direction and D  direction in degrees 
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R =   failure distance of the tunnel from GZ 

(j =   standard deviation in x direction 
x 

a =   standard deviation in y direction 
y 

P =   probability of failure 

S =   probability of survival (survivability) 

The idea is to determine the target area, to divide the target area in 
narrow rectangles of width  Ax and of length y    -  y.   to determine 
the probability of failure for the narrow rectangles, to find the prob- 
ability of failure over the entire target area by summation of the prob- 
abilities of all the rectangles, and to determine the survivability out of 
the probability of failure. 

DETERMINATION OF THE TARGET AREA 

Center C   : 
c 

x       =  D •  cos   Of 
C 

y      =   D •  sin  a 
c 

Point H.i 

XH    = XC   ' ~2    '   COB *a " ^ 
1 C       L 

yH   = yc   ' T ' 8in ^ " ß) 
1 c 

Point H : 

x      = x       + L •   cos (a - ß) 
H2       Hl 

yH   = yH    +L •   sin (a - ^8) 

Point C,: 

x      = x      + R •   sin (a - ^8) 
Cl       "l 

yr   = yu   - R •   cos (a - ß) 
C1       H1 

84 



Point C   ; 

XC    = XH    + R '  8in ^a "  ^ 

yC    = yH    " R '  COS (a '  & 

Point C   : 

XC    = XH     " R '  8in (a "  ^ 3 2 
yC    = yH    + R *  C08 (a " & 2        "2 

Point C,.: 4 

XC    = XH    " R '  8in <a "  ß) 

yr    = ^u    + R ' c08 (0! " /5) C4       Hl 

BOUNDARIES 

Equation of circle 1: 

Equation of circle 2: 

I  2 21 1/2 

y.[R   -(x-xH2)l      .y^ 

Equation of straight line   S.,: 

Yc2-
yci 

y =   7,—    (x - x     ) + y 
xc ^^C, ci       ci 

Equation of straight line  S    : 

3 4    . . , 
y = —  (x - x     ) + y 

XC    ■XC. C4        C4 
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PARTITION OF THE TARGET AREA IN NARROW RECTANGLES 

The width of the rectangles is: 

Ax X 

The divisor  A determinea the width of the rectangles in relation to the 
weapon accuracy expressed by the standard deviation in the x - direc- 
tion.    The usual problems for the resultant accuracy (probability result) 
was found to be sufficient if A was chosen: 

A = 100 

Ax   = -^ 
"* 100 

and the error was less than one percent. 
To get the length of the rectangles the target-area boundary is 

divided into a lower boundary B.C  C   B    and an upper boundary 
B-C  C   B    (Figure 34).    The length ot rectangle   1 then is: 

i      Ax . .       Ax v L = yu(x + -T).yL(x+—) 

Because of the different functions, the y    - and yT   - values are cal- 
u L 

culated differently over the x - range: 

(x^    - R) < x <  x 
Hl C4 

2-1/2 

yu = +[R    -(x.xHi)   j .y^ 

xr s x < x 
C4 C3 

yc   " yc C3        C4 ,                .A 
yu =  ^ TZ— ' (x " XC  ) + yc U       XC     "XC. C4         C4 
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C 3 H2 

1/2 

^u HR2 " (X " XH/ I +yH2 

(x        - R) < x <  x 
Hl S 

v-K2-^-^)2!   +yH1 

S  X S   X, 

yc   " yc 
L    xc   -yc, ci      ci 

1 
<   X  S    (X        + R) 

H2 

yL=-|R    -^V 
21 1/2 

rH. 

PROBABILITY FUNCTION 

The cumulative normal distribution function is used to represent 
the single-shot probability in military targeting (Figure 35).   Since the 

■1.0 

P^=vfe/e 2du 

0.4 - 

0.2- 

[00.52 
;i!>o.67 

0.84 I'T 
|l|> 
In    [*^ 
ULLU I  

1 'I   2 

Figure 35.    Normal distribution function, 
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integral in this function cannot be solved by the direct integration 
method,  numerical values were obtained by series approximations and 
established and published in tables in References  11,   1Z,  and 13. 
Using the table of Reference  13,  four series functions were developed 
to substitute the probability function in the range from  % - . 00 to 
z = +00.    The error made by using the approximation functions is less 
than one percent: 

1.95   s  z 

P(z) = 1 - 0. 399 • - ~ (— - -yj 
e      V z z  / 

0   <   z <  1.95 

P(z) = 0.841 + 0.242 (I..,. .^ (^ 

(-1.95)   <   z s 0 

P(z) = 0.159 - 0.242 (z . .,. l^il2 + !^1L4 

z «   (-1.95) 

P(z) = 0.399 • -^   (- -75  -—) 
e     A    z a / 

The independent variable  z is measured in    standard deviations. 
In targeting, the standard deviation is expressed in a length unit.   To 
introduce them, the length values x, Ax, y , and y     have to be divided 
by the appropriate standard deviation: 

Zl = 
x 

ax 

X +  ^x 
ax 
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3      ay 

z .  - 4       ay 

The single-shot probability for the stripe of infinite length between y 
and y    is: 

Li 

Py = P (z3) - P (z4) 

Similarly, the single-shot probability for the stripe of infinite length 
and width Ax is: 

Px = P (z2) - P (Zl) 

The single-shot probability of the rectangle x • (y    - y   ) is: 

P= P    •  P 
D     y      x 

Summation of the whole target area leads to the single-shot probability 
for the target: 

P = -E 
(x     + R) 

H2 

- L ip(^)-p(^)i 
(xH   - R) 

ay /' 

The survivability S is obtained by: 

S = 1 - P 

•.(■' ¥t\ .K" • t f-^l 
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APPENDIX I 

COST AND COST-EFFECTIVENESS COMPUTATION 

access shaft 
mm 

access tunnel 
r 

Notation: 

K 

C az 

Tu 

Tu 

lSh 

Tu 

Sh 

H 

main tunnel 

Figure 36.    Tunnel section for example problem. 

2 
=   cohesive rock strength, in kp/cm 

=   seismic velocity of liner material,  in meters per 
second 

= length of main tunnel, in meters 

= length of access tunnel,  in meters 

= inner radius of access tunnel,  in meters 

= inner radius of tunnel, in meters 

= inner radius of access shaft, in meters 

= outer radius of tunnel, in meters 

= outer radius of access tunnel,  in meters 

= outer radius of access shaft,  in meters 

= depth of main tunnel, in meters 
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I 
p, =   percentage of longitudinal reinforcement 

Space 
U 

- 

p =   percentage of circumferential reinforcement 
9 

p =   percentage of web reinforcement 

E =   cost adjust factor for labor costs 
La 

E-, =   cost adjust factor for underground equipment 
E 

Ep, =   cost adjust factor for energy 

E =   cost adjust factor for explosives 
Ex 

E^ =   cost adjust factor for drill material 
Dr J 

E_ =   cost adjust factor for concrete 
Co 

E =   cost adjust factor for reinforcement steel 

E-,-. =   cost adjust factor for steel liner 
StCy J 

F =   cost factor for shafts 

C— =   total structure costs (dollars) for conventional excava- 
tion in rock 

C     * u        =   total structure costs (dollars) for machine excavation in rock 

V =  usable volume us 
3 

Cc =   structure costs per usable volume in rock ($/m ) 
for conventional excavation 

3 
C_ .     =   structure cost per usable volume in rock ($/m ) 

Space mach ,..,.. for machine excavation 

C   ,, =   cost effectiveness for conventional excavation 
eff 

C   ,, , =   cost effectiveness for machine excavation eff mach 
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The cost equations,  compiled here,  are based upon figures in 
Reference  14. 

LABOR COSTS 

The labor costs,   given in dollars per lineal meter,  comprise 
costs for excavating and dumping in the vicinity of the tunnel portal: 

Dry,  massive,  moderately jointed or dry,  intact rock: 

2 
K 2  200 kp/cm 

b <  2.30 m 

C     = E     •   (88. 1 • b2 - 244. 1  •  b + 450. 1) 

b a 2.30 m 

CT   = E.   (41.6 • b2 - 91.8 ' b + 394. 1) 
I-* i-i 

Dry,  stratified or schistose rock: 

2 2 
200 kp/cm    > K i   100 kp/cm 

b < 2.30 m 

C.   = ET   (55.4 * b2 - 153.7 ' b + 355.0) 
Li LI 

b a 2.30 m 

C.   = E.   (43.3 ' b2 - 120. 1 •  b + 395.0) 
Li Li 

Dry, moderately blocky and seamy rock: 

2 2 
100 kp/cm   > K a  50 kp/cm 

b < 2.30 m 

C.   = ET   •  (88.1 • b2 - 254.4 • b + 438.0) 
Li i~i 

b > 2.30 m 

CT   = E     "   (57.7- b2 - 192. 8 • b + 504.0) 
L L 
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Dry,   very blocky and seamy rock: 

2 
50 kp/cm     >  K 

b < Z. iO m 

C     = E.    •   (65. S •  b3 - 192.7 •  b (  416.0) 
L Li 

h > 2. 30 m 

CI   = Ej    (44. 8 -  b^  - 96. 3 • b 4  364. 0)   . 
Li LI 

UNDERGROUND EQUIPMENT COSTS 

Underground equipment includes: 

1, Drill jumbos,  drills,  mucking machines,  cars,  locomotives, 
compressors,   ventilator fans,  sfnau-miscellaneous equip- 
ment, and 

2. Pipes and tracts. 

A write-off rate of 15 percent per month is taken into account for the 
first group.    This rate covers depreciation and maintenance.    The 
monthly costs were reduced to unit costs in dollars per lineal meter. 
The second group of equipment items could be related directly to the 
tunnel length. 

Dry, massive,  moderately jointed or dry intact rock: 

Ka  200 kp/cm2 

b < 1.8 m 

C_ = E_  (13.6 ' b + 144.0) 

1.8m< b< 2.75 m 

C_ = E_ (32.2 •  b + 195. 1) 

2.75 m s b 

C_ = E^ (64.4 ' b + 160.8) 

93 



Dry,   stratified or schistose rock: 

2 2 
200 kp/cm    >   K >   100 kp/cm 

b <   1. 8 m 

CE=EE-   154.1 

1. 8 m  « b < 2.75 m 

C_ = £_ (32.2 * b + 165.6) 

2.75 m < b 

C_ = E_ (57.3 •  b + 141.0) 

Dry,  moderately blocky and seamy rock: 

2 2 
100 kp/cm    > K 2  50 kp/cm 

b <  1.8 m 

CE=EE-  157.4 

1. 8 m « b < 2.75 m 

C_ = E^ (32.2 • b + 175.5) 
E £ 

2.75 m s b 

C_ = E_ (64.5 * b + 134. 8) 
£ £ 

Dry,  very blocky and seamy rock: 

2 
50 kp/cm   > K 

b <  1.8 m 

C     = E     •  164.0 
E        E 

1.8 m s b < 2.75 m 

94 



[ 

'• 

-• 

. 

C     = E      (48.4 •   b  t   145.0) 
E        E 

2.75 m ^  b 

C     = E^ (71.6 '  b + 131.1) 
E E 

ENERGY COSTS 
The energy costs given in dollars per lineal meters are based on 

a unit price of 1 cent per horsepower hour: 

Dry, massive, moderately jointed or dry,  intact rock: 

2 
K s   200 kp/cm 

b <   1.8 m 

1.8 ms b < 2. 75 m 

CEn = EEn(5-9'b + 4-3) 

2.75 m s b 

CEn = EEn(4-6'b + 10-5) 

Dry, stratified or schistose rock: 

2 2 
200 kp/cm    > K s   100 kp/cm 

b <   1.8 m 

C       =E       •   13.1 
En        En 

1.8 m ^ b < 2.75 m 

C       =£,,    (3.1 • b + 7.3) 
En        En 

2.75 m < b 

C       = E       •   (4.1 * b + 6.8) 
En        En      v 
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Dry,  moderately blocky and seamy rock: 

2 2 
100 kp/cm    > k ^ 50 kp/cm 

b <  1.8 m 

C^,    = E^     •   13.4 En       En 

1.8 m ^ b < 2.75 m 

CBn-EEn-(4-3-b + 5-6' 

2.75 m < b 

Dry, very blocky and seamy rock: 

2 
50 kp/cm   > K 

b<  1.8 m 

C,* E^    *   14.1 En       En 

1.8m« b< 2.75 m 

C
En = EEn<4-8-b + 5-9> 

2.75 m s b 

Sn^En^1-^4-^- 

COSTS FOR EXPLOSIVES 

The costs per lineal meter are: 

Dry, massive,moderately jointed or dry intact rock: 

K ^ 200 kg/cm2 

b <  1.0 m 
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1 

- 

CEx = 0 

1. 0 m s  b < 2.0m 

C:        = E^     '   (33.6 * b - 21. 3) 
Ex Ex      v 

2.0 m <:  b 

C,,    = E^     (7.5 •  b2 - 3.4 •   b + 22.2) 
Ex        Ex v 

Dry,  stratified or schistose rock: 

2 2 
200 kp/cm    > K &  100 kp/cm 

b <  1.0 m 

C^    = 0 
Ex 

1.0m<b<2.0m 

2.0 m £ h 

€„    = E,,    *   (4. 1 * b2 + 4.2 • b + 10.5) 
Ex        Ex 

Dry, moderately blocky and seamy rock: 

2 2 
100 kp/cm   > Ka  50 kp/cm 

b < 1.0 m 

C^,    = 0 
Ex 

1.0m« b< 2.0m 

Sx^Ex*  (26. 9 -b- 15. 8) 

2.0 m «£ b 
2 

C^,    = E^,    '   (5.0 ' b    + 1.1 ' b + 15.1) 
Ex        Ex 
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Dry,   very blocky and seamy rock: 
2 

50 kp/cm    > K 

b <  1.0m 

C       = 0 
Ex 

1.0m< b< 2.0m 

C
Ex = EEx(21-5,b-11-4) 

2.0 m < b 

:Ex = LEx C_    = E^    *  (3.0 • b2 + 5.9 * b + 7.6) 

COST FOR DRILL BITS AND RODS 

The costs for drill bits and rods are as follows: 

carbide inset bits—$14.20 each 

drill rods-$15.00 each 

The unit costs are dimensioned in dollars per lineal meters.    They are 
for all kinds of rocks: 

C^    = E^    '   (3.3 * b - 1.2)  . 
Dr        Dr 

EXCAVATION COSTS 

The sum of the labor, equipment, energy, explosive, and drill 
material costs establishes a subtotal of the excavation costs: 

Sub        L       E        En        Ex        Dr 

For engineering, overhead, and contingencies, 25 percent of the sub- 
total is added.    For profits,  15 percent of the subtotal is added.    In 
addition to these costs, expenses for miscellaneous items are to be 
taken into account.   So, the excavation costs in dollars per lineal meter 
are: 
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EC Sub        M 

where C. . is the miscellaneous cost: 
M 
CM =EM-^-b2. 

I 
I 
.: 

LINfiR COSTS 

The tunnels might be lined in plain concrete, reinforced concrete, 
or steel. The seismic velocity of the liner is distinguishing in the pro- 
gram when concrete or steel is to be considered in the cost-computation 
subroutine.    If the seismic velocity C ?  of the liner equals or is less 
than 4, 500 meters per second,  control is given to the calculation of the 
costs of reinforced concrete liner.    If the seismic velocity exceeds 
4, 500 meters per second, the costs for a steel liner are computed. 

REINFORCED CONCRETE LINER 

The amount of reinforcement steel is: 

**   =^[k'9)('M--pw-H] 
The amount of concrete is: 

ACo ' 3- 14 1(0- 15 + f - ^l " AS. 
The costs for the concrete are based on a unit price of $40. 00 per 
cubic yard in place.    The costs for the reinforcement steel are based 
on: 

$0. 30 per pound 

40 
C„ = E Co Co        Co     0.76 

Cc* = Ec* '  AQ* •   7- 85 '   2204- 6 '   0- 30 
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The costs per lineal meter for a reinforced concrete liner are: 

CLi = CCo + CSt 

If plain concrete is used,  the costs are obtained by setting: 

pt        = pe = pw = 0 

The costs for steel liner consist of the costs for steel and Gunite 
between rock and steel liner.    The basic unit prices are: 

$0. 44 per pound for steel in place 

$3. 95 per cubic foot for Gunite in place 

CT . = E^    (b2 - a2) •   3. 14 •   2204. 6 •  0. 44 
Li StCy 

+ E„    • 6.28 • b •  0.05 •   35 •   3.95   . Co 

TOTAL STRUCTURE COSTS 

The sum of the excavation costs and the liner costs furnishes the 
total structure costs per lineal meter: 

CStr        = CE1 + CLi 

The protective underground structure consists usually of the main 
tunnel,  access tunnels, and access shafts.    The costs of the access 
structures can be calculated with the previously given cost equations, 
as well as the costs of the main structure.    For the access structures, 
the pertaining radii are to be introduced: 

Access tunnel: 

C^ = C0JL   (a = a,,,    , b = b^ ) Tu Str Tu Tu ^ 

Access shaft: 

C =C       (a = a      .b=b)'F 
^Sh ^Str * Sh ' Sh' 
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The factor   F  in the cost equation for the shaft brings into account 
that a shaft is more expensive than a tunnel of the same diameter.    In 
general,   F = 1. 5 .    The total costs in dollars for the access structures 
are: 

C = L       ■   C 
AcTu Tu        Tu 

CAcSh     = <H + " + 3' •   CSh 

The access costs are: 

CAc " CAcTu + CAcSh 

The total costs for the entire protective structure are: 

c:    ,       = n      • L + cA     . Tot Str Ac 

SPECIFIC STRUCTURE COSTS 

In many application cases,  an estimation of the total structure 
cost is insufficient.    Very often specific costs must be made available 
for economic comparisons — cost related to usable volume: 

V = L •  3. 14 •   a2 

us 

is: 

r 
CTot 

Space V r us 

The effectiveness and the cost of a structure are measured in the ex- 
pression of the cost effectiveness: 

C 
CTot 

eff ' V ,   • S us 
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APPENDIX J 

DESCRIPTION,  FLOW CHART, AND 
LISTING OF THE MAIN PROGRAM 

A flow chart for the computer program is given in Figure 37. 
The arrangement of the program can be understood and followed by 
using the flag "NPAS" as a guide.    Prior to setting "NPAS" to one, 
the Input is read from five cards: 

Card 1:     Format:     2F10. 0,  2F5. 0,   SE10.6 

Cols 1-10 

Cols 11-20 

Cols 21-25 

Cols 26-30 

Cols 31-40 

Cols 41-50 

Cols 51-60 

Cols 61-70 

Cols   71-80 

Specif,  gravity of media 

Specif,  gravity of liner 

Poisson's ratio of media 

Poisson's ratio of liner 

Elastic modulus of media 

Elastic modulus of liner 

Radius of inside liner 

Radius of outside liner 

Depth of cylinder center 

(no units) 

(no units) 

(no units) 

(no units) 

(kp/m2) 

(kp/m2) 

(meters) 

(meters) 

(meters) 

Card 2:     Format:     7E10. 6,  F5. 0,  15 

Cols      1-10 Tangent of phi of media 

Cols   11-20 Cohesive strength of media 

Cols   21-30 Tensile strength of media 

Cols   31-40 Constant "L" of liner 

Cols   41-50 Constant "M" of liner 

(no units) 

(kp/m2) 

(kp/m2) 

(kp/m2) 
. 2    1.37 

1    2'     ^ kp ; 

m c 

Cols   51-60 Constant MN" of liner 

Cols   61-70 Tensile strength of liner 

(no units) 

(kg/m2) 
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Cols   71-75 Nominal Weapon Yield (KT) 

Cols   76-80 Number of weapon type* (no units) 

Card 3:     Format:     8F10. 0 

Cols 1-10 Distance from cylinder to target (meters) 

Cols 11-20 Length of cylinder (meters) 

Cols 21-30 Angle alpha (degree) 

Cols 31-40 Angle beta (degree) 

Cols 41-50 Standard deviation in "X" (meters) 

Cols 51-60 Standard deviation in "Y" (meters) 

Cols   61-70 Effect longitudinal seismic velocity    (meters 
between GZ and structure prx second) 

Cols   71-80 Adjustment factor for labor cost (no units) 

Alpha: Location of cylinder from target 

Beta: Orientation of cylinder. .. direction 

Standard Deviation:   Range at which 40% of shots fall inside. 

Card 4:     Format:     8F10.0 

Cols      1-10 Radius inside liner of access tunnel   (meters) 

Cols    11-20 Radius outside liner of access 
tunnel (meters) 

Cols 21-30 Access tunnel length (meters) 

Cols 31-40 Radius inside liner of access shaft (meters) 

Cols 41-50 Outside liner of access shaft (meters) 

Cols 51-60 Ratio of longitudinal reinforcement (percent) 

Cols   61-70 Ratio of circumferential reinforce- 
ment (percent) 

Cols   71-80 Ratio of web reinforcement (percent) 

* Number of weapon type:   "1" Contact surface burst,   "2" true surface 
burst,   "3" fully buried detonation (nominal weapons yield = effective 
weapons yield). 
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Card  5:     Format:     8F10. 0 

Cols      1-10 Adjustment factor for equipment 
cost (no units) 

Cols    11-20 Adjustment factor for power (no units) 

Cols   21-30 Adjustment factor for explosives (no units) 

Cola    31-40 Adjustment factor for drill bits 
and rods (no units) 

Cols   41-50 Adjustment factor for concrete (no units) 

Cols   51-60 Adjustment factor for reinforce- 
ment steel (no units) 

Cols   61-70 Miscellaneous (no units) 

Cols   71-80 Adjustment factor for steel liner (no units) 

.NPAS = 1. 

The static stresses,  the principal stresses,  and the yield stresses 
are computed for inside the liner.    A yield check is made.    If yielding 
does not occur,  then it is: 

NPAS = 2. 

The procedure under NPAS = 1 will be repeated for the interface 
for both liner and rock.    If no yielding exists,  the weapon values will be 
computed.    The horizontal distance,  incremented by one diameter,  is 
set to zero.    The peak free-field dynamic stress is determined and 
checked against a preliminary yield: 

,.    . 2K •  cos (0 
prelxminary = ; ;—=- r '1 - sin (p 

where,  in accordance with the notation of Appendix G, 

2 
K = cohesive strength of rock in kp/m 

(P =  angle of internal friction in degrees 

If yielding occurs, the horizontal distance will be increased as long as 
the check against the preliminary yield is negative.    The application of 
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the preliminary check shortens considerably the run time since the 
dynamic stresses and the appropriate strength values need not be 
computed for each new horizontal distance. 

If the preliminary yield check is negative,   then it will be: 

NPAS = 3. 

The pressure pulse is computed.    The frequency values for the 
integration are established: 

NPAS = 4. 

Static and dynamic stresses and the pertaining yield values are 
computed for rock and liner at the interface.    If either rock or liner 
yields,  the horizontal distance is increased and the dynamic part is 
resolved: 

NPAS = 5. 

The procedure of NPAS = 4 is repeated for the inside of the liner. 
.If it yields no longer,  then it will be: 

NPAS = 6. 

Where the failure occurred first,  in the interface or at the inside 
of the liner, is checked.    The horizontal distance is moved into the safe 
area by increasing it by one diameter.    The survivability and the eco- 
nomic features are computed.    Then a sixth card,  containing information 
about the type of the next problem,  is read in: 

Card 6:     Format:     II. 

Only one value occurs in Col.   1; 

"0" All data have been run and the program calls an exit 
and prints "Job Completed. " 

"1" A new problem is to be run in which new data cards 
(1-6) will be read. 

"2" Only new data cards (3-6) will be read.    This allows a 
change in the cost of probability programs:  one change 
in the length of the cylinder or distance to the target. 

The output data are the static stresses for the: 

1.  Inside liner. 

105 



2. Interface liner, and 

3. Rock at the interface for 13 angles from 0 to 180 degrees. 

Other output data include: 

1. Total stresses for 13 angles and 10 time steps, 

2. Minimum survival distance, 

3. Probability of failure, 

4. Survivability, 

5. Total cost for conventional tunneling, 

6. Total cost for machine tunneling,  and 

7. Cost per usable volume per unit increment of survivability. 
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Figure 37.   Flow diagram for the computer program. 
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Figure 37—continued. 
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Figure 37—continued. 
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Figure 37—continued. 
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Figure 37—continued. 
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nr nmrm  
(U) The objective of this study was to define the limit survival distances from ground 

zero for deep underground protective structures in rock and to formalize a methodology for 
defining the cost of such systems. To achieve this objective, a computer program was developed 
and subsequently was exercised for representative tunnels with concrete and steel liners in 
sandstone or granite. 

Limit distance contours were obtained for a range of effective seismic velocities. They 

show that there are optimum depths which, if exceeded, will increase the survival distance and 
decrease the survivability. The optimum site profile consists of a thick soil layer over a strong 
basement rock. 

Steel liners provide greater survivability and lower cost than concrete liners. 
Interestingly, the type of enveloping rock appears to be more significant to survival for smaller 
yield weapons than for larger ones. It is apparent from the results that deep underground 
protective structures can be designed for high degrees of survivability. 
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