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ABSTRACT 

Previous theories and empirical formulas 

for the lift of flat planing surfaces are reviewed, 

and the resemblance of the planing surface to the 

airfoil noted.    A simple expression,  which con- 

verges to the correct limits for exactly known 

cases, is assumed for the ratio of planing to air- 

foil lift, and the planing lift is then estimated by 

using airfoil experimental data.    The resulting 

calculated values are in satisfactory agreement 

with planing experiments. 
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SYMBOLS 

For convenience,  the symbols used in the following text are listed 

here.    Note thrc the definition of the aspect ratio   /R follows airfoil prac 

tice instead of the definition often taken in planing work, which is the re- 

ciprocal of that given here. 

aspect ratio:   J4l=b /S (=b/i    for rectangle) 

plate width (span for airfoil) b 

C 

'N 

L 

I 

N 

P 

Po 

S, 

'S 

lift coefficient of airfoil:   C =L /■§■ V S a     a' 2 

lift coefficient due to bottom pressure on airfoil 

lift coefficient of planing surface:   C, =L/*> V  S 

normal force coefficient:   CN=N/'| V 3 

pressure coefficient:   C   =(p-po)/,§'V 

lift force on planing surface 

lift force on airfoil 

lift force due to bottom pressure on airfoil 

wetted length,  plate length 

normal force on planing surface or airfoil 

dynamic pressure 

free stream pressure 

area of planing surface or airfoil (S=ib for rectangle) 

free stream velocity 

attack angle 

downwash angle 

auxiliary parameter.    See Eqs. (22) and (23) 

spray thickness 

parameter defined by Eq. (27) 

parameter defined by Eq. (29) 

fluid density 



Introduction 

The hydrodynamics of planing surfaces has been of interest for many 

years now because of the need for design information applicable to planing 

boats and seaplanes.    While most of the data on planing refer to specific 

hull shapes on which the flow is rather complex,  a number of systematic 

measurements have also been made on planing flat plates because, in addi- 

tion to an occasional need for such data in design, it is easier to gain an 

understanding of the various effects »hen the geometry of the model is kept 

simple.    To date a considerable amount of data has been collected in »ever- 

al countries on planing flat plates,  although the range of aspect ratio and 

attack angle covered is by no means so complete as might be wished. 

Meanwhile a theory of planing has been developed,  chiefly by H. 

Wagner,  which leads to a much better understanding of the hydrodynamic 

phenomena.    Unfortunately the theory applies exactly only for very simple 

limiting configurations, none of which are ordinarily encountered in engi- 

neering practice or experiments to date so that no direct comparison of 

theory and experiment is possible.    The difficulty in extending the theory 

to practical cases lies in the fact that the air-water interface introduces a 

nonlinear boundary condition which greatly complicates the calculations. 

While thus limited in direct application, however, the theory has 

established an important result which sometimes permits indirect calcula- 

tion of quantitative results, namely,  the hydrodynamic resemblance of the 

planing problem to the airfoil problem.    Hence,  if quantitative results are 

available for the airfoil, as often happens, it may be possible to use them 

for estimating planing effects.   In particular, W. Bollay has proposed that 

the aspect ratio effect on flat planing surfaces might be predicted from the 

extensive theory and data available for flat plate airfoils. 

The purpose of this report is to review briefly the pertinent planing 

theory, which will in course bring out the resemblance to the airfoil, and 

then to estimate the lift of flat planing surfaces of any aspect ratio by follow- 

ing Bollay1 s suggestion.    The effects of viscosity, gravity,  and surface ten- 

sion are for the most part neglected so that the resulting estimate applies 

especially for high speed.    The calculation of the lift in this manner by no 

means represents an exact solution to the problem, but it is hoped that it 

will provide estimates accurate enough for engineering purposes and that. 
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moreover,  it will allow a more direct correlation of theory and experiment 

than has heretofore been possible, 

Wagner's Theory for the Planing Flat Plate 

In order to calculate the flow of an ideal, weightless fluid about a two- 
12  3 dimensional (infinitely wide) flat planing surface,  Wagner  '   '       used 

Kirchoff s method to solve the flow configuration sketched in Fig.   1.    The 

calculations give the velocity and pressure distributions on the plate for 

any attack angle  a.    By integration one can then find the normal force on 

the plate,  which can then be resolved into lift and drag. 

The lift force L per unit width b computed in this fashion is 

—  =   p—   t \i ■ I ir sm a (l) 
b 2 

where  p is the fluid density,  V  the velocity at infinity,  and i   the so-called 

wetted ler'h,  defined as shown in Fig. 1,    The quantity JJL is a function of 

a   only (s.     Eq. 27, Appendix) and has been plotted   in Fig. 1,  which is the 

same as F    .18 of Ref. 2, with fi =  1/2 x cos a.    For the lift coefficient 

defined in     i usual way,   C.   = l-/y pV     i b   there results 

C,     =   fi • 2IT sin a       . (la) 

It should be noted that, in so far as Wagner's hydrodynamic model in Fig. 1 

is correct,  the result is exact and does not Involve the assumption of small 

a so that Eq.  (la) should hold even for large attack angles.    Wagner also 

calculated the effect of small amounts of longitudinal curvature,  and 
4 

Green    took into account a finite plate length or stream depth, but these 

modifications will not be considered here. 

Wagner was able to extend his results to include finite width plates if 

the attack angles   are   vanishingly small.    The corrections are of the same 
5 

type as those used by Prandtl   for the airfoil and might be expected to hold 

for the same range of aspect ratio,  that is, from   /R = oo down to   JR. = 3, 

or possibly a little less.   (For aspect ratios as low as one, however,  the 

lifting line theory is inadequate for describing the flow.)  For flat plates 

* 
Numbers indicate references listed at end of report. 
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of sufficiently great width,  then,  Wagner calculates the lift to be (Ref. 2, 

Eq. 19) 

ir sin a 

-i 
(a -i*  0,    /«  >  3) (2) 

Case of Zero Aspect Ratio 

The only other case for which an exact soluticn is available is that of 

zero aspect ratio,  which again becomes a two-dimensional problem since 

the flow is the same at all points along the length (Fig. 2).   At any section 

A - B, the flow is of the so-called cavity type    with a velocity at infinity of 

(V sin a) as indicated in Fig. 2b.    The force on the plate under these condi- 

tions is known to be 

N = i-p(V sin a)2 

2 TT + 4 

or in terms of a normal force coefficient 

bi (3) 

'N 
2Tr 

ir + 4 

.  2 
sxn   a, (4) 

a result which was given by Bollay.     üince the lift is L = N cos a,   the lift 

coefficient is 

CL = 
Z-n 

Tr + 4 
sin   a   cos a (5) 

Eqs. (1), (2),  and (5) then represent the available limiting solutions for the 

flat plate which are theoretically exact.    Before the connection between these 

results and the airfoil theory is shown, it will be convenient to review some 

empirical formulas and a recent semi-empirical theory which approaches 

the calculation of the lift more directly. 

Empirical Formulas 

Approaching the problem from the experimental side,  several investi- 

gators have proposed completely empirical formulas for the lift.    The £TT 
8 9 formula,    which is an improvement on Sedov's    is 

Hr 1.1 (a in radians) 
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for gravity-free motion (Fig. 3).    It is very similar to the formula proposed 

by Sottorf,     namely, 

CL =  0.85 17 a       (a in radians) (7) 

which is also plotted in Fig. 3.    Both these formulas are based on essen- 

tially the same data and give practically the same results.    The actual 

variation of experimental parameters is indicated in the figure by plotting 

only the aspect ratios 0. 2 =  /R = 1 for a up to 12°.    It is worth noting that 

-the form of both Eq. (6) and Eq. (7) is wrong for either very high or very 

low aspect ratio since in the former case they predict infinite lift and for 

the latter no lift at all.    However,  in the range indicated,  either formula 

represents the experimental data reasonably well,  and for the purposes of 

this report they will be used when comparing theory with experiment. 

Theory of Korvin 

As mentioned previously,  Eqs. (1), (2), and (5) represent the theo- 

retically exact solutions.    However,  the lift at finite attack angles for any 

aspect ratios except infinity and zero remains undetermined.    In order to 

cover this range Korvin   * recently proposed an equation for the lift at 

small attack angles which is composed of two terms,  the first like Eq. (2) 

and the second like Eq. (5).    The first term,  however,  was empirically 

corrected by a factor of 0.73 (= 0.04/0.055) in order to get the  best fit with 

experimental data,   so that the result reads (Ref. 11,  Eq. 13) 

„ n _.,  IT sin a     ,     2TT       .2 , oS C.   = 0.73      ■ + ■   ■      sin   a (8) 

I + JZ n + 4 

In Fig. 4 this equation is compared with the ETT empirical formula, both 

with and without the correction to the first term.    As can be seen,  the 

agreement is satisfactory when the correction is used. 

The necessity for the correction factor may be explained by the fact 

that the first term of Er. (8) is derived from Prandtl's lifting line theory, 

which is not accurate for    y^R <   3,  and should be replaced by a term de- 

rived from lifting surface theory,  such as Lawrence      has used for the 

airfoil.    Whether this approach,  if it could be used, would effect an im- 

provement remains to be seen, but in any event, Eq. (8) must for the moment 
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be regarded as a semi-empirical result. 

Connection with Airfoil Theory 

Returning now to the theoretical problem of a planing t.urte-r.f. of any 
7 aspect ratio,  we consider Bollay's    approach to the calculation of lift, which 

is suggested by the similarity of the planing surface to the airfoil of the same 

geometry.    In order to see thus resemblance,  it is only necessary to recall 
5 

that the lift coefficient of a high aspect ratio flat plate airfoil    is 

Zn sin a i i yq» 

'^ 

which is seen to be identical in fen ,a with Eq. (2),  but with a multiplying 

factor of 2.    On the other hand, the lift coefficient of a zero aspect ratio 
, .,13, 14 . airfoil is 

C    =  2 sin   a  cos a (10) 
Si 

so that,  dividing Eq. (5) by Eq. (10),  we have 

.      C L 

Ca „ + 4 
(Ha) 

and,  dividing Eq. (2) by Eq. (9), 

(lib) 

Since the lift of airfoil and planing surface obeys analogous laws at 

each extreme of aspect ratio, and the percentage variation in the ratio 

C^/Ca   is not too large,  Bollay suggests that the analogy probably holds 

for intermediate aspect ratios.    Hence it is only necessary to .find Cj^/C^ 

as a function of aspect ratio and,   since the variation is not too great, a 

fairly good estimate of C^ could be made even if the ratio of C|_yCa were 

estimated only moderately well.    Bollay did not give any specific values for 

C. /Ca other than to recommend using Eq. (11a) for low   SR and Eq. (lib) 

for high    /R.    However, as will be shown presently, it is possible to make 

a better estimate for high   ./R than that given by Eq. (lib).    Also, it seems 

ri 
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safe to assume that the variation in C^/C-  must be smooth with changes in 

/R.    When these restrictions are taken into account it becomes a fairly 

simple matter to guess a reasonable value for CT/CL.    It is the purpose of 

this report to carry out these calculations and to compare the resulting value 

of the lift with experiment; but first it will be convenient to summarize the 

airfoil theory and data from which C    can be computed. 

airfoil Theory and Experiment 

So far as fhe high aspect ratio (>R ^ 3) flat plate airfoil is concerned, 

the lift is well predicted by Eq. (9)    if the attack angles are not too high. 

For    ./R  <  3,  however,  no completely satisfactory theory is available for 

large   a    , but both the theory of Bollay      and Weinig"    predict the non-linear 

effect correctly.    The theory of Weinig,  while physically obscure,  is in best 

agreement with the data1^ and has been plotted in Fig. 5 for comparison with 

Winter's      measurements on rectangular airfoils.    Winter's data,  as pre- 

sented,  has been corrected by Sambraus1" for the effect of leading edge 

bevel.    According to Weinig the lift is 

tanh 

C     =  2TT a 

1 
^  x 2    . —*— + — sin a 
2 TT 

I + tanh  1  
•R ^ 2    , 

—«— + — sin Q 
2 IT 

(—*- + — sin a)  sin a (12) 

Weinig uses tan a instead of   sin a   in Eq. (12) to get better fit with the data 

at high attack angles, but this makes no essential difference in the range of 

Q   considered here.    As shown in Fig. 5,  the lift predicted   by the theory is 

too low for the range 0.134 = y& = Z, but for   /R = 0.033 the agreement is 

better.   For such a low aspect ratio the lift value at   J*R = 0, as given by 

Eq. (10),  is not too far off.    It may be mentioned in passing that the planing 

experiments to date (Fig. 3) have not extended to nearly so low an aspect 

ratio as the airfoil measurements (Fig. 5), or to nearly so high an attack 

angle. 

Equation (9) holds exactly for elliptic lift distribution, but in practice 
the rectangular wing has a lift distribution sufficiently close to elliptic,  and 
the same is probably true for planing surfaces.    See Wagner's remark, 
Ref. 2, p. 16, footnote. 



Jt I -7- 

? ^"yther Discussion of Airfoil vs. Planing Surface 

| Equation(l) is written with the factor   2ir sin a   to facilitate comparing 

H the planing lift with that on an infinitely thin flat plate airfoil, the lift on 

S which is 

V2 

L    =  p-    i b (2ir sin Q) (13) 
a 2 

Dividing Eq. (1) by Eq. (13) we obtain the ratio of the lift coefficients for air- 

foil and planing surface, 

CL 

a 
(yR = e») . (14) 

As the attack angle  a goes to zero,  \i. —•• 0.5,  which shows that the lift of 

the planing surface is one-half that of the airfoil for a vanishingly small 

attack angle.    As the attack angle increases, however,  the planing surface 

develops considerably less than half of the airfoil lift,  the effect being of 

the order of 20% for a = 10    (see Fig. 1).    This state of affairs exists be- 

cause the planing surface lift,  as opposed to the airfoil, does not increase 

linearly with attack angle.    The resulting loss of lift,  which is predicted by 

Wagner's two-dimensional theory, Eq. (1), and has nothing to do with real 

fluid effects, has been overlooked by most subsequent investigators who 

assume that the planing surface always has half the airfoil lift; that is,  they 

assume ^ = 0.5 for any attack angle.    The approxiiration is poor, even for 

fairly small attack angles, as can be seen from Fig. 1.    Wagner uses „ 

|JL = 0.5 in his equations for finite aspect ratio apparently because they hold 

exactly only for a -•- 0,  in which case,  of course,  \i = 0.5  is the correct 

value. 

Note that while the total force on the airfoil is directed normal to the 

free stream and is identical with the lift,  the total force on the planing sur- 

face is normal to the plate and is larger than the lift.    Also,  while the air- 

foil theory predicts the observed lift force only for small attack angles 

because of viscous separation on the upper surface,  the planing theory 

should predict the force for much larger angles since very little danger of 

separation exists in the favorable pressure gradient.    On the other hand, 

the planing surface flow is dependent on the formation of spray sheets which 

may be affected unpredictably by surface tension. 
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Use of Airfoil Pressure Distribution for Planing Surface 

In order to gain some further insight into the usefulness of the airfoil 

theory for predicting planing parameters, we can examine the flow about the 

corresponding two-dimensional flat plates in more detail.    In Fig. 6 the pres- 

sure distribution for the planing surface and airfoil bottom at a = 10    have 

been superposed with the scale arbitrarily chosen so that the trailing edges 

and stagnation points coincide.    As shown,  the pressure is very nearly the 

same over the greater part of the lengths,  with a small discrepancy at the 

trailing edge.    At the leading edge the differences are much greater because 

the flow on the airfoil has an infinite velocity rounding the thin front edge, 

while the velocity on the planing surface smoothly decreases back to the free 

stream magnitude.    Wagner showed that the pressure distributions become 

more alike as the attack angle decreases,  the differences becoming of second 

order as a —•■ 0.    On the other hand even for attack angles as large as 30 

the agreement remains fair but the differences at the leading and trailing 

edges becoma much mere marked. 

Suppose now that with only the airfoil pressure distribution known we 

wish to estimate the lift on the planing surface.    Cf course,  this problem 

is trivial in the two-dimensional case where,  aftei all,  the planing problem 

can be solved directly but the concept to be demonstrated may prove helpful 

for other situations where the planing flow has so far not permitted theoreti- 

cal analysis.    If we now look at the airfoil pressure distribution,  Fig. 6, we 

know physically that the negative pressure near the leading edge will not oc- 

cur on the planing surface since the planing flow velocity ahead of the stag- 

nation point gradually increases back to free stream value, but never ex- 

ceeds it.    Kence, we might assume for a rough estimate,  that the planing 

lift can be reckoned by integrating the airfoil bottom pressure from the 

trailing edge up to the point where the pressure becomes zero.    When the 

calculation is carried out in this way (Appendix) the result shown in Fig. 7 

is obtained.    The agreement with the exact value for the lift is fairly good, 

within 6% at 10  ,  so that one gains some confidence in using this approach. 

The sirnilarity of the pressure distribution for a >  0 was first pointed 
out by Weinig .    The values he presents in Fig. 24,  Ref.  2, however,  are 
not in complete agreement with those shown in Fig. 6.    See the remarks in 
the appendix. 



.f.. 

Extension of Wagner's High-Aspect-Ratio Theory for q  > 0 

We return now to the problem of finding the lift when the planing sur- 

face has a finite aspect ratio. Reviewing briefly our exact results, we see 

that we have the following equations: 

€.= fi2 ir sin a      ( ^ = oo,    a ^ 0) (la) 

CL=   JLii2f        ^ >  3'   a-~ 0) W 
>R 

2ir 

IT + 4 
iitr a cos a ( /R = 0,  a a  0)   . (3) 

.We need,  then,  to find estimates for the remaining ranges of Q and    JR  by 

utilizing the airfoil theory. 

Before utilizing Bollay's method of doing this,  however,  we can apply 

the airfoil theory more directly by assuming that Prandtl's lifting line analy- 

sis for the airfoil is valid for the planing surface.    The factor in the denomi- 

nator of Eq. (9) represents Prandtl's correction for the so-called downwash 

velocity and,  if we assume the same downwash for airfoil and planing sur- 

face,  even for attack angles a > 0, then the planing lift is easily calculated. 

In the case of the airfoil,  the downwash velocity reduces the effective attack 

angle from a to (a - a.) where  a. is the downwash angle and is calculated 
11 5 from the three-dimensional potential theory as set up by Prandtl.     Then 

the flow at each section of the wing is assumed to be two dimensional and 

the lift is calculated from two-dimensional thfibry except that the geometrical 

attack angle a is replaced with the effective attack angle.   It turns out that 

if the lift distribution is elliptic,  the effective attack angle is the same every- 

where along the span and is equal to 

a  - «j =   —2  (15) 

so that for a  small we have the result of Eq. (9) 

r 2 ff sin q ,„, 
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If we now assume that the downwash correction is the same for the 

planing surface,  that is,  that Eq. (15) applies to the planing surface as well, 

we write Eq. (1) in the forn-i 

C.   = fi 2IT  sin (a - a.) (16) 

and substituting from Eq. (15) gives   (a small) 

c U sin..     (/R>j,  oao). (17) 

We know the assumption is valid for a -*• 0   because then Eq. (17) converges 

to Eq. (2).    Moreover,   as   ,/R -»co,  Eq. (17) converges to Eq. (1),  which is 

reasonable.    If the assumption is good,  Eq. (17) should be usable up to 10 

or so provided  y4\  > 3, jus I as in the airfoil case.    Although Eq. (17) is 

directly implied by Wagner's theory,  he did not present it,  possibly because 

it has not been derived rigorously.    It appears worthwhile to attempt such a 

derivation by calculating the downwash due to a lifting line in a free surface, 

but no attempt will be made to do this here. 

Unfortunately there are no reliable data with which to check Eq. (17) 

since, for   s*R  > 3, the required small wetted length measurements are 

difficult to carry out.    In Fig* 8 the theory has been plotted to see if at 

least the trends are correct,  although the validity of the empirical formula 

is doubtful for   /R as high as 2, while the theory is not expected to apply 

very vveli below   /4l =  3.   In any event, it can be seen that for   ^R = 2,  the 

theory gives the right order of magnitude but the trend is noticeably wrong 

since the theory does not predict a sufficiently high lift for the higher attack 

angles.    The discrepancy becomes more marked as   At  decreases,  but this 

merely brings out the error one would be making in applying the Prandtl 

corrections for such small aspect ratios.    Similar errors occur if Prandtl1 s 
13 theory is used for airfoils of small aspect ratio.      For At  > 3 the agree- 

ment between Eq. (17) and experim   it should be better, but more measure- 

ments must be made before the exact range of validity will be known. 

Estimate of Ratio of Planing to Airfoil Lift 

We are now in a good position to estimate the ratio of the planing sur- 

face lift to that on an equivalent airfoil.    Since several limiting cases are 

known and the variation of the ratio in between is fairly small,  any reasonable 
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guess which converges to the proper limits should furnish a useful answer. 

The ratio Ct /C    of Eq, (lib) can now be replaced by a better esti- 

mate by utilizing the result derived just above.    Dividing Eq,(i7) by Eq. (9) 

we have 

CL 
■g=- = JA       (>« >  3,    a i 0) (18) 

a 

which now replaces Eq. (lib).    For the other limit we still have the result 

of Eq. (Ha): 

C. TT 
-it. =        {/R = 0,    Q i 0) . (lla) 
C IT + 4 a 

A fairly simple expression which converges to these required limits 

is 

(all   /R) . (19) 

It is not proposed that Eq. (19) is the "correct" expression, but rather that 

it is correct in the limits represented by Eqs. (lla) and (18).    Moreover, 

it varies monotonically in between and it seems reasonable that the lift 

ratio should vary smoothly between the extremes of   ^ = 0 and   /^  = oo. 

An experimental check on Eq. (19),  not involving planing data, is 

given by the pressure measurements of Winter      on airfoils.    As discussed 

above (Fig. 7),  the ratio of C^/C^  should be about the same as the ratio of 

the lift on the bottom side  C^ of the equivalent airfoil to its total lift Ca. 

Winter's measurement for   AR =  I  and a =  10.5   (Sambraus' correction) 
10 gives 

7A   =    0.39 
^a 

while Eq. (19) gives 

^   =    0.388, 

CL 
SR  .      2 

*   2'" + iT + 4   oin a 

C a Af.         2 ___  +   __   S1n a 
C                  It 
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which is very close    indeed.    This check,  along with the limiting cases, 

gives one considerable assurance that Eq. (19) is a good assumption.    The 

computed values for Eq. (19) are plotted in Fig. 9. 

Calculation of Planing Li ft from Airfoil Theory and Experiment 

We may now proceed to calculate the lift on the planing surface by 

using Eq. (19) and either some suitable airfoil theory or airfoil experi- 

mental measurements.    The former course would be preferable but,  as dis- 

cussed previously,  the low aspect ratio airfoil theory is only in fair agree- 

ment with data and it seems unlikely that it would prove reliable for use in 

the planing surface analogy.    Just the same,  we can carry out the calcula- 

tion to see in what way the resulting theory is deficient.    From Eqs. (12) 

and (19) we have 

{Ca) (20) 
theory 

or 

tanh 1 
/R   .  2 
T+v sing j 2sina\      . „n. 

CL =  n Zu        (^ + ^TT^y)    sm a      (20a) 

1 + tanh y»R  ^ 2 -a— + — sin a 
2 IT 

which has been plotted in Fig. 10.    The discrepancies between theory and 

experiment are of the same type and order of magnitude as for the airfoil 

(Fig. 5).    A better agreement would be expected if a more accurate airfoil 

theory were available for use. 

Turning now to Winter's airfoil data,  Fig. 5,  we calculate the lift on 

the planing surface from 

c, =   ^ •(<:„) (2i) 
1   '    ' experiment 

where (C* /C  ) is given by Eq. (19) as before.    The results with experiment- 

al values for comparison are presented in Fig. 11.    As can be seen,  the 

agreement is satisfactory. 

It is interesting to note that, while the lift vs. attack angle curve is 

nonlinear for both   /R ~ 0 and  ^41 = oo (Fig. 11),  it is nearly linear at some 
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intermediate aspect ratio near   y^ = 1.    This may explain the success 
10 9 Sottorf     and Sedov    had in using a linear relationship.    On the other hand, 

Sambraus1      efforts to use a nonlinear curve can be better appreciated, 

since for very small aspect ratio his approach would be justified.    Hence 

both points of view are in part correct. 

Conclusion 

The estimate of the aspect ratio effect on flat planing surfaces has 

now been completed.    For   /R. > 3, Eq. (17) can be used,  while for   y^R < 3, 

the values in Fig.   11 should prove adequate,  with Eq. (5) holding exactly for 

/R = 0.    If more convenient,  empirical formulas for the lift may be used, 

but it should be remembered that they cannot be expected to hold for any 

extreme range of parameters.    It should be noted that the present estimate 

takes no account of viscosity,  gravity,  or surface tension,  but in many ap- 

plications these effects are negligible or can be accounted for in some 

separate calculation.    It is hoped that the approach used here will again 

call attention to the usefulness of airfoil methods in predicting planing sur- 

face parameters. 
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APPENDIX 

Pressure on Flat Plate Planing Surface 

The pressure on the flat planing surface*' J located along the positive 

x-axis with trailing edge at x = 0 is given by solving simultaneously 

.1.3 

C    =  1 - 
P 

cos p  - cos a 
T 

I - CQS p cos a + sin a "ul - cos    ß i 
(22) 

and 

1 xir 

6 1 - cos a 
(1 +cos ß)cos a - (1 - cos a "°HH 
-   "^ 1 - cos    p   sin o  -  ß sin o + TT sin a (23) 

for the same values of the parameter ß,  where x is measured forward from 

the trailing edge and  6 is the spray thickness.    The "wetted length" i    is 

given by 

JJL 
d 

I + cos a t      ß  in   - 
I - cos a x 

- cos a \        tr sin a 

2 cos a /      1   - cos a 
.      (24) 

and the stagnation point x  ,  given by C    =0,  is s    ^ p 

xs7r 

1 - cos o 
(1 + cos o) cos a -(1 - cos o)i ■I1 - cos a 

— «1 -cos    a    sin a - (sin Q)(O) + IT sin a 

(25) 

The normal force is found by integrating the pressure,   so 

'N 
N 

= 
2ir sin a 

pV2/2i 1 + cos a  - (I - cos a) in 
/l - cos Q\ . 

*      „ 1+ f S1n a \     7. rns  n    1 

(26) 



1 
I 
■ 

's 
. ♦ I which must be multiplied by cos a to obtain the lift coefficient.     Finally, 

we have,  defining \i such that C.   - \i ■ Ztr sin a. 

cos a       ,,_. ji   =    , __-, . .  (27) 

1 + cos a — (1 - cos a) in (     ~i • i + ir 
\    2 cos a / 

sin a 

which is plotted in Fig. 1. 

Pressure Distributions on Flat Plate Airfoil 

The velocity distribution on a flat plate airfoil of chord i   located 

along the x-axis with leading edge at x = - i/2 and trailing edge at 

x =  + i/2 in {R«f. 5,  p. 38). 

v sin a 
—    =       — sin a   cot 0 + cos a (28) 
V sin 0 

where  V is the free stream velocity directed at an angle a to the plate and 

cos  9   =    —     . (29) 

Since the pressure coefficient is defined by C    = (p - p )/pj- '  we have 

from Bernoulli,  C    = 1 - (v /V)  ,   or p * x'    '   ' 

7 2.   6 6 
C    =   sin    a (1 - tan   —)   *   2 cos  a  sin a  tan-»•   . (30) 

p 2 « 

This* relationship has been plotted in Fig. 6 for the angle a = 10 . The scale 

has been adjusted so that the stagnation point is at one. This can be done by 

noting that the stagnation point is given by v
x 

= 0 or 

x = - 1 (1 - 2 sin2 a)   . (31) 

The values for the pressure on the airfoil given by Weinig    ar^ not in 

agreement with those computed from Eq. (30) above.    So far as can be learned 

from the brief explanation in Ref.  2,  the results should be the same.    It is 

not known why the discrepancy occurs, but it is clear that Weinig's curves 

* 'Pierson and Leshnover^ refer to Eq. (26)as the "mean normal lift", 
but the term "lift" is reserved here for the force perpendicular to the free 
stream, as is usual in aeronautical terminology. 
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cannot represent the pressure values desired because they all go to zero at 

the trailing edge of the airfoil,  which is not the correct value for a > 0. 

The point where the pressure is zero x    is given by putting v /v = -'l 

in Eq. (28) so that 

8    =   -   IT  +  Q 

corresponds to this point. 

(32) 

In order to find the lift due to the bottom positive pressure, Lb , we 

integrate the pressure from the trailing edge up to the point of zero pres- 

sure: 

^>x = x 

b v2 
P7i 

dx 

P  "7" 
(33) 

l/Z 

'2TT 

0 = - -rr +Q 

sin    o(l-tan   ■=■) - 2 cos a  sin a  tan -j 
dO 

-2 sin 6 

so finally 

C.    =   sin    a(l + 2 in sin ?•)  + (*- a)  sin a cos a   . (34) 

Taking the ratio of C.   to the total airfoil lift C   =  2ir sin o,  we have 

C. 1 o IT - a 
-Jl =       sin a (I + 2i n sin —r)   +     cos a 

2* Zrr 
(35) 

Equation (35) has been plotted in Fig.  7. 
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4 8 12 16 20 24 28 32 
ATTACK   ANGLE  a  IN  DEGREES 

Fig.  1 - The lift of a two-dimensional flat planing surface 
according to the theory of Wagner 

V»lfl« 

Fig. 2 - (a) The flow about an infinitely long flat planing surface 
(after Bollay).    (b) Section A - B showing the flow 

in a plane perpendicular to the plate. 
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Fig.  4 - The lift of flat planing surfaces according to Korvin 
compared with experiment 
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Fig.  5 - The lift of flat rectangular airfoils according to 
theory and experiment 
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Fig.  6 - The calculated pressure distribution on two-dirnentional 
flat plate airfoil and planing surface at   a = 10 



■22- 

0.6 

0.5 

0.4 

<Sl o 

0.3 

0.2 

^ ■o^ ^ 

(PLANING SURFACE) 

fkCM« > 4^ 
.  

4 8 12 16 20 24 28 
ATTACK  ANGLE  a IN DEGREES 

32 

Fig.  7 - The lift due to the bottom pressure on a flat airfoil compared 
with planing surface lift.    See Appendix for calculations. 
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Fig.  8 - The planing lift as predicted by high aspect ratio theory, 
Eq. (17),  compared with experiment 

,-.,   .- »r«i«M 



-23- 

2 4 6 8 10 12 
ATTACK   ANGLE a  IN  DEGREES 

14 

Fig. 9 - The ratio of planing to airfoil lift as assumed by Eq. (19) 

.28 

;*■■ 

I 
•iff 
■■ 
A:- 

CO 
«I 
> 

«.|M 

.24 

20 

.16 

UJ.I2 
5 
u. u. 
Ul 
O.08 

\J0A 

 ETT  EMPIRICAL      / 
!                FORMULA               / 

r 

f- 
/ 
'f2 

/ 4 
/ 

/ 
'   2 

1 * 

/ s 
4 

S '    ' 

/ A / 

/ 
j^^ 

^..X 

i 

.   0.5 

/. 

4 

S 

^ 

•^ 
^ 

.    0.5 

.    0.2 

^ %■ 

,' 

y^' 
c^ 

,--'' 
.   0.2 

*   o 

1/ Ay £s ^ 
^ -^ 

2 4 6 8 10 12 
ATTACK  ANGLE a IN DEGREES 

14 
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Weinig's airfoil theory and Eq. (19)* compared with experiment 
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