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PREFACE

This book is a consolidation of the tremendous be in the best position to formulate problems
amount of work done on the subject during commensurate with students' requirements and
World War II by innumerable investigators. It available time. It is hoped that such problems
may be used as a basic text on aviation fire con- can eventually be compiled, to provide a sequel
trol principles for use in the training of officers to this volume.
in the military academies, in ordnance courses This text, like most comprehensive text books,
of Reserve Officers' Training Programs at uni- includes the work of many contributors to the
versities and colleges, and in indoctrination theory. Although the authors are among the -

courses at Armed Forces line schools. It also list of contributors, their present role is chiefly
may be used to great advantage by scientists that of expositors. In the exercise of this func-
and engineers engaged in research and develop- tion, it is impracticable to make specific acknowl-
ment in the field of aviation fire control in mili- edgment of the contributions of the large
tary establishments and in the laboratories of number of scientists who played a part in the
academic or industrial institutions under the development of the theory of aviation fire
auspices of the government, control, since most of their work was done, and

The text presupposes a knowledge by the its publication remains, under military security
reader of the mathematics taught in the usual regulations which restrict dissemination of the
undergraduate college calculus course. A fami- information. It is, accordingly, with regret that
liarity with vector analysis also is desirable in only passive credit can be accorded these anony-
following the development of the theory but is mous scientists who contributed so much both
not essential to an understanding of the prin- to the theory and the military applications, and
ciples and the conclusions. The main vector whose original work has been "borrowed" in
operations employed in this text are defined and writing this book.
briefly explained in Appendix A. It is possible, however, to give credit to those

The specialized nomenclature and notation who gave direct aid in the preparation of this
adopted in this book represent a deliberate book. Thus, the authors gratefully acknowledge
attempt at much-needed standardization in this their indebtedness to their associates in the
branch of military science and considerable Research Department at the Naval Ordnance
effort has been expended in endeavoring to Plant in Indianapolis for their criticisms and
harmonize the conflicting opinions and usages suggestions and to the officials in the Bureau of
encountered among the various principals and Ordnance for their encouragement and coopera-
pioneers. The commonly accepted standard tion. In particular, the authors are grateful to
mathematical symbolization has been adhered Dr. L. E. Ward of the Naval Ordnance Test
to generally and any deviation rigorously de- Station at Inyokern, California, and Dr. Martha
fined. Numerous diagrams and examples have Cox of the Naval Ordnance Plant, Indianapolis,
b2en freely included to illustrate important who contributed much to the original manu-
concepts. script. They also are indebted to Mrs. Mary

It is to be noted that this book does not, as a Kelso and Mrs. Nannie Twineham who did most
good text book should, contain problems the of the computational work and to Mrs. Janet
solution of which is designed to impress upon Edwards and Mrs. Eunice Stultz who prepared
the student the principles expounded. The omis- the manuscript.
sion is partly motivated by expedience but is
mainly the result of the authors' opinion that J. F. HEYDA.
the instructors using the book as a text would K. L. NIELSEN.
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Chapter I 0

AEROBALLI STIOS

PART I. REVIEW OF FUNDAMENTALS

1.1 introduction 1.2 The Coordinate Systems

In order to aim a projectile toward a point so In order to describe the motion of a projectile
that it will collide with a target at that point, it it is necessary to have a reference coordinate -"- -

is necessary to know the motion of the projectile system. Let X, Y, Z be a right-hand set of .
as it travels the required distance to the point, mutually orthogonal axes with their origin at •
Ballistics is the science which is concerned with the murzle of the gun and such that the (X,Y)-
the motion of projectiles. It is, therefore, appro- plane is horizontal and the Z-axis points ver-
priate to begin the theory of fire control with a tically downward. This rectangular coor, .nate
consideration of ballistics. The theory of bal- system is shown in figure 2.
listics is usually separated into two distinct
A parts: "X "

(1) Interior ballistics, which is concerned
with the motion of the projectile while
it is still in the bore of the gun. y z -

(2) Exterior ballistics, which is concerned
with the motion of the projectile after Fr. C dt e
it leaves the muzzle. If the gun is mounted in a moving aircraft,

Although no discussion can be complete without this rectangular coordinate system is then rnov-
considering both parts, in the theory of fire ing with the gun and its axes can be defined
control we are primarily interested in exterior more closely as follows:
ballistics.

In fire control theory the term projectile may the X-axis coincides with the Armament
refer to any missile such as a bullet, rocket, Datum Line and is positive B
bomb, etc., which is projected at a target. The forward; .. -

projecting mechanism will henceforth be called the Y-axis coincides with the aircraft's
the gun. Since the motion of a projectile de- lateral axis and is positive along
pends upon many factors such as its shape. size, the starboard wing;
weight, initial and subsequent velocities, etc., the Z-axis coincides with the aircraft ver- 0
any, general theory of the motion of projectiles

must be specialized for particular projectiles. tical axis and is positive down- r... -
ward, .- ',. ..

The clearest approach is to develop the theory ward,
for bullets and make the necessary changes for The motion of the projectile can be described .-.. :-."roc and other ..rojectiler. in terms of its (XY,Z) coordinates. However,, 1, c -,:, b o m b ' Yr. b ... . . .... . . .. .,.. . . . ... .

A detailed treatment of the theory of bal- if the gun is moving it also is necessary to have
listics is beyond the scope of this book. This a coordinate system which is fixed in the air .. -
chapter will consider only the fundamental prin- mass at the instant of fire. Let x, y, z be a set
ciples and will indicate methods for the determ- of axes parallel to X, Y, Z but at rest in the air
ination of the necessary data. Since this book mass and such that the origins of the two
is primarily concerned with airborne fire control, systems coincide at the instant of projectile "
all computations will be specialized to aerial release. For a gun located on the surface of the 0
gunnery aml the ballistics for aerial gunnery earth, the (x,y)-plane is tangent to the earth
will henceforth be termed Aeroballistics. at the origin and is often called the datum plane.

-.

0 6 00 00 0 0 0 0 0 0 0

, . .. . -.-. .

J.~¶J .. pC~ ~ ... . . . . . . . . . .
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Figure 3. Coordinate Systems

It is convenient to have still a third set of 1.3 The Trajectory

rectangular-axes t, ....

* retanula axs, , ~ ~,movng iththegun The trajectory is the curve in space traced
* and such that:

by the center of gravity of the projectile as it
eis aln the gun bore axis; moves through the air. The origin of the trajec-.

longtory is the position of the center of gravity of
Sis in a vertical plane through the gun the projectile at the instant of release. The
bore axis and directed away from t'c tagngotetajcoya t riin is the line

A tagnAo the trajecory-atits--

ground; and, of departure, and the vertical plane through

is in a horizontal plane and directed so the lhe o rtury ih eo e t
The angle that the line of departure makes withthat the ordered set I with forms a the horizontal is the initial angsle of inclination

right-handed system of coordinates.
of the trajectory and i; also called the angle of

All three coordainate systems are shown i departure; it is dtenoted by 0

figure 3. The airplane is assumed to be flying If the coordinates of the center of gravity of - - -

in a horizontal pllane and the angle of attack of the projectile are specified uniquely at any time t

* the Armament Datum Line Is ignored. The after sc U- the 'A~cmleeyd

Strictions imposead by these assumptions will scribed Thus the trajectory is defined by

be discussed in section 1.f, Aerial Gunnery.ar a ha
Y y~t)

The above choice of systems of coordinate Z oZf d, 6

axes differs froi n the usual choice employed in where XC,), Yr,, Z.to denote functions of
surface ballistics. However, it coincides with time f. These functions must, of course, be zero
the adopted standards in the discussions of air- whengle t The coordinates of the center of
craft theories and-, since we are primarily con- gravity of the projectile may le expressed in
ceruiwd with aeroballisties, it is thought to be therm of the coordinate systems cX, Yh , Z) or
an advantageous system. It is hoped that this (et,;, but, for reference to inertial space,s.:-
changre of notation will not cause too much these coordinates must be transformed to the

Y = Yt ... . . . ......
cofuio adoptdsadr ds the stdn dfbistcus.in spac-went= .Te coordinates x, yh, cetrz. :'0

2c m e expressed in •0:crn, wiharblitei is thuh to be 0em ofth corint 0ytm (X Y, Z)o 0)-:-
,4... .: ,'
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Figure 4, -T rajectories

In general, there are four factors which de- Figure 4 shows only the projections on the
termine the trajectory: plane of departure, taken to be the (x, z)-plane

(a) The position of the origin, for these illustrations. Actually, the trajectory
(b) the conditions of projection, may not lie entirely in this plane but also may
(c) the ballistic characteristics of the pro- have a projection in the (x,y)-plane. The y

jectile, and value at the point of impact, y, is called the
(d) the characteristics of the air through deflection and that part of it which is not due

which it passes. to the wind is called drift. The three-dimensional - -

The projections on the plane of departure of picture is illustrated in figure 5.
three typical trajectories are illustrated in
figure 4, where (a) shows field artillery fire,
(1) antiaircraft fire, and (c) horizontal flight 1.4 The General Problem of the Trajectory
bombing.

If we limit our attention to the plane of The calculation of the trajectory of a projec-
(departure and consider it to be coincident with tile of given characteristics under given initial
the x, z-plane, the following quantities are often conditions forms the primary problem of ex-
referre(! to as the elements of the trajectory. terior ballistics. In order to state the problem

0 - the origin. specifically let us consider a stationary gun and .
B -the point of impact or the point of let the gun bore axis lie in the (x,z)-plane.L .et

burst, us further adopt. the following notation.
S--the summit of the trajectory. (x, y, z) -Coordinates of the center of

OS -the ascending branch, graviy ui uic pjrOjeCtile 'at
S? - the descending branch. any time t.
OB - the slant range. (x,, y,, z,) initial values; i.e., at t = 0. 6

O,- the initial angle of inclination. 0,= initial angle of inclination,
x, - the horizontal range. angle from x-uixis to the line
z, - the altitude of impact. of departure.

It is to be noted that in antiaircraft fire the v, initial velocity of the projec-
projectile usually bursts before the summit is tile,
reached and thus the entire trajectory is in the v,, v1,, v, = components of the projectile.r
asecinding branch. In horizontal bombing, the velocity in the directions of
summit is the origin of the trajectory and the the coordinate axes at any %
entire trajectory is in the descending branch. time t.

986995 0 -62 -2 3

0 0 0""'2-: - --- ' .:-
'V. - • .-e C ..
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Figure 5. -Trajectory Showing Deflection

in =z: mass of the projectile. / d.X
F,, Fill F. = compon en ts of the force act- m -=F 1,r

ing on the projectile.dt

) " - . .a.--

The problem is to find the x, y, z coordinates (1.2) flF ..

as functions of the time, t. As the initial step dt2  
, 2,•

in its solution we use Newton's second law of ( m -2"zm o t io n , d z: . . .+ . •

Force = Mass y>, Acceleration, and apply dt•

it for cach component direction. Thus, I In this and subsequent work, the earth's

dv, (Iv, dr rotation is neglected.]
(1.1) In - ,, F" - 1",,, nm - = FZ, The problem is4 then two-fold: first, to find

41 ~~~ ~ ~ • - co°oet (,f'+I oreV ..v~,nnnMseconndly,

wher solve the system (1.2), which is a system of
secon(d order differential equations, The solution -

dv, dv1, dv2  of the system (1.2) depends upon the form in

lh ,and which the force components, P,, F,,, and Fr., can
dt dt (t be exl)ressed. The initial values of the variables,

are the components of acceleration. Since namely, V-f.. .X o -Yo --Zo "-- 0, 
.. .

d c d y d z = o ,

v V/ - , and v2 -=-- ,dt " ' t V0 sin o,

the equations (1.1) may be written = 0,

4-4

0 0 0 0 0 0 0 0 0 00 0 0 0
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PLANE OF YAW
0

0TRAJECTORY -

W0

Figure 6.- Plane of Yaw

are, used to deternmine the constants of integra- with symmetrically placed fins; this axis of
tion. However, the determination of the force sYmmetry is referred to as thc axis of the
comlponents is not a simple matter and requires, p~rojectile~. A projectile will move through tl. 0
in fact, approximate methods, air with its axis at an angle 6 with Ithe (lirc~tioi,

F'or the sake- of simplicity in future work, the oftol~ agei aldtea~eo a

follwingnotaiona coventon i mad. Thi p~lane which includes the axis of the projec-
C~onvention; A dot placed ablov,! an y 4r ;l tIl-e and the agn otet-~ ~ tr scle

denotes the derivative of that the plane of yaw. This plane makes an angle p,
variable with respect to time; two LlI OWILUH, teerca
(lot~s (]enote the second deriv~ ln truh htagettitetajcoy
with respect to time, etc, Thus, plane figoure th6.gn oth rjcoy

dx .. d'V ... d'yLet 0 be the location of the center of gravity
x=- -,y

dt dt2  dV' and P the location of the center of pressure. The
center of pressure is the point at which the

1 .5 The Force System resultant of, the aerodynamic forces is applied.

A projectile is generally a solid of revolution The following forces aire acting on the projectile
which has an axis of symmetry, or s;uch a body and are shown in figure 7.

"'A

0C
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L

S0\"' ,- -0 , 0-.

______ ______HORIZONTAL RFFERENCE LINE

Figure 7.- Forces Acting on a Projectile

W the 'weight of the projectile, acting at and often neglected. However, due to the fact
thf, .:niter of gravity; it has its line that the center of pressure, P, is ahead of the
of a tion parallel to the vertical plane center of gravity, 0, there exists an overturning
through the gun bore axis and thus mionent M of R about 0. This moment, M, is
has no x or y components since the caused by the component of R which is in the
x,y-plane is taken to be horizontal. Its plane of yaw and perpendicular to the axis of

components are, therefore, 0, 0, iag. the projectile. This component is usually called
, = a retardation force acting on the pro- the normal force and is denoted by Nit. The

jectile due to the resistance of the moment arm is the distance OP.
atmosphere. The line of action of thi' -
air resistance is considered to lie in
the plane of yaw and has its origin
at the center of pressure which is
usually ahead of the center of gravity.
The force R) is dlecomposed into two mg
components D and L. "

D = the drag or head resistance. This force 0 -
originates at the center of pressure I ThRsinl8

and has a direction parallel and oppo- .
site to the direction of motion. "

L =the cross wind force. This force, orig- I "
inates at the center of pressure and-
is directed perpendicular to the direac-
tion of motion. In aerodynamics this
is the usual lift force.

It is well known from the principles of me- /7...
chanics that the forces acting on a rigid body
rmay be rel)laced by a single resultant force with
a certain line of action and a couple tending to
cause rotation about thi:s line of action. Hlere,"mg
the resultant force is R and its line of action is
in the p)lane of yaw, Thuhe c,•uple is very imall Figure 8.- The F-orce System of a Top

6

...............................................-.. -
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In order to obtain expressions for the forces fins may be attached to the tail of the projectile,
D and L and the moment M, we must enter the thereby bringing the center of pressure to the ... -

theory of aerodynamics. Since it is beyond the rear of the center of gravity whence the air C

scope of this book to develop this theory in moment becomes a righting moment instead of
detail, we shall simply draw from it the follow- an overturning one. This is usually done in the 0
ing expressions: case of bombs and rockets. A second method

to prevent tumbling is to spin the projectile". - -$ 1 -- lp~ad2 V2 , about its longitudinal axis, a procedure which
(1.3) L-- Kj~pd"2V2 5sin 8, is generally applied to bullets and shells and

M-=-Ks•ad:'V" sin 8, occasionally to rockets. The projectile then be-

where K,,, K,., and K,, are called the drag, cross comes not only an aerodynamic body but also a S
wind force, and moment coefficients. Thes-e co- gyroscopic body.*
efficients are dimensionless* and are functions The general gyroscopic action of a projectile
of the parameters may best be compared with that of a spinning

top. Consider a top spinning on a flat smooth
p, d V
-- , V, and 8, surface and let the contact point be at P, the

Scenter of gravity at O, and let 8 be the angle
between the vertical and the axis of the top. The

where the new symbols are defined as follows: force system is shown in figure 8. It is easily
d = diameter of the projectile; seen that the component of the force due to

pa = air density; gravity which is normal to the axis of the top
V = projectile velocity relative to the air; is mg sin S. The overturning moment is then
a = speed of sound in air; given by ,

-- viscosity of the air. M = I sin 8a

In aerodynamic theory, the first parameter is where the moment factor K is (PO-) (rng). It is j
called the Reynolds number and the second is well known that if the top is spinning rapidly -I, . ..
the Mach number. Extensive experiments are enough, the axis of the top will continue to :-. '
conducted at proving grounds to determine the move near the vertical in spite of any outside
above coefficients for a given projectiie shape interference. When this is the case the motion
and position of the center of gravity, of the axis about the vertical is said to be stable.

The velocity V is the vector difference of the As the top loses its spin, its axis "falls away"

projectile velocity v which is with respect to from the vertical and the top tumbles; the

the ground, and the wind velocity iv with respect motion is then said to be unstable. The condi-
to the ground. Thus the components of V are tion for stability is given by the inequality 0

given by A N"
->1

V, = V. -7v,0 V= v, --W, and V =. vZ --wi. 4BK
where A is the axial moment of inertia, B is

themnmnnt f nctia--ou th nra~nrt ai.6 The Stability of the Project he oent of in i a ..roleough th center ofgrvty".i.hesini

In general, projectiles have the center of through the center of gravity, N is the spin inradians per second, andK is the Moment factor. 7. -....
pressure ahead of the center of gravity. The rda pe condtan is the mo ment factor.

The same condition is true for a projectile. The
air force then creates a moment which tends to factor A2 N2 /4]1, is called the stability factorover.lturnl the prjcieo assthe poetl

over eprojectile or causes teprojectle and is denoted by x. For a projectile, the moment
to tumble. In order to prevent this tumbling, factor K is given by (see equation (.))

":That the coeflicients are dimensionless can be seen K ._ KM(J4'V.
by a dimensional analysis of equations (1.3); e.g., K 1.'

(in) (/1) ,i (fi) 2 (fl): (i) (fi) and the spin at the muzzle, N, is given by
_ _--= l ,-- = lit, •- c For a more detailed descrintion of the behavior of a

(8ec) (
)

•/0 (seC)
2  

(sec)
2  gyroscope see Chapter 5.

7
.~,. .. . .. .

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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2n V0  where 9 is the angle of inclination of the tangent
(1.4) N -- - to the trajectory. The stability of a projectile

is usually assured by making the spin N suffi-

where V. is the muzzle velocity and it is the ciently large, However, equation (1.6) places a
number of calibers for one turn of the rifling. warning not to make N too large since an in- 0

Caliber is used here as a unit of length equal crease in N increases the yaw.
to the diameter of the gun bore, d. The stability
factor for a projectile is then given by .7 The Equations of Motion

(1.5) s = A form of the equations of motion of ther'BK~,,fl:'V2  projectile can be obtained by substituting the

and s > for 1`,stable motion. If s < 1, the flight components of the forces into (1.2). The couple
of the projectile becomes erratic and is very which tends to cause a rotation about the line
similar to the "wobbling" of a top as its motion of action of R will be neglected. The magnitudes
becomes unstable. The stability factor, s, is a of D and L are given by equations (1.3). The
dimensionless quantity. directions of D and L can be obtained from 0

It is to be noted that the overturning moment figure 7. D is parallel and opposite to the direc-
is a function of the angle of yaw and becomes tion of motion. The components of -D are then
zero if the yaw is zero. It has been determined given by its magnitude times the direction
experimentally that the yaw near the gun cosines of the line of motion. Since the vector
results from the clearance of the projectile in V coincides in direction with the line of motion,
the bore and tends to dampen out in time, At these direction cosines may be written, •
some distance from the gun the curvature of
the trajectory becomes considerable and a rela- V, VU V- .. - -..

tively steady precessional yaw is caused by this V a V. '"d
V

curvature. At first, the axis of the projectile
tends to point above the trajectory and thus a so that the components of D are
moment arises which causes the axis of the V•
projectile with right-hand spin to precess like --D , -D , and D -.

a gyroscope* toward the right of the trajectory. V V V
If the angle of departure is not too great, the
projectile continues to point to the right so that The general direction of L depends upon the

the plane of yaw is approximately horizontal angle of orientation, p. However, for projectiles
and the orientation angle is nearly 90'. Since which have their angles of departure less than

the cross wind force L lie., in the plane of yaw about 45'), the cross wind force may be assumed
and the projectile points to the right of the to be in the same direction as the Y-axis. Under --

trajectory, L will push the projectile 1 o the right these assumptions the equations of motion then - .
and ,produc. the , phenomenon of drift, become

For large angles of departure, the angle of V'
yaw becomes greater and the cross wind force in -D --- ; S

has appreciable components along all three co-1 V
ordinate axes, V11

'Nxtensive measurements under conditions for (1.7) m + = - 4- L;
which the cross wind force can be assumed to V
be perpendicular to the X axis have shown that j V.
sin S can be approximated by in z 4 D - g.

V
ANg cos .

(1.6) sin 8 If we now approximate cos 0 in equation
KMP,,,d:'V:a (1.6) by V,/V, we can substitute (1.6) into

•*See Chapter 5. (1.3) and obtain

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .
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g K,, V, i- K/Km,
(0.8) L ==AN ..-..-...d K.), VAN and in effect provides an average correction to

the drag coefficient of the standard projectile.The substitution of (1.3) into (1.7) then gives teda ofiin ftesadr rjcie . .--- :
The substitution ofss, (1., int (ime.7) thengi A new constant C, called the ballistic coefficient,
in units of mass, length, and time. isnwdfndais now defined as . ...

x - V7  W mng

K,p,d-Y V, AN gK.'V id 2

m ? d K. VI and this factor is used in equation (1.9). u_

K, p,, d V_ In practice, the form factor i and the dragKnp~dV V2 "±- g coefficient K, are seldom determined. Actually,

This system of differential equations must the ballistic coefficient, C, is determined from
test firings which relate the performance of the

be handled by approximate methods. However, projectile to that of the standard projectile to
before discussing such methods, it is appropriate which it is most similar. 0
at this ploint to stop and consider two factors
which enter into the consideration of the above
system. The first of these is the atmosphere. 1.8 The S~acc; Method*
The forces and the moment depend upon the
wind and the air densitv. The wind components This method modifies the differential equa-
1,, w,,, and a', are determined as functions of tions of motion so that it becomes possible to
the altitude which, for guns located on the solve them in terms of quadratures. The modi- -

ground, is a distance along z. The density p,, can fication consists in assuming a constant average
be determined by pressure and temperature value for the air density and introducing a
meaauremcnts; how;'ever, it is usually obtained pseudo velocity i, defined as the vertical projec-
irom an assiuned s'iatzdard structure of the tion of the remainingr velocity upon the line of
atmosphere. The standard structure assumes departure. The remaining velocity is the actual
that the density is an exponential function of velocity of the projectile at any point on the
the altitude, trajectory.

P. e-u y It is easily seen from figure 9 that

where i,,, is the reference density, taken to be (1.10) u cos 0, = v cos 0 or u = v cos 9 sec f..
.07513 lb, ft;, and it is a constant equal to If the plane of departure is in the (x, z)-plane,
.0000316 per foot.* then we also have

The second factor for consideration arises u = v, sec 0, or v - u cos 0,.
from the manner in which the drag coefficient 'Vs"9'o'=i-cg9
A,, is determined. KA, is usualv found as a fune- A drag function' for a standard projectile of . -" .

tion of V/a for a given projectile shape, by a given type may be determined experimentally
measurements on a projectile at zero yaw. The as a function of the remaining velocity. Under 9
drag function itself is determined by test firings conditions of no wind (V = v) we may then . -

of a standard projectile. The performance of a write
given p)rojectile which differs from the standard (1.11) F'(v) = K&v
projectile may then be estimated by the intro-
duetion of a form factor, i, which compares the and the first equation of (1.9) becomes

given projeetle with the standard one. If the
drag coefficient for the standard projectile is (1.12) X rv -- -- F(v) v.
denoted b"y K'%, the form factor is defined by C -----...-..

':For a more detailed discussion of the Siacci method,
*We have charnged the units from mass to pounds. see any standard text book oi ballistics.

9

S. . . ° . . . . .. . . . . . . . • .. . ... -
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From the above definition of u we have is called the Siacci space function and is evalu-
=~ U Co 00, ated and tabulaed for a range of predetermined

dv~ =du ~values of 2, and initial conditions.
dv~dv. dx dv~Similarly, theee other functions may be oh-

(1.13 dv -x - - tamned, the inclination function 1(u), the alti-
dt dx dt dx tude function A (u) and the time function t(u).
du These functions are completely defined by
= -V, Cos 0",

so that du OG (U)
(1.14) x=-v~cos0,,=--F(v)vx 1(U)

dx C (.8 'u
or G (u)

dx C Cos 0,

du p,F (v) T'(u) -___

If now the Siacci assumption is made that u u
paPF(v) can be replaced by p,G (u), equation and given initial values. The prime denotes the
(1.15) then becomes derivative with respect to u.

C cos 0. du The p~rocedure for solving the problem of the
* (i.16) dx =- - trajectory then reduces to the determination of

PO G (U) the drag f unction G (u), the tabulation of the
and an b inegraed. he ntegalfour Siacci functions, and then the substitution

f duof these values intlo the equations of motion.
(11)f u This prol~ess will be specialized to the case ofI G Wu aerial guTnery.

F
H

* 00

Go PLANE OF DEPARTURE

Figure 9. - Pseudo Velocity

a 00
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0

PART 2. THE BALLISTICS OF AERIAL GUNNERY

I1.9 Aerial Gunnery an aircraft move only over relatively short
range,, and the maximum ordinate of the tra-

This; book is primarily concerned with the jectory is not too great. This enables one to 0
firing of projectiles from aircraft in flight. The ignore the change of the density during the
fact that the gun is moving throu~gh the air in flight of the p~rojlectile and also to ignore the
a specified direction and with an appreciable dIrift.

'eoivadds further comiplications to the prob)- Figure 10 illustrates the gecneral situation
1nm. On the other hand, projectilesfrdfo o aerial gunnery under the assumption that

z

V00

E00

AI 0
",/91V

0~~P 0 0 0p0 0
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the airpllane is flying a straight-line unacceler- Consider again the three coordinate systems
ated course in a horizontal plane. Should the described in section 1.2, The Coordinate Sys-
airplane maneuver, due account nmust be taken temns.
of the dive, bank, and yaw angle, of the airplane The direction cosines of the bore of the gun
and of whatever accelerations may be p'esent. in the (X, ', Z) coordinate systems are giv by
The path of the projectile can still be com puted; i heX ,Z..-'-.s-2--.g-nn

however, the force components alon'- the axes COS A,, sin Z,,, sin A,, sin Z7, and cos Z.
of a chosen coordinate system, would involve the and the initial components of the velocity of the
above mentioned angles. Present day firing projectile in the (x, y, z) system are
tables are computed with the above assumptions 

"1

and the maneuvering of the airplane is consid- CIt V,, cos A,, ,ji0 7,,,
ered in the sighting problem. Consequently, we (1.19) U( V,, Sin A,, sin Z,, and
shall limit our ballistic discussion to that pic- V,, cos 0...

tured in figure 1-0. It follows then that the initial true airspeed of

Let the projectile is given by

A,, be the azimuth angle of the gun bore o G + ,- + .-
measured in the (X, Y) -plane from X V V Cos- A,, sin-' Z,, + 2V,V,; cos A. sin Z,,

through Y; + V,;2 +- V,,'2 Cos Z

Z, be the zenith angle of the gun bore; -.Z-oA, s A)"-Z= Vo" Isin'- Z. (cos"' A, + siw' A J + cos'-' Zolý":""•2::
E, be the elevation angle of the gun bore + 2V,,V,, cos A,, sin Z, + V-, 2

measured positively from the horizon.- (1.20) ,, V,,--- 2VV,; cos A,, sin Z, + V('-.
tal plane toward the zenith-:

After a time of flight (I the Siacci coordinates
V(G be the gun velocity (i.e., aircraft's true of the projectile are P and Q and X, Y, Z coor-

airspeed) • taken to be along the dinates may be found in the following manner.
X-axis; The right spherical triangle6 slbown in figure 11 -

V be the muzzle velocity of the projectile, yield the following relations

relative to the X, Y, Z coordinate axes, COS T OS E cos A, - sn Z, cos A,,,

U. be the initial velocity of the projectile; (1.21) Sin 0 sin E,,isin r cos Z,/sin T•

it is the resultant of V and V " sil Oo = sin v .s.i i,,-SCOS V COS O, O A'.
t, be the time of flight of the projectile. Co0 b'. .08.A.

SThe vector diara of fiue12yed

P be the Siacci coordinate; it is the dis- Tagram o gure ylds
tance along the line of departure from V17
the origin of the xv, y, z system to a (1.22) sin. v =--sin T

noint 11 which iv \'rtp,'1v nbuove the ." -• .. .. .... . .. . .. ... .. • . . . ... s o th a t • . . I

projectile. The projectile is considered o t
to be moving without drift. (1.23) sin 0, Cos Z,.

Q be the Siacci coordinate, which is the u0

vertical distance from 1I to the pro- The coordinates x, y, z of the projectile are
jectile. given by

rl be the distance between the muzzle of U =P'cosA'=PcosoUcosA' •
the gun and the projectile at any in- I COS v,.
stant t; it is called the slant range or (1.24)
future range and, in firing tables, is P-'. .' A' P 0--0,, sin A',

denoted by D. - P sin ,, -- Q

12 •

- -- - - - - - - -\**'.. 4
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Z0

V:4

J
0  

I

- (V, + V, sin Z, cos A.)- Vot,,

180-- T T (1.26)~ Y P - in Z,, sin A0,,

PZ -- Cos Z, - Q.
Figure 12. -Vector Diagram of V,, u., VG 9,

The relation of the rectangular coordinates

The coordinates X, Y, Z of tile projectile in which are moving with the aircraft (see
the moving frame of reference, figure 13, are section 1.2). to X, Y, Z coordinates is given by .

related to a, y, z by the following scheme:

(1.25) X =x - V 1,. Y =y, and Z =z -zY
since the aircraft is assumed to be moving hori- -___ ___

zontally along the x-axis. sin Z. cos A. sin Z,, sin A, cos Z,
Upncombining (1.19), (1.23), (1.24), and -sin A. cosA,-o 0 csA csZ i A. 0i Z

(1.25) we find the coordinates of the projectile

13
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-zZ

H
Q *
B (X,Y,Z)

-9-

X, X

Pf ~ //

P Y
Figue 13 gulet Cordiate.

U, Fponrth13.-lBuwleg quantities:

Thu th ~ ~, oorinaesof heproectle(a)th tim ofrsplight, the and rat

are27 gie by' (b)z elctyo the graiynrp,,

-)V( t, csi Z. cos A., (1.th2eatv9ardn)t p/o

(1.27)\ P \V= uzlen voit y nl of the gun ln,

~=-V os Z cos 0  (12J) = azeimth angle of the gun line,0
P= the Siacci coordinate.

C=-V, sin A,.
Values of f, and Q may be computed for given

The slant range )-f is now given by values of the quantities (1.29) and tabulated.0
Tho usual procedure, however, is to tabulate t,

(1.28)u = 4 ~i + ~and Q ac fixed interval values of these quantities. .-

In aerial gunnery the primary ballistic lprob- It is customary to replace P by ?-/ in this tabu-

1cmn is to determine: lation.

14
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27

I . •

AA

Figure 14.-- Lateral and Vertical Deflections

Although the computation of tt and Q forms the formulas

" the primary problem, two other terms also are sin X -/r= ,

of interest and are tabulated; namely, (1.30) = /

x - the lateral deflection,

the angle between the gun-projectile 110 Dimensionless Ballistic Coefficient

line and the vertical plane through the The ballistic co.fficient defined in section 1.7

j gun bore; it is positive when the gun- is not a dimensio iess quantity. A more mathe-

projectile line is to the right of this matically logical treatment of the development
vertical plane when viewed from the of the Siacci method for aerial gunnery is

gun. It is an instantaneous relative obtained by defining a dimensionless ballistic

. position angle. coefficient. Let the subscript s denote quantities
related to the stanard~ projectle of, a given*-''-'-"

the vertical deflection, type, then we may define

"- the angle bet-ieen the gun-projectile W W 0
line and the "slant plane" through the
gun bore and perpendicular to the W, W.

vertical plane through the gun bore; (1.31) C,, -
it is positive when the gun-projectile K d

line lies above the slant plane. It also K,,I d. d,' ~~~is an instantaneous relative position -- .

angle. to be the dimensionless ballistic coefficient for

These angles are shown in figure 14. It is easily a type n projectile.

seen that their values may be computed from The first equation of (1.9) under conditions of

- -- . .. 7..

. . . . . .. . . . . . . . . . . . . . .......'o ' ' " .'" ..

- - - • • • m m m ' ' . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .'.. . . " "
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no wind may now be written (units in p)ounds, du
length, seconds) i(1.35) =v, sec 0,,

cit

Ad vv, G. -G (u) v.,see 0,, since V*=x X?ng

Ki, W /d\ K d, 2 
.~p

I-I I IV, G,,(u) u.

KAt W \d,/ W8 .j CPA
Since u dP/Idt, we have ___-

-,~ du P dl'
K,,\ d, [ - __

W1 V, t C. cit
w I WAor

d- I 2 C,. du
LW, (1.36) dlP=--- --.-.-

PO Equation (1.36) may be integrated to give the
P v Siacci range, P,

C1CPA J du C,,
(1.37 G. (u) p

U 0p
(1.3) x - ,,(v V~wher~e Sis the Siacci space function

C,,

where U

pOKDv (1.38) As (U >])A

The time of flight may be obtained by integrat-
is the drag function, for the standard type n' ing equation (1.35)
projectile, determined from test firings as a
function of the velocity v. U

G'. du CPA
In aerial gunnery, the trajectory is nearly (1.39) t1  -- f(T -. TJ,,

flat and consequently we may use the Siacci pJu G,, (v.) p
app~roximation, UP0

where T1 is the Siacci time functiou
v u and G,(v) ~G,,(u)

and equation (1,32) becomnes (14)du [, (~,)

J u G,, (u)
(1.34) x=- G (u) v,. U

C.

In section 1.8 we saw that if the (x, z)-plarie is .1TeMtino ml rm rjcie
the plane of departure, then Fired from an Aircraft

= U cs 0, r U v F Te effect of the yaw on the drag of a small
arms projctile is an imnpo~tant factor in the

from which we get by a differentiation motion of these projectiles when fired from a

169.
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Fi~qure 15. -Vibration Motion

iioving aircraft.. It is accounted for by the (1.41) cos nt~t, sinh flt, cos m.~t, and sin~ n~t
iplproxinlation that the drag force due to yaw wvith four coefficients that are slowly varying

2. proportional to the squareC of the yaw anlgle functionis of timne and in which n, and 'n, are
I )r small yaw angles, The first problem then is solutions; of the associated frequency equation

t)find an expression for the square of the yaw mnd tahe the forms
,,.ngle, 8, This expre.ssion is found by considering
the gyroscop~ic motion of bullets fired from ani AN~

aircaft th drift is ignored and only the vibra- ~~
tory mnotion of the center of gravity about. the (1.42)
mumn trajectory is, considered. The mean trajec- 'I AN
tory is a particle trajectory that differs from (j 1-P)

-d.~ l ~ tr-def ip~Ary oly by periodic terms.23

The detailed molution of the! vibratory motion where
is bovonil the scope of this book, (For the theory (1.43) 7) -V1 0(/s
ol, vibrationA, see any standlardl book on mne- adteqatte ,B ,adsaedfndi
chanics; for the coniplctc. theory, on whic:h this adteqatte ,1,N n r lfndi
disctuision iAi Imsedl, consult reference (2) of the scin16
bibliography inl thle back of this booh.) The I1f we ignore the gradual variation of the co-

rose~lltatioll here will be xInure or1es along eflicients, then (j, kC) may be considered to be
intoiti C li~Oi th rectanguflar coordinates oif a point M which0

I,( ju.1 and kc be the rectangular comnponents of' is rotatnjug ill a clockwise direction at an angular
the ya\,w, Then the theory of' vibrations, shows, rate ii, in a circular path of radius a,. The center
thatt the! inotion is giveii by a linear combiniation of' this circular piath, S, rotates, clockwise around
of the origin at an anigular rate v, and deseribes, a

17 0
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(n.- -n2 t-'S

Figure 1 6.- Initial Conditions of Vibratory Motion

circle of radlius t,. The clock~wise angrle from the resultant of these two is the complete yaw-
the j-axis to the radius vector of M is the angle log motion. The slow variation of the coefficients
of orientation of' yaw, ?, and the distance of M of the p~eriodic terms in this vibratory motion
from the origrin may be represented by the ang-le consists of arbitrary constant factors multiplied
of yaw, 8. The configruration is shown in figure by damping factors. We may consider , to be
15, from which it is seen by the law of cosines the amplitude of the nutation and at, the ampli-
that tuck of the precession. The rates of variation-

(1.44) ý' t,' +- a& - ZaU2 COS (nt, - n,) t or of damping of the amplituds may be experi-

if the time is measured from a suitable instant m a deterMioned
and the algebraic signs of' n, and n, are taken For small arms bullets, the two damping y
into consideration. factors have been shown experimentally to be

oJhe rotation in the circle of radius ta, may be equal and may be expressed by
called the ihutation, and the rotation in the th / m 4%
circle of radius a, may be called the ptrecession; (1.45) 7).-.f-uC

18
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(1~~~~~~~.44) ...................... a...co(,n...) . . r . f-dtpn fteapiue--myb xe



_______AEROBALLIST!S

where P should be the actual distance the bullet whence we may solve for the initial values of
has travelled but which is here taken to be the a;, and a..,
Siacci P. The constant c, may be experimentally
determined and is given by n~g = ____

(1.46) dc, , + 1  (14, -.

2B 2m _ _

where K11 is the yawing moment coefficient.n,-,

Let s cnsier prjectle hic strtsits The substitution of (1.42) into (1.48) yields
motion with an initial angle of yaw 8., the angle= (1-)
of orientation equal to 90', and such that thea,
initial values of the timn derivatives of 8 and p 222,
are zero; that is, initially t =- 0, 8 = 8,, ' - 9Q0, 1.9 (1 + ,, 8,

8oz-ý;- 0. Figure 16 pictures the situation at a,.,,
t =0 and also at some time t. 2p,

Let ~ b theange btwee OMand S, hen where 1),, is the initial value of p. Since the damp-
fro fiure16,we aveing factor is common to both, we have a, and a.-

n't -900 ' given at all times by

and upon differentiating with respect to t (1- Pý) 6, . -, C1P
Ia,=

1= + ill- P, p, L'
At t =0 we considered ~ 0 so that initially 50 a.) 8.[

If we apply the law of sines to triangle OMS, where p,/ is the arbitrary constant factor mul-
we obtain tiplying the damping factor. The mean value of

a, sin 1180' - p,- (n, -- n,) tj (ta2 S' 8'1 aeaged over a single period of 82 is
or

a. 8in 1,? +4 (n, - n.) t a; si "
Differentiating this equation with respect to (1.51.) =8.,2

time, we have 2p,,9

a,1,p,.4+ (nl - n2) co COS, - (inl n 2 ) t] s" - P, 62p ,

a..ý, Cos .- I\P/

Thus, at t = 0 we have where the last equation is obtained by making
(n, n 2 )I =use of equation (1.43). The variation of the

a~ Ii H-stability s along the trajectory is approximated
or, 8ince ~,=n, at t =0, by

(till, =d -p, 2  1

It is easily seen from figure 16 that (1.52) m

8., = a,, -a, P

so that we have two sitnultaiieouti equations This mean value Of 6' is then finally given by

8.8" -2[1-1 -1 C2- )Ia~~-'2(1.47) "'(1.53) 2=8C

988995 0- -3 -13 19.

ii %
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where Let i,, i. be a set of rectangular axes fixed in
d-i the air, lying in the plane of departure with

(1.54) c, K,. i, horizontal and iL vertical. The origin is the
2 (s, - 1) m position of the gun at the instant of firing. It is 8 " " - ""-

The yaw of the projectile has two effects upon easily seen from figure 17 that .

the trajectory. First, yaw makes the drag"
greater than it would be if no yaw were present (1.58) secO.

anl, secondly, it introduces the so-called wind- ( Q = 4 ta? 0o- i.

age jump. At the instant of firing to-starboard,
the tangent to the instantaneous trajectory 12

points higher than the tangent to the mean Q
trajectory, in other words, the tangent to the

mean trajectory is lower than the bore of the 00-0

gun by an angle r; this angle is called the i 1 , i2)

,windage, idmmp. The windage .jump for a given 
"

bullet depends essentially on the initial angle
of yaw and the initial air speed of the bullet, It . .

can be shown that i. is given by

AN K1 . 8',
(1.55) 0'

md K,, v, _

where K,. aul K, are again the force and over-

turning moment coefficients. The effect of the Figure 17,-i, i2 System

windage jumpl) upon the trajectory may be con-
sidered as a differential correction and thus the For the equations of motion of the projectile,

motion of the projectile will be studied first by taking account of the influence of gravity and

neglecting the windage jump. drag, we have equation (1..32) and a similar r

The effect of the yaw on the drag may be equation in the z direction, where x and v, are

accouited for by applying a modified drag force replaced by i, and i,; -z and -v, are replaced by

coefficient for the standard projectile. Using -'2 and i,, and the drag function is corrected for

the approximation that the drag force due to yaw by formula (1.57). Thus, -

yaw is proportional to the square of the yaw G,
angle for small yaw angles, we may write i(.) 2 - (1 + S K1,6) i2 - , -

(1.56) KI, - K1, (1 A I(,8') G,,.

where i, (1 + -2 K,,) i,

ti) ( drag coeflicient for zero yaw angle; where

,K,)8 yaw drag coefficient; p is the relative air density,

1) , mean value of 8" discussed above. G, is the appropriate drag function for
zero yaw,,"'"-''--'"

if this expression for K,, is substituted intozero ,

equation (1.23), we have a new drag function, C,, is the appropriate ballistic coeflicient,

G , which makes allowance for the yaw of the and

projetile:, &1,8 is the yaw drag coefficient.

(1.57) G5 G, (1 + K1,8 ,1) From equations (1.58) we have

where j,, is the exjerimnntally determined drag (1.60) P Cos o0,,

function for zero yaw for a type n projectile, i.- P sin O, - Q,

20 0
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(16) 16)i _ 8 dPL
~ P si ll 0. -(1.GI) Cis J

U0  I-'
S P Cos 0,

(1.62) I
dP + f vdPj

Equations (1-59) may therefore be written in CIL f

the following form [P
- .GThe integral on the lef t-hand side of equation

P sill 0,, - (1 P 81 K (1.67) yields the Siacci Space function S for
Cthe drag function G tsee equation (1.17)]J. On

the right-hand side we have from equation

(1.3) (Psin0,,-Q) +gJ-o, (1.53)
P16 3 G IL 0P 1 D )( . 8 _

coC,,+5'KS P' ± P

Co 0.= . CIL . C.,
P

or

Q+ 0 ( + v Ks) Q -g + siu O,'- 5 +2)d

G, where P' is a dummy variable used to indicate

(164 p---± (1 + Sý K,,S) P] the value of P at any point in the interval of%

CIL integration. The initial value of P =P, is zero
and the initial value- of S -S 0 is the value of

11± + _~ (1 + 8
2 KD~) P=0 . S at u,,. Let -

(1.69) c - (c, + e:!) lr

Recall that ?t- P so that P -u=---. The where 1,,, is the standard air density. We can now0'"
dt (-.valuate the integral of (1.68) and upon substi-

tution of the initial values we finally have from
second equation of (1.64) then takes the form (1.67)0

(.5 du C,(, ,))d 1 (.0 CI, P\ +) KK
where

or

duG, -(1.71) K -K, .

(1,66) - -- (1 ±82K,,8) ~2,cs
(1i CY, dP The value of t for a given Siacci coordinate P

Since G,, is a f unction of u, we divide (1.65) by may now be found in the following manner. The

G,, and rewrite to get constants necessary for the given projectile

du such as K,,, KI,, , cl, c,,e, etc., are determined
experi mentally. A drag function G0 (u) also is

- (1 ~ K 1~) (P. determninedl from measurements, and the Siacci
GC,,

sp~ace function S is tabulated for this drag
We have' now separated the variables and we function by numerical integration of (1.17).

can integrate to find Then, under given firing conditions of A,,, Z0 , V,,

21
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and V(,, the Siacci function S is obtained from or

(1,70) at given values of P. Values of u are then P P'

found from tables of S for these values of S (1.77) Q g ff uSdP' dP'
and since f f

0P 0

u p = , where again dummy variables of integration are
dt used, with the evaluation of t, and Q for given

we have values of P from equations (1.26) or (1,27) and
a transformation to the x, y, z coordinate

1 system.dt = -dP •0•.-

u The effect of the windage jump upon the

so that trajectory is small and is applied to the trajec-
p tory by an approximate differential correction.

The windage jump changes the direction of the
(1.72) tl= j dP' line of departure by adding to the vector U. a

f u vector .1 whose magnitude is u.io and which is
0 directed at right angles to the plane containing

where the prime is again a dummy index. and G o, in a sense such that vectors in the
directions of V., V., J form an ordered right-

To obtain Q, we return to the first equation handed triad. Since it is perpendicular to the
of (1.64). Upon the substitution of the second plane containing VY and since VG is assumed

equation of (1.64) and (1.66) into this equation to be directed along the X-axis, the vector J is

it reduces to pierpendicular to the X-axis and its direction
cosine with respect to X is zero. Since this vector

dP also is perpendicular to Vo, it is easily seen, by
(1.73) Q -- Q .' referring to figure 11, that its direction cosines

with respect to the other axes can be found

The latter equation is a linear differential equa- from the diagram of figure 18 in which V,' is

tion in Q which may be integrated to obtain the projection of V0 upon the (Y,Z)-plane.

tf t They are thus sin , and cos q, Formulas -

Q (1.21) then furnish the direction cosines for
(1.74) - the x, y, z system in the form

0 0 O Z(1.78) Z /( in2Zcos8 A,),

SinceQ=Oatt=0, P=zu=uatt=0, sin Z, sin A,/ (1- _sin2 Zo cos A,).

dt'- dP'/u, and P = F at t= t,, we have
The cui-aonents in the x,, y, z .3.t.. arc these

P direction cosines multiplied by u,,c. •
"(1. -dP' The windage jump does not alter the magni-(1,75) ( -- gu . .. - - =

- u2 tude of U.; its effect is to increase the X, Y, Z
o coordinates of the projectile by the x, yj, z com-

ponents multiplied by the time factor P/u.. We
where the prime is again a dummy index. A thus have the increments
second integration yields, since Q =0 at t -0,

tt P .- "-'"--
ty (1.79) = Pe Cos Z,/(1 - sin? Z,, cos 2 A0)

(z Pe sin Z, sin A,1 (1- si?
2 Z0 cos2 A0 ) '

22 
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fS

900

ssin ~

ICos 4,

z uof

figure 18. -Direction Cosines of ujc

It follows then that the increments on C, , ý re Upon using (1.30) and (1.80), the increments

j -0, on X and p. are then approximated by
P V,A? Pr (1- sin" Z, cos A.)~ - A o Z o ,

[sin 2 Z. sin A,, + cos' Z,, sin A,] 7* r, aou0

(1.0) =- Pf (1 -sin 2 Z. cos 2 Aj,-i (184 Va
(sin A,), ~ - - sin A,.

COS OS , (1- Sfl
2 Substituting (1.55) into (1.84) yields

cose AJA. V

The resulting effiect on r/ is small and will be ( x=b - - cos Z. cos A0,
neglected. We ar;-ý then concerned only with the r/ u0,2

small increases ir,. X and It which are represented (.5
by ax and a,.. The initial yaw angle -nay be a =-b -sin A,
regarded as T - of figure 10 so that V

where
(1.81)~~~~ sn&z-S .AN K&

V0  (1.86) b =z-
md KM,

Since the theory it, based on a small angle 8., we
may ]Mt 8,, equal to its sine for the. following. .-

approximation: 1.12 Ballistic Computations for Aerial

(1.82) So2 V (1-Sin 0 Z, C02 A.) /u,2  uner
Ballistic data is computed and presented in

orfiring tables. For aerial gunnery, the computa- '- -

(1.83) (1 - sin, Z, cos'! A )s- 4 ,/, tion is based upon the theory developed in the

23
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last section, the computational steps for which (8) Compute c:
may be summarized briefly as follows:

(1) D)etermnination of the drag function
(A,,(i) for a projectile of given type by 1 0
test firings.

(9) Compute K:
(2) Determination of the corresponding

Siacci Space function S((a). See equa- K- 1 K 8a .,"2
tion (1.17). 2C,,c 1

(3) Determination of the ballistic con-
stants K,, K,, K,,, K,,8, Vo, s.,, c', c", b, (10) Compute S for a given sequence of P
and C,, for the specific projectile from taken at even intervals:
experimental data. c' = c,,, and c" =

cpd1K,/12mnd are determined instead of P-2,c)
c, and c, The quantity s, is the value S So + -P + K(1 e

of the stability factor s near the muzzle
of a stationary gun in air of standard
density. It is experimentally deter- where S, is the value of thu Siacci

mined in such a manner that it may space function at it, and is found from

be used in step 7 below, the Siacci Space Function Table.

(4) Choose values of the variables, each -
from one of the following intervals and (11) Find 21 from the Siacci Space Function

hold these values constant throughout Table using the values of S from

a given computation: (10), and then compute 1/u and 1/u:-'.

0 < <1. 0 < Z0 < 1800 (12) Compute the tirme of flight t,: ,

0 < V, < 600 mi/hr. 0 <A 0 < 1800
P

0 <P < 10,000 ft. Starboard side,-

The computations for the port side o
are the same except that the lateral
deflections change signs. by a numerical integration having

given 1/a,' the integrand, at evenly

(5) Compute a,,: spaced intervals of P.

+- ' + 2 V,;Vo ,sii Z. cos A,, + V,-.
(13) Compute Q:

(6) Compute 8,,":
P P,

(1 S- si,' / cos- A0 ) in 0 l dP" dP'I 0!
radians. 0 0

by a numerical integration, This is
simply a procedure of finding the sec-

VQ = 1 di-'/,,. ond primitive,

24
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(14) Compute ~,~The units in which the tab~le., are comp)uted
are feet., radians, mils, and seconds. The units

Vc inl which the tables are published are usually
~P- -QcsZ0 yards, miles per h1our, mils, and seconds. The

U, ~mil used here is the militar'y muli defined to be

+ ~(- - t) sin Z,, cos Act, 1j 6400 of a revoIlutionl.

P 1. I13 Bullet Firing Tobles
71-=V U (- tf cos Z. cos A.

\u,, Inl order to further illustrate the computation
and use of firing tables let us consider a small

-~Q Sill Zo, portion of a bullet firing table. A certain 20-mm
p~roj ectilec has the following ballistic charac-
teristics:

siA,. , 2.85; c' .0015488 ft.-';

C,, z- .510; c-= .0000978 ft.-,;

(15) Compute r:16.4; b 86,600 rniils/ft/sec.;

=t + 12~ + ~.V 0  2750 ft/sec. l- l

(16) Compute A and 1j. Consider the following values of the variables:

V, ,;300 mi./hr. 440 ft./sec.
sin k and sin ji -

(17) Compute SX ai~d 81-: A,=4~80m

Z.=22.5' 400 mils
V(, 1)

8A b _ ~-Cos Z,, 6o& A,, g 32.174 ft./se&'.

v,, ~P was cho~sen at interivals of' 1000 ft. For the
- - sin A,, . integration, 9-poiiit Lag~rangian integration co-

~ ;', e~h(Pnt~wvre used. The qluantity A represents
the first integral of 111t2 and~ B is the second
integral; i.e., P is the integral of A. The inter- S

The computation gives values of S, , . A, and lpolation for evenly spaced inter vals of rf was
Sp for evenly spaced value,, of P) and cor:espofld- done graphically. The windage jump) correc-
ing comlputedl values of rf at the chosen values, tions, 8.k, and( 8p,, are nearly constant for 7-1 and
of the variables mentioned in (4) above. These are usually tabulated for all rl. The constancy
(Iluantities can then be put in terms of evenly can be seen by the check made at the two ex--
spiacedl values of r, by gr-aphical interpolation tremes. The evenly spaced intervals for 7*f are.-
or byliv iiv other convenient method of interpoli.- givenl ill yards, everything else is in feet. A andi
tioii. This is the usual form for tabulating data.~ are obtainedi inl mils by simply multiplying
inl aircraft firing tables. their sines by 1020.

25
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Table I. I Computation of Firing Tables

2pcP S i 101x 1o+

(1 1)1 22-1. 2G 2wo0. 1(62 .21-1.19) .11881)
1000)1 2 . 524-8 .(177M88263 (11(3(1 (is 2-456(1 784 .4070.1 . 37S7. . 161568

20 5.10196 0606(66582 762-16 20918. 6 .476.15 8197 .22700
.300(0 7 67-4 .000417251 1 )G1M09-. 171. 1777. 2(is .56266 1 .336115 3 .1659
41000 10o. 2o992 01000368(03 1062.~ 9 13 1-4891.775 .67124 1 95149 .1505r.7
i0010 12.76241 .!M0(002867 1 233 1 .59 12.12.493 .8(148 2.i8828 .60775 -',-

600 5:.3 1488 0000i01223 139080. 177 1(07-1. 1 32 .93:098 3. .55975 .86673

70 17. 86736 0(((00( 1(11 7 1 5(168.80.4 98:3.271 1 .0(1701 .4.5359S 1 .03432
8000 20. 4 1984 .100(0000(01 170:37. 431 9 11 .952 1 .119655 5. 590 12 1 i.202421

4 1xI10' 1? Q VGI

0 (1(1 ( 0 (
100011 .1153-12) .070032 2 .2532 .0(32930 14. 929 18
20(00 .33i867 .3(1(182 I9 . 87:36 .1290180 56 . 70527
300(0 6018321 1 77315:3 24 .87.54 .3(2.525 1:33 .1112(0

.1(1( .98(6850) 1 .5 50t 5 72 5(1.1777 .572258 251 .7935:5
ow11( 1 .53 13:35 2 .810221:3 9)0. 1591 .9(1237 424 .2(140

6100(() 2. 2901 1(1 4 . 6194521 15 1 .0(415 1 6 8901(55. 5.5w1
7(o H :1.2(163613 7 .4-1902G 2:39 w650 2 122321 9 313. 821261
8001) -1.35,5123 11 .23;5351 30i1 .48(62 2.83 1657 I 1245. 9289.1

10001( 912.11( 8.89 1 10. 557 9)12.2(12 .01 1120-1 .0094136 11.4 9.(1
2(01 1871 .955 313.325 .10. 1N) 1872.6182 .0(21-145 .0(1779)5 21 .7 18. 15
3600 2 7 857.6(t7 77 .4-10 91.-12.1 27988.332 .013:3756 .1)27772 3-,4.43 28.32
40161 3(1678.3991 115.290l 178.01.15 3(M85.57(1 .0(1483(18 .0(:39121 419. .27 40.21
5(100 15 153. (14 2 12.11(62 :3(1(.1(11 .15591.:371 (16-5798 0.053222 (17. 11 -51 .29)
G0001( 5:372 ((102 370.4612 *163. .5-18 ;-)5.1(15.117:3 09,(576; 1 1 (X65:39 81.48 (it9. 9 1
7(0(1( (;1(;1: .1.19 1518. :,3-1 61(1(1.3 12 2 (22(1. 3-53 .10615:3 .83328 1(08.28 81. 991)
8(0(1( 691)-11. (161 675.11609 88 1. 00)5 (100:3. 2:32 .125791) .09G1471 128.131 98. 40

I 400 80(0 12001 1 600 2000
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AEROBALLISTICS

Firing tables are usually massive. A small portion of one table is presented here for future reference. -

Table 1.2

1'iring T1alide. Xitlhout WVindage .Jum~p

Second~s mlils 1mils

z A ID (yds) 1) (ydls) D) (yds)*
inils mils 40(0 800 1200' 1600 2000(10 800 1200 1(60(0 2000 4(X) 800 1200) 1(60( 2000

1200 0 .47 . 1.00 1.61 2,33 3.22 3 6 8 12 1.5 ( 0 0 0 0
400 .47 1.00 1.61 2,33 3.20 :3 5 7 10 12 (6 12 18 26 36o
80(X .47 1.01 1.62 2.392 3.16 2 3 41 4 .5 12 23 1;- 49 66

1200 1 .48 1.02 1.62 2.3(1 :3.08 0 - 1 -2 -. 1 -6 20 31 .18 65- 84
1600) .48 1 .02 1.60 2.26 2.99 -3 -6 -9) - 1.1 -18 25: .40 55 71 88
200(0 .48 1.00 1.57 2*18 2,85 - 6 -11 -16 -22 1-28 22 35 17 60 74
2400 .47 .98 1.52 2.1(0 2,72 - 9 - 15 -22 -28 -36 15 2.1 32 .11 50
2800 .46 .9C, 1.48 2.041 2.63 --91 -17 -2.1 -831. -89 9I 1 17 21 26
'i200 .6 .1.620258 -9) 1-17 -241 -31 -:39 0 0 0 0 0

1600 0 .46 .99 1(10 2.381 8.18 -3 -6 -1(0 - 16 - 283 0 0 0 01
401( .46 .91) 1.60 2,3 1 :1. 17 -3 -6 -10 -16 -23 6 11 18 26 :15
800 '47 1.00 1. 61 2.3 1 3. 18 -3 -6; -101 -16 -22 12 22 834 .48 64

1200 .-Is 1.0 1.6(;1 2.28 83.05 -8 - 6 -1(0 - 15 -21 20 84 48 64 82
1600 .48 1.0)2 1 .w( 2.24 2.9,5 -83 -61 -10 - 1.5 -2(1 25 40 54 70 87

I2000 .A7 .99 1 .-55 2. 10 2.81 -8 -6 -10 -11 -18 21 1 3.4 46 58 72
240(1 .46 .97 1.5(0 2.07 2.67 -8; -6 -9 -18 1-17 1. 2 13 20, 247
28001 W4 .)t 1.45 11.99 2.-561 -1 1 -6 -; 9 '-12 1-16 7 1 0 2
320( 1 4 .214 195 25 -3 -6 -9 -12 -15 0 o 0 0 0

1:D ~r,

1. 14 Bomb Ballistics the origin is now located at the summit of the
in bmbig fom a aicrat atgrond ar- trajectory and the trajectory has only a de-

gets, the bomb is releasedl without any project- scending branch.
lug iceand lloed o fal. s ittraels In general, the theory is the same. We shall

throgh he ar, t i actd uon y th foces consider the theory of bombing in chapter 6.
of gravity and( air- resistance. The bomb is, of -

course, give-1 an initial velocity whrh is fl 5uie 1.1 S ROCAI uIIl t

tRue lil'Speed of the aircraft. If a wvinml is blow-
ing, it also will act upon the bomb) and xill cause In the firing of rockets from aircraft, the
it to driift with respect to tile gr'oundl, andl this rocket is propelled during its burning time and
dIrift becomes a ser'iou~s factor inl bomb~ing. thereafter falls freely like a bomb. Thus a rocket

The force sytmfrabm isiilro acts like both a bullet and a bomb. The forces

th~at of the general projectile alreadly discussed,. acting onl a rocket are the same as those on any
A bomb, however', is nlot givenl a spinl but is other projectile. However, the changing of its
e'quipped insteadl with symmetrical finls which jo'ojectiiig velocity dluring the course of its0

.1)V to br-ing thle Ceiitei of' pressure behinld tile travel causes added peculiarities. The ballistics
center of gravity, thus making, the bomb stable-. of a rocket will be discussedl in chapter 7 where

'Ihie sameco(.0rd(inaite system that, was used the theory of rocket firing wvill be considered in
before, also can be utsedl for bombhing, except that detail.
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Chapter 2 ...

DEFLECTION THEORY FOR AIR-TO-AIR GUNNERY

2.1 Introduzfion respect to the air mass, so that the concept of
absolute wvind need not be taken into account

In the main, the: presett chapter will be here. An object will be fixed in space if it has no
concerned with the problem of successfully aim- motion with respect to the air mass.
ing a moving gun at a moving target so as to
secure a hit. Since it is otnly in special circum-
stances that the gun will be pointed directly at 2.2 Actual Motion and Relative Motion 0
the target, of immediate concern to us will be
the development of formulas expressing the The actual path in space traced by T, and
angle by which the gun-bore axis must be de- viewed by an observer fixed at 0, is in general -.-..

flected from the gun-target line at the instant a very different appearing curve when viewed
of fire in terms of kinematic and ballistic fac- from the moving point G. Thus, if G flies
tors continuously measurable at the gun. This straight and level and T flies along just abreast 0
angle is known as the angle of lead or, more of G, an observer at 0 sees T describe a straight
briefly, the lead angle. The gun will be thought line, whereas to the gunner at G the target T
of as mounted on a platform, called the gun- will appear to hang station)ary off his beam. In
platform, and hereafter denoted by the letter general, the path of T as seen from ( is called
G; while the target, denoted by T, will be a the "air course" of T whereas the path as viewed
fighter aircraft attacking G. The gun platform from G is spoken of as the "relative course." By.0
G may be considered to be a bomber or turreted way of illustration, figure 20 shows air courses
fightce" with flexible guns, i.e., guns the direction of G and T, supposed coplanar, with correspond-
of whose fire is in general unrestricted. By ing positions of G and T indicated for consecu- .- . -

motion of G or T we shall mean motion with tive seconds, The angle T measured from G's . "

50
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bow tol the gun-target line GT, is called the magnitude, as can be vasily verified from figure

angle-off of the target or simply the angle-off. 20, is

The approach angle a, measured at the present
position of the target, is formed by the tangent (2.1) lV,- V, I
to the target's path anld the gun-target line. V V c
More precisely, it is defined as the directed angle +V(; V' Cos (a + r).

from -r to V,,. The (listance GT, denoted by r, This magnitude is dependent on a and r and
is the present range of the target. The curve hence is, in general, not constant. I L
drawn in figure 21 represents the path of 7'
relative to G and may be obtained by plotting oni
polar coordinate paper the points (r, T) asso- 2.3 Case I-Fixed Gun-Platform-Linear .

ciatod with each G position anrd drawing a Target Motion

smooth curve through these points. In figure 20, This case is essentially that which obtains in
the point, w'erc 1plotted assuming constant tan- antiaircraft tire, but, as will be seen, it also
gential speeds for both T and G, that is to say, applies to the fighter pilot's problem of cor-
the magnitudes V, V,; of the velocit:' vectors rectly aiming forward-firing guns. The basic
V,, V, are constant. Ilence, it is important to aiming allowance here is for the target's motion

notice that while on the- air courses equal dis- during the projectile's time in flight and is called

tances are covered in equal times, along the the kinematic lead. Additional slight modifica- ..

relative course this is no longer true. The veloc- tions of the gun bore's position must be made

ity of T relative to G is in fact VNv. - whose to allow for gravity drop. In this paragraph we
shall consider the kinematic lead only, reserving
gravity drop corrections for later cases of which
this case can be considered to be a particular
instance.

T VT Tf

r
rf

Ak

- G ~RFERENCE LINE .

2G
"" Figure 22, -Fixed Gun vs. Moving l arget ..

In figutre 22, suppose that T traverses line
"7.,7f TT with constant speed VI. TI represents the

])osition of the target at the time of impact with -'.

a suitably aimed projectile and will be referred
to as tie future position of the target. Similarly,

______ _______'_________ ir will be called the future range. The angle A;,,

G measured positively in a clockwise direction
when vicweld from above, is then the required
kinematic dleflection. LeLting t, be the time of
fligýht of the bullet over the range r,, and V/ be -_- j- ..

the mean velocity of the bullet over this ranage, . ---.-.

Figure 21.-- Path of T Relative to G then in triangle GT"', the Law of Sines yields

30
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DEFLECTION THEORY FOR AIR-TO-AIR GUNNERY a

Sin.kA TT, Vit, "V that the projectile's muzzle velocity has been -.-

- - -- -- , augmented by the velocity of the aircraft. Thus,
Sin a ; Vf t, V1  as far as the mathematics of the situation is "

whence, concerned, the pilot might as well be sitting in a
(2.2) balloon firing bullets of higher muzzle velocity.

(2.2) sin Ak -- sin a . -? .. :'.?_

V, 2.4 Case 2-Movirq Gun-Platform

If the lead angle A,, is small, we can replace -Fixed Targei
sin Ak by Ah, provided A, is measured in ra- This "_-c il
dians, with resulting error lesh 2 Ak:'. Equa- This case--whic night propeily be called 9
tion (2.2), considered from the standpoint of a the strafing case - is, mathematically speaking,
lead-computing sight, is not of much value since the complement of the fixed gun versus moving

the quantities Vr,, would not be directly avail- target case. There are, however, importantphyica difereces.InCas 1,thepatofth

able as inputs.If we resolve the vector VT into lhysical differences, In Case 1, the path of thecopTerpendcular bullet is an extension of the bore axis, a fact
oen t tlh aed endicularlcomponent may be which is no longer true here as is evident from

written tfigure 23, The muzzle velocity V of the bullet
written is compounded with the gun-platform velocity

dO VG according to the parallelogram law to give(2.3) V7. sin, a ,,= r - -- •" :::::::::
= rOa resultant velocity u of the bullet with respect

to the air mass. We shall refer to u as the

wherein , is the angular rate of the line GT in initial velocity of the bullet and to the parallelo- .
rad/sec and 0 is its angular coordinate referred gram GABC as the firing parallelogram.
to a fixed reference line through G. Combining
(2.3) and (2.2) we may7 write Under the assumption that the bullet travels

a straight line, it is evident from the figure that,
to hit the fixed target T, it is sufficient to aim

(2.4) sin . ,. the gun so that the arrow GB will be pointing
V, directly towards T at the time of fire. Neglect-

In order to put (2.4) into an approximate form ing gravity drop as before, we find from triangle

involving only present data, let us introduce the GAB that

velocity V,, which represents the mean velocity sin'AAR-G....
if the bullet had to cover r instead of r t . Then, -in A_ A = - = -

sin ,r GA GA VoV• ,, V,

sin A, -- -- whence
V/ V, V,

where t is the present time of flight, that is, the (2.6) sin A = sin . ,

bullet's time of tlight over the range rr. Since for V-
small %,, r and r,/ differ very little, tle factor
V, scoet n The path of the gun platform is shown as a

we have, as a useful approxi- curved line in figure 23, for the sake of g2neral-

mation, the formula ity. Actually, the individual bullet is only con-
curned with the tangential velocity V0 at the

(2.5) A, -= to). instant of fire. What the gun-platform does after
the bullet leaves it, no longer affects the motionThe fighter pilot's problerm of correctly aim- ofteblt.""'""

ing forward-firing guns is then taken care of of the-bullet.
approximately by (2.4), wherein V/ is replaced From (2.6), we note that bullet direction is

by a new mean velociLy arising out of the fact determined by V. and V0 and, except for gravity

31 -. e .. ,.
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• • - ~~~PATH OF G .:-'-,.

0 0

Figure 23.V - MovingBGun v..-F._e'.,-r. t11

* lpnln o ,(f.quto 22) whih o An thi setio w:shll:ombneCass an

* undpne nteh itrague 23,. • oingn the. Fix edTrmit bot patorman trge t mve

ldroln iase thdepedn onlybelleto range is. That a , Wesallasume,-forvimplicityat this povint,...,--"-1.

more distant target will be hit a little later, that the air courses of G and T are coplanar and -...-.-.-
S~~~~~that the air course of T is in fact a straight line '''-..."

* The ratio Straversedl with constant speed. Gravity drop
speed of gun-platform in a will again be neglected. , ""•direction perpendicular to

"'. V, sin T the gun-target line Referring to figure 24, G, T are the p~resent :".:"-''
,positions of gun and target, that is, the posi-"drVo muzzis speed of bule es pieed atotult to s the in n ofir; GT is the air course.

cappears frequently in the theory of aerial gun- of the bullet (bullet range), Tm is the future

nery andl is called the own-s•peed deflection,. position of T (position at time of impact with •,- :,;moIlence we may say that for a fixed target, tgh the bullet) and is the time taken for thewas

sinde of the leai angle is giv e y the own-speed bullet to cover the range GTt . The broken lines.
(leflection. represent auxiliary constructions necessary for this-"oi-",

the following terivation:"
tquatdon (2.6) can be rewritten involvingdr

-SeGT and = ,. Thus, A RD-BE'
dsirn Ai ---to w ai- _e-,

V,, Sill TVh u-agtlieleern o fiue2,VTaeth rsn

-. o(2.7) sin A = Vg V t,, the0 .oi.
V, Vm sinto -u 0 5ins the -.-.-

apa form involving mechanizable inputs, ory of ....

As fa'r as the actual and relative motions are o n o Tm
eoncened, we remark that in space, (i 1 rotates V,, a is t U. -i- taken f

Sabout T as a pivot, ut, as the gunner at G sees (2.8) soil A e sin the- -r- sin lines
dthings, G is fixed an T is drifting backwards V,, V,, .-.c.s

•- with angular rate ,,. a form useful for computational purpose:.

32 "
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From triangle GTT, we have by the Law of u0  u,t1  t1  t,
Sines (2.10) q

'VTtfV

GTf GT, 0 + t
1>0,

Vr qVT.
sin a si wherein t. repre'sents the time required for the

U0 bullet to cover I? in a vacuum. From (2.1-0),

where ujt,

u0  initial speed of bullet (21) q R .>1q
ii. average speed of bullet and

tf~~~h .-+-t, q

Equation (2.8) may now be writtent( t 1t 0  (t0

which shows that 1. represents the rproportiofl
qVT by which the time of flight has been increased

(2.9) sin A = slr T - sin a.
V.V. due to the slowdown of the bullet,

The quantity q defined above is a measure of Assuming angzles to be measured positively0
bullet slowdown. Indeed, the average bullet as indicated by the arrows in figure 24, we can
speed is obtained by multiplying the initial now see how (2.9) can be regarded as a com-

bination of the formulas (2.2) and (2.6) of the
1 two previous cases of fixed gun-platform vs.

sped u by-. n ~iLCj)IL~tU1LOt Idt~ihS fixed target. The first term of (2.9) tells the
q gunner' to aim to the rear to make allowance

of t, also can be given. Letting GTI R'I we have for his own speed while the second term tells

\-AIR COURSE OF T

AIR COURSE OF G
C T

I \I~

G VG

VT0 t

U0 A D

figure 24. - Moving Gun vs. Rectilineor Target Motion
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D

VG '

YG -

Tr
A) C

Figure 25.- Deterniination of oarnd

him to pull the gun forward (backwards if the or
target is receding) to allow for target motion.

As before, the lead angle A also can be (2.13) 7 - (V,, COST + VI- COS a).
exprcsscd in tcrm-. of the angular rate ý,of the
gun-targret line GT and the present rangc r'. To Although figure 2,5 is drawn for straight line
dlerive a formula for (0, wve make use of the rela- target motion, it is obvious that the formulas
tive velocity concept introduced in section 2.2. (2.12) and (2.13) hold in general since V T at

In figure 25, the velocity of T relative to G is only one point is involved in their derivations.
the Vector V ,. -- V Assumning clockwise angu- Eliminating in succession -r and afrom (2.9)
lar motion as positi've and linear~ measurements and (2.12), we find 6

on GT positive when dire'~ted from G towards 0
T, wve have, upon resolving this vector into 2o,0 V
comp~onents perpend~icular to and along G0,T: (2.14) sin A--l-sin a

V0  VII

- rO =- raw=TB =CD -ED n

= V,4 Sin a - V,, SHfl - V,,
or (2.15) sinz (q- -i sinT.

V0  V0

(2.12) rw = V,, sin T V, sin a. In order to interpret these equations, observe

that if there were no slowvdown of the bullet,
A useful formula for range rate 7, is obtained weoudhv1--
by considering the component of VT V on wien byl hv 0 and then sin A would b

G0T:
re, V,JV

r=-AT= AG - CT (2.16) sin A ~ - --- sin T -Sin (.

VU- COS T Vq. COS ai V, V0  V0

349
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Gff

"".. e 26. .-. B ..t.

VG .__ o-U ..

,\b r T : : : :

Figure 26. Ballistic Deflections ". ". .' •

Rewriting (2.9) as we consiler only the two-dimensional case with .
both air courses lying in the same mathematical

V, V, plane and gravity effect on the bullet negligible.
sin A - sin T - - sin In figure 26, G and T are the positions of the

Vo V0  gun-platform and target at the time of fire.

Their positions at the time of impact of the " ,z
IV, sin bullet with T are denoted by G, and TI. Then the 0

V, distance GIT, from the gun to the target at the
time of impact is called the future range of

we see, by comparing it with (2.16), that bullet the target and is denoted by rf. The firing
ilowdowni alters th1e l trm.Sin A by th" . ipa GAI3C 4.- bflory . Thp nntl-"-" "
amount off of the gun and sight line are y and 'r, respec- 0

tively, and their difference , T' - is by definition
V, the total lead angle A.

I - sin a.

The bullet leaves the gun with velocity V
relative to the gun and with velocity u .":-

2.6 Kinematic Lead and Bullet Trail V + VG, with respect to the air mass. We shall .
suppose that the effect of air resistance on the

To simplify matters, we shall assume that the bullet can be accounted for by a drag force,
gun traverses a straight line with constant l)arallel to the direction of motion, and acting
speed, the target path being unrestricted. Again on the bullet at its center of gravity. (As ex-

988g95 0- -24-35
35 0

0 0.
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plained in chapter 1, this assumption is valid, sinl All sin y Sinl 1t

to within a small initial correction called the - --

windage jump, for explaining the motion of the E-, GTT
bullet in flight.) The effect, then, of air resist- Since ETf is drawn parallel to GD = Voti,
ance is a mere slowing down of the bullet along triangles GETI and GGD are similar. Thus we - -

its air course, GT,. From figure 26 and the find that
results of the last section we note that, for a
time of flight of t, seconds, the bullet range iVt E Vt_
GT, is equal to the vacuum bullet range GD , , = ET.

(--ut,) multiplied by the slowdown factor 1 whence .
q IV(,( sin y Il'0

Thus, GT=-- uot,/q. If air resistance were lack- (2.18) sin .b - -- = - sin ,,

ing, the bullet would always have a velocity qV-
component V in the direction of the gun's where

C
motion, so that a person stationed at G would r't
always see the bullet moving along a line which v-
would be a mere extension of the gun bore. In t"

other words, in a vacuum the relative path of Similarly,
the bullet would be the straight line GA. But,
because of air resistance the observer at G sees (2.19) sin .A - sin 7 ".
the bullet "curve toward the rear" since the V.
bullet, so to speak, no longer keeps up with
the gun. This curved path is, in fact, traced The quantity V. appearii , in (2.18) represents
by the point Ti', whose polar coordinates are the average speed of the bullet over the future
( T', v,), as it moves along the line GT, with range. An approximate formula for this quart-

tity is found by applying the Law of Cosines
uoý to triangle EGTf. Thus:

speed -.

rif EGIL + ETI-' - 2(EG,) (ET,) cos y

The angle DGT,, measured from the bore or
axis of the gun to the future range line, is called 1
the bullet trail or lateral deflection of the bullet. V,2 

- [ Vj 4 l 2V, - 21V oVi cos y]
It is the same as angle AGT'' appearing in the
lower part of the figure, where the line GIT-
has been redrawn in the position CT,, We shall i
denote bullet trail by A,. The angle TGTf' is q2
called the kinematic lead, referred to by the -t-L2V t sin2  

.

symbol t. It is the lead arising from the rela- 0 V,1 2_

tive motion of ,he two aircraft and, in the Since Vo < < V,,, the term (4V2 sin2 y is, for
absence of ballistic effects, is coincident with most attack data, generally negligible, so that
the total lead. In general, as is evident from app)roximately
figure 26, we have Vo-IV,,cos"

(2.20) Vf =(2.17) ., = -- ,.q •

and
We proceed to derive some formulas for A,, sin-y

for the situation depicted in figure 26. The Law (2.21) sin .x,-
of Sines applied to triangle EGT, yields: V0 - V ens y C

36--.
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Tf-

Figure 27. -- Aereol Approximation ._..].l

2.7 Determination of the Kinematic Lead Expanding M(t) in a Maclaurin's series we '"'-=''
may rewrite (2.22) as 1 9•. '-

The angle Ak in figure 26 can be determined :-, : .
readily using the relative path of T. An arc offt:----"""-:
this path traversed by T during the time of (2.23) rr, sin Ak- ][--=÷. t;-':""----

rJ

flight tr is shown in figure 27. Since the path of .- -..----,
G is here assumed to be a straight line, we have o0 •' •"""""'
immediately T,•7. It should be borne in mind. h. O
that this is no longer true for curvilinear gun- 

--- M•, -j ½•!t,2  :::::::::::...
platform air courses. In the latter case, to Tmust /.- .-..
be added the angular rate of turn of the gun- where M• M=l•(t) ]• 0 , etc., and terms of':'-T-L--'I
platform itself. higher order have been neglected. Trhis yields :J::::.::

finally the form •''
To find an ap.proximate expression for S ..sin AG we note that:

(2.24) sin Ak = -- (M+ -I t, M/) .-.-.-..
Area of triangle TGT, -- Area of rrf(.]'-'-:...

Sector TGT,, or if (2.20) be employed for V, = •t,,- :-•.

or-

÷r ~~(2,25) sin Ak r ["V0 -"'. ","'.--

(2.22) ½rr1 sin A k , r2 ,dt," (odt :-dr), 0 ..
0F The approximation (2.22) assumes that the

time of flight is small and that the curvature ofweThe expression r% can be interpeted physically the relative path is not large.
as the angular momentum of a unit mass placed
at point T and moving with trwth respect to When the air courses of gun and target are
the moving origin G. We shall denote it by M 0oth straight lines, M is identically zero and the
anb refer to it as the angular momentum of the angular momentum is then constant. To prove
sight line. Let M (t) --r at variable time t and this let us write M in the form r(ro,). We then
let Mo-M(O), have, by differentiation with respect to the time,
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d bank and (live, and the secondary ballistic cor-
Mf r('.) ± r- (r,) . rection due to windage jump, will be accounted c.'.'.y_

dt for. A general vector equation for the lead will -

be derived first. This equation, valid for all gun

Using the relations for r and r,,) given by equa- turret coordinate systems, will then be spe- 0

tions (2.13) and (2.12), we find cialized, by way of illustration, for the case .
where the gun-carrying aircraft is a bomber
with an azimuth-elevation top deck turret. An

M = -- r V0 (. -T ) cosT example illustrating the computation of lead
VT ( C angles for a specific tactical situation concludes

SV)cos a . the study. It should be emphasized that, through- 0

Since the gun-platform is on a linear path, out this chapter, gun and target speeds are

T. Moreover, although the angles T and a are assumed constant.

themselves variable, their sum is constant and '.

equal, in fact, to the supplement of the angle 2.8.2 The Muzzle Velocity Vector V.
of intersection of the two straight line paths.
Hence, As noted in Chapter 1, the windage jump

d vector J is perpendicular to the plane of V and - -

w-t- ar= az .. (rt-) z O. V and has the direction of V X V . The initial

velocity u. is then

Substituting into the last expression for M, we

obtain MA 0 as desired. (2.26) u. VG + V + J,.

2.8 Case 4-The General Case in Three- Thus we find that

Dimensional Space (2.27) V. uo - VG - ,. -"•. 2

2.8.1 Introduction From figure 28, showing the present and future

In the preceding sections, lead formulas were positions of the gun and target, respectively, we

derived under the simplifying assumption that note that the Siacci coordinates P and Q of the

the gun-platform and the target mox ed in a point T, have the directions, respectively, of ' '

fixed plane, the so-called plane of action. In this, u. and n, where n is a unit vector directed ver-

the general case, we shall allow the gun and tically downward.

target paths to be any flyable paths in space.
Moreover, the additional corrections in the lead Hence,

formulas that must be made to take into account
ownship acceleration, projectile drop due to U0  U0  .

u =-P=-- (R--Q),
gravity, angles of attack and skid, angles of p p

G R "f

Figure 28.- Siacci Coordinates . ..

38
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C C'

Figure 29,-• Gun and Target ,Space Paths p.

t =t 1 , we find(2.28) V - -1---w, t-- - _

Sp G ~ ~~~(2.31) T =T t,-tT+-T'-j--••Tb.,:..'-.'

GO

wherein the gravity drop component is 2,-'..-....--

(229o -. whereT T (t) ], =0 , etc. £

Since T=V and TV .we may rewrite (2.31) a
2.8.3 An Expansion for the Projectile Range R T 'I:-:.-:.:.:.

Consider the situation as depicted in figure in the form series a.'-.u.i.-,a
29. Here C, C' are the space paths of ownshipand target, respectively; G and T are their (2.32) T _T+tT T - •._V +V _...

present positions while Tc is the targel future T 2 - .position. Vectors r and R are the present and(

projectile ranges; T and Tf are position vector.-, and hence obtain from (2.30) the following.,-._..reaiet... po, fbasic expansion for the projectile range R:

Finally, Vt. and sT vectors denote the gun and the"form

29 (2.33 C, C' ar the spac path of - t[ 2€ • ..

target velocities at points G and T, respectively. (2) R r ± tfV + - V-+... .

From the figure we note that 'u f T T

An aircraft fire control computer of the direc-'.-:-.-..':ttor type, i.e., one where information gained by t(2.30) R agr +s- TaT , r + Tpsi T. positioning the radar antenna (line of sight) isfollowing

sent to the computer which then computes the •"If we assume that t-- corresponds to the prop0er gun orders, is said to be of the first
instant of fire, then T(t will represent the (second) order if the first two (three)aand only
position vector of an arbitrary point on the TTA; the first two (three) terms of the right-hand '.-x-'
T (to) fTiand T(o) T T. Upon expanding T (t) member of equation (2.33) are accounted for in

39
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C2 C

C C

G0

Figure 30. - First and Second Order Bias Errors

evaluating the lead angle. Thus, a first order line to the target path, the parabolic arc (2.36),
computer uses target position and velocity data and the target path itself. The angles e1 and V2

only, and is based on the relation represent, respectively, the aiming errors pres-
ent in first and second order computers due to . -

(2.34) R r + t1 VT; neglect of higher order terms in the expansion
(2.33).

which represents, for varying values of VY and In the present study, we shall base the devel-
t,, the vector equation of the line tangent to the opment of lead angle formulas upon the second
target path at the instant of fire. For this order expansion (2.35). It will be noted that this
reason, a first order computer is sometimes expansion involves target velocity and accelera-
referred to as a linear predictor. A second order tion relative to the air mass, quantities not
computer, in addition to target position and directly measurable at ownship. However, since
velocity data, employs target acceleration and target velocity (acceleration) relative to the air
is based on the equation mass is the sum of target velocity (accelera-

tion) relative to ownship plus ownship velocity .
ti (acceleration) relative to the air mass, in

(2.35) R2r T tIVT-t V symbols

Geometrically, the vector relation (2.35) repre- (2.37) V = r + V , V r Vr
sents, for varying t, and V,, a parabola tangent T G T G

to the target path at the instant of fire. Hence, we can express R in terms of the directly mea- -

a second order or parabolic predictor partially surable quantities t, 1, VG? V.
accounts for target course curvature by replac-..-.-.--
ing the arc TT, of the target path by the para- Thus
bolic arc

(2.36) R=r+ tV +Th0 <t
T 2 T? - 2.8.4 Lead Equation in Vector Form 7

These facts are illustrated in figure 30 in which Let us define e and e as unit vectors pos-
C,, C, and C' represent, respectively, the tangent sessing the directions of r and V , respectively. .. -

40 t~
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Then the acute angle directed from e to e is 2.8.5 The Ballistic Factors q and I

the total lead angle, A. Since The interpretations of the ballistic quantities

sinl l-e y e q and I given by (2.42) are essentially those
ioi given earlier in equation (2.10) et seq, There is

we shall be concerned with the total lead vector, a slight difference due to the fact that we do .

e x e .Dividing (2.28) by V, we obtain for eo not here assume that the bullet moves in a

the expression straight line, The quantity t. = P/u,, now repre-

sents the time of flight in vacuum of a projectile

'Io V . w(29 V J w having the same Siacci coordinate P as the pro-
(2,39) v P Vv R jectile under consideration. From the relations

Substituting R from (2.38) we have t= qt, to + It0

(2.40) e L [r + t( V it is seen that 1 is the factor by which the time

o2.40 (rPof flight has been increased due to bullet slow-

V J W down. Moreover, 0

+ te G (r+V)1 V V1o V. t1  time of flight in air
q >1

The total lead vector e X e. may now be written t, time of flight in vacuum

by forming the vector product r X eo/r, since A second interpretation for q can be obtained 0

r = re. The result is if we observe that the quantity u- =-Pt, is the
average speed of the projectile along its Siacci --. - .

(2.41) e X e - [r X r + r X V range P. For a bullet moving at high speed, this
(rPVo quantity is a very good approximation of its

true average speed. Since

-1- tfrrx rxV)] Uo initial speed of bullet

r>< J rxw u average speed of bullet on its
Siacci range

rV, rV-
it follows that the bullet is slowed down: by

Introducing the quantity approximately I/q, due to the action of air -

resistance.
Uotf

P 2.8.6 The Terms Containing V0G and Q in

and recalling the definition of w given in (2.29), Equation (2.43)

we may rewrite equation (2.41) in the form The terms,
q F ."...-.:>

(2.43) eXe rXr+1+I 'Ar) tX r Q
o rVi (2,44) -(r X V ) -rX ,-2 G tf """'•"

+-- tf(r X V0 ) - r X (7 appearing in equation (2.43), can be rewritten.

t (4 ~ so that when linear accelerometers are used the

1r ' V r XJ dominant part of the second term is included -.-

+ C - with the first. We note firstly that Q/t, can be"

rV, rVo written as

41
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Q t,
(2.45) -2:- (g--Fn)"

tf 2

where g is the acceleration due to gravity and
F is a correction term, depending on projectile I
type, air density, and time of flight. Combining - " '
equations (2.44) and (2.45) and denoting the
difference V 0- g by a, we can write (2.44) in I
the form V

k0
t, Ftf

(2.46) -r X a - r X n. Figure 31, - Ownship Axes
2 2

the skid angle a3both positively oriented. (The
2.8.7 Resolution of the Ownship Velocity numerical subscripts ,, ., on the letter a indi-

Relative to the Ownship Axes cate corresponding angular rotations about the
i,. (roll), j4 (pitch), kG (yaw) -axes, respec-

We begin by introducing a right-handed sys- tively.) More precisely, we have the following
tern of mutually perpendicular unit vectors iG, definitions:

jr' k0 related to ownship as shown in figure 31.
These vectors are fixed relative to ownship. The (a) the angle of attack, a2 , is the acute
vector i0 is directed forward along the longi- angle from the longitudinal axis i0 to
tudinal axis; the vector j is directed along the the projection of Vc, upon the (i•,k)- -

starboard wing; the vector k. = iG X 4G then plane; a2 is positive if V0 is below the .

completes the coordinate system. We shall in Gj). '

the future refer to this as the ownship system. W .

In order to resolve the ownship velocity V, (b) the angle of skid, ax•, is the acute angle

relative to the ownship system of axes, we define from the longitudinal axis i to the

first the angles of attack and skid. Figure 32 projection of V. upon the (iG, jG)-

shows these angles, with the attack angle a, and plane; a, is positive to starboard.

G8
a2K G

k .G
17--1

Figure 32. JAttack and Skid Angles
42"
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To resolve V0 into components along the roll, 2.8.8 The Windage Jump Vector J

pitch, and yaw axes, each component a function In Chapter 1, it was shown that the windage
of a, and a,, let us consider the unit vector Jump vector J has magnitude b S., where b isS-V/V 0 . From figure 32, the unit vectors ;up eco Aha"mgitdeb , wer bi

V; a constant depending on the ammunition (see 0
" are given by equations (1.55) and (1.86)) and S. is the initial

yaw angle of the projectile, shown in figure 33.
G G oMoreover, the direction of J is the same as that

" icos a sn a. of V4. X V. Since S. is a small angle, we see
from figure 33 that to a good approximation

If we denote g by
sin

(2.47) = B, i( + B J +- B3 k, (2.51) 8, V,, (radians)
(2.4) BiG B, c, B, G1U.

0

then, Hence,

• W B, cos a2  B. sin a2  bVo
(2.52) J - sin Tr, (yds/sec)

B. B, cos a., + B, sin a,. Uo

However, since the angles which g makes with Since the direction of J is that of VG X V., we

4' and j are complementary, and the same is have, equating unit vectors,

true of the angles which 4 makes with '4" and -

k we have 1 VG X V

S2 2p (' 4-- z-'1s V 0V ,s in T,

2 1 Thus, using (2.52) we obtain the following
:4:4 -1 . 0 ) 1  -BG vector expression for J:

and hence, b

B, Cos aý, -B, sin a2 1-B 2
2  (2.53) 2= (VG V).

(2.48)
B, cos a., ± B sin a, =- 1 - B2 ? For the 20-mm M97 projectile, V, 2680 ft/sec

and b = 102.4 ft/sec. From equation (2.43) we
If now we combine the relations (2.48) with the see that the maximum contribution of J to the
fu damental one, total lead !e X e = sin A is

B1 ± h+ ±'L B = 1, (J) ...... ,/V,.- --:'):]::

the quantities B,, B, B, can be obtained as the Equation (2.52) shows that J will be a naxi- 0
simultaneous solution of the system of three ut 2 )s harlb xi

equations. The actual solution is left to the sin r.
reader. Our result is found to be mum when , considered as a function of

U',(2.49) V0 = N'V (i0 cos a, cos oaj"'"?"'"'",_,.
cos49 a, sinG s a2k COS aoa ,, i's a maximum. But from figure 33 we note E-+ j• COS as Sill a., + k G sin ,cos a,, that :..-:-""

where Sill T,, sin (T, -0) " -"" -"

(2.50) N (1 sin' a, sin' aO,)-,u V, w."'"".:
43 0

-~~~~~~~~~~ .-- -. .. ... .. . .. . .. .. . .. .. C.%-
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Figure 33. -Initial Yaw Angle -

00

- -k

00

Lk

Figur 34. TheGenerl Caeji he Dmnin

44c

D0

TV,~

........................................................................-....

K~~~ GI.~

Fiur 34 Th Geea Cas in The Dimension

................................................



DEFLECTION THEORY FOR AIR-TO-AIR GUNNERY . . --

sin r. 1 desired components, is of course the angle
Thus, the maximum value of - 15 , PGPo between e and e.

U0  Vo
Since, as will be seen, the auxiliary angles

achieved when ro = +-4- , ,,, A.8,, can be found more directly from the .

2 input data than the lead angles themselves, ,. ",-

Hence, we shall express A, and A,, in terms of A0 1,, ,:.'-i'.
b V,.; The latter angles are known as the sight

(2.54) (J) ... /Voa- X 1000 mils lateral and sight vertical angles, respectively.
Vo2  

They are defined geometrically as follows: A
contribution in mils to the total plane is passed through e perpendicular to the .- 0 -

isheaetaximum bownship vertical plane (i.e., the plane of e and
lead ageA hsmxmmbigaheelead angleA,-thi"mng gahev k ) and intersecting the latter in the unit vector
for the gun angle-Off To, slightly greater than G

r900.teForun20-mmgM97 ammunition and V e. The sight lateral angle A,, is then defined900.~~~ Fo 20m M9 ammunition and V,

250 yds/sec, we find this maximum to be 10 mils. as the acute angle between the vectors e. and e,.

It should be noted from equation (2.52) that Similarly, the sight vertical angle As,.1 is de-

windage jump is negligible for fixed forward- fined as the angle between the vectors e and e,
firing gunnery or for moderate gun angles-off
To, i.e., To < 15_ . 2.8.9,2. RELATIONSHIP BETWEEN THE ANGLES

A,, Ap, and A,,,, A,, -If we apply Napier's

2.8.9 Lead Angle Equations for Azimuth- Rules for right spherical triangles to triangle

Elevation Top Deck Turret BP,P. of figure 34, in which face angle P,BPO "
is s 900 -- E0 , side P B is 90' -

2.8.9.1. ORIENTATION-In figure 34 1i, j., k.] is

a right-handed set of unit vectors with origin (E + ,,), arid side t 1B, is A0 ,, we obtain (see
o fixed relative to the air mass, the vector k figure 35)

a
being directed vertically downward. The own- B
ship coordinate system is shown relative to the
octant of a unit sphere and is purposely posi-
tioned in a dived-and-banked orientation rela-
tive to the space axes i , j, k . The sight line unit
vector e is determined by the angular coordi- % 0 -
nates A, E, measured positively as shown. Angle .0

A is in the ownship azimuth plane determined
by the vectors i(., ](*; angle E lies in the ownship
vertical plane determined by k,, and the term- . ",

inal side of A. If the corresponding, angular
coordinates of the gun-bore-axis unit vector e --

are designated by A0 , ha, then the azimuth and
elevation lead angles, A., and A,., for which we
seek formulas, are defined by P1

(2.55) A,, = A,, - A, A 0, = Io .- E. .-.

These lead angles are shown in figure 34 as 0
angles CGD and HGP,,. The plane of the circular

arc IJ is parallel to the ownship azimuth plane,
so that arc PIH is an arc of a small circle. The P0

total lead angle A, of which A, and A, are the Figure 35. -Right Spherical Triangle

45
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(2:56) sin AOLr sin AA cos Eo where

(2.57) sin E, = COS Ak,, sin (E + A,) . (2.62) M1 - rmL, ME r= w,ý.

In view of (2.55), these equations may be re- The vector M = r X r is then, by known rules
written as of vector analysis (see Appendix A), given by

(2.58) sin AL = sin AA COS (E + A,) SM
(2.63) M=--I-n XM

(2.59) sin (E + AE) = cos AL sin (E +- Asp) at -

where the first term of the right member indi-
2.8.9.3 THE SIGHT COORDINATE SYSTEM-In our cates a time derivative taken with respect to
work we shall assume that the radar antenna, the sight coordinate system. Thus, -"- -

directed along the gun-target line r = re, tracks
the target perfectly. The direction of the radar Sm
antenna then coincides continuously with that (t -M "
of the sight line vector e. Since the angular
velocity to of the sight line relative to space is If we denote the component of It in the direc-

represented by a vector perpendicular to e, it is tion of e by ... then, since the angular velocity - - -

convenient to resolve to into components along It9 differs from the angular to of the sight line
perpendicular axes lying in a plane normal to e. by a rotation about the sight line, we may write
These axes are denoted in figure 34 by the unit .
vectors i and i and defined as follows: i is (2.65) At,. - e + ,)

E L Kr
normal to e and so oriented as to coincide with
4 when e is directed along i 4 ; the vector i is Moreover, since in X M = 0, we find that

then completely defined by i1  e X i. The -.
three axes, [e, i•,, ilI are thus mutually perpen- (2.66) 1t5 x M = o e >.M.
dicular and constitute a moving right-hand 0.
frame of reference which we shall refer to here- Substituting M from (2.61) into (2.66) andCombinin withi (2.64) asindicated b 26)
after as the sight coordinate system. The angu- combiig as ic by(.63),
lar velocity of this system relative to inertial we obtain finally
space will be noted by &A5s (.)-.M+,)i.MMw_(2.67) r4 = (1•!, +-J-M ,o, 0 i,1 (M,,, -- MLoV) i. E ':•;.2

2.8.9.4. RESOLUTION OF TIHE VECTORS r / r AND

r X r These vectors, appearing in the basic The angular rates (1,, ,",,, ,), can be obtained

vector lead equation (2.43), give essentially the physically by attaching gyroscopes with prop-

angfular momentum and the time rate of change erly oriented spin axes to the rigid system of

of angular momentum of a unit target mass axes i, i•, e, where e is along the radar antenna. -" - -"

relative to the moving origin G (See figure 34).

Designating r X r by M, we have 2.8.9.5 RESOLUTION OF TIHE UNIT VECTOR n.
RELATIVE TO TIHE OWNSIIIP Axns-This vector,

M r .e / (r e -- i e) = r'e X e = . tfirst introduced in equation (2.29), is directed
if we denote (o by vertically downward and is located relative to

Hence, the ownship system of axes by means of the

(2.60) o.) =, i, + j,; i, bank and dive angles, fl and S. Figure 36 shows "
the basic coordiifate system in both the "un-

we may write banked and undived" orientation, (i', i k')
and the "banked and dived" orientation, (i, "-

(2.61) M M,, i Mi, k). The triad (i0 , 4', kr") corresponds to the

46- *. -
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G-

N, /k

Gk'

Figure 36. -- Orientation oi tMe Unit Vector n

case of bank zero and dive S. Angles 3 and 6 are 2.8.9.6 RESOLUTION OF'THiE TOTAL LEAD VECTOR,
positive as shown. e X< e -- In figure 34, we note that in the circular

sector GPPQ,
From figure 36 it is evident that, (2.69) e =Cos A,,, e + sinl As,, i~r

This follows from. observing that, since the
n~kjcosS + Sil ~radar antennia directed along e moves in an

azimuth-elevation system of coordinates, the
k k( cos [I +- i Sinl 3. vector iis perpendicular to the plane of angle -

E . The relation (2.69) can be seen more clearlyr
and hence, that from figure 37, which shows the sector GPA IS

isolated from the rest of figure 34.,-

(2.68) n s 'in 6, -j 'ginl /Cos Hence, we find that

+k Cos Cos& C X e =Co A,,,,e X el sinA e Xc x
47 ~ -
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or, since (2.73) M=M,.iL +M iE '. '--

C X eX :iE sin Ahv, e X it- iL

(2.74) M = (ML + Mk ) i + (M; -- M, it -
that "::•};:

(2.70) e X e. s iin As, cos A,, (2.75) r re

+ iL i AML. (2.76) a a, iG-+ a. j+ a k,.

P -- In order to express a in the sight coordinate r

system [e, i., iL], it is necessary to resolve each

of the vectors i,G•, Gc, in this system. From
el figure 34 we note first that

iEsin ASLp
e=i cosE-k sinEA G

i =i cosA--J• sin A.

A eD/ / Hence,
0
) ASL (2.77) e=i cosAcosE-k-j sinAcosE

k sin E.

G Fiur Rslo'E Similarly,
Figure 37. - Resolution of the Vector eo.''.•''.-i

(2.78) iL 1 i cosAsinE ji sinAsinE
L G G

2.8.9.7 A SUMMARY OF THE VECTOR TERMS OF -J+ kcos E
EQUATION (2.43)-We list here the individual '
vector terms of the fundamental vector lead . .-.

equation (2.43), each expressed in terms of the (2.79) i---ixsin A +j cos A.

component vectors e, i,, i,. For convenience,

equation (2.43) is rewritten here in a slightly For ease of inversion the equations (2.71),
Wdfi. folr as equation ••(.71.° (2,78) and (2-79) can he represented synmboli-

cally by the following table of direction cosines.

q b. t, *

(2.71) eXe V----[M -M+-rXa e inAinE- i"
1rV0  2 2

t 1 rXJ (2.80) -A c cosE sin A•sinE sinA

2- rVo j IsimA cosE sinA sinE cosA t 0

k -sin CosE O
(2.72) e X e. i sin hjv cos All,, G. -.- 'co-.

+ i sin A,,, By way of illustration we see from the table that
LF
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(2.81) it'. e cos A cos E + iL cos A sin E is considered to he a heavy, relatively non- . -
maneuverable bomber. We assume then that-iE sin A.
V•G A V(,i(. Hence,

Combining equations (2.76) and (2.80) we (8 - V V 'cAiobtain ~~~~~(2.86) -rXV,='rVGLiE cosAsinE .°...-'''.-
obtain

+ i sin Aj .

(2.82) a=e(a, cosAcosE+u.,sinAcosE From (2.53) and (2.75) we note that
- a, sin E) .

+iL(a,cosAsinE rXJ=- eX (i XXe).

± a, sin A sin E + a,, cos E)
However, vector i0 X e., with the aid of figure

+ iE (-a, sin A + aC cos A). 34, becomes
E0

From (2.75) and (2.82) there results G X e = i• X GA cos K0 - kGsin o)

.-k sin A. cos R, + J sin E,.
(2.83) exa-i (-a, cos A sin K."-os.E.in-

-a, sin A sin E -a% cos E) Il.n.e.Htence,

+ il (u, cos A -a1 sin A).

Also, from (2.68) and (2.80) we have e

(2.84) n- e (sin 8 cos A cos Es exiG)
-Isin/p3coz 8sin A coskE

-{ CSn/3 COS S sin K) obut from (2.80) we find--cos/p cos 8 sin E).. . . . .

± i• (sin 8 cos A sin E e X j=-i sinAsinE +i cosA-. --

± sin/i cos 8 sin A sin E ,
4-cosfIcos 8 cos E) e Xk =-i cosE.

+*i (-sin 8 sin A
+ sin/I ~ ~ ~ A). Thus, we arrive finally at the vector expression+ sinfl. cos 8 cos A). '-":---•.-

(2.85) r Xyn = 7r i(-sin 8 cos A sin E bY-r
-2s5n/Incos 6ssin oA sinEK (2.87) rX J =i F,(--sinA,cosBcos E

- si 13 os 6sin sinIfU,

- cos B cos 8 cos E) -1-i (-sin 8 sin A
± sin p cos 8 cos A) j. -sin E, sin A iin K) +. i1 sin E, cos AJ.

In evaluating the vectors r /, V~ and 1' x 0
appearing in (2.71), we make the simplifying 2.8.9.8 LEAD ANGLE EQUATIONS FOR AZIMUTII-•
assumption that the attack and skid angles, %, ]ELEVATION Tor Diý('K TURRE'T-l-pon taking the

id, can l neglected. 'his is a reasonable ia and i, components of the individual vector -.-

assump)tion in that the aircraft for which the terms of equation (2.71), we arrive at the final
present lead angle equations are being written lead equationrs. They are: %
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q - ,
(2.88) sin A,,v COS = A [M, + - (l, -- ML Ol)]

rVi' 2

qt,
q (a, cos A sin E -- a, sin A sin E + a3 cos E)
2 V0

Fq t,,
(sin fcos sinAsinE +sin a cos A sin E + cosp cos a cos E) 0 -

IVO bV, :..Z.?..

cos A sin E 4 - (sin A. cos E. cos E + sin E, sin A sin E)

q t"
(2.89) sin A,,L -- [ML + - (M, + ML .)]

rVo 2

qtf Fq tf •= -=

+ (a 2 cosA -a,sinA)-- (sin a sin A - sinfl cos 8 cos A) 0
2V,, 2V,.

Ssi• A - -- sin E, cos A,

where linear acceleration of ownship, components
a,, a3  " "

(2.90) sin A,1, •sin A.1 cos F, bank and dive angles,[3 and 8

(2,91) sin E,, cos . sin (E + ,. true airspeed, V ,

angular coordinates of the line of sight,
(2,92) A, A +,,, Eo E + A,, A and E I

and muzzle velocity, V."

(2.93) M -
2  M1, windage jump constant, b.

The basic computer inputs are: All other quantities appearing in the equations
are derived from these basic inputs. The quan- .--

tities q and t/ in particular are usually obtained
from empirical formulas giving these quantities
as functions of basic inputs. The manner in %%

angular velocity components of the sight which t1 is obtained theoretically has already ,- -.

coordinate system: oL, 1 Ole been considered in chapter 1.
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angle of the target is 450 while the angle-off of Since the input variables to equation (2.95) are
the target is 900. The position of G, T are shown measurcd at the instant of fire t, it is necessary
for a time interval of 15 seconds. Since the to compute t, in order that t may be found from
firing tables, as was explained in Chapter 1, give (
t/ as a function of the future range, r1 , it is most
convenient to assume these positions as future
positions and the times indicated on the figure
as impact times. Gravity drop will be neglected The firing tables list time- o! %,,ght as a function

in our computations. of present gun angle-off -y, present zenith angle -.. . -.

"of the gun (angle between gun-bore axis and " -.

the vertical), future range v1 , relative air den- -_ -T h e lea d a n g le fo rm u la (2 .15 ), w h ich a p p lies si y , a n sp e of g n l t or V ,. n o u . -? -., -7 -
sity p, and speed of gun-platform V,. In our ..-here, can be written in the form .---.-coplanar case of horizontal flight, the zenith

angle is constantly 900 (1600 mils), V, = 220
qM I V,; yds/sec and 1 will be taken to be 0.4, which

(2.95) sin sin 7 M corresponds to an altitude of approximately
rVo V. 29,000 feet. Therefore, to obtain t, from the L 0

tables we need to know the present gun angle-
We shall take ownship speed V, to be 220 off y. In lieu of this quantity, which is not now
yds/sec and the projectile muzzle velocity V. to known, we use 7, the future sight-line angle-off,
be 2750 yds/sec. With coordinate axes xOy, and thus obtain from the tables approximate
chosen as indicated, we write down first of all values of t, to be used in (2.99). The angle Tf ..
the parametric equations giving the future co- can be read from a carefully drawn figure or
ordinates (x(,, yi,), (XT,, in.) as functions of else computed directly from

the impact times ti. Thus,

m/ tan I
X =; 2257 [1 - cos (2.100) tan rI m

(2.96) 
M/ + tan

Y0; 2257 sin ij- .' . .

V 0  - XT .

€- ti -t .09745 ti IF

2257
With the approximate value of t, thus obtained,

275 ti one computes, knowing t and the present coor-

I x, - 1667 ± dinates (x(;, y,), (xr,, y1,), the projectile range R-'

2 by using t in place of ti in (2.96) an' (2.07) and -. .
(2.97) . 2751ti then employing the distance formula for R,

(2.101) R = (x -- x,)i + (Yi' - ,.,,

ti 0,1,2 ........ 15.
To find the angle y we need to know the angles

Future ranges corresponding to these positions p., v, 4', as is evident from the firing parallelo-

are then found from gram drawing shown in figure 39. The actual -' .-

chain of relations that leads to y is as follows:

(angles are measured positively in a clockwise(2.98) ' = (X of X71) + (Y • -YTI) ' d r ci n , -"z .•.
Xr) 2  ho1  JTP direction)
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With this information we can now find the input which simplifies to
quantities r, r, M, q, 1. We have

2 ~ ~~ (2.109)M (x,-x)6 )
(2.107) r- (¾•-xr)2 F (Y(-.YT) ; (2.09 M - (Yrg-Yr.

(Yo- YT) (X.Xr). 0

m tan'--1 y-Yr
(2.108) tanrz-- -- , m=-. The dotted quantities in (2.109) are the time

in + tan p - xr derivatives of the corresponding ones in (2.106).
Finally, knowing u,, t,, and R from (2.101), we 2,

The quantity m in (2.108) represents the slope compute q from the known relation
of the sight line referred to the fixed axes xOy
in figure 39. Hence the angular rate of rotation utl-

of the sight line is (2.110) q-
R

d
- [aretan m] The lead angle A can now be determined from
at (2.95).

and The results have been computed for this

d /YG -Yr\ example and are exhibited in table 2.1. Dis-

21 = r%, 2 -. arctan ] , tances are in yards, time in seconds, in radians
dt X- Xr per second, A in mils.

0

C.q

54
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Table 2.1

Values A+ Time of Fire

Dimensions; yards, seconds, degrees, mils

it. 7' 11 U T T(dg) Ji ( I w V(deg,) A(inik)

0 2.39 )-2.:39)1666ý.6;7:1805-.61l8.107.0413121)3 .076;' 75.87 29082 I .3335 0.3335: .0060: 50.8S8;1 58

1 2.06i - I.06 1-18:3,134 13518.888. 975.5-181 1883.921 83.303 40078 1.29750.21975 .0 113~681 1 41

2 1.79' 0.211321.369ý 1 323.38;-1 9-44.041811626.3141 191 .360 412398:1.2769.0.2769 .0 160.f 76.! 162: 30

3 .1.-5 6 ]A ,~ I1180.979 1] 37,T3:1 m1 i.w168108.475 99.524 3 h6 7, 1. 241)8 0.2.1198 .0195, 84.5 11 22

41.371 2.63 1061,169) 9)84.302: 879.856 1 2;30.-18( ý107.-51;5 30923ý 1 .22-16:0.22416.0204 92.625i 18

5 1.20' 3.8(1 060.778, 86 1.3211 S49.890'l1084. 10,11115.306, 20-13111,18-1 ). 184 1 .0 17.11 10o.721 16

6 1.08 4.9 87.44 76.41 824.508 1)894122,443i 8,574-1: 160.1618 .009 1. 107.9931 22

7 0.91) (6.0)1. 812.9)13' 09 1.0(4S, 804' .5751 877. 1141128.716- 40091, .1526 0 1,526 --. 00;-2 11 .1 -09)7 34

8 0.9)2 7.08ý 763.500' 637.924 790-5617 808.649 1:33 .755~ 166i86! 146-310,14163 - .025-5.118S.6691 51

I9 0.88 8.12: 7MJ5551 604.668 782.3,59 7,58.662 137.330! -29212,1.138(i0.1:180! - .0508121.486 7 0

j 0 )9.2(;2 --413:131.1:150(0. 1350 .071-I 122.:3
101861 9. 14, 7 15. 70,5~ 5N).0331 7 80. 018' 727.33818 1 31 92

11 0.87 1(1. 13. 722.177; 598.2961 782.973' 7 15.369 1139.623 -5276R1;]35.35-.012.7 113

12 0.9)1 11.09. 753.1 K5 629.033 789.66() 723.9)17 138.734 -6.4 15;~ 1. 1.42-110.112-1' -. 122.1118 I. 975 13:3

13 (0,99) 12.01 811.7149) 68-1.:3031:1 798.632 75:3.677 1:37.127 7-719551 155T.O:.1554 - 1320111(6.001.1 1.51

14 1.11 12.81) 8109.4 ;11 764.695 807,.804 80:3.89i 1:35:3-11 -: 355261 1 1 726 0. 17261 - 32:3113.0)711) 166

15 1 .261 13.7.10622 S70.1 11.1; 81-1.9918 7:.171371-9211180241.181)2 -126(1 11(1854 174

550

0 0 0 0 0 0 0 09 0 0 0 0 0

. . . . . . . . . .. . . . .e. .. . . .



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC . .

0

S

0

I X

0

_______ U S

a...1
S

i�)

/

/

/

/ S
/

/
/

/

1'
// ________

.1 ___________________________

0

5t,

�:- --

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. . *.

--------------------------------------------------
..........................................

...................................................
.................................................

-. *. ................
I.......- -- ........-.....



- ' - .. ,.. S....> *-.- .-

Chapter 3 6

PURSUIT COURSES

3.1 Introduclion ignored. If the bomber is flying a straight and
level course, the lighter's motion lies in a geo-

The p)roblem of determining the equation of metric plane with the bomber's course and this
a curve of pursuit is a classical problem in plane is called the plane of action.
mathematics. Historically it dates back to the If the lead is taken into consideration, that
time of Leonardo da Vinci. One classical state- is, if the fighter flies so that his guns are always
ment of the problem was to determine a dog's directed at a point ahead of the bomber by the
course as the dog runs toward its master who required amount to secure a hit, and the mush
is walking along a straight path. The military of the airplane is ignored, then he is said to fly " -

aspects of the problem were brought into prom- a lead pursuit course. . -
inence in connection with aircraft combat If the fighter flies his airplane in such a way - .-

wherein one aircraft is attacked by another that his guns are always pointed directly at the 7

possessing guns capable of being fired in a fixed bomber and his flight path is determined from
direction only. In order for the one aircraft to the angle of attack and other aerodynamic con-
keel) the other under continuous fire, it must fly siderations, he is said to fly an aerodynamic
some kind of a pursuit course. The problem pursuit course.
aplears again with the invention of homing If the fighter flies his airplane in such a man-
missiles which continuously change heading ner that his guns are always pointed ahead of
under radio. optical, or acoustic guidance un- the bomber by the amount required to score a
willingly supplied by the target.

Te uimportane of pursuithe corses, inair-to- hit, and his flight path is determined by aero-The importance of pursuit courses in air-to- dy.namic considerations, then he is said to fly an ,".'. .-
air combat is two-fold. The attacker, flying an da cs ti ,e es doy
aircraft equipped with fixed guns. must under- aerodynamic lead pursuit course.-'
stand such a course in order to determine The complexity of the courses increases in
whether or not his aircraft can fly the required the order defined above and thus it is advan- .
flight lath. He also must rely upon his knowl- tageous to corL3ider the simpler pure pursuit
edge of this flight path to give him inputs to first.
his fire control system, The defender uses his
knowledge of the flight path to determine the
future positions of the attacker and thus estab- 3.2 The Space Course for a Pure Pursuit
lishes the required leads for his,; guns. Attack

In aircraft combat there are four kinds of
pursuit courses. To be specific, let us consider In analyzing pursuit courses, there are two
a fighter aircraft equipped with fixed guns in types of courses to consider; one is the actual
combat with a bomber equipped with flexible space course traversed by the combating air-
guns. Thus, we consider the bomber to be pur- craft and the other is the path of the one
sued and the fighter to be the pursuer, The aircraft relative to the other. Let us begin by
fighter's guns are assumed to point in the direc- considering the space course and let it be re-
tion of it:-; flight. ferred to a set of rectangular coordinate axes

If the fighter pilot flies his airplane in such a which lie in the plane of action. See figures
way that his guns are always pointed directly 41 and 42,
at the bomber, he is said to fly a pure pursuit Let (xi,, Y,) and (XF, 7h.) be the coordinates
course. In such a course, the mush of the air.. of the bomber and the fighter, respectively, at
plane and the lead that the guns must have are any time t. Since the fighter is the pursuer, we

57
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y

F (Xr,YF)

r "

00 YBB

0I

Figure 41. - Coordinates

are seeking expressions for his coordinates in so that equation (3.1) becomes
terms of known quantities. The definition of a
pure pursuit course specifies that the equation
of the tangent to the fighter's path must be (3.3) yu - Yk = (X;,,- X1.)
satisfied by the bomber's coordinates, Thus, the .-.
equation for a straight line yields

or
(3.1) (y,, - y,.) - m (x,, - xi.),

where m is the slope of the tangent line. The (3.4) -- - ""
slope of the tangent line is, of course, the deriva- x? - ,
tive at any point on the fighter's path and, It is easily seen that the forward velocity of
consequently, the fighter, Vt,, is. given by

•a/,' Y,,' ~(3,5) x,•+ y, -V,•""::''"
(3.2) m -- =--...._3.,. -".-'.'V.,

dx,,. xj, The substitution of (3.4) into (3.5) yields
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y FO

F (XpYF)0

VF-

t *F

B -XF .
x I

Figure 42. -Coordinates for Pure Pursuit

(3.6) IAL l~ ~ )2where''

(3.7) x,.2 = VP -Xr X i1.)~ )2 therefore, Yields, an expression for the timae(37 {x,,2 derivative of the fighter's x-eoordinate,

* (x,1 - Xr) 2 Vr

r2 r
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similarly, from equation (3.4) we have (.5 " ~ 1+y

(3.10) -p (Y - Y) o

(3.16) - -

Equations (3.9) and (:3.10) formy a system of i+ yQ X
differential equations which de~scribes the mo-
tion of the fighter in termns of the coordinate.s si lce s' - "±i'
of the bomber, the fighter'.s velocity, and the .- '..

range. The right-hand side of' b)oth equation., Perfor'min~g the integration in equation (3.16)
are thus functions of time, t, the independent we find
variable, For certain restricted cases, these,
differential equations may he solved explicitly; In Iy + Iy"7V Inv in kc
however, in general, it will be necessary to solve -

this system numerically. 01'

As a special case, let the course of the bomber (3.17) kf x"- 1,f / c
be taken along the positive y-axis and let its
coordinates be (0,0) at tf= 0. Let the coor- where kc is a. constant of integration which way
dinates of the fighter at t =0 be given by be determined from the initial condlitions x = x.
(xi.,y.. Let us further assume that the Y' Y0/ o,.

bomber and fighter are both flying, at constant Euto .. 7 snwfrY ogv
speeds, Vu1 and V,., respectively. The situation Eqain(.7is1WsovdfrytogeS
is illustrated in figure 42. In this case, it is pos-11
sible to obtain y as a function of x analytically. (3.17a) y' ' X'
Since x1  0 and yu -- V1,I, we have from equa- L le'
tion (3.1)

and integrated again to give
(3.11) VM, - - 11, x, x X1 x-C

Since the bomber coordinates are sp~ecified, L '~ ' -
we, May for convenience drop the subscripts F' +C, if C I'
and1 write (3.11) in the form

d76-~ c- in + C, if C-I.
(3.12) ?I V,1t -1 ',where V'2

Txr1hus We have I/ as an explicit function of x

The ariblet ma no l~ elminaed ~y se nd tht n11rsuit course of the fighter is deter-

0( the relation mined.

As an illustration, the slsoee counie Was cum-
(3.13) s V,./, or t. s/V,1  putel for the followinig set of conditions:

wheare s is the! are length along- the fighter's 6
pjath. E"quation (3.12) then becomes V/, 2210 yds'/s. V1  275 yds/sec.

(3.14) 1/ es + ui'x~, where c- V1 ',.m, 0. 500, Ifi,", 1.000.

This equation may now be (lifl'erentiated with First we obtain c ~.8, 1c..029301086,
resipect to X to yield C -- 706.7422.
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Figure 43. - Pure Pursuit Course Example
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The values of the coordinates are given in table tion of equations (3.9) and (3,10). A Runge-
3.1 and the course is shown in figure 43. The Kutta method of solution was used with at -~.2. ,

course also was computed by a numerical solu- The values are shown in table 3.2.

Table 3.1

Pure Pursuit Course

i=.0081I56135 x 1 .'-85.14.3817z x +706.7422

V,220 yds/sec.; VF 275 yds/sec.; c - .8; x,., 500 yds; y,, 1000 yds.

x / t x y/ t

500 IWO0 0 45 532.15 2.52
450 904.52 .39 40 534.92 2.54
400 818.26 .75 35 538.28 2.56
350 741.58 1.09 30 542.36 2,50
.300 674.901 1.39 25 548.34 2.61
250 618.81 1.66 20 55:3.52 2.64
200 574.14 1.91 15 561.47 2.68
1150 542.17 1 2.12 10 572.39) 2.72
100 525.34 2.32 5 589.41 2.78
50 529.88 2.50 0 706.74 -_____

Table 3.2

Pure Pursuit Course

_ VF V,

X), ---- F-~; y . -(YB Ye) ;YB V,1t

Initial Conditions Same ms for table 3.1

IL FY r X1. P *
0 0 5WX 1000 -123.0 - 246. 0

.2 44 475 951 1024 - 127. 6 -243.6
.488 449 903 930 -132.7 --240.8

1:12 422 855 837 -138.6 --237.5
.8 176 393 808 741 1 -145.4 -233.4

1.0 220 364 761 652 -353.3 -228.3
.2 264 332 716 561 -162.7 -221.90
.4 308 208 673 471 -- 174.1 -212.9
.6 352 262 631 383 -188.2 -200.6

.8 396 223 .593 297 -206).0 -]82.2
2.0 440 179 559 216 -229.(0 -152.3 ~

.2 484 131 534 140 -2-57.0 - 97.8

.4 .528 . 77 524 77 -274.7 13.6
.6 572 29) 544 39 -199.3 189.
'.8 61t6 7 59 1 26 - 73.9 264. 9

3.0 6601 1 64 5 15 - 11.1 274.8
3.1 682 -- 673 9 - 0,2 274.8
3.2 704 700 -- 275

. . .. . . . . . . . .
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z

F (XF,YF,ZF)

B

X

B (XBFYB,ZB) r

figure 44. -Vector Diagram

The extension of equations (3.9) and (3.10) V,
to a three-dimensional rectangular coordinate = X1- F

system (x, y, 7) is straight forward. We nlow
have (xli, y11,, z11) and (Xi., Yr., ZF) representing.

7=! - 01 Y)the coordinates of the bomnber and fighter, re- r-J Y
spectively. The differential equations which now

V".
d'afine the fighter's motion are given by the fol- -(ZB -F

lowing system: r
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Bf

VBJ

B

0 0

F
Fi~qure 45. -Polar Coordinate System for a Deviated Pu~rsuit

where Differentiating F we have

(3,20) 7- (x - x..)' + (y, - y,)(3.25) V, = X'A + ~Y'j 4- z,.k.
+ (ZI1 z")2

and F or a pursuit course

VF(3.21) x,." + y,.. ± Zjp' 11 (3.26) V, -- r
r

Equations ('-119) are easily dlerived if we use V1,
vector~s. Let i, .j, k be unit vectors along the x, -- (~ x,,)
y, z axes, respectively, see figure 44. Then the r L1
vectors from the origin to the fighter's position + (-y,. - V1, - z. 1) kJ
:4rld 1 on hwr _ msif.ion aro

If we now combine (3.25) and (3.26) and write
(3.22) F =x,.i -- j,1..j +[ z,.I,, the componeilts we have the system (3,19).S

(3.2,3) 1B X,i ± j + ,k

The angevectr ~3.3 The Space Course for a Lead Pursuit
Attack

(3.2) r F-BThe differential equation of the pursuit curve 0

= (x, x~) ~ ) ~with leadl in rectangular coordinates can be
derived in a manner similar to that of the last Z,

I zy 1 ) k. section. However, the equations are very inefli-

64 ~~
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VB"

BCOS -.

VF

-0re

q- D - - - _I,..-

F C

Figure 46.-- Vector Diagram

cient anid the most desirable approach is to 3.4 Equations of the Relative Course
obtain the relative course of the pursuer and
then to convert to the space course if it is In the mechanization of fire control equip-

needed. As was pointed out in section 2.2, in a ment it is the relative course of the pursuer
relative course the origin of the coordinate which is of the greatest importance. This rela-
system moves with the bomber so that the rela- tive course is best described in terms of a polar
tive coordinates are simply the space coordinates coordinate system which has its origin at the
of the fighter less the bomber's coordinates at bomber. Let us, therefore, choose such a system -.-

any time t. Thus, if X, Yp, Zp., are the fighter's and measure the angle, 0, from the stern end
relative coordinates, then of the longitudinal axis of the aircraft. See

figure 45.

X --X= , - X1, Pursuit courses with lead have often been
called deviated pursuit courses, a more general

(3.27) YE-- YF - YB, term than lead pursuit courses. Thus, the angle
at which the fighter aircraft is flying away from

Z. Zt.- Zl. the direct line to the bomber is called the angle '
of deviation, &. This angle is, of course, the lead .

It is then clear that if the fighter's relative angle in an exact lead pursuit course. The devia- r
coordinates and the bomber's space coordinates tion angle is specified separately as some '
are known, then the fighter's space coordinates function of 0 and r. If 8 =0 , we have a pure
could be found by solving (3.27) for xk., yE., pursuit and if 8 is a constant, we have a fixed -:-.- '.
and z,. lead pursuit.

65
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The polar radius r also is the present range or,
at any time t. From the vector diagram of
figure 46, it is clear that the rate of change of tan,/, 1 -

the range is (3.31) 0 -

dr .(3.28) r -- Vr cos a - V•, cos #where r, includes all constants of integration. It

dt is easily seen that if we let 0 = 900, r. :- r or, in
other words, r, is the range on the beam; that

and the transverse component of relative veloc- is, the fighter is directly abeam of the bomber.
ity is given by Equation (3.31), is then, the polar equation for

a relative pure pursuit course. This may be
changed to rectangular coordinates by the usual

do transformation equations
(3.29) r- --- 0 VF Sin 8 -. VB sin 0

dt
X r sin 0,

If we ivide(3.32)If we divide equation (3.28) by (3.29) we (.) -r.cos.-_obtain ~Y =-r cos 0, ''" -

if we choose the X, Y. axes as shown in figure 45.dr V".Cos 8+V),,CosO ".0-----
(3.30) - do

r V,. sin 8 - V" sin 6 For a variable lead pursuit it is first necessary
to determine the deviation function. Let us,

- cos 6 + c Cos 0 therefore, consider the ballistic triangle of
do O. figure 47.

sin 8 - c sin 0

The law of sines applied to triangle FBBp
This equation is integrable for various devia- yields

tion functions. If - 0; i.e., pure pursuit, we
have BB.

(3.33) sin = ---- sin 0.
dr 1 + c cos 0 rt

do 0
?e sin cLet tj be the time of flight of the bullet over

the future range r, and Tt be the average speed
-( 1-esco -cotO dO of the bullet. Then we have-- -- csc a - cot 0 ! d 0 ::-"-:::' '

(3.34) BB -- V,, t-

and, and

In r--I-ntan ½0 -- lnsinO0+ Inro, (3.35) 2rf U tl .::::::'•-

Substitution into (3.33) yields
tan'/, • 0

Iln +ln r0 ,
sin 0 (3.36) sin - c, sin 0,

66 -
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where or

V% * 1 cos 8
(3.37) c, d 0 -- -dz

U z- 1 c. sin 0

Straight substitution into equation (3.30) yields L
1I L

dz.
dr 1- c2 sin2 0 ccos+ z -1 0c 1 2 z2

(3.38) - d 0,
r (c, - c) sin 0

To obtain the last expression, we need to prove

which may be reduced to the identity

dr
(3.39) - -- Cos 8 - c2:., -.. , .

c, sin 0 c12 -z22

csC, [ 0e -2do - c cot 0 d 0

which is more easily accomplished by working
This equation may be integrated; the first on the right-hand side, making the substitution
integral on the right-hand side, however, needs f z.-'..'.-er.. .':-
some manipulation. Let us make the substitution for z. The integralj [cs0 -- cilli do then

becomes

Cos 9 O - - - -
z c or zcos8=c~cosO. cs

[csc 2 0 -,2 I do
fi f] sin ,

The differential relation

dz cos 8 - z sin 8d8 = -- c sin 0 d 0 dz
(ci" -z2) (1 -- z2)

may be solved for dO with the aid of the fact
that from sin 8 = c, sin 0 we have d8 =-zdO.

Thus we have which may be solved by the usual method of
partial fractions to give -

dzcosa= (z sinB-csinO) dO 0
C, -z + l z G,/,1-2•"""

-(z-1) c, sin 0 d 0 I -In[Q Z ( 'tk-2]
C + .- z •"

*We assume now that c, is a constant; this is not
precisely true since u is a function of the range. How-
ever, it is a usable approximation. The integration of equation (3.39) then yields

8825 0 - - 6 67
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B

00

BI

Figure 47. - Ballistic Triangle

r 1 ( C 1 -Z\ /1+z\
(3.40) in-::- Inr 1 I --.- Lsin 0

or

whee ,,isagain the constant of integration whence
that becomes the range on the beam. .-

(tan 1 9 1/0 (- )
If 6 is small, a useful approximation is ob- (3.42)r)

tained by letting cos 8 =z1, and if we insert sin
this approximation and the expression (3.36) o
into equation (3.30), we have

f anO A\
dr -+eCcosO d (3.43) r c r 0  c, ( ie

r1 (c 1 - ) sin 0
This is, the approximation which was made in

1 most of the analyses carried out during World
-- (cs;c 6- ccot 6) do0 War 11.

which may be integrated to give In the above equations, r. is the constant of
integration which needs to be determined. If we

in (I ta 4 - insinlet 0 -790' in the above equations, we see that
1n-= -1ntan0-e~nin0) r = r. or, in other words, ?-, is the range on

710  C - c the beam.
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Table 3.3

Example of Relative Course in Pure Pursuit

tan 1.~~0

,,in 0

r . 82.274314;cr=.8;_1 c =1.255; Vy 275, V,, 220)

Un1itS: yds., see(., d(1(grves A

X r sin 0; Y r co, a

0r XY

150 853.5 426. 8 739.2
140 452 7 291 .0 346.8S
130 278.7 213.5 170.2
120 188.8 16:3.5 94.4
110 136.7 128.5 46. 8
100 104.0 102.5 18.1
90 82.3 82.30
80 67.1 66. 1 -11.7
70 56.1 52.7 -10.2
60 47.8 411.4-2.
r)0( 41.4 31.7 -26.6
40 36.2 23.3 -27.7
130 31.7 15.9 -27.5
20 27.5 9.4 - 25. 8
10 22.5 3.9 -22.1

[0 0 0

Table 3.4
Example of Relative Course in Deviated Pursuit

Cos 1

r ,.(tanl 2 0)~

huts: (cgr(syards, secoudI~s,

r,10(00; c ~2, 3; c~ 1, 10, 0 1)o0', Vy.220)

0 ~ r(d)X (yds) Y (y (.s) ge)S

900 1(OO 1(000( 2.56
800 7417.1 7: 35 .7 - 129. 7 3.3 1
700 i573. 7 ;5:39.1 - 196,.2 4.05
600 (.(j: 389. 1 - 22-1. .6 1.68
500 :361272.7 -228.8 15.

.1(10282. 6 181.7 - 216.553
300o 221.2 1101.1 -191 .6 0. 28

20 G65.3 56.5 -155.3 81
101065 18.5 -101M.9 3.76 j*

00 0 ;0 0JI
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Figure 48. - Pure Pursuit Course Example
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TabIn 3.5

- Example o+ Relative and Space Course in Deviated Pursuit

r c 3-2 c1 o 0

374 [sin_ 01l_

San, ('oniditioii.8 and units as for tablc 3.,4

rX y

. 90. 000 1000 1000 0 0 0
.A 87.012 913.5 912.3 - 47.6 58.7 11.1
.8 83.743 830.2 825.3 - 90.5 117.3 26. 8

1. 81.9112 789).9 782.1 -110.0 14 6. 7 3 6 -
1.2 s0. 159 750.4 739.4 -128.3 176.0 47.7
1. 78.239 711.9 697.0 -1,45.1 205.3 60. 2

0 1.6 76.229) 674.4 655.0 -160.5 234.7 74.1
1.8 74. 123 6:7) 9 613.6 -174.5 264.0 89.5

2 0 71.920 602.5 572.7 -187.0 293.3 106.4
2 2 69. (;1.4 568.1 532.5 -- 197.9 322.7 124.8
2.4 67.205 534.9 493.1 -207.2 352.0 1441. 8
2. 6 64. 6(0 502.9 454.6 - 215.0 381.3 166.3
2 R 62.069 ,t72.0 417.0 --221.1 410.7 189.6
3.0 59.312 442.4 380.5 -- 225. C( 44(j. U 214.4
:3.2 56.513 -113.9 345.2 -228.4 469.3 241.0 .
3.-4 5:1. 587 :311.2 -2220.6 498.7 269.1
3 6 50. 571 360.7 278.6 -229.1 528.0 298.9
3.8 .7.473 336.0 247.6 -227.1 .557.3 330.2
4.0 44.308 :312.A 21 .. 2 - 223.5 586.7 363.1

S4.2 41.090 2890.9 19()t'. -218.5 616.0 397.5
.3.. 37.83 , 268.6 164.8 -212.1 645.3 433.2
.1.6 31.572 248 2 1.t10.9 -204.4 £74.7 470.3
4.8 31.315 228.9 118,9 - 1I5.5 704.( 508,5

*5.0 2S, 092 2 10.3 99.0 - 185. 6 733.3 547.8
5.2 2-1.927 1 2. 1; 81.2 - 174.6 762.7 588.0

.4 21.SIS 175.5 65.3 - 162.9 792.0 629.1
S.. ... 1.59... 1 .4 -_150.5 821.3 670.0,)

S , 1: .0.12 143. 0 39.5 -137.4 850.7 713.2

6. (0 13.370 127.4 20.4 - 12:3.9 880.0 756.1 I
6.2 10.8SMj 112.0 21.1 -110.0 909.3 799.3
6. 4 8. 568 16.9 141.4 - 95.9 1.)38.7 842.8

*6. 6 6. 485 82.0 1). 26 - 81.5 968.1 886.5
w 8 .1.6,11 67.2 5.-14 - 67.0 997.3 930.3
7.0 3. 05-5 52.5 2.80 - 52A4 1026. 7 97,1.2
7.2 1 7-5-1 37.8 1.15 - 37.8 1056.0 1018.2 ....

• 7 4 .761 23.1 .31 - 23.1 1095.:, 1062.2
.187 8.5 0 - 8.5 11141.7 1106.2
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y

LEAD PURSUIT COURSE
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Figure 49.- Lead Pursuif Course Example

3.5 Time as a Parameter this dependlence onl timec expressed expkiitly for
many pr'oblemns in fire control work and al~so for

TIhe mrethodI of solving tile purysuit, coursie compuitation of the Spkce courSes. JA
0 1 

(examplle,
problemn given in the last section bas the (lisad- the space coondinates mnay be found fromn the
vantage that the solutions are not, given explicit- relative coo)rdinateS by' usinjg tle' ieA~tiOlI (3,27)
ly as functions of timet. It is inecessary to haveý where the bomnber's coordinates are given as

72
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functiol iof time and thus the fighter's relative where k is the constant of integration to be
coordinates also must be found as functions of determined by the initial conditions. Thus we
time. In determining the lead to take against a have t as a function of (6, from which 0 could
fighter flying a pursuit course, one usually best be obtained for a given t by graphical -

matches the time along the course, from a means,
chosen present position to the required future
position of impact, with the time of flight of Another method is to expand r and 0 in power
the projectile over the range to this future series valid in the neighborhood of any particu-
position. lar point about which the expansions are made.

Thus expanding r and 0 about t = 0, we have
There are many ways for getting points on a ihe well known Maclaurin series. _

pursuit course which are labeled with the ap-
propriate time, but to find the range or angle-off t
as explicit functions of time is another matter. r(t) = r(o) + r(o) t + "(o)---
Thus t may be obtained as a function of a but 21

the inverse solution is not readily obtainable.
The implicit solution is found by knowing r as V.. V
a function of 0 from (3.41), and upon substi- + i'(o)- +..
tuting it into (3.29) the time t is then found 3!
as a function of 1) by a simple integration, Con-
sider, for exam ple, the case of a pure pursuit t(1) 9.) + 6(') t _p0 ( o )

course, 8 = , where t 0) + " (0)t + 2!

tan"" +9 -- o(o) - -4-.......
sin 0

Upon the substitution of this solution into To obtain these expansions we need to know 0
equations (2.29) we have the values of r and 0 at t = 0. The derivatives

are then obtained by successive differentiation:[ r, P./" o1  do of equations (3.28) and (3.29). The resulting
(3.44) r- - V, sin 9 series converge so that r and 0 may be found at

si O jdct any t to the accuracy desired.

or Still a third and perhaps the best method is -

to solve the system of differential equations -. -
(.45) ',, L Ll 4 *. . 1i, given by (3.28) and (3.29) by a numerical

"L process. Such a solution will, of course, yield

values of r and 0 at chosen increments of .,
Equation (3.45) may now be integra.ed by
ernlioying the substitution

2Z 2dZ 3.6 The Acceleration of the Fighter Caused
tan .1.,1 _ 2, sin 0 - dO - -. by the Curvature of His Space Course

we obtain
t1t n analyzing pursuit courses it is irmlportant

I'l tan"( - tan"' + I I0o2 to determine the extent to which the courseL V 1 curvature is restricted by the physiological
2V::....i su1 j-1 q-1 e~ffects rd the 3I ilol, in flight afd the structural 7c e ~~~and aerodynamnic limitattions of the atircraft. W, ',"'••"@'"
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begin in this section by considering the normal V,.
acceleration and the centrifugal force acting on (3.51) R -- "
the plane and pilot.

V,
It is well known that the normal acceleration -V c) Cos 0 L --.- ::

may be expressed in terms of the radius cf V•.F cc]con 611
curvature, r-cos--c.... ""1---

VPZ r
(3.46) normal acceleration

R c1 c•] sin 0 1 1 e

where R is the radius of curvature of the space cos 8 -
curve. The radius of curvature may be expressed The normal acceleration, a, is usually ex-
in either rectangular or polar coordinates. For pressed in units of gravity called "gees", i.e.,
rectangular coordinates we have ratio of acceleration to the acceleration of grav-

ity, g. This acceleration is due solely to the .

(1 + y'-) I curvature of the course and does not include the
(3,47) R -- , ever present acceleration due to gravity, which,

lY "I of course, is one "gee". Upon combining (3.46)
and (3.49) with (3.29), we find, in the case of

and for pure pursuit we have by equation pure pursuit,
(3.15) and (3.17a) •,r V., sin a .

(3.52) a-- "(1 +y' 2 )½ x gr-:::1::1::

(3,48) R --- (1 + y"2 ) For lead pursuit, .

+ V, 2 [c -c, / c, cos .
X (3.53) a- sin 9 1 .

gr cos. /

-- x k -- It is, therefore, possible to calculate both the -4c L kc+ radius of curvature and the normal acceleration
for these pursuit courses,

For pure pursuit we also have

Equation (3.52) may be solved for r to give
V1.(349 R V1. Vil.'-,-"-"l

(3.54) r - sin 0,
ga

since the tangent to the circle of curvature also
is the terminal side of angle 9. Thus in polar an equation which represents a family of circles
coordinates the radius of curvature is, using vy. V1,
(3.2'9) with 8 -= 0, of radii - , each circle being tangent to the

V. V.r .-.2ga

(3.50) P- - straight line path of the pursued bomber. By
V, . V- sin 0 varying the parameter, a, we may plot members
r of the family and then superimpose the pursuit ..

courses upon this plot. From such a graph we
For deviated pursuit courses (lead pursuit) can read off the normal acceleration (or load) '.' .''"

with sin S _ c, sin 0 we have at any point on the pursuit course, See figure 50. :..
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'VF= 450 mph
VE8 = 205 mph

1000

200 00 60 80

figure 60, Acceleration Circles

75

0~ . . . . . . . . . . . . . 0.



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

If we consider V,., c, and c, as constants, the 2c 2-.

normal acceleration is given by equation (3.53) N
as a function of 0, r, and S. Since both r and 8 a.. .
can he expressed as functions of 0, see equations and,
(3.41.) and (3.36), respectively, we have the
normal acceleration as a function of 6 alone. V1 V1, 1-."
Thus, there may exist a value of 6 for which a - sin 0, -
the normal acceleration is a maximum. That g." -

this is actually the case can be verified by taking
the derivative of equation (3.53) with respect or,
to 0, setting it equal to zero and solve for 0; the
usual calculus procedure for find-ing the mnaxi- ( F VB1 \ / 4c'- 1
mum of a function, It is easily accomplished in r - ..-_.-.___.

the case of pure p)ursuit; in which case we find 5U 2c -
that the maximum acceleration is achieved at

1 for = 5 .
the value 0 arc cos -- Under the approxima-2c - - '-- -.

tion that the cos 8 1 we find that the maxi- Since
mum normal acceleration occurs at the value

2 .c- 3 cc, c.c, -c,-), r (tan , p "/" sin 0

& are cos
3cc, - 2cý2 we have

The existence of a value 0, for which the
normal acceleration is a maxirnui, enaloles one
to find a limiting relative pursuit course on ro, r, (tan -0,) "/ sin 0,

which, for a given normal acceleration a, the
acceleration achieves the maximum value a. This
course is limiting in the sense that it divides ( V". 4c2 -~ I~4
all pursuiit Courses into two groups, the one -- ,. \ 2""

Containing all courses on which the normal 5g 2c
accelerations never build up greater than a, the .
other including only courses on which the /2c - 1 - ze.-" -'""
accelerations eventually su-rpass a2, 1 9 2c /

Let us consider pure pursuit courses, Since
maximum goes rmust be achieved for points on -- VV (4c-1)/2 I

the line ( arc co the limiting pursuit 20 g c2 2c -2 1

course dividcs the plane into two separate
regions, each containing curves of one and only Thus, the equation of the limiting "ng" relative
one! of the groups: defined above. Geometrically, pure pursuit course is
thi! limiting "5!g" pursuit course is tangent to

the "5fg" circle at the point (r,. 0,), wherein
', is obtained from equation (3.52) for 0 0,. ,1 ~ ~~V,. V1, (4c'-- 1) (2c + 1 )2 (ta u IW. ..--. :.-

Thus, since 0, arc cos i we have " V- V
G 4ng c2  2c--1 sin 0n

76 1~'
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3.7 Aerodynamic Pursuit Course consider an attack made in a vertical plane by
ia fighter on a bomber which moves in a straight

In the pursuit courses considered thus far it

has been assumed that the projectile leaves the and level flight path at a constant speed. .. -'-"

fighter aircraft in the direction of the aircraft's Let us assume that the gun bore axis coin-
motion. Thus it has been tacitly assumed that cides with the thrust axis of the fighter aircraft.
the aircraft moves in the direction in which it This is no real restriction since if the two did
islointing. However, it is well known from aero- not coincide, the equations would be changed
dynamic considerations that there exists an merely by inserting a constant angle. We shall
angle, the angle of attack, between the zero lift now use the following notation: (See figure 51.) • :-
line of the wing and the direction of motion. The
zero lift line is a hypothetical line through the L = the fighter's lift vector, directed nor-

wvings in the general direction of the longi- ma] to V,;
tudinal axis; in steady flight, the airplane would D the fighter's drag vector, directed
move along this line if there were no gravity aiong -V,,;
acting. Since the guns are fixed in the aircraft,
there exists, then, an angle of attack, ay, between W weight of the fighter, directed ver- 0
the gun bore axis and the direction of motion tically down;
of the aircraft, and the deviation function, 8, T fighter' thrust vector, directed along
discussed in the preceding sections, should have the thrust axis;
a component due to this angle of attack. If the
gun bore axis is parallel to the zero lift line of V,, = fighter's velocity vector, directed
the wing, then a is the usual angle of attack for along its flight line;

the aircraft. However, the gun bore axis is VB = bomber's velocity vector, directed
usually offset from the zero lift line to allow along its flight line;
for gravity drop or other considerations so that agefo thhrinaleeecS=angle from the horizontal reference :-....
the angle of attack of the gun bore is not neces-
sarily the angle of attack of the aircraft wing. g

The treatment of the problem of aerodynamic 0 = angle from the horizontal reference .
pursuit courses may be divided into two parts: line to the sight line;
(1) the equations of motion of the aircraft and
(2) the conditions of pursuit. In order to find a angle of attack of the gun bore line;
the equations of motion of the aircraft, it is - angle from the thrust line (gun bore
necessary to consider the usual force system axis) to the flight line; . -

acting upon the aircraft; i.e., the forces of lift, .
thrust, drag, and weight. The conditions of a0 = angle from the zero lift line to the
purSUit then constrain this motion and we have thrust axis of the fighter;
a typical dynamic problem with constraints, If a + ao angle of attack of the fighter mea-
it is nossible to obtain a sufficient number of sured from the zero lift line; .-

equations to determine the variables under con- R
sideration, the problemn is solvable. If not, it R radius of curvature of the fighter's .
may still be possible to solve the problem if path;

from experimental data a sufficient number of t = average speed of the projectile over
logical assumptions can be made which lead to its path;
consistent equations.

= relative air density.

3.8 Af+ack in a Vertical Plane From the force system shown in figure 51, we

The general problem is indeed a complicated can write bv Newton's second law the equations
one and for this reason it is advantageous to of motion, for motion along and normal to the - -. .

begin with a restricted case. Let us, therefore, flight line. Thus,

77
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_____HORIZONTAL REFERENCE LINE

00
0%.

'Y6
do0

A L
* and

1 7 (3.58) -zz V, Wsn cos D (57Ij -X W 1 cos (6-y)si

form ~ ~ ~ ~ ~ oto eqain(35)myoewitennteg35) U - and~ pepnin ua to th)eV sinh

lie-,adw ihaeexrsil ntr so

78w th aisO0~vt a ewitni heplrcodntsrad0 hs ehv
termsof-- - an--- - -- - - - - - - -- -- - - - - ---t,-

1---1-.* . . . . . . . . . . . . . 58. . . . . . . . . . . . . ..os (

.- . . - .* .
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HORIZONTAL REFERENCE LINE

Y 0

VF T

Figure 52. Angles for Pure Pursuit

In pure pursuit, where we do not consider of -/. This natural value can be found by plotting
any lead or ballistics, the gun bore axis (thrust y against time for the first second for a few
line) coincides with the line of sight so that arbitrary choices of a, usually between 20 and

120. The family thus obtained will funnel into
(3.60) y - 0 a or 0 -,y - a. See figure 52. one curve which then is extrapolated back

linearly to give the natural value of a.

We may then eliminate 9 from equations (3.58) For a lead pursuit course we need to account
and (3.59) and together with (3.55) and (3.57) for the ballistic effects, In this case, the gun
we have four non-linear differential equations bore axis is pointed so that the projectile leaving
to determine the four variables V, y, a, r, as the gun at a muzzle velocity of V. will travel -- -...

functions of time. Before proceeding, we must the vector diagonal to the point of impact as
first determine the aerodynamic constauts for shown in figure 53. In order to score a hit, the
the fighter airplane in question at a fixed throttle projectile's motion normal to the sight line
setting. This is accomplished from the weight should be equal to the bomber's motion normal
and geometry of the airplane and its perform.- to the sight line during the time of flight. If we
ance values of propeller efficiency, maximum let n be a unit vector perpendicular to the sight
engine brake power, and the corresponding line, then this condition states
maximum level flight speed at a certain altitude.
With this knowledge, we have formulas which (3.61) t1 (u) * n t,(VI;) n,
enable us to obtain expressions for L, D, T',
and W. where u is the average velocity of the projectile

over its impact range. If we let u -- V0 + V,.,
The four differential equatioms must be inte., where V, is a calculated average speed vector

grated ?iLImerically, and, consequently, we need of the projectile which can be assumed to be in
to kn,,,v the initial values of V,, -y, a, and i. The the direction of V,, then we may write equation .
quantities V1, -y, and r, may be assigned at will (3,61) in the form -r .. .
to givw a family of cases. The initial value of a, '..---._

however, ,as a "natural" value for a given value (3.62) -V1 ., sin (a - A) + V, sin A = V1, sin 0.

v- r -. -. --

00 0 0 0 0 0 0
-.

". -. .--- . . . ....

.=. .. . . .. . . ."-" . "''" . """. . """. -'-''-..'' .'..-' -' -,''''_-.'''-" ' -' -"-'..'...-. -'-.-N -. "' "''" -,'''[•.'•••'"•' :

:'.-" `?•-•?-•:• • `•- - .- - .-.` ` - . •-- •-.-•. • ` • -. :-:.'-'-:,:--.:- -- '-'-.•.>-
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F -,-- :. : - .- .

'- .. -:Z'>-i

VF

0
H

U 
f

Figure .53.- Velocity Diagram

From figure 51 it also is c-lear that and W. As was mentioned in the last section,
the theory of aerodynamics furnishes us wit-h

"(3.63) 7- =a-A formulas for these expressions if we know thei
or ~~geometry of the airplane and its performance : 7-

characteristics. We shall not derive these ex-::
= a Uj - y )ressions hlere but Will adopt thjem without L

proof and refer the reader to a standard text
so that Amay be eliminated from (3.62) and, on the theory of aerodynamics. It shall be ourI
if V. is known, equation (3.62) may be used to purpose here to exhibit the formulas and indi-
solve for ae. cate their use.

The aerodynamic forces L, D3, and T are ex-

3.9 The Determination of the Aircraft pesdi h olwn om

Constants L( Lp V,,V2 S.Cj,; *

In order to solve the system of equations (3.64) D - p V,. S C,;
griven by (3.55), (3.57), (3.58), and (3.59), we

!i '-V">i -i

- . ' - - - -- *-'r --- - - - - -

need3 t -o deemn th exresin for Lmua Dor Ths eT•esin 550 weknw heV.;.':.

. . . . . . . . . . ..0. re', i - h .rc b.

*roof *n refer~ th rade toasadrdt4 ...-. •

so vNo .c t h i s. .-.. ''.''..."".
The aerodynamic... ........ ......... ...... r, e- ".....

prse i h olo ig fo m -p[[::'•''
......................................................................................
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where The constants c (i 1 , 2 ,3, 4) may be deter-
mined from the fundamental performance cqua-

C., lift coefficient tion-

=fKsin (a+a); a, p V3 X.
(3.68) = + --. -:-

CC, ,. X, VA +

B where .

2 +, p = ,p,/,, - relative air density;

1 + 2/f V ) = ti7o Vk- indicated airspeed;
and

A, B = constants for given airplane, Xt
550 72TP7rb' . .:- -

B -2W
SS

S = wing area; ~A
P = brake horsepower of engine: 2W 2W ,- .,

1 h.p. = 550 ft.-lb./sec., Xe -

Pa = air density; pa BS Oa rb"

= propeller efficiency; so that

b = wing span;

b02 P/Xp; -

S: -- , aspect ratio•.•= /4 r . . .,..

S (3.69)
-a spc ai.KS/2W;

In the computation, new constants are usually
introduced into equations (3.64) which are de- c;, -,2 A0/p.
fined by The description of the aircraft shoold supply

the geometry of the airplane, its gross weight
c, -l KS/2W; (W), the propeller efficiency (,j), maximum"

engine brake power (Pm...) and the correspond-
Aý/ W ing inax~imurn level flight spee~d (V.,...)for a .-- "--•-_-

(3.66) certain altitude or density ratio p'. With this
c., K2S/2BW; information, we compute

( 550 P71/W; W 2 W
(3.70) X, jaj,. - ; X, = - ;

so that equations (3.64) take the form 550 -',..,,, hrb" . .-..-..-

L c, V,. TW sin (a , m) ; t.... = to' V,.** ...... 0

(.67) I j Q [ -- c, sin- (,Y -_ ) I V-'. W ; The values obtained from (3370) may now be
inserted into equation (3.68) and this equation

1 C.,W/, V.. solved for x, which depends only upon the

),W /V.- . - .,. - ..-. - -

- - - -.- . - . .-

, '*. ... ' ' .. . -:", -v.'J' 4 d. * . . '- . ' '- . ' ' . . - .".*. . . . • . -. . .. . ."' " '' '''." i -" .. ." - " " " " " "~~~~~~~~~~~~6 S. A-. - - " - " . " - '. " - " . " - " - " . . .
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geometry of the airplane and is therefore not dv K,
affected by changes in p and Vy, With x,. and A- _Sin y +-F Cos -K KV 2

determined, it is possible to consider X~for anydtV
speed at any altitude. Thus, if we choose a V. KV'2 Sin12 (a+a)-

and p,we can solve for ,k (or -) from equa- dy --

Xt v Cos y-K,v-' sin (a + a,)
tion (3.68). dt*

The computation of' the aircraft constants +Ksi,
may be summarized into the following stvps; (3.73) ± sin

(1) Given; WI, b, S, 1) (jP,,., VF,,0 x.,

and p'. ds

(2) Compute: A,, Vj X,,, nH,~j, xl, aid K. - Cd(y9t*,cs

C,.) C hoose: V,. and p

'A) Compute: V,, 1/,\,, e4, C2 1 C],, (use do 1I

equations (3.69)). dt -,in('-6

3.10 Dimensionless Form

In any numerical computation dealing with a 3.1Eape
physical system it is convenient to express the
equation,. in dimensionless form. This is usually In order to illustrate the computation of an

accomplished by dividing each var-iable by a aerodynamic lead pursuit course in a vertical

reference value of that variable. The system lnleuscsirtw sn.fcexme:
expressed by equations (3.55), (3.57), (3.58), ExmKe1 ebgnwt h olwn
andl (3.59) may be reduced to a dimensionless Ea le1We egnwtth fooig
form by the following transformations. Let da;uitinfepudscd.

(3.71) t" gt/VF ; V Vj/Vk-; U,, VilV,.; (1) Aircraft data:

S = gr/V-: W, =' - 14655 lbs.'.

where b = 42.933333 ft.

V,..- reference velocity (uisually taken to S 334 square feet.

and lit inifial v.-tipie of V,) -55

g ==acceleration of gravity .033743 radians.*

involve the same distance units. 9 32.174 ft,/sec".

V,.~.85 93f/sc

If we further let , =8

(3.72) K, = CV,..J ; Ký - cVV,, ;K., -C;Il,V ; P =1550.1P.1).

K 4 := c.I/V/, V, j,~ 3:37.586638 ft.s

the system of equations takes on the following .4 689. 0

form: ==o.002378

820

...... .7-...............................
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(2) Attack data: KS
-. 052506373

=6000 ft. 2W

1V, = 300 ft. /sec. 1, ,011367yX 10 -1

V, - 2500 ft./sec. c 599 0

0, 300 =.5236 radians. 2.062x1

p =.81K, = 25,284175 ,

V1  00 t./ec.K, = .1448735

The aircraft constants are computed fromn the
formulas of siection 3.9. In their evaluation it K;, 6.750918
will 1)e assumed that the change in p during the
attack may be neglected. The computation It is to 1)e noted here that C4 :=1/A 1 , which is corn-
yicl(15 puted from equation (3,68), ,is a function of Vi

=21:38.406710 which in turn is a function of V,.. Tjhus, strictly,
c, is not a constant as V,- changes according to

x,, 2.022425 >X 10 equations (3.73). The variation of c,, or more

1/A\1 , 7.154248 / 10 precisely K, may be computed by tabulating or
graphing K, versus v for each initial condition.

1K 4.607670 In the present example we have table 3.6.

Table 3,6

I(4/v for Example I

v Kav1 K 4 1V V K4/v v K1(4v

1700 17i55i31 1. 10 IS81025 1.20 .2 15951 1 .30 .251085
].()1 .158 138 1.11 .187060) 1.21 .219322 1.1f .2517711
1 .02 160876 1 .12 .1900147 1V22 .222725 1 .32 .258488

S13 .1(63650 1 . 1: . 193259 1.,2:3 . 226 159) 1 .33 .2622:37
* 01 1661459 1 . II1 1964014 1.24 . 2296525 1 .34 .2660 16

V o.iI 16 3 1 1. I0 . IENMO~I I . .I Z-11. 1 L-5 1 .&)).LI~jr

I . (06 . 172178 1 . 16 .202790 1 .26 . 236652 1 .M; .273668
1 .07 .171089 1,.17 .2060:32 1,.27 2410213 1.37 .2775390
1 .08 . 17803]1 1 .18 . 20()E306 . 28 . 243806 1 . 38 .281442
1.09) .181013 1.19 .21261:3 1.29 .247429) 1. 39 .285376

rio detcrmine thc ''natural'' initial value of system (3.73) for 0 K V: < .10. T1ie values for

thle angle of' attachi, wc first dleterrnine the 7~ are then plotted over this rtange of values for
''I1,atifra1'' inlitial value Of' -/ andI obtain (Y from I/ and extrap~olatedl back linearly to give the
etiLuitioii (3.62). Thus in the example we choose natural initial valuey,= .4850. See figure 54.

.56, -, .48, and y. 42 and solve the

AhB9gB 0 - 52 - 7 83

0 0 0 0 0 0 S 0 0. 0 0 S 0
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.56

DETERMINATION OF THE INITIAL
VALUE OF Y

.54

EXAMPLE 1

.52

.50

0EXTRAPOLATION LINE

.48 - .-

.46

.44
111NIT L VALUE Or Y-4850

.42
0 .02 .04 .06 .08 .10 .12

t*0

Fi~gure 54.- Initial Value of y-Example I
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The mirnerical -solution of (3.73) can Ohwn be final valites, obtained by this method, are tabu-
performedl by the lino)ge-Kutta Method. The lated in table 38.7.

Table 3.7

Example I

0 I1 X Z1,.,

I A-.525 .1898 1 .0.14071 .722-45 '( m 0114 i;12 :3 f; 8 26-11 -1651)
. . 1199 .-156:1 I 86 . 135-13 0086 520133i 2 222 '12 93.(0

.3 .3879 A .228 1 .12-5138 .613! 169 0065;- 476;-1 1 6-29 1 195 1398. 0
.A1 :31558 .2888 1 . 160 61:3 . 558083 .00.18 4301.! ; -2117 16G32 1866

* .:2s .:35.-11 1 . 19!M656 . A.92140 1 00241 182-1 1 -1255 - 1:327 233 1
*6 .29071 .32190 1 .223297 .197i) 15 002.1 2225. -- .361 1( 13 2796......
.7 .25W6 .2823 1 .2-19721 f;661 .0()(1 281( 65-728 26

*8 .221 .2-13(' I 1.272776 .2932145-1 .001.1 2280).2 15 16 5410 1l 3729
A) .m .2022ý I .29 224(1 923703 .0015 17:38.21 2-101 "146.92 -1.197

1. .1(31 I 15 1 .3077,55 .1527 1:1 00o25 1 1,S(;.6 f; 3190( I 181'2 4.662
I. .09 1 A (1695 1 .3 31 86741 .08230! (((155 628.2 150-)2 62.' 3 127

A coordinate system x, z was chosen such xy -r cos 0 -- xB. The space courses were then
that xli 0, zj, 0 anid x1i V11t, z,.. r sin 0, plotted and are shown In figure 55.

EXAMPLE 1
AERODYNAMIC LEAD PURSUIT COURSE

IN THE VERTICAL PLANE

914--3000 V3= 300; VF 500; Vs= 2 50 0 ; r = 6000; 6=30; p ý. 8 1
IDIMENSIONS - FT./SEC.

-200 FIGHTER'S SPACE COURSE

1000

-4000 -3000 --2000 -1000 ~10o00 NZ 00O 3000 4000 5000

BOMBER'S SPACE COURSE

Figure .55. - Aerodynamnic Lead Pursuit Course Example
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Example 2, (Units ini feet, pound1s, seconds, P .49
radi1 ans.)

0,,.8727 radians

(1) Aircraft data: 600 it./sec.

WV 14,000 lbs. (3) Computed constants:

b42X., = 2124.700332

=315 I/Ar ,t = 60.814286

=5,6 K = 4.629716

.86 1/xA, 6.752215 X 10 -7

(t .05 K
F ,, 1800 H.1. =W-.052084305

V,., 1  600 ft./ sec. C,60.689674 X 10
.347 47 3.308585 X 10-'

(P..002:378 =15.970967 X 10

Vi, 353.4402 K =21.848283

-j' =000825166 K, =.19109

(2) Attack data: ,5794

= 4000 ft. The same calculations which were performed
in Example I we-re carrie~d cnut andl are shown in

BVII :1 GO0 ftL. s-C tables 3.8 and 3.9. The values were plotted and

V. = 2500 ft. sec. arc shown in figure 56 and figure 57.

Table 3.8

K 1/v for Example 2

H) 3 I) I1 . 1510761 1.2(0 1 .1719882 1.30 .2011422
101 . 3-51 I 15(5 1.21 .1826j1 1 1 .3 .211422 '

1 0112iý 1 5)98 1.12 1,590 12 1.22 .185371 1.32 .148
1 3 .1:1776 H; I. .I G1523 J .23 . 18816i2 1 .33 .217502

1i :s9 ! 16 1 .4 liG102 1 .2.1 NOD;97 1.34 .2205801
I1.0.5 .1 12213 1.1-7) 1 666M) 1 .2-5 193817 1.ý35 .223685
1. 06 .1 115-51 1. 16 1 It 922-1 1 .26 .19668.1 1.'316 .2261816
1.0 .1 16888 1 I 17.17817 1.'27 .19!95 71 1 .3i7 .22997:3
1.08 .1 19256 1. 18 .17.1197 1 28 .202'500) 1 .38 .233 1 56
1. 09 F151651 1. 19 . 177171; 1,29 .205.1,7 1.'31) .236-365

86 0 .
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.9 100

.90

DETERMINATION OF THE INITIAL
VALUE OFr

EXAMPLE 2

.86

.84

.8300
INITIAL VALUE OF Y

.82 TAKEN 10 BE .8100

.N0

.78 LX-I RAPOLATION LINE

.76

.74

.730 0%

.72

.70
0 .02 .04 .06 .08 .10 .12 .14 .16

t**

Figu re 56.- muiir1 Value of y-Examnple, 2
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Table 3.9
Example 2

j 0s r X. .ry 6/

0 .8100 .8727 1 . .357489 1.0327 4000. -51. 0 3064.3 0
.02 .7880 .8,504 1.013790 .3435182 .0308 3862.3 -2414.7 2902.7 133.2
.04 .7664 .8278 11.027280 .332827 .0296 .3724.1 -2249.3 2742. 6 270.
.06 .7448 .8049 1.040448 .320406 .0288 13585. 1 -2081.9 2384 .01) 403.2
.08 .7232 .7816 1.053288 .30792:3 .0284 : 3445.4 - 1909. 1 2427.0 536.4
.10 .7014 .7580 1.065785 .295383 .0280 3305.1 -1730.6 2272,2 669.66
.12 .6794 .7339 1.077930 282791 .0279 1:3164.2 -1543.2 2119.3 806.4
.14 .6,571 .7094 1.*089709 .270153 .0279 3022.8 -1354.0 1969. 0 9:39.6
.16 .6345 .6844 1.101108 .257474 .0280 2880.9 -1159. 3 1821.:3 1072.8
.18 .6115 .6589 1.112116 1.244760 .0282 2738.7 -955.8 1676.8 1209.6
.20 .5882 .6329 1.122719 .232017 .0285 2.596.1 -750.5 15:3.5.6 1342.8
.22 1.5644 .6063 1.132903 .219250 .0288 24.53.2 -539.9 1397.9 11476.
.24 1.5402 .5791 1.142653 .206465 .029.3 2310.2 -320.7 11264.3 1612.8
.26 .5155 .5513 1.1,51953 .193667 .0298 2167.2 -99.9 113-5.1 1746.
.28 .4903 .5227 1.160787 .180862 .0303 202:3. 7 12.5.7 I1010.3 1879.2
.30 .4645 .4933 1.1691:34 .168057 .0313 1880.4 :356.2 1 890.4 2012.4
.32 .4381 .46.30 1.176974 .155257 .0:324 17:37. 2 504.9 7 753.9 2149).2
.34 .4108 .4317 1.184281 .142468 .0334 1594.1 834.5 667.0 2282.4
.36 .3829 .3994 1. 191037' .129696 .0348 1451.2 1078.6 364.3 2415.6
.38 .3540 .3658 1.197209 .116946 .0363 1308.5 1330.5 468.0 2.532.4
.40 .3241 .3308 1.202764 .104225 .0382 1166.2 1382.6 378.8 2685.6 .9
.42 .2931 .2940 1.207675 .091538 .0406 1024.2 1838.5 296.8 2818.8
.44 .2606 .2551 1.211887 .078890 .0434 882.7 2101.5 222.7 2953.6
.46 .2264 .2136 1.213344 .066289 .0471 741.7 2364.0 137.2 3088.8
.48 .1899 .1686 1.217966 .053728 .0517 601.2 2629.3 1000'* 9 I3222.
.50 .1506 .1186 1.219648 .041233 .0584 461.4 2897.0 34.6 335312

3000 1EXAMPLE 2
AERODYNAMIC LEAD PURSUIT COURSE

IN THE VERTICAL PLANE
V3= 360; VF =6 00 ; VS =2500; r = 4O000; 00 =5QO; p =.49; B 0(,O0)

CALCULATED FIGHTER & BOMBER POSITIONS
2000- INDICATED BY DOTS

DIMENSIONS - FT.! SEC.

1000-

t T-a

-2000 -1000 0 1000 2000 3000

Figure 57. -Aerodynamic Lead Pursuit Course Example
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3.12 The Three-Dimensional Equations = angle of attack of the trajectory.
= angle between the direction of motion

The complete derivation of the equations in of the fighter and the trajectory at the
the case of the three-dimensional aerodynamic time of departure. -
lead pursuit course is rather complicated and
will not be presented in this book. The form of - the bank angle of the fighter about
the equations, of course, depends upon the co- the projectile path.
ordinate system which is chosen. The most
convenient set of equat-ons is that which refers the angle from that perpendicular to
to the rectilinear trajectory traversed in space the trajectory that lies in the vertical
by the projectile from the fighter to the impact plane to the perpendicular to the tra-
point. Let us adopt the following notation: jectory that lies in the fighter's plane

of symmetry.
R = projectile air range.

A = azimuth angle of the projectile's rec- = angle-off of the sight line frcm the
tilinear trajectory. bomber's direction of motion.

E "elevation angle of the projectile's rec- rB =angle-off of the projectile from the
tilinear trajectory measured from the bomber's direction of motion.
horizontal plane through the bomber's
position. A typical situation is shown in figure 58.

Figure 58.- A Three-dimensional Situation

89

%Ii .- . _-- - -

0



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC p

The tangential equation is obtained by sum- dA I
ming the forces along the direction of flight (3.78) --

dt R cos 0

W dV,.FV V'--'i A
(3.74) - W W (cos asin E V, sin sin fl -- V1, a t) sin A

g dt" :.'d sin a cosEcos3) and

+ T cos a, -- D-'-".
sdE 1

where a, is the angle from the thrust axis to the (3.79) - - Vr sin a cos P

aircraft's direction of flight. This angle, a,, is a t
function of a and any constant offset of the gun 1
bore axis from the thrust axis. There are two -VB (1 + t() cos A sin E

equations obtained by taking components in
appropriate directions, normal to the direction Equations (3.74) to (3.79) comprise a systemr
of flight, which express the rate of change of of non-linear differential equations which may
the angles A and E. Thus, be solved for the variables VF, R, A, E, /8,

W dA da Ballistic considerations must, of course, furnish
- (sin flcosE- ± - t, and ti.

(3.75) g dt dt

dE In this discussion it has been assumed that
+ cos f -) the fighter pilot flies with no sideslip. If sideslip

dt is introduced, we have more unknowns than
--L + T sin a equations and a family of solutions results

- W (cos a cos E cos f3- sin a sin E') rather than a unique curve. It also has been

and assumed that the projetilc's gravity drop may

dA be superimposed upon the problem, that the
bomber is flying straight and level at a constant

( dt speed and that the fighter's throttle setting is
left unchanged. Variation in these assumptions

c s dE d/3 must be introduced externally.+ co s s in , -l d - si n a J -' -

dt dt

-WsinflcosE. L

There exist also three kinematic equations.
The impact point is the point which is being S
pursued. Since the distance from the bomber to
this impact point is V~t,, where t1 is the pro-
jectile's time of flight over R, it follows that 0I1 .
the velocity of the impact point is V, + Vnt,. - ¥ u F
Thus, the range rate equation is given by L cos 81"

dR "
(3.77) -•=-V rcos a

dt
- V, (I+ t) cos A cos E.

The rate of change of azimuth and elevation W
are obtained by making projections normal to
R. The equations are Figure 59. - Force System
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Figure 60, - Force System-

3.13 Minimum Radius of Turn Let us further define the load factor, to be

The aerodynamic restrictions on an aircraft L

may be suhthat the aircraft cannot fly a pur- (8) ,

sut course. I n ordier to (letermine a criterion for H
this we mav derive a formula for the minimnumn I esbttt h attoeutosit
r-adios of, turn. Let us consider the horizontal equation (3.80) we may solve for the radius ...-

andI vert ical planes separately, of turn

Let us considler the airplane to be a body ofV
weight IF which is kept in motion in a horizontal (.8) N- ______

circle by at force of I, pounds whose vertical i
component, L sin /3,, is equal and opposite to W4

and hos hoii ontl coponntL CS /~ iIn the vertical p~lane, it is; necessary to include0
e~lul a~l ppoiteto he cntrfugl frce F, the. angle of climb, y/. From figure 60 we have,

exerted by this motion; where fl, is the inclina- l'smigtefre aallt h it
t ion Of F" to the hOriZOn1tal. See figu"Lre 59. The '

airlalane is then tourning, in a horizontal plane (.4 -F±Wcs~±Tsna

without any loss in altitude. Thus,(38)1 F Wcoy+Tsi r

Wf If we neglect the angle of attack, a, the radiu8
(L in 3) os 3) ' ~is then given by

or, V0

(3.80 V -W
2 -- F ~(3.85) R z . y

The centrifuigal force may be expressed in terms For equations (:3.9:3) and (3.85) it is clear

of the radlius of curvature 1R by the following thaL the radius of turn capable by the aircraftL

formula: is a funiction of speed and the load factor, which
in turn is a function of speed. The maximum

W V:, load factor (given in "gees") is obtained from
(3.81) F~ ___

g p" *Du not eo~ifu.sc with propeller efficiency.
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Figure 61.- Buffet Region

maximum lift and when plotted against an The following conclusions may be drawn:
increasing speed will define a buffet and stall (1) The load factor falls off rapidly as the
region in which the airplane cannot fly. A typi- speed incrases ond the
cal curve for modern aircraft is shown in speed increases beyond the peak for

figur 61.the maximum value of the load factor.
figure 61.

(2) As the speed increases, the minimum
The minimum radius of turn occurs at the radius of turn increases.

maximum value of the load factor and a curve
corresponding to figure 61 may be plotted for Consequently, at very high speeds it becomes
the minimum radius in either the vertical or increasingly difficult to fly anything but a tail
horizontal plane. Figure 62 pictures the situa- pursuit; that is, a pursuit course initiated well
tion in the horizontal plane. toward the stern of the pursued aircraft,
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Figure 62. - Minimum Radius of Turn

3.14 Collision or Interception Courses collision between the two aircraft unless it is
desired to destroy both aircraft. The point

In order to avoid the high gees which arise should be the collision point between the target

in some pursuit courses, other types of attack and the projectile that the attacker is firing.

must be adopted. We shall discuss one type This, of course, means that the attacker can fire

which may be employed by a fighter with fixed only one salvo and, consequently, the projectile

guns. The principle of the attack is to fly in a must be a large shell or a salvo of rockets.
straight line toward a point well in advance of
the target. This point may be a collision point; The general problem may be visualized by

that is, the point where the attacker would referring to figure 63. The bomber is the target

intercept the target. The course is, therefore, and flies a straight line path BH at constant L

called a collision or interception course. Actu- speed V,. The fighter is the attacker and flies

ally the point of aim should not be the point of the straight line path FH at constant speed Vi..
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VB B

0

Y >I-

F
Figure 63. -Collision Course

Let S be the point of release of the salvo and x -correct angle to insure a hit for a
let us define additional symbols as follows: predetermined projectile range R.

R,=projectile range; distance from re- From figure 63, it is easy to se~e that the fol- L
lease point to impact point H. lowing relations hold:

t=time of flight of projectile from S (3.86) d sin kX V,,t sin 9,
to H. (3.87) (VBt) 2 =d 2 ±+r 2- 2rdcos X;

t time of flight of bomber from B to H. (3.88) r = d cos x + V~t cos 0;

7- present range, BF. (3.89) d =V, (t - t1) + Rp;

d =distance from F to H. (3.90) -i = V,,. cos ?. + VB cos 9;

=angle-off of bomber f rom fighter; (3.91) rw = VB sin 9 - V, ~f sn..

angle from VF to r.
If the projectile range, R,,, has been prede-

0 angle from VB to r. termined, the type of ammunition determines t,
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Figure 64.- Collision Course Example

and the problem is to get on the straight line The computed angle ,\ is then continuously
course FH for which equations (3.86) to (3.91) compared with the measured angle T until they
hold. The fighter thus flies a variable course are identical. The time t is then computed by
which has r as the angle-off of the bomber and means of
continues to vary his course until x =, after 1
which he flies a straight line FH. It is then a (3.93) t =- [(R -- VFtf) cos x - r]
mere matter of computing the release time for r
the projectile. and the release time is t - t,.

The fighter's inputs to his sighting system Figure 64 shows a calculated example for
are r, r, , VF, r, R,,, and tf. The unknown quan- the conditions
tities are 0, t, VB, and d. The correct angle X is V -= 200 yds.,/sec.
computed from the inputs by means of VF-300 yds./sec.

r 1 r = 5000 yds.
(3.92) sin A r--- I cos ,r . Rp 5 1000 yds. t

rRj,,- Vrtf tf 1 sec. .

T arc sin 3/5

Equation (3.92) is obtained by eliminating d, The maneuvering path of the fighter is a circle of

t, V, and 0 from equations (3.86) to (3.91). radius 3,000 yds. with center at (0,4000).
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Chapter 4

THEORY OF LEAD COMPUTING SIGHTS

4.1 Introduction (4) A system of control which keeps the
appropriate angular distance between

Reference to chapter 2, equations (2.9) and gun and line of sight.
(2.15) in particular, indicates two distinct A fire control system is classified as local or
methods of calculating leads. One method, as
exemplified by equation (2.9), expresses total remote according to whether the means of con-
lead in terms of: (1) bomber speed (V)", trolling the gun is actually located at the gun or

is physically separated from it. In the remote
(2) target speed (VT) ; (3) angle-off of the
target (T) ; (4) approach angle of the target case, suitable electrical or mechanical inter-

connections must be provided to link the location(a) ; (5) muzzle velocity (V,) ; and, (6) the oftesginsyemthguadhec-
bullet slow-down factor (q). Essentially, this puting unit; any or all of which may be in
method, as has already been pointed out, breaks pate lcions deenin on ach specif
up the total lead into a correction for ownspeed stalat ion.
and a correction for target motion. A sight i

which computes leads in this manner is spoken 4.3 Disturbed and Director Systems
of as a vector-rate sight. Equation (2.15), on Fire control systems may be further classi-
the other hand, furnishes total lead by decom- fled according to the controls by which the
posing it into a lead arising from the relative gunner constrains the line of sight to track the
motion of the aircrafts, the so-called kinematic target. This classification amounts essentially
lead, and a ballistic lead. The purpose of this to describing sights as belonging either to direc-
chapter is to consider the theory - not the tor systems or disturbed systems. In a director
mechanics - underlying devices which work on system, the gunner has immediate control over
the basis of this second method. Hence, through- the angular position of the line of sight by

out this chapter, by a lead computing sight we directly positioning the appropriate optical gear.
shall mean one which computes kinematic lead The information gained from this positioning
from the angular velocity with which the gunner then goes, via electrical or mechanical means, to
tracks the target and from the range which the the computer which uses it to determine the
gunner determines, and then combines the re- proper lead and transmits this lead to the con-
sult with an appropriate ballistic deflection. trol system which in turn positions the gun. In

modern fire control systems employing servo-
4.2 Essential Elements of a Fire Control mechanisms (automatic control devices), the

System director system is often of the remote control
type wherein the gunner is replaced by a radarSince a lead computing sight is but one type tracking mechanism which positions the line of

of fire control mechanism, it would be well to sight automatically. The chain of events out-
list the essential features of a fire control sys- lined here is indicated by figure 66 which char-
tem. In general, a fire control system provides: acterizes a director system.

(1) A line of sight by means of a radar
antenna or a telescope or other optical GUNNER LINE OF SIGHT
gear, mounted so that it can move as
the target is tracked; GUN

(2) A computing unit which determinesthe lead to be used; COMPUTING UNIT

(3) A gun; Figure 66. - Director System
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In a disturbed system, the gunner, either hand, smaller, lighter, and simpler mechanically.
manually or with the aid of a power mechanism, This last follows from the fact that a low-

exercises immediate control over the position powered mechanism can position an optical line

of the gun. Information giving the instantane- of sight with respect to a gun, while a much
ous angular position and angular rate of the higher power level is needed for positioning the
gun is then fed into the computer which uses gun with respect to the line of sight.
it to compute the proper lead. This computer In this chapter, we shall be concerned pri-
output then actuates a control mechanism which marily with lead computing sights which are
drives the line of sight into tracking position disturbed reticle; local control systems although
to effect the required lead angle. The corre- many of the concepts involved in the analysis,
sponding diagram for this is shown in figure 67. such as operational stability, transient behavior,

smoothing of rates, etc., are applicable to more

GUNNER t- GUN general situations.

OF SIGHT 4.4 Types of Tracking Controls and Their

SLNOSPeculiarities
COMPUTING UNIT To control the angular position of a telescope

Figure 67. - Disturbed System (or gun or turret) the gunner turns a hand-
wheel (or a "pistolgrip"). If we denote the

angular coordinate of the telescope by 0 and
The important thing to notice here is that the the angle through which the handwheel has
gunner has only an indirect control over the line been turned by 7, then we may classify the
of sight. The name "disturbed sight" arises tracking controls by the manner in which the
from the fact that a given motion of the gun control mechanism relates the variables 9 and
will in general produce a different motion of 7. This classification yields essentially three
the line of sight, a situation that is often con- types of tracking controls:
fusing to the gunner.

For illustrative purposes we shall consider a (a) Direct Tracking. Here the angle
particular version of a disturbed sight known through which the telescope moves is
as a disturbed reticle sight. This sight, the basic directly proportional to the angle
physics of which will be taken up in the next through which the handwheel has
chapter, provides a line of sight by means of an been turned. The corresponding rela-
illuminated reticle which is reflected, by a mov- tion between 0 and y is 0 - A (A -

able mirror system within the sight head, onto const.).

a viewing glass fixed on the gun. The gunner (b) Velocity Tracking. The velocity with
moves the gun so as to keep the reticle image which the telescope is moving at any
centered on the target and in so doing auto- time is proportional to the angle
matically displaces the line of sight from the through which the handwheel has
direction of the gun bore by the proper lead. The been moved. In symbols, 0 - Br,
range to the target, a continuously varying (B = const.). Tracking of this type
quantity, is obtained by varying the diameter of can be effected by having the telescope
the reticle image to agree with the wing span driven by a variable speed motor, the
of the target, which in effect makes range a speed of the latter being regulated by
function of reticle image diameter. Range com- positioning the handwheel. Velocity
puted in this fashion is referred to as stadia- tracking enables the gunner to slew
metric ranging. the telescope quickly through a large

Whereas sights based on the director prin- angle onto a new target merely by
ciple make the problem of tracking easier for giving the handwheel a larger dis-
the gunner, disturbed sights are, on the other placement.

G .......... .. ,......'



THEORY OF LEAD COMPUTING SIGHTS

(c) Aided Tracking. This combines (a) 4.5 Smoothing of Input Data
and (b) in that any displacement of
the handwheel not only positions the In order to predict the future position of a
telescope but also gives it a velocity. target, the computing unit of a sight must have
The equation of control may be writ- as inputs coordinates of the target's present
ten as position, say the present range r and the present

angle-off T. In addition the present target rates,(4.1) O=A,?+B7,. r and T also must be known in order to have

From (a) and (b) it follows that for information concerning past target behavior.
The quantities 7, ; and r, r are obtained by theunit displacement of the handwheel,

Sequation (4.1) effects a displacement -gunner's tracking and ranging of the target.

of 0 by A units and also changes its The values of r obtained by stadiametric rang-
velocity by B units. ing are generally poor and jumpy so that nousuable values of r can be obtained in this

The ratio A/B, measured in units of time, is mamier. Present day radar tracking is much
the ratio of direct to velocity control. By vary- more reliable.
ing this ratio, the velocity control can be made The process of tracking furnishes the sight
more or less important relative to the direct with continuous values of the telescope's angle-
control of the telescope. off, given say, by the function a(t). If the

tracking is perfect, then at all times t we haveInvestigation has shown that aided tracking n (t) -_7-(t). Needless to say, trackiiig is never
gives, in general, more satisfactory results than perfect and is always attended by an irregu-
either direct or velocity tracking. Why this larly oscillating tracking error, a-r. Thus, if
should be so may be seen from the following a(t) is mechanically or electrically differen-
facts: tiated to give a(t), the resulting rate will differ

(1) A gunner can track a target whose from the desired target rate by the derivative
angular velocity is constant merely by of a-r. Since this may be a marked difference,
keeping his handwheel fixed, while it is advisable, before using the raw data 0 (t),
with direct tracking the handwheel to subject it to a suitable smoothing or averag-
must be moved continually. ing process.

(2) For slowly changing target velocity, We shall show that the solution x = x (t) of
the gunner can correct for any angular the first order linear differential equation
distance he has fallen behind by put-
ting in an additional displacement of (4.2) kx + x f(t) (x - x0 , t = t0)
the handwheel. This has the effect of
simultaneously changing the position where k is a positive constant, is, in a certain
of the telescope and increasing its sense, an averaged value of the input function
angular rate. By the time he has f(t). A computing unit whose input is f . ).and
fallen behind again, all that is needed which operates mechanically or electric 'Ily to
is another slight increment in the posi- produce an output x(t) according to (4.2), auto-
tion of the handwheel. matically yields, then, smoothed values of the

(3) Aided tracking helps the gunner to input. The equation (4.2) may be achieved in
continue tracking through a region in practice by a simple resistance-capacity or a
which the target is temporarily not resistance-inductance network with circuit time-
visible. constant equal to k.

(4) Experience shows that aided tracking Solving (4.2) by the appropriate formal pro-
is, in general, more "stable" than cedure*, we find
velocity tracking in that there is less
"tendency for the gunner to "hunt" *See "Elementary Differential Equations" by L. M.
with the controls. Kells, (McGraw-Hill), pp. 49-50.
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et/k

to 0 t

Figure 68.- Graph of the Weight Function et/k

(_,o_.) or what amounts to the same thing,

(4.3) x- xe

t (- )

1 f (4.6) x-f(t) +e [xo--f(t)].
I/k

ke t0  The second term in the right member of (4.6)

If we think of the term e/k- as a weight function, usually diminishes rapidly with increasing time

then the weighted average of [(i is and for this reason is spoken of as a transient.
The time interval required for this transient to

t 1
1* diminish to - times its initial value is called(44 e e d t

k ( e/k-- eto/k e/f(t)dt ) t the time constant of the circuit and is evidently
)to equal to k. From (4.6) we see that, for a time

all of which suggests that we rewrite (4.3) in interval t - t, which is large compared to k,
the equivalent form the solution x (t) is approximately the weighted

average f(t) of the input f(t). It is in this sense
_ that the output x(t) is a "smoothed" value of

(4.5) x-- xoe the input f(t).

The time t being the present, (4.4) shows
ko) t that f(t) is an averaged value obtained by aver-

1-e f aging f(t) over past values beginning with
+ k e /k f (t)dt, f (t,). The graph of the weight function e', k has

k ( eta-t°o/k) .t the form shown in figure 68. As k is varied,
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there is obtained a family of curves all passing (4.10) f (t) - x(t) - kU(t),
through the point B (0, 1). Passing from left to
right along these curves we see that for small k Which interpreted, says that the difference be-

the curves rise more steeply through B than for tween input and output is, to a first approxima-

large k, the measure of this steepness at B being tion. proportional both to the time constant k

in fact 1 Ak. Hence, if we wish to weight recent and the rate of change of input. These con-

values of f(t) more heavily than earlier values, clusions which we have underlined are, as was
it suffices to choose a weighting curve that rises stated subsequent to equation (4.7), valid only

rapidly; this means choosing a small value for if k is small and x is changing slowly.

the time constant k. But if it is desired to make
f(t) depend appreciably on early values of f(t), It is worth noticing that if we regard the

k should be chosen larger. In general, we see input f(t) as the sum of two terms, f,(t) and

then that the smoothing effect varies inversely /_ (t), the first a "signal", the second an "error"

as the time constant k. or "noise" term, then the solution of (4.2) can
be regarded, by the Principle of Superposition,

The effect of a smoothing operation is to make as the sum of the solutions x, (t) and x.. (t), cor-%

the output value x(t) equal to the input value responding to f,(t) and f.(t), respectively, as
at some past time, thus, in effect delaying the inputs. In other words then, the output x(t)
input. This may be shown analytically as fol- x, (t) + x.. (t) will consist of "delayed signal"
lows. If x is eliminated between (4.2) and the and "smoothed noise."

equation obtained by differentiating (4.2),
namely, In conclusion, we summarize the role of the

time constant k by noting that an increase in
kx x= fU), the value of this constant will

there is obtained (a) Increase the time required for the
transient term to die down by a speci-

(4.7) x =.f(t) - k'/(t) + k2-x. fled percentage of its initial value;

If .x is changing slowly, x will be negligibly (b) Increase the smoothing effect on input
small; hence if, in addition, we choose k quite error, i.e., the averaging process will
small, the k'x may be dropped. There is then extend over an effectively longer in-
obtained the approximate solution for x(t) in terval;
the form

(c) Increase the amount by which the
(4.8) x f (t) - kU(t), signal or input will be out of date.

which is often sufficiently accurate to be useful
in the typical applications of this equation to 4.6 A Generic Lead Formula for the
lead computing sights. The terms in the right Coplanar Case
member of (4.8) are the leading terms in the
Taylor expansion of f(t - k) about the point t.
Thus the output X(t) of the smoothing process Equation ( of che 2ivesan ap-
is approximately proximate formula for .k, the kinematic ead,

for the coplanar case of rectilinear gun and
curvilinear target motion. This equation may be

()/ rewritten in the form

a form which shows that the output behaves hill
roughly like the input delayed by k seconds. (4.11) sin .= --

From (4.8) we have rVf
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Figure 69.- The Kinematic Lead

where, it may be recalled, note that, for straight line target motion,
M =0 and h 1 1. Also, if the target path relative

rf to the gun is a circle traversed with constant
V, - - average projectile velocity speed, it is easily seen that M 0 0, h = 1 and

tf over the future range, V/VI = 1. In these cases, then, it may be said

that. the kinematic lead Ak is equal to the

and "angular travel lead" t a. For the target trav-
ersing a pursuit course, numerical computa-

t,' M tions, supported by the theory of such curves as

(4.12) h 1 + • •--M--) developed in chapter 3, show that h * 0.9. All
these facts suggest our writing the kinematic
lead formula as

Replacing M by r- and r by V~t, where V, is the
average projectile velocity over the present (4.14) A& = U
range and t is the present time of flight of the
projectile over the present range, we find where u is a quantity to be calibrated to fit

certain classes of target paths. It has the dimen-
sifA--h V tsions of time and represents, in a sense, anaveraged ideal time of flight. We shall refer toIu henceforth as the "time of flight multiplier"

If perfect tracking is not assumed, the angular or the sight "sensitivity".
rate actually used in the latter equation will be
a and not r. Since the true lead is measured in
radians and is a relatively small angle, sin A& 4.7 The Basic Differential Equation of a

will be approximately equal to A,. Thus, Typical Gyro Sight

1 h V,\ . We shall now examine the tracking problem
(4.13) Ak h t for a specific type of lead computing sight in

\Vf which the kinematic lead is computed from

The average shell velocity Vr does not, for (4.14) by solving a certain differential equation.moderaverangeshange velocity rapidos eno , fo Although other mechanizations are possible, a
hmoderate ranges, change very rapidly. Hence, usual procedure is to employ a gyroscope to

the fraction VomVf does not deviate appreciably measure the target's angular velocity.

The quantity h, given by (4.12), is worth Referring to figure 69, if we ignore for the
further study. From equation (2.24) et seq., we present the ballistic lead Ab, then GTo and GT,
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GUN LINE L
G LN TELESCOPE LINE

VG GYRO AXIS

G ,REFERENCE LINE
G.

Figure 70.- The Gyro Axis as a Computing Line

give the telescope direction and the direction of scope. This means, for example, that if the gun
the gun-bore axis, respectively. It should be and telescope are originally aligned and the gun
noted that GT( is along r(. Letting the reference is given a sudden jerk away, the telescope, being
angles of the gun and telescope be • and •, we independent of gun velocity, does not respond
have then, 7 at once but begins to move only after the dif-

ference y - a has made itself felt. This situa-
(4.15) A - y•,-- a tion, known as neutral tracking, is characterized

by a sluggishness in the telescope's rate of turn.
and

The situation can be remedied by modifying
(4.16) k, our basic equation (4.17). As things now stand,

the gyro spin axis is along the telescope direc-
F41stion. Let us instead envision the situation de-

picted in figure 70, in which the gun, telescope,
and gyro axes move in such fashion that the

(4.17) u'v + A7 ratio of angles, gun line to telescope line andtelecop line to gyoaxis iscostnt

This could well be the differential equation we lescope gyro a s constant.
are seeking except for the fact that tracking If angles are measured positively in the clock-
would be difficult with such a sight. Why this wise sense, this implies that
is so, may be seen as follows. From (4.14) and
(4.15) we have as the equation connecting sight - - a Ak
line and gun line, (4.19) =-=- a

(4.18) • - where a is called the coupling constant or sight
u parameter. The ratio in (4.19) is kept constant L

in the sight by means of an -optical or mechani-
We notice here that , is independent of ., the cal linkage. How this is actually done in a typical
gun's rate of turn, and is a function of the disturbed reticle sight will be clarified in the
magnitude of the angle between gun and tele- next chapter.

103



7777 7 ,

NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

From (4.19) we also find implies that the range does not vary greatly
during the projectile's time in flight. Using the

(4.20) a - solution to (4.2) we find, with the initial condi-(4.2 ) • - 'tion t - t ,\, Al At;, (t,),

from which we see that, for a typical a-value, (- •)
say - .5, the telescope line will be, at all times, a,

one-third of the way from the gyro axis to the (4.24) Ak(t) - e [Ak(tW) -U0] +-U
gun-bore axis.

One immediately obvious advantage of the
linkage arrangement is that, when the gun is where ua is the weighted average of ua given by
moved, the telescope will respond at once with
at least a fraction of the motion, even though 1
the gyro momentarily remains still. Thus, (4.25) u--
coupling the three axes removes the undesirable - au(,t--an tO/I-- it,

feature of neutral tracking mentioned earlier. (e -e

Other advantages will appear in the discussions t

to follow. etlk
e',uudt,

Returning now to figure 70, we see, by way f
of the linkage arrangement, that Ak will be a to
function of the rate of turn of the gyro axis. In k au.
fact, equation (4.14) will be replaced by

In the light of our previous discussion in 4.5,
(4.21) At 17 on smoothing data, we see that (4.24) furnishes

a smoothed output u a' of the input function i t,
the exponential term being a transient for nega-or, sin~ce 77 a + a .%,, by tive values of the sight parameter a. The rapidity

(-.22) .,, -- a (• ± a .,~). of decay of this transient depends on the vari-able "time constant" -au, which, as mentioned

From this it appears that we have introduced an before, is essentially a function of range. Fornsubstituting ± a for short range, the target angular velocity ; andapp~reciable error in sbtuinor+a.k. fo hence the input function it o' changes rapidly.but it w ill be sh ow n later th at for properly B u t fro m (4 .10) ,
chosen values of a the error is a rapidly di- But from (4.10),
niinishing transient.

d
(4.26) Ui- Ila -au- (uac)

4.8 Solving the Basic Equation- dt

Interpretation In words, this says that lag in lead due to
smoothing is proportional not only to the rate

Let us rewrite (4.22) in the form of change of it a but also to -a I. It is interesting
to note that, depending on the target range,

(4.23) -an :• +.-[-., = u;. each of these factors helps in turn to keep the
smoothed lead lag small. Thus for short ranges,

This equation is a particular instance of (4.2) d
if we regard -av. as constant or, for our pur- larger values of - (i a) are compensated for
poses, as being relatively constant. The quantity dt
it depends essentially upon the range so that by small values of --av, while for longer ranges,
the assumption of the relative constancy of u if changes less rapidly, thereby making up for
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larger values of -au. In addition, since the sight sient term a SMALL negative a-value is de-
parameter is yet at our disposal, we note that sirable. To employ this fact, some experimental
for a numerically small value of a, the smooth- sights have been constructed using two different
ing effect on input error will be less. In fact, a-values. The numerically smaller of these
we have already seen that the output behaves values is applied during the initial interval of
roughly like the input delayed by k-=-au tracking and transient decay, the numerically
seconds. The smaller k is, the more the output larger being switched on later.
behaves like the input and the less, then, is the
smoothing effect. As far as operation of the sight is concerned,

we note the following:

4.9 Transient Behavior (1) The transient term diminishes more
rapidly when the range setting, and
hence the sensitivity, is small.

Upon locating a target in the sky, the gunner

will probably find the gun pointing in some (2) In order that the false lead introduced
quite different direction, thereby necessitating by slewing be as small as possible, the
his slewing the gun rapidly into the approximate by s hould b e minimum the
target direction. So far as the sight is con- setting (sensitivity) while slewing.
cerned, rapid slewing of the gun is interpreted Thus, the range should be set at a
in terms of very fast target motion, whereupon value appropriate to the target only
the computing unit puts out a correspondingly alue aprorate ot targeto
large lead. In fact, for so large a gun rate, the after the gun has gotten on target.
reticle may move far from the gun-bore axis (3) When possible to do so, the gunner
and might even disappear fronm the gunner's should pick up the intended target
field of view. When the gun has arrived in just well before it gets in range so that the
about the right position, the reticle leisurely transients can settle properly.
comes drifting back into the center of the field.
It is of interest, therefore, to see what can be
done to hasten the decay of the large transient
lead set up. For this purpose we rewrite (4.22), 4.10 Operational Stability
recalling that a r -- Ak, in the form

We shall say that a sight is operationally
stable if a small but sudden displacement of the

(4.27) (1 - a) U A", +-Ak u U,. gun in a given direction gives rise to a sudden

displacement (not necessarily of the same size)
This equation shows how the computed kine- of the reticle in the same direction. If the reticle
matic lead depends on given motions of the gun. is displaced opposite to that of the gun, we shall
The equation1 corresponding to (4.24) is speak of the sight as being operationally un-

stable.
(4.28) Ak(t)

- (,to f)/(i_.•),, • In conformance with the above definition,
[Ak(t 0 ) - uy] we now show that unless a sight has a negative

+-u y, a-value it will be operationally unstable. If in

the transient lead being the first term on the (4.27) we replace Ak by y,- a, there results the

right. equation

In section 4.10, we shall show that for "opera- (4.29) (1 - a) i ---- + -auny + 1,,
tional stability" of a sight a negative a-value
is necessary. With this in mind we see from which relates the telescope and gun-bore axis
(4.28) that for more rapid decay of the tran- directions. One may easily show that, in carry-
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ing through the discussion, there is no loss in correct target position as origin, we might

generality in assuming the gun and telescope inquire, since this is a disturbed-reticle system,
directions initially aligned. Then -y = 0, and what must be the gun motion to produce a par-

ticular reticle motion? In particular, if the .

Sand y will represent the initial reticle and gun gunner sees his line of sight oscillating with
amplitude Aa, with what amplitude is the gun

velocities. Hence, we have initially itself oscillating? If we denote the latter by
Ay and let C be the ratio Au/A-1, hereafter re-

ferred to as the amplification ratio, then C is
(4.30) '=(¾,, the factor by which the gun motion amplitude

is multiplied when it is transmitted to the line
of sight.

which shows that the rate of reticle displace- To initiate the study of the reaction of the
ment is proportional to the rate of gun dis- sight to oscillations of the gun, we begin, quite
placement and will be in the same or opposite naturally, with equation (4.29), relating sight
direction according to whether a is negative or position to gun position. Let us suppose that
positive. (For all cases lal < 1). the actual gun motion y(t) consists of a steady

Thus when 0 < a < 1, the reticle will move motion yo(t) upon which is superimposed an
in the direction opposite to that in which the oscillatory motion y, (t). Replacing -y in (4.29)
gun moves and, by our definition, we have by y-, + •,, we can write solution a-(t) in the
operational instability. This type of situation form a. + a,, with ai, (i- 0,1), being the solu-
is very confusing to the gunner and leads to tion of (4.29) with -y replaced by yi (i = 0,1).
poor tracking. The tendency in trying to get The function uo(t) does not concern us here.
on target would be to jerk the gun still farther Hence, it is sufficient to assume a "reasonable"
in the sa.ne direction, an act which would result oscillatory motion of the gun, described by
in sending the reticle farther in the opposite Y1 (t), and study the corresponding function
direction. To continue this divergent process o,(t). Thus, let us assume the sinusoidal oscil-
for a few seconds may well put the gunner off lation
course entirely. y, = Ay, sin wt r

The case a _- 0 is that of neutral tracking, CL)

discussed subsequent to equation (4.18). When of amplitude Ay radians and frequency f-
27r

a < 0, the reticle and gun will move in the same
direction, the velocity of the former being a oscillations per second. This assumption is not
proper fraction of the latter. In particular, if unreasonable in view of the theoretical possi-
a -=-½, the reticle will follow the gun with 1/3 bility of decomposing more general oscillations
of the gun's initial velocity. The particular into sinusoidal ones, using a Fourier analysis.
a-value to be used in a given sight is a problem Also in equation (4.29) we assume that u is

in design that can generally be determined only constant. We may do this since, relative to high
by trial and error. The different factors involved frequency oscillations of the gun, u would -.

are summarized in section 4.12. change slowly. Hence (4.29) becomes

(4.31) (1-a) u&o-+=A- sin wt

4.11 Amplification of Gun Motion with -au w Ay cos wt,

Respect to Sight Motion whose "steady-state" iolution is -

- kA,,
As was pointed out in section 4.5, the process (4.32) u, (t) Cos Wt

of tracking is never perfect but is always at- (,.2±-k,2 ) (1-a)
tended by an irregularly oscillating tracking kA lk, au •]
error or "noise". Since the tracking is reflected + sin •t
in the motion of the reticle with respect to the C2 + kJ
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1 a-value of a lead computing sight must be chosen
where k,- with due regard for the following somewhat

(1-- a)u contradictory requirements:

The amplitude Aa, is obtained from (4.32) by (1) For operational stability we need, first
taking the square root of the sum of the squares and foremost, a negative value of a.
of the coefficients of the trigonometric functions
in the right member. After much simplification (2) To make the amplification of gun mo-
we find that tion with respect to sight motion less

I1 7 (-a)I 2tf requires an a-value larger in magni-
(4.33) C = A•/AaIA 1 tude. Specifically, this increase im-

1 + 4 7-2(1 - a)' u'-qf2 proves the operational stability by
making the sight respond more em-

In words, then, we may say: phatically to gun motion and hence
makes for ease in tracking.

Amplitude of Sight Oscillations = C (Ampli-
tude of Gun Oscillations). The oscillatory mo- (3) For faster decay of transient leads, an
tion of the gun may be due to a variety of causes a-value must be negative and smaller
such as gunner's jitters in handling the controls, in magnitude.
recoil of the shot, etc. Since a is usually nega-
tive, the factor C < 1. As f varies from 0 to (4) Smoothing of input data is greater for
+sc, C decreases monotonically from 1 and larger values of a.
approaches as a limit the quantity (-a/i -
a). In particular, if C is much smaller than 1, (5) The delay in lead output is greater for
the gunner will note only a small oscillatory larger values of a.
motion of the sight, even when the gun has
large oscillations. Thus, the gunner may think Thus, in designing a sight, the engineer or
he is tracking well when in fact the gun is physicist must resolve to the best advantage
wobbling badly. This also shows that for high these contradictory requirements. A compro-
frequency gun oscillations, C tends to zero with mise value somewhere in the neighborhood of
a. Hence, in order to make the amplification of a -½ is often quite satisfactory. It should be
gun motion, with respect to sight motion less, a mentioned that a sight with a positive a-value
should be chosen larger in magnitude. could be designed and used, but, not being

operationally stable, it would take considerable
In the above discussion, the gun and sight practice on the part of the gunner to master its

motions are both of a sinusoidal nature. How- peculiarities. Such a sight, as mentioned earlier,
ever, these motions differ not only in amplitude would have initial reticle motion to the right
but alsco in phase. Thus, in reaching peaks, the for initial gun motion to the left, after which
sight will lag the gun by r seconds, where . is the reticle would again move left after a certain
found from (4.32) to be lapse of time.

1 [ 2rfu
(4.34) - tan-'

2 if L1-4 7r a(1-a)-f2u2 4.13 The Basic Differen'ial Equation
Including Trail

4.12 Choice of the Sighf Paramefer a

The differential equation derived in section
We have seen throughout the preceding dis- 4.7 and the associated diagram of figure 70

cussions in this chapter the significant part are inaccurate to the extent that the ballistic
played by the sight parameter a in the behavior lead or bullet trail has been omitted from the
of the sight. in summary, we may say that the considerations. Let us now see how the basic
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GUN LINE

LINE TO IMPACT POINT

LINE OF SIGHT

V ---- GYRO AXIS

VaA

G REFERENCE LINE

Figure 71.- Ballistic, Kinematic, and Total Lead Angles

equation (4.23) should be modified to include + - a A =-o + a(Ak - Ab)
the effect of trail.

we may write the basic equation (4.36) in the
It was shown in chapter 2 that in firing forms

against a relative target course from a bomber,
the gun must be moved from a line pointing at (4.37) -ý\1 = it (o + a A)

the impact point, forward; the reason being
that in relative motion the bullet curves to the (4.38) -an it+ A--U -+ A1 ,
rear. Considering a coplanar attack only and
neglecting gravity drop, this bullet-trail angle, (4.39) -au .ý, + Ak U - a-u A"
which we shall denote by .,,, will then lie, along
with the kinematic lead .\•, in the plane deter- In general, only a fractional mil error will be
mined by the gun position and the relative committed when .Kb is neglected. If this be done,
target path. The diagram appropriate to this then equations (4.38) and (4.39) show that to
situation is shown in figure 71. obtain the total lead A it is sufficient to find Ak

from equation (4.23) and combine it with A1 via
For the total lead . there is the relation, (4.35). This fact will be looked into with greater

evidlent from figure 71, detail in the next chapter when a particular

(4.35) Amechanization of (4.38) will be considered.

It should be pointed out, in conclusion, that
As was done in section 4.7, we calibrate a sensi- from the viewpoint adopted in this chapter the
tivity function u such that lead is obtained as a "steady state" solution of

a first order linear differential equation whereas
(1.26) .\,. - u the formulas in chapter 2 are actual expressions

for the leads derived independently of any de-
it being assumed here that the trail offset Ab is fining differential equation. The basic mathe-
included in the angular deflection of the gyro matical formulation for the lead is dependent
spin axis from the gun-bore axis. Since of course upon the specific manner of mech-
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anization of inputs in the computer. Here also system of coordinates was used and the total
we made things simple by neglecting gravity lead was decomposed in that system. If in
drop of the projectile and by assuming a single figure 34 the gun was constrained to move in a
plane of action. When the air courses of gun and plane passing through i G and this plane in turn
target are not coplanar, it is best to break up wa's free to revolve about i we would have the
the total lead into components as was done in so-called "roll-and-traverse" system of coor-
section 2.8 of chapter 2. The manner in which dinates. The formulas expressing the lead com-
these components are defined geometrically will ponents in one system can always be changed
depend upon the mounting of gun and line of to the formulas appropriate to any other sys-
sight. Thus, in section 2.8 an azimuth-elevation tem, by a suitable transformation of coordinates.
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Chapter 5

GYROSCOPIC LEAD COMPUTING SIGHTS

5. I Some Preliminary Ideas from Dynamics mi acted upon by a set of external forces Fi, the
time rate of change of angular momentum of

To aid in understanding the gyroscope, its the system becomes equal to the sum of the
properties, and its many functions in fire-con- moments of the external forces Fi about 0. We
trol instruments, we need to review briefly some shall refer to this as the Theorem of Angular
fundamental ideas from dynamics and to under- Momentum. It should be noted that the internal
stand how they apply in explaining gyroscopic forces, that is those forces consisting of the
behavior. We begin by considering the notion of mutual actions between particles of the system,
the moment of a force about a point, do not enter into the statement of this theorem.

This follows, since these forces occur in pairs,
In figure 73, let P be a particle of mass m,acted on by the force F, and moving with veloc- each pair representing the interaction of two

acted on b- e refored F, anexed moving wth veo-e particles of the system. The two forces of each
ity i V referred to the fixed point 0. Then pair, since they represent action and reaction,
the moment of the force F about 0 is defined rsetvlaeeuli antd n poas*, respectively, are equal in magnitude and oppo-
as*, site in direction and possess the same line of

action. Hence, the vector sum of the forces in
5.1) -r F.each pair is zero. From this it follows easily that

the vector sum of all the internal forces, and of
The scalar value My, also called the torque, is their moments about the point 0, is zero.
easily seen to be

(5.2) Mo Fp

since F

M,=-rF sin (7-a)=rF sin a--F,

Thus the magnitude of the moment is equal to 0r

the product of the force magnitude and the per- Figure 73. - Moment of Force About a Point
pendicular distance from 0 to the line of action
of the force. The Theorem of Angular Momentum, as

The momentum of the particle P is defined stated here, assumed that the point 0 is fixed
as the vector quantity inV. The moment of in space. However, the theorem can be shown
momentvm or angular momentum of P is then to hold for the case where point 0 is in motion,
r X mV = H. Since providing that one of the following conditions

if =- V X mV + r X via - r X F is satisfied:
(a) The center of mass of the system. of .

where a is the acceleration of the particle and particles is at rest.
F -ma, we see that the time rate of change p
of the angular momentum about the fixed point (b) The center of mass of the system of
O is equal to the moment of the force about 0. particles is in motion but coincides with
In the case of a system of particles Pi of masses the origin 0.

*See the Appendix for a review of vector definitions Since application in this chapter is to be made
and operations. to cases in which 0 is a point in an airplane, we
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shall assume hereafter that the point 0 is taken But because of symmetry,
at the center of mass of the system of particles.

For a continuous body and not a discrete fp z dm - 0
system of particles, the angular momentum H J

is obtained by the usual process of subdividing, and hence
summing and passing to the limit, and is ex-
pressed by (5.4) H Iz

(5.3) H=frxVddm where

where the integration is taken throughout the I J p2 dm
body.f

zo".is the moment of inertia of the body about the

Z z-axis. From (5.4) we obtain

(5.5) H = I,7

dm where m -- t is the angular acceleration of the

r body.

0, On obvious generalization of the above situa-
tion is to consider the body of figure 74 as
having a motion consisting of a rotation about
a variable axis through 0. Thus, in general, all
points of the body except 0 will be in motion.

Figure 74, - The angular velocity vector 1A can then be

Rotating Solid decomposed into components along the axes of

of Revolution symmetry z and along any two axes x, y per-
pendicular to z and to each other. Thus,

Since the present discussion is preliminary (5.6) a + it + Itz
to a discussion of gyroscopic behavior, let us
consider (5.3) for the case of a homogeneous The moment of momentum of the body about 0
solid of revolution rotating about its axis of is then, by an immediate extension of (5.4),
symmetry with the fixed point 0 on this axis.
We assume first that the axis of symmetry is (5.7) H = A t,- + B 11,, + C 1A
fixed in space. 0

Let the angular velocity of rotation be a- where A, B, C are the moments of inertia of
ilk, where k is a unit vector on the axis of the body about the x, y, z axes, respectively.
rotation z and let p, r and z be as shown in fig-
ure 74. Then since p • k - 0, we have

5.2 Theory of the Gyroscope
We shall define a gyroscope as any rigid

-- Z 1 P body rotating around an axis through its center

and of mass. This axis will be referred to as the
spin axis or gyro axis. The body is generally

H St considered to be heavy, symmetric, and to have
0-- Pdm j fz dm high angular speed about its spin axis. Two
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separate mountings for a circular disk gyro are C
shown in figures 75 and 76. Either mounting
permits the spin axis to be placed in any posi- GIMBAL2

tion. In figure 75, however, the center of mass GIMBAL 3

of the system is always directly above the
pedestal support. Rotation of gimbal 1 about
AB moves the spin axis in elevation, while GIMBAL.1
rotation of gimbal 2 about CD moves it in
azimuth. This is known as Cardan suspension. 0 B

Let us analyze the situation shown in figure A
76, where the spin axis is perpendicular to the
vertical y-axis. The weight of the gyro rotor is
W and its spin angular velocity is UJ•. R is the DISK
reaction at the suport 0. If the rotor were not
spinning, the torque T - W 1 would cause the
gyro to fall; but, with the rotor spinning rap-
idly, the spin axis OA begins to rotate about
the y-axis. We speak of this motion as preces- D
sion. Assuming no bearing friction at 0, we
shall show that for precession in a horizontal
plane the precessional velocity to' is given in
magnitude by BASEBASE ;.

y Figure 75. - Circular Disk Gyroscope

7A
/ °/

Figure 76. - Gyroscopic Precession
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W1
(5.8) o' (5.16) C + (C - B) -cos a] co' X --

where C is the moment of inertia of the disk OA X W - T.

about the spin axis z. Equations (5.14) and (5.16) remain valid when

If the total angular velocity of the system W is replaced by a resultant force F other than

be denoted by co with components co, co, coz, we the weight. In practice, the spin axis is not of

see immediately that, for the case of precession negligible weight as compared with the weight

in a horizontal plane, of the gyro rotor and the point 0 is then best
located at the center of mass of the system.

(5.9) co,- 0, o, co', ( o , Indeed, as was stated in connection with the

Theorem on Angular Momentum, the point 0
must be so located in order that the theorem

(5.10) Sk + co'. be applicable to cases where the center of mass
is in motion as would be the case for a gyro

The angular momentum of the system is then, mounted in an airplane in flight. From (5.16)
using (5.7), we also note that when the precessional speed

5.11)H Bc + C . ,' is considerably less than the spin speed 0 (in
(5.11) symbols i > > ,,') the term containing cos a

Relative to the moving set of axes 0 - x y z, may be dropped and (5.14) is then obtained as
the vector H is constant. Its angular velocity an approximation to (5.16).
with respect to space is co'. Hence, To illustrate (5.8) numerically, let us suppose K

(5.12) HI = &' X H (see appendix) that for the system of figure 76

=W' X CZ -cCO X a. W - 1 lb., l - 1 ft., radius of disk = 6 in.,
and 0 2 400 rps.

By the Theorem of Angular Momentum, H is
equal to the sum of the moments of the forces Then,
W and R about 0. Since the moment of R about 1
Qis zero, (400)27. C

(5.13) f -OAXW where
and hence, C (radius)-'

. 2 g 2 2.
(5.14) Co)'X -=OAXW --T. 1

Taking scalars in (5.14) we find the desired 257.6
relationship 25..5. 8257.6 257.6 180
(5.15) C J£2- W I. and .' in radians/sec. is - or -

8007r 800 7 .7.-

The torque vector T in (5.14) is directed here - 5.870 per second.
along the positive x-axis. Since this is the same When the gyro is mounted as in figure 75 and
direction as that of w' X 12, we see that the the disk is spun rapidly about the spin axis, no
spin axis will always precess toward the torque precession will occur since the center of mass
axis. of the system is at the point 0 and the torque

When the spin axis makes an angle other than W 1 is then zero. However, if an external torque
900 with the vertical, say a, it is only slightly L be applied to the system, the gyro will behave
more difficult to show that the equation corre- in precisely the same manner as that in fig-
sponding to equation (5.14) is ure 76.
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TARGET

GYRO

A L.0 EAD A KV VT
, GUN BORE AXIS *

Figure 77. - Use of a Rate Gyro to Det9rmine Lead

Thus, to sum up, we have the following two
important facts of gyroscopic behavior: Z

(1) With no external torques present, the Ua
0gyro spin axis will maintain a constant z

direction in space regardless of the L.
motion of the system in which it is
mounted. \ -

(2) Under the influence of an external
torque, the spin velocity vector will
always precess toward the torque vec-
tor. More precisely, the spin velocity AK
vector 1, the torque vector T, and the GUN BORE AXIS
precessional velocity vector co', will 01
always form a right-handed orthogonal
set. Figure 78. - Using Fixed Reference Line

iu 7Axz

LLJ

Figure 79. - The Gyro Axis as a Computing Line
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5.3 Use of a Gyro to Produce Kinematic Lead stiffness from A to a point on the gun bore, in

The preceding section will now serve as the which case Hooke's Law would apply to give
* basis for explaining how a gyroscope is actually the desired ratio of F to . However, this would

basi fo exlaiinghowa grosopeis ctully give a force F in the plane of the gun's motionused in a fire control system. Referring to figure whereas we require, for precession in the right
77, let us suppose that the gyroscope is mounted
on a gun so that its spin axis is parallel initially direction, a force perpendicular to this plane.

to the bore axis of the gun, and so that the Even if this difficulty were not present we

universal joint mounting at 0 is the center of would still have the disagreeable feature of

mass of the gyro system and also is the point having a sight with zero a-value, which, as we
have seen in the preceding chapter, would makeabout which the gun rotates. Then as the gun tracking impossible. One scheme for overcom-

is turned about 0, the gyro axis will, according ing the first of these stumbling blocks is the
to the first property of gyroscopic behavior ise of t hese curreng This is the
stated in 5.2, remain pointing in its original use of electrical eddy currents. This is taken updlirection in space. If we now consider the spn in section 5.4. The theoretical remedy for the

dirctin i spce.If e nw cnsier hespin second was taken up in chapter 4 and consisted
axis to be directed along the line of sight to the keping the lin o hat afd popsr-in keeping the line of sight at a fixed propor-
target, then as the target is tracked the gyro
Smust lag the gun by an angle equal to the tionate distance between the gyro spin axis and

required lead. In other words, the gyro will have the gun-bore axis. With this in mind, we see
to precess at the proper rate in the plane of from figure 79 that K, of (5.19) should be chosen

rotation of the gun. Suppose that, as viewed 50 that Cfz
from A, the gyro is spinning counterclockwise. (5.20) KI - -

Then to achieve precession in the direction re- 2 1 - a

quired by the figure, a force F will have to be
applied, at a point such as A, directed outward This follows from the chain of equations
(perpendicular to the plane of the figure). The
precession rate w is related to the force F (5.21) Ak U17

according to equation (5.8), (with W replaced CQ
by F and lIOA). Thus, (5.22) F K, (.-q) = -

C.(2 (5.23) , (1--a)A. I
(5.17) F -7--- a).A,.

If a fixed reference line be chosen as in figure 5.4 The Eddy-Current Constrained Gyro
78, so that In the particular method of constraining a

(5.18) o, and .k,/- , gyro to precess by use of eddy currents, the

then (5.17) will be the equivalent of (4.14), gyro rotor is not a cylindrical disk as in figures

providing that we can make the force F always 75, 76, but consists instead of a spin axle with
proportional to the angle between the gun bore a flat circular mirror at one end and a spherical
proorional a ngle bee., F - witween the gun bore aluminum dome or cap at the other end (figure
and spin axestire, iae.,nF inK.re, with the propor- 80). It is mounted on a type of universal joint
tionality factor K, varying inversely with the knw asaH kesjitndhruhaply

timeof ligt mutipieritknown as a Hooke's joint and through a pulley
time of flight multiplier u, arrangement it is kept rotating about the axle

(5.19) K, __ at about 3000 rpm by a constant speed motor.

-lit This unit, together with accessories to be de-
scribed later, is mounted in a sight head, which

The quantity is a physical constant asso- is rigidly attached to the gun mount. The gun
1 rotates about the same fixed point 0 as does the

ciated with the gyroscope. gyro system (figure 81).
To realize the relationship F -K,.k, one Supp,'se now, to the apparatus of figure 81

might consider attaching a spring of variable we add a pair of electromagnets, rigidly attached
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GYROSCOPIC LEAD COMPUTING SIGHTS

~DOME

UNIVERSAL JOINT

MIRROR

Figure 80. - Gyro Dome, Axle, and Mirror

to the sight head and aligned with the gun air gap between the magnet poles. With the

(figure 82). situation as shown in figure 82, the gyro would
The iron cores of the electromagnets are be physically unable to take up its undeflected

wound with coils of wire through which a position. To avoid this difficulty, eight poles
current i flows under a constant EMF of voltage are used instead of two - four above and four
E. The current i may be varied through use of below. The dome may then move freely through
a variable resistance R. As the gyro precesses, the narrow air gaps between them. The four
the spinning dome moves through the narrow magnets on each side of the dome together

GUN

SIGHT HEAD

DOME

0 0

MIRROR

UNDEFLECTED DEFLECTED

Figure 81. - Motion of Gun with Respect to Gyro Spin Axis

117

..........-.- ,--.--.-"-. -"---,--." -. -. "..".."-"..-.- .".".-.-"--.." "..-.":"." .



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

R E

E0

GUN

Figure 82. - Precessing Forces Introduced Electromagnetically -.

have the effect of single magnets, so that the (5.26) F - c:, H i.
result is equivalent to figure 82. Hence, in the Combining (5.24) through (5.26) we find
ensuing discussion we shall speak of only two
poles, each being the equivalent of the four (5.27) F =- c 2 C2 C3 j2 V.

poles actually used. From figure 82,
When current flows in the coils, a magnetic

field of strength proportional to this current is A N =S-,8
set up between the two poles. Thus, and since 8 is a small angle, we have, to a good
(5.24) H-- c, i. approximation,

The lines of magnetic force pass through a v = A N.- Q= 18
circular area of the dome with center at A. Since Tmb
the dome is spinning, this area is being continu-
ously replaced by another. As a result of this (5.28) F = ( c c., c, i/) 8j ; 1

motion across the lines of magnetic force, elec-
tric "eddy currents" are induced in the part of or, since
the dome between the poles. With the poles 8-=-q- = (1--a) Ak,
wound as indicated in figure 82 and with the (1
dome spinning clockwise as seen from 0 (down
into the paper at A) these currents will be with
directed from A toward the periphery of the :
dome in the plane of the paper. If the linear (5.30) K-c, c. c, i - i Q.
velocity of the dome at A is v and if the eddy We now have a force proportional to .k and in
current strength be denoted by i,, then it is the right direction. It will have the right magni-
known from electromagnetic theory that tude if (5.30) is now identified with (5.20). This
(5.25) i . c2 Hv. becomes, if we replace i by E/R (Ohm's Law),

and simplify,
The eddy currents, in their turn, react with (1- a) c, c:, (c,, E" 1)2

the magnetic field to create a mechanical force (5.31) R2  • u
on the dome. This force is directed opposite to C
the motion of the dome at A and hence ver- Hence, by varying R in accordance with (5.31),
tically upward as desired. The magnitude of condition (5.20) will be satisfied, i.e., K, will
this force F is proportional to H and i,. Hence, then be inversely proportional to the time of
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GYROSCOPIC LEAD COMPUTING SIGHTSE 4G 
LINE OF SIGHT 

T"

EYE C 22 COLLIMATING LENS

C:

BULB
SIGHT HEAD

Figure 83. - Opticaf System of the Sight Headflight multiplier u. It remains now to investi- G. Part of the beam passes upward and is lost,

gate by what means the sight line can be made but part is reflected to the operator's eye at E.

to stay a fixed proportionate distance between He se'~s the image of the round circle of light

the gyro and the gun-bore axis. 
at R as appearing on his line of vision ET. iiprimary function of the lens C is to focus thisimage at infinity, thus enabling the operator to

5.5 An Optical Linkage 
move his eye without occasioning any change inthe direction of line ET. When the gyro is unde-

An optical method of achieving the fixed ratio fiected, this image (or pip as it is called) will

of angular separations of the gun-bore axis, line determine with E a line o--f sight parallel to the

of sight and spin axis as desired in figure 79 gun bore axis. The main function of the optical

will now be considered. A vertical cross-section system then is to see that the line EG lies con-

of the sight head, with component parts of the stantly between the gyro spin axis direction and

optical system labeled, is shown in figure 83, the gun bore axis, and at the desired angular
with the gyro in undeflected position. In prac- distance, for all deflections of the gyro.

tice, the point 0 is taken so close to the gyro Let the distance RO, which makes the con-

* mirror that rotations can be thought of as being stant angle • with the gun bore axis, be denoted

taken about a point in the plane of the mirror. by d and the point R so chosen that the optical
Referring now to figure 83 we note the follow- distance ROEC is equal to the focal length f of

i nig: the bulb sends a beam of light through a the collimating lens C. A detailed analysis re-

* central hole in the two reticle disks. This beam veals the following facts. If the gyro axis ON

hits the gyro mirror at 0 (when the gyro is is deflected in elevation through an angle • (this

undeflected) and is reflected along OR to a fixed means a rotation about 0 in the plane of the

mirror at B. From here it is reflected straight paper) the line of sight E'T is turned through
up through a lens C to a piece of plate glass at an angle AE: given by
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sin ' cos ý, (5.37). The interested reader will find upon
(5.32) tan _- investigating that, for simultaneous azimuth

f and elevation deflections 6, 'p of the gyro axis,
-d sin the corresponding line of sight deflections are

2d

Since the angles involved will not exceed, say (5.38) tan AA -

150, first order approximations give sin 0 cos p (cos a cos 0 cos F + sin a sin q,)

2d f
(5.33) AA' -- -- p, (2d<f) . - (sin2 ' + cos2 a sin2 6 cos" ')

f 2d

The angle p corresponds in figure 79 to and

(5.39) tan A.-
cos y (cos 9 sin ' -- sin a cos sin- 0 cos Ak)

which leads us to define the sight parameter, a, c-o

as f
(sin- 2± + cos2 a sin2 0 cos2-) _

f 2d
(5.34) a 1-

2d the first order approximations being the same
as before. The errors made in accepting the

An azimuth deflection of the gyro axis through approximations (5.33) and (5.36), known as
an angle 6 (a rotation about 0 in a plane " a d.i"
through ON perpendicular to the plane of the
paper), on the other hand, occasions an azi- 2d
muth deflection of ET through an angle AA, (5.40) A AA sin 6 'p
where f

sin 0 cos 0 cos a 2d a)
(5.35) tan. 1 __ Aj; -sin a cos• 2.

•- - sin2 0 COS 2 a
2d Hence, we conclude that by proper choice of

f, d, a, an average sight parameter, a, may be
This expression, were it not for the factor cos a, chosen. The theoretical inmplications and at- "
would be identical in form with that of (5.32). tendant advantages upon introducing a sight
First order approximations give parameter have already been discussed in the

preceding chapter-.---
/2d\ The function of the reticle disks is the de-

(5.36) A.1 -cos a . termination of present range, r, to the target

and, mechanically, since the time of flight
which would correspond to a sight parameter of multiplier u is dependent upon r, they serve to

effect the relationship (5.31). One of these disks
f is fixed, and is perforated with a central hole

(5.37) a 1- - (whose image at G on the viewing glass is the
2d cos a pip) and six radial slits (figure 84). The second

disk, rotatable with respect to the first by
This dilemma of having two separate a-values operating a pair of foot pedals or a throttle
may be resolved in practice by taking a weighted hand grip, has a central hole and six spiral slits
average of the two expressions in (5.34) and (figure 85).
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Figure 84.- Reticle and Stadiametric Ranging
Disk - Radial Slits Figure 86. - Stadiametric Ranging

The only light passing through the reticle by twisting the spiral disk to agree with the
(and hence imaged on the viewing glass) will known wingspan of his target, thereby giving
be that through the hole and the six diamond- him a reference size around which he can expand
shaped openings where the radial and spiral and contract the ranging diamonds. Range is
slits overlap. The resulting projection on the then determined automatically as the unknown
viewing glass is shown in figure 86. As the one part of a simple proportion arising from two
disk rotates, the six diamonds approach or similar triangles. Thus, in figure 87, if E repre-
recede from the pip. Initially, the gunner pre- sents the operator's eye which is essentially
sets the correct target span for the enemy plane distant f units from the actual reticle, then if

MP is the known wingspan, the range r out to
the target is determined from the proportion

r MP
(5.41) -- , where HK is the diameterf HK

of the reticle diamond image.

M

IHH

P
r

Figure 85. - Reticle and Stadiametric Ranging
Disk - Spiral Slits Figure 87. - Geometry of Stadiametric Ranging
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It should be noted that in this proportion the Now if the gyro is free, y = 0 and (5.42) may
distance f is actually independent of the distance be simpified to the form
of the operator's eye from the viewing glass
since, as has been mentioned previously, the (5.43) aA~k + aA,-
reticle image has been focused at infinity.

Range, determined by the method above, is If now a be varied so as to yield values equal

said to be obtained stadiametrically. 1
to - -, where u is the time of flight multiplier,

5.6 Free, Constrained, and Captured Gyros
and Their Uses there is obtained the familiar lead computing

sight equation

A gyroscope mounted as in figure 75 and
subject to no external torques is said to be free.
The spin axis is free to assume _ny direction

in space and, once set spinning, will maintain
that direction regardless of any motion of the Perhaps the most popular application of gyro-
system in which it is mounted. Besides serving scopes in aircraft fire control instruments issystm i whch i ismouted Besdessering that of measuring the angular rate of a continu-
as the basis of the navigational gyro-compass,

free gyroscopes find ready application, in air- ously varying direction in space. The direction

craft fire control systems, as attitude indicators. may be a physical line like the gun-bore axis,

Thus in high level bombing, the free gyro with telescope axis, or longitudinal axis of the air-

its axis set spinning in the vertical, is used by craft, or it may be an artificial "computing line"

the bombsight as a physical reference line from related analytically to these by some sort of

which to measure the dropping angle. The bomb- linkage. Rate gyros currently in use are of two
main types :

sight also may employ a gyro with axis hori-

zontal in order to provide a direction from which
to measure the drift angle. The dive or glide (A) The constrained or "deflecting" type
angle of an unbanked aircraft can be measured wherein the torque due to the imposed
with a free gyro, using the gimbal arrangement angular rate is opposed or constrained
of figure 75, as the angle between the spin axis by a spring-like force so that the de-
(set into the true vertical) and the plane of the flection of the gyro is proportional to
two outer gimbal rings, assuming the bearings the rate being measured and is used
locked at C and D. A rearrangement of the as a measure thereof.
Cardan suspension can be employed similarly
to determine the angle of bank. (B) The captured type of rate gyro where-

Theoretically, at least, a free gyro may be in the deflection of the gyro is opposed
used in a lead computing sight instead of a by a torque which always keeps the
precessing gyro, with the gyro, gun, and sight gyro from deflecting more than a
lines coupled as in figure 79, providing that the small amount and where the torque
coupling parameter "a" be varied properly with required to thus "capture" the gyro
the time. Thus in figure 79 we have, upon dif- is used as a measure of the angular
ferentiating the coupling equation rate.

S- a (y - o) An example of type A was taken up in section
5.4, wherein the spring-like 'force arose out of

with respect to the time, the interaction of the eddy currents in the

dome with the magnetic field between the pole
(5.42) (-T a(y - + a(y- . faces.
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Chapter 6

BOMBING

6.1 Introduction bombing, on the other hand, the aircraft dives
directly at the target along the "collision

The methods of bombing from airplanes con- course" DT, pulls out of the dive at point B and
sidered in this chapter may be listed as follows: releases the bomb at a suitable point R along

the pull-out curve BRE.
(A) Horizontal high-level bombing It will be the aim of this chapter to investi-
(B) Horizontal low-level bombing gate mathematically the determination of the
(C) Dive bombing correct release points in terms of suitable input

variables for each of the four bombing methods.
(D) Toss bombing.

In level bombing, the aircraft flies, during A. HIGH-LEVEL BO30MBING
its bombing run, a horizontal straight line. Low-
level bombing is restricted in general to alti- 6.2 Vacuum Trajectory

tudes below 5000 feet, a region in which the air To initiate the study of the action of a bomb
resistance operating on the bomb during its fall in the air, we start from a situation with which
is negligible by comparison with that obtaining we are all familiar: the motion of a freely fall-
at much higher altitudes. High-level bombing ing body in a vacuum. Referring to figure 90,
then refers to an altitude range extending from suppose that the bomber traverses the line from
5000 feet up to the ceiling of the aircraft. 0 to 0' with constant speed V knots during an

The methods of dive and toss bombing are interval of t, seconds, releasing a bomb at 0
most simply explained by referring to figures which is H feet above the target at T. Since
88 and 89. In dive bombing, figure 88, the air- no air resistance is presumed to be acting, the
craft is directed at a point A beyond the target horizontal component of the bomb's velocity
T, so that when the bomb is released at point R also will be V at all points of its trajectory, and
it will not fall short due to gravity. Hence, at hence, during its fall the bomb will remain ver-
release, the sight line to the target and the line
of flight are at an angle to each other. In toss

D

R E

R \

T A
T

Figure 88. - Dive Bombing Figure 89. - Glide Bombing
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S~~Vt f r

0 0'

• x\ Bv i•

H

""T__•A

RANGE R

Figure 90.- Vacuum Trajectory - Bomb

tically below the aircraft. The space path of the At time t tf, if the point 0 is correctly placed,
bomb is the parabolic arc OBT while its path the bomber is directly above the target at 0'
relative to the bombardier is simply a vertical and a hit has been scored at T. The vacuum
straight line. range R is then equal to Vtt and the range angle

?, which is the angle at the time of release
If at any instant t, the space coordinates of between the true vertical and the line of sight

the bomb B, are X and Z (see figure 90), then to the target, is given by
the differential equations defining the bomb
trajectory are vtf

(6.3) o = tan-'

(6.1) V, g = 32.2 ft/sec2 . (")

Integrating (6.1) with the initial conditions From (6.2),

t=O, X --Z=O, Z=O, we find H
H - t,

2

(6.2) X=Vt, Z=-gt-. 2

The rectangular equation of the parabolic path so that (6.3) may be written free of tf as
is then

gX2 / ) '

Z (6.4) =tan-' V2V• -:.
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BOMBING

To hit a target, then, when flying straight and assume in this section that there is no motion
level at a predetermined altitude and speed, it is of the air with respect to the ground, i.e., no
only necessary, assuming air resistance on the wind conditions prevailing.
bomb during its fall to be negligible, to fly in Put qualitatively, air resistance has the fol-
the invariant vertical plane containing the lowing important effects:
target and to drop the bomb as soon as the (a) It decreases the vertical velocity of
target appears at an angle p from the vertical, the bomb at any instant, thereby in-
given by (6.4). For an aircraft flying at 10,000 creasing the time of fall, tt.
feet above the target and at a speed of 350 (b) It diminishes the horizontal velocity
knots, the time of fall t, would be 25 sec., the of the bomb at any instant, thus caus-
range 14,625 feet, and the range angle p would ing the bomb to trail behind the verti-
amount to 55 038'. cal line from the bomber.

6.3 Air Trajectory Under No Wind These effects vary with
(a) The shape, weight, and size of the

Let us now remove the vacuum restriction, bomb,
which is a poor first approximation at any but (b) The altitude (and hence the air den-
the lowest altitudes, and see what the effects of sity)
air resistance are upon the bomb. We *shall (c) The airspeed of the bomber.

0 Or
0 0'

W • •VACUUM

F 7.

.. _ _ __A_\_ N .-

h~t)

A' D

Figure 91. - Vacuumn and Air Trajectories -Bornb
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Figure 91 illustrates the change of the position (6.6) p. -- po e= (11-7).

of a bomb which is dropped in still air from
that of a bomb dropped in a vacuum, if the The quantity p, then represents the density at
bombs were observed at the same instant of the point of fall T. For the standard air struc-timebThus, twer obombsereleaed at the same iture considered here, see s.ection 1.7, assumingtime. Thus, two bombs released at the same

instant at point 0, the one falling in still air, the the target to be at sea level,

other in a vacuum, will describe the trajectories Pa = .07513 lb./ft:V, K = .0000316 ft.-' .
OBaT and OB,.D, respectively, in the same time
t,. When the "air bomb" is at B•, the "vacuum It will be noticed from (6.5) that F diminishes

bomb" will be at B,.; when the "air bomb" as C increases and hence, that the larger the
strikes the target at T, the "vacuum bomb" will ballistic coefficient the more efficient will be the

be at D. The bomb falling in air will describe, bomb.
relative to the aircraft, the curved path O'T With 0 defined as in figure 91, we find, upon
while that falling in vacuo is describing the taking components of the forces F and W upon
straight line O'D. At time t, then, B, will lag the horizontal and vertical, that the equations
B,. by BaE = r(t) horizontally and by EB,, - of motion for the bomb are,
h(t) vertically, the functional notations being
used to indicate dependence on time. The quan- ( Pa
tity r(t) is called the TRAIL and is denoted C
at the target by the letter r. Thus,

Pa
r (tf) r. (6.8) mZY= mg - f(v) cos 0

It should be noted that the trail r is not equal C

to TK. The quantity TK is known as the ground (6.9) kT - Z tan 0
lag. Actually, r = TK + KN, which says that
trail r is equal to the ground lag plus the dis- (6.10) v - AT csc 0 - Z sec 0,
tance that the aircraft travels during the time
lag. The time lag here is the fractional part of with the initial conditions
t, which it takes the bomb on the vacuum tra- 7r

jectory to traverse the arc KD. (6.11) t - 0, X = 0, Z- 0, 6-'-
In figure 91 there is indicated the set of forces 2

acting on the bomb B,: the weight of the bomb V V, Z = O
W and the air resistance F, assumed tangent
to the trajectory and directed opposite to the wherein V is the true airspeed of the bombing
motion of the bomb. In the absence of yaw and plane. Equations (6.7) and (6.8) reduce to (6.1)
other secondary effects, these then will be the when C = c, that is, for a vacuum trajectory.
only forces acting. The resistance function F An interesting interpretation of the ballistic
depends upon the weight of the bomb, its shape coefficient C, in terms of the terminal velocity
and size, the air density pa, and the velocity v v, of a bomb falling vertically, can be made
of the bomb with respect to the air mass. As using (6.7) and (6.8). Here we should have
explained in chapter 1 the first two of these are 0 0 0, and, at the instant the bomb strikes the
incorporated into a single quantity C, called the ground, v = vt, p, = pa, Z 0; hence
ballistic coefficient. The force F can then be
written PO

(6.12) C- f (v0).pa

(6.5) F = f(v) g
C Thus, from a knowledge of the terminal velocity

wnere fRv, is a function of velocity only. The vo, the ballistic coefflcient can be computed as
air density p,,, in terms of the coordinate system soon as the form of the function f (v) has been
of figure 91, is assigned.
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Integration of equations (6.7) thru (6.10) 1/1000 of a radian, which is the angle subtended
also will depend upon the retardation function by an arc whose length is equal to the radius
f(v). Considerable experimental research has of the circle.
gone into the determination of suitable forms
for this function, the choice of form being Angles with equal bombing mil values sub-
guided by the accuracy with which experimen- tend the same distance on the base line, but
tally determined trail values can be approxi- are not equal in angular measure, growing
mated. In particular, the form smaller as they depart from the vertical as

indicated in figure 92. The value of an angle in
(6.13) f(v) = kv2  bombing mils may be found by dividing the

distance on the ground by 1/1000 of the alti-
where k is an empirical constant, leads not only tude; and this is its interpretation in bombing
to trail values of the proper order but also, as practice.
the interested reader may verify, renders the
equations (6.7) to (6.10) solvable by quadrature In comparing bombing scores, an air bomber
when p, is held constant. whose average error from 10,000 feet is 100

feet should be considered as good a bomber as
The amount of trail is a function of the indi- one whose average error from 5,000 feet is 50

cated airspeed of the bomb, or plane, at the feet because in each case the average error is
time of release. It is, in addition, dependent 10 mils. The bombing mil system expresses
upon the altitude of release and, of course, the distances on the ground in terms of altitude,
ballistic coefficient C of the bomb. Trail and time therefore, statements concerning distances on
of fall (tf) values for each type of bomb are the ground must be qualified by a statement of
dctermined during the calibration of the bomb the bombing altitude.
at the Proving Ground and are set forth in
tabular form, trail being given in angilhr From figure 91, it is evident that the range
measure (mils). The latter measure, sometimes R of the bomb dropped in air is obtained by
referred to as the bombing mil, is an angular subtracting the linear trail value TN from the
measure that should not be confused with the vacuum range AN. Since AN= Vtf (target
Navy mil, the Army mil, or the mathematical assumed stationary), we have
mil. A Navy mil is a definite angle and is equal
to the tan-1 .001; or 3.438 minutes of arc. An (6.14) R = Vtf - r
Army mil is 1/6400 of a circle; or 3.375 minutes
of arc (tan-' .000982). A mathematical mil is and the range angle is then given by

Vt --rr
(6.15) (p= tan-' t

H

For a bomber flying at H = 10,000 feet at an
indicated airspeed of 300 knots (V = 350 knots
true airspeed), the bomb ballistic tables show,
for a bomb of ballistic coefficient C- 2, that
tf = 26.01 sees. (an increase of 1.01 sees. over
the vacuum value), trail r = 189 mils (= 1890
feet in linear units), so that equations (6.14)
and (6.15) yield R - 12,735 feet, 9 = 51'52'.

1' 1' 1' 1' 1' These figures show quite plainly that air resis-
tance can by no means be neglected for pre-

Figure 92. - The Bombing Mil cision bombing.
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"Figure 93. - Drift Angle and Trail

6.4 Drift and Target Mofion notation V, because ihe former, which we shall
call the closing speed, includes the case of a

The discussion up to this point has been based moving target, even though, in the present
strictly on the conditions of still air and a instance, the target is considered to be station-
stationary target. Let us for the present remove ary. The closing velocity, V,, is defined in gen-
the first of these restrictions and consider the eral by
"problem of hitting a stationary target. Later in

*" this section we shall see how target motion can (6.16) VT -- V - W - VT ,
be accounted for. Since we are here assuming", ~where VT is the velocity of the target. From
a standard air structure, the wind will be con- T

sidered as moving horizontally only, with con- this we see that if there is no wind or target

stant speed and direction at all points of the motion, then V, = V and the closing speed is
bomb trajectory. Thus, we shall have no vertical then the same as the true airspeed of the
component of wind to, contend with. bomber. If there is a tail wind, V, becomes true

In the plan view of figure 93, the horizontal airspeed plus wind velocity; while in a head

"plane through the bomber A is projected upon wind, V, becomes true airspeed minus wind
"the horizontal plane through the target T. Line velocity. When the target is moving, that part
AD gives the direction in which the aircraft is or component of the motion which is in the same

being steered, namely the plane's heading. The direction as the airplane's heading gives the
vector V is then the velocity of the bomber same effect as if there were a head wind of

with respect to the air. The wind vector W, the same force as the range component of the
representing the velocity of the air with respect target's speed. A target moving toward the
to the ground, combines with V to give V., the plane gives the same effect as a tail wind since
velocity of the bomber with respect to the it increases V,
ground. Thus, There are three important points to be noted

in figure 93. First of all, the direction of the
V _W-V, trail r: the trail always lies in the vertical plane

through the longitudinal axis of the aircraft, is
wherein the line of action of the vector N is measured from the vertical to the rear of the
called the bomber's track, represented by line aircraft's heading, and is independent of the
AA'. The angle Z A'AD = 0, formed by the wind. Secondly, it will be noted that because of

"- heading and the track, is called the drift angle. this fact the bomber, to secure a hit, must fly
"We use the notation V, here to denote the so that its track will pass to one side of the
ground speed of the bomber rather than the target by the amount P'T = r sin 0. This quan-
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tity, r sin 0, is called the cross trail. Thirdly, as into components along and perpendicular to the
figure 93 shows, the bomb will strike, unless a plane's heading. Then, that component of the
special correction is made, not at the target T target's motion along the plane's heading gives
but at a slight distance forward at B. To account the same effect as a head wind or a tail wind
for this, it must be remembered that r depends depending upon whether its direction is the
on C (ballistic coefficient), Vi (indicated air- same as that of V or - V. Similarly, the com-
speed of bomber at release), and H (altitude ponent of the target's motion across the plane's
above target) but is independent of W and heading may be considered as a cross wind and
hence of 0. Thus, only when 0 is zero, namely absorbed in the solution for the drift angle 0 by
for flight in still air, upwind or downwind along combining it with the wind vector W. Hence,
00' will the bomb strike at T. Hence, to secure the effect of target motion is merely to change
a hit at T, the bomb should be released when the values of V and W and then to regard the
the aircraft is a distance TB - r (1 - cos 0) target stationary as before. The range angle q',

back from A along the track. The expression whose accurate determination is the crux of the
.r (1 - cos 0) is called the range component of whole bombing problem, is thus obtained from

cross trail. It is usually very small, being ob-
scured by other bombing errors, and for this Vit - r
reason is sometimes omitted from consideration (6.17) • tan-, H
in constructing bomb sights.

So far, we have considered the target to be The final diagram for high-level bombing,
stationary. In order to take target motion into depicting the situation in three dimensions, is
account we may resolve the target velocity VT shown in figure 94. The actual trajectory of
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the bomb is shown with impact point at B, so in which the target drifts off the vertical wire

that, as in figure 93, the range component of and can then direct his plane accordingly. Fin-

cross-trail is the distance TB. In still air, the ally, the matter of cross trail is settled easily

track of the plane would be the line 00' but by tilting the telescope transversely through a

under wind conditions the track becomes AA'. small angle sufficient to intercept the correct
A bomb dropped in a vacuum at point 0 would amount of cross trail on the ground.
strike at D at the same instant that the actual
bomb strikes at B. It should be noted finally B. LOW-LEVEL BOMBING
that in the figure the actual trail is the distance
EB and that this distance also is equal to EP'. 6.6 Impracticability in Range Angle Aiming

at Low Altitudes
6.5 Mechanization

A bombsight, designed to operate at altitudes
As formula (6.17) indicates, the correct below 5000 feet, requires extre.me accuracy in

range or dropping angle T is a function of the measurement of the input variables when the
trail, altitude above the target, time of flight range angle method, outlined in Part A of this
of the bomb, and the closing speed, V, . Prelim- chapter, is used as a criterion for bomb release.
inary to this, there is the problem of establish- This is especially pronounced when the altitude
ing the proper track, parallel to a collision falls below 1000 feet, as it does in the case of
course with the target and distant from it an depth-charging of submarines from low-flying
amount equal to the cross-trail, r sin 0. A bomb- aircraft. At such low altitudes the trail term, r,
sight computer for determining , will then have of equation (6.17) is negligible by comparison
as inputs: r, H, t1, and V . The trail, r, is ob- and the range angle, q, is given quite accurately
tained from trail tables, wherein it is given as by the "vacuum expression"
a function of altitude, airspeed, and bomb bal-
listic coefficient, and can thus be set in by the
bombardier. The altitude input is available from (6.18) • - tan,(I - -)= tan ye 4V.
an altimeter while time of flight is tabulated
as a function of altitude. Closing speed V, is
obtained by tracking the target with a telescope, The very form of (6.18) shows the close de-
keeping the horizontal (rapge) cross wire con- pendence of the range angle upon altitude and
tinuously on the target. Modern bombsights closing speed. Hence, unless the altitude and
have the telescope mechanically stabilized with closing speed can be held very closely to pre-
vertical and horizontal gyros so that physical assigned values, errors in these quantities" will
reference lines are available from which to produce large range errors on the ground. Thus,
measure the range and drift angles. The drift a 1 7e error in altitude measurement at H = 400
angle 9 can be obtained by having the bomb- feet will result in a range error of approximate-
sight always point directly at the target. Then ly 9 feet, V, being assumed equal to 350 feet
the angle between the longitudinal axis of the per second and without error. Similarly, a 1%
aircraft and the direction in which the sight is error in closing speed at V, = 350 feet per
pointing will be the drift angle providing that second and H - 400 feet gives a range error of
the heading of the plane is correct for the wind 18 feet.
conditions prevailing. The bombardier estab- To overcome the above difficulties, recourse
lishes the angle of drift by positioning the tele- is had to measurement of the angular rate, q),
scope cross wires so that the target moves along instead of P, as a criterion for bomb release.
the vertical cross wire. If the plane's heading is The mathematical expression for *, derived in
slightly off, the target will drift off the wire. the ne:.t section, shows it to be relatively inde-
By means of an instrument called the Pilot pendenZ of the altitude for small values of the
Direction Indicator, the pilot of the aircraft is altitude, a quality which serves as a sound basis
afforded a continuous indication of the direction for a low-altitude bombsight.
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6.7 The Angular Rate Principle Therefore,

During the early stages of a low-level ap- HV, H VI
proach, when the target is at a considerable --
distance from the aircraft, the angle of depres- (H sec •)" H2 - X2

sion of the target'(900 - 9) changes very slowly At the proper release time,
so that the angular velocity of the target at the

observer's eye is low. As the aircraft nears the
target, the angular velocity increases, finally 2H
becoming a maximum as the aircraft passes
vertically over the target. At some stage the
target was in an appropriate position for a bomb whence,
to be released, and at that point it had an angu-
lar velocity that could be calculated in terms of IVIT,
the height and ground speed of the aircraft. If = -- H"
this calculated angular velocity is set up on an 2HV"
appropriate bombsight in such a manner that we
can detect when the target has an equal angular g
velocity, then we have an indication as to the With a little manipulating, this may be written
instant, during the tracking run, when a bomb finally as
should be released to strike the target. We now
derive an expression for the calculated angular g/2
rate, T. (6.20) p.

From figure 95 we note that +1 2 _

(6.19) tan = H Thus, (6.20) furnishes, at the correct moment

of bomb release, the angular velocity of the
Differentiating with respect to the time, we target in terms of the height and closing speed.
find, since//= 0, 'It will be noted that for small values of H the

gH . .
HX HYV term - is small, thereby accounting for the

p sec-" H 21{P
H2 H 2  relative insensitivity of • to changes in altitude.
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In actual practice, the time of free fall t, used will balance the torque of the gyroscope when
above must be corrected for bomb trail, lag of the gyroscope is precessed at the angular rate
the bomb rack in making its release, and also that is critical for that course. One of the prin-
for horizontal and vertical parallax introduced cipal advantages of the modern angular rate
by the physical separation of bombsight and bombsight is that it removes the undesirable
bomb. feature in the early mechanizations of having

the pilot judge when zero relative rate between
6.8 Mechanization the moving lines and the target is achieved.

Indeed, any successful mechanization which re-

An early mechanization of the angular rate moves the personal element is bound to improve

principle involved a rotating, internally illumi- the accuracy of the sight in question.
nated drum upon which was cut a fine pitch
spiral. A portion of the drum, when viewed C. DIVE OR GLIDE BOMBING
through an optical system, revealed to the
bombardier a set of horizontal illuminated lines 6.9 lntroduction
moving downwards at a uniform velocity. The

drum was driven about a vertical axis by a The situation obtaining in dive or glide bomb-
constant speed motor through a variable speed ing under conditions of no wind is represented
gear which allowed for variation in the rate of pictorially in figure 96. At the point of bomb
rotation of the drum. The variable speed gear release, the flight line OA is offset from the
in turn was connected by a flexible drive to a sight line to the target OT by the angle
computer whose inputs were ground speed and AOT ---.
altitude. Proper functioning of the computer This angle intercepts on the ground a dis-
then produced a drum rotation rate such that tance L, called the linear aiming allowance. In
the illuminated horizontal lines moved at an terms of the sighting angle q and the dive or
angular rate equal to that of the target at the glide angle 0 we have, where X is the range DT,
correct moment of bomb release.

When the target first appeared to the bom- H
bardier, on the upper end of the illuminated (6.21) A--90 - -0= arctan -- 0.

"ladder", it was moving downward more slowly X

than the horizontal lines which appeared to be The aiming allowance L is found from
overtaking the target. The difference in rates
of the target and the lines became less and less, (6.22) L = H cot 0 - X.
until at one instant the target and lines ap-
peared stationary together. This was the correct In the vacuum case, the range DS may be found
moment of bomb release. After this instant, the by eliminating tf, the vacuum time of flight,
target had a greater angular velocity than the between the familiar relations
lines, and appeared to overtake them.

More modern mechanizations of the angular (6.23) H=--gt2 +Vsin0t,,DS=t Vcos0,
rate principle employ a gyroscope to measure
the angular rate of the target. Such sights are whre V r ts the trai
rotatable about horizontal and vertical axes so airplane. Thus it is found that
that the bombardier, after first aligning the
sight properly in azimuth, tracks the target by (6.24) DS -
rotating the sight vertically at such a rate as
to keep an illuminated reticle on the target. V Cos 0
Rotation of the sight precesses the gyroscope VVcos I (Vsin0)-±2gH-Vsin 0
whose precession in turn is opposed by a spring. g
The tension of the spring is preadjusted for the
bombing course to be run. It is set so that it and,
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(6.25) t, (vacuum) 6.10 Angular Rate of Sight Line

"(Vacuum Case)
(V sin 0)2 + 2gH - V sin 0 From figure 96 and the relationship

g X
(6.27) tan p- =-,

Hence, neglecting air resistance, the angular H
aiming allowance A is, from (6.21), we find, upon differentiating with respect to

the time,
(6.26) x (vacuum)

cot 1rV g 1 (V sin )2+2gh -VsinO l--0. sec2 
( H2

Solving for P and using (6.27) we find
By way of illustration we find that for V = 300
knots, H = 4000 feet, 0 = 400:

[ HX-XH]
(P -cos 2  -

DS = 3345 feet, tf (vac.) = 8.62 secs., H2

,\ (vac.) =106'. = cos 2  [X--Htan ]p
Upon consulting a ballistics table for dive bomb-
ing, we find that when air resistance is taken or
into account, the range DT is 3299 feet, tf be- cos p -
comes 8.91 secs., and X is increased to 10'29'. (6.28) -= X cos -/H sin
The ground lag TS here is thus 46 feet. H L
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If we consider the origin of coordinates to be 6.11 Mechanization, using Angular Rate
at the target, then Formula (6.32) suggests a possible mechani-

and- V cos 0 • - Vx zation for a dive bombsight. If a mechanical
an sn0computer, with inputs P, H, V,,, and operating

Hnd----- V sin 0--- V1 . in accord with (6.32), is used to drive a tele-

Equation (6.28) then becomes scope at the rate ý given by (6.32) then con-
ceivably a pilot could so fly his plane that the

COS r 1 target when viewed through the telescope would

(6.29) P[ V, sin P -- Vx cos ,,P show no motion with respect to its cross-wires.

H - At the instant of synchronization of target and
cross-wires, the bomb would be released. The

Let us now rewrite (6.29) in the form input P would be obtained from the telescope's
position in a vertical plane relative to the spin

sin p cos axis of a vertical gyro while H and V, would be
[ V, -- Vx cot (j obtained from an altimeter and its differential
L output.

and combine it with the "hitting criterion" During the recent war, a sight was con-
structed to operate on the above principle but,

H H after numerous flight tests, was finally rejected
H for several reasons. Firstly, it was found too

cot DS difficult for the pilot to maneuver his plane in

the diving attitude so as to achieve synchroni-
to get zation. Actually, the pilot had to fly a curved

path through space and at the same time try

sin 2 H 1 to recognize a condition of no drift between the
(6.30) 2 V - . cross-wires and the target. Secondly, when once

2H tf in a dive, the pilot found it almost impossible
to make a deflection drift correction since there

From (6.23) we find is no way to make an airplane move sideways in
space. The fact that range and deflection drift

H change continuously creates a problem virtually
- = V/1, + ½gtf, impossible for the dive bombing pilot to solve.

tf The difficulties just cited could be made less
prominent perhaps by a new mechanization pro-

which, combined with (6.30), yields cedure but could hardly be avoided altogether,
since they are inherent in the dive bombing

g method. The method of toss bombing, consid-
(6.31) 'p - tf sin 2 9. ered in section (6.13), eliminates these diffi-

4H culties for the pilot by permitting him to dive
straight at the target.

Employing (6.25) we may write, finally,

sin 2 p 1 6.12 Correction of Angular Rate for Trail

(6.32) (P -- V,,2 + 2gH - V,. Since bombing does not take place in a
4H vacuum, account must be taken of the effects of

air resistance upon range. Referring to figure
We note from (6.32) that the angular rate of 96 we note that the actual range X is DT =
the sight line, q, is a function of H, V,1, and DS - TS, where, because of the relatively low
,p only. altitude for release H, the ground lag TS may
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be replaced by the trail r, both being small. We g
have, then, (6.36) p --- ttsin2p •

4H
(6.33) X -Ktf - r [H r

(6.34) cot p H xfgf

Vt -- r Since cot -- -- , we can put (6.36) in the

Using (6.34) in Vxtt
form

sin2c g 9 1cot'r

2H (V, --- ot)+ (6.37) -- tsin2p 1 .4H L
we obtain at release time Comparing (6.37) with (6.31) we note that the

sin 2 -Vx (V,,t,--H) -rV, quantity in the brackets in (6.37) is the neces-1 , sary correction factor to the vacuum rate given

22H Vxtt - r by (6.31). Thus,

or, upon rearrangement, (6.38) a- - ' r ....
sin2 F V1t,-H rV1 (1air 'vacuum L+~g1

sin 2 V,,tf -- H ½V g~tf"

2H tL Vxtt D. TOSS BOMBING

/ r 6.13 Basic Release Conditions for a

1 VA J Stationary Target

In toss bombing, the airplane is flown initially
If now the last factor be expanded and non- along a collision course, a straight line path

r containing the target. If the bomb were released
linear terms in - be dropped, we find, enroute, gravity would cause it to fall short. ToVXtf overcome the latter, the pilot pulls out of his

straight-line dive and releases the bomb at asin(2 F V:,t--H precalculated point along this pull-out curve.

2H1 t The essential geometric features of the problem
are indicated in figure 97.

/ r rV1  1 The straight-line dive at the target T, here~1 + considered to be stationary, is begun at a point
VXtJ - VXtI above N, pull-out takes place at 0 along the

sin 2 [ F V,,t, -H curve OP. If the point P is calculated properly
(6.35) -- and release of the bomb occurs when this point

2H t1  is reached, the bomb trajectory will intersect
the target. In the theoretical development to

1 V11  follow, we assume the final velocity of the air-
+r Vcraft in the dive to be reached at the point NV,.tf VX (V, t -- H) and that this final velocity, which we shall

Recalling now the relation denote by V, remains constant along the timing
run NO and the pull-up arc OP. Knowledge of

Vlt - H = - jgt 2 , the time it takes the aircraft to cover the dis-
tance NO is used in determining the closing

and using it in (6.35), we obtain time, t,, i.e., the time it would take the aircraft
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the corresponding radius of curvature of the If x and y are the coordinates of the bomb at
pull-up path by R, then pg - V2/R. Let a set of any time, t, always measured from the begin-
coordinate. axes x~y be chosen with origin at 0 ning of pull-up, then the components of velocity
and with the positive x-axis passing through on the coordinate axes at any instant during
the target. If now t is the time taken for the pull-up are,
aircraft to fly a distance s along the arc OP,
and 0 is the angle through which the tangent (64)x Vos9 i Vin0

to the path has turned during this time, then, Hence,
t tds tL ýg

(6.40) do= -- ds - dt. (6.46) x -V Cos 0dt, y -V sin 0 dt.
R V2 V f

0 0
Consequently, at any time during the pull-up
period, the angle 9 will be given by the integral Eliminating dt from (6.46) by using (6.40),

we obtain
t V2 Co0

(64)0-g ftdt< t,, (6.47) x - -- o
V 9

where time is measured from the point 0. V 2 fsin 0
The total pull-up angle is thenY 9fdo

t,. 0
g ~ By placing t = t,. in these relations, expressions

(6.42) 0r p ,dt. are obtained for xr, Yr, :try ir, where x, and Yr are
V9 J the coordinates of the release point P.

0 After the bomb has been released, the impor-
If now we introduce the average normal acceler- tant force acting on it is gravity. Hence, for
ation /i computed over the time interval this phase of the motion, the components of
0 < t < t,, that is, velocity and the coordinates are

tr

t' f Y Yr g(t - tr) Cos 8,
1 Xt (.8 - Xr + ;1(t - tr)+ sin 8,-r) sn8

equation (6.42) can be rewritten

V whe y, +y(t- tr)- jg(t- tr)2 CinS.
(6.43) Or -tr. In order to secure a hit, x must equal Vt,

V when y 0, since the coordinates of the target

A standard aircraft accelerometer mounted are (Vt,, 0). Let this occur when t = th, so that,
in an airplane shows at each instant during from equations (6.48),
pull-up the number K of gees present at that
instant and acting normal to the direction of Vtc = Xr + X, (t,1  tr)

motion. If 3 is the dive angle, then appoi (6.49) + 19 (tL-t)2si8
mately,0 Yr±rti-t)

(6.44) p~g * (K - cos 8) g .0 Y,+, t t)

This relation is sufficiently accurate to be useful - -1)2cs8

for small pull-up angles. It is exact at the be- On replacing x,, yr, x'r, Yr, by their values from
ginning of pull-up since in the dive, K =cos 8 equations (6.46) and (6.47), the following basic
and [t 0. equations are obtained.
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0, In equation (6.51) the positive sign is used
V 2 f cos d before the radical since a negative sign would

Vtc .. do make ti, less than tr.
o f P Equation (6.52) contains the desired quan-

tity 0, in a rather complicated way, one from -

+V(4. -)coso,+½g(th- t,) sin s which an exact explicit solution is not easily

(6.50) obtained. Nevertheless, this equation is basic
.0, 6to further discussion insofar as a practical solu-f.- dO tion of the toss bombing problem is concerned.

0 We shall, in the next paragraph, solve equation

o (6.52) for 0, by making suitable approxima-

+ V (th --t sinO,- --.g(th- t,) 2cos 8 tions.

Equations (6.50) form the basis for a toss 6.14 An Approximate Solution for the
bomb computer since a formula for tr may be Release Time
obtained from them by eliminating the paranm-
eter t,. The formula will be a function of the As a first step in obtaining an approximate
input parameters t,, V, or, and S. The value for solution of the basic equation (6.52) we replace
t, is obtained during the timing run, 8 is given It in the integrals by the average normal accel-
by a dive angle indicator, and Or is determined eration, F. Approximate values for the integrals
in terms of pull-up acceleration. When values can then be found. The resulting form of the
for these parameters are fed into the computer, relation. is
the release time is automatically computed.

Instead of eliminating only t, from equations gt6 cos 8 cos 0r + sin 8 sin 0'

(6.50), it is easier to eliminate th - to, to solve V cos2 "
the resulting equation for Or, and to then find
the release time t, from (6.43). Solving the [ I - cosorl
second of equations (6.50) for t, - t, we find, sin O + sin- 0,+ 2 cos 8 J.

V
(6.51) ti, - t' sin 0, + 11 - cos 0,

g cos S. + sin O0 + tan S.

0.sin 0
sin 2 0 + 2 cos 8 do On the assumption that pull-up angles will

be small, we next replace the trigonometricfunctions sin 0, and cos O, by Or and 1 - j 0.,,
Substituting the right member of (6.51) into respectively. The resulting equation in 0, then
the first of equations (6.50) gives, has the form

gt, cos 8 cos O + sin 8 sin 0,
(6.52) - gt, F(1 1-0

2 ) cos 8 + 0, sin 8
V cos2 8 (6.54) 0, .

• i C/~~~sin 0 J'•""

sin 0r + sin 2 c s + 2 cos 8 -- cdoo ]+1 2-
O o +' [11 +o- Or-2 tan 8 .

f cos o f sin ,:
+ f-Co-0do + tan .8 f 0do . Equation (6.54) is a cubic polynominal in or.-.

sn However, since the solution sought is expected

0 to be valid only for small pull-up angles, we may
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ignore the term of degree 3 in 0,, at least if bomb. From equation (6.44) it follows that

cos 8 is not too small. This then gives the follow- 7"' --' + cos 8, so that equation (6.58) can be
ing quadratic in 0,. expressed in the form

(6.55) (1 + 2 a) 0,.2 tan 8 + 2 (1+ ) 0. t cos 8
,gt (6.59) tr_
2gtw -i &- ý K(K-cos8)

2

S where 2

7+ '7+ T co 8) 1+ 0+2p

cos 8
. ~wherein pl can be rewritten now as

The corresponding equation for tr, obtained by

using relation (6.43), is•=-•-gt, sin 8 K -- cos 8

1+ 2o (6.60) 8p =
(6.56) gr tan5+(1+a)trtc=OV K

2V
As the final form for the expression for the

Equation (6.56) has a positive and a negative release time t,, we rewrite (6.59) as
solution. The positive solution, which applies
here, is tq

.- -- (6.61) tr ,

(6.57) tr ,- -IK:-K" 1~-1

1 +2 2
2t 1+a+ (1 + )2 +2 ggttan8 where the function g is given by

V
W + X k 2 cos8

:.. This may be rewritten in the form (6.62) _ -- 2o

""cososK K+ IK(K - cos 8) 1 + -1+228
•- (6.58) t,

IL + cos 8 + 11 G + cos 8) The particular property of the ý function which
makes it useful in this connection is that,

2 although it is a function of the three variables
__"__ , 8, and t,./V, it is chiefly a function of 8, show-

1 + ý1 + 2P ing but little variation with R and t,/V over the
ranges of values of W and ta/V which occur in

where toss bombing. Values of the u function are tabu-

lated for appropriate ranges of these variables
S+ 2o- t in table 6.1 (Units used in this table are feet

: (1 2+ a) 2 V and seconds, with g taken as 32.2).

Since q reduces to unity when 8- 0, and
gtc sin 8 P since € shows relatively little change when K

and t,./V are varied, equation (6.61) shows that
V p- + cos 8 € can be regarded as a factor whose purpose is

""- ..... to reduce the pull-up time from that for hori-
Let K designate the time average of K from zontal bombing to the correct value for bombing

the beginning of pull-up until the release of the from a dive.
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Table 6.1
Values of the 4 Function

6 ti v =.01 .02 .03 .04 .05

K=2

0 1.000 1.000 1.000 1.000 1-.000
10 0.968 0.955 0.943 0.932 0.920
20 0.903 0.880 0.859 0.840 0.822
30 0.808 0.778 0.752 0.728 0.708
40 0.691 0.657 0.629 0.605 0.584
50 0.558 0.525 0.498 . 0.476 0.457
60 0.418 0.388 0.366 0.347 0.332
70 0.275 0.253 0.237 0.224 01213
80 0.134 0.123 0.114 0.107 0.102
90 0.000 0.000 0.000 0.000 0.000

K=3

0 1.000 1.000 1.000 1.000 1,000
10 0.965 0.949 0.933 0.477 04905
20 0.901 0.872 0.846 0.824 0.802
30 0.809 0.773 0.742 0.716 0.692
40 0.697 0.658 0.626 0.599 0.576
50 0.568 0.531 0.501 0.477 0.456
60 0.430 0.397 0.373 0.353 0.336
70 0.286 0.262 0.245 0.231 0.219
80 0.641 0.129 0.120 0.513 0.107
90 0.572 0.000 0.000 0.000 0.000

K=4

0 1.000 1.000 1.000 1.000 1.000
10 0.964 0.945 0.928 0.912 0.898
20 0.899 0.868 0.840 0.816 0.794
30 0.809 0.770 0.737 0.709 0.685
40 0.69S 0.6,57 0.623 0.595 0.571
50 0.572 0.532 0.501 0.476 0.455
60 0.434 0.401 0.375 0.355 0.338
70 0.290 0.266 0.248 .0.234 0.222
80 0.144 0.132 0.122 O.J15 0.109
90 0.000 0.000 0.000 0.000 0.000

0 1.000 1.000 1.000 , 000L 1,00010 0.963 0.943 0.925 0.909 0.893
20 0.898 0.865 0.836 0.811 0.788
30 0.809 0.768 0.734 0.705 0.680
40 0.699 0.656 0.621 0.593 0.568
50 0.574 0.533 0.501 0.475 0.4554
60 0.437 0.402 0.376 0.356 0.338
70 0.293 0.268 0.250 0.235 0.223
80 0.146 0.133 0.124 0.116 0.110
90 0.000 0.000 0.000 0,000 0.000
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BOMBING
0 P pV

T' T
Figure 98.- Air and Vacuum Trajectories

6. 15 Air Resisfance in Toss Bombing dinates of the target are &, and , at time t 4,
elimination of the quantity t7, - t, from equa-

6.15.1 The Trajectory Equations in Air tions (6.64) yields the relation

In studying the effects of air resistance on
the bomb trajectory it is best to employ a coor- Wr g
dinate system consisting of horizontal and verti- (6.65) , 2 +•

cal axes $ and q with origin at the point of Ur 2Ur
release as indicated in figure 98. In this figure,
the curve PT is a vacuum trajectory through The corresponding relation for the air trajec-
the target at T, PST' an air trajectory with the tory PST' will now be obtained. If ?t = 4 and
same release conditions, and P'T an air trajec- iv - 7, then the velocity of the bomb in its path
tory from a release point determined so that the is v t

2 + v. The retarding acceleration, a,
bomb will hit the target. The percentage in- due to the air, is assumed to be representable
crease in t,. required to obtain the trajectory in the form
P'T is

At, VAt, TS (6.66) a - B• 2 ,

(6.63) - -

"t, Vt, OT where B is constant along the trajectory. The

components of the acceleration in the , and
The equations of the vacuum trajectory, using directions are then,
, coordinates, are

-, (t t,)(6.67) a -Buv, a -- Bwv.
:. •= U,(t-tr)

(6.64)
W -- (t) + .g (t - tr) 2, From equation (6.67) the equations of motion

of the bomb are

where U, and W, are the horizontal and vertical
components of velocity at release. If the coor- (6.68) u-- - Buy, v = g - Bwv.
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Let p be the angle between a tangent at any cos (P BUr.(t - t,)
point on the trajectory and the horizontal, so In 1 +B COS (-P
that LCS'

(6.73)
g (t t')

(6.69) tan p =j t-. 2BU= sec- .

W, -- g COS' /(2B U,) -
Equations (6.68) can now be integrated ap- W g s(

proximately under the simplifying assumption BUr sec
that the total change in direction along the
trajectory is small. Thus, if we denote the mean (t -t 7 )
value of p over the arc PT' by •, the constant B in 14-

cos •
COS ( '.

can be conveniently replaced by B , so The elimination of the quantity t- t, be- 6:

cos7 •tween these equations yields the equation of the

that equations (6.68) then become air trajectory PT" in the form
W, gý2 ,

(6.70) u=-But2 se'p,w =g-Buwsec(p. (6.74) q - + [1 +(•)]
Ur 2U'2

Integrating the first of these equations and where
simplifying, we obtain

Cos (P
Ur (6.75) •(4)=--

(6.71) u - B-
1 + BUr (t - t,) sec-• cos _

+ 2Bý secp 1)p
Using this result in the second of equations 2B2 62(e

(6.70) gives By taking the first four terms in the expansion

2B4 sec
of e 1 and dropping the rest, an approxi-

BUrw sec ' mate formula for . (6) is found to be
W g -9 , fio

1 + BUr (t - t,) sec 'p

(6.76) Q() 2 ]B6sece '

whose solution is (s

W,+ [g(t--t,) +BUr (t-tr)2-gsee F1 Since equation (6.74) differs from equation
(6.72) iv (6.65) only in the term E (Q), this term is then

1 + BUr(t - tr) sec- the desired term that accounts for air resistance.

6.15.2 The Ground Error
Equations (6.71) and (6.72) give the com-

ponents of velocity in terms of time measured The distance T'T, which is the error on the
from the beginning of pull-up and the conditions ground due to air resistance acting on the bomb,
at release. Further integration gives the coor- can now be evaluated. We shall denote this error
dinates • and r7 of the bomb after release in the by A &,. (It will be recalled that the coordinates
form of the target T are (Q,, ql,) in the •, 7 system of
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coordinates.) The coordinates of the point T' Bgf,,:' sec ýo
are then (s,, - A ,, ,,). If these are substituted (6.78) _.}i,
into equation (6.74) and use of relation (6.65) 3 (UrWr + gY, + Bg&qj see p)
be then made, the result is

In using the formula (6.78) it is sufficiently
W,.. g accurate to replace p by 8. The quantities U,.,

(6.77) 0 + + - [-- 2W,, W, and ý,, can be computed from the formulas
Ur 2Ur2

U+ = V Cos (8-r),

Since the unknown A ý, is obviously much Wr V sin (8 Or)
smaller than c,,, the term A t , can be neglected
in comparison with the term - 2ý1 A,. Simi- }, Vt, cos 8 - x,. cos 8 yr sin .
larly, upon employing relation (6.76) with Formua (6.78) can now be used in calculating

l- p , the perc( ntage correction A tr/t,. of t,. necessary
we can replace the term to secur,ý a hit. Upon adjusting the toss bomb

(', - A b•)' • (},--•x ) computer to account for this correction, the
by bomb will then be released at point P' (see

SB (• -- 3 •" c;,) sec •. figure 98) and its trajectory will pass through
the target. Although we shall not justify theThus equation (6.77) can be rewritten assttmnheitcnbsow tathepr
statement here, it can be shown that the per-

Wh g centage correction cited is given approximately
0 + 2[-&2 A$,'

Ur 2Ur2  Vt-
by k - , where k is an empirically determined

+ B secI ], CSe

constant and C is the ballistic coefficient of the
whose solution for A $h is bomb.
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Chapter 7

ROCKETRY

7.1 Introduction istics have considerable influence upon the aim-
ing problem. Since we have a longer time of

_The problem of how to aim and fire rocket-, flight, greater allowance for target speed and
from aircraft is considerably more complicated wind must be made and, in addition, the greater
than that of aiming and firing bullets. The com- curvature of the trajectory means larger grav-
plications stem mainly from the ballistics of ity drop allowance.
the rockets and the method of launching air- Since the rocket tends to follow the direction
borne rockets. The two are not mutually exclu- of flight of the aircraft, its trajectory is highly
sive since the trajectory of the rocket depends dependent upon the manner in which it is
upon the manner in which it is launched as well launched. Thus the launching device, the
as upon other considerations. A complete dis- method of stabilization (whether fin or spin-
cussion of the theory of motion of a rocket is stabilized), and the attitude of the aircraft at
beyond the scope of this book. For such a dis- the instant of launching, all contribute to the
cussion the reader is referred to Reference 18 aiming problem. Since spin-stabilized rockets
of the bibliography in the back of this book. We are still very much in the experimental stage
shall concern ourselves only with a qualitative we shall limit our discussion to fin-stabilized
discussion of how rocket trajectories are ob- rockets.
tained and the corresponding sighting problem. There are four methods in common use for
Furthermore, we shall be mainly concerned with launching airborne rockets: (1) retro-launching,
air-to-ground firing of rockets. Air-to-air comr- (2) fixed launching, (3) Dynamic controlled-
bat using rockets will be briefly mentioned at displacement launching, and (4) drop launching.
the close of this chapter. Let us consider each of these in order.

7.2 Methods of Launching Airborne Rockets In retro-launching, the rocket is fired to the
rear of the launching aircraft. This method of

The motion of a rocket can be divided into launching is very effective in anti-submarine
three distinct periods: the launching period, the warfare.
period of burning after launching, and the period Fixed launching applies to rockets fired while
of motion after burning is over. During the held in fixed positions and in orientation relative
launching period, the rocket is under the infiu- to the launching aircraft. Thus the term in-
ence of the aircraft which is carrying it. During cludes: (a) post launching, in which the rocket
the burning period, the rocket is subjected to is held in position by lugs and is free of the
the forces of gravity, jet forces, and aerody- aircraft after moving a very short distance;
namic forces. After the rocket fuel is consumed, (b) rail or tube launching, in which the rocket
the rocket moves under the gravity and aero- is guided for the first several feet of travel;
dynamic forces only and its behavior is then and (c) fixed displacement launching, whereby
similar to that of a bomb. the rocket is lowered into a fixed position below

Most rockets are fin-stabilized in the same the aircraft before it is ignited.
manner as bombs. The trajectory of such rockets Dynamic controlled-displacement launching is
differs from that of bullets in three respects: the term applied to the method of launching in
(1) rockets are slower; (2) rockets tend to which the rocket is dropped before ignition, but
follow the direction of flight of the aircraft is guided by a yoke which holds the rocket in
while bullets travel in the direction of aim of fixed orientation relative to the airplane until
the gun; and, (3) the rocket trajectory has an ignition occurs. This method of launching has
appreciable curvature. These three character- been abandoned in favor of drop launching.
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S crY S HORIZONTAL

REFERENCE LINE

SZERO LIFT LINE /

FLIGHT LINE
Q EFFECTIVE,t' •LAUNCHER LINE

W LAUNCHER LINE
S~~BORESIGHT :i
S~DATUM LINE

-J

GROUND.

TARGEY
Figure 100. - Coordinate System

Drop launching is the term applied to the Z.L.L. = Zero lift line; a reference lift
method of launching in which the rocket is line fixed in the airplane;
dropped completely free of the aircraft and is a = Angle of attack, angle from
ignited by a delay firing device after it reaches the B.S.D.L. to the F.L.;
a safe distance below the airplane. ,o - Angle from the B.S.D.L. to

the Z.L.L.;
7.3 Coordinate System 8 = Dive angle, angle from hori-

Before we consider the trajectory of the zontal reference line to F.L.;
rocket, let us focus our attention upon the coor- -- Angle from the horizontal to
dinate system which will be used to describe the the sight line;
trajectory. The action will be considered to take X = Angle from the sight line to
place in the vertical plane and any horizontal the flight line;
corrections will be superimposed. Figure 100 A = Lead angle, angle from the
shows the orientation of'the lines and angles. sight line to the B.S.D.L.;
Let us further define -y = Angle from the horizontal to

(7.1) F.L. =Flight line, the direction of the B.S.D.L.;
motion of the aircraft; fc-- -Angle from boresight datum -

L.L.-- Launcher line, attitude of line to E.L.L.;
launchers ; r = Present range.

E.L.L. = Effective launcher line, line of The clockwise direction is taken to be positive.
departure of rocket;

S.L. = Sight line, line from ownship Note that the launcher line may be offset
to target; from the boresight datum line by a fixed angle.

B.S.D.L. = Boresight datum line - a ref- Since both lines are fixed in the airplane, this
erence line fixed in the air- angle is constant and is measurable. The angle
plane; fa is actually the angle that the rocket turns
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in the direction of the flight line from the We begin the discussion by considering the
launcher line and thus it should actually be trajectories of fixed-launchedrockets. Since the
defined from the launcher line. However, to rocket is already moving through the air mass
simplify the derivation which will appear later, with the speed of the aircraft, the air acts on
we shall assume that the boresight datum line the fins, turning it into the wind as soon as it
and launcher line coincide. In any airplane leaves-the launcher. Angular momentum carries
where this is not the case, the constant offset it beyond the direction of the wind and, conse-
angle can easily be accounted for as is made quently, its direction oscillates about the direc-
amply clear in rocket sighting tables. tion of its vector velocity. This oscillation dies

out, leaving a well defined initial direction for
7.4 Qualifafive Discussion of Trajecfories the rocket trajectory which we shall refer to as

The motion of a rocket can be defined by the effective launcher line. Thus the initial

Newton's laws and the differential equations direction of the path is along this imaginaryline whose direction is a certain fraction f of
involved can be derived. However, these equa-
tions are quite complex and their derivation the way from the launcher line to the flight

would consume considerable space as can easily direction. The quantity f is called the launching
be seen by referring to Reference 18. in the factor. It is possible to derive a formula for this

Bibliography. For the purpose of this book, let launching factor and to compute its value which

it suffice to say that under justifiable assumption depends upon the rocket type, the length of the
constrained motion on the launcher, the propel-

of the aerodynamic forces and with experimen-
tally determined values of the necessary para- lant temperature, and the indicated airspeed of

meters, the equations of motion can be solved the aircraft, but not on the dive angle. There is

and the pertinent data of the trajectory can be a launching factor both in the vertical plane and

tabulated. We shall, therefore, discuss only the the traverse plane.

qualitative characteristics of the trajectories Since the rocket starts out in the general
and their application to the sighting problem. direction of the aircraft it is necessary to de-

8 0 •HORIZONTAL REFERENCE LINE

Figure 101.-Ang0e of Attack TO TARGET
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termine the aircraft's direction in terms of the is launched into a uniform air stream. This
thrust direction. This is accomplished by con- assumption does not hold in regions close to an
sidering the boresight datum line which is fixed aircraft wing. It is, therefore, necessary to
in the airplane. Since the latter is at an angle determine an "effective angle of attack" from
a, from the zero lift line of the aircraft, then, sighting data. The method will be explained
considering the influence of gravity, the flight subsequently.
direction will be at some angle a - a, below the The gravity drop term of the rocket trajec-
zero lift line. This angle is inversely propor- tory depends upon the rocket type, propellant
tional to the square of the indicated airspeed, temperature, the dive angle, the launching
V,.. If the airplane is nosing up or down, there speed, and the slant range to the target. This
is a centripetal acceleration a- in the direction gravity drop is computed from the simplified
normal to the flight path to be considered. This equations of motion and the values are tabulated
acceleration is given by together with other ballistic data for each

standard rocket type. This data consists of
(7.2) ax =VG 8. tables of trajectory drops, launching factor, .-.

flight times, and projectile velocities. Numeri-
The formula for the attack angle a can then cal studies on the values of the trajectory drop

be written as for many rockets currently in use has revealed
b that there exists linear and quadratic functions

(V.) of the range which can approximate the trajec-

tory drop and angle of fall. The coefficients for "
where b is a constant of proportionality which these functions also are tabulated. A portion of
depends upon the airplane. See figure 101. a typical trajectory drop table for a 30' dive

The above discussion assumes that the rocket angle is illustrated in table 7.1.

Table 7.1

Traiecfory Drop- 30' Dive Angle

Trajectory Drop (Mils) Normal to Effective Launching Line

ange 00°F 400F 700F 1000F 00F 400F 700F 100I01-
(yds) "____"_

320 knots 380 knots

.98 .97 .97 .95 .99 .99 .98 .97

500 27 24 21 19 23 20 18 16

600 30 26 23 21 25 22 20 is
800 34. 30 27 25 29 26 23 22

1000 39 34 3i 29 33 29 27 25
1200 43 38 35 32 37 33 30 28

1500 49 44 41 39 43 39 36 34
2000 61 55 51 50 53 40) -16 44
2500 7-4 68 64 62 65 60 57 55
3000 88 82 78 76 78 73 69 183

4000 118 112 107 106 107 101 97 97
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POSITION AT RELEASE

B SLD L.,L

POSITION AT IGNITION

T

Figure 102. - Drop-launching Conditions

In drop launching, the rocket is dropped corn- relative to the aircraft in a vertical plane and
pletely free of the airplane and the ignition of at low altitudes. See figure 103. Under these
the rocket is delayed. Thus, there is a period conditions we may make the assumption that
of free fall. The effective launcher line becomes the only forces acting upon the rocket are the
effective at the ignition point and a further rocket jet which produces a constant accelera-
correction would be necessary on the sighting tion equal to the velocity during burning divided
equation. See figure 102. Experiments have by the burning time, and the force of gravity.
been devised in order to obtain the necessary The computation of the rocket's velocity rela-
information on the free-fall part of the trajec- tive to the aircraft becomes the major ballistic
tory and the effective angle of attack. data. The trajectory is then combined with the

Retro-launched rockets are fired backward sighting problem.

149



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

FIRING POINT -__

Vr g VG

x

C--.

Q

TARGET

Figure 103. - Retro-launching Conditions
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(a) (b) (C)

% % " •EFFECTIVE LAUNCHER LINE

TRAJECTORY TRAJECTORY TRAJECTORY OF BOMB
OF SHELL OF ROCKET LINE -,,IHS.,~~~LINE OF SIGHT n w..LINE OF SIE FTo V .' ,x • "-, "LN OFSGHT

LINGO GRAVITY DROP
115 MILS

(a) SHELL FIRING (b) ROCKET FIRING (c) BOMB DROPPING
SMALL GRAVITY DROP INTERMEDIATE GRAVITY DROP LARGE GRAVITY DROP
SMALL SIGHTING ANGLE INTERMEDIATE SIGHTING ANGLE LARGE SIGHTING ANGLE

Figure 104.- Gravity Drop Comparison

7.5 Illustrations of the Effects on Rocket that the trajectory drop decreases as the dive
Trajectories angle increases.

Many things enter into the determination Figure 106 shows the effect of Launching

of rocket trajectories. Some of these factors Speeds on the rocket trajectory and illustrates

introduce errors iA' the firing of airborne rockets. the well-known fact that the greater the speed
the smaller the trajectory drop.

These effects are best described by illustrations
and the following figures are presented here for Figure 107 shows the effect of range misesti-
visual explanation. martion on the trajectory.

Figure 104 shows the difference in magnitudeof the gravity drop effect for shell fire, rocket Figure 108 shows the effect of temperature
on the rocket trajectory. The burning time andfire, and bomb dropping, and clearly illustratesthe intermediate role of the rocket. distance of a rocket depends greatly upon the
temperature of the rocket propellant at ignition.

Figure 105 shows the effect of the dive angle This in turn affects the trajectory as illustrated
on the trajectory drop and illustrates the fact in the figure.
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Figure 105. - Effect of Dive Angle
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LAUNCHING SPEEDS

Figure 1 06.- Effect of Launching Speed
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S I G H T L I N E S - - - _ _ _

Figure 107. - Racng• Misestimation

154



CC

ROCKETRY .

END OF BURNING

\~\ \% 0%

Figure 108.- Effect of Rocket Temperature
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FLIGHT LINE OF AIRPLANE

"FLIGHT LINE PARALLEL

"-4

Figure 109.- Effective Launcher Line in Lateral Plane

Figure 109 illustrates how the rocket turns over will tend to overshoot the target. This kind
into the flight line of the aircraft in the lateral of pull-up is not to be confused with the toss
plane. Thus, there is an effective launcher line bombing technique where the projectile is re-
in both the vertical and lateral plane. leased at a predetermined instance during a

pull-up from a straight-line dive.
Figure 110 illustrates the effect of firing in a

skid or side-slip. The rocket will again tend to Figure 113 illustrates a typical curve of ap-
follow the direction of motion of the aircraft. proach for a standard airplane tracking a ground

Figure 111 shows the effect of the angle of target with a fixed sight setting.

attack on the aiming problem of rockets. If the
B.S.D.L. rides higher with respect to the flight Figure 114 illustrates the effect of wind and
line, a large sighting angle is necessary. Condi- tar get motion on the aiming problem. It is seen
tions to increase the angle of attack are shallow that the effect of the wind is essentially the
dive, heavy airplane loading, or low indicated same as a target motion and therefore need not

airspeed. be considered as a separate problem. Conven-
tional sighting systems measure the relative

Figure 112 illustrates the effect of nosing motion of the airplane and the target and this
over or pulling up at the time of fire. A pull-up relative motion contains the wind effect as an
will tend to undershoot the target while a nosing inherent part.
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LINE TO TARGET

ANGLE OF SKID

Figure I110.- Skid
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CURVE OF APPROACH

S. L. 4000 YDS.
S. L 5000 YDS.-

S.L3000 YDS.-
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T

Figure 113.- Curve of Approach
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G- REFERENCE LINE

a+

F. L.

E. L. L.

A B. S. D. L.=L. L.

T

Figure 115. - Trajectory Drop,

7.6 The Sighting Problem motion may be specified in terms of an angle
between the flight line and the sight line. The

It has been pointed out that in the forward behavior (ballistics) of the rocket itself may
firing of rockets the direction of motion of the now be superimposed upon this problem and the
rocket is essentially the direction of motion of correct lead angle may be determined. This,
the airplane at the instant of firing. Hence, in then, is the sighting problem, of which we con-
order to hil the target the airplane must have sider the following three distinct cases:
the proper direction of motion at the instant of (a) attacks against a stationary target;
firing. The airplane, therefore, is maneuvered
into a correct attitude and held there for a (b) attacks against a target moving in
period of time after which the direction of range;
motion will have taken a calculable position (c) attacks against a -target moving in
with respect to the airplane. This direction of azimuth.
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0*

T

Figure 116. - Rate of Change of a

These cases are treated separately and the corn- (7.5) X -= A - a - -+ ' + (1 - f) a.

plete picture is obtained by superposition. The above formulas are expressions for the

sighting angle, except for the parallax correc-
A. Stationary Target tion which arises because the sighting system is

We shall first consider "the sighting invariably mounted in the airplane at some dis-
angle" which is needed to compensate for the tance, d, above the launchers. This correction
gravity drolp of the rocket, This angle may be may be approximated by d1,! and is added to the
measured from the sight line to the boresight right-hand side of equations (7.4) and (7.5).
datum line (.x) or to the flight line (x). Since the Since this parallax correction can be superim-
rocket turns from the launcher line to the effec- posed it will not be carried along in future
tive launcher line through the angle fa, the tra- mathematical expressions.
jectory drop to be considered is ', the angle Let us again emphasize that L1, and f depend
between the effective launcher line and the sight upon the rocket type and the launching condi-
line. See figure 115. tions only and, therefore, tables of their values

may be used for all aircraft. On the other hand,
It is then clear that a and d depend upon the aircraft type and the

manner of installation of the launchers and,
(7.4) .\+- (6 ± fa) therefore, must be determined separately for

each kind of aircraft and installation.
or. in terms of the lead of the flight line over The existence of the sighting angle gives rise
the sight line, to an angular rate of the sight line during a
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tracking period. This angular rate may be used stationary target discussed above from which
to obtain the required lead which must be com- we get all the necessary information as far as
puted by any instrument which measures the the gravity drop is concerned. In the second
angular rate. Consequently, we need a relation- part, we assume the airplane to be stationary
ship between the angular rate of the sight line and the rocket path to be a straight line. We
and the lead angle. are then interested in expressions for the kine-

matic lead required by the motion of the target
Let us refer to figure 116 and ignore any and for the rate of rotation of the sight line

changes in the angle of attack, a, during the necessary to produce this lead. We introduce
time under consideration. The airplane is con- .ý,- to express the kinematic lead and give it
sidered at two positions P(t,) and P, (t, + At). direction as shown in figure 117, where we have
The law of sines applied to APP1 T yields pictured a situation with the target moving

away from the airplane at a speed VT. Let tf be

Isin (O.•t) I Isin X1 the time of flight of the rocket over the path
(7.6) - r(t, + tf). From the law of sines we have

V'At r (t, + At)

]sinA,- sinfl
Since both •rAt and x are small, we may use the (7.9)
angle approximation to the sine of the angle Vrtj f

so that
Since AK is small, we use the approximation

(7.7) - or- Vrtf
VA4t r(t, + At) V, (7.10) IAKI sin A1- sin a. ,

S t)Again we use the approximation r7 - r and the
M + -t) fact that the times of flight over the present

Since _Mt is small, a further approximation may and future ranges are very nearly equal. (Re-

be used on the range, so that r(t, + At) -?r(t,) member that the target is a ground target and

r. Let us now consider the signs and direc- is, therefore, moving relatively slowly.) If we

tions of the angles as given in figure 116 so let V be the average velocity of the rocket over

that we may remove the absolute value signs the future range we have

in equation (7.7). According to our convention,
a is positive and X is negative. The motion I'
described is such that T increases as t increases, (7.11) V = -

therefore u is positive. Equation (7.7) may then tf

be written in the following form
and the magnitude of the desired kinematic lead

V( VG at any instant of firing is given by(7.8) = - -(A+ a).
r r V

This equation gives the rate of rotation of (7.12) .k-I =---sin a.
V

the sight line that is required to keep it on the
target and to provide the proper gravity drop. Since .A- and o are oppositely directed angles as

shown in figure 117, we have
B. Target Moving Along the Firing Range

This problem is solved by resolving it VT
into two parts and superimposing their solu- (7.13) AK- - sin a.

tions. The first part is the problem of the V

988995 0- 52-2 163
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P

AK

'1,,

0

'-4--

-.

0-I-

VT tf

T (to) T (to+tf)

Figure 1 17. -Target Moving in Range

By superposition we can now express the total rotation of the sight line. Consider the problem
lead by over a short increment of time, At, during which

both the airplane and the target are in motion.
(7.14) A - -... ± AK Let us refer to figure 118.

or in terms of the flight line over the sight line Apply the law of sines to ATofTT* to give

(7.15) X X.S.T. t AK =--+ (1 - f) a•t -•-

where -A.T. andX,..T. are the leads for stationary (7.16)
targets; the plus sign holds when the target is isin X. sin (180- -- a)
moving away from the airplane and the minus
sign holds when the target is moving toward or,
the airplane.

V'At 'sin iX"
The problem of --roper tracking to give this (7.17) T7'

lead requires an expression for J, the rate of sin 0-

164



ROCKETRY

F. L.

00k

VTAt \T2ci

TO SVG 4 t .d~

Figure 118.- Kinematic Lend - Stationary Target

Apply the law of sines to ,P1 T, T2 to give Now, Y -- -- 7 -- T0T. -- V.t, and
using sin x - \, we may write

7T2  r(tý+ At) sin a
(7.18) __7.20)_S~l

sin (0At) sin (7.20)--

or, sin a V;Ati.I
= --[ VXAt

sin a sill

(7.19) At = IT,- or,

VG VT(7.21) - 1, sin a.

since r(t, At) - rand sin oAt O'At. r
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r
P T (to)

AA

I.-.

T (to +tf)

Figure 119.- Azimuth Target Motion

To remove the absolute value sign from X we which is easily obtained by considering figure
note that for the situation pictured ý > 0 and, 119.
since X < 0, it is necessary to have a negative By using an approximation for the tangent, this
sign for the first term. Further, making use of expression usually takes the form

(7.13), we have ý in terms of x and A,. Thus, VT
(7.24) AA -

V, VT V
(7.22) a-- X-----sina

r r

-- 7.7 Deferminafion of Sighfing TabfesV,

X + - AK Sighting settings are determined for aircraft-
r r launched rockets by firing enough rounds under

If the target is moving toward the airplane, a number of specified controlled conditions and

then a is increasing more rapidly and the com- from these data sight settings for all other

ponent of a due to target motion has the oppo- desired firing conditions are extrapolated or

site sign from that given in equation (7.22). interpolated by theoretical methods. The num-
ber of conditions needed for the computation of

C. Azimuth Target Motion reliable sighting tables depends upon how com-
pletely the ballistics for the particular rocket,

Azimuth targetmotion is a correction applied aircraft, and launcher are known. Usually, a
to the sighting problem. The amount of this large number of rounds have to be fired under
correction is obtained from the formula many conditions.

Vrtf The usual procedure is first to determine the

(7.23) tan A.t- launching factor and trajectory drop for the
11 particular type of ammunition. The parallax
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factor can be introduced by direct measurement tables of the lead angle can then be computed.
in the aircraft. The problem then is to determine It has been found that the effective angle of
the "effective angle of attack" for the firing attack can be computed from the formula
condition. This is accomplished by having an
accurately boresighted airplane fire a given CWcos Kaz K
number of rounds of one type of ammunition at V,.
known initial release conditions, making succes-
sive passes in opposite directions to cancel out where C and K are constants determined from
wind effects. An arbitrarily chosen sight setting firings. Thus, C and K are tabulated in sighting
is used. The range data are then reduced to a tables for the particular aircraft.
standard set of firing conditions and the cor- The above discussion conveniently pertained
rected sight setting, which would bring the to post launchers. In the case of drop launchers,
mean point of impact on the target, is estab- another variable, namely the time of drop, must
lished. be determined. This is again accomplished by

Thus, everything in equation (7.4) is known firing enough rounds to establish the correct
except the angle of attack a, and thus the effec- sight settings for a number of conditions.
tive angle of attack is determined. Having estab- A typical sight setting table is shown in
lished the effective angle of attack, sighting table 7.2.

Table 7.2

Typical Sight Setting Table

Type of Rocket
300 Dive Sight Setting (Degrees)

Propellant Ternperature (F)
Slant

Range 00 400 700 1000 00 400 700 1000

Speed-> 240 MPH 300 MPH

400 2.9 2.5 2.3 2.2 1.5 1.3 1.2 1.1
500 3.0 2.6 2.4 2.2 1.6 1.4 1.3 1.1
600 3.1 2.7 2.5 2.3 1.7 1.5 1.3 1.2

800 3.3 2.9 2.6 2.5 1.9 1.7 1.5 1.4
1000 3.4 3.0 2.8 2.6 2.1 1.8 1.6 1.5
1200 3.7 3.3 3.0 2.8 2.2 2.0 1.8 1.7
1500 4.0 3.5 3.2 3.1 2.5 2.2 2.0 1.9

2000 4.A 4.0 3.7 1 3.6 2.9 2.6 2.5 2.3
2500 4.9 4.5 4.2 4.0 3.4 3.1 2.9 2.8

3000 5.4 5.0 4.7 4.5 3.8 3.6 3.3 3.3
4000 I 6.6 6.1 5.7 5.7 4.8 -1.5 4.3 4.2
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7.8 Basic Principles of a Rocket Sight (7.25) Sight angle = trajectory drop + f
times the angle of attack; i.e., equation (7.15)In the forward firing of any projectile, the or it may utilize the angular rate of the sight

aircraft must have the proper direction of line and be based upon equation (7.22).
motion at the instant of firing. A "sight" may
be regarded as a device which insures this cor-
rect direction of motion. As has already been 7.9 A Rocket Sight Based on Equation (7.25)
shown, this direction of motion may be specified
in terms of the sighting angle or lead angle and A simple rocket sight suitable for use against
hence is a function of a number of variables stationary targets can be designed on the basis
such as range, airspeed, dive angle, type of of equation (7.25). This equation for no target
rocket, etc. The sight then must perform the motion also is equation (7.4) or,
following functions: (7.26) -. = +f•

(1) It must measure or predict the values
that the variables will assume at the Tests on rocket ballistics indicate that the
instant of fire; trajectory drop, €, can be approximated by

(2) From these data it must compute the (a + br) cos 8 where a and b are the coefficients
correct lead angle; for a linear approximation. If, further, the sight

(3) It must employ some aiming device is based upon the measurement of the altitude
so that the pilot can produce the re- and not the range, we have
quired direction of motion. h h

Each of these functions may be performed in (7.27) r -= h
a number of ways and the goal is to arrive at a sin u sin (a - A - a)
combination of these ways which not only will
give the correct lead angle but also will be easy
to mechanize. Although the correct direction of If we s tue t
motion of the aircraft can be attained by using (7.26), we have,
a fixed sight, it has been demonstrated that/ bh
greater accuracy can be obtained by using a (7.28) -- A a + cos -+ fa.
computing sight. We shall, therefore, limit our sin /
attention to computing sights.

A computing sight is a device which auto- The effective angle of attack is determined from
matically computes the correct lead from input the following formula
data which is continuously made available to
it. Such a device can be designed to reproduce CW cos a
the tabular sight settings that have been (7.29) a- - K
arrived at by calculations discussed in the last V0 :
section. Thus, a computer circuit of a sight may where C and K are constants determined from
be designed to provide a continuous solution to firings and given for the particular aircraft in
a basic sighting equation and, by proper adjust- siring ablen for the take
ment of the computer constants to match the ghting tables. Equation (7.28) will then take
equation, the computer can be made to repro- the form
duce the sight settings for any type nf projectile. hf. _(v)
The tabular sight settings are then used to (7.30) -(A + )cos S- fK
calibrate the sight. sin

The fundamental equation may take many where
forms depending upon the method of mechani- fCW
zation to be used. Thus the simple rocket sight f, (v) - a + and f: (v) b.
may be based on the equation: VG.2
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Figure 120. - Voltage Computer - Wiring Diagram

A further simplification is obtained from the that the final form of equation (7.26) is then

fact that

sin o - sin (8 - [A + al]) (7.32) -

sin 8 cos(A + a)-cos sin(A+a) F hk ]/f, (V) +J V'ý )Cs8Cos 3 - I/
and since A + a is small, we may approximate L h - + ) cos c
sin a by

The mechanization of this equation is accom-(7.31) sin a sin a - (A + a) cos 8 plished by a voltage computer in which the
various parameters are represented by variable

- (A + a) COS 8. electrical potentials. The necessary operations
Vo of addition, subtraction, multiplication, and

division are performed by suitably connectedk potentiometers. A simplified diagram showing
versely proportional to V,;; i.e., f, (v) -- , so the principle of this computing circuit is illus-

V0  trated in figure 120.
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7. 10 A Rate Gyro Rocket Sight = angle from the reference line to the
gyro axis;

Another type of rocket sight utilizes the rate
of rotation of the sight line which may be mea- - angle from the reference line to the
sured by a gyroscope (gyro). If the basic gyro geometric centerline;
mechanization of the gunsight described in /3,--angle from the B.S.D.L. to the gyro
chapter 5 is adopted for rocketry, then, as geometric centerline; a constant
explained there, theprecession rate of the gyro offset;
and the coupling factor or sight parameter, a, angle from the gyro geometric center-
will be employed for solving physically a linear line to the sight line under no ro-
differential equation of the first order in the tin;
lead, similar to equation (4.23) for gunnery.

To initiate the discussion that will finally lead flý + h..

to a differential equation of the type just men- The precession rate of the gyro is propor-
tioned, let us assume that the rocket firing tional to the angle between the actual magnetic
aircraft is tracking a ground target, all motion field center and the gyro axis so that we may
being in a vertical plane. Let us further assume write
that the rocket sight, basically similar to the
gunsight of chapter 5, performs physically in (7.33) ,-K (• - .)
its operation in accordance with the geometry
of figure 121. With the launcher line and bore- where K is a positive constant.
sight datum line taken to be coincident for con-
venience, the essentially new feature to be noted A discussion similar to the one in section 4.7
here is the initial angle fl, by which the gyro shows that the coupling factor, a, achieved by
axis is offset from its geometric center or, since an optical linkage satisfies the relationship.
normally the latter direction and the B.S.D.L
are separated by an angle fl, the initial angle I(- l17
9 Pfl, + /32 between gyro axis and launcher (7.34) [i -
line. Thus, if initially the line of sight and gyro
axis coincide, the sight reticle will be depressed Furthermore, it is clear from figure 121 that
below the B.S.D.L. by the angle P3. In order to

fly with the depressed reticle on the target, the
pilot must keep pushing the aircraft into a dive
of increasing steepness. This downward curva- so that the coupling equation (7.34) states
ture of the flight path, and consequent rotation
of the sight unit with the gyro loosely con- 7
strained, causes the reticle to drift up from the (7.36) - (A+ P) = -
offset position, thus reducing the lead. 1-a

Figure 121 shows the situation with gyro axis Differentiation of this equation yields
and sight line undergoing rotation and also
shows where the sight line would be if there
were no rotation to influence the gyro. (7.37) - A -

1--a
The new angles which enter the problem are

defined as follows: since fl, is a constant.

Ssight line angle under no rotation; If we now employ equation (7.33), we have

=-angle from the reference line to the
magnetic center line of the gyro; (7.38) - (1 - a) A - K(1 - ) -1
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Figure 121 clearly shows that /,2 oo -C , so 7.11 General Theory of Rocket Tossing
that in the zero position of the coupling equa- Tuts
tionThe technique for rocket tossing is similar to

that for bombs (see chapter 6). Rocket tossing
(7.39) . - (1 - a) (0, - 0) m-- (1 - a) P3.2 differs from bomb tossing in that the rocket has

a propellant which causes its trajectory to differ
From equation (7.36) we have from that of bombs. The geometry of rocket

tossing may be decomposed into three parts, see
(7.40) 7j-(1 - a) (A +- P) +' C. figure 122):

(1) The pull-up period, arc OP. •
If we combine (7.39) and (7.40), we obtain (p

(2) The delay period, arc PD.
(7.41) • -- (1 -- a) . + (1 -- a) (,A + 1) (3) The period after the ignition of the

(1 - a) (A + /31 + P32) propellant, arc DT.

(1 - a) (A + P3) . The forces acting on the aircraft during the

pull-up period are the same as those which weEquation (7.38) then takes the form discussed in the case of bomb tossing. During

(7.) -the delay period, the rocket is acted upon only(7.42) -- (1 - a) A K(1 - a) [A ] -- by the force of gravity, and if we assume that

the rocket is released so that its direction ofWe now define motion is that of the line of flight of the airplane

1 at release, its coordinates may be obtained in
(7.43) K(1 - a) the same manner as those for the falling bomb.

U The deviation of rocket tossing from bomb

where i is the sensitivity of the gyro. Further- tossing then is in the behavior of the rocketduring the third period. Thus, the path of the
more,

rocket may be described completely by consider-
ing only two parts; namely, the part which is
the same as the bomb (path from 0 to D) and

so that the rocket trajectory from D to T. It also is
assumed that the rocket does not yaw.

(7.45) 4r +. We shall consider the rocket tossing problem
under the same conditions that we considered

and equation (7.42) becomes the tossing of bombs. That is, the rocket carry-
ing airplane flies a straight line collision course(7.46) (1 - a) A + - A -- + + A at a constant velocity, V, against a stationary

u u target. The pull-Up from this collision course

is begun at the point 0; the rocket is released at
the point P(x,, y.) and is ignited at the point1 . 1I D(x,, y,). The time delay between release and

(7.47) -- a A - A -- -- . ignition is denoted by t,l and if there is no time
u u delay, it is only necessary to set t,1 = 0 in the

Equation (7.47) is the differential equation following equations.
which a rate gyro rocket sight solves. The quan- The equations of motion of the rocket over
tity a is obtained from (7.21) in terms of the the path from 0 to D are the same as those for
inputs to the system. The sighting system may the bomb. See equations (6.48), (6.45) and
be calibrated for a few constant values of /3 or (6.46). Let us rewrite equations (6.48) at the
a variable / may be introduced into the system. end of the delay time, td,

i72
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Figure 122.- Rocket Tossing (Greatly Exaggerated)

173



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC -

The path of the rocket from D to T is defined
a,,- a.•,. + gtt snl 8 by the trajectory '. A study of trajectory drop

YY,. gyt cos 8 tables for rockets currently in use has shown
(7.48) that it can be fitted with an empirical formula/ a,1 x+÷xd--gt-2 sine of the type

Y', UI y+ t~', -gtd1 COS 8 cD (T)1
(7.49) ' Iarse + OR (8d)

Let us recall a few definitions and clearly L V-
focus our notation. Refer again to figure 122. where

(x, y) The coordinate system which has a, b, and c are empirical constants for a
the x-axis along the collision particular type of rocket;
course OT and the origin at the
point of initiation of pull-up, 0. i,(T) is an empirically determined qua-

dratic function of the propellant temperature T;
(x,, y,,) Coordinates of the rocket at release

time. , (8,,) is an empirical function which
depends essentially upon the dive angle 8,, and

(xd, Vy) Coordinates of the rocket at point thus is the same for all rockets. This function
of ignition. was originally defined graphically; however, a

t The release time. table of values has been calculated and it also
has been fitted by expressions involving trigo-

t' The closing time. nometric functions.

td The delay time. The rocket tossing problem can now be formu-

r The slant range of the rocket from lated by a close study of figure 122. This study
the ignition point to the target, reveals that a necessary and sufficient condition
DT. for the rocket to hit the target is that the fol-

lowing angular relation must be satisfied:
8 The flight line dive angle before

pull-up. (7.50) -v± + 0,.

0 The pull-up angle at any instant, t. The problem then reduces to one of finding
expressions for these angles which when sub-

9r The pull-up angle at release. stituted into equation (7.50) will permit that
equation to yield a solution for the correct pull-

Od The angle the tangent to the path up time.
of the rocket at D makes with
the x-axis. It is easily seen by referring to figure 122 that

V The angle between the rocket slant

range and the collision course. (7.51) tan -v

The trajectory drop of the rocket. O ,

The dive angle of the tangent line and upon the substitution of the values for X,

to the path of the rocket at D. and y,, from equation (7.48) and OT:- t.V, weve
Since the tangent line is actually obtain
the effective launcher line at D,
the angle 8,, + v + fa; see figure Yr + Ytd - -2,gt4 - cos 8
121. From figure 122 it also is (7.52) tan , .
easily seen that 8,1 8 - 0

d. t, - Xr X't,, -gt,2 sin 8
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D sary and we shall turn our attention to the
approximations which, although quite numer-
ous, nevertheless, has resulted in an equation
that, when mechanized, has given good results

in field tests.

7.12 A Specialized Equation for Pull-up Time

in Rocket Tossing

Due to the fact that the pull-up angle is small

and the rocket trajectories which are cohsidered
in rocket tossing are rather flat, the following

approximations are considered to be acceptable:

An expression for 0,1 is obtained by consider- (1) During pull-up, the spacial accelera-
ing the velocity diagram at D as shown in tion of the airplane is in a direction perpendicu-
figure 123. lar to the collision course.

Thus, (2) The slant range of the rocket is given

by
y,1 y,.- gt,,, cosY1 Y'. -(7.55)os 8=jHT := (t,.- tdj- t,) VG .

(7.53) tan 0,j - (7.55) H

Xd x, + gtd sin 8 (3) The angle 0,1 is approximated by its

If we now recall from chapter 6, equations tangent.

(6.45) and (6.46), that (4) The angle v is approximated by its
tangent.

X, - V( cos or, It is necessary to make one further assump-

r0 tion which is to be placed on the spacial accelera-

xc.- do, tion of the airplane during pull-up. There exists
g] f two possibilities for this choice. One of these

o assumes, as was done in toss bombing, that
(7.54) there exists a suitable mean value K-of K dur-

, V(; sin 0,, ing the pull-up. This assumption results in a
quadratic equation for the pull-up time.* How-

VOrF sin 0 ever, studies of rocket tossing have shown that

- do, the rocket is usually released while the spacial
g f j. acceleration is increasing so that the second

o choice is to assume that the spacial acceleration
is proportional to some power of t ; that is,

we could substitute these values into (7.52) and
(7.53) and obtain expressions involving only kgt, or K -cos a + ktr
the unknown 0,. The subsequent substitution of
(7.49), (7.52) and (7.53) into (7.50) would yield In particular, the acceleration can be approxi-
the general equation which should be solved for mated by a linear expression so that we shall
o, and finally the release time t,. The complexity develop the case for which r - 1 or
of this equation, however, renders it imprac-
tical from the point of view of mechanization. The reader can easily verify this by following the
Consequently, further simplification is neces- procedure which we shall present for the second choice.
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Upon substitution of (7.59), (7.60) and (7.61)
into equation (7.50), we have

where k is a constant of proportionality.
g 1 2c-,-

In view of these assumptions, the velocity (7.63) [A, (to-ti-tr)-- jI "
components at release are given by

Ag [.!iktr:, + ktdtr 2  
td' COS 8]

x= VG [VC (t, - tr - td) - jgtd2 sin 8]

(7.57) tr ½g [ktr2 - 2td cos 81

yr f kgt dt = ½kgtr ± [VG + gt sin 8]

To simplify this equation and ease the notation,
and the coordinates at release are given by

2V.
(x= Votr, first multiply by - and let

(7.58)
Yr -= 1kgtr3 " 2c

c, =gtd sin 8/V, and D - - (D
If we substitute these values into equations g
(7.52) and (7.53) and use approximations (3)
and (4) above, we obtain thus, we obtain

(7.59) -- tan v [(e-- t -- t,) A2 + (D] € ii

l:Jkgt/ + -4- kg Gt 2 t2 - ½gtg2 COS 8 -ktr' ± ktdtr- - td2  COS 8

t V0 -- Votr -V~td -- jgtd sin 8 t, - tr - (I + .c 1) td

and ktr -2 
2 td cos 8

1-kgt -2 gtd cos 18 + C
(7.60) 0

d = tan 0
d =

VG + gtd sin 8 'After clearing the fractions and combining
terms, we get a cubic equation in* tr

Let us rewrite equation (7.49) in the form

) [(7.64) +(2 - c,) k t,- - B.,t,.2 - Bitr + BR0  0(7.61) 19 =[g(tc--td--tr) A•--,, ] +• --

V0

where where

2V, 2  -V /b B- = (t, + i4 ctd) - (1 + cl)Az!pr
(7.62) A=, -- ae

B= 2td cos 8 (1+ + c,),
4) - (T) and oil= R(8d) [ + ÷ 2A 2 (tl- td-- ¼CJd)]

and
r, has been replaced by its approximation B0 = (1-+-cl)€r [t - (1 + _c1 )td]

(2). [(t,- t,)A 2.+±ýp, + 2 tdtcos8 -td cos -
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0 P (Xr, Yr)
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Figure 124.- Rocket Tossing with No Time Delay

The solution of this cubic equation will then have been derived. We shall not concern our-
yield the release time t,.. selves with these approximations since that

would entail a study of the relative magnitudes
The exact solution of this cubic equation is of the constants involved. Suffice it to say that

difficult to express and, more to the point for such approximations are arrived at by extensive
our consideration, is difficult to mechanize. study of experimental data obtained from
Consequently, various approximate solutions firings.
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7.13 Rocket Tossing wifh no Time Delay which, after multiplying through by

The special case of rocket tossing where there VG (14 - t,)/g, may be written
is no time delay is of interest because one of the (7.69) ./,A, (t, - tr) 2
first rocket tossing directors was fashioned
after the toss bombing director. Furthermore, tr

it is possible to design a rocket tossing director (t, - ) f (K - cos a)dt-
by first ignoring the time delay and also the J
temperature variations of the propellant, and 0"
then to correct for these effects by proper t' t
changes in the mechanism. We shall, therefore,
develop the equation which results when these + (K - cos 5) dt'dt.

two assumptions are applied. Thus, if we delete + o
0 0

those terms in equation (7.64) which contain
t1 and (D, this equation reduces to If we now apply the assumption that

(7.65) kt 3 - (kt, - eRA) t' 2 - 2r•RA 2t,' K- cos 8 = It we have
+ I/RA 2t,.2 - 0t

The solution of this equation would then yield f (Y - cos 8) dt ½kt- 2

the release time t,. We shall, however, obtain J
the equation in a different form. We note that 0
Od now becomes the pull-up angle 0, (see figure and
124) which is given by t tr

t (K - cos 8dt'dt =f 1kt"2dt = ktr'

(7.66) 0r, f (K- cos a) dt 0 0 0

0 and (7.69) becomes
[See equations (6.42) and (6.44)]. (7.70) ½iýRA_(tC2 - 2tctr + t' 2 ) -

Thus, we now have tr
-. [(t, - tr) A2 ] t'f (K - cos 8)dt - 4kt, + -jkt. 3( VG

V or, dividing through by t,,
(7.67) VG(t t) (7.71) JIJ-IA~t, + ½•RAtC-•t,- = -,nRA t,.

Stt (K -- cos 8) dt'dt .•"
VG- (K- cto) ffkt,-jt' 3 + f (K - cos 8) dt"

0 0
0

Equation (7.50) then takes the form If we use

g4IRA 2  1' 2ýt
(7.68) [tk - tr] - t - AIt

2V,
as a first order approximation to the solution of

tr (7.65), equation (7.71) takes the form

g_ f (K - cos 8)dt 1

V, (7.72) ifRA 2 tC + -- 2 A I
2

A 2
2 
2

0 2k
t'. t t. -

+ J (K - cos 8) dt'at. (,RA :IAIýR)tr + f(K cos 8)d t.+VG(tc--tr) 0 o0 ,'

I V
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ROCKETRY

tr The stability of spinning rockets is a major
problem both in the design and the use ofSince tr fdt, we rewrite to obtain spinners. When a spinning rocket is fired from

o a m(.ving aircraft, it is acted upon by large
t, aerodynamic forces as soon as it is released.

(7.73)f (K -- cos 8 + :RA,) dt-- Any slight yaw which may be produced by static
S' -or dynamic unbalance, cross currents of air, or

0 gravity tip-off, transforms these forces into an
1 overturning moment as was explained in chap-. +•A _t ÷ - ýn2A 2•-.,

2k + ter 1. Now the gyroscopic action of the spin

The term •k&R°-A "-2 would not have occurred if tends to turn the rocket about an axis at right
"angles to that about which the moment is acting,we had replaced by U in the formula for v. and if the spin is too weak the yaw will increase

If such an approximation is acceptable, equa-
tion(7.7) rduce toand, in turn, the overturning moment increasestion (7.73) reduces to and the rocket 'May become unstable. The action
t, of the overturning moment causes the rocket to

2 f travel in a spiral during its initial period of(7.74) f (K - cos + 2¢RA 2 ) dt - TRth -
A.,o motion. The phase and amplitude of this spiral

0 at the end of burning determine the subsequent

Equation (7.74) is easy to mechanize since the direction of flight. This spiral motion tends toelectrical circuit can be made to solve average out the cross thrust due to initial yaw;however, the amplitude and period must be
tr made as small as possible.

(7.75) 2 f dt It took much experimentation to develop spi;n-
A.,J R (t) stabilized rockets, but successful ones have been

o designed and tested. The theoretical behavior
where R (t) is a resistor whose value is deter- and analysis follows that of spinning shells.
mined by the integrand of (7.74).

7.14 Spin-Stabilized Aircraft Rockets 7.15 Air-to-Air Rocketry

Since fin-stabilized rockets are suitable only The entire discussion of this chapter has been
for forward firing from aircraft and because limited to air-to-ground rocketry. The air-to-air
their direction of travel is so dependent upon problem should probably be compared with gun-
the direction of motion of the aircraft and the nery rather than bombing. Since rockets are
effective angle of attack, much thought has been slower and have a larger trajectory drop than
given to the problem of spin-stabilized rockets. bullets, the problem of aiming is far more diffi-
Such rockets are often called spinners. The cult. However, the innovation of the spin-
advantages of spinners are numerous. Tbeoreti- stabilized rocket has led to considerable study
cally, they may be fired in any direction and in attempting air-to-air combat with rockets.
thus may be used in air-to-air combat as well The mathematical theory is similar to that
as air-to-ground firings. They are less sensitive for gunnery. The only changes in the theory are
to changes in angle of attack. They are shorter those arising from the differing ballistics of
and thus are adaptable to being released by rockets and bullets and the consequent redesign
automatic launchers installed in many parts of of sighting systems. The large gravity drop and
the aircraft. Their aeroballistics thus become the large target speed results in very large lead
similar to the ballistics of spinning shells. They angles. This in turn limits the combat tactics
differ from spinning shells in that they do not of the attacking aircraft. An attack suitable for
have their final spin nor their final velocity when a rocket salvo in air-to-air combat is that of a
released from the launcher since most spinners collision or interceptor course which was con-
obtain their spin as the propellant burns. sidered briefly in chapter 3.

988995 0- 52 - 13
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TERMS AND SYMBOLS

GREEK ALPHABET

Letters Names Letters Names Letters Names

A a Alpha I Iota P p Rho

B p Beta K K Kappa 0" Sigma

r , Gamma A X Lambda T Tau

A 8 Delta M Mu T V Upsilon

E Epsilon N v Nu Phi

Z Zeta Xi X x Chi

H 71 Eta 0 o Omicron Psi

0 6 Theta H 7 Pi Omega

SYMBOLS

,is equal to; n ' , n approaching infinity;

:A, is not equal to; -\n, square root of n;

is aproximately equal to; Z ABC, angle with vertex at B;

< is less than; (V, u) , angle from V to u;

> is greater than; AABC, triangle ABC;

< is less than or equal to; A x, increment of x;

> is greater than or equal to; ... , and so on;

x derivative of x with respect to t; OA, vector from 0 to A;

V, V sub F; A triangles;

A' , A prime f(u) function of u.
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Chapter 8

GLOSSARY OF NOTATION

8.1 Introduction 8.2 General Definitions '
The mathematical theory of airborne fire The following definitions are general and holdcontrol is the work of many writers. Each of throughout the book.these writers has employed more or less his Vectors are denoted by bold face letters andown notation, a circumstance which has often their respective magnitudes are indicated byled to considerable confusion. The publication ordinary print of the same letter. -of this book affords an opportunity to attempt

to standardize the notation. Example: The vector V has magnitude V.
The notation emplovcd in this book con-

forms in general to the standard notation of Unit vectors are denoted by small letters.mathematical writers and insofar as is possible
agrees with that used by organizations such as Example: i, j, k, e, e.
NACA, Bureau of Standards, Aberdeen Prov-ing (,rounds, universities, and with textbooks The derivative of any function with respecton ballistics, vector analysis, and other mathe- to time is indicated by placing a dot above thematical subjects. letter representing the function.A situation which has been found to be un- 

6avoidable is that of employing the same letter dx d2O ... d3yto represent more than one concept. However, Example: .r = W; " -; ' .judicious care has been taken to keep the mean- dt dt- dt.ing of a letter or symbol the same throughout
any one chapter and thus the meaning to be The resolution of forces, velocities, and accel-ascribed to a given symbol should be that corre- erations into their components along coordinatesl)onding to the chapter in which it is defined, axes is accomplished by attaching to the lettersMoreover, whenever it was possible to do so, a denoting the quantity subscripts employing thegiven concept was represented by the same letters of the axes.symbol in all chapters. Thus, for example, the
lead angle has been denoted by .A throughout; Example: The components of the velocitythe present range by r; future range by r/. V along the axes x, y, and z are 0Care has been exercised in the use of sub- denoted by V,, V,, and V:.scripts and the attempt has been made to attach
a meaning to all the subscripts. Thus the prac- The position of any object in the figures andtice of using the subscript "o" to denote initial diagrams is represented by a letter which mostvalues has been applied to the muzzle velocity, nearly describes the object.
V,. In order to eliminate cumbersome mathe-
matical notation, subscripts are employed as Example: The position of a gun station issparingly as possible. denoted by G. The position of aThere are some general definitions and state- bomber aircraft is denoted by B.ments concerning notation which apply to thebook as a whole. These are summarized in sec- In the main, Greek letters are used to denotetion 8.2. The, individual symbols are defined angles. For the complete Greek alphabet, see thechapter-by-chapter in sections 8.3 through 8.9, list of Terms and Symbols at the beginning ofinclusive, this chapter.
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It should be pointed out that the term mil has AN K,.
four definitions. The Army mil is defined to be b= (Formula 1.86).

rnd Km

an angle equal to - of one revolution. Thus, mg
6400 C the ballistic coefficient -

id.
:360

Army mi -60 degrees 0.05625 -- C, dimensionless ballistic coefficient

for type n projectile.
0.0009817 radians.

c = (c, + c,) p, • (Formula 1.69).
The Navy mil is defined to be an angle equal to d'K,, d'K,.
tan '.001. Thus, c, = - + - (Formula 1.46).

2B 2m.
1 Navy mil = tan-.001 - 3.438 minutes of arc. 2

The mathematical mil is defined to be an angle c, - K, (Formula 1.54).
2(s,- 1)m

equal to ___- of a radian; i.e., it is a milliradian. D drag force.
1000

d diameter of the projectile.
Thus, 1 mu -- 0,001 radian = 03'26".3. E elevation angle of the gun bore.

The bombiniz mil valuh- subtend the iamc dis- e the exponential symbol.
tance on a base line, but are not equal in angular
measure. The value of an angle in bombing mils F force acting on the projectile.
may be found by dividing the distance on the F,, Fy, F. components of the force F along

the x, y, z axes.
base line (the ground) by O f subscript denoting future situ- the a-ltiude

ation.

8.3 Definitions of Symbols for Chop+er IG gun station position.
Gý (u) drag function for type n projec-A axial moment of inertia. tile at zero yaw.

A, azimuth angle of the gun bore; g a .....
that is, the angle from the V,, g acceleration of gravity.
vector to the projection of the H point vertically above projectile
gun bore axis upon the hori- at any time t.
zontal plane. 1(u) Siacci inclination function.

A' azimuth angle of the Siacci co-
ordinate P; i.e., the angle from i form factor for a projectile.

the gun station direction of [i, j, k] auxiliary coordinate system.
motion, V,, to the projection 1 s,-
of the Siacci coordinate P upon K-
the horizontal plane. P'. 2 C, c S-- 1

A (u) Siacci altitude function. (Formula 1.71).

a speed of sound. Ko drag coefficient.

B moment of inertia about the K,, yaw dragcoefficient.
transverse axis. K, yawing moment coefficient.
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KL cross wind force coefflient. v,, vv, vZ components of the projectile
velocity in the direction of the
coordinate axes x, y, z.

L cross wind force. W weight of the projectile.

M overturning moment. IV wind velocity.

m mass. [x, y, z] stationary coordinate system

N spin of the projectile. (See figure 2).
n number of calibers for one turn (x, y. z) coordinates of the center of grav- - "

of the rifling. ity of the projectile at any
time t.0 origin of coordinate • _ .- " "._o orginfco esyem. jX, Y, Z] moving coordinate system (See

o subscript denoting initial values. figure 1).
P Siacci range coordinate. Z zenith angle of the gun bore. - 0--0..
P' projection of P upon the hori- 8 angle of yaw.zontal plane. Bo initial angle of yaw.

P = I - (I s) (Formula 1.43). windage jump.
Q Siacci gravity drop coordinate. preic dn sn -n(Q,:,?, projectile coordinates in gun-line 0
R retardation force. axes system.
rf future range of the projectile. [$,77,C) gun-line coordinate system.

S(u) Siacci space function. 8 angle of inclination of the tan-
S,(it) S(u,,), initial value of Siacci gent to the trajectory.

space function for which 90 initial angle of inclination of the 0
u =_ ut. ttrajectory.

8 stability factor. K moment factor.

s V., j P 1. 2 lateral deflection.

8, value of the stability factor near , vertical deflection.
the muzzle of a stationary gun v angle from V,; to Uo.
in air of standard density. 3..41.9ir - 3.14159...:'."

T(u) Siacci time function. p relative air density, po/lpo.
t, time of flight of the projectile. p. air density.

u Siacci pseudo velocity. po reference density (.07513 lbs/- .
it initial true airspeed of the pro- ft').

jectile. a Viscosity of the air.
V projectile velocity relative to the 7 angle from V,; to Vo.

air. 'p angle of orientation of the plane
V, gun station velocity, of yaw from the vertical.

V, muzzle velocity of the projectile. angle between the horizontalplane and the plane containing .'.'. .-.
v velocity of the projectile. V, and V,

183
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8.4 Definitions of Symbols for Chapter 2 iA unit vector along the terminal
side of angle A.

A. azimuth angle of the gun bore I unit vector along the terminal
axis. 0 side of angle A,.

A azimuth angle of the sight line. i unit vector along the terminal

a total acceleration of the ownship "
with components a1 , O2, a3  side of angle A +-- .

along i k.- ...
n i unit vector directed forward

B, i - component of •. along the longitudinal axis of

B, -- component of • the ownship. ,

B k -component of •. iL unit vector along the terminal

b ballistic constant appearing in side of the angle E 2
the formula for windage jump.2 -i. horizontal unit vector fixcd in"0

C air course of the gun-platform. space.

C, tangent line drawn to C' at point J windage jump vector.
T.

jG unit vector directed outboard
C' air course of the target. from ownship and parallel to

C2  parabola tangent to C' at point T. the starboard wing. S

E elevation angle of the sight line. j n = X i...

Eo elevation angle of the gun bore k, unit vector directed downward
axis. along the ownship vertical.

e unit vector in the direction of k.-n =
the sight line to the target. l - q 1. " ""'

e, unit vector along the line of in- M - r'u angular momentum of the
tersection of the plane e, k sight line at the time of fire.

G
with the plane ei M(t) angular momentum of the sight

e* unit vector in the direction of the line at the time t. -
gun bore axis. M, component of M along i

E

F decrease in the vertical accelera- ML component of M along i
tion of the bullet due to air re-
sistance. m slope of gun-target line (co-

planar case) with respect to
g acceleration due to gravity, fixed axes in space.

G present position of the gun-plat- N = (1 - sin" a.,sin 2a,)-•-12 .

form. n unit vector directed vertically

Go position of gun-platform at start downward in space.

of combat. 0 origin of coordinate system fixed
in space."." """

G, future position of the gun-plat- in"space.
form. P Siacci range.
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GLOSSARY OF NOTATION

Q Gravity drop of bullet during its w rate of gravity drop.
time of flight. (x., y.) rectangular coordinates of the

q bullet slowdown factor. point labeled S.

"R bullet rang = GT,. a approach angle of the target
R bullet range = GT.r, V

r present range to target = GT. a3 angle of attack = (i0 , •')
r. T I) . q. - .

'rutur range to target = GITI . a3  angle of skid (i ")

T present position of target. f bank angle of ownship = angle
through which aircraft hasT. position of target at start of rolled.

combat. Sy gun angle-off = (i,--V)
T, future position of target. G u nl-f =( 0

T,T position of target as predicted 8. initial yaw angle of the projec-
tile. , - -.

by a first order computer..tile.

Tf- position of target as predicted by dive angle of ownship
a second order computer. 900 - (i, n)

t variable time t , measured from E,, F2 first and second order bias er-

instant of fire= rors. t =

t present time of flight, i.e. time • angle from fixed reference line
of flight of the bullet over the to
present range r. 0 angle directed from reference

line to sight line.
t, time of flight of bullet from pres- S

ent position of the gun to the A total lead angle = (e, e)
point of impact with the A"aiuhcmpnn.f"t a r g e t . . a z i m u t h c o m p o n e n t o f A" . - " ' "',. _ ,

tre.= Ao -- A. "'-''<

t, value of t at time of impact. , ballistic lead - (V., r)o

to time for bullet to traverse R in b
a vacuum. As elevation component of .. -

= E.,-E.
u, initial speed of bullet with re-spect to inetial space.Ak kinematic lead angle =(r, r) .. '.".'.'.

spect to inertial space.
A.4l, sight lateral component of kA.U average speed of bullet over the -

Siacci range. A,, sight vertical component of A.

Vf average speed of bullet over the u angle directed from a horizontal

future range. reference line to u.

VG velocity of gun-platform. angle (V(;, u)

V. muzzle velocity of bullet. • unit vector directed along V G

Vr average projectile speed over the •' unit vector directed along the .

present range. projection of VG upon the own- . .

ship vertical plane determined
VT velocity of target, by iG, k
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•" unit vector directed along the c1  aerodynamic constants
projection of V(; upon the own- (Formula 3.66).
ship azimuth plant determined D drag force.
by i, i 

ra ore
y iG, E elevation angle of projectile's

Scentral angle subtended at the rectilinear trajectory.
center of a circular path by an
"arc traversed by the gun plat- F force notation; as a subscript it

form at time of fire. pertains to fighter aircraft.

• value of ý at time t = t. (i, j, k) unit vectors.

p relative air density. 2 ,r=-(Formula3.65)/ K-~K - (Formula 3.65). : .. ,.

r sight line angle-off 0 (iG, r) . 1 + 2'..

GoGT. (i, eo Ki dimensionless constants :
(Formula 3.72).

i. future range line angle-off L lift force.
= (ir )

p angle between bullet range and m slope of line.
the sight line = (R, r) . R radius of curvature.

I1, angular velocity of the sight co- RI projectile air range. --

ordinate system with respect r present range.
to space.

rt future range.
W angular velocity of the sight line

with respect to space S wing area.
com tof along e. length of arc; dimensionless ....

e component ne range (Formula 3.71). 0

(OF component of S, along i T thrust force.

.L component of u, along iL. t variable time.

tf time of flight of projectile.
8.5 Definitions of Symbols for Chapter 3 t* dimensionless time "

A azimuth angle of projectile's rec- (Formula 3.71).

tilinear trajectory. UB dimensionless bomber velocity

A9 aspect ratio, b2 //S. (Formula 3.71).

a. normal acceleration. VB velocity of bomber aircraft.

B subscript pertaining to bomber VF velocity of fighter aircraft.
aircraft.

. average speed of projectile over
b wing span of aircraft. rf.

* CD drag coefficient. Vi indicated air speed.

.C lift coefficient. v dimensionless velocity

- = VR/ VF. (Formula 3.71).

"" C, = 1A•/B . W weight of aircraft.
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GLOSSARY OF NOTATION

(xi,, ym, z0 ) coordinates of bomber aircraft. k coefficient in linear differential

(.'x, yi, zy) coordinates of fighter aircraft. equation, k a" ± x - f(t)

a angle of attack of gun bore line. = 1 (1-a)u.
31 angular momentum of line of0&0 angle from zero lift line to thrust sight.

line.

p bnkange.q bullet slowdown factor.

, angle from reference line to r present range to target.
flight line. future range to target.

a angle of deviation. T, future position of target.

,I propeller efficiency. T0  position of target at time of fire.

0 angle from reference line to
sight line. t time variabh, measured from an ,

arbitrary origin. .A angle from V. to sight line. t, time of flight of projectile.

AN, A•, A, see Formula (3.68). t, arbitrary origin of time t .

p relative air density. V, speed of gun-platform at time of

7 angle-off of the sight line. fire.

V, speed of target at time of fire.
8.6 Definitions of Symbols for Chapter 4 V, average projecti!,' speed over

present.range.

a sight parameter. present range.
Vt average projectile speed over

A, B constants in the aided tracking future range.
formula.

Vo projectile muzzle speed."..'...-
C amplification ratio = amplitude V0  prjetlemuze'p-d

of sight oscillation amplitude x output functions of the time cor-
of gun oscillation, responding to the input f(t)

d distance from reticle to gyro X0 value of x at time t. .
mirror. x, output function of the time cor-

e base of natural logarithms responding to the input f (t)
22.71828... x2  output function of the time cor-

/ focal length of collimating lens. responding to the input f (t) .

f(t) arbitrary input function of the a approach angle of target. - --
time ... ,t, gun angle-off = (V , V.) .

G of (t), f (t) "signal" and "noise" components
of 1(t). -It sinusoidal oscillatory motion ofthe gun.

G present position of gun platform.
.y steady state value of ,!. .

h = 1 + t, a dimensionless E time lag corresponding to phase
M! difference of gun and sight

quantity. oscillations.
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r angle between reference line and i current strength.
gyro axis. ie eddy current strength.

7 angle through which gunner's k unit vector along the z-axis.
handgrips have turned from a
neutral position. K, constant of proportionality. 0

0 angular coordinate of tracking 1 length of torque axis.
device. L arbitrary torque vector.

A total lead angle. n mass.

•b ballistic lead angle. Mo moment of rias in ablat point .. _

.A kinematic lead angle. 0.

= 3.14159 . . . N center of spinning dome, located -
on its surface.

a angle between reference line and
and sight line. 0 any fixed point.

0, steady state value of . P a particle. 0

a, value of r corresponding to p,. p perpendiculardistance from point
o to line of action of force F.

sight line angle-off.
r position vector of particle P rela-

angular rate of the line of sight. tive to O.

8.7 Definitions of Symbols for Chapter R electrical resistance.5
"R reaction force at point of gyro

A, B, C moments of inertia of a solid of support.
revolution with respect to the
principal axes of inertia, x, T torque vector, Wi.

Y, z . u gyro sensitivity.

a sight parameter. V velocity of particle P relative to "- "" ""

B fixed mirror in the sight head 0.

optical system. Vr target velocity.

C1,. e, c, proportionality constants. v linear speed of a point on the

d distance from reticle to gyro spinning dome.

mirror. W weight of gyro rotor.

E electro-motive force. I x, y, z] principal axes of inertia of a solid

an arbitrary force. of revolution. •

f focal length of collimating lens. a angle by which the line from the
reticle to the gyro mirror is .

G viewing glass on the sight head. offset from the gun bore axis. i
H magnetic field strength. Also used elsewhere as a vari-

able angle and as angular ac-
Ho moment of momentum of a force celeration. "

system about the point 0.

I. moment of inertia about the =
z-axis. -/ gun angle-off.
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GLOSSARY OF NOTATION
S angle between gryio sphi axis and h M) difference in altitudes of points

gun bore axis. -B, and B,, at time t.

.A error operator. i ballistic form factor of bomb.

77 angle between reference line and K empirical constant .0000316
gyro axis. ft.

0 angle of dieflection of gyro spin k constant of proportionality.
axis in az~muth. ? aso ob

A. 3.muh opoen f .00' line of flight of bo~mber (luring 9
.11, elevation component of .\k . time of flight of bomb in vacuo.
Ak kinemp tic lead angle. R range of target along the heri-

= 3.14159 .. . ot.

p dlistance of mass m from z-axis. r bomb trail.

a angle between reference line. and rdt) difference in abscissas of points
line of sight. B, and B,, at time t.

V. angle of (deflection of gyro spin T target.
axis in elevation. t arbitrary time since release of---

angular rate of the line of sight. bomb.

~ -- ~t, time of flight of bomb.

comonntsofangla veoctyV, closing speed between plane and
cofmp aongnt of angla z veloit target = ground speed of plane

when target is stationary.
S angular velocity of precession.V trearsedobme.0

spin angular velocity ot gyro 7 arsedobme.
rotor. Vi indicated arsedo obr

VT target velocity.
8.8 Definitions of Symbols for Chapter 6 v velocity of bomb with respect to

A. AD F. I.VFLBoNTINGthe air mass.

V terminal velocity of bomb in air.
R., position of bomb in still air at an

arbitrarv time t since release. W weight of the bomb.
Bt position of bomb in vacuo at an W wind velocity.

arbitrary time t since release. X horizontal coordinate of bomb.
d (diameter of bomb. Z vertical coordinate of bomb.
F drag force due to air resistance 9 agewihtnetln obm

acting on bomb.
trajectory makes with the yen-

f (v) drag force acting on bi'mb; func- tical.
tiGn of bomb velocity only.

9 dIrift angle.
g acceleration due to gravity.

7r 3.14159..
H altitude of plane above target

level. pa density of air at a given altitude.

189 4
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p,, density of air at sea level. P point of bomb release.

, range angle of target. R radius of curvature of pull-up
path.

C. DIVE OR GLIDE BOMBING 8 variable distance measured along 0
the pull-up path, beginning atI.Note : Letters no__t definedI have -ýmle mean- 0

ing as for LeVel Bombing.1I
t time taken to fly the distance s,

L line aiming allowance, a variable time since initiation

V,, vertical component of V .of ull-ut. ,
t, closing time = time for aircraft

V, horizontal component of to cover distance OT

X horizontal range of target. t,, time for aircraft to cover dis-
I n 4tance NO .- '.

e angle between flight 'ine andthe t'nce -O
horizontal. t;, f t, + t, = time when bomb strikes S

the target measured from start,\ lead angle of bfight line over the of pull-up.

sight line to the target.

t, plull-up time measured from point
of pull-out to point of bomb

D. Toss BOMBING release.

tN,,t : Letters not defined have the same it, w horizontal and vertical compo-
meaning as for Level and Dive nents of bomb velocity since
Bomobing. Letters with zero sub- release.
script indicate values of letters at
the time of pull-out from a straight U, TV, horizontal and vertical compo-
(live. nents of V at P.

0 retarding acceleration on bomb V true air speed of plane along the

due to air resistance. pull-up path.

P p)r(o)portionality constant. x, y coordinate axes, along and per-
pendicular to the collision

f (:= h -- h) h . course, respectively, with ori-

h:, h. altitudes of points N and O, re- gin.at'0"
spectively x,, y, coordinates of point P.

K number of gees acting on air- p a particular function of input
craft due to both curvature variables t, 8, ,, V.
and gravity at any point oni
the pull-up path. a (live angle of the collision course

OT.
Stime average of K over the pull-

) are Op. e(•) a term which accounts for change
in trajectory due to air resis-

N point at which straight-line (live tance. 0
at target is begun.

9 angle between x-axis and the
0 point of pull-out from a straight tangent line to pull-up path at

dive. time t .
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GLOSSARY OF NOTATION

0,. angle betwveen )--axis and the t, closure time.
tangent line to the pull-up11 patht, thdeati.
at P.

- K cos6 nrmil acelratontj time of flight of rocket.
on aircraft along its pull-up t,, the timre the rocket stays in the
p~ath, in gees. launchers.

jr average normal acceleration over t, release time of rocket.
thepul-uparcOP.v, average velocity of the rocket

$,, horizontal and vertical axes wvith over future range.
orign atf'*VG gun station velocity.

71i coordinates of T at time ti, .niae irpelo h u

Cr a funct ion of pandl 8 station.

Sangle between the horizontal an(l V, final velocity of the rocket relia- -

the tangent line to the bomb five to the aircraft.
trajector~y.

Smean value of over arc PT . ~ eoiyo h agt
a. horizontal position of the rocket.

a fncton f K 6 nd l.Z.L.L. zero lift line: a reference line

8.9 Definitions of Symbols for Chapter 7 xelitharlne
a angle of attack of the B.S.D.L.

a,, normal acceleration.
a, angle from R.S.DL to Z.L.L.%

R. S. D.L. bores ight datuim line : a refer-
ence line fixed in the airplane. fa angle from J?.S.D.L. to E.L.L.

b) constant of prop~ortionality. /3 13 + 13,.

E. L.L. effective launcher line; the line 13, angle from B.S.D.L. to the gyro
of departure of rocket.gemticnern.

F.L. flight line: the direction of mo- /3 angle from the gyro geometric
tion of the aircraft, centerline to the sgtline tin-

der no rotation.
f latunching factor.

8 angle from the horizontal to the
H aIltitude of the airplane above the R.S.D.L.

target.
(ldive angle, angle from horizontal

L.L. lao ncher line : altitude of launch- reference line to the F.L.
ers.

C angle from the reference line to
r present range, the gyro geometric centerline.

rf future range. 71 angle from the reierence line to
the gyro axis.S. L. sight line; line from own ship to

target. 0 pull-up angle at any instant t.

tb burning time of rocket. 0,. pull-up angle at release.

. . . . .. ... ... . ...... . ...... ... . .. . . ..... . .
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9,, the angle the tangent to the path v the angle between the rocket
of the rocket at D) makes with slant range and the collision
the x-axis. courlse.

A lead angle, angle from sight line j angle from reference line to the
to B.S.D.L. magnetic centerline of the

At lead angle in azimuth plane. i.
a angle from the horizontal to the

.Xk kinematic lead angle. ih ie

r. lead angle for stationary target.sihlneageudrorta

X angle from the flight line to the tion.
sigh lin. ~trajectory drop; the angle from

X1 .angle A for stationary target. the eftuctive launcher line to
the sight line.

192

Ab AsAb A Ab t Ah dh 0

1jj!!!jll0



Appendix A

VECTOR OPERATIONS

A. I Vector Algebra-Addition and Sub- Also, from the figure, we note that
traction . .* -* -.

OP + PQ = OR + RQ,
By a vector is meant a straight line segment

possessing a definite length and direction. Any which expresses the fact that vector addition
physical magnitude which also involves the idea is commutative. Thus,
of direction may be represented vectorially. A + B = B + A.
Thus we may cite as examples: velocity, accel-
eration, force, and torque. The reader may convince himself, by drawing

Notationally, we shall distinguish between a an appropriate figure, that the associative law
vector quantity A and its corresponding scalar also holds for vector addition:
value A by employing bold face type for the (A + B) + C = A + (B- C).Q
former and ordinary type for the latter. Thus
for vector A we have A while its scalar value The sum of any number of vectors may now be
is denoted by A. Alternately, we shall employ obtained by constructing a broken line whose
the notation AR for the vector directed from component segments are the vectors in ques-
point .4 to point R. tion; the sum vector will then be directed from

the beginning to the end of the broken line.Definition 1: Vectors possessing the same
length and direction are said to be equal. Geo- Definition 3: The negative of a vector is
metrically speaking, this means that the vectors defined as a vector of the same length but of
in question are necessarily parallel or segments opposite direction. Thus - AB = BA and
of the same straight line. ..> -.)

- (- AR) = AB. To subtract the vector B
Dc *finition 2: The sum of two vectors A and from the vector A, amounts then to forming

B is written A + B and is defined as the vector the sum A + (- B). In figure 125, A -- B would
represented by the diagonal of a parallelogram --0
of which A and B are adjacent sides. This is be given by the vector RP.
shown in figure 125. Definition 4: The product aA or Aa of a

"• vector A and a real number a is defined as a
Since from the figure we also have B = PQ,

we see immediately that an alternate way of vector whose length is 1a times that of A and
constructing A + B is to draw B from the term- whose direction is the same as that of A if a
inus of A and recognize that A + B is then the > 0, opposite to that of A if a < 0.
vectordirected from the initial point of A to Multiplication of vectors by real numbers is
the terminus of B. commutative, associative, and distributive. This

is reflected in order by the following equations:

R Q aA=Aa

B(ab) A = a (bA)

B (a +b)A =aA+ bA.

0 PON., The product of the sum of two vectors by a
A number also is distributive:

Figure 125.- Vector Parallelogram a(A + B) = a A + a B.
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In summary. we may say that so far as addi- orthogonal set. If the components of A and B

tion, subtraction, and multiplication by real in the i, j, and k directions are denoted respec-

numbers is concerned, vectors may be operated tively by A,, A,, A,, and R,, ?,,. R,, then since

upon formally, using the rules of ordinary ii = j.j---k-k=1andiij-_i k kj= .k-.'.

algebra. 0, we find -

A.2 Vector Algebro-Scalar and Vector A • B = (A,i + A~j + A~k) •(,i + BJ + BIk)

Products = A,B, + A,,R,, + A:B:. "":::

2. VECTOR PRODUCT
The product of one vector by another may

lead to a scalar or to a vector, quantity depend- Definition 6: The vector product A -. B of
ing upon what type of product is specified. Two two vectors A and B is a vector perpendicular
types of product are defined : the scalar or "dot" to the plane of A ant1 B and so oriented that the
product and the vector or "cross" product. For ordered triple IAA, B, A ". BI forms a right-
vectors A and B, these products are denoted by handed orthogonal set. The magnitude of A " B
A B and A - B. is defined by A B sin (A, B), where 0' < (A, B)

1. SCALAR PRODUCT < 180. 0

Definition 5: The scalar product A •B is We note first, in the special case when A B,
defined by that (A, B) is 0- or 180- and hence that A . B

0. Thus, we may say that two non-zero

A • B = AR cos (A, B) vectors are parallel if and only if their cross-
product vanishes.

where (A. B) is the angle included between A From figure 125, it is immediately evident
and B, (0' < (A, B) < 180'). that the magnitude of A -,1 B is represented

It will be noted that A • A = A". Thus the geometrically by the area of the parallelogram
scalar product of a vector by itself gives the determined by A and It. Also, if the order of
square of its length. Also, if A is a unit vector, A and B is reversed in A '., B, that is to say, if
i.e., A = 1, then A • B will give the directed one considers the product B "< A, then to pre-
length of the projection of B upon the line of A. se~rve the right - handedness of the triple I B, A,
Since the defir" expression for A • B is sym- 13.A the direction of BXA must be opposite
metric in A a,., B, it follows that scalar multi- to that of A "- B. Thus,
plication of vectors is commutative:

A'B=B'A ~~A x' B =-: -- B v A""""
A * B = B - A Ay B

Using the definition for (lot product, it also can and we see that cross multiplication is not com-
be shown that scalar multiplication is distribu- mutative. As we shall see below, cross multipli-
tive with respect to addition: cation is not associative either; that is,

A-(B+C)=A.B+A-C. (A YB) \ C -,-zA\ (Bx C),

A useful formula for evaluating A • B can be but it is distributive with respect to addition: - .
written when A and B are each referred to a
right-handed orthogonal set of unit vectors as A , (B + C) A \' B + A , C.
the basic coordinate system. Thus, if i, j, k are
unit vectors so oriented that a rotation of i into
j appears counterclockwise when viewed from With A and B referred to a right-handed

the terminus of k and if the same can be said orthogonal coordinate system Ii. j, k 1, we may

for rotations of j into k and k into i when viewed derive a formula for
from the termini of i and j, respectively, the
ordered triple [i,j.kI forms a right-handed A I: B (Ai 4- Aj + A k)'• (R•i + Bj+Bk)
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VECTOR OPERATIONS

by use of the distributive law and the relations
AxB

i X ij Xj- k X k = 0,

iX~j k, J~xk =i, k Xi j.

The result is

A X B= (A,,B. -- A.jBi + (AB, -- A,B)j ALTITUDE ." ""-"-"--.--

+(A,B,,- A,,R,)k. AREA

A more convenien, form for remembering the . '

latter is A

i j k Figure 126.- Scalar Triple Product

A• X B. A,.A•

A x B A, AM A.. 4. THE VECTOR TRIPLE PRODUCT, (A X B) X C is

B, BR Bz a vector perpendicular to A X B and hence is
coplanar with A and B. It is easily verified that

the determinant being expanded by minors
according to the elements of the first row. (A X B) X C - (A. C) B - (B C) A,

3. THE SCALAR TRIPLE PRODUCT, A X B • C, is and
first of all a scalar since it is obtained by finding and
the dot product of the vectors A K," B and C. One
can easily show that, when C has components A X (B X C (A C B (A B) C.

C,, C,,, C:, the product A B C is given by the This shows, incidentally, that cross multiplica-
formula tion is not associative.

A, AV A:-

AXB.C= B,BB. a-

C, C' C.

Geometrically, the numerical value of A X B •C C (
represents the volume of the parallelopiped
having A, B, C as concurrent edges. More pre-
cisely, it represents ± Volume according as the
triple IA, B, C j is or is not a right-handed set. j p
Indeed, from figure 126, we have ::

A B • C = 'A x Bl C' cos 0

= (area of base parallelogram) 0

(_t Altitude) 
0

Figure 127. - Vector Differentiatibn= -L- Volume. ::::::

Since cyclic permutation of the letters in A X B A.3 Vector Calculus-The Derivative
C does not alter the parallelopiped we note that

The derivative of a variable vector A (t) with
A x B • C = B x C • A = C X A • B. respect to the scalar variable t is defined by .

From this we conclude that a given scalar triple dA
product is left unchanged by interchanging the A (t) I r" '

dot and the cross. dt At-3t"O At

988995 0- 52 - 14 I , f°
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Where AA - A (t + At) - A (t) is the increment The angular velocity of vector A-= Au de-
vector representing the change in A (t) occa- noted by to, is a vector of magnitude , = 0 and
sioned by a chaige At in t. The difference of direction u "* T. Thus, the angular velocity -'

AA of a rotating vector is another vector perpen-
quotient - , shown in figure 127, is then sim- dicular to the plane in which the rotation takes

At place. Hence,

lply the secant vector which is - times as long (A.1) w - ,,(u y T) = u < .,T = u X u.
At

as AA. The limiting vector -(t) is then tangent From Formula (A.1) it is easily established,
to the path traced by. the terminus of A(t) as upon taking the vector product of both sidestothv a thtaribehseriuo t)a with u, that_ •_
varie...

If A(t) =A,(t) i + At) j. then the deriva- (A.2) u = c0 Y U..
tive with respect to the Ii i I frame of reference,
in which A, and A,, are variable components, is Formula (A.2) is equally valid in the following,

slightly more general, case:
' .t) i + A,,(t) . Consider a rigid body rotating about a fixed

When A (t) is interrpretetd as the position vector axis passing through the fixed point 0. Then 0
of a moving point P and t as the time, then A (t) if P is a fixed point of the rigid body not situated
andi AM(I) are respectively the velocity and on the axis of rotation, the velocity of P is
acceleration of P). We note also that if A(t) is obtained by replacing u in (A.2) by the vector
fixed in magnitude but variable in direction, ". Thus,OP. Thus,-.-
then AMU) will be perpendicular to A(t). More-
over, A (t) will be given by the formula d . ."- (OP) ='*a X OP,

AU(t) - A(t),.,T dt

where -. is the angular speed of the rotating where o is now the angular velocity of the rigid
vector A. and T is a unit vector perpendicular body about the fixed axis. This is seen to be an
to A and advanced 90 from A in the (lirection immediate consequence of (A.2) upon resolving
of increasing angle 9 (see figure 128). This OP into components along and p.erpenicular to
follows from the axis of rotation and then differentiating. . .-

dA (10 du The derivative of the component along the axis
A'(I) M -- .--- A -- A,.,T, is obviously zero while the derivative of the

component perpendicular to the axis is then
where u is a unit vector in the direction of A, found from (A.2).

AU Ssince --),,1 when A.- 0, as is well known

from the calculus. A.4 Time Derivative of a Vector Referred to
a Rotating Frame of Reference

T
The following theorem* in mechanics, here

assumed without proof, i, fundamental to our
discussion:

9 THEOREM: If 0 is any point of a free rigid
0 ibody, the velocities of its points are the same

as if they were compounled of an instantaneous
translation V and an instantaneous rotation A1
about an axis through 0; and S& is the same -
for any choice of 0.

Figure 128. - Unit Vector and See "Vectorial Mechanics" by Brand; John Wiley &
Its Derivation Sons; p. 497.
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VECTOR OPERATIONS

Unlike the motion described in A.3., where Differentiating (A.4) we have..

the axis of rotation was fixed, here the axis ofdi dA(t) =A,i + AMj + A'k + A, - + A, -
rotation passing throrgh 0) varies from instant t d

to instant. If P is another fixed point of the rigid dk 0t d

body different from 0, then at each instant the dt

velocity of P relative te 0 is given by -0
Identifying OP in (A.3) successively with i, j, *

and k, we obtain

(I~ di d Ak 0-
(A.3) - (01P) UX 01'O. - SIXU\i SA -- SA x k - ~ .

dtdt dt dt

A (t)
z .

00

y
G __ _ _ __ _ _

Figure 1 29. -Time Derivation of I Vector Referred to a Rotating Frame

In figure A29, let G.XYZ be a fixe d system of Combining the above steps and simplifying we
coordinate axes and 0Xxqz amvn system, find
being, rotated and translated relative to G-XYZ. t) +A +Ak±Ux(A+AJ
Let .A(t) be a vector which is at times to be A()Ai+A ~ &x(A+A

referreds tbohsstems of axes. We seek a
formula for At.or,

Let the vector A(t) in component form be (A.5) A Al + Aj±+A~k +Asx A. .-

When AMt is fixed in magnitude, (A.5) reduces ,.--

(A.4) A (t A, + A~j -4 A k. to (A.3).

0

197
0

. . . . . . . . . .. . . .

0 0 0 0 0 S 0 0 0



NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

Appendix B *

CONVERSION TABLES

B.1I Introduction reason it is convenient to have conversion tables
which change military units to standard units

Throughout this book it has been necessary and vice versa. Several such tables are listed in
to employ military terminology and for that this appendix.

Toble B. .

U Conversion Table -Knot s to MPH to FT/SEC

6C8N) 6080
1 knot IMIIH FT E'SC

5280 3600

I knot =1.151515 'MPH =1.68888!) FT,'SEC

K N(TS NP I l"II T.I S1.'' KNOT\ M)rs PH F'T, S EC K NOTS 1MPI FT,'SEC

2(m4) 2:3 338 1.5) 403 5) 9I 500) 57 844
210 2412 1 :355 360 4 415 608 510 587 86 1
220 253 372 :374 126 625 521 599 878
230 26 I 388 :38) 4:38 642 530 ) (61 895
2-10 2764 40~5 390 449) 659 540 6292

250) 2SS 422 -400 46 1 676 550 1 633 I 929
260 2994 439) 410 472 692 560) 1 4 9)'16
271) I 31 1 456 424 4S4 709) 574) i 566

28)47:3 4304 49'5 i 726 50 6894
334 1 490) 440 507 74:3 .5!90 679 996;

* 34)() 3.45 507 450) 518 764) 444 64 1)
3 104 :357 524 46() 531) 77 6104 70)2 1034)
320) 368 1 -540 4170 541 79)4 6 20 714 1047
:330 384) 1 557 4844 55: 3 811 634)0 725 106ý4

:14) 32 574 49)0 564 828 f;10) 7:37 1)1
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CONVERSION TABLES

Table B.2

Conversion Table - MPH to FT/SEC to KNOTS

5290) 528)
SMPH =-- FTrI,(' =-- KN4)T 0"/

MAXM) 6080)

I MPl = 1.466667 F7, SI(' =.868421 KNOTS

MIP1I FT NIEC KNO)TS MPHtt l' S E( KN4)T N MPH F7T SEX KNI 01.1%

204) 293 174 4WM) 587 347 f4)) 88)- 521
21) 30)s 182 414) 60 1 356 010 895 5:,1)

221) :921 424) 616 365 6124) NO 38 538
2:31 337 2!l 1) 44:10 631 373 6340 924 5 17
241) 352 209 -144) 645 382 640) 9139 556

250 367 217 450 6601) 3941 654)0 5.5: 364
260 :1s 2226 4610 675 75 39 66;0) 968 573 -"
271) 3!il 2314 470 689 408 670 983 582
284) 411 24:1 481) 70)4 417 689) 997 5;)1

290) 425 252 49)0) 71() 426 69)0 14)12 59)#)

31m) - 444) 261 54)4) 7:m:1 4:34 74) 1027 6W8S

310 455 269 514) 748 -143 714) 1041 617

:320 469 278 520 763 452 724) 1056 625

330 484 287 530 777 4640 7:1) 1071 634

340 4!014 295 540) 71)2 469 740 10 85 6431

:3;.o5 513 :3414 550 8447 478 754) 1 lO)4 651

34W4! 528 3113 564) 821 486 760 1115 660

:370 543 :321 570 SU36 4195 770 1121) 64419

3184) 33104 580 851 5A)4 780) 1144 677

:TO4 572 33:9 590 8;5 512 790 1159 6864

Table B.3 0

Conversion Table - FT/SEC to MPH to KNOTS

:1644) 319N4)4
! I'!' - - MPS .. .. KN! O)1

52N)1 W14I84)

I FIT 4'EC = .6i1s18 MP1 l N .592105 KN ) TS

FT ,E( MIPll KNi (as .,1', ( MPH KN4 )T IT SE(C MP KN()I'S-

31(1) 20)5 178 6444) 414Y :155 I1444 614 3: 1

:3212 218 189) 6421) 42:1 367 920 627 545

:341) 2:32 20)1 6-10 436 371) 9-1)1 641 557

3:60) 245 213 660414) 454) 3911 9601) 600 5)4i•

31s() 259 225 6844 i 464 4131 981) 668 5N84)

4-W4 -273 2:17 7) . -177 414 IM11)11 6,82 592

4240 2S64 2-19 724 441 426 II)4 61)5 604 ,""'

4101 3W11 261 7404 5")5 4319 1041) 7(0) ' 616.

401 :14 272 7464) 518 45)0 Iwo 4 7231 628

-44l 327 284 7,4) 522 162 1414) 736 6394-:-

29544 641 2,,X146 5144)5 474 11(m4) 74W i451

5214 355 310s 824) 55 '4 4S1; 1124) 7614 i4643 - -

5444 3168 321) 844) 5731 49)7 11-1) 777 1 4675

504) :012 :12 8444) ;Ni 501) 11 ) d 1 I 4487 1 '
5,4 3495 884) ilK) 521 1IN1) S)5 44699
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Table 8.4

Conversion Table- DEGREES to MILS,
jr

1I . (1188)) D1IR.E = 17.43293 *MIUI
180

(The Fire Control Mit)

Degrec . Minut(,s Secondsf"--

1)0 0 fx)( 60 107. 1976 120 20)94.3951 0 O. 0X(N) 0 .(XX)
1 17.4533 fil 1061. .08 121 2111.8484 1 0. 29W) I .0X48
2 :134.9066 62 1I0S2. If" 122 2129.3017 2 0.5818 2 .MW17
3 52 3.•)!. 613 I,)1.,. 51574 12:3 2146.7550) 3 0.8727 3 .0145
I W9 S132 61 1117.0107 124 216-1.20M -4 I. 1636 4 .()i)4
5 87 26615 65 1 134.464O 125 2181.6616 5 i .454-4 5 .0242
6 104,7198 66 1151.9173 126 219). 1149 6 1.7453 6 .0291 0
7 122 1730 ) 67 I 1f9.3706 127 22146.-5W82 7 2.0362 7 .0339
8 139. i6263 418 I hS6. 8239 128 2234.0214 8 2.3271 8 .0388
9 157.07!Ki 4;9 12021.2772 121) 225 1. 4747 1) 2.6180 ) .0436
10) 17.1 .5329 71) 1221. 73415 130 ?248 9280 I6 2.8)8)9 10 A- 085
I1 191.9862 -1 1239. 1Mg 131 22986.38813 11 3. 1998 II .0533
12 201)9. 1395 72 12516.6371 132 23103.8946 12 :3.41 7 12 .0582
13 226. 892S 7:3 1274.0ON" 133 2321.2879 13 3.7815 13 .04;30
14 214.3-1;1 74 1291.15436 134 2338.7-112 14 4.0724 14 .0679
15 26 1, 794" 7.5 1:308. 9961W 135 2356i. 1945 I5 . 4.36:33 15 .0727
16; 279. 25127 76 13126.4502 136 2373.76478 16 .1.6542 16 .0)776
17 2196, 70)0 77 1343.AX)35 137 2391. loll 17 4.9451 17 .0824
18 314, 1593 78 1361 .3568 138 2408.5544 IS 5.22360 18 .0873
19 331 6126 79 1:378.8101 139 2426A)77 19 5.52fil 1W .P921

:20 319. O5f! 841 1S3N.26X34 140 2443.4610 20 5.8178 -20- )7(
21 366.5191 81 1-13.7167 141 2460.9142 21 6. 1087 21 .1018
22 383.9724 82 14311. 17M0 142 2478.3675 22 6.3995 22 . 1067
23 101 .4,257 83 1148. ,233 143 2495.820)8 2:3 6. 61)4 23 .I115-
24 418. 84 1 S- 1.166.0766 144 2513.2741 24 6.9813 24 . 1164
"25 .136113323 S5 14-83. 52!0) 145 2530.7274 25 7.2722 25 .1212
26 -45:)3,785)6 86 I-4) 9832 146 25,48. 18107 26 7.5631 26 .126 1
27 471.2389 87 1518.4364 1-17 2565.6340 27 7.85)40 27" .1309 0
28 488.!6922 Ss 1535."88917 148 2583.0873 28 8. 1449 28 .13,57
29) 506. 1455 Si!0 15531.3430 149 26M0.7A406 29. 8.435M 2) .1406

:--1 523.59s 94) .1570.719r3 150 2filT. 1)319 34 ) 8.72616 3• . 1454
3f 5I1.10521 91 I1588.2196 151 2W35.4472 31 9.0175 31 .1503:
32 558. 54)54 92 16W6. 7029 152 26;52.9(05 32 9.3084 :32 . 1551
33 ;575.9587 93 1623. 1562 153 2670.3:.38 3l .53 33 . 16m I "'
:14 593.4119 I 9 4 1-14). 64H)95 154 2687.8070 3-1 1). 8)2 :4 .1648 6
35 6 610). 8M.52 9;5 16158.5)062S 155 271)5.2603 35 10. 1811 3i5 . It1)7
36t 628.31 S: 96 1675.51641 156 2722.71:36 36 10.472() 36 .1745
37 645.771• 97 1ol 12. 96914 157 2740. 16619 :37 14). 7629 37 . 1794
3s i61 i. 2251 9• 171).4227 158 2757. 6202 3s I I .0538 3,8 .1842
39 68 4 .678-4 9)9 1727.87(R) 15) 2775.073I5 9 II .3-146 39 . 1891-
40 6198. i317 I W) 1745.3293 160 2792.52618 40 I .16355 40 1939
41 7115.5;85') 10)1 1762.7825 161 2801)1!801 41 11 .9264 41 .1988

42 733,. 0383 102 17804. 2358 162 2827.4334 42 12.2173 42 .2036
43 750, 4916 f 103 1797.1891)I 163 28--1 8867 4:1 12.50)82 43 .20M.
44 767.9-149 1i4 1815. 1-124 164 2862.340W 44 12.7991 44 .21133
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CONVERSION TABLES •

Table B.4 - Continued
Convers:on Table - DEGREES to MILS

r

I I) t E(;iI.I = -I I(x) NIII.S = 17.4.532913N MIl S

S~(The F~ire, Control Mil) 9.

_._D•~egr-s I Mimi sevtoni
-45 7Y-3) ;,82 10o5 1 M2 .5957 1i:. 2.79. 7933 45 13. (O.N01 45 .2182

46 802. 8515 10 1 1 -59). .0490) li(; 2X!17.2 lfif6 46i 13. 38I! -Ii .22:10
47 924) 304 7 107 IS167.502:I I7 29-1-1•.lIlli! ,. 47 13. 6717 47 .2279
4S w-37 75m I lo I X84. 9556 1 " 2W132. 15 I -T 13. 1Hii2; 49 .2327
49 ,455. 2113 109) I!))2.4089 16i9 2,!-1!,1.1 6ioi- 49 I-1. 2535 49 237f;

S7 2.26646 11) 1919.$ 622 170 *.2917. 0597 50 145.44-1 50 2421
SI M11.119 I 1937 31-V) 171 298.4.5 130 ;)1 .2473.3

52 !017.5712 112 1954.T7f i 172 3001 .!9663 52 15. 1262 52 .2521
53 1)25. 102-45 113 19172.2221 173 3019. 4 I!Hi 53I 15,4171 53 . 2 "57 054 942.477.S Ill Pi!) 6753 174 3036. 8729 54 15. 708 0 4 .261 '

4 159..93. 11 I.I 15 2107. 12li 175 31)54.324i2 5 I 15.99!))1 55 .266l .
,6 9,77.3K I I Il 2021 5819 17; 3071.7795 5 I66.2X97 56 6 .2715

57 !9,4.. 8377 117 2042. 0352 177 :3011o. 232- 4 7 16.55 7 57 .2763
5S 10112.291111 1,1 2059.1IS'•5 177 31W.6-461 58 16.S715 58 .2812
59 11C..7714 I3 19 2N709.1" 1 78 3124. 13114 59 17. 1621 59 .2$0('
640 11-17.1 176 120 2W).1.39151 INI) 3141.5927 60 17.4533 641 .211)1)

Table 5.5
Conversion Table - MILS to DEGREES

SM 11, =- 10-' 1I)DE.(;•1 .I.ES = .0572•16 D E'(E;I*Is

Devinil \'ah,. of Degret-.s -. •

II) 0Mil." 1100 mils 10 mils.• 11S - ril

5I 7. 2!5, 5 729 i .57:30 .0573 .100)57
2 114.5-I9; I I .15912 . 1459 .1146 6.1115
3 171.8x873 17. 1887 1.7189 .1719) .0172
4 229). 1, X1 22.91 S3 2.21. . .4)221,
,p 2M.-4 7si 2S. IP179) 2.8-8 64 .112S6
6 343. 77-17 34.3 775 3.4377 .3438 .0)34.4
7 .4011.170.3 40. 1070 4.0107 .4011 0.411
S -5I.' 362 45. $31l;f 4. 5837 .45M4 )4;-15IS
9 515 6I620 5 1 .5662 5. 751 4i; .5157 .0)510

Degrees, Minutes, and Seconds

11000 mlik, IM) mils 10 mil milil S14) - ' -

1 57017'-44 S" 5043'4f` 5" :°34'22. 6 0I°3'21;6.3 000'20. 1 "
2 I J-.3-75'29) 6, 1 I27'33. 0" 108'45. :" I1%52.5* 0110411.313 1710531 -1-1" 1701 1'I1).4" 1043'07.9" 0014)'1880 001 '1 .1. " *
A. 221 WIo )9.2 22"5525. 9)* 2 17'301. 0013'45. 1" 00I'22.5'

2•6°2s'.-I 0'" 23'.52 -4" 2°51 '53.20 0017'11 .3" 001'43. 1" 0
6 3-143%4'2x *5 :"4022';38.9 3026i'15 .9 002017. 1i" 002'0)3 . S
7 -4014'13 6" 40)06'25 .4 40)'38. 5" *)024'113. 9" 002'24. 4"
8 4 58021 '58.4" 451)0 m' I 1.8" 4035, 1.2 ' 0027'3). I" )002'45. 0'
9 5150s39'43.3" 51 03:T-58.3 ' 59'23.8" 0030'51i. 4" 0l:I15. 1" "" "' 0"

201.

....... . . .. .. . ........... . . ........ ..
- 0, 6-% o. .S . - -0 0 0 0 . - . . oS- . ,• - 0 - o .".-. 6-. . 0o . 0" " 0 - - -0 % . . * °.. -0 "



- - -- - - - - - - - -- --- -- - -

1JAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE PC

Table 5.6

CONSTANTS

ir0.31831) 98861 X3791 .*

1 .57079 63267 941897 2 0.60M1 97723 67582

2;r 6. 2831 530171 79586 2 0. N10915 410-130 91895

9. 86%04 441010 893,59 10. 101312 11836'A 42338

1,I 77245 3,1011, 0155 11 7:.0564 IS 958315 47756A
v I

1.25331 41373 155WN 0. 79788 454) 126

'21r 2--06H62 S2716 31001 0'7 .39.4 '-)2M4 014*33

c2.71S29 IS2*g't A4 4iI 0.361787 914411 714412

7.3II1 38 005149 ;M01~4 0. 13533 52832 3W613

~ I 1 .64872 12707 WN)128 w0.1 IMM3 06597 12633

log 10, 0.43429 -44819 03252 log,. 10 2.30Y258 50929 94046
A,

g= 32.174 ft m-v2 = 10.725 yfis I rad~ian =57.21)577 95130 82321 degrve.
p .0)7513 1ks ft' = Mtl2335 shi ft 3I dcgrev =0.01745 329)25 199-13 rai,111S.

I ltatute milv =5284) ft. I mmalitical Mile =WN)8) ft.

The Speed of Sound

-e n ip('r ait tre ' $)x te of $S )i d Sp 4 iI o $-oium nlC FT, SEC lipH1

0a 1088 742
lo)0 1129) 770)

IMNO 1266 863
5WO) Isi 1 12:37

1(101)0 2297 1566
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A=VH- FEET PER SECOND

0

o 0

00

C,,x

0

00 0

oo
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X 00,/0
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