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PREFACE

“This book is a consolidation of the tremendous
amount of work done on the subject during
World War II by innumerable investigators. It
may be used as a basic text on aviation fire con-
trol principles for use in the training of officers
in the military academies, in ordnance courses
of Reserve Officers’ Training Programs at uni-
versities and colleges, and in indoctrination
courses at Armed Forces line schools. It also
may be used to great advantage by scientists
and engineers engaged in research and develop-
ment in the field of aviation fire control in mili-
tary establishments and in the laboratories of
academic or industrial institutions under the
auspices of the government.

The text presupposes a knowledge by the
reader of the mathematics taught in the usual
undergraduate college calculus course. A fami-
liarity with vector analysis also is desirable in
following the development of the theory but is
not essential to an understanding of the prin-
ciples and the conclusions. The main vector
operations employed in this text are defined and
briefly explained in Appendix A.

The specialized nomenclature and notation
adopted in this book represent a deliberate
attempt at much-needed standardization in this
branch of military science and considerable
effort has been expended in endeavoring to
harmonize the conflicting opinions and usages
encountered among the various principals and
pioneers. The commonly accepted standard
mathematical symbolization has been adhered
to generally and any deviation rigorously de-
fined. Numerous diagrams and examples have
b2en freely included to illustrate important
concepts.

It is to be noted that this book does not, as a
good text book should, contain problems the
solution of which is designed to impress upon
the student the principles expounded. The omis-
sion is partly motivated by expedience but is
mainly the result of the authors’ opinion that
the instructors using the book as a text would

be in the best position to formulate problems
commensurate with students’ requirements and
available time. It is hoped that such problems
can eventually be compiled, to provide a sequel
to this volume. .

This text, like most comprehensive text books,
includes the work of many contributors to the
theory. Although the authors are among the
list of contributors, their present role is chiefly
that of expositors. In the exercise of this func-
tion, it is impracticable to make specitic acknowl-
edgment of the contributions of the large
number of scientists who played a part in the
development of the theory of aviation fire
control, since most of their work was done, and
its publication remains, under military security
regulations which restrict dissemination of the
information. It is, accordingly, with regret that
only passive credit can be accorded these anony-
mous scientists who contributed so much both
to the theory and the military applications, and
whose original work has been “borrowed” in
writing this book.

It is possible, however, to give credit to those
who gave direct aid in the preparation of this
book. Thus, the authors gratefully acknowledge
their indebtedness to their associates in the
Research Department at the Naval Ordnance
Plant in Indianapolis for their criticisms and
suggestions and to the officials in the Bureau of
Ordnance for their encouragement and coopera-
tion. In particular, the authors are grateful to
Dr. L. E. Ward of the Naval Ordnance Test
Station at Inyokern, California, and Dr. Martha
Cox of the Naval Ordnance Plant, Indianapolis,
who contributed much to the original manu-
script. They also are indebted to Mrs. Mary
Kelso and Mrs. Nannie Twineham who did most
of the computational work and to Mrs. Janet
Edwards and Mrs. Eunice Stultz who prepared
the manuscript.

J. F. HEYDA.
K. L. NIELSEN.
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Chapter |
AEROBALLISTICS

PART I,

I.1 introduction

In order to aim a projectile toward a point so
that it will collide with a target at that point, it
is necessary to know the motion of the projectile
as it travels the required distance to the point.
Ballistices is the science which is concerned with
the motion of projectiles, It is, therefore, appro-
priate to begin the theory of fire contrel with a
consideration of ballistics. The theory of bal-
listics is usually separated into two distinet
parts:

(1) Interior ballistics, which is concerned
with the motion of the projectile while
it is still in the bore of the gun.

(2) KExterior ballistics, which is concerned
with the motion of the projectile after
it leaves the muazzle.

Although no discussion can be complete without
considering both parts, in the theory of fire
control we are primarily interested in exterior
ballistics,

In fire control theory the term projectile may
refer to any missile such as a bullet, rocket,
bomb, etc., which is projected at a target. The
projecting mechanism will heneeforth be called
the gun. Since the motion of a projectile de-
pends upon many factors such as its shape. size,
weight, initial and subseguent velocities, ete,,
any general theory of the motion of projectiles
must be specialized for particular projectiles.
The clearest approach is to develop the theory
for bullets and make the necessary changes for
rockels, bombs, and other projectiles,

A detailed treatment of the theory of bal-
listics is beyond the scope of this book. This
chapter will consider only the fundamental prin-
ciples and will indicate methods for the determ-
ination of the necessary data. Since this book
is primarily concerned with airborne fire control,
all computations will be specialized to aerial
gunnery and the ballistics for aerial gunnery
will henceforth he termed Aeroballistics.
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1.2 The Coordinate Systems

In order to describe the motion of a projectile
it is necessary to have a reference coordinate
system. T.et X, Y, Z be a right-hand set of
mnutually orthogonal axes with their origin at
the muzzle of the gun and such that the (X,Y)-
plane is horizontal and the Z-axis points ver-
tically downward. This rectangular coor« .nate
system is shown in figure 2,

o -+ X

Y z

Figure 2. — Coordinate System

If the gun is mounted in a moving aircraft,
this rectangular coordinate system is then mov-
ing with the gun and its axes can be defined
more closely as follows:

the X-axis coincides with the Armament
Datum Line and is positive
forward;

the Y-axis coincides with the aircraft's
lateral axis and is positive along
the starboard wing;

the Z-axis coincides with the aircraft ver-
tical axis and is positive down-
ward,

The motion of the projectile can be described
in terms of its (X,Y,Z) coordinates. However,
if the gun is moving it also is necessary to have
4 coordinate system which is fixed in the air
mass at the instant of fire. Let x, y, z be a get
of axes parallel to X, Y, Z but at rest in the air
mass and such that the origins of the two
systems coincide at the instant of projectile
release. For a gun located on the surface of the
earth, the (r,y)-plane is tangent to the earth
at the origin and is often called the datum plane.
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Figure 3. — Coordinate Systems

It is convenient to have still a third set of
rectangular axes, £ 5, ¢, moving with the gun
and such that:

£ is along the gun bore axis;

» is in a vertical plane through the gun
bore axis and directed away from the
ground; and,

¢ is in a horizontal plane and directed so
that the ordered set (¢ %, ] forms a
right-handed system of coordinates,

All three coordinate systems are shown in
figure 3. Tke airplane is assumed to be flying
in a horizontal plane and the angle of attack of
the Armament Datum Iane 1s ignored. The
restrictions imposed by these assumptions will
be discussed in section 1.9, Acrial Gunnery.

The above choice of systems of coordinate
axes differs from the usual choice employed in
surface ballistics, However, it coincides with
the adopted standards in the discussions of air-
craft theories and, since we are primarily con-
cerned with aeroballistics, it is thought to be
an advantageous system. It is hoped that this
change of notation will not cause too much
confusion for the student of ballistics.

1.3 The Trajectory

The trajectory is ithe curve in space traced
by the center of gravity of the projectiie as it
moves through the air, The origin of the trajec-
tory is the position of the center of gravity of
the projectile at the instant of release. The
tangent to the trajectory at its origin is the line
of departure, and the vertical plane through
the line of departure is the plane of departure.
The angle that the line of departure makes with
the horizontal is the initial angle of inclination
of the trajectory and is also called the angle of
departure; it is denoted by 4,,.

If the coordinates of the center of gravity of
the projectile are specified uniquely at any time ¢

after release, the trajectory is completely de-
scribed. Thus the trajectory is defined by

X=Xrt)

Y=Yt)

Z=2Z(t)
where X(t), Y(t), Z(t) denole functions of
time £, These functions must, of course, be zero
when 1 = (). The coordinates of the center of
gravity of the projectile may be expressed in
terms of the coordinate systems (X, Y, Z) or
(¢, 7w, ¢), but, for reference to inertial space,
these coordinates must be transformed to the
gspace coordinates x, v, 2.




AEROBALLISTICS

0
f——— x,

(a) FIELD ARTILLERY
FIRE

~» In—- Xy ——#

(b) ANTIAIRCRAFT
FIRE FLIGHT BOMBING

B 0=S
Y 0o=0
Zr Zf
o
\ 4 B
R

(c) HORIZONTAL

Figure 4, — Trajectories

In general, there are four factors which de-
termine the trajectory:
(a) The position of the origin,
(b) the conditions of projection,
(c) the ballistic characteristics of the pro-
jectile, and
(d) the characteristics of the air through
which it passes.

The projections on the plane of departure of
three tvpical trajectories are illustrated in
figure 4, where (a) shows field artillery fire,
(b) antiaircraft fire, and (c) horizontal flight
bombing.

If we limit our attention to the plance of
departure and consider it to be coincident with
the o, z-plane, the following quantities are often
referred to as the elements of the trajectory.

O —the origin.
B —the point of impact or the point of
burst.
S -—the summit of the trajectory.
OS —the ascending branch.
SB — the descending branch.
OB — the slant range.
f, — the initial angle of inclination.
2, -— the horizontal range.
z, — the altitude of impact.

It is to be noted that in antiaircraft fire the
projectile usually bursts before the summit is
reached and thus the entire trajectory is in the
ascending branch, Tn horizontal bombing, the
summit is the origin of the trajectory and the
entire trajectory is in the descending branch,

986985 O - 62 - 2

Figure 4 shows only the projections on the
plane of departure, taken to be the (x, z)-plane
for these illustrations. Actually, the trajectory
may not lie entirely in this plane but also may
have a projection in the (x,y)-plane. The y
value at the point of impact, y, is called the
deflection and that part of it which is not due
1o the wind is called drift. The three-dimensional
picture is illustrated in figure 5.

1.4 The General Problem of the Trajectory

The calculation of the trajectory of a projec-
tile of given characteristics under given initial
conditions forms the primary problem of ex-
terior ballistics. In order to state the problem
specifically let us consider a stationary gun and
let the gun bore axis lie in the (x,z)-plane. Let
us further adopt the following notation,

(z, ¥, 2) = Coordinates of the center of
gravity of the projectile at
any time t,

(X0, Yy 2,) = Initial values; ie., at t = O,
§, — initial angle of inclination,
angle from x-nxis to the line
of departure.
v, = imtial velocity of the projec-
tile,

v,, ¥y, U, = components of the projectile
veloeity in the directions of
the coordinate axes at any
time {.
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Figure 5. — Trajectory Showing Deflection

m = mass of the projectile.
F,, F,, F.=components of the force act-
ing on the projcctile.

The problem is to find the x, ¥, 2 coordinates

it for cach component direction. Thus,

dix
m——:F,,

) di?
d2,u.
12) { m——=F,

. as functions of the time, f. As the initial step dtz

o in its sclution we use Newton’s second law of P

- . 2
motion, ?

L.‘ m = F;-
F Force == Mass > Acceleration, and apply dt?

are the components of acceleration, Since

dr dy dz
V, o= ———, VU, = , and v, = ——,

at ' at i

the equations (1.1) may be written

{In this and subsequent work, the earth’s

{ dv, dv, dv, rotation is neglected.]
;{, (1.1) m =F,Mm—=———=F,m—-=1F., The problem is then two-fold: first, to find
dt di dt the components of the foree and, secondly, 1o
L wher: solve the system (1.2), which iz a system of
» second order differential equations, The solution
| dv, dv, dv. of the system (1.2) depends upon the form in
: . and ' which the force components, F,, ¥, and F,, can
dt  dt dt he expressed, The initial values of the variables,

namely,
To=Yo=2,= 0,

Vz, = Vs €08 8,,

Vy, = —~ V, 8N 0,,

o

vy, = 0,

o
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Figure 6. — Plane of Yaw

are used to determine the constants of integra-
tion. However, the determination of the {orce
components is not a simple matter and requires,
in fact, approximate rncthods,

For the sake of simplicity in future work, the
following notational convention is made,

.........

o

ll-ll' Y l”lu‘)“.

Conveniion: A dot placed varial

denotes  the 1(:r1vatlw, of that

variable with respect to time; two

dots denote the second derivative

with respect to time, ete, Thus,
d:!o - d:;,y

; 0= , Y= .

dt dt? dt?
1.5 The Force System

A projectile is generally a solid of revolution
which has an axis of symmetry, or such a hody

with symmetrically placed fins; this axis of
symmetry is referred to as the axis of the
projectile, A projectile will move through b,
air with its axis at an angle § with the direction
of motion; this angle is called the angle of yaw.
The plane which includes the axis of the projec-
tile and the tangent 1o the trajectory is called
the plane of yaw. This plane makes an angle o,
called the angle of orientation, with the vertical
plane through the tangent to the trajectory.
Sec figure 6,

Let O be the location of the center of gravity
and P the location of the ecenter of pressure, The
center of pressure is the point at which the
resultant of the aerodynamic forces is applied.
The following forces arve acting on the projectile
and are shown in figure 7.
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Figure 7. — Forces Acting on a Projectile

W = the wveight of the projectile, acting at
the santer of gravity; it has its line
of a ‘tion paralle] to the vertical plane
through the gun bore axis and thus
has no r or y components since the
x,y-plane is taken to be horizontal. Its
components are, therefore, O, O, my.

I = a retardation force acting on the pro-
jectile due to the resistance of the
atmosphere, The line of action of this
air resistance is considered fo lie in
the plane of yaw and has its origin
at the center of pressure which is
usually ahead of the center of gravity.
The force R is decomposed into two
components D and L.

D =the drag or head resistance. This force
originates at the center of pressure
and has a direction paralle] and oppo-
gite to the direction of motion,

L =the cross wind force. This force orig-
inates at the center of pressure and
is dirceted perpendicular to the direc-
tion of motion. In aerodynamiecs this
is the usual lift force.

It is well known from the principles of me-
chanics that the forees acting on a rigid body
may be replaced by a single resultant force with
a certain line of action and a couple tending to
cause rotation about this line of action. Here,
the resultant foree is I and its line of action is
in the plane of yaw, The couple is very small

and often neglected. However, due to the fact
that the center of pressure, P, is ahead of the
center of gravity, O, there exists an overturning
moment M of R about O. This moment, M, is
caused by the component of R which is in the
plane of yaw and perpendicular to the axis of
the projectile. This component is usually called
the normal force and is denoted by Ny, The
moment arm is the distance OP.

Figure 8. — The Force System of a Top
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In order to obtain expressions for the forces
D and L and the moment M, we must enter the
theory of aerodynamics. Since it is beyond the
scope of this book to develop this theory in
detail, we gnall simply draw from it the follow-
ing expressions:

I) = Knpadavz,
L = K14P4|d2V2 Sin 8,
M = Kyupd*V* sin §,

where K, K,, and Ky are called the drag, cross
wind force, and moment coefficients. These co-
efficients are dimensionless* and are functions
of the parameters

ViV
L and 5,
o a

(1.8)

where the new symbols are defined as follows:
d = diameter of the projectile;
po = air density;
V = projectile velocity relative to the air;
a = speed of sound in air;
o« = viscosity of the air.

In aerodynamic theory, the first parameter is
called the Reynolds number and the second is
the Mach number. Extensive experiments are
conducted at proving grounds to determine the
above coefficicnts for a given projectile shape
and position of the center of gravity.

The velocity V ig the vector difference of the
projectile velocity » which is with respect to
the ground, and the wind velocity w with respect
to the ground. Thus the components of V are
given by

V,=v, w0, V,=v,—w,and V., = v, —w..

i.6 The Stability of the Projectile

In general, projectiles have the center of
pressure ahead of the center of gravity. The
air force then creates a moment which tends to
overturn the projectile or causes the projectile
to tumble. In order to prevent this tumbling,

“That the coeflicients are dimensionless can be seen
by a dimensional analysis of equations (1.3); eg,

(m) (ft) mo (fty? (ft)? (m) (ft)

— =K, —_— =K,
(gec)? (sec)®

(ft)s

(8ec)?

fins may be attached to the tail of the projectile,
thereby bringing the center of pressure to the
rear of the center of gravity whence the air
moment becomes a righting moment instezd of
an overturning one. This is usually done in the
case of bombs and rockets. A second method
to prevent tumbling is to spin the projectile
about its longitudinal axis, a procedure which
is generally applied to bullets and shells and
occasionally to rockets. The projectile then be-
comes not only an aerodynamic body but also a
gyroscopic body.*

The general gyroscopic action of a projectile
may best be compared with that of a spinning
top. Consider a top spinning on a flat smooth
surface and let the contact point be at P, the
center of gravity at O, and let 3 be the angle
between the vertical ard the axis of the top. The
force system is shown in figure 8. It is easily
seen that the component of the force due to
gravity which is normal to the axis of the top
is mg sin 8. The overturning moment is then
given by

M=« sin 8

where thLe moment factor « is (PO) (mg). It is
well known that if the top is spinning rapidly
enough, the axis of the top will continue to
move near the vertical in spite of any outside
interference, When this is the case the motion
of the axis about the vertical is said to be stable.
As the top loses its spin, its axis “falls m;;’;
from the vertical and the top tumbles; the
mction is then said to be unstable. The condi-
tion for stability is given by the inequality '
A2N2
- >1
4B«
where A is the axial moment of inertia, B is

41y~ 4 H 43 . :
the moment of incriia about the transverse axis

through the center of gravity, N is the spin in
radians per second, and « is the _rgoment_f—aaor.
The same condition is true for a projectile. The
factor A*N?/4Bx is called the stability factor

and is denoted by x. For a projectile, the moment
factor « is given by (see equation (1.3))

K = I{m[),,d”.‘/'z

and the spin at the muzzle, N, is given by

“For a more detailed descrintion of the hehavior of a
gyroscope see Chapter 5.
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27V,

(14) N=

nd

where V, is the muzzle velocity and 7 is the
number of calibers for one turn of the rifling.
Caliber is used here as a unit of length equal
to the diameter of the gun bore, d. The stability
factor for a projectile is then given by

Tr‘.’A2V02
(1.5) S =

WﬂBKMPud:' Vv

and s > for l/stable motion. If s < 1, the flight
of the projectile becomes erratic and is very
similar to the “wobbling” of a top as its motion
becomes unstable. The stability factor, s, is a
dimensionless quantity.

It is to be noted that the overturning moment
is a function of the angle of yaw and becomes
zero if the yaw is zero. It has been determined
experimentally that the yaw near the gun
results from the clearance of the projectile in
the bore and tends to dampen ouf in time, At
some distance from the gun the carvature of
the trajectory becomes considerable and a rela-
tively steady precessional yaw is caused by this
curvature. At first, the axis of the projectile
tends to point above the trajectory and thus a
moment arises which causes the axis of the
projectile with right-hand spin to precess like
a gyroscope* toward the right of the trajectory.
If the angle of departure is not too great, the
projectile continues to point to the right so that
the plane of yaw is approximately horizontal
and the orientation angle is nearly 90°. Since
the cross wind force I lie in the plane of yaw
and the projectile points to the right of the
trajectory, L will push the projectile to the right

For large angles of departure, the angle of
yaw becomes greater and the cross wind force
has appreciable components along all three co-
ordinate axcs,

Ixtensive measurements under conditions for
which the cross wind force can be assumed to
be perpendicular to the X axis have shown that

sin § can be approximated by

ANgcos b
(1.6) sin § = —————- .
Kupd'V?

*See Chapter 5,

where 4 is the angle of inclination of the tangent
to the trajectory. The stability of a projectile
is usually assured by making the spin N suffi-
ciently large, However, equation (1.6) places a
warning not to make N too large since an in-
crease in N increases the yaw.,

1.7 The Equations of Motion

A form of the equations of motion of the
projectile can be obtained by substituting the
components of the forces into (1.2). The couple
which tends to cause a rotation about the line
of action of R will be necglected. The magnitudes
of D and L are given by equations (1.3). The
directions of D and L can be obtained from
figure 7. D is parallel and opposite to the direc-
tion of motion. The components of —D are then
given by its magnitude times the direction
cosines of the line of motion. Since the vector
V coincides in direction with the line of motion,
these direction cosines may be written,

V)- VU V:
\ , and ——,
|4
so that the components of D are
V. Vy V.
—-D , —D , and D —-,
1% v |4

The general direction of I, depends upon the
augle of orientatinn, ¢. However, for projectiles
which have their angles of departure less than
about 45°, the cross wind force may be assumed
to be in the same direction as the Y-axis. Under
these assumptions the equations of motion then
become

] . V.
ML= —I)——,
1/7

" D Ve W
1 my =—D—— - L;
(L.7) -

e V:
mz =4I —— 4 mg.
'V

If we now approximate cos ¢ in equation
(1.6) by V./V, we can substitute (1.6) into
(1.3) and chtain
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g Kl, V]‘
(1.8) L =AN — —— ——,
(L K:\] ‘/2

The substitution of (1.3) into (1.7) then gives
in units of mass, length, and time.

Kopad2V

I= e —— V.
m
. Knpad:V AN ¢ K, V.
(1~9) y=- VI/ + -

m m d Ky V2
. I\’])pud:V
t=—V.+y

m

This system of differential equations must
e handled by approximate methods. However,
before discussing such methods, it is appropriate
at this point to stop and consider two factors
which enter into the consideration of the above
system. The first of these is the atmosphere.
The forces and the moment depend upon the
wind and the air density. The wind components
wy,, w,, and . are determined as functions of
the altitude which, for guns located on the
ground, is a4 distance along z. The density p, can
be determined by pressure and temperature
nmcasurcements; however, it is usually obtained
from an assumed standard structure of the

1= KI)/KDS

and in effect provides an average correction to
the drag coeflicient of the standard projectile.
A new constant C, called the ballistic coeflicient,
is now defined as

w mg
C = =
id? id?

and this factor is used in equation (1.9).

In practice, the form factor 7 and the drag
coefficient K, are seldom determined. Actually,
the ballistic coefficient, C, is determined from
test firings which relate the perfermance of the
projectile to that of the standard projectile to
which it is most similar.

1.8 The Siacci Method*

This method modifies the differential equa-
tions of motion so that it becomes possible to
solve them in terms of quadratures. The modi-
fication consists in assuming a constant average
value for the air density and introducing a
pseudo velocity u, defined as the vertical projec-
tion of the remaining velacity upon the line of

atmosphere. The standard structure assumes
that the density is an exponential function of
the altitude,

Pu=p,€

Sy

where p, is the reference density, taken to be
07513 Ib. ft, and b 13 a constant equal to
.0000316 per foot.”

The second factor for consideration arises
from the manner in which the drag coeflicient
K, 15 determined. K, is usuaily found as a fuiic-
tion of V/« for a given projectile shape, by
measurements on a projectile at zero yaw, The
drag function itself is determined by test firings
of a standard projectile. The performance of a
given projectile which differs from the standard
projectile may then be estimated by the intro-
duction of a form factor, i, which compares the
given projectile with the standard one. If the
drag cocfficient for the standard projectile is
denoted by K, , the form factor is defined by

*We have changed the units from mass to pounds,
s I

departure. The remaining velocity is the actual
velocity of the projectile at any point on the
trajectory.

It is easily seen from figure 9 that

(1.10) ucost,=vcosfdoru=1vcosf sec t,.

If the plane of departure is in the (z, 2)-plane,
then we also have

U =7v,8c0, or V,=ucosb,.

A drag function for a standard projectile of
a given type may be determined experimentally
as a function of the remaining velocity. Under
conditions of no wind (V =v) we may then
write

(1.11) F(v) =K,»
and the first equation of (1.9) becomes

O

(112) 2 =0, = — ——F e
5 (v)v

*Tor a more detailed discussion of the Siacei method,
see any standard text book on ballisties.
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From the above definition of u we have
v, = Uucosd,,
dv, = du cos 6,

. dv, dv, dx dv,
V= = — Vy

1.
(1.13) dt dx dt dx
du
= v, €Os 4,
dx
s0 that
. du
(1.14) 2= v, €080, =
dx
or
dx Ccosb,
(1.156) = —
du pk (V)

If now the Siacci assumption is made that
paF'(v) can be replaced by p,G(u), equation
(1.15) then becomes

Ccosb6, du

Po G(u)
and can be integrated. Thg integral

(1L.17) S(u) = —f
G (u)

(1.16) de = —

Gol PLANE OF DEPARTURE

is called the Siacci space function and is evalu-
ated and tabulated for a range of predetermined
values of # and initial conditions.

Similarly, theee other functions may be ob-
tained, the inclination function J(u), the alti-
tude function A (u) and the time function T (u).
These functions are completely defined by

2g
') = — ———
wG (u)
I(u)
(118)¢ A'(u) = —
G(u)
1
T’(u) = —_
uG(u)

and given initial values. The prime denotes the
derivative with respect to .

The procedure for solving the problem of the
trajectory then reduces to the determination of
the drag function G(u), the tabulation of the
four Siacci functions, and then the substitution
of these values intn the equations of motion.
This process will be specialized to the case of
aerial gunuery.

Figure 9. — Pseudo Velocity
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PART 2. THE BALLISTICS OF AERIAL GUNNERY

1.9 Aerial Gunnery

This book is primarily concerned with the
firing of projectiles from aireraft in flight. The
fact that the gun is moving through the air in
a specified direction and with an appreciable
velocity adds further complications to the prob-
lem. On the other hand, projectiles fired from

Y

figure 10. — Aeroballistics

an aircraft move only over relatively short
ranges and the maximum ordinate of the tra-
jectory is not too great. This enables one to
ignore the change of the density during the
flight of the projectile and also to ignore the
drift.

Figure 10 illustrates the general situation
for acrial gumnery under the assumption that
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the airplane is flying a straight-line unacceler-
ated course in a horizontal plane, Should the
airplane maneuver, due account must be taken
of the dive, bank, and yaw angles of the airplane
and of whatever aceelerations may be present.
The path of the projectile can still be computed;
however, the force components alon- the axes
of a chosen coordinate system would involve the
above mentioned angles. Present day firing
tables are computed with the above assumptions
and the maneuvering of the airplane is consid-
ered in the sighting problem. Consequently, we
shall limit our ballistic discussion to that pic-
tured in figure 10.

Let

A, be the azimuth angle of the gun bore
measured in the (X, Y)-plane from X
through Y;

Z, be the zenith angle of the gun bore;

E, be the elevation angle of the gun bore
measured positively from the horizon-
tal plane toward the zenith;

V . be the gun velocity (i.e,, aircraft’s true
airspeed) ; taken to be along the
X-axis;

V  be the muzzle velocity of the projectile,
relative to the X, Y, Z coordinate axes,

u_ be the initial velocity of the projectile;
it is the resultant of V_and V.

t; be the time of flight of the projectile.

P be the Siacci coordinate; it is the dis-
tance along the line of departure from
the origin of the x, y, z system to a
noint H which is vertically above the
projectile, The projectile is considered
to be moving without drift.

Q Dbe the Siacei coordinate, which is the

vertical distance from H to the pro-
jectile.

7, be the distauce hetween the muzzle of
the gun and the projectile at any in-
stant ¢; it is called the slant range or
future range and, in firing tables, is
denoted by D.

Consider again the three coordinate systems
described in section 1.2, The Coordinate Sys-
tems.

The dircction cosines of the bore of the gun
inthe (X, Y, Z) coordinate systems are given by
cos A, sin Z,, sin A, sin Z,, and cos Z,

and the initial components of the velocity of the
projectile in the (x, y, 2) system are

u, =V,ec08 A, sin 7,4 Vg,

(1.19) ' w, = V,sin A, sin Z,, and
( U, == —V,cos £,

It follows then that the initial true airspeed of
the projectile is given by

W = U7+ U 4w, ?
=V,  cos® A, sin* Z, 4+ 2V, V, cos A, sin Z,
4+ Vi +V,ireost Z,
+ Visin' A, sin 2.,
=V, (sin* Z,(cos* A, + sin® A,) + cos® Z,]
+ 2V, Vicos A, sin 2, 4- V7,
(1.20) u =V, 4 2V.Viecos A,sinZ, 4 V-
After a time of flight ¢, the Siacci coordinates
of the projectile are P and Q and X, Y, Z coor-
dinates may be found in the following manner.
The right spherical triangles shown in figure 11
vield the following relations
cosr=cos E,cos A, = sinZ, cos A,,
(1.21) siny = sin E,/sin r = c0s Z,/8in r,
sin B, = sin v $in ¢,
o8 v = c08 H, cos A'.

The vector diagram of figure 12 yields

v,
(1.22) stnv=- sin r
Uy
so that
Vn
(1.23) sinb, = cos Z,.
Uo

The coordinates x, y, z of the projectile are
given by

t=Pcos A =Fcost,cos A’
=P cos v,
y=FPsinA'=Pcosb,sinA’,

(1.24) -
(_z—__—.l’sinaaﬁQ
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Ug

Fiyure 11, —- Spherical A on Unit Sphere

Figure 12.— Vector Diagram of V_ u_ V.

The coordinates X, Y, Z of the projectile in
the moving frame of reference, figure 13, are
related to @, v, 2z by
(1.25) X =ax -V, Y=y, andZ =2
since the airceraft is assumed to be moving hori-
zontally aleng the x-axis.

Upon combining (1.19), (1.23), (1.24), and
(1.25) we find the coordinates of the projectile

at any time £ to be

P
X =—(Vqs+ V,8in Z, cos A,) —Valy,
Uo
Vs

(1.26)d Y=P sin Z, 8in A,,

U,

yu
\-—Z = P——cosZ, — Q.
Uo
The relation of the rectangular coordinates
£ 9, ¢ which are moving with the aircraft (see
section 1.2), to X, Y, Z coordinates is given by
the following scheme;

£ sinZ,co8 A,| sinZ,sinA,| cosZ,
n | wosZ,co84,| ~cosZ,sin4,| sinZ,
4 —sin 4, cos A,

x | v | 2]
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Y

are given by

¢=
P
+ Va ( — =1
N Uo
(1.27)
n=— V( (""'— —t/
,un
— Qsin Z,,

P
C:—VU (
Up

(1.28) =& 49* 4 L~

lem is to determine:

14

-2 ~Z
H
Q
P B (XY, Z)
Uo
-Z
Go fo Yo X, X
AI G (tf) /// y
/
P’ Y
Vd
/
X

Y

/

/ /

Figure 13. — Bullet Coordinates

Thus the £, 4, ¢ coordinates of the projectile

) sinZ, cos A

) cos 2, c08 A,

—t,) sin A,

The slant range 7, is now given by

1n acrial gunnery the primary ballistic prob-

(a) the time of flight, ¢, and
(b) the gravity drop, @,

for a given P. They are, of course, dependent
upon the following quantities:

[p = the relative air density pa/pos
vV = true airspeed of the aireraft,
Vv
VA

.

muzzle velocity of the gun,
zenith angle of the gun line,
azimuth angle of the gun line,
the Siacci coordinate.

0

(1.29)

(IS

An
P

Values of {; and @ may be computed for given
values of the quantities (1.29) and tabulated.
The usual procedure, however, is to tabulate ¢,
and @ a¢ fixed interval values of these quantities.
It is customary to replace P by 7, in this tabu-
lation.

.
DS R
1% P VR L T
-~ w-

- -

S

-
A
N
[
[ S

ALY L L T SRS . '..'.4
R ] PO

'—I
.

” "
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/”'6

i
{
!
Figure 14, — Lateral and Vertical Deflections
Although the computation of ¢, and Q forms  the formulas
’ the primary problem, two other terms also are e
. ! sinh=2¢/r
‘_ of interest and are tabulated; namely, (1.30) ) &
Sin p= /7.
A == the lateral deflection,
— the angle between the gun-projectile 1.10 Dimensionless Ballistic Coefficient
. line and the vertical plane through the The ballistic co-fficient defined in section 1.7
i gun bore; it is positive when the gun-  is not a dimensio iess quantity. A more mathe-
projectile line is to the right of this malically logical treatment of the development
vertical plane when viewed from the  of the Siacci method for aerjal gunnery is
. gun. It is an instantancous relative obtained by defining a dimensionless ballistic
position angle. coefficient. Let the subscript s denote quantities
. iated to the standard projectilc of a given
: . = the vertical deflection, related t0 tne standard projecul glven
P type, then we may define
g = the angle betveen the gun-projectile W w
line and the “slant plane” through the e
gun bore and perpendicular to the w, w,
: vertical plane through the gun bore; (1.31) C,= - = , o
L it is positive when the gun-projectile Ky a\* [ 4Y o
's line lies above the slant plane. 1t also % \ 4 v i O
:: is an instantancous relative position s ’ ’ - -
. angle. 1o be the dimensionless ballistic coefficient for ::~ ~-:
These angles are shown in figure 14, It is easily  © type a projectile. =
seen that their values may be computed from The first equation of (1.9) under conditions of C o
\5 ¢
..
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no wind may now be written (units in pounds,
length, seconds)

. Kipa
rT = —- o d?v Vs
mg
KX) Wa d )2 [PaKD dazv
= —p —_ - v
K‘“, w (d, W,
K d\?
> (_) poKn ¥
K, \d,
= '—P et ————————— . ] fv'
w 2
- ]
w,
Po
P _——— I(DB v
= -—--—6:— W, 2
d‘2
. r,
(1.32) = — Gn (V) v,
where
PnKl)“/U
(1.33) G.(v) = — -
M,/ dy?

is the drag function, for the standard type n
projectile, determined from test firings as a
function of the velocity v.

In aerial gunnery, the trajectory is nearly
flat and consequently we may use the Siacei
approximation,

v =u and G,(v) = G.(u)
and equation (1.32) becoines
’)

G (u) v,.
C

n

(1.34) z=—

In section 1.8 we saw that if the (x, z)-plane is
the plane of departure, then

v, =ucost, or u=—=w,8¢cl,

from which we get by a differentiation

{

du

— = 'z}, sec i,
dt

(1.35)

p . ..
= — — Gn(n) v, 8ec 0, since v, =2
n

p
= Gn(u) .

n

Since u = dP/dt, we have

du p ar
dt Cn dat
ar
C., du
(1.36) dP = — —— —_
P G,.(u)

Equation (1.836) may be integrated to give the
Siacci range, P, ’

du C,
- = (S ""So)r
Gy (u) p

U
C.
P=—-"

-/

Uo

(1.87)

where S is the Siacci space function

U
du

(1.38) S:-—j — (U > ).
u

Gn(u)

The time of flight may be obtained by integrat-
ing equation (1.35)

u
C. du C,
t/:—--—- ———-—-:"“‘(T'“qvu)v
14 U Gn(u) I
Uo

(1.39)

where 7 is the Siacci time function
U
du
(1.40) T=-— —_—
u Gn(u)

u

> u,).

I.11 The Motion of Small Arms Projectiles
Fired from an Aircraft
The effect of the yaw on the drag of a small
arms projectile is an impo:tant factor in the
molion of these projectiles when fired from a
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Figure 15. — Vibration Motion

noving aireraft. 14 iy accounted for hy the
¢ pproximation that the drag force due to yaw
iy proportional to the square of the yaw angle
{or small yaw angles, The first problem then is
U find an expression for the square of the yaw
wngle, 8§, This expression is found hy considering
the gyroscopic motion of bullets fired from an
aireraft; the drift is ignored and only the vibra-
tory maotion of the center of gravity about the
mean trajectory is considered, The mean trajec-
tory is a particle trajectory that differs from
the actual trajectory only by periodic terms,

The detailed solution of the vibralory motion
is bevond the scope of this book, (For the theory
of vibrations, see any standard book on me-
c¢hanies; for the complete theory, on which this
discussion is hased, consult reference (2) of the
bibliography in the back of this book,) The
presentadion here will be more or less along
intuitive lines.

Tet jand ke be the rectangular components of
the vaw, Then the theory of vibrations shows
that the molion is given by a linear combination
of

(1.41) cos nyt, sin n,t, cos n,t, and sin n,t

with four coefficienty that are slowly varying
functions of time and in which n, and n, are
solutions of the associated frequency equation
and take the forms

AN
n =— (14 p)
2B

(1.42)
AN
Ny = —=—— (1 —p)
2B
where
(143) p=+Vv 1 —(1/8)

and the quantities A, B, N, and s are defined in
section 1.6,

11 we ignore the gradual variation of the co-
¢lficients, then (7, k) may be congidered to be
the recltangular coordinates of a point M which
is rotating in a clockwise direction at an angular
rate i, in a circular path of radius «,. The center
of this circular path, S, rotates clockwise around
the origin al an angular rate n, and describes a

7
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.
~

t=0

Figure 16. — Initial Conditions of Vibratory Motion

eircle of radius «,. The clockwise angle from
the j-axis to the radius veetor of M is the angle
of orientation of yaw, ¢, and the distance of M
from the origin may be represented by the angle
of yaw, 8. The configuration is shown in figure
15, from which it is seen by the law of cosines
that

(1.44)

if the time is measured from a suitable instand
and the algebraic signs of n, and n, are token
into consideration,

The rotation in the cirele of radius ¢, may he
called the nutation, and the rotation in the
circle of radius «, may be called the precession;

8 ==yt 4 W — 2,4, cos (n, —ny)t

I8

the resultant of these two is the complete yaw-
ing motion. The slow variation of the cocflicients
of the periodic terms in this vibratory motjon
consists of arbitrary constant factors multiplied
by damping factors, We may consider ¢, to he
the amplitude of the nutation and «, the ampli-
tude of the precession, The rates of variation
or of damping of the amplitudes may be experi-
mentally determined.

For small arms bullets, the two damping
factors have been shown experimentally to e
cqual and may be expressed by

(1.45) p-’/; (;_Ilucll)
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where P should be the actual distance the bullet
has travelled but which is here taken to be the
Siacci P. The constant ¢, may be experimentally
determined and is given by

d‘Ky d*K,,
c, = +
2B 2m

where K is the yawing moment coefficient.

(1.46)

Let us consider a projectile which starts its
motion with an initial angle of yaw §,, the angle
of orientation equal to 90°, and such that the
initial values of the time derivatives of 5 and »
are zero; that is, initially t = O, § = 5, ¢ = 90°,
p = 8 = 0. Figure 16 pictures the situation at
t = O and also at some time ¢,

Let ¢, be the angle between OM and OS, then
from figure 16, we have

Ayl = ¢ — 90° + ¢,

and upon differentiating with respect to ¢t
Ny = ‘F —+ S;l .

At t = O we considered ¢ = O so that initially
Ny = 5:71 . ‘

If we apply the law of sines to triangle OMS,
we obtain

¢y 8in [180" — oy — (ny — n,)E| = a, sin ¢,
or
a; 810 g 4 (0, —m,) t | ==, 8T o, .

Differentiating this equation with regpect to
time, we have

a4 foo 4+ (, — 1)) cos [o) 4+ (ny — n.) t]
= (g1 CO8 ¢ .
Thus, at t = O we have
Gl 4 (=) | =
or, since ¢, = n, at t = 0,
07y = Uity
1t is eadily seen from figure 16 that
8, == a, —,
50 that we have two simultaneous equations

(147§ b= —a
Uy == (0,

08895 O - 62 - 3

whence we may solve for the initial values of
«; and .,

28,
Uy = ———————

(1.48)2

Ayy = .
n) - nﬂ

The substitution of (1.42) into (1.48) yields

g (1 —p,) 8,
Uy 5= ——————

2p,
(1 _‘_ pn) 80

Uyy = ——

2D,

where p, is the initial value of p. Since the damp-
ing factor is common to both, we have «, and «.
given at all times by

‘ (1 - pn) 80 [ Do ]‘/5 —Pu CIP
4 = —— | — ¢ )
¥

(1.49)2

(1.50) 2P p
' e 2 (1 + ?70) 3 [ Do ]% —Pu CIP
' () = ————— — ¢ ’
2P, p

where p.% is the arbitrary constant factor mul-
tiplying the damping factor. The mean value of

+ * averaged over a single period of 8 i

52 —_ aqz -1— agz

1+4+ps 1 p, —2p, ¢, P
(LBL) =35 e

2p,y’ D

S0 —13 ( Po ) 2 0P
8o — i p

where the last equatiion is obtained by making
uge of equation (1.43). The variation of the
stability s along the trajectory is approximated
by

= §,°

—pad? 1
. — K, P
Do 8, — 1 m
——g
14
The mean value of 8¢ ig then finally given by

¢ —2pa(cy - c) P

(1.52)

- Sn—i
5t = §,°

(1.53)
8§ — 1
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where
d:

(1.54) ¢, =—————K,.
2(8, —1)m

The yaw of the projectile has two effects upon
the trajectory. First, yaw mukes the drag
greater than it would be if no yaw were present
and, secondly, it introduces the so-called wind-
age jump. At the instant of firing 1o starboard,
the tangent to the instantaneous trajectory
points higher than the tangent to the mean
trajectory, in other words, the tangent to the
mean trajectory is lower than the bore of the
gun by an angle »; this angie is called the
windage jump. The windage jump for a given
bullet depends essentially on the initial angle
of vaw and the initial air speed of the bullet. Tt
can he shown that » is given by

AN K, &

(1.55) + =—— — ——
md Ky 1,

where &, and Ky are again the force and over-
turning monent coefficients. The effect of the
windage jump upon the trajectory may be con-
sidered as a differential correction and thus the
motion of the projectile will be studied first by
neglecting the windage jump.

The effect of the yaw on the drag may be
accounted for by applyving a modified drag force
coeflicient for the standard projectile. Using
the approximation that the drag force due to
vaw is proportional to the square of the yaw
angle for small yaw angles, we may write

(1.56) Ku, = Ko, (1 4 Ku58*)

where
K;, = drag cocflicient for zero yaw angie;
K.5 = yaw drag coeflicient;
3¢ = mean value of & discussed above.

Ji this expression for K, is substituted into

equation (1.23), we have a new drag funclion,

G: , which makes allowance for the yaw of the
1

4
projectile,
(1.57) Gs= G (14 K 52)

where (7, is the experimentally determined drag
function for zero yaw for a type n projectile,

Let 7,, 1, be a set of rectangular axes fixed in
the air, lying in the plane of departure with
i, horizontal and i, vertical. The origin is the
position of the gun at the instant of firing. 1t is
easily seen from figure 17 that

g P =1 seco,

(1.68
W58 10—, tan g, — 4,
iz
A Q
(i1, i2)
P
|
i2
f
\° i .
= >l1

Figure 17, —i,, i2 —-~ System

For the equations of motion of the projectile,
taking account of the influence of gravity and
drag, we have equation (1.32) and a similar
equation in the z direction, where z and v, are
l_jel)lace(_l by 7, and 1,; -z and -v. are replaced by
i, and 7, and the drag function is corrected for
yaw by formule (1.57). Thus,

n

h=—p (148 Ki$) i~ ¢ ,

(1.59)g "
.’l:l —= —p—é—”,—‘- (1 -}—32 K.3) 13, ,

where
ig the relative air dengity,

p
G, is the appropriate drag function for
Zero yaw,

¢, is the appropriate ballistic coeflicient,
and

K, is the yaw drag coecflicient.
From equations (1.58) we have

‘ i, = Peosy,,

1.60
(1.6 )( i.=Psing, —Q;
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: y u P
= o,
Loty ) T oo ber L du_ _
i. = Psin 0, — Q. (1. ) — E:,—E” (1 +5“Kp8) dP
Uo P,
(162)51'_1,)('080“ r p
— P . P —
b= Pin 0~ Q. - /dP+K1)3/ 5 AP
Equations (1.59) may therefore be written in C. p P

the following form

. - G _
Psint,— Q4+ p (14 8 Ku3) -

n

. Gn _
Pecos 8,4 p—— (1482 Kos) -

7

I.’ o8 0, = 0.

QJrP 1+ 8 K:)S)Q~9—me0'
Gn _ .
(1. 64)) |P 4 p——- {1 + ¢ Ku3) P],
( +p
. .- . du
Recall that « =P so that P=1u :—l-i--—. The
¢

sccond equation of (1.64) then takes the form
G _
(1.65) du 4 p — (146 Kys)dlP=0,
or
du G. _ dP
=y (148 Kyg) ———‘:l-—-—.

ar C,

(1.66)

Since G, is a function of u, we divide (1.65) by
G, and rewrite to get
du I _
—_—— - (14 8 Kyg) dP.
G C,
We have now separated the variables and we
can integrate to find

The integral on the left-hand side of cquation
(1.67) yields the Siacci Space function S for
the drag function G |see equation (1.17)]. On
the right-hand side we have from equation
(1.53)

P

(1.68) ——P—P’] + Kus

n n

P P,
/(8 2_8_0______—%___ g»zPa(cx + cz)P’ ) P
P, 5, —1 .
where P’ is a dummy variable used {o indicate
the value of P at any point in the interval of
integration. The initial value of P = P, is zcro
and the initial value of 8§ =8, is the value of
S at u,. Let

(1.69) c¢= (¢, 4 ¢) po

where p, is the standard air density. We can now
cvaluate the integral of (1.68) and upon substi-
tution of the initial values we finally have from
(1.67)

P —2pcl’
(1L.70) §S=8,+—P+K (1—e ""),

n

where

(1L71) K=—21 K825 =1

2Cllc 80 - 1

The value of ¢t for a given Siacci coordinate P
may now he found in the following manner. The
constants necessary for the given projectile
such as K., Kus, ¢, ¢;, ¢, etc., are determined
experimentally. A drag function G,(u) also is
determined from measurements, and the Siacei
space function S is tabulated for this drag
function by numerical integration of (1.17).
Then, under given firing conditions of A,, Z,, V,

L PR Lt . Pttt o

..'J.’ "' St

Ly TR
e e .
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and V,, the Siacci function S is obtained from
(1.70) at given values of . Values of u are then
found from tables of S for these values of S
and since

dP
U = _
dt
we have '
1 .
dt = ——dP
U
so that

P
1
172 4= | —dP
u
[¢]

where the prime is again a dummy index.

To obtain @, we return to the first equation
of (1.64). Upon the substitution of the second
equation of (1.64) and (1.66) into this equation
it reduces to

dP ..
Q=g.

(L73) Q—
, aP

The latter equation is a linear differential equa-
tion in Q which may be integrated to obtain

& ¢

Q "ar
P P

] ]

Since @ = O att=0, F = u = u, at t = O,
dt = dP'/u, and P = F al t .= ¢;, we have

I)
. T dP
(1.75) Q:_-gu./ —_—
uz
0

where the prime is again a dummy index. A
second integration yields, since Q == O at ¢ = O,

t, P
(1.76) Q—_-,(// [u/ we dP') dt
(2] (7]

or
P P

(1.77) Q:g/ /u-*’dP"dP'
(v] [¢]

where again durnmy variables of integration are
used, with the evaluation of t; and Q for given
values of P from cquations (1.26) or (1.27) and
a transformation to the a, ¥, # coordinate
system.

The effect of the windage jurmp upon the
traiectory is small and is applied to the trajec-
tory by an approximate differential correction,
The windage jump changes the direction of the
line of departure by adding to the vector u_ a
vector J whose magnitude is u,s and which is
directed at right angles to the plane containing
V,and V_, in a sense such that vectors in the
directions of V, V_, J form an ordered right-
handed triad, Since it is perpendicular to the
plane containing V, and since V, is assumed
to be directed along the X-axis, the vector J is
perpendicular to the X-axis and its direction
cosine with respect to X is zero. Since this vector
also is perpendicular to V , it is easily seen, by
referring to figure 11, that its direction cosines
with respect to the other axes can be found
from the diagram of figure 18 in which V,’ is
the projection of V, upon the (Y,Z)-plane.

They are thus sin ¢ and cos y. Formulas
(1.21) then furnish the direction cosines for
the z, y, z system in the form
(1.78) O, cos Z./(1 — 8in* 2, cos* A,)},
sin Z, sin A,/ (1 — sin® Z, cos* A,)}.

The components in the z, ¥, £ system are these
direction cosines multiplied by u,e.

The windage jump does not alter the magni-
tude of u_; its effect is to increase the X, Y, 2
coordinates of the projectile by the z, ¥, 2 com-
ponents multiplied by the time factor P/u,. We
thus have the increments

b =20 ;
(1.79)(8¥ = Pecos Z,/ (1 — 8in* Z,, cos® A,) ¢;

bz = Pe sin Z, gin Ao/ (1 — sin? Z, cos® A,)*.
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Y
90°
- - Y
siny |
|
lcos ¢
|
|
Z - UO€
Figure 18, — Direction Cosines of u_c

It follows then that the increments on ¢, 4, ¢ are

At =0,
ag=—Pr (I —gin*Z, cos* A,)"1% -
[sin*Z,sin A, + c08* Z, 8in A,)

(1.80) = — Pc {1 —s8in*Z,cos* 4,)-% -
(sin A,) ,
Al =PrcosZ,co8 A, (1 —sin*Z, -
cos? A,)-% .

The resulting effeet on r, is small and will be
neglected. We ar: then concerned only with the
small increases in A and ;. which are represented
by 8r and 3;. The initial yaw angle may be
regarded as + — v of figure 10 so thal

v,

(1.81) siné,= -sinr.

Uo

Since the theory is based on a small angle 8, we
may put §, equal to ils sine for the following
approximation:

(1.82) 8,2 =Vyt (I —sin? Z, cos® A,) /us?
or

(1.83) (1 —sintZ, cos* Ao)% =8,u,/ V¢

Upon using (1.30) and (1.80), the increments
on A and p are then approximated by

‘ P Ve
SA = ——— ¢ cos Z,c0o8 A,,
1.84) e S
( i ) P V(}
Sp== ———¢- sin 4,.
T Sl
Substituting (1.55) inte (1.84) yields
r v,
3h=20b cosZ,co8 A,,
) T, Ut
.85
( ) PV,
bp=—"0—ro sin A,
\ oo o'
where
AN K,
(1.86) b =——
md Ky

1.12 Ballistic Computations for Aerial
Gunnery
Ballistic data is computed and presented in

firing tahles. For aerial gunnery, the computa-
tion is based upon the theory developed in the

23
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last seclion, the computational steps for which
may be summarized briefly as follows:

(1) Determination of the drag function
G, (1) Tor a projectile of given type by
test firings.

(2) Determination of the corresponding
Siacci Space function S(u). See equa-
tion (1.17).

(3) Determination of the ballistic con-
stants K,, Ky, K», Kus, Vo, 8., ¢, ¢, b,
and C, for the specific projectile from
experimental data. ¢’ = ¢,p, and ¢’ =
po’K,,/2m are determined instead of
¢, and ¢,. The quantity s, is the value
of the stability factor s near the muzzle
of a stationary gun in air of standard
density. It is experimentally deter-
mined in such a manner that it may
be used in step 7 below.

(4) Choose values of the variables, each
from one of the following intervals and
hold these values constant throughout
a given computation:
O< p< L
0 <V, <600mi/hr. O <A, < 180°
0 < P < 10,000 ft. Starboard side,

0 < Z,,_< 180°

The computations for the port side
are the same except that the lateral
deflections change signs.

(5) Compute w,:
w, =V, 4+ 2V, V,stn Z, cos A, 4+ V.

|
(6) Compute &,
Vr;:
5, == —— (1 — sin* 2, cos* A,) in
'l((,"
| radians.

(7) Compute s,:

So = V., 8/ plt,"

(8) Compute c:

CII

c=2c¢ + .
So— 1

(9) Compute K:

1 8, — .b
K—=— K3 3 ————.
2C,¢ S, —1

(10) Compute S for a given sequence of P
taken at even intervals:

P —2pcl
S=8+—P+K(1Q—e¢ )

n

where S, is the value of th. Siacci
space function at u, and is found from
the Siacci Space Function Table.

(11) Find u from the Siacei Space Function

Table using the values of S from
(10), and then compute 1/u and 1/u%

(12) Compute the time of flight ¢;:

P
1
t/: /—'dl)!
i
(]

by a numerical integration having
given 1/u,” the integrand, at cvenly
spaced intervals of P,

(13) Compute Q:

N

1 K
Q=g / / (,.) 1P P
u
o 0

by a numerical integration. This is
simply a procedure of finding the sec-
ond primitive,
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(14) Compute ¢, 9, &:

V.
E=Pr —Qcos Z,
2
P
4+ Ve (—-— —t; |} sin Z, cos A,,
Uo -
P
p=—Vy (—— — i, ) cosZ,cos A,
Uo
—Qsinz,,

p
(=—V, (_. —t, ¥ sin 4,.
Uy

(15) Compute 7;:
,'./L’ :é'..’ + 7]'.’ + c'.‘ .

(16) Compute A and u:

2

s

-2

s A = and sin p = .

7y 7r

(17) Compute sx and 8u:

V{,* I)
A =10 — cos Z,c08 A, ,
Uo* s
Ve, I
8/1, = D ————— TR An .
W' Ty

The computation gives values of 1,, A, 4, 8A, and
&y for evenly spaced values of P and corsespond-
ing computed values of »; at the chosen values
of the variables mentioned in (4) above. These
quantities can then be put in terms of evenly
spaced values of 7, by graphical interpolation
or by any other convenient method of interpols-
tion, This is the usual form for tabulating data
in aircraft firing tables.

The units in which the tables are computed
are feet, radians, mils, and seconds. The units
in which the tables are published are usually
vards, miles per hour, mils, and seconds. The
mil used here is the military mil defined to be
1,6400 of a revolution,

[.13 Bullet Firing Tables
In order to further illustrate the computation

and use of firing tables let us consider a small
portion of a bullet firing table. A certain 20-mm
projectile has the following ballistic charac-
teristics:

ss = 2.80; ¢ =.0015488 ft.";

C, =.510; ¢’ =.0000978 ft.";

Kp,53=164; b = 86,600 mils/ft/sec.;

V., = 2750 ft/sec,

Consider the following values of the variables:
V. = 300 mi./hr. = 440 f{t./sec.
.8

P
A, =45 = 800 mils
Z, = 22.5" = 400 mils

g = 32.174 {t./sec".

P was chosen at intervals of 1000 ft. For the
integration, 9-point Lagrangian integration co-
efficients were nsed. The quantity A represents
the first integral of 1/1* and B is the second
integral; i, I’ is the integral of A. The inter-
polation for evenly spaced intervals of r, was
donce graphically., The windage jump corree-
tions, 8x, and &, are ncarly constant for », and
are usually tabulated for all »,. The constancy
can be seen by the check made at the two ex-
tremes. The evenly spaced intervals for 7, are
given in yards, everything else is in feet. » and
poare obtained in mils by simply multiplying
their sines by 1020.

25
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Table 1.1 Computation of Firing Tables
: 1 i | ‘ Z .
: i | | L
Pt 2pcP [ el ; S “ U Po=X10 } { [ {LX 10+86
i ) ! ! !
- ! Iz 1____ t ~ !;:—:: R i_‘ '

ol o L 4224260 2000.162 , 3481 - 0 ‘ 11889
1000 283218 OTTHRN263 GO36.4G8 | 2456 784 40704 | 3787 | 16568
2000 A 10406 ¢ 00606682 ‘. 762-1.067 | 2008 .ROT ! A764H } 81870 | L22700
3000 7.63744 00472516 1 9194171 1 1777268 L 5a206 PO1.33605 1 31659
40001020092 000036803 ] 10762.913 ; 1489.77H ] B7124 0 1.95149 i 400567

! H000 \ 12,7624 | AG0CO286T ¢ 12331540 | 1212 493 | .8O4R3 ! 2 OHRE2R ‘ L4775
L6000 | 15. 31488 | 000000223+ 13900177 1 10711321 03008 3. 05875 | 86673
7006 117 86730 000000017 LH68.804 1 983.271 | 1.01701 l 453508 | 1.03432
8000 2041984 ; 000000001 17037 431 | 911.952 1.0965H5 'b 5.09012 | 1.20242
, ! ; ! I
: ' i :
i . i r \
P b AXI 5 B Q {—— Vo (z,—f_)
; U, U,
| - . ) e -
; 0 | 0 0 4] 0 0
Fo1000 ; 15342 070032 2.2532 (33030 14 02918
;2000 33RO6T 306882 98736 129080 5670527
i 3000 CH0K321 I 713103 24 .87H4 302525 133.11120
000 CURGKH 1.559572 M TTT .DT72258 201.79355
‘[ 2000 | 1.531335 2.802213 0. 1581 064237 424 .26407
L6000 : 2200161 14694521 151.0415 1489900 655 . 55608
L7000 ! 3216363 | 7110026 230 (0RO 2 192321 933 82126
5000 l“ 4.380123 ' 11.235351 361.4862 2. 831657 1245 02804
. ; | , ,
I P i £ ‘ 7 ¢ 7, sin A s8in u A "
i 1] i 0 4] 0 () V] () 0
i 1000 ! 042101 % 801 10. 577 942.202 11204 009436 11.43 9.6
L2000 IRT1.455 33325 10,160 1872 . 682 21445 017795 21 K87 18.15
L3000 278 00T 7740 91,121 278%.332 1337506 027772 343 28.33
l U005 3678304 145200 178.045H 3685 .H70) 048308 039421 49.27 40.21
C 5000 45130141 242662 300000 4559 .371 LBHTON (153222 67.11 51.290
| Gooo | 3372 402 0 370462 163518 5105073 (85T 6RA39 ®7.4% 64.9i
L7000 | 6163 414 1833 660,312 { 6220.353 106153 083328 | 108.28 ®1.99
; 8000 | 6914669 675. 600 %81.005 ' 7003 . 232 125799 096471 | 128,31 9% 40
: i
, ry 400 800 1200 1600 2000
4 40 1.11 1.89 2.92 1.26
A 14 24 48 73 102 .5
M 12 24 39 59 %1
oA 3.1 —_ — —— 3.4
o ~3.1 — — — —3.7
26
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Firing tables are usually massive. A small portion of one table is presented here for future reference.

R

Table 1.2
Tiving Table.  Without Windage Jump
p=.4 V., =2750 ft,/scc, Vi =450 mi,/hr.
t'/ H )\
seconds mils mils
Z A D (yds)* D (yds)* D (yds)*

mils mils | 400 | 800 ] 1200 1600 | 2000 100 | 800 | 1200 ] 1600 | 20600 | 400 | 800 | 1200 1600} 2000
1200 0] 47 | 1.00]1.61] 2331 3.22 3 6 8 i2 15 0 0 0 Q0 0
400 | AT | 1,000 1.61 | 2,33 | 4.20 3 5 7 10 12 6 12 18 26 36

800 | 47 | 1.01 ] 1.62 | 2321 3.16 Z 3 4 -4 D 12 23 35 19 66

1200 1 48 | 1.02 | 1.62 1 2,30 | 3.08 0| =1 =2 —1] —¢6 20 3 18 65 84

1600 | A48 11.0211.60]12261298| =3 | =61 =9 |—=11 |—18 25 40 a0 71 88

2000 | 48 | 1.00 | 1.7 (2181 285 —6 |—11 |—16 |—22 |—28 22 35 47 60 74

2400 | A7 OR11.5212101272| —0 |—15 |—=22 =28 =36 15 24 32 41 50

2800 | .46 DG TAR | 204 ] 263 =9 =17 |—21 | =31 |=39 i 13 17 21 26

3200 1 46 O 14612000 268, =0 |—=17 |—24 |—=31 |=39 0 0 0 0 0

1600 0] 46 D160 2311308 =3 | =6 |—10 |—16 |—23 0 0 0 0 0
400 | 46 09 1.60 231 3.17 | -3 =6 =10 |—=16 |—23 6 11 18 26 3H

800 | 47 1100 1611231131031 —3 | —6 |—10 j—16 |—22 12 22 I 48 64

1200 ) A8 1 1.01 ) 1.61 ) 228 ] 3.05 ] —: -6 |—10 =15 |—21 20 34 48 64 82

1600 § 48 11,02 1.60 2212950 =3 —6{—=10 =15 |—20 25 4 51 70 87

2000 | A7 G0 1.55 216281 =3 —6 1—10 |11 |—18 21 34 46 58 72

2400 | .46 A7 1015012071267 =3 —6 | =9 |—~13 —17 13 22 30 39 47

2800 | AU DET 14519002560 =3 —6 0 =9 112 1—16 7 12 16 20 24

3200 | 45 D21 14211951251 -3 —6 ] ~9 |—12 |—15 0 0 0 0 0

*D =7y

1.14 Bomb Ballistics

In bombing from an aircraft at ground tar-
wets, the bornb is released without any project-
ing force and allowed to fall. As it travels
through the air, it is acted upon by the forces
of gravity and air resistance. The bomb is, of
course, given an initial veloeity whichi is thie
true airspeed of the aireraft, If a wind is blow-
ing, it also will act upon the bomb and will cause
it to drift with respect to the ground, and this
drift becomes a serious factor in bombing,

The force system for a bomb is similar to
that of the general projectile already discussed,
A bomb, however, is not given a spin but is
cquipped instead with symmetrical fins which
serve Lo bring the center of pressure behind the
conter of gravity, thus making the bomb stable.

The came coordinate system that was used
before also ean be used for bombing, except that

the origin is now located at the summit of the
trajectory and the trajectory has only a de-
scending branch.

In general, the theory is the same. We shall
consider the theory of bombing in chapter 6.

n_ .12 D..
NOCKET bU

¢

In the firing of rockets from aircraft, the
rockel is propelled during its burning time and
thereafter falls freely like a bomb, Thus a rocket
acts like both a bullet and a bomb. The forces
acting on a rocket are the same as those on any
other projectile. However, the changing of its
projecting velocity during the course of its
travel causes added peculiarities. The ballistics
of a rocket will be discussed in chapter 7 where
the theory of rocket firing will be considered in
detail,
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Chapter 2

DEFLECTION THEORY FOR AIR-TO-AIR GUNNERY

2.1 Introduztion

In the main, the present chapter will be
c¢omeerned with the problem of successfully aim-
ing a moving gun at a moving target so as to
secure a hit, Since it is only in special circum-
stances that the gun will be pointed directly at
the target, of immediate concern to us will be
the development of formulas expressing the
angle by which the gun-bore axis must be de-
flected from the gun-target line at the instant
of fire in terms of kinematic and ballistic fac-
tors continuously neasurable at the gun. This
angle is known as the angle of lead or, more
briefly, the lead angle. The gun will be thought
of as mounted on a platform, called the gun-
platform, and hercafter denoted by the letter
G ; while the target, denoted by 7, will be a
fighter aircraft attacking G. The gun nlatform
G may be considered o be a bomber or turreted
fighter with flexible guns, i.e., guns the direction
of whose fire is in general unrestricted. By
motion of G or T we shall mean motion with

respect to the air mass, so that the concept of
absolute wind need not be taken into account
here. An object will be fixed in space if it has no
motion with respect to the air mass.

2.2 Actual Motion and Relative Motion

The actual path in space traced by T, and
viewed by an observer fixed at O, is in general
a very different appearing curve when viewed
from the moving point G. Thus, if G flies
straight and level and T flies along just abreast
of G, an observer at O sees T describe a straight
line, whereas to the gunnor at G the target 7
will appear to hang stationary off his beam. In
general, the path of T as scen from O is called
the “air course” of T whereas the path as viewed
from G is spoken of as the “relative course.”” By
way of illustration, figure 20 shows air courses
of G and T, supposed coplanar, with correspond-
ing positions of ¢ and T indicated for consecu-
tive seconds. The angle  measured from G's

Figure 20. — Air Courses of Gun and Target
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bow 1o the gun-target line GT, is called the
angle-off of the target or simply the angle-off.
The approach angle «, measured at the present
position of the target, is formed by the tangent
to the target’s path and the gun-target line.
More precisely, it is defined as the dirceted angie
from —r 1o V4. The distance GT, denoted by »,
is the present range of the target. The curve

relative to G and mauy be obtained by plotting on
polar coordinate paper the points (r, r) asso-
ciated with cach G position and drawing a
smooth curve through these points. In figure 20,
the points were plotted assuming constant fan-
gential speeds for both T and G, that is to say,
the magnitudes V,, Vi of the velocity vectors
V,l,, V(__ are constant. Ifence, it is important to
notice that while on the air courses equal dis-
tances are covered in equal times, along the
relative course this is no longer true, The veloc-
ity of T relative to G is in fact VT— VG whose

-

Figure 21.-— Path of T Relative to G

magnitude, as can be casily verified from figure
20, is

@1 {V,—V,]|

- V’ Vi + Vo' + 2ViVycos (a4 7).

This magnitude is dependent on « and 7 and
hence is, in general, not constant.

2.3 Case |—Fixed Gun-Platform—Lirear
Target Motion

This case is essentially that which obtains in
antiaireraft fire, but, as will be seen, it also
applies to the fighter pilot’s problem of cor-
rectly aiming forward-firing guns. The basic
aiming allowance here is for the target’s motion
during the projectile’s time in flight and is called
the kinematic lead. Additional slight modifica-
tions of the gun bore’s position must be made
to allow for gravity drop. In this paragraph we
shall consider the kinematic lead only, reserving
gravity drop corrections [or later cases of which
this case can be considered to be a particular
instance.

T Vi T,

Figure 22, —Fixed Gun vs. Moving Target

In figure 22, suppose that T traverses line
TT, with constant speced V. T, represents the
position of the target at the time of impact with
a suitably aimed projectile and will be referred
10 as the future position of the target. Similarly,
7, will be called the future range. The angle Ay,
measured positively in a clockwise direction
when viewed from above, is then the required
kinematic deflection. Lelting ¢, be the time of
flight of the bullet over the range »;, and V, be
the mean velocity of the bullet over this range,
then in triangle GT7T, the Law of Sines yiclds
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Sin Ak TT/ V1-t/ 'VT
Sine 1, Vit, V.
whence,
Vs
(2.2) sin Ay = —— sina.
!

If the lead angle 4, is small, we can replace
sin Ay by Ay provided A, is measured in ra-
dians, with resulting error less : A% Equa-
tion (2.2), considered from the standpoint of a
lcad-computing sight, is not of much value since
the quantities Vy, « would not be directly avail-
able as inputs. If we resolve the vector V T into
components along and perpendicular to GT,
then the perpendiculer component may be
written

do .
(2.3) V'[' sing =90 =7r—=140

df

wherein « is the angular rate of the line GT in
rad/sec and ¢ is its angular coordinate referred
to a fixed reference line through G. Combining
(2.3) and (2.2) we may write

T
(24) sin ;= ——.

v,
In order to put (2.4) into an approximate form
involving only present data, let us introduce the
velocity V,, which represents the mean velocity
if the bullet had to cover » instead of »,. Then,

Vr T Vr
sin A = ¢ = » o

VI Vr V/

where f is the present time of fiight, that is, the
bullet’s time of flight over the range ». Since for
small A, » and 7, differ very little, the factor

V,. .
v is close 1o 1 and we have, as a useful approxi-
!

mation, the formula
25 Ay =to.

The fighter pilot’s problem of correctly aim-
ing forward-firing guns is then taken care of
approximately by (2.4), wherein V, is replaced
by a new mean velocily arising out of the fact

that the projectile’'s muzzle velocity has been
augmented by the velocity of the aireraft, Thus,
as far as the mathematics of the situation is
concerned, the pilot might as well be sitting in a
halloon firing bullets of higher muzzle velocity.

2.4 Case 2—Movirg Gun-Platform
—Fixed Targe:

This case — whic., might propeily be called
the strafing case — is, mathematically speaking,
the complement of the fixed gun versus moving
targct case. There are, however, important
physical differences. In Case 1, the path of the
bullet is an extension of the bore axis, a fact
which is no longer true here as is evident from
figure 23. The muzzle velocity V, of the bullet
is compounded with the gun-platform velocity
V,, according to the parallclogram law to give

: a resultant velocity u of the bullet with respect

to the air mass. We shall refer to u as the
initial velocity of the bullet and to the parallelo-
gram GABC as the firing parallelogram,

Under the assumption that the bullet travels
a straight line, it is evident from the figure that,
to hit the fixed target T, it is sufficient to aim
the gun so that the arrow GB will be pointing
directly towards T at the time of fire. Neglect-
ing gravity drop as hefore, we find from triangle
GAB that

sin A AR GC Va

sin r GA GA V,

whence

(2.6) sin A = sin 7,

o

The path of the gun platform is shown as a
curved line in figure 23, for the sake of general-
ity. Actually, the individual bullet is ouly con-
cerned with the tangential velocity V(,- at the
instant of fire. What the gun-platform does after
the bullet leaves it, no longer affects the motion
of the hullet.

From (2.6), we note that bullet direction is
determined by Vo and Vu and, except for gravity

3
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s
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- PATH OF G

Figure 23. — Moving Gun vs. Fixed Target

drop, is independent of bullet range GT. This
contrasts with Case 1 of the fixed gun-platform
— moving target, where bullet direction was
dependent on V, (ef. Equation (2.2)), which in
turn depended on the bullet range GT,. In the
present case, the only effeet of range is that a
more distant target will be hit 4 little later.

The ratio

speed of gun-platform in a
direction perpendicular to

Vasinr the gun-target line

Vv, muzzle speed of bullet

appears frequently in the theory of aerial gun-
nery and is called the own-speed deflection.
Ience we may say that for a fixed target, the
sine of the lead angle is given by the own-speed
deflection,

Yquation (2.6) can be rewritten involving
7 = GT and # = . Thus,
Tw
(27) sina= —,

v

a form involving mechanizable inputs,

Asg far as the actual and relative motions are
concerned, we remark that in space, GT' rotates
about T as a pivol, but, as the gunner at G sees
things, 7 is fixed and T is drifting backwards
with angular ratc w

2.5 Case 3-—Moving Gun-Platform—Moving
Target on a Straight Line

In this section we shall comhine Cases 1 and
2 and permit both platform and target to move.
We shall assume, for simplicity at this point,
that the air courses of G and T are coplanar and
that the air course of T is in fact a straight line
traversed with constant speed. Gravity drop
will again be negleeted.

teferring to figure 24, G, T arc the present
positions of gun and target, that is, the posi-
tions at the instant of fire; GT, is the air course
of the bullet (bullet range), T, is the future
position of T {(position at time of impact with
the bullet) and ¢, is the time taken for the
bullet to cover the range GT,. The hroken lines
represent auxiliary congtructions necessary for
the following derivation:

FA BD — BE
gin A = =

v, Vo

Vesint —u, 8in p

v,

or
V’l U, .
s — —— 51N g,

V. )

a form usecful for computational purposes.

(2.8) sinaA =

- = .
.

'

T .'I,

LN TR R, e

4

R R N I
.

“

T .
r,
L
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-
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From triangle GTT,; we have by the Law of
Sines

Vi, Vr
gin ¢ = sina = sin a
GT, GT,
: ”
Ve . qVr .
= Sina == sin «,
U Ug
where
U, initial speed of bullet
qg=—= >1.

El_ average speed of bullet
Equation (2.8) may now be written
Vo g_VT

sinr —

0 o

sina.

(2.9) sinA =

The quantity ¢ defined above is a measure of
bullet slowdown., Indeed, the average bhullet
speed is obtained by multiplying the initial

speed #, by —. An inlerpretation of ¢ in terms

q
of ¢, also can be given. Letting GT, = K we have

AIR COURSE OF G

L2 uotl tl tl

a R Rt
Uy

(2.10)

¢ = — == —

to + Ut
=———t-———. >0,

wherein ¢, represents the time required for the
bullet to cover R in a vacuum. From (2.10),

uot,

(211) g= ~——=141
E

and
t/ = ta '{ lto = qto ’
which shows that ! represents the proportion

by which the time of flight has been increased
due to the slowdown of the bullet,

B e T - R .
N ot T AL
o A . A

o PR . R
" L R RS I T
Py Z - P 2

Assuming angles to be measured positively
as indicated by the arrows in figure 24, we can
now see how (2.9) can be regarded as a com-
bination of the formulas (2.2) and (2.6) of the
two previous cases of fixed gun-platform vs.
fixed target. ‘I'he first term of (2.9) teiis the
gunner to aim to the rear to make allowance
for his own specd while the second term tells

.
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Figure 25. .— Determination of o and

him to pull the gun forward (backwards if the
target is receding) to allow for target motion.
As before, the lead angle A also can be
expressed in terms of the angular rate  of the
gun-target line GT and the present range », To
derive a formula for o, we make use of the rela-
tive velocity concept introduced in section 2.2,
In figure 25, the veloeity of T relative to G is
the vector V,r — V“. Assuming clockwise angu-
lar motion as positive and linear measurements
on GT positive when direted from G towards
T, we have, upon resolving this vector into
components perpendicular to and along G,T:

—r=—1e=TB=CD —ED
=V,8na~ Vysinr

or

(212) ro=Vysinr— V, ginea.

A useful formula for range rate r is obtained
by considering the component of V. —V_ on
G,T:

— AT = —~AC - CT

r=
=—Vyco8r — Vyc08a

or

(2.13) 7 =— (Vscos 74 Vycos a).

Although figure 25 is drawn for straight line
target motion, it is obvious that the formulas
(2.12) and (2.13) hold in general since V_at
only one point is involved in their derivations.

Eliminating in succession 7 and « from (2.9)
and (2.12), we find

T V?’ . ‘
(2.14) sin A = —1 sin a ;
Ve V,
and
Tw V”
(2.15) sinia = ¢ —1 sin 7
Ve Ve

In order to interpret these equations, observe
that if there were no slowdown of the bullet,
we would have | = O and then sin A would be
given by

Tw VU Vl
i A = —= sin 1 — -

V. V. V,

(2.16) sin e .
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Figure 26. — Ballistic Deflections

Rewriting (2.9) as

. V” - V1' .
sin A = sinr — sin «
Vo \£
v,
— ————sine

n

we see, by comparing it with (2.16), that bullet
 siowdown alters the lead form gin A by the

amount

Ve
!

sin o .

a

2.6 Kinematic Lead and Bullet Trail

To simplify matters, we shall assume that the
gun traverses a straight line with constiant
speed, the target path being unrestricted. Again

968995 O - 52 - 4

we consider only the two-dimensional case with
both air courses lying in the same mathematical
plane and gravity effect on the bullet negligible.
In figure 26, G and T are the positions of the
gun-platform and target at the time of fire.
Their positions at the time of impact of the
bullet with T are denoted by &, and T,. Then the
distance G,T, from the gun to the target at the
time of impact is called the future range of
the target and is denoted by 7,. The firing
sarallelogram is GARC as before. The angles-
off of the gun and sight line are y and r, respec-
tively, and their difference y — 7 is by definition
the total lead angle A.

The bullet leaves the gun with velocity v,
relative to the gun and with velocity u =
V. 4V, with respect to the air mass. We shall
qupposc “that the effeet of air resistance on the
bullet can be accounted for by a drag force,
parallel to the direction of motion, and acting
on the bullet at its center of gravity. (As ex-

35
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plained in chapter 1, this assumption is valid,
to within a small initial correction called the
windage jump, for explaining the motion of the
bullet in flight.) The effect, then, of air resist-
ance is 2 mere slowing dewn of the bullet along
its air course, GT,. From figure 26 and the
results of the last section we note that, for a
time of flight of ¢, seconds, the bullet range
GT, is equal to the vacuum bullet range GD

. 1
{= u,t;) multiplied by the slowdown factor —.
q

Thus, GT, = u,t;/q. I air resistance were lack-
ing, the bullet would always have a velocity
component VG in the direction of the gun’s
motion, so that a person stationed at G would
always see the bullet moving along a line which
would be a mere extension of the gun bore. In
other words, in a vacuum the relative path of
the bullet would be the straight line GA. But,
because of air resistance the observer at G sees
the bullet “‘curve toward the rear” since the
bullet, so to speak, no longer keeps up with
the gun. This curved path is, in fact, traced
by the point T,, whose polar coordinates are
(r/, 7,/), as it moves along the line GT, with

U,
speed —.
ql

The angle DG,T,, measured from the bore
axis of the gun to the future range line, is called
the bullet trail or lateral deflection of the bullet.
1t is the same as angle AGT, appearing in the
lower part of the figure, where the line G,T,
has been redrawn in the position GT,’. We shall
denote bullet trail by A, The angle TGT/ is
called the kinematic Jead, referred to by the
symbel A, It is the lead arising from the rela-
tive motion of he iwo aireraft and, in the
absence of ballistic effeets, is coincident with
the total lead. In general, as is evident from
figure 26, we have

(217) A = Ap— A,.

We proceed to derive some formulas for A,
for the situation depicted in figure 26, The Law
of Sines applied to triangle EG,T, yields:

MATHEMATICAL THEORY OF AIRBORNE FC S

sin A, sin y sin 7, .
EG,  GT, _ ET,
Since ET; is drawn parallel to G,D =V, ?‘.

triangles GET, and GG,D are similar. Thus we
find that

Wt

s Vet Vut/
EG, = , ;= s
q q
whence
lV(;t( sin Y lVG
(2.18) sina, = = siny,
qry qv
where SR
¥y L .- S
V= ———, e
t
Similarly, e
. w,
(2.19) siny, = : sin 7, . " ‘- .M
The quantity V- appearit ¢ in (2.18) represcnts K
the average speed of the bullet over the future
range. An approximate formula for this quan- b
tity is found hy applying the Law of Cosines PP P
to triangle EGT,. Thus: . 0
7'/2=EG/2+ET/2-—2(EG/) (ET/) cos y
or Lo
1
Vii=——— |V, 4 IV — 21V, Vg cos y] T @
q*
1 e
=— (Vo —1Vscosy)* Ta TN
+ Ve 8inty] . R
.9

Since Vo < < V,, the term [V * sin®y is, for RAENENR
most attack data, generally negligible, so that Ry
approximately

Ve—1V,cosy

(2.20) V,= v
q
and AR A
. v, , T e
(2.21) sin A, = siny. -

V,—1V,cosy
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Ts

T

Figure 27. — Aereal Approximation

2.7 Determination of the Kinematic Lead

The angle A in figure 26 can be determined
readily using the relative path of T. An are of
this path traversed by T during the time of
flight ¢, is shown in figure 27. Since the path of
G is here assumed to be a straight line, we have
immediately o = 7. It should be borne in mind
that this is no longer true for curvilinear gun-
platform air courses. In the latter case, to + must
be added the angular rate of turn of the gun-
platform itself.

To find an approximate expression for
sin A; we note that:

Area of triangle TGT, = Area of

Sector TGT,,
or

¢
(2.22) o7, sin Ay = j rrodt 3 (odt = dr).

0

The expression 7% can be interpeted physically
as the angular momentum of a unit mass placed
at point T and moving with T with respect to
the moving origin G, We shall denote it by M
and refer to it as the angular momentum of the

Expandirg M(¢) in a Maclaurin’s series we
may rewrite (2.22) as

¢
(2.23) 7, sin ax = / [M + tM+ Lol dt
o
= Mt, + $Mt,?
where M == M(t)], = O, ete,, and terms of

higher order have been neglected, Thig yieids
finally the form

. t .
(224)  sin Ay = —— (M + 1 ¢ M)
rry

or if (2.20) be employed for V, = »,/t,,

g (M+ 4t M)
r [V, —1Vscos y]

(2.25) sin Ax =

The approximation (2.22) assumes that the
time of flight is small and that the curvature of
the relative path is not large.

When the air courses of gun and target are

both straight lines, M is idertically zero and the
angular momentum is then constant, To prove

sight line. Let M (¢) =7%» at variable time ¢ and
let M ==M(0).

........
---------
.........
PR e I
.............
o=

--------
! Pl

this let us write M in the form 7(re). We then
have, by differentiation with respect to the time,
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d
dt

( 'rm) .

M = ;‘(Tw) + 7

Using the relations for r and 7« given by equa-
tions (2.13) and (2.12), we find

M:—TVG (w-—‘l.') coS 7

—7Ve (04 a) cOSa.

Since the gun-platform is on a linear path, o =
+. Moreover, although the angles = and « are
themselves variable, their sum is constant and
equal, in fact, to the supplement of the angle
of intersection of the two straight line paths.
Hence,

e . d
ota=74a=— (T+¢¥) =0.
dt

Substituting into the last expression for M, we
obtain M = O as desired.

2.8 Case 4—The General Case in Three-

Dimensional Space

2.8.1 Introduction

In the preceding sections, lead formulas were
derived under the simplifying assumption that
the gun-platform and the target moved in a
fixed plane, the so-called plane of action. In this,
the general case, we shall allow the gun and
target paths to be any flyable paths in space.
Moreover, the additional corrections in the lead
formulas that must be made to take into account
ownship acceleration, projectile drop due to
gravity, angles of attack and skid, angles of

bank and dive, and the secondary ballistic cor-
rection due to windage jump, will be accounted
for. A general vector equation for the lead will
be derived first. This equation, valid for all gun
turret coordinate systems, will then be spe-
cialized, by way of illustration, for the case
where the gun-carrying aircraft is a bomber
with an azimuth-clevation top deck turret. An
oxample illustrating the computation of lead
angles for a specific tactical situation concludes
the study. It should be emphasized that, through-
out this chapter, gun and target speeds are
assumed constant.

2.8.2 The Muzzle Velocity Vector Vu

As noted in Chapter 1, the windage jump
vector J is perpendicular to the plane of V_ and
V(; and has the direction of VG X V.,' The initial
velocity u_ is then

(2.26) uo_—.VG—i—Vo-{-J.
Thus we find that
(227) V =u —V_~1J.

From figure 28, showing the present and future
positions of the gun and target, respectively, we
note that the Siacci coordinates P and Q of the
point T, have the directions, respectively, of
u and n, where n is a unit vector directed ver-
tically downward.

G /

Figure 28. — Siacci Coordinates
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Figure 29, — Gun and Target Space Paths

and thus from (2.27) we find that

(2.28) Vu =

wherein the gravity drop component is

2.8.3 An Expansion for the Projectile Range R

Consider the situation as depicted in figure
29. Here C, C’ are the space paths of ownship
and target, respectively; G and T are their
present positions while 7' is the target future
position. Vectors r and R are the present and
projectile ranges; T and T ( are position vectors,
relative to ihe fixed point O, of points T and 77,
Finally, V and V vectors denote the gun and
target veloc1t1es at points G and T, respectively.

¥From the figure we note that

(230) R=r4TT, =r4T, —T.

If we assume that ¢t = O corresponds to the
instant of fire, then T(t will represent the
position vector of an arbitrary point on the T'T;
T(¢) =T and T(e) = T. Upon expanding T (¢t)

in a Maclaurin’s series and evaluating it at
{ =1t;, we find

R
(2.31) Tf:T+t,T+—é—T+.

where T = ’i‘(t)], = 0, etc.

Since T = VTand T = \.IT‘ we may rewrite (2.31)

in the form

. i

(2.32) Tf—T:t,VT+-—2-—VT+... ,

and hence obtain from (2.30) the following
basic expansion for the projectile range R:

£ .
(2.33) R:r-}-t,VT-}———;—VT +.

An aircraft fire control computer of the direc-
tor type, i.e,, one where information gained by
positioning the radar antenna (line of sight) is
sent to the computer which then computes the
proper gun orders, is said to be of the first
(second) order if the first two (three) and only
the first two (three) terms of the right-hand
member of equation (2.33) are accounted for in
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Figure 30. — First and Second Order Bias Errors

evaluating the lead angle. Thus, a first order
computer uses target position and velocity data
only, and is based on the relation

(234) R=r44V,

which represents, for varying values of V, and
t;, the vector equation of the line tangent to the
target path at the instant of fire. For this
reason, a first order computer is sometimes
referred to as a linear predictor. A second order
computer, in addition to target position and

velocity data, employs target acceleration and
is based on the equation

i .
(2.35) R=r+1¢ VT+—-2—VT.

Geometrically, the vector relation (2.35) repre-
sents, for varying t, and V,, a parabola tangent
to the target path at the instant of fire. Hence,
a second order or parabolic predictor partially
accounts for target course curvature by replac-
ing the arc TT, of the target path by the para-
bolic arc

2

(2.36) R=r+tVT+—§—VT, O<t<t.

These facts are illustrated in figure 30 in which
C,, C, and C’ represent, respectively, the tangent
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line to the target path, the parabolic arc (2.36),
and the target path itself. The angles ¢, and &,
represent, respectively, the aiming errors pres-
ent in first and second order computers due to
neglect of higher order terms in the expansion
(2.33).

In the present study, we shall base the devel-
opment of lead angle formulas upon the second
order expansion (2.35). It will be noted that this
expansion involves target velocity and accelera-
tion relative to the air mass, guantities not
directly measurable at ownship, However, since
target velocity (acceleration) relative to the air
mass is the sum of target velocity (accelera-
tion) relative to ownship plus ownship velocity
(acceleration) relative to the air mass, in
symbols

237 V =r4V,_, V. =r4+V_,

we can express R in terms of the directly mea-
surable quantities ¥, r, Vo Ve

Thus

t’

5 (

(238) R=r44(r+V,) + r+ V).
2.8.4 Lead Equation in Vector Form

Let us define ¢ and e  as unit vectors pos-
sessing the directions of r and V , respectively.
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Then the acute angle directed from e to e_is
the total lead angle, A. Since

sin A =leXx e},

we shall be concerned with the total lead vector,
exe. Dividing (2.28) by V, we obtain for e
the expression

Uy A J w

G
939) € =R e
(239) e =753 v. Vv, V.

Substituting R from (2.38) we have

Uo .
(2.40) e = Y. [r+ & (r+ VG)

. . VG J w

+atp (r+ V)] ~v.ov T,

The total lead vector e X e may now be written

by forming the vector product r X eo/r, since
r = re. The result is

uot, .
exeoz——{rXr—{—rxVG

(2.41) PV,
. . I'X_V-G
+ 4 t,(rXr+r><VG)] .
rxJ rxw
T, v,

Introducing the quantity

u.,t,

(2.42) =14i=
and recalling the definition of w given in (2.29),
we may rewrite equation (2.41) in the form

(2.43) [rx}+stf(r X 1)

q
exe ————
° ‘Va

. Q
34X V) —1 X (t— )]
!

lr><VG rXJ

+ —
rV,

rV,

2.8.5 The Ballistic Factors ¢ and !

The interpretations of the ballistic quantities
g and [ given by (2.42) are essentially those
given carlier in equation (2.10) et seq. There is
a slight difference due to the fact that we do
not herc assume that the bullet moves in a
straight line, The quantity ¢, = P/u, now repre-
sents the time of flight in vacuum of a projectile
having the same Siaeci coordinate P as the pro-
jectile under consideration. From the relations

t, =qt, =1t + UL,

it iz scen that lis the factor by which the time
of flight has been increased due to bullet slow-
down. Moreover,

t time of flight in air
g=—= = - - > 1.,
t, time of flight in vacuum

A second interpretation for ¢ can be obtained
if we observe that the quantity u = Pt; is the
average speed of the projectile along its Siacci
range P. For a bullet moving at high speed, this
quantity is a very good approximation of its
true average speed. Since

Uy initial speed of bullet
q= =

u

H
average speed of bullet on its
Siacci range

it follows that the bullet is slowed down by
approximately l/q, due to the action of air
resistance.

2.8.6 The Terms Containing \"G and Q in
Equation (2.43)

The terms,

t . Q
(244) — (@ XV)-—rxXx—,
2 G t
appearing in equation (2.43), can be rewritten
so that when linear accelerometers are used the
dominant part of the second term is included
with the first. We note firstly that Q/t; can be

written as
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Q
(245) —=— (g — Fn),
t, 2

where g is the acceleration due to gravity and
F is a correction term, depending on projectile
type, air density, and time of flight. Combining
equations (2.44) and (2.4b5) and denoting the
difference V —g by a, we can write (2.44) in
the form

t Ft,
(246) —r X a+
2

r Xn.

2.8.7 Resolution of the Ownship Velocity
Relative to the Ownship Axes

We begin by introducing a right-handed sys-
tem of mutually perpendicular unit vectorsi ,
j o k G related to ownship as shown in figure 31.
These vectors are fixed relative to ownship. The
vector iG is directed forward along the longi-
tudinal axis; the vector j " is directed along the
starboard wing; the vector k. =1i.X i, then
completes the coordinate system. We shall in
the future refer to this as the ownship system.

In order to resolve the ownship velocity VG
relative to the ownship system of axes, we define
first the angles of attack and skid. Figure 32
shows these angles, with the attack angle «, and

el

e L 'G
ke
Figure 31.— Ownship Axes

the skid angle «; both positively oriented. (The
numerical subscripts ,, ., ; on the letter o« indi-
cate corresponding angular rotations about the
i, (roll), j, (pitch), k. (yaw)-axes, respec-
tively.) More precisely, we have the following

definitions:

(a) the angle of attack, a., is the acute
angle from the longitudinal axis ic to
the projection of Vv, upou the (i, k;)-
plane; o, is positive if V G is below the
(iG, jG)-plane.

(b) the angle of skid, a;, is the acute angle
from the longitudinal axis i, to the
projection of VG upon the (i jG)-
plane; a, is positive to starboard.

Figure 32. — Attack and Skid Angles
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To resolve V into compomnents along the roll,
pitch, and yaw axeb, each component a function
of « and a,, let us consider the unit vector
E——V /V,, From figure 32, the unit vectors

g, 8 are given by
g —i,co8a + k, sin a,
§ =i, cosa + jG Sin ag.
1f we denote § by
(247) §=B,i + B, ).+ B,k
then,
€E+¥% =B,cosa, + B,sine,
£-8" =B,cosa,+ B, sin a;.

However, since the angles which ¥ makes with
% and j, are complementary, and the same is
true of the angles which € makes with §” and
k., we have

g =y = (§r i) =yl - B

o« B _ . 2 / . 2
€eg =41 — (§-k)'=y1-— B,
and hence,

B, cos a; - B sin a, _—_J 1 — B
(2.48)
B, cos o, + B, sin oy ::‘/ 1—Bz2 .

If now we combine the relations (2.48) with the
fuudamental one,

Ly + Bz" +.BJZ = 1)

the quantities B,, B,, B, can he obtained as the
simultancous solution of the system of three
equations. The actual solution is left to the
reader, Our result is found to be

(2.49) VG =NV, (i(.' COS a, COS a,
-+ jG COS a, SN a; + kG sin «, COS ay),

where

(2.50) N = (I — sin? a, sin® «;) .

2.8.8 The Windage Jump Vector J

1n Chapter 1, it was shown that the windage
jump vector J has magnitude b §,, where b is
a constant depending on the ammunition (see
equations (1.55) and (1.86)) and §, is the initial
yaw angle of the projectile, shown in figure 33,
Moreover, the direction of J is the same as that
of V X V Since §, is a small angle, we see
from ﬁgule 33 that to a good approximation

sin r,
(2.51) 5, =V, (radians) .
Uo
Hence,
bV
(2.52) J = sin v, (yds/sec) .

Uy

Since the direction of J is that of Vu x Vo, we
have, equating unit vectors,

1 VG >< Vo
— I =

J Vg Vo Sin To )

Thus, using (2.52) we obtain the following
vector expression for J:

b
(2.53) J=

(VG X Vo) .

L:) o

For the 20-mm M97 projectile, V, = 2680 ft/sec
and b = 102.4 ft/sec. From equation (2.43) we
see that the maximum contribution of J to the
total lead le X e | = sin A is

(J) HHU‘/V{I'
Equation (2.52) shows that J will be a maxi-

sin 7,
mum when —
u{l

, considered as a funclion of

., i¢ & maximum. But from figure 33 we note
that

sin 7, sin (7, — &,)

Uo Vn

Yoy oF .
R !

:
)
]

BRI e B T
P .
AN \ .




NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

Vo

Figure 33. — Initial Yaw Angle

(Target) T

Figure 34, — The General Case in Three Dimensions
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sin 7, 1
Thus, the maximum value of is )
Uy Vv,
m
achieved when r, = — 4 8,.
Hence,
bV,
(2.54) (J) nm.r/Vo == 4 1000 mils

02

is the maximum contribution in mils to the total
jead angle A, this maximum being achieved
for the gun angle-off 7, slightly greater than
90°, For 20-mm MY97 ammunition and V, =
250 yds/sec, we find this maximum to be 10 mils.

It should be noted from equation (2.52) that
windage jump is negligible for fixed forward-
firing gunnery or for moderate gun angles-off
Ty 1€., 705_150.

2.8.9 Lead Angle Equations for Azimuth-
Elevation Top Deck Turret

2.8.9.1. ORIENTATION—In figure 34 [i, j, ksj is
a right-handed set of unit vectors with origin
O tixed relative to the air mass, the vector k'
being directed vertically downward. The own-
ship coordinate systern is shown relative to the
octant of a unit sphere and is purposely posi-
tioned in a dived-and-banked orientation rela-
tive to the space axes i,’ jﬂ, k“. The sight line unit,
vector e is determined by the angular coordi-
nates 4, F, measured positively as shown, Angle
A is in the ownship azimulh plane determined
by the vectorsi, j .; angle & lies in the ownship
vertical plane determined by k_ and the term-
inal side of A. If the corrcsxibnding angular
. coordinatles of the gun-bore-axis unit vector e
arc designated by A,, I, then the azimuth and
clevation lead angles, A, and A, for which we
seck formulas, are defined by

(2.55) A,l = A” —_— 14., /\l.; = ]’]o Al 1;1‘ .

These lead angles are shown in figure 34 as
angles CGD and HGP,. The plance of the civeular
arc I is parallel to the ownship azimuth plane,
50 that are PIH is an arc of a small circle. The
total lead angle A, of which A, and A, are the

desired components, is of course the angle
PGP, between e and e.

Since, as will be seen, the auxiliary angles
Asn, Agr, can be found more directly from the
input data than the lead angles themselves,
we shall express A, and A, in terms of Ay,
Agr. The latter angles are known as the sight
lateral and sight vertical angles, respectively.
They are defined geometrically as follows: A
plane is passed through e perpendicular to the
ownship vertical plane (i.e., the plane of e and
k (__) and intersecting the latter in the unit vector
e. The sight lateral angle Ag, is then defined
as the acute angle between the vectors e and e,.
Similarly, the sight vertical angle Ay is de-
fined as the angle between the vectors e and e,

2.8.9.2, RELATIONSHIP BETWEEN THE ANGLES
Ay, Ay and Ay, Ag —If we apply Napier’s
Rules for right spherical triangles to triangle
BP,P, of figure 34, in which face angle P,BP,
is A, side BP, is 90° — E,, side P,B is 90° —
(E 4 Ay), and side ﬁ?g is Ay, we obtain (see
figure 35)

B
A
Do
P
\
¢
) 2
L] ’ ~
&
P

MeL

Figure 35. —Right Spherical Triangle
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(2:66)
(2.57)

8in Ag, = sin A4 cos K,

sin B, = cos Ay, sih (B + Agy) .

In view of (2.55), these equations may be re-
written as

(2.58) sin Ay, =sin A, cos (E 4 Ag)

(2.59) sin (E + Ag) = €08 Ay, sin (B + Agy) .

2.8.9.3 THE SIGHT COORDINATE SYSTEM—In our
work we shall assume that the radar antenna,
directed along the gun-target line r = re, tracks
the target perfectly. The direction of the radar
anienna then coincides continuously with that
of the sight line vector e. Since the angular
velocity o of the sight line relative to space is
represented by a vector perpendicular to e, it is
convenient to resolve w into components along
perpendicular axes lying in a plane normal to e.
These axes arc denoted in figure 34 by the unit
vectors i and iL and defined as follows: ilc is
normal to e and sc oriented as to coincide with
j “ when e is directed along i(;; the vector iL is
then completely defined by i =eXi, The
three axes, |e, iE, iL] arc thus mutually perpen-
dicular and constitute a moving right-hand
frame of reference which we shall refer to here-
after as the sight coordinate system. The angu-
lar velocity of this system relative to inertial
space will be noted by &2 »

2.8.9.4. RESOLUTION OF THE VECTORS r > ¥ AND
r X r — These vectors, appearing in the hasic
vector lead equation (2.43), give essentially the
aneilar momentum and the time rate of change

of angular momentum of a unit target mass
relative to the moving origin G (Sec figure 34),

Designating r ¥ r by M, we have
M=17rex (';'e+'ré) = 7%e ¥/ é::fr"u).

Hence, if we denote o by

(2.60) ) == oy, il, —I—- 235 iE’

we may write

(2.61)

M=M, i,‘ 4 M, iE,

where

(2.62) M, = r*w;, Mg = 1% wg.

The vector M=r X r is then, by known rules

“of vector analysis (sce Appendix A), given by

. M
(263) M=—432 XM
ot 8

where the first term of the right member indi-
cates a time derivative taken with respect to
the sight coordinate system. Thus,

oM L
(264) —— =M, + Myi.

If we denote the component of Sk in the direc-
tion of e by w., then, since the angular velocity
&2 differs from the angular w of the sight line
by a rotation about the sight line, we may write

(2-65) slq = m, € + (O]

Moreover, since @ X M = O, we find that

(2.66) 22 X M=, e¢XM

Substituting M from (2.61) into (2.66) and
combining with (2.64) as indicated by (2.63),
we obtain finally

(2-67) M-‘—' (MI,+MI';U‘0) i.“l‘ (Mf:—MIIU’c) iE-

The angular rates o, ez o, can be obtaired
physically by attaching gyroscopes with prop-
erly oriented spin axes to the rigid gystem of
axesi, iE, ¢, where e i3 along the radar antenna.

2.8.9.5 RESOLUTION OF THE UNIT VECTOR n
RELATIVE To THE OWNSsHIP AXEs—This vector,
first introduced in equation (2.29), is directed
vertically downward and is located relative to
the ownship system of axes by means of the
bank and dive angles, g and 5. Figure 36 shows
the basic coordinate systern in hoth the “un-
banked and undived” orientation, (i, 3/, k),
and the “banked and dived” orientation, (i, j,
k). The triad (i, ) & K G”) corresponds to the
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Figure 36.-— Orientation of the Unit Vector n

case of bank zero and dive 5. Angles 3 and § are  2.8.9.6 RESOLUTION OF THE ToTAL LEAD VECTOK,

positive as shown.
From figure 36 1t is ¢vident that,
n=k “cos$ i, sins.
k., = k, cos 3] sin .
and hence, that

(2,68) n = i“ sin & - j“ sin fi cos &

- kG €08 B ¢o8 &,

e TrTeT
B

PPt

.
s

.,
~

AR 2

e X eo—-In figure 34, we note that in the circular i
sector GP,P,, j..

(2.69) e = cos Ay, e + 8in Ay, ir.

This follows from observing that, since the
radar antenna directed along e moves in an
azimuth-elevation system of coordinates, the
vector i, is perpendicular to the piane of angle
I, The rclation (2.69) can be scen more clearly
from figure 37, which ghows the sector GP,P,
isolated from the rest of figure 84,

Hence, we find that

€eX e =CosAy e e 4 sinAg e X ig;
o ;
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or, since
e X elzlEsm Apy, € X =1
that

(2.70) € X e° = il'l Sin ASV cos Ab'],

+ il. gin Agr o

Figure 37. — Resolution of the Vector e_

2.89.7 A SUMMARY OF THE VECTOR TERMS OF
EQUATION (2.43)—We list here the individual
vector terms of the fundamental vector lead
equation (2.43), each expressed in terms of the
component vectors e, in,' iE. For convenience,
equation (2.43) is rewritten here in a slightly

modificd form as cguation {2.71).

t

q t . !

271 —_— M+ —M4 —
¢ ) ¢ XE, 'rVo[ +2 —|~2r><a
Fi, l rxiJ
+-—2—r_><n]+r arxVG— 7

(2.72) e X e =i, sin Ay OB Ay,

+ ih 8in Ag,

(2.73) M:MJ, iL+ME iE

(2.74) M= (My+ My o)) iy + (Ms— M, 00)ig
(2.75) r—re
(2-76) a&==a; iG—l—az jG+ [P 2 kG-

In order to express a in the sight coordinate
system |e, in’ iL], it is necessary to resolve each
of the vectors i, i, k,, in this system. From
figure 34 we note first that

e:IAco.sE—stmE
Do L s
i IGCOSA—l—JG in A.

Hence,

(2.77) e=i_ cos Acos K +j_8in A cos E

— kG sin K.
Similarly,

(2.78) iL = iu cos A sinE + jG sin A sin K/
+ k cos B

(2.79) i =i sind +chosA.
For ease of inversion the equations (2.77),

(2.78) and (2.79) can be represented symboli-
cally by the following table of direction cosines,

e L, ix

i |cos Acos F|sin Asin E| _gin A

(2.80)
i, |sinAcos B|sinAsink| cosA

k —-8in I cos B/ 0

G

By way of illustration we see from the table that
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(2.81) i(, =ecos A cos K - iL cos A sin &

— i, sin A,

Combining equations (2.76) and (2.80) we

ohtain

(282) a=-e(a,cos AcosE + «.sin AcosE

— @, sin &)

+1i (a,cos Asin/
+ . sin A sin ¥ 4 «, cos E)

+ iE (-¢, sin A 4~ a.cos A).

From (2.75) and (2.82) there results

(283) exa= iJE (=, cos A sin E
—u, sin A sin E —u, cos F)

-+ iL («, cos A -, Sin A).
Also, from (2.68) and (2.80) we have
{(284) n=e(cindcosAcos E
4 sinfcosésin 4 cos K
— o8 B cos d 8in E)

+- iL (sin 8 cos A sin &
4 sinfcos §sin A sin F
+- cos 3 cos & cos E)

+-i, (-sindsin A
<+ sinBcos §cos A4).

(285) 1 m=v[i (-sin&cos A sin &
—sin f cos 8 sin A sin ¥
— cos fB cos & cos ) -}-ih(—sin 3 sin A

+ sin B cos § cos A) .

In evaluating the vectors r » V“ and r ¥ J,
appearing in (2.71), we make the simplifying
assumption that the attack and skid angles, «,
and «, can be neglected, This is a reasonable
assumption in that the aireraft for which the
present lead angle equations are being written

is considered to he a heavy, relatively non-
maneuverable bomber. We assume then that

\Y% ¢ = \Y ale Hence,

(2.86) -rx VG =91V [iF cos A sin K

~+ iI: sin A].
From (2.53) and (2.75) we note that

bV,r
r><J:———e><(iG><e).
U, 0

(]

However, vector i ¢ Xe, with the aid of figure
34, becomes

iG xXe = iG 4 (iA., cos K, — stinEo)
= kG sin A, cos B, + jc. sin E,.
Hengce,
e X (i(j > e ) =sinAd,cos B, (e X ka)
+ sin B, (e X j.);
but from (2.80) we find
exXj,=-i sinAsinE i cos A
e X kG = —i,5 cos K,
Thug, we arrive finally at the vector expression

bVyr
(2.87) I X J = T

2

[i, (-sin A, cos B, cos B

-sin ¥, sin A sin &) + iI sin K, cos 4],

2.8.9.8 LEAD ANGLE IQUATIONS FOR AZIMUTH-
KLEVATION Tor DECK TURRET-—Upon taking the
iE and i,l components of the individual vector
terms of equation (2.71), we arrive at the final
lead cquations, They are:

49
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q t, .
(2.88) sin Agy €08 Ay, = —— [My 4+ —— (M, — M, 0,) ]
2

rV,
N Qt, . .
— —— (a;co8 Agin E 4- a, sin 4 sin E 4 ¢, cos E)
Fgt, . . . .
—_—— (8in B cos v 8in A sin E + sin § cos A sin E + cog 8 cos 3 cos E)
0
vV, bV,
— cos AsinE 4 (sin A, cos B, cos E + sin E, sin 4 sin E)
V. UV,
_ q .
(2.89) sin Ay, =~ (My 4 —— (M, + My 0.)]
rV, 2
at , Fgt, .
(a:co8 A —a,8in A) — (sin 8 sin A — sin B cog §cos A)
o 0
Ve bV,
—— gin A — - sin B, cos A,
v, %oV

where
(2,90) sin Ag, = sin &4, cos K,
{291) sin E, = cos Ay, sin (E 4+ Ag)
(292) A, =A 4 Ay E,=F 4 A,
and
(2.93) M, =1"w, M,=1"u,.

The bhagic computer inputs are:

range, 1

angular velocity components of the sight
coordinate system; oy, oy, we

linear acceleration of ownship, components
als a’21 0/3

bank and dive angles, 3 and 8
true airspeed, V,

angular coordinates of the line of sight,
Aand E

muzzle velocily, V,

windage jump constant, b.

All other quantities appearing in the equations
are derived from these basic inputs. The quan-
tities ¢ and {; in particular are usually obtained
from empirical formulas giving these quantities
as functions of basic inputs. The manner in
which {; is obtained theorctically has alrcady
been considered in chapter 1. .




V; = 275 YDS./SEC.
Vg = 220 YDS./SEC.

P .N.
| AR .

FaliP el ol s b, o
' AT

A
P

‘I".T‘.L -

" '

T g

.

PR |

.

. e e
T ]

P

RADIUS 2257 YDS.

LV TrTY TV
’ I. PMS »
« O f

.

Figure 38, — Particular Case — Computation of Lead Angles

Finally, we note that the quantity u,, appear-
ing in the windage jump terms, can be found
from (see figure 33)

not =V, 4 V& 4 2VV, cos 7,

or, in terms of the angular coordinates of the
gun bore axis, from

(2.94)

988995 O-083 -6

Go

Ut = Vot 4 Vit +2V,V, cos A, cos E,.

2.9 An Example

By way of illustrating the computation of lead
angles in a particular case, let us consider the
coplanar attack shown in iigure 38. Here, the
target traverses a straight line with a speed
constantly 275 yds/sec. and the gun-platform
sweeps out a circle of radius 2257 yards, travel-
ing with constant tangential speed of 220
yds/sec. At time t == O their positions are G,,
T, with G, T, = 1667 yards; the initial approach
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angle of the target is 45° while the angle-off of
the target is 90°, The position of G, T are shown
for a time interval of 15 seconds. Sinece the
firing tables, as was explained in Chapter 1, give
t; as a function of the future range, 7/, it is most
convenient to assume these positions as future
positions and the times indicated on the figure
as impact times, Gravity drop will be neglected
in our computations.

The lead angle formula (2.15), which applies
here, can be written in the form

qM v,
Sin A = cem— ~—
Vo Ve,

(2.95) M=1%.

sin » y

We shall take ownship speed V, to be 220
yds/sec and the projectile muzzle velocity V, to
be 2750 yds/sec. With coordinate axes xzQOvy,
chosen as indicated, we write down first of all
the parametric equations giving the future co-
ordinates (X6, Ye,)» (xy-l, y,-t) as functions of
the impact times ¢;. Thus,

s Lo = 2257 |1 — cos ¢
(2.96)
( Yo, = 2257 sin ;

Ve
v = t, = .09745 t;
2257

275 t;
[ my = — 1667 4 ———

]
o ) Y2
(2.97) 275 ¢,

Future ranges corresponding to these positions
are then found from

(2.98) 7 = \/ (€s, — xr )4 (Yo, —yr)* .

Since the input variables to equation (2.95) are
measurcd at the instant of fire ¢, it is necessary
to compute ¢, in order that ¢ may be found from

(299) t=t¢t;—t.

The firing tables list timee of 3irht as a function
of present gun angle-off , present zenith angle
of the gun (angle between gun-bore axis and
the vertical), future range 7/, relative air den-
gity p, and speed of gun-platform V.. In our
coplanar case of horizontal flight, the zenith
angle is constantly 90° (1600 mils), V, = 220
yvds/sec and p will be taken to be 0.4, which
corresponds to an altitude of approximately
29,000 feet. Therefore, to obtain ¢, from the
tables we need to know the present gun angle-
off y. In lieu of this quantity, which is not now
known, we use r;, the future sight-line angle-off,
and thus obtain from the tables approximate
values of £, to be used in (2.99). The angle r;
can be read from a carefully drawn figure or
clse computed directly from

my tan y; — 1

(2.100) tanr = ,
my + tan y;
?/G/ — :lla',
my =
m,,f -— WT,

With the approximate value of t, thus obtained,
one computes, knowing ¢ and the present coor-
dinates (2, ¥.), (%r, ¥r), the projectile range R
by using t in place of #; in {2.96) aund {2.97) and
then employing the distance formula for R,

(2.101) R= \/ (:cT[ — xy)? (yq-, — Yu)? .

To find the angle y we need to know the angles
sy vy ¥, as is evident from the firing parallelo-
gram drawing shown in figure 39. The actual
chain of relations that leads to y is as follows:
(angles are measured positively in a clockwise
direction)
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G ( vayG )

0

Figure 39. — Fundamental Angles

'.‘/T[ — Yo
(2102) sinp = ——n—
R
(2.103) v = —90° -+ =i 3
U, = GC=GD —CD =
y GA* —AD*— AC cos (180° — )
or

(2.104) wu,=V,cosv+ JVU“ — Vsinzy .
Finally, we note that

CE=AF — AC
or

U, ¢08 (180° —v) =V, cos (180° —y) —V,
which may be written

U, COS v — Vg

Ve

Once y has been determined from (2.105), a
more accurate ¢, may be obtained by using this
value of y in the firing tables, This leads, via
the chain of equations just written, tc a more
accurate y. If this iterative process be continued,
both {; and y can be found accurately to as many
decimal places as the original data warrants.

(2.105) cosy =

Using this accurately determined ¢; in (2.99),
we now find values of the gun and target coor-
dinates at the time of fire from

Ve
v = t,
( 2257
(2.106) J %o = 2257 [1 —cosy], yo = 2257 sin y,
275t 275¢
Zp = — 1667 +- . Y=

vz vz

Dt o
P

PAFAFANAIIS
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With this information we ean now find the input
quantities r, -, M, q, l. We have

(2.107) r= ‘/ (¢ —x2)? -+ (Yo — Y2)? 5

mtany —1
tanr=—————, m=
m + tan ¢

Yo —UYUr
(2.108)

Xeg— Tr

The quantity m in (2.108) represents the slope
of the sight line referred to the fixed axes xOy
in figure 39. Hence the angular rate of rotation
o of the sight line is

d

I}

[arctan m]

and

_ d Yo — Yr
M = 1?20 =1 — |arctan | ———— ) ],
dt Te — X

which simplifies to

(2109) M= (x6 — %) (Yo — Ur)

— (Yo — Yr) (;UG — ";71') .
The dotted quantities in (2.109) are the time
derivatives of the corresponding ones in (2.106).

Finally, knowing u,, t;,, and R from (2.101), we
compute g from the known relation

u,,t/

(2.110) g¢=

The lead angle A can now be determined from
(2.95).

The results have been computed for this
example and are exhibited in table 2.1. Dis-
tances are in yards, time in seconds, » in radians
per second, A in mils.
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- Table 2.1

Values At Time of Fire

Dimeusions: yards, seconds, degrees, mils

<

-7

o0

10
11
12
13
14

239

o

i
.( W
r
1 T‘.),
1.5t

1.3

=1

:1.20
1.08
0.99
0.92
.88;
(.86
0.87
0.01
(.99
1.11

1.26

1 -7 1
E ‘ R 1 U ! r ET((I(‘{, E M l q E l ! o !y((l(\g)l A(mils)

I R i [ i ‘

TPV N oo st s s o R o
—2.30:1666.667: 18056181007, m;!‘zm(”(,' 75087, 20082 1. amo..;.;.a.)l ()()b() 39. 88()i 58
_ ()0114851%4:1015 8RS, ()755151555()211 s3.:;<);si mmsil z(mln z(m! Umi 68.1-41 i 41
2111321 .5()s»1.sz.s..ax.-)i 041048116263 14 01360, 423981, z,moz‘m] 160, 76. mi 30
1. nllmoumml mi (;11.1(5xi1-1os.-175 sm..a‘zﬂ .ihh?‘)‘l 21%024«»4! 0195, M.)lli 22
2(]5‘10()1 u,«)i 084 .m' 87‘.).856‘1230.‘18() 107..-315i B0V, umozm,[ .uzm,1 (m,z)! 18
580 960.778, 8613521 849.590;1()34100 115.‘;0(;i 2()1%1‘1 ml.u 1841, .()l?-l!l()().TZIi 16
492, 878.442! 7644711 821.508] 9068.594{122 443) 8:’)7-}{1,1048().1(')-18! 0091107993 22
6.01 312.913} H91.048] 804.575 877.1‘14126.716‘— 40(1‘.)1.152(;!().152(3}--.()();>2}11.1.097' 34
7,08 763.500] 637.924) 790.567| 808.649(133.755) — 16686:1. 1.u;3i0 1-!6'5|—.()..7).')“115 669 51
8.120 730.555) 604.668| 782.350| 758.662(137.330! — 202121, 158()()1’5()‘—.())()?»121 A7 70
9.14 715 591.053 780,018 727.338!139.262 - 41338(1.13 >olm ’“i 07811122.311 92

| |

598.206| 782.973] 715.369(139.62:3| —52760:1 1385 0. 1385 — . 10311121.271 113
| |
620.033] 789.660 723.917[138.734| — 64155 l.l42-l|().l~12»1 —. 12211 18.975 133

684,303 798.632 753.677]187.127|-- TA955 1. 155801554 — 1320/ 116.004 151

10.13: 722,17
1109 753,185

12.01] 811.749

12,800 8¢9, H.

764,605 807.804| 803.806{135.341| — 85520 1.172(')‘|().17‘2(i —. 13231113.074 166

]3.7-1.]()1().2]2| 870,114 81-1.99%8| 873.707|133.774 — 06214 l.leZi(J.lSUZ — . 1260(1 10,854 174
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Figure 40. — Pursuit Course
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Chapter 3

PURSUIT COURSES

3.1 Introduction

The problem of determining the equation of
a eurve of pursuit is a classical problem in
mathematics. Historically it dates back to the
time of Leonardo da Vinci. One classical state-
ment of the problem was to determine a dog's
course as the dog runs toward its master who
is walking along a straight path. The military
aspects of the problem were brought into prom-
inence in connection with aircraft combat
wherein one aircraft is attacked by another
possessing guns capable of being fired in a fixed
direction only. In order for the one aircraft to
keep the other under continuous fire, it must fly
some kind of a pursuit course. The problem
appears again with the invention of homing
missiles which continuously change heading
under radio. optical, or acoustic guidance un-
willingly supplied by the target.

The importance of pursuit courses in air-to-
air combat is two-fold. The attacker, flying an
aircraft equipped with fixed guns. must under-
stand such a course in order (o determine
whether or not his aircraft can fly the required
flight jath. He also must rely upon his knowl-
edge of this flight path to give him inputs to
his fire control system, The defender uses his
knowledge of the flight path to determine the
future positions of the attacker and thus estab-
lishes the required leads for his guns.

In aircraft combat there are four kinds of
pursuit courses. To be specifie, let us consider
a fighter aircraft equipped with fixed guns in
combat with a bombher equipped with flexible
guns. Thus, we consider the bomber to be pur-
sued and the fighter to be the pursuer. The
fighter's gung are assumed to point in the direc-
tion of its flight,

If the fighter pilot flies his airplanc in such a
way that his guns are always pointed directly
at the bomber, he is said to fly a pure pursuit
course. In such a course, the mush of the air-
plane and the lead that the guns must have are

ignored. If the bomber is flying a straight and
level course, the fighter’s motion lies in a geo-
metric plane with the bomber’s course and this
plane is called the plane of action.

If the lead is taken into considzration, that
is, if the fighter flies so that his guns are always
directed at a point ahead of the bomber by the
required amount to secure a hit, und the mush
of the airplane is ignored, then he is said to fly
a lead pursuit course.

If the fighter flies his airplane in such a way
that his guns are always pointed directly at the
homber and his flight path is determined from
the angle of attack and other aerodynamic con-
siderations, he is said to fly an aerodynamic
pursuit course.

If the fighter flies his airplane in such a man-
ner that his guns are always pointed ahead of
thr bomber by the amount required to score a
hit, and his flight path is determined by aero-
dynamic considerations, then he is said to fly an
aerodynamic lead pursuif course,

The complexity of the courses lucreases in
the order defined above and thus it is advan-
tageous to consider the simpler pure pursuit
first.

3.2 The Space Course for a Pure Pursuit
Attack

In analyzing pursuit courses, there are two
Ltypes of courses to consider; one is the actnal
space cocurse traversed by the combating air-
cratt and the other is the path of the one
aircraft relative to the other, Let us begin by
considering the space course and let it be re-
ferred to a set of rectangular coordinate axes
which lic in the plane of action, See figures
41 and 42.

Let (xy, ¥s) and (xy, 7;) be the coordinates
of the bomber and the fighter, respectively, at
any time t. Since the fighter is the pursuer, we

57
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are seeking expressions for his coordinates in
terms of known quantities, The definition of a
pure pursuit course specifies that the equation
of the tangent to the fighter’s path must be
satisfied by the bomber’s coordinates, Thus, the
equation for a straight line yields

3.1) (vu —yr) =m (2 — x4),

where m ig the slope of the tangent line. The
slope of the tangent line is, of course, the deriva-
tive at any point on the fighter’s path and,
consequently,

dyr ’!/l

dzy Tp

58

.....
.....
hd CEE Y

......
--------

Figure 41, — Coordinates

so that cquation (3.1) becomes

Ur

(33) yYn—Yr=——— (2 — ur)
or
. o Yn— Yr
(34) = tp—m
xu — .’l:,-

1t is easily seen that the forward velocity of
the fighter, V,, is given by

(3‘5) 9.31'2 + ’I.IF2 = VF” .
The substitution of (3.4) into {3.5) yields
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Figure 42, — Coordinates for Pure Pursuit :
. N
. Yu — Yp 2 where L
(3.6) a,¢ 1 <+ =V, .
Xy ~Tp 38) = (2y—m)* + (Ys — Yr)*. !
or, upon simplifying, The quantity r is the range between the bomber :
(20 — 2 and the fighter at any time £. Equation (3.7}, ;
(37) #2 = Ve o ! therefore, yields an expression for the time 1
(T — Tp)? 4+ Yy — Yp)? derivative of the fighter’s x-coordinate,
A
‘ (x4 — ar)? . Vi b
= Vit — -, (3.9) xp = —— (x5 — x¢) ; i
7t T .,
[
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similarly, from cquation (3.4) we have

. Ve
(3.10) Yo =—— (yn — ys) .
r

Equalions (3.9) and (3.10) form a system of
differential cquations which describes the meo-
tion of the fighter in terms of the coordinates
of the bomber, the fighter’s velocity and the
range. The right-hand side of both equations
are thus funetions of time, {, the independent
variable, For certain restricted cases, these
differential equations may be solved explicitly;
however, in general, it will be necessary to solve
this system numerically.

Ay a special case, let the course of the bomber
be tuken along the positive y-axis and let its
coordinates be (0,0) at t==0. Let the coor-
dinates of the fighter at ¢t =0 be given by
(Cp, Yr). Let us further assume that the
bomber and fighter are both flying at constant
speeds, Vi and V., respectively. The situation
is illustrated in figure 42. In this case, it is pos-
sible to obtain y as a funciion of x analytically.
Since ay = 0 and iy, = V4l we have from equa-
tion (3.1)

dye
(3.11)

LTy .

Vil -- Yy = —
©odey

Since the homber coordinates are specified,
we may for convenience drop the subscripts ¥
and write (3.11) in the form

dy
Y= Vil 4 y'x, where y' = —.
dx

(3.12)
The varlable £ may now be climinated by usc

of the relation

(3.13) s=V,dorl =2s/Vy,

where s is the arce length along the fighter's
path. Kquation (3.12) then becomes

(3.14)  y = ¢5 + y'«, where ¢ = V,/V,,-.

This cquation may now be differentiated with
respect to 2 to yield

(&w)xw=c¢1+y:

or
,'II C
(3.16) - = ,
y 1+ b
since s’ = — ‘l! 14y,

Performing the integration in equation (3.16)
we find

In (y’ +4- ‘/_I—-i—-—y_;) =Inx - Ink,
or
(BIT) ¥4y T4y =ka,

where e is a constant of integration which may
be determined from the initial conditions » = x,,
Y = Yo/ %o,

Equation (3.17) is now solved for y* to give

1
(3.17a) oy = kx — ]
kxr

and integrated again to give

yzéli Ik

x* 1
=}l k———Inz |4+ Cifc=1
2 I

x1e 1 x1-¢ ]
14-¢ _lc 1—¢

+ G if e,

(3.18)

Thus we have y as an explicit function of 2
and the pursuit course of the fighter is deter-
mined.

As an illustration, the space course was com-
puted for the following set of conditions:

.[ V=220 yds/scc. V, =275 yds/sec.

l Xy, = Un, = 0. ap, =000,y = 1000,

Iirst we oblain ¢ .= .8, k = 029362086,
C =1706.7422.
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Figure 43. — Pure Pursuit Course Example
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The values of the coordinates are given in table
3.1 and the course is shown in figure 43. The
course also was computed by a numerical solu-

Pure Pursuit Course

Table 3.1

tion of equations (3.9) and (3.10). A Runge-
Kutta method of solution was used with At = .2,
The values are shown in table 3.2.

4 =.008156135 x '#—85,143817 z *4-706.7422
Vi =220 yds/sec.; Vp =275 yds/sec.; ¢ = .8; x, =500 yds; yr = 1000 yds.
x Y t x Y t
500 1000 0 45 532.15 2.52
450 904 .52 .39 40 534.92 2.54
400 818,26 75 35 538,28 2.56
350 741.58 1.09 30 542,36 2.59
300 674.90 1.39 25 548,34 2.61
250 618.81 1.66 20 553.52 2.64
200 574.14 1.01 15 a6l .47 2.68
150 542 .17 2.12 10 572.39 2.72
100 525.34 2.32 53 589 .41 2.78
50 529,88 2.50 0 706.74 —_—
Table 3.2
Pure Pursuit Course
Vp . V}v
Ip = — - -~ Ly, Yr = Ws ~¥r) s ys = Vit
r r
Initial Conditions Same as for table 3.1
! Yu Ty Yr r Zy Yr
0 0 500 1000 —123.0 —246.0
.2 44 475 951 1024 —127.6 ~243.6
4 88 449 903 030 —132.7 -240.8
6 132 422 855 837 —138.6 -—237.5
.8 176 393 808 744 —145.4 —~233.4
1.0 220 364 761 652 —-1563.3 ~228.3
.2 264 332 716 b1 —~162.7 —221.9
A4 308 208 673 471 ~174.1 —212.9
) 352 262 631 383 —~138.2 —~200.6
B 396 223 593 297 —206.0 —182.2
2.0 440 179 559 216 —~229.0 —-152.3
.2 484 131 534 140 —257.0 — 7.8
A H28 77 524 77 —274.7 13.6
.6 b72 29 o4 39 —199.3 189.5
"8 616 7 501 26 - 739 264.9
3.0 664 1 645 15 - 11.1 274.8
3.1 682 -— 673 9 - 92 271.8
3.2 704 —_— 700 S — 276
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Figure 44. — Yector Diagram ;‘
The extension of equations (3.9) and (3.10) . Ve

to a three-dimensional rectangular coordinate Tr = , (@ — we) ;
gystem (x, y, #) iy straight forward, We now !
have (x4, Yy, 21) and (xy, ¥y, 2p) representing : Ve g

. (3.19) Yr = (yll - 1/}) ’ |
the coordinates of the bomber and fighter, re- r "
spectively. The differential equations which now v :‘;'..' .
define the fighter’s motion are given by the fol- = (25— 2) AR

lowing system:
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It
B
r
0
" 8
F
Figure 45. — Polar Coordinate System for a Deviated Pursuit
where Differentiating F we have
(3:20) 7= (= 2) "+ (s — ¥0)* (325) F ==V, =mi+ 5. 4 k.
+ (25 — 2p)* '
For a pursuit course
and
. . . ' Ve
(3.21) @ 4yt + 2t = V2. (326) V,=——r
r
Equations (2.19) are easily derived if we use Ve

vectors. Let i, j, k be unit vectors along the =,
¥, & axes, respectively, see figure 44, Then the
vectors from the origin to the fighter’s position
and bomber position are

(3.22) F = x4 & g, + 2.k,
(3.23) I; = -’L'];i "l‘—‘ U“j + Z”k-
The runge vector is

(3.24) r=F —~B

= (T — ) i 4+ Yo —Yu) j

+(z» — 2) k.

= - _'r—l_(a” — xy) i

+ W —Yu) §+ (2 — zu)‘k]-

If we now combine (3.25) and (3.26) and write
the components we have the system (3.19),

3.3 The Space Course for a Lead Pursuit
Attack

The differential equation of the pursuit curve
with lcad in reectangular coordinates can be
derived in a manner similar to that of the last
section. However, the equations are very ineffi-
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Figure 46. — Yector Diagram

cient and the most desirable approach is to
obtain the relative course of the pursuer and
then to convert to the space course if it is
needed. As was pointed out in section 2.2, in a
relative course the origin of the coordinate
system moves with the bomber so that the rela-
tive coordinates are simply the space coordinates
of the fighter less the bomber’'s coordinates at
any time t. Thus, if X, Y, Zs, are the fighter's
relative coordinates, then

Xy =Tp ~ Ty,

(3.27) Yi=1yr— s

N

= Rp — 2y

It is then clear that if the fighter's relative
coordinates and the bomber’s space coordinates
are known, then the fighter’s space coordinates
could be found by solving (3.27) for =y us
and z;.

3.4 Equations of the Relative Course

In the mechanization of fire control equip-
ment it is the relative course of the pursuer
which is of the greatest importance. This rela-
tive course is best described in terms of a polar
coordinate system which has its origin at the
bomber, Let us, therefore, choose such a system
and measure the angle, 4, from the stern end
of the longitudinal axis of the aircraft. See
figure 485,

Pursuit courses with lead have often been
called deviated pursuit eourses, a more general

_term than lead pursuit courses. Thus, the angle

at which the fighter aircraft is flying away from
the direct line to the bomber is called the angle
of deviation, & This angle is, of course, the lead
angle in an exact lecad pursuit course. The devia-
tion angle is specified separately as some
function of ¢ and ». If § = 0, we have a pure
pursuit and if § is a constant, we have a fixed
lead pursuit,

AL R
.
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The polar radius 7 also is the present range
at any time ¢, From the vector diagram of
figure 46, it is clear that the rate of change of
the range is

dr .
— =7r= —V)'COSSJ[— .V”COSH y
dt

(3.28)

and the transverse component of relative veloc-
ity is given by

de
dt

(3.29) I =71 = V[-' sin § — Vi sin 6.

If we divide equation (8.28) by (3.29) we
obtain

dr Vecos § 4 Vycosd
(3.30) = de
7 Vesind — Vysin g

—cosé+4ccosd

8iné —c¢sin g

This equation is integrable for various devia-
tion functions. If § = O; i.e., pure pursuit, we
have

dr —~14-ccosf

r —c¢sin g

1
= ( csca—-coto\dﬂ
\

c /
and,
1
Inr=—Intan } 6 —Insind 4 Ilnr,,
c
tani/c3 0
=lIn "{' l'nTo;
sin ¢

or,

tan'/c 3 6
r= T, —————

sin @

(3.31)

where 7, includes all constants of integration. It
is easily seen that if we let ¢ = 90°, r, = 7 or, in
other words, 7, is the range on the beam; that
is, the fighter is directly abeam of the bomber.
Equation (8.31), is then, the polar equation for
a relative pure pursuit course. This may be
changed to rectangular coordinates by the usual
transformation equations

X =rsiné,
(3.32)
= —r cos 4,

if we choose the X, Y axes as shown in figure 45.

For a variable lead pursuit it is first necessary
to determine the deviation function. Let us,
therefore, consider the ballistic triangle of
figure 47.

n

The law of sines applied to triangle FS8p
yields

. EB,
8lN § = —-—~——3in 4.
Ty

(3.33)

Let t; be the time of flight of the bullef over
the future range 7, and % be the average speed
of the bullet. Then we have

(3.34) BB, = Vit
and
(3.35) = ﬁ t[ .

Substitution into (3.33) yields

(3.36)

sind == ¢, sin 0,

IR RPN

@
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where

Va
(337) ¢ = ——.
u

Straight substitution into equation (8.30) yields

dr Vl—cﬁsin’&—l—ccosﬂ

(3.3%) ae,

Il

r (¢, —¢) sin g
which may be reduced to

dr
(3.39) —— =
r

1

-—-—[‘}cscw——-c;‘dﬂ—ccotﬁdﬂ].

¢ —c,

This equation may be integrated; the first
integral on the right-hand side, however, needs
some manipulation. Let us make the substitution

cos 4
r=0C

or zcosd —=2¢,co88.
cos &

The differential relation
dzcogé —28in8dé—=—c¢,8inbd¥

may be solved for d¢ with the aid of the fact
that from sin § = ¢, sin ¢ we have dé§ = 2dd.
Thus we have

dzcos 8= (2¢8ind —c¢,8ind)do

= (#*—~1) c,8inddo

*We assume now that ¢, is a constant; this is not
precisely true since u is a function of the range. How-
ever, it is a usable approximation.

988985 O - 52 -6

or
1 cos §
dg = dz
22—1 ¢,8in4
1 J 1 et 012
= dz .

To obtain the last expression, we need to prove
the identity

which is more easily accomplished by working
on the right-hand side, making the substitution
for z. The integral / [esc* § — ¢t d 6 then

becomes
cos 8§
I,= | [csc?0—¢*ltdo= de
sin 8
" dz
:(612 — 1) cl'/ - ’
(et —20) (1 —2%)

which may be solved by the usual method of
partial fractions to give

ci—2z\4 [1+2\ /0]
1= In <_-_~) ( \ l.

¢ Fz 1—-2/

For convenience in writing, let ¢, = ¢ — ¢
The integration of equation (3.39) then yieids

67
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Vett w

os)

Figure 47. —- Ballistic Triangle

T 1
n—=—
To Cq

(3.40)

or

¢ — 2 142\« |z c
ln ) —
¢+ 2 1-—-2z2 Cz

Insin g

B4l r=m, 3 [(

where 7, is again the constant of integration
that becomes the range on the beam.

cos & 4 cos d

If & is small, a useful approximation is ob-
tained by letting cos § =1, and if we insert
this approximation and the expression (3.36)
into equation (3.30), we have

dr — 1+ ccosd
= do
7 (¢, —¢) siné

1
= (csctt —cceotd) dg
c—

which may be integrated to give

r 1
I.n-——:

(Inlan} 0 — ¢ Insin 0)

7o c—c

co8 § — ¢, cosd

sin ‘¢ 9

cos8~c0s0> (costs—}—clc:os&) o 13 1 1/

whence

-

tan%@) 1/(c—¢,)

sincd

342y r=m, (
or

—_ € — 0y
=7

/  tani 0\

3.4 ’
(3.43) 7 sin © 4

This is the approximation which wag made in
most of the analyses carried out during World
War 11,

In the above equations, 7, is the constant of
integration which needs to be determined, If we
let ¢ = 90" in the above cquations, we sec that
r =17, or, in other words, r, is the range on
the beam,
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Table 3.3
Example of Relative Course in Pure Pursuit
tan 1'% 3 ¢
7 =Ty-
sin 6
1, =82274314;¢=8;1,¢=1.25; V. =275, V', =220
Units:  wds., see., degrees
X=rsimnd; Y = —rcos 8
0 r X Y
150 . 853.5 426.8 739.2
140 452.7 201.0 346.8
130 278.7 213.5 179.2
120 188.8 163.5 94 .4
110 136.7 12R.5 16.8
100 104.0 102.5 18.1
90 82.3 82.3 0
&80 67.1 66.1 —11.7
70 56.1 52.7 —19.2
60 47.8 41 .4 —23.9
H0 41.4 31.7 —26.6
40 36.2 23.3 -27.7
30 31.7 15.9 —27.5
20 27.5 9.4 —25.8
10 22.5 3.9 —22 .1
0 e 0 0
Table 3.4
Example of Relative Course in Deviated Pursvit
cos b=
tan s 0\ oo,
T\ sinc 0
Units: degrees, yards, seeonds, :
7, =10005 ¢=2,3; ¢; =110, 0, = 90°, V= 220 e
0  (yls) X (yds) Y (yds) @ ) > s
90° 1000 1000 0 2.56 T
80)° 7171 7357 —-129.7 3.41 x*.
70 573.7 539.1 ~196.2 4.05 RS
60)° 4403 3891 —221.06 3.6 s P
H0° 3960 272.7 —228.8 H.15 v
J0° 2826 181.7 —216.5H D397 -
3$o° 221.2 110.1 —191.6 5.2 -
20° 165.33 obh.H ~155.3 480
10° 1065 ‘ 18.5H ~104.9 3.76
e 0 ; 0 0 = e
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Figure 48. — Pure Pursuit Course Example




. ,, PURSUIT COURSES

Table 3.5
'n Example ot Relative and Space Course in Deviated Pursuit
cos & =1
. 220[ ]
r=—"7"1 3—2cos 8
. 374 sin 6
ey
. O T 2
sate Conditions and units as for table 3.4
F t ] r l X Y Yy Yy
. () 490 . 000 1000 1000 0 4] U
[ 4 87.012 913.5 412.3 — 47.6 H8.7 11.1
b - ) 83.743 830.2 825.3 — 90.5 117.3 26.8
b 1.0 [ 81.992 7899 782.1 —110.0 146.7 36.6
[ 1.2 80,159 750.4 739 4 —128.3 176.0 47 .7
o 1.4 78.230 711.9 6097 .0 —145.1 205.3 60.2
[. 1.6 76.229 674 .4 655.0 —160.5 234.7 74 .1
. 1.8 74.123 6i37.9 613.6 —174.5 264 .0 89.5
20 71.920 602.5H 572.7 —187.0 203.3 106.4
2 2 9. 61t H68 .1 532.5 --107.9 322.7 124 .8
] 2.4 67 .205H H34.9 493 1 —207.2 352.0 144.8
| 2.6 61.690 h()2.9 454 .6 —215.0 381.3 166.3
| 2 R 62069 4720 417 .0 —221.1 410.7 189.6
! 3.0 59,312 - 442 .4 380.5 —225 .6 4400 214 .4
3.2 MLOLS 413.9 345.2 —228 .4 169.3 241.0
3.4 23,087 386.7 311.2 —220.6 498.7 269 .1
3.6 H0.D71 360.7 278 .6 —229 .1 528.0 298 .9
3.8 AT 473 346.0 247 .6 - 227 .1 Hh7.3 330.2
4.0 44308 312 .4 2182 —223.5 586.7 5063 .1
3.2 41.09G 289.9 190 .¢ —218.5 616.0 307.5
4. 37 .834 2068 .6 164 .8 —212.1 645.3 433.2
1.6 31.572 248 2 110.9 —204 .4 6747 470.3
1.8 31.315H 228 .4 118.49 -105.5 704 .0 HO8.5H
5.0 28 092 210.3 99 .0 —185.6 733.3 547.8
5.2 24 927 102.6 81.2 —174 .6 762.7 D880
A4 21 . KiX 175.5 65.3 —162.9 792.0 629 .1
D0 i18.87%8 1040 51.4 — 150 .5 ®21.3 670.9
o= 16,042 142.0 30.5 —137 .4 850.7 713.2
6.0 13.370 127 .4 20 .4 —123.9 8RO .0 756.1
0.2 1. 864 112.0 21.1 —-110.0 909.3 799 .3
6.4 8568 46.9 11.4 - 95.9 038.7 $542.8
' 6.6 6. IK85 K20 .26 ~ 81.5 D68 .0 886.5
I 6.8 1.641 67.2 H.44 — 67.0 097 .3 930.3
| 7.0 3.05H H2.D 2.80 — H2.4 1026.7 074.2
i 7.2 1.751 37.8 1.15H — 37K 10560 JO18.2
| 7.4 TG4 231 31 — 2801 10854 1062.2
: 7.0 187 8.5 | 0 — 8.5 1114.7 1106.2

71
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3.5 Time as a Parameter

The method of solving the pursult course
problem given in the last section has the disad-
vantage that the solutions are not given explicit-
Iy as functions of time. It is necessary o have

72
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Figure 49. — lead Pursuit Course Example

this dependence on time expressed explicitly for
mazty problems in fire control work and also for
computation of the space courses, For example,
the space coourdinates may he found from the
relalive coordinates by using the relation (3.27)
where the bomber’s coordinates are given as
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functiorn s of time and thus the fighter’s relative
coordinates also must be found as functions of
time. In determining the lead to take against a
fighter flying a pursuit course, one usually
matches the time along the course, from a
chosen present position to the required future
position of impact, with the time of flight of
the projectile over the range to this future
position.

There are many ways for getling points on a
pursuit course which are labeled with the ap-
propriate time, but to find the range or angle-off
as explicit functions of time is another matter.
Thus { may be obiained as a function of ¢ but
the inverse solution is not readily obtainable.
The implicit solution is found by knowing # as
a function of ¢ from (3.41), and upon substi-
tuting it into (3.29) the time ¢ is then found
as a function of # by a simple integration. Con-
sider, for example, the case of a pure pursuit
course, § = O, where

tan'/r 4 4

T="T
sin 4

Upon the substitution of this solution into
equations (3.29) we have

tan' 30 | W
sin ¢ dt

(3.44) 7, = — Vysiny#

oy

(3.40) 1, L tan’ 3 4 sin" ¢ ] dy — — Vudt,

Equation (3.45) may now he integra.ed by
employing the substitution

27 2d7
—,dy =
14 2

tan Y0 = 7, sin 4 = ~.
14 2
we obtain
r, | tanvc-1 } g
t -k — -+
2V 1 ]
B 21 41
c ¢

tanllt' +1 ,11 ]

where k is the constant of integration to be
determined by the initial conditions. Thus we
have t as a function of ¢, from which ¢ could
best be obtained for a given ¢ by graphical
means,

Another method is to expand » and ¢ in power
series valid in the neighborhood of any particu-
lar point aboutl which the expansions are made,.
Thus expanding » and ¢ about t = O, we have
the well known Maclaurin series.

. .- t:
() =7r(0) + r(o)t + 7‘(0)—2—'—

) t*
+ r(@0)—— 4 ...
3!

. " t

6(t) = 0(0) + 6(o)t + 0(0) o
t?

+4- 0 (0) N
3!

To obtain these expansions we need to know
the values of r and # at { = O. The derivatives
are then obtained by successive differentiation
of equations (3.28) and (3.29). The resulting
series converge so that » and ¢ may be found at
any t to the accuracy desired.

Still a third and perhaps the best method is
to solve the system of differential equations
given by (3.28) and (3.29) by a numerical
process. Such a solution will, of course, vield
values of 7 and 4 at chosen increments of (.

3.6 The Acceleration of the Fighter Caused
by the Curvature of His Space Course

In analyzing pursuit courses it is important
to determine the extent to which the course
curvature is restricted by the physiological
cffects on the pilot in flight and the structural
and acrodynamic limitations of the aircraft. We
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begin in this section by considering the normal
acceleration and the centrifugal force acting on
the plane and pilot.

It is well known that the normal acceleration
may be expressed in terms of the radius cf
curvature,

Vit

(3.46) = normal acceleration

where I i the radius of curvature of the space
curve. The radius of curvature may be expressed
in either rectangular or polar coordinates, For
rectangular coordinates we have

(1 +y2?

(347) R= — -
,ylll

and for pure pursuit we have by equation
(3.15) and (3.17a)

(1 +ynt @
(3~48) R = ,’ —— (1 + ylg)
Syl +ye °
x
1 1 2
= X | kzt + .
4c o
For pure pursuit we also have
. Vlv'
(349) R=——
]

since the tangeni to the circle of curvature also
is the terminal side of angle 4, Thus in polar
coordinates the radiug of curvature is, using
(3.29) withé =¢,

V[-- 1% »r

V" . Vl; Sin 0
—38In §
r

For deviated pursuit courses (lead pursuit)
with sin 3 = ¢, sin # we have

74

Ve
351) R=—ru—
5—0
Ve
N Vi ¢; cos 6
—le—¢]sinf|1 - ————
r Cco8 8

r

¢, cos f
[C——-C,] sin 0 [1—————...

co8 §

The normal acceleration, «, is usually ex-
pressed in units of gravity called “gees”, i.e.,
ratio of acceleration to the acceleration of grav-
ity, g. This acceleration is due solely to the
curvature of the course and does not include the
ever present acceleration due to gravity, which,
of course, is one *‘gee’”. Upon combining (3.46)
and (3.4%) with (3.29), we find, in the case of
pure pursuit,

Ve Vesin g
352) 4= —~—uou—,
gr
¥or lead pursuif,

Vit e — ¢ ¢, cos @
(3.53) ¢4 = —~—————sing| 1l — — )
gr O3 8

It is, therefore, possible to calculate both the
radius of curvature and the normal acceleration
for these pursuit courses,

Equaticn (3.52) may be solved for » to give

ViVs
(3.64) r= sin ¢,

ga
an cquation which represents a family of circles

VeV
of radii

, each circle being tangent to the
2ga

straight line path of the pursued bomber. By
varying the parameter, «, we may plot members
of the family and then superimpose the pursuit
courses upon this plol. From suach a graph we
cau read off the normal acceleration (or load)
at any point on the pursuit course, See figure 50,
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: ' , Vg =450 mph
V= 205 mph

Figure 50, — Acceleration Circles :::" v ‘,:--: .
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3.6.1 Maximum Acceleration

If we consider V,., ¢, and ¢, as constants, the
normal acceleration is given by equation (3.53)
as a function of 0, r, and §. Since both » and §
can be expressed as functions of ¢, see equations
(3.41) and (8.36), respectively, we have the
normal acceleration as a function of 4 alone.
Thus, there may exist a value of 4 for which
the normal acceleration is a maximum. That
this is actually the case can be verified by taking
the derivative of equation (3.53) with respect
to 4, setting it equal to zero and solve for ¢; the
usual calculus procedure for finding the maxi-
mum of a function, It is easily accomplished in
tha case of pure pursuit; in which case we find
that the maximum acceleration is achieved at

1
the value 0 = arc cos 50 Under the approxima-
c

tion that the cos § == 1 we find that the maxi-
mum normal acceleration occurs at the value

¢ — ‘/ ¢t — (2¢,* —3ce)) (ce, —e,2—1)
¢ = are cos .
3ce, — 2¢¢f

The existence of a value ¢, for which the
normal acceleration is a maximum, enables one
to find a limiting relative pursuit course on
which, for a given normal aceeleration «, the
acceleration achieves the maximum value «. This
course Js limiling in the sense that it divides
all pursuit courses into two groups, the one
containing all courses on which the normal
accelerations never build up greater than «, the
other including only courses on which the
accclerations eventually surpass «.

Let us consider pure pursuit courses, Since
maximum gees must be achieved for points on

the line #, = arc cos (_1._ , the limiting pursuit
2c/
course divides the plane into two separate
regions, ¢ach containing eurves of one and only
one of the groups defined above., Geometrically,
the limiting “b¢y” pursuit course is tangent to
the “bgy” circle at the point (r,. 0,), wherein
7, is oblained from equation (3.52) for ¢ = 0,.

. . 1
Thus, since #, = are cos (,_ , we have
2c

76

1\? 4e¢ — 1
sin 0, = 1— <~_ = ‘/_______

2¢ 2¢
and,
Vl-' VH
= gin 4, ,
gr,
or,
ViVg 4ct — 1
'y = — ‘]
5¢ 2¢

foru = 5.
Since

0 sin ¢

e

7, = 7 (tan

we have
vo =7 (tan } 0,) Y sin g,

. ( ViVy VI 4¢* — 1

59 2¢
\ :
2c—1\ V)71;32‘.:—1'
2c+1 2c

VeV (4et —1) [ 2¢ 4+ 1) \2e

20 g ¢* 2¢—1

Thus, the equation of the limiting “ng” relative :L:
pure pursuit course is e

1 1

VeV (det~1) (2041 2 (tan 3 ¢) ©
, z.
\2c—1

4ngc“ sin ¢

[ ol ]

R
OO
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3.7 Aerodynamic Pursuit Course

In the pursuit courses considered thus far it
has been assumed that the projectile leaves the
fighter aircraft in the direction of the aircraft’s
motion. Thus it has been tacitly assumed that
the aircraft moves in the direction in which it
is pointing. However, it iswell known from aero-
dynamic considerations that there exists an
angle, the angle of attack, between the zero lift
line of the wing and the direction of motion. The
zero lift line is a hypothetical line through the
wings in the general direction of the longi-
tudinal axis: in steady flight, the airplane would
move along this line if there were no gravity
acting. Since the guns are fixed in the aircraft,
there exists, then, an angle of attack, «, belween
the gun bore axis and the direction of motion
of the aireraft, and the deviation function, §,
discussed in the preceding sections, should have
a component due to this angle of atiack. If the
gun bore axis is parallel to the zero lift line of
the wing, then « is the usual angle of atlack for
the aircraft. However, the gun bore axis is
usually offset from the zero lift line to allow
for gravity drop or other considerations so that
the angle of attack of the gun bore is not neces-
sarily the angle of attack of the aircraft wing.

The treatment of the problem of aerodynamic
pursuit courses may be divided into two parts:
(1) the equations of motion of the aircraft and
(2) the conditions of pursuit. In order to find
the equations of motion of the aircraft, it is
necessary lo consider ithe usual force system
acting upon the aircraft; i.e,, the forces of lift,
thrust, drag, and weight, The conditions of
pursuit then constrain this motion and we have
a typical dynamic problem with constraints, If
it is possible to obiain a sufiicient number of
equations to determine the variables under con-
sideration, the problem is solvable, If not, it
may still he possible to solve the problem if
from experimental data a sufficient number of
logical assumptions can be made which lead to
consistent equations.

3.8 Attack in a Vertical Plane

The general problem is indeed a complicated
one and for this reason it is advantageous to
begin with a restricted case. Let us, therefore,

consider an attack made in a vertical plane by
a fighter on a bomber which moves in a straight
and level flight path at a constant speed.

Let us assume that the gun bore axis coin-
cides with the thrust axis of the fighter aircraft.
This is no real restriction since if the two did
not coincide, the equations would he changed
merely by inserting a constant angle. We shall
now use the following notation: (Sec figure 51.)

L = the fighter's lift vector, directed nor-
mal to Vi,

D = the fighter’s drag vector, directed
aiong -V,

W = weight of the fighter, directed ver-
tically down;

T == fighter’s thrust, vector, directed along
the thrust axis;
V. = fighter’s wvelocity vector,
along its flight line;

directed

Vs = bomber’s velocity vector, directed
along its flight line;

y = angle from the horizontal reference
line to the flight line;

0 = angie from the horizontal reference
line to the sight line;

a = angle of attack of the gun bore line;

== angle from the thrust line (gun bore
axis) to the flight line;

a, — angle from the zero lift line to the
thrust axis of the fighter;

a 4 o, = angle of attack of the fighter mea-
sured {rom the zero lift line;

R = radius of curvature of the fighter's
path;

u = average speed of the projectile over
its path;

p = relative air density.

From the force system shown in figure 51, we
cann write by Newton's second law the equations
of motion, for motion along and normal to the
flight line. Thus,
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L

HORIZONTAL REFERENCE LINE

Now the radius of curvature can be writlen in
terms of V. and 4 in fact,

1 1 dy

—— T e — —

R Ve dt

Hence, equation (3.56) may be written in the
form

¥y
| 4
w
| 4
]
<, @,
I Mo g e
- 4
an
>
1
) Qe ——p V3
i Figure 51, — Force Diagram
- wo. w . ) .
- (855) ——V,=Wsiny4 Tcosa—D 857) —Viyy=Wecosy—~L-—Tsgina.
-, g g
and .

a WV, There also are two kinematic cquations of
B (856) ————=L4 Tsine— Wecosy. pursuit which are obtained by considering the

g I motion along and perpendicular to the sight

line, r, and which are expressible in terms of

’

the polar coordinates » and ¢. Thus, we have

(3.58) r=V,cus 0 — Vicos (8-7)
and

. 11, . .
(3.59) 0 =— __[V,.- sin (y — 0) 4+ Vusin 0]_

7
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HORIZONTAL REFERENCE LINE

Figure 52. — Angles for Pure Pursuit

In pure pursuit, where we do not consider
any lead or ballistics, the gun bore axis (thrust
line) coincides with the line of sight so that
(860) y—f0=a or 0=y — a See figure 52,
We may then eliminate ¢ from equations (3.58)
and (2.59) and together with (3.55) and (3.57)
we have four non-linear differential equations
to determine the four variables V, y, o, 7, as
functions of lime., Before proceeding, we must
first determine the aerodynamic constants for
the fighter airplane in question at « fixed throttle
setting. This is accomplished from the weight
and geometry of the airplane and its perform-
ance values of propeller efficiency, maximum
engine brake power, and the corresponding
maximum level flight speed al a certain altitude.
With this knowledge, we have formulas which
enable us to obtain expressions for L, D, T,
and W.

The four differential equations must be inte-
grated numerically, and, conscquently, we need
to know the initizl values of V,, v, @, and 7. The
quantilies V, y, and 7, may be assigned at will
10 give a family of cases. The initial value of «,
however, .as a “‘natural” value for 4 given value

of . This natural value can be found by plotting
v against time for the first second for a few
arbitrary choices of «, usually between 2° and
12°, The family thus obtained will funnel into
one curve which then is extrapolated back
linearly to give the natural value of «.

For a lead pursuit course we nced to account
for the ballistic effects. In this case, the gun
bore axis is pointed so that the projectile leaving
the gun at a muzzle velocity of V, will travel
the vector diagonal to the point of impact as
shown in figure 53, In order to score a hit, the
projectile’s motion normal to the sight line
should be equal to the bomber’s motion normal
16 the sight line during the time of flight. If we
let n be a unit vector perpendicular to the sight
line, then this condition states

(3.61) t;(u) *m=1¢,(Vy) * n,

where u is the average velocity of the projectile
over its impact range. If we let =V, -+ V,,
where V, is a calculated average speed vector
of the projectile which can be assumed Lo be in
the direction of V,, then we may write equation
(3.61) in the form

(3.62)

—Vesin (a — A) 4+ V, sin A =V sin 6.
79
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Figure 53. — Velocity Diagram

From figure 51 it also is ¢lear that

(3.63) y—0=a—a
or
A=a~+-0—vy
s0 that A may be eliminated from (3.62) and,

if V. is known, equation (3.62) may be used to
solve for a.

3.9 The Determination of the Aircraft
Constants
In order to solve the system of equations

given by (3.55), (3.57), (3.58), and (3.59), we
need to determine the expressions for L, D, T

and W. As was mentioned in the last section,
the theory of aerodynamics furnishes us with
formulas for these expressions if we know the
geometry of the airplane and its performance
characteristics. We shall not derive these ex-
pressions here bui will adopt them without
proof and refer the reader to a standard text
on the theory of aerodynamics. It shall be our
purpose here to exhibit the formulas and indi-
cate their use.

The aerodynamic forces L, D, ané T are ex-
pressed in the following form:

L=3pV+*8C;
(3.64) D=3p.V*SCuy;

T = 550 Py/V,;

T A A N

C oy
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where
C,, = lift coefficient

= K sin (a4 ao) ;

(3.65) { ¢, — a4 .
B

and

7b?
B = -3
S
S = wing area;
P = brake horsepower of engine:
1 h.p. = 550 ft.-1b./sec.;
po = air density;
7 = propeller efficiency;
b = wing span;

bt
AR = — aspeet ratio.
S

In the computation, new constants are usually
introduced into equations (3.64) which are de-
fined by

( € = o KS/2W,

2= pa AS/2W ;

(3.66)
¢ = pu K*S/2BW ;

¢, = 550 Py/W

50 that equations (3.64) take the form
L=c¢V,Wsin (« 4 a,);

(3.67) { D= |c, + ¢ sint (a4 ap) | V2 W

{l’ = C_l W// Vlv'.

The constants ¢; (i = 1, 2,3, 4) may be deler-
mined from the fundamental performance equa-
tion

v

(3.68)  —mme = oo e,
A Ap Vi
where
p = pu/p. == relative air density ;

V: = ‘/: Vi = indicated airspeed;

w
A = ———
550 nP
2W
/\,p —_ -—-—;
po AS
W 2w
/\d T e T e y
po BS Po wb?
so that
ey == 1/A;
[P p/)\,,;
(3.69)

Cy == pq KS/ZW;
¢y == C)F )L:r/p.

The description of the aircraft should supply
the geometry of the airplane, its gross weight
(W), the propeller efficiency (), maximum
engine brake power (P,..) and the correspond-
ing maximum level flight speed (V) ...) for a
certain altitude or density ratio p’. With this
infarmation, we coinpute

w 2w
(3-70) Momig. = — e Ay T
550 'I]I', nir, Po .”bu

T —_ I
v i mar. = VI’ Vl" mer,

The values obtained from (3.70) may now be
inserted into equation (3.68) and this equation
solved for X, which depends only upon the

. DAC

n Gl o

- ‘- .q- ~
A,

Tt
Y
v

1
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geometry of the airplane and is therefore not
affected by changes in p and V,, With Ap and A,
determined, it is possible to consider A, for any
speed at any altitude. Thus, if we choose a V,

1

and p, we can solve for A; (or —) from equa-
At

tion (3.68).

The computation of the aircraft constants
may be summarized into the following steps:
1) Given: VV, l), S, 4?, N5 I)ma.r.’ VFm(u‘.y
and p’.
(2) CompUtel ’\m Vi mar.y )"l min.y )\I’; alld K
(%) Choose: V,and,.

{4) Compute: V;, 1/xr, ¢y, €y ¢y, ¢y; (use
equations {3.69)).

3.10 Dimensionless Form

In any numerical computation dealing with a
pnysical system it is convenient to express the
equations in dimensionless form. This is usually
accomplished by dividing each variable by a
reference value of that varisble, The system
expressed by equations (3.55), (3.57), (3.53),
and (3.59) may be reduced to a dimensivnless
form by the following transformations. Let
(3.71) t* = gt/V,.o; V= Vl"/VrU; Uy = VUVFO;

s=gr/Ve?;
where

V. ==reference velocity (usually taken to
he initial value of V,)

and
g == acceleration of gravity

involve the same distance units,
If we further let

3.72) Ki=ocVy ; K. =c, Ve K. =c¢,Vi 25

I(, = C../V,.v” )

the system of equations takes on the following
form:

dv K,

= gin Y +
dt* v

— K,v7 sin? (a 4 a,) ;

cos « — K,v?

dy
v = cos y — K,»* sin (a 4 a,)
dat*
K,
(3.73) T ——sia;
Y
ds
= —vcos (y—0) +uzcosd;
dt*
dae 1
——— [#sin (y — §)
dtt s
+ upsin d] .

3.1i Examples
In order tc illustrate the computation of an
aerodynamic lead pursuit course in a vertical

plane let us consider two specific examples:

Example 1. We begin with the following
data; units in feet, pounds, seconds.

(1) Aircraft data:

w = 14655 lbs,

b = 42.833333 ft.

S = 334 square fect,
& =55

a,, = 033743 radians,
g = 32.174 1 /sec”.

7 = .85

Vi omar. = 493 ft./sec,

P .. = 1550 H.D.

Vimar. = 3577.58668 {1./sec.
o 4689,

pe = .00287%

fl




(2) Attack data:
1, = 6000 ft,
Vi =300 ft./sec.
V, =2500{ft./sec,
g, =30° = 5236 radians.
p =.81
Vl'., =500 ft./sec.

The aireraft constants are computed from the
formulas of section 8.9. In their evaluation it
will be assumed that the change in p during the
attack may be neglected. The computation
yields

As = 2138.406710

N omen, = 2.022425 > 10 *

1/7, = T.154248 3 10 -

PURSUIT COURSES

KS

—— =.052b506373

2w

¢, = 1.011367 < 10 -
C, =.579494 x 10°®
Cy =27.003672 < 10 °
K, =25284176

K, =.1448735

K, =6.750918

It is to be noted here that ¢,=1/A,, which is com-
puted from equation (3.68), is a funection of V;
which in turn is a function of V,. Thus, strictly,
¢, is not a constant as V,- changes according to
equations (3.73). The variation of ¢, or more
precisely K,, may be computed by tabulating or
graphing K, versus v for each initial condifion.

K = 4,607670 In the present example we have table 3.6.
Table 3.6
K,/v for Example 1
v K.i/v v K/v v K,/v v Ki/fv

1000 | 185434 | 1100 | 184025 1.20 215051 | 1.30 | 251085 |
1.01 L 1H8 138 1.11 1870649 1.21 L219322 1.31 .204771
1.02 C16ORT76 1.12 190147 1.22 L222725 1.32 .2H8488
1.03 L 163650 1.13 . 193259 1.23 L2261H9 1.33 262237
1.04 166159 1.11 196404 1.24 . 229625 1.34 . 206016
1.05 169301 i.i5 L1480 i.25H L253125 i.535 . 209820
1.06 172178 1.16 L202790 1.26 .2366H2 1.36 273668
1.07 1750849 1.17 L 206032 1.27 240213 1.37 .277539
1.08 178034 1.18 2005006 1.28 . 243506 1.58 .281442
1.09 I81013 1.19 .212613 1.29 . 247429 1.39 © 285376

s

To determine the “natural” initial value of
the angle of attack, we first delermine the
“patural” initial value of v and obtain « from
equation (3.62). Thus in the example we choose
ve = .06, v, = .48, and v, = .42 and solve the

946095 O - 652 - 7

system (3.73) for 0 < t* < .10. The values for
v are then plotted over this range of values for
(% and extrapolated back lincarly to give the
natural initial value , = 4850, See figure 54.
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EXAMPLE 1
52
.50
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Figure 54. — Initial Yulue of y — Example 1
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The numerical solution of (3.73) can then be final values, obtained by this method, are tabu-
performed by the Runge-Kutta Method, The Jated in table 3.7.

Table 3.7
Example |
o | A 1 1 . X |
; Y 1 0 1 i 5 o 7 Ty I F% Tp
Ve L e s LT | R e MR RS !
0 ARG A28 T, | 772076 1 L0157 6000 —5196 - 3000
. AH2) CA8I8 FLOMGTT 722450 0 0114 S613.6 — &9 2641
2 AT 4569 1086383 699354 ¢ 0086 | 5201 —3736 0 2202
.3 CIRTO A228 0 11251388 CBIZTIO 006h 0 BTG T D =207 1455
A L3DD8 L L3RR 1160913 03983 0048 - 43046 ’ —2117 1632
) 3235 0 3a et 1198656 L 192140 0 0034 82401 0 =123 0 1327 .
.6 2007 0 3190 1.223297 | 270G 0020 L 33252 - a6l 1043 274
.7 L2564 L2823 1.249721 ' 261640 0 0017 1 2510 A6H 0 TR2R 3264
8 PooL221R 2N 1272776 203451 001 22502 516 - Ht0 4 . 3729
4 POUIRES L2028 0 1202240 Lo223703 " 0TS ( 173%.2 2494 S92 4197
1.0 T 1559 i 1.307755 ] 152713 | L0025 0 1ik6.6 3100 ; 1842 662
1.1 NUIER | 0995 i 1.:318674 i 082301 i 0055 628.2 4502 62.4 | 5127
| I |

A coordinate system z,z was chosen such 2y = —r ¢o3 # 4- 2x. The space courses were then
that xy = 0, 2, =0 and x; = Vi, 2z, =rsin 6, piotted and are shown in figure 55.

FXAMPLE 1

AERODYNAMIC LEAD PURSUIT COURSE
IN THE VERTICAL PLANE

W} 3000 Vg= 300; V; = 500; Vg= 2500; r = 6000; ¢ = 30; p =.81

\\\ DIMENSIONS - FT./SEC.
L 5000 \(FIGHTER'S SPACE COURSE

_ 1000 \\\\ ‘

1 T

e
- 1 ] - PRI P O—L-Q-H—Q—QJ-O—O—Q?T‘V———
—4000 -3000 ~2000 -1000 T 1000 2000;; 3000 4000 5000

BOMBER'S SPACE COURSE

Figure 55. — Arrodynamic lead Pursuit Course Example
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Example 2, (Units in feet, pounds, seconds, P = .49
radians.) .
b, = .8727 radians
(1) Aircraft data: Ve, =600 ft./sec.
44 = 14,000 Ibs. (3) Computed constants:
b = 42 A = 2124.700332
S = 315 1/At min. = 60.814286
AR =506 K = 4.629716
7 = .86 1/ = 6.752215 X 10 -7
o = .05 KS
5 _ ) — =.052084305
P e, = 1800 H.D, oW
Vl- miz = 600 ft./'SCC. ¢, — 60.689674 % 10 -¢
v == .3417 C; = 3.308585 » 107
fn = .002378 Cy = 15.970967 x 10 ¢
Vi, = 353.4402 K, = 21.848283
fur = .000825166 I{z e '119109
(2) Attack data: K, = 5.749548
T = 4000 ft, The same calculations which were performed
v 900 1L see in Example 1 were carried cut and are shown in
’ — wbY L sec. tubles 3.8 and 3.9. The values were plotted and
V. = 2H00 ft. sec. are shown in figure 56 and figure 57.
Table 3.8
K,/v for Example 2
" : N, r r ‘ Ky " Nyr " Kilv
1ot RRIIEY Y0 st Lo 0 T aTesseT | 10 | 20mi2 |
101 BERRAN] | , S 106530 ].21 C1R2614 1.41 211422
i 102 | L1385 108 .12 109012 1.22 RESEYE! 1.42 21448
: 1 043 1 RETYRIH 1.13 g 161523 1.23 CIRK16G2 1.33 I V217502
1.0 ) At 1. 14 j 164062 1.21 190976 1,34 L2200H%0
! 1.05 ; 12248 1.15 | ,166HGA0) 1.25 198817 1.35 V2236085
| 1.06 RERRH 1.16 | 169224 1.26 CTOH6K A 1.36 ‘ (2206816
E 107 ‘ LT HORKE 117 ’ ATIRAY 1.47 1OB579 1.47 | V229973
; ].0% i 10206 | ‘ 14T ] 2% L2025H00 13K 1 J233156
Lhos D 16165] Lwo |77 1.2 205147 1.39 236365
. ! S N S I R o

86
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Figure 56. — Ipitial Value of v — Example 2
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Table 3.9
Example 2 .
t* ¥ 6 B 8 ‘a r xp E xr,

0 8100 | .8727 | 1. 357480 | L0327 | 4000. | —2571.0| 30643] 0 |
.02 . 7880 .8504 1.013790 .34H182 .0308 } 3862.3 —2414.7 2002.7 133.2
04 . 7664 .8278 1.027280 .332827 0296 . 37241 —2249.3 2742.06 270.
.06 L7448 .8049 1.040448 .320406 L0288 | 3585.1 —2081.9 2h81.0 403.2
.08 .7232 .7816 1.053288 .307923 L0284 1 3445.4 —1009.1 2427.0 536 .4
.10 .7014 L7580 1.065785 .295383 L0280 i 3305.1 -1730.6 2272 2 669.6
.12 6794 .7339 1.077930 282791 L0279 1 3164.2 —1543.2 2119.3 806.4
14 L6371 L7094 1.089709 .270153 L0279 ; 3022 .8 —1354.0 ¢ 1969.0 939.6
.16 6345 | 6844 | 1.101108 | .257474 | .0280 | 2880.9 | —1159.3: 1821.3 | 1072.8
.18 6115 .6589 1.112116 244760 .0282 2738.7 - 055.8 ¢ 1676.8 1209.6
.20 .O882 .6329 1.122719 .232017 L0285 2596.1 — 750.5 1535.6 ‘ 1342.8
.22 5644 | 6063 | 1.132903 | .219250 | .0288 | 2453.2 ) — 539.9 | 1397.9| I1476.
.24 5402 | 5791 . 1.142653 | .206465 | .0293 | 2310.2 ! — 320.7 ! 1264.3| 1612.8
.26 9155 L5513 1 1.151953 . 193667 .0298 2167.2 - 99.9 1135.1 1746.
.28 .4903 .5227 ¢ 1.160787 . 180862 .0305 2023.7 125.7 1010.3 1879.2
.30 4645 4933 ¢ 1.169134 . 168057 L0313 1 -1880.4 356.2 890.4 2012.4
.32 .4381 4630 1 1.176974 155257 L0324 1737.2 594.9 775.9 2149.2
.34 .4108 L4317 1.184281 . 142468 L0334 1594 .1 834.5 667.0 2282 .4
.36 .3829 . 3994 1.191037 . 129696 L0348 1451.2 1078.6 264.3 2415.6
.38 .3540 .3658 1.197209 .116946 .0363 1308.5 1330.5 468.0 2552 .4
.40 .3241 .3308 1.202764 .104225 L0382 1166.2 1582.6 378.8 2685.6
.42 .2931 .2040 1.207675 .091538 .0406 1024 .2 1838.5 296.8 2818.8
.44 . 2606 L2551 1.211887 078890 .0434 882.7 2101.5 222.7 2955.6
.46 .2264 .2136 1.215344 .066288 L0471 741.7 2364.0 157.2 3088.8
.48 . 1899 .1686 1.217966 .053728 1 .0517 601.2 2629.3 100.9 3222.
.90 .1506 .1186 1.219648 .041233 L0584 461 .4 2897.0 54.6 3355.2

3000 3 EXAMPLE 2
AERODYNAMIC LEAD PURSUIT COURSE
IN THE VERTICAL PLANE
Vg= 360; Vg=600; V5= 2500; ro=4000; f5= 50°; p=.49; B45(0,0)
CALCULATED FIGHTER & BOMBER POSITIONS
2000 INDICATED BY DOTS
DIMENSIONS - FT./SEC.
“
1000 —
T T *O—H—o-o-o—o-rbo—o—o—o-ojo—o-o—o—o-o-:—..ro—.o
-2000 -1000 0 1000 3000
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3.12 The Three-Dimensional Equations

Tlie complete derivation of the equations in
the case of the three-dimensional aerodynamic
lead pursuit course is rather complicated and
will not be presented in this book. The form of
the equations, of course, depends upon the co-
ordinate system which is chosen. The most
convenient set of equations is that which refers
to the rectilinear trajectory traversed in space
by the projectile from the fighter to the impact
point. Let us adopt the following notation:

R = projectile air range.

A = azimuth angle of the projectile’s rec-
tilinear trajectory.

E = elevation angle of the projectile’s rec-
tilinear trajectory measured from the
horizontal plane through the bomber’s
position.

« = angle of attack of the trajectory.
= angle between the direction of motion
of the fighter and the trajectory at the
time of departure.

f = the bank angle of the fighter about
the projectile path.

= the angle from that perpendicular to
the trajectory that lies in the vertical
plane to the perpendicular to the tra-
jectory that lies in the fighter’s plane
of symmetry.

r = angle-off of the sight line from the
bomber’s direction of motion.

rp =angle-off of the projectile from the
bomber’s direction of motion.

A typical situation is shown in figure 58.

Figure 58. — A Three-dimensional Situation
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The tangential equation is obtained by sum-
ming the forces along the direction of flight

W dV,
— =W (cosasin F
g

(3.74)

4 sina cos E cos B8)
+TCOSO.']—D

where «, is the angle from the thrust axis to the
aircraft’s direction of flight. This angle, ay, is a
function of « and any constant offset of the gun
bore axis from the thrust axis. There are two
equations obtained by taking components in
appropriate directions, normal to the direction
of flight, which express the rate of change of
the angles A and E. Thus,

w v 5 dA da
— —— Vi (sin g cos B —— +
(3.75) g dt dt
dFE
+ ¢os  ——)
dt
= L + T Sin [14]
— W (cos acos E cos 8 — sin « 8in &
and

w dA
(3.76) — —g— V,vl:(sin E — cos a cos E cos ) '

— sina
dt dt

=WsinBcos K.

+ cos asin 8

dE dg }

There exist also three kinematic equations.
The impact point is the point which is being
pursued. Since the distance from the bomber to
this impact point is Vjt,, where ¢, is the pro-
jectile’s time of flight over R, it follows that
the velocity of the impact point is V4 Vit
Thus, the range rate equation is given by

dR

(3.77) ——=—V,co8a

— Vs (1 +i,) cosAcos E.

The rate of change of azimuth and elevation
are obtained by making projections normal to
R. The equations are

90

dA 1
(3.78) - —

dt Rcosd

[ V,sinasin g — V, (1 4 £) sin A]
and

dE 1 -
(3.79) = — [ Vesinacosf

dt

— V(1 +¢) cosAsinE]

Equations (3.74) to (3.79) comprise a system
of non-linear differential equations which may
be solved for the variables V., R, A, E, B, a.
Ballistic considerations must, of course, furnish
t, and ;.

In this discussion it has been assumed that
the fighter pilot flies with no sideslip. If sideslip
is introduced, we have more unknowns than
equations and a family of solutions results
rather than a unique curve. It also has been
assumed that the projeciile’s gravity drop may
be superimposed upon the problem, that the
bomber is flying straight and level at a constant
speed and that the fighter’s throttle setting is
left unchanged. Variation in these assumptions
must be introduced externally.

L ]

}

L sin B4

B

L cos Bl

v

w

Figure 59. — Force System
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PURSUIT COURSES

Figure 40, — Force System

3.13 Minimum Radius of Turn

The aerodynamic restrictions on an aircraft
may be such that the aircraft cannot fly a pur-
suit course. In order to determine a criterion for
this we may derive a formula for the minimum
radius of turn. Let us consider the horizontal
and vertical planes separately.

Let us consider the airplane to be a body of
weight W which is kept in motion in a horizontal
circle by a force of I pounds whose vertical
component, I, sin A,, is equal and opposite to W
and whose horizontal component, L cos g, is
cqual and opposite to the centrifugal force, F,
exerted by this motion; where g, is the inclina-
tion of F' to the herizontal, See figure 59, The
airplance is then turning in a horizontal plane
without any loss in altitude, Thus,

(L sin B 4 (L cos ) = W -} F*
or,
(3.80)y L =W=4- F¢
The centrifugal force may be expressed in terms
of the radius of curvature I by the following
formula;

WV:!
(3.81) F =

gR

Let us further define the load factor, 4,* to be

L
(082) 5= —
144

If we substitute the last two equations into
cquation (3.80) we may solve for the radius
of turn

Ve
383) R =—=—oov—

gy —1

In the vertical plane, it is necessary to include
the angle of climb, v. From figure 60 we have,
Ly summing the forces parallel to the lift,
3.84) L =F4 Wcosy 4+ Tsina

1f we neglect the angle of attack, «, the radius
is then given by

Ve
38) R=—noouv
g (n — cos y)

For equations (3.83) and (3.85) it is clear
that the radius of turn capable by the aircraft
is a function of speed and the load factor, which
in turn is a function of speed. The maximum
load factor (given in “gees”) is obtained from

Do not coafuse with propeller efficiency.
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Figure 61. — Buffet Region

maximum lift and when plotted against an
increasing speed will define a buffet and stall
region in which the airplane cannot fly. A typi-
cal curve for modern aircraft is shown in
figure 51. ‘

The minimum radius of turn occurs at the
maximum value of the load factor and a curve
corresponding to figure 61 may be plotted for
the minimum radius in either the vertical or
horizontal plane. Figure 62 pictures the situa-
tion in the horizontal plane.
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The following conclusions may be drawn:

(1) The load factor falls off rapidly as the
speed increases beyond the peak for
the maximum value of the load factor.

(2) As the speed increases, the minimum
radius of turn increases.

Consequently, at very high speeds it becomes
increasingly difficult to fly anything but a tail
pursuit; that is, a pursuit course initiated well
toward the stern of the pursued aircraft,
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Figure 62. — Minimum Radius of Turn

3.14 Collision or Interception Courses

In order to avoid the high gees which arise
in some pursuit courses, other types of attack
must be adopted. We shall discuss one type
which may be employed by a fighter with fixed
guns. The principle of the attack is to fly in a
straight line toward a point well in advance of
the target. This peint may be a collision point;
that is, the point where the attacker would
intercept the target. The course is, therefore,
called a collision or interception course. Actu-
ally the point of aim should not be the point of

O T e .
RO T YR Y

collision between the two aircraft unless it is
desired to destroy both aircraft. The point
should be the collision point between the target
and the projectile that the attacker is firing.
This, of course, means that the attacker can fire
only one salvo and, consequently, the projectile
must be a large shell or a salvo of rockets.

The general problem may be visualized by
referring to figure 63. The bomber is the target
and flies a straight line path BH at constant
speed Vi The fighter is the attacker and flies
the straight line path FFH at constant speed V.

93

AR ’\: '\\"’.‘.'.“‘- A\‘.‘\‘“ N

M NS, T e v
L N T

» "\ ‘—\

AT e S

~

et i a | RAd LTy T,
SRR I AT T

I I

e

x."’.’,..? rir

-
)

.
5
]

.
Tn

-

\;v,'.

[
AR

e

.m-.--v-._,.-.-
By vr, P AR

._.A-'ﬁ
L IS g

R P

o g
s

[ v
R AT |

'\l i ."'l' ",

.
e

A
L

e 2 4
.

AR

N

KA " P




o ‘;.

CABULAT 1t gt iia g e ke e et St T

NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC e

Vgt

H Vgt ,/Br ‘.&——

Figure 63. — C
Let S be the point of release of the salvo and
let us define additional symbols as follows:

R, = projectile range; distance from re-
lease point to impact point H.

t;, =time of flight of projectile from S
to H.

t = time of flight of bomber from B to H.
r = present range, BF'
d = distance from F to H.

r = angle-off of bomber from fighter;
angle from V, to r.
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ollision Course

A = correct angle - to insure a hit for a Rt
predetermined projectile range R. o

From figure 63, it is easy to see that the fol- t\«.
lowing relations hold: ‘.:}.
(3.86) d sin A= Vyt sin 6;
(8.87) (Vut)i=d*4-r*—27rdcosAr; -t
(8.88) 7 =dcos\ - Vstcosb; ‘:
(3.89) d="V; (t—t,) + Rp;
(8.90) —*=1V,cos) 4 Vgcosd; E
(3.91) 7ro="Vjzsinf — Vesin A, H

If the projectile range, R, has been prede-

9 = angle from Vj to r. termined, the type of ammunition determines ¢,

94 =

‘\ *“

DN

’\\“..

INTL

------------- L -« ~‘ . R -'~_- -— .. T T T T ety ST T S et et . N CR i S - AR Y USRS W T ‘s‘\"i\“
- RN A R . R - R R -, L T AT T T R e N
PP L e e : Lt T . SR e S RS AT - :_" >~ ~ R el




PURSUIT COURSES

3000

Figure 64. — Collision Course Example

and the problem is to get on the straight line
course FFH for which equations (3.86) to (3.91)
hold. The fighter thus flies a variable course
which has - as the angle-off of the bomber and
continues to vary his course until » = A, after
which he flies a straight line FH. It is then a
mere matter of computing the release time for
the projectile.

The fighter’s inputs to his sighting system
are 7, 7, w, Vp, 7, R, and t;. The unknown quan-
tities are 6, t, Vg, and d. The correct angle X is
computed from the inputs by means of

To r
COSA — —m |,
7'. Rp —_ th/ }

Equation (3.92) is obtained by eliminating d,
t, Vi and ¢ from equations (3.86) to (3.91).

(3.92) sinx=

The computed angle \ is then continuously
compared with the measured angle r until they
are identical. The time ¢ is then computed by
means of

(8.93) t= [(Ry — Vit;) cos A — 7]

”
and the release time is £ — ¢;.

Figure 64 shows a calculated example for
the conditions

V= 200 yds./sec.
V=300 yds./sec.
r, == 5000 yds.

Rp= 1000 yds.
t; =1 sec.
T+ = arcsin 3/5

The maneuvering path of the fighter is a circle of
radius 3,000 yds. with center at (0,4000).
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Chapter 4

THEORY OF LEAD. COMPUTING SIGHTS

4.1 Introduction

Reference to chapter 2, equations (2.9) and
(2.15) in particular, indicates two distinct
methods of calculating leads. One method, as
exemplified by equation (2.9), expresses total
lead in terms of: (1) bomber speed (V);
(2) target speed (V;); (3) angle-off of the
target (r); (4) approach angle of the target
(a); (B) muzzle velocity (V,); and, (6) the
bullet slow-down factor (q). Essentially, this
method, as has already been pointed out, breaks
up the total lead into a correction for ownspeed
and a correction for target motion. A sight
which computes leads in this manner is spoken
of as a vector-rate sight. Equation (2.15), on
the other hand, furnishes total lead by decom-
posing it into & lead arising from the relative
motion of the aircrafts, the so-called kinematic
lead, and a ballistic lead. The purpose of this
chapter js to consider the theory — not the
mechanics — underlying devices which work on
the basis of this second method. Hence, through-
out this chapter, by a lead computing sight we
shall mean one which computes kinematic lead
from the angular velocity with which the gunner
tracks the target and from the range which the
gunner determines, and then combines the re-
sult with an appropriate ballistic deflection.

4.2 Essential Elements of a Fire Control
System

Since a lead computing sight is but one type
of fire control mechanism, it would be well to
list the essential features of a fire control sys-
tem. In general, a fire control system provides:

(1) A line of sight by means of a radar
antenna or a telescope or other optical
gear, mounted so that it can move as
the target is tracked;

(2) A computing unit which determines
the lead to be used;

(3) A gun;

-----
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(4) A system of control which keeps the
appropriate angular distance between
gun and line of sight.

A fire control system is classified as local or
remote according to whether the means of con-
trolling the gun is actually located at the gun or
is physically separated from it. In the remote
case, suitable electrical or mechanical inter-
connections must be provided to link the location
of the sighting system, the gun, and the com-
puting unit; any or all of which may be in
separate locations, depending on each specific
installation.

4.3 Disturbed and Director Systems

Fire control syvstems may be further classi-
fied according to the controls by which the
gunner constrains the line of sight to track the
target. This classification amounts essentially
to describing sights as belonging either to direc-
tor systems or disturbed systems. In a director
system, the gunner has immediate control over
the angular position of the line of sight by
directly positioning the appropriate optical gear.
The information gained from this positioning
then goes, via electrical or mechanical means, to
the computer which uses it to determine the
proper lead and transmits this lead to the con-
trol system which in turn positions the gun. In
modern fire control systems employing servo-
mechanisms (automatic control devices), the
director system is often of the remote control
type wherein the gunner is replaced by a radar
tracking mechanism which positions the line of
sight automatically. The chain of events out-
lined here is indicated by figure 66 which char-
acterizes a director system.

GUNNER —~ LINE OF SIGHT

‘ / GUN
COMPUTING UNIT

Figure 66. — Director System
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In a disturbed system, the gunner, either
manually or with the aid of a power mechanism,
exercises immediate control over the position
of the gun. Information giving the instantane-
ous angular position and angular rate of the
gun is then fed into the computer which uses
it to compute the proper lead. This computer
output then actuates a control mechanism which
drives the line of sight into tracking position
to effect the required lead angle. The corre-
sponding diagram for this is shown in figure 67.

GUNNER——» GUN

l LINE OF SIGHT

COMPUTING UNIT

Figure 67. — Disturbed System

The important thing to notice here is that the
gunner has only an indirect control over the line
of sight. The name “disturbed sight” arises
from the fact that a given motion of the gun
will in general produce a different motion of
the line of sight, a situation that is often con-
fusing to the gunner.

For illustrative purposes we shall consider a
particular version of a disturbed sight known
as a disturbed reticle sight. This sight, the basic
physics of which will be taken up in the next
chapter, provides a line of sight by means of an
illuminated reticle which is reflected, by a mov-
able mirror system within the sight head, onto
a viewing glass fixed on the gun. The gunner
moves the gun so as to keep the reticle image
centered on the target and in so doing auto-
matically displaces the line of sight from the
direction of the gun bore by the proper lead. The
range to the target, a continuously varying
quantity, is obtained by varying the diameter of
the reticle image to agree with the wing span
of the target, which in effect makes range a
function of reticle image diameter. Range com-
puted in this fashion is referred to as stadia-
metric ranging.

Whereas sights based on the director prin-
ciple make the problem of tracking easier for
the gunner, disturbed sights are, on the other

‘‘‘‘‘‘‘‘‘‘‘‘
- .

-~ -
. A Y

hand, smaller, lighter, and simpler mechanically.
This last follows from the fact that a low-
powered mechanism can position an optical line
of sight with respect to a gun, while a much
higher power level is needed for positioning the
gun with respect to the line of sight.

In this chapter, we shall be concerned pri-
marily with lead computing sights which are
disturbed reticle; local control systems although
many of the concepts involved in the analysis,
such as operational stability, transient behavior,
smoothing of rates, etc., are applicable to more
general situations.

4.4 Types of Tracking Controls and Their
Peculiarities

To control the angular position of a telescope
(or gun or turret) the gunner turns a hand-
wheel (or a “pistolgrip”). If we denote the
angular coordinate of the telescope by ¢ and
the angle through which the handwheel has
been turned by 5, then we may classify the
tracking controls by the manner in which the
control mechanism relates the variables § and
7. This classification yields essentially three
types of tracking controls:

(a) Direct Tracking. Here the angle
through which the telescope moves is
directly proportional to the angle
through which the handwheel has
been turned. The corresponding rela-
tion between 6 and  is § =A 9, (A=
const.).

(b) Velocity Tracking. The velocity with
which the telescope is moving at any
time is proportional to the angle
through which the handwheel has
been moved. In symbols, 6 =By,
(B = const.). Tracking of this type
can be effected by having the telescope
driven by a variable speed motor, the
speed of the latter being regulated by
positioning the handwheel. Velocity
tracking enables the gunner to slew
the telescope quickly through a large
angle onto a new target merely by
giving the handwheel a larger dis-
placement.

-----
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(¢) Aided Tracking. This combines (a)
and (b) in that any displacement of
the handwheel not only positions the
telescope but also gives it a velocity.
The equation of control may be writ-
ten as

§=An+Ba.

From (a) and (b) it follows that for
unit displacement of the handwheel,

(4.1)

equation (4.1) effects a displacement -

of 6§ by A units and also changes its
velocity by B units.

The ratio A/B, measured in units of time, is
the ratio of direct to velocity control. By vary-
ing this ratio, the velocity contro! can be made
more or less important relative to the direct
control of the telescope.

Investigation has shown that aided tracking
gives, in general, more satisfactory results than
either direct or velocity tracking. Why this
should be so may be seen from the following
facts:

(1) A gunner can track a target whose
angular velocity is constant merely by
keeping his handwheel fixed, while
with direct tracking the handwheel
must be moved continually.

For slowly changing target velocity,
the gunner can correct for any angular
distance he has fallen behind by put-
ting in an additional displacement of
the handwheel. This has the effect of
simultaneously changing the position
of the telescope and increasing its
angular rate. By the time he has
fallen behind again, all that is needed
is another slight increment in the posi-
tion of the handwheel.

Aided tracking helps the gunner to
continue tracking through a region in
which the target is temporarily not
visible.

Experience shows that aided tracking
is, in general, more “stable” than
velocity tracking in that there is less
tendency for the gunner to “hunt”
with the controls.

(2)

(3)

(4)

988895 O-52-8

.......
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4.5 Smoothing of Input Data

In order to predict the future position of a
target, the computing unit of a sight must have
as inputs coordinates of the target’s present
position, say the present range » and the present
angle-off r. In addition the present target rates,
r and - also must be known in order to have
information concerning past target behavior.
The quantities r, » and », » are obtained by the
gunner’s tracking and ranging of the target.
The values of » obtained by stadiametric rang-
ing are generally poor and jumpy so that no
usuable values of » can be obtained in this
marnaer. Present day radar tracking is much
more reliable.

The process of tracking furnishes the sight
with continuous values of the telescope’s angie-
off, given say, by the function o(t). If the
tracking is perfect, then at all times ¢ we have
o(t) = r(t). Needless to say, tracking is never
perfect and is always attended by an irregu-
larly oscillating tracking error, ¢ — r. Thus, if
o(t) is mechanically or electrically differen-
tiated to give «(t), the resulting rate will differ
from the desired target rate by the derivative
of ¢-r. Since this may be a marked difference,
it is advisable, before using the raw data «(t),
to subject it to a suitable smoothing or averag-
ing process.

We shall show that the solution z = z(t) of
the first order linear differential equation

(42) kx+4x=1(t), (=2, t=1t,)
where k is a positive constant, is, in a certain
sense, an averaged value of the input function
f(t). A computing unit whose input is f¢:) and
which operates mechanically or electriz:liy to
produce an output z(t) according to (4.2), auto-
matically yields, then, smoothed values of the
input. The equation (4.2) may be achieved in
practice by a simple resistance-capacity or a
resistance-inductance network with circuit time-
constant equal to k.

Solving (4.2) by the appropriate formal pro-
cedure*, we find

*See “Elementary Differential Equations” by L. M.
Kells, (McGraw-Hill), pp. 49-50.
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gt/

Figure 68. — Graph of the Weight Function et/k

-(59)

t

/ ek f(t)dt.
t/k

ke 'to
If we think of the term e'/* as a weight function,
then the weighted average of f(¢) is
t

/ e/ f(t)dt = f(t)
t

0

(4.3) x=ua,.c

1

+

1
(4.4)

Je ( et/k eta/k)

all of which suggests that we rewrite (4.3) in
the equivalent form

t—t,
_< .

r = X,€

1—e¢

k ( etk _ e'o/’\‘)

(4.5)

-t
k

[

t

/ e*f(¢)dt,

t

+

100

or what amounts to the same thing,

- ()

[2, — F(£)] .
The second term in the right member of (4.6)
usually diminishes rapidly with increasing time
and for this reason is spoken of as a transient.
The time interval required for this transient to

1
diminish to e times its initial value is called

t—1p

k

(4.6) z=1(t) +e

the time constant of the circuit and is evidently
equal to k. From (4.6) we see that, for a time
interval t — ¢, which is large compared to Fk,
the solution 2 (¢) is approximately the weighted
average f(t) of the input f(¢). It is in this sense
that the output a(¢) is a “smoothed” value of
the input f(¢).

The time ¢ being the present, (4.4) shows
that f(¢) is an averaged value obtained by aver-
aging f(¢f) over past values beginning with
f(t,). The graph of the weight function ¢'"* has
the form shown in figure 68. As k is varied,

g a0
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there is obtained a family of curves all passing
through the point B (0, 1). Passing from left to
right along these curves we see that for small k
the curves rise more steeply through B than for
large k, the measure of this steepness at B being
in fact 1, k. Hence, if we wish to weight recent
values of f(1) more heavily than earlier values,
it suffices to choose a weighting curve that rises
rapidly; this means choosing a small value for
the time constant k. But if it is desired to make
f(f) depend appreciably on early values of f(¢),
k should be chosen larger. In general, we see
then that the smoothing effect varies inversely
as the time constant k.

The effect of a smoothing operation is to make
the output value 2(¢) equal to the input value
at some past time, thus, in effect delaying the
input. This may be shown analytically as fol-
lows. If 2 is eliminated between (4.2) and the
equation obtained by differentiating (4.2),
namely,

kx -+ = f(t) ,
there is obtained
(4.7)  »=f(t) — kf(t) + k2.

If » is changing slowly, & will be negligibly
small; hence if, in addition, we choose k quite
small, the k2 may be dropped. There is then
obtained the approximate solution for z(¢) in
the form

(4.8) = f(t) —kf (D),

which is often sufficiently accurate to be useful
in the typical applications of this equation to
lead computing sights. The terms in the right
member of (4.8) are the leading terms in the
Taylor expansion of f(t — k) about the point ¢.
Thus the output x(t) of the smoothing process
is approximately

(4.9) »(6) =f(t—F),

a form which shows that the output behaves
roughly like the input delaved by & seconds.

From (4.8) we have

(4.10)  f(t) — a(t) = kf (1),

which interpreted, says that the difference be-
tween input and output is, to a first approxima-
tion. proportional both to the time constant k
and the rate of change of input. These con-
clusions which we have underlined are, as was
stated subsequent to equation (4.7), valid only
if & is small and 2 is changing slowly.

It is worth noticing that if we regard the
input f(t) as the sum of two terms, f,(f) and
f.(t), the first a “signal”, the second an “error”
or ‘“noise” term, then the solution of (4.2) can
be regarded, by the Principle of Superposition,
as the sum of the solutions x, (¢) and z.(f), cor-
responding to f,(¢) and f.(%), respectively, as
inputs. In other words then, the output z(¢) =
2, (t) + x.(t) will consist of “delayed signal”
and “smoothed noise.” -

In conclusion, we summarize the role of the
time constant k& by noting that an increase in
the value of this constant will

(a) Increase the time required for the
transient term to die down by a speci-
fied percentage of its initial value;

(b) Increase the smoothing effect on input
error, i.e., the averaging process will
extend over an effectively longer in-
terval;

(c) Increase the amount by which the
signal or input will be out of date.

4.6 A Generic Lead Formula for the
Coplanar Case

Equation (2.24) of chapter 2 gives an ap-
proximate formula for .\;, the kinematic iead,
for the coplanar case of rectilinear gun and
curvilinear target motion. This equation may be
rewritten in the form

hM
(4.11) sin .\ = ——
’)'V[
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T¢
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Figure 69. — The Kinematic Lead

where, it may be recalled,

Tr
V, = = average projectile velocity

¢ over the future range,

t M
h=14—\|___1.

2 \ M
Replacing M by »*r and » by V,t, where V, is the
average projectile velocity over the present
range and t is the present time of flight of the
projectile over the present range, we find

V. .
sin Ay = h <———\ tr.

v,/

If perfect tracking is not assumed, the angular
rate actually used in the latter equation will be
o and not 7. Since the true lead is measured in
radians and is a relatively small angle, sin A;
will be approximately equal to Az Thus,

L VN
(4.13) Ak:h<____ e
Vi

and

(4.12)

The average shell velocity Vr does not, for
moderate ranges, change very rapidly. Hence,
the fraction V,/V, does not deviate appreciably
from 1.

The quantity h, given by (4.12), is worth
further study. From equation (2.24) et seq., we
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note that, for straight line target motion,
M =0 and h=1. Also, if the target path relative
to the gun is a circle traversed with constant
speed, it is easily seen that ¥ = O, h = 1 and
V./V; = 1. In these cases, then, it may be said
that. the kinematic lead A; is equal to the
“angular travel lead” ¢ ¢. For the target trav-
ersing a pursuit course, numerical computa-
tions, supported by the theory of such curves as
developed in chapter 8, show that h = 0.9. All
these facts suggest our writing the kinematic
lead formula as

(4.14) Ar=uc

where % is a quantity to be calibrated to fit
certain classes of target paths. It has the dimen-
sions of time and represents, in a sense, an
averaged ideal time of flight. We shall refer to
1% henceforth as the “time of flight multiplier”
or the sight “sensitivity”.

4.7 The Basic Differential Equation of a
Typical Gyro Sight

We shail now examine the tracking problem
for a specific type of lead computing sight in
which the kinematic lead is computed from
(4.14) by solving a certain differential equation.
Although other mechanizations are possible, a
usual procedure is to employ a gyroscope to
measure the target’s angular velocity.

Referring to figure 69, if we ignore for the
present the ballistic lead A;, then GT, and GT,
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GUN LINE

TELESCOPE LINE

GYRO AXIS

REFERENCE LINE

Figure 70. — The Gyro Axis as a Computing Line

give the telescope direction and the direction of
the gun-bore axis, respectively. It should be
noted that GT, is along r,. Letting the reference
angles of the gun and telescope be y and o, we
have then,

(4.15) Ax= y—o
and
(4.16) A=y —o.

From (4.14) and (4.16), Ay = u(y — As), so that

(417) uh+A=uy.

This could well be the differential equation we
are seeking except for the fact that tracking
would be difficult with such a sight. Why this
is so, may be seen as follows. From (4.14) and
(4.15) we have as the equation connecting sight
line and gun line,

Y —0C

o= —

(4.18)
U

We notice here that ¢ is independent of y, the
gun’s rate of turn, and is a function of the
magnitude of the angle between gun and tele-

------------------------------
----------

scope. This means, for example, that if the gun
and telescope are originally aligned and the gun
is given a sudden jerk away, the telescope, being
independent of gun velocity, does not respond
at once but begins to move only after the dif-
ference y — ¢ has made itself felt. This situa-
tion, known as neutral tracking, is characterized
by a sluggishness in the telescope’s rate of turn.

The situation can be remedied by modifying
our basic equation (4.17). As things now stand,
the gyro spin axis is along the telescope direc-
tion. Let us instead envision the situation de-
picted in figure 70, in which the gun, telescope,
and gyro axes move in such fashion that the
ratio of angles, gun line to telescope line and
telescope line to gyro axis is constant.

If angles are measured positively in the clock-
wise sense, this implies that

o—7 — a A

(4.19)

=—a

l\k

Y—¢©

where « is called the coupling constant or sight
parameter. The ratio in (4.19) is kept constant
in the sight by means of an optical or mechani-
cal linkage. How this is actually done in a typical
disturbed reticle sight will be clarified in the
next chapter.
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From (4.19) we also find

(4.20) = ;
1

from which we see that, for a typical «-value,
say — ., the telescope line will be, at all times,
one-third of the way from the gyro axis to the
gun-bore axis.

One immediately obvious advantage of the
linkage arrangement is that, when the gun is
moved, the telescope will respond at once with
at least a fraction of the motion, even though
the gyro momentarily remains still. Thus,
coupling the three axes removes the undesirable
feature of neutral tracking mentioned earlier.
Other advantages will appear in the discussions
to follow.

Returning now to figure 70, we see, by way
of the linkage arrangement, that A, will be a
function of the rate of turn of the gyro axis. In
fact, equation (4.14) will be replaced by

(4.21) A= uq

or, since = o + a Ay, by

(022) Ap=u (fr +« .'\,;).

From this it appears that we have introduced an
appreciable error in substituting ¢ + a Ap for o,
but it will be shown later that for properly
chosen values of « the error is a rapidly di-
minishing transient.

4.8 Solving the Basic Equation—
Interpretation

Let us rewrite (4.22) in the form

(4.23) —au A, + =10

This equation is a particular instance of (4.2)
if we regard —«u as constant or, for our pur-
poses, as being relatively constant, The quantity
1 depends essentially upon the range so that
the assumption of the relative constancy of u
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implies that the range does not vary greatly
during the projectile’s time in flight. Using the
solution to (4.2) we find, with the initial condi-
tion t = ¢t,, A= Ay (L),

— (t—w)

—_—an

(4.24) A () =@ (Ax(t)) —uo]l + %o

where u¢ is the weighted average of ues given by

— 1
(4.25) Uo =
2/ —au to/—utt

(")
t

/ e* uodt,

L

Ek=—au.

In the light of our previous discussion in 4.5,
on smoothing data, we see that (4.24) furnishes
a smoothed output u ¢ of the input function u o,
the exponential term being a transient for nega-
tive values of the sight parameter . The rapidity
of decay of this transient depends on the vari-
able “time constant” —qw, which, as mentioned
before, is essentially a function of range. For
short range, the target angular velocity o and
hence the input function u o changes rapidly.
But from (4.10),

d

o — o= —que— (o) .

(4.26)

In words, this says that lag in lead due to
smoothing is proportional not only to the rate
of change of u « but also to —au. It is interesting
to note that, depending on the target range,
each of these factors helps in turn to keep the
smoothed lead lag small. Thus for short ranges,

d .
larger values of d— (1 a) are compensated for
¢

by small values of ~an, while for longer ranges,
# o changes less rapidly, thereby making up for
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larger values of —au. In addition, since the sight
parameter is yet at our disposal, we note that
for a numerically small value of a, the smooth-
ing effect on input error will be less. In fact,
we have already seen that the output behaves
roughly like the input delayed by k=-au
seconds. The smaller k is, the more the output
behaves like the input and the less, then, is the
smoothing effect.

4.9 Transient Behavior

Upon locating a target in the sky, the gunner
will probably find the gun pointing in some
quite different direction, thereby necessitating
his slewing the gun rapidly into the approximate
target direction. So far as the sight is con-
cerned, rapid slewing of the gun is interpreted
in terms of very fast target motion, whereupon
the computing unit puts out a correspondingly
large lead. In fact, for so large a gun rate, the
reticle may move far from the gun-bore axis
and might even disappear from the gunner’s
field of view. When the gun has arrived in just
about the right position, the reticle leisurely
comes drifting back into the center of the field.
It is of interest, therefore, to see what can be
done to hasten the decay of the large transient
lead set up. For this purpose we rewrite (4.22),
recalling that ¢ =y — A4, in the form

(427) (1 —a) i+ \v=1u7.

This equation shows how the computed kine-
matic lead depends on given motions of the gun.
The equatioa corresponding to (4.24) is

(4.28) Ax(t) =

e (f——‘a)/(l—-a)u

+uy,

the transient lead being the first term on the
right.

[ (ts) — 7]

In section 4.10, we shall show that for “opera-
tional stability” of a sight a negative a-value
is necessary. With this in mind we sce from
(4.28) that for more rapid decay of the tran-

sient term a SMALL negative «-value is de-
sirable. To employ this fact, some experimental
sights have been constructed using two different
a-values. The numerically smaller of these
values is applied during the initial interval of
tracking and transient decay, the numerically
larger being switched on later.

As far as operation of the sight is concerned,
we note the following:

(1) The transient term diminishes more
rapidly when the range setting, and
hence the sensitivity, is small.

(2) In order that the false lead introduced
by slewing be as small as possible, the
gunner should use minimum range
setting (sensitivity) while slewing.
Thus, the range should be set at a
value appropriate to the target only
after the gun has gotten on target.

(3) When possible to do so, the gunner
should pick up the intended target
well before it gets in range so that the
transients can settle properly.

4.10 Operational Stability

We shall say that a sight is operationally
stable if a small but sudden displacement of the
gun in a given direction gives rise to a sudden
displacement (not necessarily of the same size)
of the reticle in the same direction. If the reticle
is displaced opposite to that of the gun, we shall
speak of the sight as being operationally un-
stable.

In conformance with the above definition,
we now show that unless a sight has a negative
a-value it will be operationally unstable. If in
(4.27) we replace A\, by y — o, there results the
equation

(4.29) (1—0)2(;7+o:-an.y+y,

which relates the telescope and gun-bore axis
directions. One may easily show that, in carry-
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ing through the discussion, there is no loss in
generality in assuming the gun and telescope
directions initially aligned. Then ¢ — y = O, and

¢ and y will represent the initial reticle and gun

velocities. Hence, we have initially

. - .
(430) 0':'—( >'Y9
1—a

which shows that the rate of reticle displace-
ment is proportional to the rate of gun dis-
placement and will be in the same or opposite
direction according to whether a is negative or
positive. (For all cases ja| < 1).

Tuus wien O < a < 1, the reticle will move
in the direction opposite to that in which the
gun moves and, by our definition, we have
operational instability. This type of situation
is very confusing to the gunner and leads to
poor tracking. The tendency in trying to get
on target would be to jerk the gun still farther
in the sa.ne direction, an act which would result
in sending the reticle farther in the opposite
direction. To continue this divergent process
for a few seconds may well put the gunner off
course entirely.

The case ¢ = O is that of neutral tracking,
discussed subsequent to equation (4.18). When
« < O, the reticle and gun will move in the same
direction, the velocity of the former being a
proper fraction of the latter. In particular, if
a = —4, the reticle will follow the gun with 1/3
of the gun’s initial velocity. The particular
a-value to be used in a given sight is a problem
in design that can generally be determined only
by trial and error. The different factors involved
are summarized in section 4.12.

4.11 Amplification of Gun Motion with
Respect to Sight Motion

As was pointed out in section 4.5, the process
of tracking is never perfect but is always at-
tended by an irregularly oscillating tracking
error or “noise’. Since the tracking is reflected
in the motion of the reticle with respect to the
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correct target position as origin, we might
inquire, since this is a disturbed-reticle system,
what must be the gun motion to produce a par-
ticular reticle motion? In particular, if the
gunner sees his line of sight oscillating with
amplitude Ae¢, with what amplitude is the gun
itself oscillating? If we denote the latter by
Ay and let C be the ratio A¢/Ay, hereafter re-
ferred to as the amplification ratio, then C is
the factor by which the gun motion amplitude
is multiplied when it is transmitted to the line
of sight.

To initiate the study of the reaction of the
sight to oscillations of the gun, we begin, quite
naturally, with equation (4.29), relating sight
position to gun position. Let us suppose that
the actual gun motion y () consists of a steady
motion y,(f) upon which is superimposed an
oscillatory motion v, (¢). Replacing vy in (4.29)
by vy, 4+ v:, We can write solution o(¢) in the
form o, + ¢y, with ¢;, (¢ = 0,1), being the solu-
tion of (4.29) with y replaced by y; (t+=20,1).
The function ¢,(¢) does not concern us here.
Hence, it is sufficient to assume a “reasonable”
oscillatory motion of the gun, described by
v:(t), and study the corresponding function
o, (t). Thus, let us assume the sinusoidal oscil-
lation

Y1 = Ay sin ot

(6]

of amplitude Ay radians and frequency f=——
b

oscillations per second. This assumption is not
unreasonable in view of the theoretical possi-
bility of decomposing more general oscillations
into sinusoidal ones, using a Fourier analysis.
Also in equation (4.29) we assume that u is
constant. We may do this since, relative to high
frequency oscillations of the gun, u would
change slowly. Hence (4.29) becomes

(431) (1—a) o+ o= Ay sin ot
— 0% 0 Ay €OS of,

whose “steady-state’ zolution is
—_ k,AY (4]

(o*+ k%) (1 —a)
k. Ay [k — au o?]

o* + k,:

(4.32) o (1) = COS wl

sin ot
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1

where kb, = —— — |
(I1—a)u

The amplitude Ae¢ is obtained from (4.32) by
taking the square root of the sum of the squares
of the coefficients of the trigonometric functions
in the right member. After much simplification
we find that

1+ 47 (—a)? uf?
14+4-(1 —a)wf

(433) C=Adc/Ay = \j

In words, then, we may say:

Amplitude of Sight Oscillations = C (Ampli-
tude of Gun Oscillations). The oscillatory mo-
tion of the gun may be due to a variety of causes
such as gunner’s jitters in handling the controls,
recoil of the shot, etc. Since a is usually nega-
tive, the factor C < 1. As f varies from O to
+«, C decreases monotonically from 1 and
approaches as a limit the quantity (-e/1 —
a). In particular, if C is much smaller than 1,
the gunner will note only a small oscillatory
motion of the sight, even when the gun has
large oscillations. Thus, the gunner may think
he is tracking well when in fact the gun is
wobbling badly. This also shows that for high
frequency gun oscillations, C tends to zero with
«. Hence, in order to make the amplification of
gun motion, with respect to sight motion less, a
should be chosen larger in magnitude.

In the above discussion, the gun and sight
motions are both of a sinusoidal nature. How-
ever, these motions differ not only in amplitude
but alsc in phase. Thus, in reaching peaks, the
sight will lag the gun by ¢ seconds, where ¢ is
found from (4.32) to be

1 27rf’U/
tan-‘[ .
2xf 1-4 7 a(l-a)fu?

4.12 Choice of the Sight Parameter a

(4.34) &=

We have seen throughout the preceding dis-
cussions in this chapter the significant part
played by the sight parameter « in the behavior
of the sight. In summary, we may say that the

a-value of a lead computing sight must be chosen
with due regard for the following somewhat
contradictory requirements:

(1) For operational stability we need, first
and foremost, a negative value of «.

(2) To make the amplification of gun mo-
tion with respect to sight motion less
requires an a-value larger in magni-
tude. Specifically, this increase im-
proves the operational stability by
making the sight respond more em-
phatically to gun motion and hence
makes for ease in tracking.

For faster decay of transient leads, an
a-value must be negative and smaller
in magnitude.

(3)

(4)

Smoothing of input data is greater for
larger values of a.

The delay in lead output is greater for
larger values of a.

(5)

Thus, in designing a sight, the engineer or
physicist must resolve to the best advantage
these contradictory requirements. A compro-
mise value somewhere in the neighborhood of
@« = —% is often quite satisfactory. It should be
mentioned that a sight with a positive a-value
could be designed and used, but, not being
operationally stable, it would take considerable
practice on the part of the gunner to master its
peculiarities. Such a sight, as mentioned earlier,
would have initial reticle motion to the right
for initial gun motion to the left, after which
the reticle would again move left after a certain
lapse of time.

4.13 The Basic Differential Equation
Including Trail

The differential equation derived in section
4.7 and the associated diagram of figure 70
are inaccurate to the extent that the ballistic
lead or bullet trail has been omitted from the
considerations. Let us now see how thé basic
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LINE TO IMPACT POINT
ILINE OF SIGHT

__GYRO AXIS

REFERENCE LINE

equation (4.23) should be modified to include
the effect of trail.

It was shown in chapter 2 that in firing
against a relative target course from a bomber,
the gun must be moved from a line pointing at
the impact point, forward; the reason being
that in relative motion the bullet curves to the
rear. Considering a coplanar attack only and
neglecting gravity drop, this bullet-trail angle,
which we shall denote by A, will then lie, along
with the kinematic lead .\;, in the plane deter-
mined by the gun position and the relative
target path. The diagram appropriate to this
situation is shown in figure 71.

For the total lead A there is the relation,
evident from figure 71,

(435) A=A\ + Ay

As was done in section 4.7, we calibrate a sensi-
tivity function v such that

N =u 7]‘ y

(1.36)

it being assumed here that the trail offset .\, is
included in the angular deflection of the gyro
spin axis from the gun-bore axis. Since
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Figure 71. — Ballistic, Kinematic, and Total Llead Angles

77:0’+(L A —-_—U—I—CL(.’\;\-—— Az,) ,

we may write the basic equation (4.36) in the
forms

(437) = ule4a i) ;

(4.38) —au A 4+ A= Uo — Ao

(4.39) —audp+ Ai=Uc — auly.

In general, only a fractional mil error will be
committed when .\, is neglected. If this be done,
then equations (4.38) and (4.89) show that to
obtain the total lead A it is sufficient to find Ax
from equation (4.23) and combine it with 3, via
(4.35). This fact will be looked into with greater
detail in the next chapter when a particular
mechanization of (4.38) will be considered.

It should be pointed out, in conclusion, that
from the viewpoint adopted in this chapter the
lead is obtained as a “steady state” solution of
a first order linear differential equation whereas
the formulas in chapter 2 are actual expressions
for the leads derived independently of any de-
fining differential equation. The basic mathe-
matical formulation for the lead is dependent
of course upon the specific manner of mech-
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anization of inputs in the computer. lere also
we made things simple by neglecting gravity
drop of the projectile and by assuming a single
plane of action. When the air courses of gun and
target are not coplanar, it is best to break up
the total lead into components as was done in
section 2.8 of chapter 2. The manner in which
these components are defined geometrically will
depend upon the mounting of gun and line of
sight. Thus, in section 2.8 an azimuth-elevation

system of coordinates was used and the total
lead was decomposed in that system. If in
figure 34 the gun was constirained to move in a
plane passing through iG and this plane in turn
was free to revolve about i, we would have the
so-called “roll-and-traverse” system of coor-
dinates. The formulas expressing the lead com-
ponents in one system can always be changed
to the formulas appropriate to any other sys-
tem, by a suitable transformation of coordinates.
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Chapter 5

GYROSCOPIC LEAD COMPUTING SIGHTS

5.1 Some Preliminary Idedas from Dynamics

To aid in understanding the gyroscope, its
properties, and its many functions in fire-con-
trol instruments, we need to review briefly some
fundamental ideas from dynamics and to under-
stand how they apply in explaining gyroscopic
behavior. We begin by considering the notion of
the moment of a force about a point.

In figure 73, let P be a particle of mass m,
acted on by the force F, and moving with veloc-
ity r = V referred to the fixed point O. Then
the moment of the force F about O is defined
as™,

(51) M =rxF.

The scalar value M,, also called the torque, is
easily seen to be

52) M,=F,
since
M,=7rF sin (r~a)=rFsina=F,

Thus the magnitude of the moment is equal to
the product of the force magnitude and the per-
pendicular distance from O to the line of action
of the force.

The momentum of the particle P is defined
as the vector quantity mV. The moment of
momentvm or angular momentum of P is then
r X mV = H. Since

ﬁ:V>¢mV+r><ma=r><F

where a is the acceleration of the particle and -

F =— ma, we see that the time rate of change
of the angular momentum about the fixed point
0 is equal to the moment of the force about O.
In the case of a system of particles P; of masses

*See the Appendix for a review of vector definitions
and operations,

m; acted upon by a set of external forces Fs, the
time rate of change of angular momentum of
the system becomes equal to the sum of the
moments of the external forces F; about 0. We
shall refer to this as the Theorem of Angular
Momentum. It should be noted that the gj_e_rgg}
forces, that is those forces consisting of the
mutual actions between particles of the system,
do not enter into the statement of this theorem.

This follows, since these forces occur in pairs, -

each pair representing the interaction of two
particles of the system. The two forces of each
pair, since they represent action and reaction,
respectively, are equal in magnitude and oppo-
site in direction and possess the same line of
action. Hence, the vector sum of the forces in
each pair is zero. From this it follows easily that
the vector sum of all the internal forces, and of
their moments about the point O, is zero.

Figure 73. — Moment of Force About a Point

The Theorem of Angular Momentum, as
stated here, assumed that the point O is fixed
in space. However, the theorem can be shown
to hold for the case where point O is in motion,
providing that one of the following conditions
is satisfied:

(a) The center of mass of the system of
particles is at rest.

(b) The center of mass of the system of
particles is in motion but coincides with
the origin O.

Since application in this chapter is to be made
to cases in which O is a point in an airplane, we
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shall assume hereafter that the point O is taken
at the center of mass of the system of particles.

For a continuous body and not a discrete
system of particles, the angular momentum H
is obtained by the usual process of subdividing,
summing and passing to the limit, and is ex-
pressed by

(5.3) H=fr><vfzm

where the integration is taken throughout the
body.

o

Figure 74, —
Rotating Solid
of Revolution

Since the present discussion is preliminary
to a discussion of gyroscopic behavior, let us
consider (5.3) for the case of a homogeneous
solid of revolution rotating about its axis of
symmetry with the fixed point O on this axis.
We assume first that the axis of symmetry is
fixed in space.

Let the angular velocity of rotation be $2 =
0k, where k is a unit vector on the axis of
rotation 2z and let p, r and z be as shown in fig-
ure 74. Then since p « k = O, we have

r X V= (zk+p) X {8 X (zk + p)}
_—:p'-’ﬂ-—zﬂp
and
H°=ﬂfp2dm—9/pzdm .

12

But because of symmetry,

/pzdm::O

and hence

(54) H =L

where

I::/pzdm

is the moment of inertia of the body about the
z-axis. From (5.4) we obtain

(5.5) Ho =L

where o = €2 is the angular acceleration of the
body.

On obvious generalization of the above situa-
tion is to consider the body of figure 74 as
having a motion consisting of a rctation about
a variable axis through O. Thus, in general, all
points of the body except O will be in motion.
The angular velocity vector 2 can then be
decomposed into components along the axes of
symmetry z and along any two axes z, ¥ per-
pendicular to z and to each other. Thus,

(5.6) & =g, + €2, ..

The moment of momentum of the body about O
is then, by an immediate extension of (5.4),

(57 H =A% +B8,+C .

where A, B, C are the moments of inertia of
the body about the z, y, 2 axes, respectively.

5.2 Theory of the Gyroscope

We shall define a gyroscope as any rigid
body rotating around an axis through its center
of mass. This axis will be referred to as the
spin axis or gyro axis. The body is generally
considered to be heavy, symmetric, and to have
high angular speed about its spin axis. Two

......




separate mountings for a circular disk gyro are
shown in figures 75 and 76. Either mounting
permits the spin axis to be placed in any posi-
tion. In figure 75, however, the center of mass
of the system is always directly above the
pedestal support. Rotation of gimbal 1 about
AB moves the spin axis in elevation, while
rotation of gimbal 2 about CD moves it in
azimuth. This is known as Cardan suspension.

Let us analyze the situation shown in figure
76, where the spin axis is perpendicular to the
vertical y-axis. The weight of the gyro rotor is
W and its spin angular velocity is £2. R is the
reaction at the suport O. If the rotor were not
spinning, the torque T == W1 would cause the
gyro to fall; but, with the rotor spinning rap-
idly, the spin axis OA begins to rotate about
the y-axis. We speak of this motion as preces-
sion. Assuming no bearing friction at O, we
shall show that for precession in a horizontal
plane the precessional velocity o’ is given in
magnitude by

Figure 76. — Gyroscopic Precession

. -
...........

GIMBAL 2 L
GIMBAL 3

GIMBAL 1

. .. -,
?

v

1243 . LI
T * A . .| .l .
R T T I REL
e RPN

BASE

Figure 75, — Circular Disk Gyroscope
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wi
(5.8) o =——o
Cca

where C is the moment of inertia of the disk
about the spin axis z.

If the total angular velocity of the system
be denoted by w with components w,, ®,, ©»., we
see immediately that, for the case of precession
in a horizontal plane,

59) ®,=0, WV,=v, w, =L,
and
(510) =%+ w’.

The angular momentum of the system is then,
using (5.7),

(5.11) Ho =Bw 4 (Cs2.

Relative to the moving set of axes O —z ¥y 2,

the vector Ho is constant., Its angular velocity
with respect to space is »’. Hence,

(5.12) H =o' XH,
=0 XCR=Cw X 2.

(see appendix)

By the Theorem of Angular Momentum, Ho is
equal to the sum of the moments of the forces
W and R about O. Since the moment of R about
O is zero,

. >
(5.13) H =0A X W

and hence,
>
(514) CoO’' X R2=0AXW=T.

Taking scalars in (5.14) we find the desired
relationship

(515) Co/Q=WI.

The torque vector T in (5.14) is directed here
along the positive x-axis. Since this is the same
direction as that of ®’ X &, we see that the
spin axis will always precess toward the torque
axis.

When the spin axis makes an angle other than
90° with the vertical, say a, it is only slightly
more difficult to show that the equation corre-
sponding to equation (5.14) is

14

............

......

’
5]

(5.16) [C 4 (C — B) — cos a] &' X 2 =
Q

>
OAXW=T.

Equations (5.14) and (5.16) remain valid when
W is replaced by a resultant force F other than
the weight. In practice, the spin axis is not of
negligible weight as compared with the weight
of the gyro rotor and the point O is then best
located at the center of mass of the system.
Indeed, as was stated in connection with the
Theorem on Angular Momentum, the point O
must be so located in order that the theorem
be applicable to cases where the center of mass
is in motion as would be the case for a gyro
mounted in an airplane in flight. From (5.16)
we also note that when the precessional speed
o’ 1s considerably less than the spin speed Q (in
symbols Q@ > > ') the term containing cos «
may be dropped and (5.14) is then obtained as
an approximation to (5.16).

To illustrate (5.8) numerically, let us suppose
th_at for the system of figure 76

W =11b., | =1 ft., radius of disk = 6 in.,
and Q = 400 rps.

Then,
1
(400)2x-C
where
1w 1 1 1\?
C =—— (radius)? = —{ — | { —
2 ¢ 2 \322 2
1
2576
257.6 257.6 180
and o in radians/sec. is or .
800 = 800 = T

= 5.87° per second.

When the gyro is mounted as in figure 75 and
the disk is spun rapidly about the spin axis, no
precession will occur since the center of mass
of the system is at the point O and the torque
Wl is then zero. However, if an external torque
L be applied to the system, the gyro will behave
in precisely the same manner as that in fig-
ure 76.
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Figure 77. — Use of a Rate Gyro to Determine Lead

Thus, to sum up, we have the following two
important facts of gyroscopic behavior:

(1) With no external torques present, the
gyro spin axis will maintain a constant
direction in space regardless of the
motion of the system in which it is

mounted.

(2) Under the influence of an external
torque, the spin velocity vector will
always precess toward the torque vec-
tor. More precisely, the spin velocity
vector &2, the torque vector T, and the
precessional velocity vector w’, will
always form a right-handed orthogonal

set.

REFERENCE LINE

REFERENCE Ljne

Ag
GUN BORE AXIS

ol

Figure 78. — Using Fixed Reference lLine

988995 0-52-9

Figure 79. — The Gyro Axis as a Computing Line
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5.3 Use of a Gyro to Produce Kinematic Lead

The preceding section will now serve as the
basis for explaining how a gyroscope is actually
used in a fire control system. Referring to figure
77, let us suppose that the gyroscope is mounted
on a gun so that its spin axis is parallel initially
to the bore axis of the gun, and so that the
universal joint mounting at O is the center of
mass of the gyro system and also is the point
about which the gun rotates. Then as the gun
Is turned about O, the gyro axis will, according
to the first property of gyroscopic behavior
stated in 5.2, remain pointing in its original
direction in space. If we now consider the spin
axis to be directed along the line of sight to the
target, then as the target is tracked the gyro
must lag the gun by an angle equal to the
required lead. In other words, the gyro will have
to precess at the proper rate in the plane of
rotation of the gun. Suppose that, as viewed
from A, the gyro is spinning counterclockwise.
Then to achieve precession in the direction re-
quired by the figure, a force F will have to be
applied, at a point such as A4, directed outward
(perpendicular to the plane of the figure). The
precession rate w is related to the force F
according to equation (5.8), (with W replaced
by F and [ = OA). Thus,

ca

l

If a fixed reference line be chosen as in figure
78, so that

(5.17) F =

‘w.

(5.18) o=ocand \y >y — o,

then (5.17) will be the equivalent of (4.14),
providing that we can make the force F always
proportional to the angle between the gun bore
and spin axes, ie., F = K,\;, with the propor-
tionality factor K, varying inversely with the
time of flight multiplier 1,

ca

(5.19) K, =

lu

.. Ca .
The quantity is a physical constant asso-

ciated with the gvroscope.
To realize the relationship F =K,\;, one
might consider attaching a spring of variable

16

______________

stiffness from A to a point on the gun bore, in
which case Hooke’s Law would apply to give
the desired ratio of F' to A.. However, this would
give a force F in the plane of the gun’'s motion
whereas we require, for precession in the right
direction, a force perpendicular to this plane.
Even if this difficulty were not present we
would still have the disagreeable feature of
having a sight with zero a-value, which, as we
have seen in the preceding chapter, would make
tracking impossible. One scheme for overcom-
ing the first of these stumbling blocks is the
use of electrical eddy currents. This is taken up
in section 5.4. The theoretical remedy for the
second was taken up in chapter 4 and consisted
in keeping the line of sight at a fixed propor-
tionate distance between the gyro spin axis and
the gun-bore axis. With this in mind, we see
from figure 79 that K, of (5.19) should be chosen
so that '
ca 1

I 1—a

(5.20) K, =

This follows from the chain of equations

(5.21) Ay = uy

Cca .
(522) F =K, (y—q) = T
(5.23) vy—n= (1 —a)As.

5.4 The Eddy-Current Constrained Gyro

In the particular method of constraining a
gyro to precess by use of eddy currents, the
gyro rotor is not a cylindrical disk as in figures
75, 76, but consists instead of a spin axle with
a flat circular mirror at one end and a spherical
aluminum dome or cap at the other end (figure
80). It is mounted on a type of universal joint
known as a Hooke’s joint and through a pulley
arrangement it is kept rotating about the axle
at about 3000 rpm by a constant speed motor.
This unit, together with accessories to be de-
scribed later, is mounted in a sight head, which
is rigidly attached to the gun mount. The gun
rotates about the same fixed point O as does the
gyro system (figure 81).

Suppose now, to the apparatus of figure 81
we add a pair of electromagnets, rigidly attached
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Figure 80. — Gyro

to the sight head and aligned with the gun
(figure 82).

The iron cores of the electromagnets are
wound with coils of wire through which a
current ¢ flows under a constant EMF of voltage
E. The current ¢ may be varied through use of
a variable resistance R. As the gyro precesses,
the spinning dome moves through the narrow

g

0O4¢
p—— e M

UNDEFLECTED

/ SIGHT HEAD \

SPIN AXLE

UNIVERSAL JOINT

MIRROR

Dome, Axle, and Mirror

air gap between the magnet poles. With the
situation as shown in figure 82, the gyrc would
be physically unable to take up its undeflected
position. To avoid this difficulty; eight poles
are used instead of two — four above and four
below. The dome may then move freely through
the narrow air gaps between them. The four
magnets on each side of the dome together

»

GUN

DOME )
0
IRROR =~ — &
DEFLECTED

Figure 81. — Motion of Gun with Respect to Gyro Spin Axis
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GUN

Figure 82. — Precessing Forces Introduced Electromagnetically

have the effect of single magnets, so that the
result is equivalent to figure 82. Hence, in the
ensuing discussion we shall speak of only two
poles, each being the equivalent of the four
poles actually used.

When current flows in the coils, a magnetic
field of strength proportional to this current is
set up between the two poles. Thus,

(5.24) H=oc 1.

The lines of magnetic force pass through a
circular area of the dome with center at A. Since
the dome is spinning, this area is being continu-
ously replaced by another. As a result of this
motion across the lines of magnetic force, elec-
tric “eddy currents” are induced in the part of
the dome between the poles. With the poles
wound as indicated in figure 82 and with the
dome spinning clockwise as seen from O (down
into the paper at A) these currents will be
directed from A toward the periphery of the
dome in the plane of the paper. If the linear
velocity of the dome at A is v and if the eddy
current strength be denoted by i, then it is
known from electromagnetic theory that

(5.25) . =c. Hv.

The eddy currents, in their turn, react with
the magnetic field to create a mechanical force
on the dome. This force is directed opposite to
the motion of the dome at A and hence ver-
tically upward as desired. The magnitude of
this force F is proportional to H and .. Hence,

118

(526) F=c,Hi.
Combining (5.24) through (5.26) we find
(527) F=c’c,ci*v.
From figure 82,

AN =1s,

and since § is a small angle, we have, to a good
approximation,

v=AN-a=1s0.
The force F may then be written
(6.28) F=1(c¢?crec; 1*°1Q)38;
or, since

§=y—n=(10—a) Ax,

(6.29) F=K, (1—a) A
with
(5.30) K,=c¢e,c1°1lQ.

We now have a force proportional to A; and in
the right direction. It will have the right magni-
tude if (5.30) is now identified with (5.20). This
becomes, if we replace ¢ by E/R (Ohm’s Law),
and simplify,
(1 '~—(l) C:Cy (cl T KB I):
(531) R = s U
C

Hence, by varying R in accordance with (5.31),
condition (5.20) will be satisfied, i.e., K, will
then be inversely proportional to the time of

+
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Figure 83. — Optical System of the Sight Head

flight multiplier ». It remains now to investi-
gate by what means the sight line can be made
to stay a fixed proportionate distance between
the gyro and the gun-bore axis.

5.5 An Optical Linkage

An optical method of achieving the fixed ratio
of angular separations of the gun-bore axis, line
of sight and spin axis as desired in figure 79
will now be considered. A vertical cross-section
of the sight head, with component parts of the
optical system labeled, is shown in figure 83,
with the gyro in undeflected position. In prac-
tice, the point O is taken so close to the gyro
mirror that rotations can be thought of as being
taken about a point in the plane of the mirror.

Referring now to figure 83 we note the follow-
ing: the bulb sends a beam of light through a
central hole in the two reticle disks. This beam
hits the gyro mirror at O (when the gyro is
undeflected) and is reflected along OB to a fixed
mirror at B. From here it is reflected straight
up through a lens C to a piece of plate glass at

G. Part of the beam passes upward and is lost,
but part is reflected to the operator’s eye at FE.
He sees the image of the round circle of light
at K as appearing on his line of vision ET. A
primary function of the lens C is to focus this
image at infinity, thus enabling the operator to
move his eye without occasioning any change in
the direction of line FT. When the gyro is unde-
flected, this image (or pip as it is called) will
determine with £ a line of sight paraliel to the
gun bore axis. The main function of the optical
system then is to sce that the line EG lies con-
stantly between the gyro spin axis direction and
the gun bore axis, and at the desired angular
distance, for all deflections of the gyro.

Let the distance RO, which makes the con-
stant angle « with the gun bore axis, be denoted
by d and the point R so chosen that the optical
distance ROBC is equal to the focal length f of
the collimating lens C. A detailed analysis re-
veals the following facts. If the gyro axis ON
is deflected in elevation through an angle ¢ (this
means a rotation about O in the plane of the
paper) the line of sight E'T is turned through
an angle A; given by

19




NAVYORD REPORT 1493

MATHEMATICAL THEORY OF AIRBORNE FC

sin p COS ¢
(5.32) tan Ap =
ro
—— —s8in?yp
2d

Since the angles involved will not exceed, say
159, first order approximations give

od

(5.33) AE = —f—- @y (2d < f) .

The angle ¢ corresponds in figure 79 to
Yy —n= (1—(&) Ax s

which leads us to define the sight parameter, «,
as

(534) a=1———.

2d

An azimuth deflection of the gyro axis through
an angle ¢ (a rotation about O in a plane
through ON perpendicular to the plane of the
paper), on the other hand, occasions an azi-
muth deflection of ET through an angle A,
where

sin 6 cos § coS «

f

——— — 8in? § co8Z «

(5.35) tan A, =

This expression, were it not for the factor cos e,
would be identical in form with that of (5.32).
First order approximations give

2d
(5.36) A,=coSa < 9>
f

which would correspond to a sight parameter of

f

2d ¢os «

(537 o=1—

This dilemma of having two separate a-values
may be resolved in practice by taking a weighted
average of the two expressions in (5.34) and

120

(5.837). The interested reader will find upon
investigating that, for simultaneous azimuth
and elevation deflections §, ¢ of the gyro axis,
the corresponding line of sight deflections are

(5.38) tan A, =
sin # cos ¢ (oS a cOs § €oS ¢ + sin e sin ¢)
f
——— — (sin? ¢ 4 cos® « Sin® # co3® p)
and
(56.39) tan Ap =

cos ¢ (cos 6 sin ¢ — Sin « cos « sin® § cos ¢)

b

—— — (sin® ¢ 4 cos* « 8in® § cos® ¢)

the first order approximations being the same
as before. The errors made in accepting the
approximations (5.33) and (5.36), known as
“optical dips”, are to second order terms only,

2d
(56.40) AA, =|——sin a> fo,
f

2d
A j\H =
f

sin « cos a>02.

Hence, we conclude that by proper choice of
f, d, a, an average sight parameter, a, may be
chosen. The theoretical iniplications and at-
tendant advantages upon introducing a sight

parameter have already been discussed in the

preceding chapter.

The function of the reticle disks is the de-
termination of present range, 7, to the target
and, mechanically, since the time of flight
multiplier « is dependent upon 7, they serve to
effect the relationship (5.31). One of these disks
is fixed, and is perforated with a central hole
(whose image at G on the viewing glass is the
pip) and six radial slits (figure 84). The second
disk, rotatable with respect to the first by
operating a pair of foot pedals or a throttle
hand grip, has a central hole and six spiral slits
(figure 85).

J
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Figure 84. — Reticle and Stadiametric Ranging
Disk — Radial Slits

The only light passing through the reticle
(and hence imaged on the viewing glass) will
be that through the hole and the six diamond-
shaped openings where the radial and spiral
slits overlap. The resulting projection on the
viewing glass is shown in figure 86. As the one
disk rotates, the six diamonds approach or
recede from the pip. Initially, the gunner pre-
sets the correct target span for the enemy plane

Figure 85. — Reticle and Stadiametric Ranging
Disk — Spiral Slits

0

O

Figure 86. — Stadiametric Ranging

by twisting the spiral disk to agree with the
known wingspan of his target, thereby giving
him a reference size around which he can expand
and contract the ranging diamonds. Range is
then determined automatically as the unknown
part of a simple proportion arising from two
similar triangles. Thus, in figure 87, if E repre-
sents the operator’s eye which is essentially
distant f units from the actual reticle, then if
MP is the known wingspan, the range » out to
the target is determined from the proportion

‘ r MP
(5.41) — = , where HK is the diameter
f HK
of the reticle diamond image.
M
H
E S
K
P
—

Figure 87. — Geometry of Stadiametric Ranging
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It should be noted that in this proportion the
distance f is actually independent of the distance
of the operator’s eye from the viewing glass
since, as has been mentioned previously, the
reticle image has been focused at infinity.

Range, determined by the method above, is
said to be obtained stadiametrically.

5.6 Free, Constrained, and Captured Gyros
and Their Uses

A gyroscope mounted as in figure 75 and
subject to no external torques is said to be free.
The spin axis is free to assume w.ny direction
in space and, once set spinning, will maintain
that direction regardless of any motion of the
system in which it is mounted. Besides serving
as the basis of the navigational gyro-compass,
free gyroscopes find ready application, in air-
craft fire control systems, as attitude indicdtors.
Thus in high level bombing, the free gyro with
its axis set spinning in the vertical, is used by
the bombsight as a physical reference line from
which to measure the dropping angle. The bomb-
sight also may employ a gyro with axis hori-
zontal in order to provide a direction from which
to measure the drift angle. The dive or glide
angle of an unbanked aircraft can be measured
with a free gyro, using the gimbal arrangement
of figure 75, as the angle between the spin axis
(set into the true vertical) and the plane of the
two outer gimbal rings, assuming the bearings
locked at C and D. A rearrangement of the
Cardan suspension can be employed similarly
to determine the angle of bank.

Theoretically, at least, a free gyro may be
used in a lead computing sight instead of a
precessing gyro, with the gyro, gun, and sight
lines coupled as in figure 79, providing that the
coupling parameter “a” be varied properly with
the time. Thus in figure 79 we have, upon dif-
ferentiating the coupling equation

n—o=4«a (y — o)
with respect to the time,

(542) 7 —o=a(y —o) +aly—o) .
122

Now if the gyro is free, n = O and (5.42) may
be simpified to the form

(5.43) @Ay + ahg = —o.

If now a be varied so as to yield values equal

1 e
to — —, where u is the time of flight multiplier,
u :

there is obtained the familiar lead computing
sight equation

— QUA,F Ar=Uo.

Perhaps the most popular application of gyro-
scopes in aircraft fire control instruments is
that of measuring the angular rate of a continu-
ously varying direction in space. The direction
may be a physical line like the gun-bore axis,
telescope axis, or longitudinal axis of the air-
craft, or it may be an artificial “computing line”
related analytically to these by some sort of
linkage. Rate gyros currently in use are of two
main types:

(A) The constrained or ‘“‘deflecting” type
wherein the torque due to the imposed
angular rate is opposed or constrained
by a spring-like force so that the de-
flection of the gyro is proportional to
the rate being measured and is used
as a measure thereof.

(B) The captured type of rate gyro where-
in the deflection of the gyro is opposed
by a torque which always keeps the
gyro from deflecting more than a
small amount and where the torque
required to thus “capture” the gyro
is used as a measure of the angular
rate.

An example of type A was taken up in section
5.4, wherein the spring-like force arose out of
the interaction of the eddy currents in the
dome with the magnetic field between the pole
faces.




Chapter 6

BOMBING

6.1 Introduction

The methods of bombing from airplanes con-
sidered in this chapter may be listed as follows:

(A) Horizontal high-level bombing
(B) Horizontal low-level bombing
(C) Dive bombing
(D) Toss bombing.

In level bombing, the aircraft flies, during
its bombing run, a horizontal straight line. Low-
level bombing is restricted in general to alti-
tudes below 5000 feet, a region in which the air
resistance operating on the bomb during its fall
is negligible by comparison with that obtaining
at much higher altitudes. High-level bombing
then refers to an altitude range extending from
5000 feet up to the ceiling of the aircraft.

The methods of dive and toss bombing are
most simply explained by referring to figures
88 and 89. In dive bombing, figure 88, the air-
craft is directed at a point A beyond the target
T, so that when the bomb is released at point R
it will not fall short due to gravity. Hence, at
release, the sight line to the target and the line
of flight are at an angle to each other. In toss

Figure 88. — Dive Bombing

bombing, on the other hand, the aircraft dives
directly at the target along the “collision
course” DT, pulls out of the dive at point B and
releases the bomb at a suitable point R along
the pull-out curve BRE.

It will be the aim of this chapter to investi-
gate mathematically the determination of the
correct release points in terms of suitable input
variables for each of the four bombing methods.

A. HIGH-LEVEL BOMBING

6.2 Yacuum Trajectory

To initiate the study of the action of a bomb
in the air, we start from a situation with which
we are all familiar: the motion of a freely fall-
ing body in a vacuum. Referring to figure 90,
suppose that the bomber traverses the line from
O to O’ with constant speed V knots during an
interval of ¢, seconds, releasing a bomb at O
which is H feet above the target at T. Since
no air resistance is presumed to be acting, the
horizontal component of the bomb’s velocity
also will be V at all points of its trajectory, and
hence, during its fall the bomb will remain ver-

Figure 89. — Glide Bombing
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tically below the aircraft. The space path of the
bomb is the parabolic arc OBT while its path
relative to the bombardier is simply a vertical
straight line.

If at any instant ¢, the space coordinates of
the bomb B, are X and Z (see figure 90), then
the differential equations defining the bomb
trajectory are

(61) X=V, 7=g=322ft/sec.
Integrating (6.1) with the initial conditions
t=0,X=Z=0, Z=0, we find
(6.2)

X=Vt Z=1gt.

The rectangular equation of the parabolic path
is then
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Figure 90. — Vacuum Trajectory — Bomb
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At time t = ¢,, if the point O is correctly placed,
the bomber is directly above the target at O’
and a hit has been scored at T. The vacuum
range R is then equal to Vi, and the range angle
¢, which is the angle at the time of release
between the true vertical and the line of sight
to the target, is given by
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(63) ¢ =tan!'| ——] .
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so that (6.3) may be written free of ¢, as
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(64) o= tan“( 1% -——> . : -
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BOMBING

To hit a target, then, when flying straight and
level at a predetermined altitude and speed, it is
only necessary, assuming air resistance on the
bomb during its fall to be negligible, to fly in
the invariant vertical plane containing the
target and to drop the bomb as soon as the
target appears at an angle ¢ from the vertical,
given by (6.4). For an aircraft flying at 10,000
feet above the target and at a speed of 350
knots, the time of fall ¢, would be 25 sec., the
range 14,625 feet, and the range angle ¢ would
amount to 55°38’.

6.3 Air Trajectory Under No Wind

Let us now remove the vacuum restriction,
which is a poor first approximation at any but
the lowest altitudes, and see what the effects of
air resistance are upon the bomb. We shall

0

assume in this section that there is no motion
of the air with respect to the ground, i.e., no
wind conditions prevailing.

Put qualitatively, air resistance has the fol-
lowing important effects:

(a) It decreases the vertical velocity of
the bomb at any instant, thereby in-
creasing the time of fall, ¢,.

(b) It diminishes the horizontal velocity
of the bomb at any instant, thus caus-
ing the bomb to trail behind the verti-
cal line from the bomber.

These effects vary with
(a) The shape, weight, and size of the

bomb,
(b) The altitude (and hence the air den-

sity)
(¢) The airspeed of the bomber.
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Figure 91.— VYocuum and Air Trajectories — Bomb
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Figure 91 illustrates the change of the position
of a bomb which is dropped in still air from
that of a bomb dropped in a vacuum, if the
bombs were observed at the same instant of
time. Thus, two bombs released at the same
instant at point O, the one falling in still air, the
other in a vacuum, will describe the trajectories
OB,T and OB.D, respectively, in the same time
t;. When the “air bomb” is at B,, the “vacuum
bomb” will be at B,; when the “air bomb”
strikes the target at T, the “vacuum bomb” will
be at D. The bomb falling in air will describe,
relative to the aircraft, the curved path O'T
while that falling in vacuo is describing the
straight line O’D. At time ¢, then, B, will lag
B. by B,E = r(t) horizontally and by EB, =
h(t) vertically, the functional notations being
used to indicate dependence on time. The quan-
tity r(¢f) is called the TRAIL and is denoted
at the target by the letter ». Thus,

’)"(t/) = 7.

It should be noted that the trail r is not equal
to TK. The quantity TK is known as the ground
lag. Actually, r= TK + KN, which says that
trail » is equal to the ground lag plus the dis-
tance that the aircraft travels during the time
lag. The time lag here is the fractional part of
t; which it takes the bomb on the vacuum tra-
jectory to traverse the arc KD.

In figure 91 there is indicated the set of forces
acting on the bomb B,: the weight of the bomb
W and the air resistance F, assumed tangent
to the trajectory and directed opposite to the
motion of the bomb. In the absence of yaw and
other secondary effects, these then will be the
only forces acting. The resistance function F
depends upon the weight of the bomb, its shape
and size, the air density p,, and the velocity v
of the bomb with respect to the air mass. As
explained in chapter 1 the first two of these are
incorporated into a single quantity C, called the
ballistic coefficient. The force F can then be
written

(6.5) F = —— f(v)
c

wnere f{v} is a function of velocity only. The
air density p4, in terms of the coordinate system
of figure 91, is
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(6.6) py = po e K7,

The quantity p, then represents the density at
the point of fall T. For the standard air struc-
ture considered here, see section 1.7, assuming
the target to be at sea level,

po = .07513 1b./ft*, K = .0000316 ft.”.

It will be noticed from (6.5) that F diminishes
as C increases and hence, that the larger the
ballistic coeflicient the more efficient will be the
bomb.

With 6 defined as in figure 91, we find, upon
taking components of the forces F' and W upon
the horizontal and vertical, that the equations
of motion for the bomb are,

.o Pa
(6.7) mX =———7f(v) sin g
C
. Pa
(6.8) mZ = mg — —— f(v) cos @
C
(6.9) X =2Ztan ¢
(6.10) v:X’cscH:ZsecG,

with the initial conditions
. T
t=0, X=0, Z=0, §= ,
2

(6.11)

v=1Y, 7=0

wherein V is the true airspeed of the bombing
plane. Equations (6.7) and (6.8) reduce to (6.1)
when C = «, that is, for a vacuum trajectory.

An interesting interpretation of the ballistic
coefficient C, in terms of the terminal velocity
v, of a bomb falling vertically, can be made
using (6.7) and (6.8). Here we should have
6 = O, and, at the instant the bomb strikes the
ground, ¥ = v, p.=p, Z =0; hence

6.12) C=1"¢ (w.).
g

Thus, from a knowledge of the terminal velocity
vy, the ballistic coeflicient can be computed as
soon as the form of the function f(v) has been
assigned.
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Integration of equations (6.7) thru (6.10)
also will depend upon the retardation function
f(v). Considerable experimental research has
gone into the determination of suitable forms
for this function, the choice of form being
guided by the accuracy with which experimen-
tally determined trail values can be approxi-
mated. In particular, the form
(6.13) f(v) =kv?
where k is an empirical constant, leads not only
to trail values of the proper order but also, as
the interested reader may verify, renders the
equations (6.7) to (6.10) solvable by quadrature
when p, is held constant.

The amount of trail is a function of the indi-
cated airspeed of the bomb, or plane, at the
time of release. It is, in addition, dependent
upon the altitude of release and, of course, the
ballistic coefficient C of the bomb. Trail and time
of fall (¢;) values for each type of bomb are
determined during the calibration of the bomb
at the Proving Ground and are set forth in
tabular form, trail being given in angnlar
measure (mils). The latter measure, sometimes
referred to as the bombing mil, is an angular
measure that should not be confused with the
Navy mil, the Army mil, or the mathematical
mil. A Navy mil is a definite angle and is equal
to the fan .001; or 3.438 minutes of arc. An
Army mil is 1/6400 of a circle; or 3.375 minutes
of arc (fan' .000982). A mathematical mil is

1000 FT.

I 1 1v 1 U
Figure 92. — The Bombing Mil

1/1000 of a radian, which is the angle subtended
by an arec whose length is equal to the radius
of the circle.

Angles with equal bombing mil values sub-
tend the same distance on the base line, but
are not equal in angular measure, growing
smaller as they depart from the vertical as
indicated in figure 92. The value of an angle in
bombing mils may be found by dividing the
distance on the ground by 1/1000 of the alti-
tude; and this is its interpretation in bombing
practice.

In comparing bombing scores, an air bomber
whose average error from 10,000 feet is 100
feet should be considered as good a bomber as
one whose average error from 5,000 feet is 50
feet because in each case the average error is
10 mils. The bombing mil system expresses
distances on the ground in terms of altitude,
therefore, statements concerning distances on
the ground must be qualified by a statement of
the bombing altitude.

From figure 91, it is evident that the range
R of the bomb dropped in air is obtained by
subtracting the linear trail value TN from the
vacuum range AN. Since AN = Vt; (target
assumed stationary), we have

(6.14) R=Vt —r

and the range angle is then given by

Vt/ —_7
H

(6.15) o =tan?

For a bomber flying at H = 10,000 feet at an
indicated airspeed of 300 knots (V = 850 knots
true airspeed), the bomb ballistic tables show,
for a bomb of ballistic coefficient C =2, that
t; = 26.01 secs. (an increase of 1.01 secs. over
the vacuum value), trail + = 189 mils (= 1890
feet in linear units), so that equations (6.14)
and (6.15) yield R = 12,735 feet, ¢ = 51°52".
These figures show quite plainly that air resis-
tance can by no means be neglected for pre-
cision bombing.
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Figure 93. — Drift Angle and Trail

6.4 Drift and Target Motion

The discussion up to this point has been based
strictly on the conditions of still air and a
stationary target. Let us for the present remove
the first of these restrictions and consider the
problem of hitting a stationary target. Later in
this section we shall see how target motion can
be accounted for. Since we are here assuming
a standard air structure, the wind will be con-
sidered as moving horizontally only, with con-
stant speed and direction at all points of the
bomb trajectory. Thus, we shall have no vertical
component of wind to' contend with.

In the plan view of figure 93, the horizontal
plane through the bomber A is projected upon
the horizontal plane through the target T. Line
AD gives the direction in which the aircraft is
being steered, namely the plane’s heading. The
vector V is then the velocity of the bomber
with respect to the air. The wind vector W,
representing the velocity of the air with respect
to the ground, combines with V to give V., the
velocity of the bomber with respect to the
ground. Thus,

ViW=VY,

wherein the line of action of the vector { is
called the bomber’s track, represented by line
AA’. The angle £ A’AD =4, formed by the
heading and the track, is called the drift angle.
We use the notation ¥ here to denote the
ground speed of the bomber rather than the
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notation V, because the former, which we shall
call the closing speed, includes the case of a
moving target, even though, in the present
instance, the target is considered to be station-
ary. The closing velocity, V., is defined in gen-

eral by
(6.16)

Y. ::V—}—W——VT,

where V_ is the velocity of the target. From
this we see that if there is no wind or target
motion, then V. =V and the closing speed is
then the same as the true airspeed of the
bomber. If there is a tail wind, ¥ becomes true
airspeed plus wind velocity; while in a head
wind, ¥/ becomes true airspeed minus wind
velocity. When the target is moving, that part
or component of the motion which is in the same
direction as the airplane’s heading gives the
same effect as if there were a head wind of
the same force as the range component of the
target’s speed. A target moving toward the
plane gives the same effect as a tail wind since
it increases V.

There are three important points to be noted
in figure 93. First of all, the direction of the
trail 7: the trail always lies in the vertical plane
through the longitudinal axis of the aircraft, is
measured from the vertical to the rear of the
aircraft’s heading, and is independent of the
wind. Secondly, it will be noted that because of
this fact tha bomber, to secure a hit, must fly
so that its track will pass to one side of the
target by the amount P’T = r sin 4. This quan-
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Figure 94. -— The Bombing Problem — Three-dimensional View

tity, » sin 4, is called the cross trail. Thirdly, as
figure 93 shows, the bomb will strike, unless a
special correction is made, not at the target T
but at a slight distance forward at B. To account
for this, it must be remembered that r depends
on C (ballistic coefficient), V; (indicated air-
speed of bomber at release), and H (altitude
above target) but is independent of W and
hence of 4. Thus, only when 4 is zero, namely
for flight in still air, upwind or downwind along
00’ will the bomb strike at T. Hence, to secure
a hit at T, the bomb should be released when
the aircraft is a distance TB =1 (1 — cos §)
back from A along the track. The expression
r (1 — cos 8) is called the range component of
cross trail. It is usually very small, being ob-
scured by other bombing errors, and for this
reason is sometimes omitted from consideration
in constructing bomb sights.

So far, we have considered the target to be
stationary. In order to take target motion into
account we may resolve the target velocity VT

into components along and perpendicular to the
plane’s heading. Then, that component of the
target’s motion along the plane’s heading gives
the same effect as a head wind or a tail wind
depending upon whether its direction is the
same as that of V or — V. Similarly, the com-
ponent of the target’s motion across the plane’s
heading may be considered as a cross wind and
absorbed in the solution for the drift angle 6§ by
combining it with the wind vector W. Hence,
the effect of target motion is merely to change
the values of V and W and then to regard the
target stationary as before. The range angle o,
whose accurate determination is the crux of the

whole bombing problem, is thus obtained from
Vct/ —_
(6.17) ¢ = tan
H

The final diagram for high-level bombing,
depicting the situation in three dimensions, is
shown ‘in figure 94. The actual trajectory of
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the bomb is shown with impact point at B, so
that, as in figure 93, the range component of
cross-trail is the distance TB. In still air, the
track of the plane would be the line OO’ but
under wind conditions the track becomes AA’.
A bomb dropped in a vacuum at point O would
strike at D at the same instant that the actual
bomb strikes at B. It should be noted finally
that in the figure the actual trail is the distance
EB and that this distance also is equal to EP".

6.5 Mechanization

As formula (6.17) indicates, the correct
range or dropping angle ¢ is a function of the
trail, altitude above the target, time of flight
of the bomb, and the closing speed, V. . Prelim-
inary to this, there is the problem of establish-
ing the proper track, parallel to a collision
course with the target and distant from it an
amount equal to the cross-trail, r sin §. A bomb-
sight computer for determining ¢ will then have
as inputs: », H, t,, and V. The trail, r, is ob-
tained from trail tables, wherein it is given as
a function of altitude, airspeed, and bomb bal-
listic coefficient, and can thus be set in by the
bombardier. The altitude input is available from
an altimeter while time of flight is tabulated
as a function of altitude. Closing speed V. is
obtained by tracking the target with a telescope,
keeping the horizontal (rarge) cross wire con-
tinuously on the target. Modern bombsights
have the telescope mechanically stabilized with
vertical and horizontal gyros so that physical
reference lines are available from which to
measure the range and drift angles. The drift
angle § can be obtained by having the bomb-
sight always point directly at the target. Then
the angle between the longitudinal axis of the
aircraft and the direction in which the sight is
pointing will be the drift angle providing that
the heading of the plane is correct for the wind
conditions prevailing. The bombardier estab-
lishes the angle of drift by positioning the tele-
scope cross wires so that the target moves along
the vertical cross wire. If the plane’s heading is
slightly off, the target will drift off the wire.
By means of an instrument called the Pilot
Direction Indicator, the pilot of the aircraft is
afforded a continuous indication of the direction
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in which the target drifts off the vertical wire
and can then direct his plane accordingly. Fin-
ally, the matter of cross trail is settled easily
by tilting the telescope transversely through a
small angle sufficient to intercept the correct
amount of cross trail on the ground.

B. LOW-LEVEL BOMBING

6.6 Impracticability in Range Angle Aiming
at Low Altitudes

A bombsight, designed to operate at altitudes
below 5000 feet, requires extreme accuracy in
measurement of the input variables when the
range angle method, outlined in Part A of this
chapter, is used as a criterion for bomb release.
This is especially pronounced when the altitude
falls below 1000 feet, as it does in the case of
depth-charging of submarines from low-flying
aircraft. At such low altitudes the trail term, 7,
of equation (6.17) is negligible by comparison
and the range angle, ¢, is given quite accurately
by the “vacuum expression”

Vct/ 2
(6.18) o= tan"( >_—_ tan"( Ve \/-————> .
H gH

The very form of (6.18) shows the close de-
pendence of the range angle upon altitude and
closing speed. Hence, unless the altitude and
closing speed can be held very closely to pre-
assigned values, errors in these quantities will

- produce large range errors on the ground. Thus,

a 19 error in altitude measurement at H = 400
feet will result in a range error of approximate-
ly 9 feet, V. being assumed equal to 350 feet
per second and without error. Similarly, a 1%
error in closing speed at V, =350 feet per
second and H = 400 feet gives a range error of
18 feet.

To overcome the above difficulties, recourse
is had to measurement of the angular rate, o,
instead of ¢, as a criterion for bomb release.
The mathematical expression for ¢, derived in
the ne:t section, shows it to be relatively inde-
penden: of the altitude for small values of the
altitude, a quality which serves as a sound basis
for a low-altitude bombsight.
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6.7 The Angular Rate Principle Therefore, L
During the early stages of a low-level ap- HY, HY, ::i
proach, when the target is at a considerable p = — = , ,
distance from the aircraft, the angle of depres- (Hsecy)® He 4 X*
sion of the target (90° — ¢) changes very slowly . o
. At th e lease time,
so that the angular velocity of the target at the t the proper release ti .
observer’s eye is low. As the aircraft nears the I
target, the angular velocity increases, finally XVt —T 2H
becoming a maximum as the aircraft passes =ky=K g ’ '
vertically over the target. At some stage the
target was in an appropriate position for a bomb whence, -
to be released, and at that point it had an angu-
lar velocity that could be calculated in terms of HV -
the height and ground speed of the aircraft. If ¢ = v
this calculated angular velocity is set up on an I 2HY * Z‘f
appropriate bombsight in such a manner that we + g L
can detect when the target has an equal angular ;
velocity, then we have an indication as to the  Wwith a little manipulating, this may be written -
instant, during the tracking run, when a bomb  finally as -
should be released to strike the target. We now -
derive_ an expression for the calculated angular . g/2 -
rate, ¢. (6.20) o= . -
gH
From figure 95 we note that V {14+
2V "
6.19) t X X
(6.19) tane=-—r. Thus, (6.20) furnishes, at the correct moment :
of bomb release, the angular velocity of the ¢
Differentiating with respect to the time, we  target in terms of the height and closing speed.
. . ’ It will be noted that for small values of H the r
find, since H = O, -
HX HY term - is small, thereby accounting for the ‘
¢SeC’ P = — = ¢ ’
H* H? relative insensitivity of ¢ to changes in altitude. -
988995 O -’52 - 10 . |3 l ;"
S e A T e e L RN N L L
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In actual practice, the time of free fall ¢; used
above must be corrected for bomb trail, lag of
the bomb rack in making its release, and also
for horizontal and vertical parallax introduced
by the physical separation of bombsight and
bomb.

6.8 Mechanization

An early mechanization of the angular rate
principle involved a rotating, internally illumi-
nated drum upon which was cut a fine pitch
spiral. A portion of the drum, when viewed
through an optical system, revealed to the
bombardier a set of horizontal illuminated lines
moving downwards at a uniform velocity. The
drum was driven about a vertical axis by a
constant speed motor through a variable speed
gear which allowed for variation in the rate of
rotation of the drum. The variable speed gear
in turn was connected by a flexible drive to a
computer whose inputs were ground speed and
altitude. Proper functioning of the computer
then produced a drum rotation rate such that
the illuminated horizontal lines moved at an
angular rate equal to that of the target at the
correct moment of bomb release.

When the target first appeared to the bom-
bardier, on the upper end of the illuminated
“ladder”, it was moving downward more slowly
than the horizontal lines which appeared to be
overtaking the target. The difference in rates
of the target and the lines became less and less,
until at one instant the target and lines ap-
peared stationary together. This was the correct
moment of bomb release. After this instant, the
target had a greater angular velocity than the
lines, and appeared to overtake them.

More modern mechanizations of the angular
rate principle employ a gyroscope to measure
the angular rate of the target. Such sights are
rotatable about horizontal and vertical axes so
that the bombardier, after first aligning the
sight properly in azimuth, tracks the target by
rotating the sight vertically at such a rate as
to keep an illuminated reticle on the target.
Rotation of the sight precesses the gyroscope
whose precession in turn is opposed by a spring.
The tension of the spring is preadjusted for the
bombing course to be run. It is set so that it
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will balance the torque of the gyroscope when
the gyroscope is precessed at the angular rate
that is critical for that course. One of the prin-
cipal advantages of the modern angular rate
bombsight is that it removes the undesirable
feature in the early mechanizations of having
the pilot judge when zero relative rate between
the moving lines and the target is achieved.
Indeed, any successful mechanization which re-
moves the personal element is bound to improve
the accuracy of the sight in question.

C. DIVE OR GLIDE BOMBING

6.9 Introduction

The situation obtaining in dive or glide bomb-
ing under conditions of no wind is represented
pictorially in figure 96. At the point of bomb
release, the flight line OA4 is offset from the
sight line to the target OT by the angle

This angle intercepts on the ground a dis-
tance L, called the linear aiming allowance. In
terms of the sighting angle ¢ and the dive or
glide angle § we have, where X is the range DT,

H
=90° — ¢y — § = arctan —— — 4.
X

(6.21)

The aiming allowance L is found from

(622) L=Hcots—X.

In the vacuum case, the range DS may be found
by eliminating {;,, the vacuum time of flight,
between the familiar relations

(6.23) H=1gt*+Vsindt, DS=1¢ Vecosh,

where V represents the true airspeed of the
airplane. Thus it is found that

(6.24) DS =

V cos @ )
. [‘f(Vsinﬁ)ﬂ-i-ZqH—-Vsme}

9

. and,
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Figure 96. — Dive Bombing

(6.25) t; (vacuum) =

J(Vsin 6)2 4 2gH — V sin 8

g

(6.27)
Hence, neglecting air resistance, the angular
aiming allowance A is, from (6.21),

6.10 Angular Rate of Sight Line
(Vacuum Case)

From figure 96 and the relationship

X

tan ¢ —= ——,

we find, upon differentiating with respect to

~ the time,
(6.26) A (vacuum) =
V cos é pSecty =
cot — ! g‘/(Vsin 0)2+2gh —V sing ]—0.
gH d

HX — XH

Solving for ¢ and using (6.27) we find

By way of illustration we find that for V = 800
knots, H = 4000 feet, § = 40°:

. [ HX — XH:I
¢ = €08% ¢ | ~———————
DS = 3345 feet, ¢, (vac.) — 8.62 secs., L B
A (vac.) = 10%¢’ . = c0s? ¢ —————X — Htang :]
B H
Upon consulting a ballistics table for dive bomb- »
ing, we find that when air resistance is taken ©F
into account, the range DT is 3299 feet, t; be- ) cos ¢
comes 8.91 secs., and A is increased to 10°29".  (6.28) o— I:XCOS o — H sin ¢:| X
The ground lag T'S here is thus 46 feet. '
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If we consider the origin of coordinates to be
at the target, then

X:—Vcosﬁ:-Vx

and ]
H:—VSiHO:—V".

Equation (6.28) then becomes

. coS ¢
(6.29) o= o [V“Singp—V_\'COSgo .

Let us now rewrite (6.29) in the form

. sin ¢ cos ¢ |’
¢ = V" — VX cot Y]
H |
and combine it with the ‘“hitting criterion”
H H
cot ¢ = =
Vit; DS
to get
. sin2 ¢ H
(630) p—m—m—r]| Vy——o |.
2H ts

From (6.23) we find -
H

— =V 4+ 39,
t

which, combined with (6.30), yields

t;sin2¢. -

(6.31) ¢=—

Employing (6.25) we may write, finally,

. sin2 ¢
(632) ¢ = — 4H I:‘} VHZ + 2gH — VH] .

We note from (_6.32) that the angular rate of
the sight line, ¢, is a function of H, V,, and
¢ only.
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6.11 Mechanization, using- Angular Rate

Formula (6.32) suggests a possible mechani-
zation for a dive bombsight. If 2 mechanical
computer, with inputs ¢, H, V,, and operating
in accord with (6.32), is used to drive a tele-
scope at the rate ¢ given by (6.32) then con-
ceivably a pilot could so fly his plane that the
target when viewed through the telescope would
show no motion with respect to its cross-wires.
At the instant of synchronization of target and
cross-wires, the bomb would be released. The
input ¢ would be obtained from the telescope’s
position in a vertical plane relative to the spin
axis of a vertical gyro while H and V would be
obtained from an altimeter and its differential
output.

During the recent war, a sight was con-
structed to operate on the above principle but,
after numerous flight tests, was finally rejected
for several reasons. Firstly, it was found too
difficult for the pilot to maneuver his plane in
the diving attitude so as to achieve synchroni-
zation. Actually, the pilot had to fly a curved
path through space and at the same time try
to recognize a condition of no drift between the
cross-wires and the target. Secondly, when once
in a dive, the pilot found it almost impossible
to make a deflection drift correction since there
is no way to make an airplane move sideways in
space. The fact that range and deflection drift
change continuously creates a problem virtually
impossible for the dive bombing pilot to solve.

The difficulties just cited could be made less
prominent perhaps by a new mechanization pro-
cedure but could hardly be avoided altogether,
since they are inherent in the dive bombing
method. The method of toss bombing, consid-
ered in section (6.13), eliminates these diffi-
culties for the pilot by permitting him to dive

straight at the target.

6.12 Correction of Angular Rate for Trail

Since bombing does not take place in a
vacuum, account must be taken of the effects of
air resistance upon range. Referring to figure
96 we note that the actual range X is DT =
DS — TS, where, because of the relatively low
altitude for release H, the ground lag TS may
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be replaced by the trail », both being small. We
have, then,

(6.33) X=Vyt; —7r
H
(6.34) coto =
7 thf —_7
Using (6.34) in
sin 2 ¢
= (Viy — Vycote),
2H

we obtain at release time

sin 2 [ V_y (V/;t/ —_ H) — 7'V”~
2H [ Vit — 7 ._

or, upon rearrangement,

. sin 2 ¢ V/{t/ —H TVH 7]
¢ = - *
2H [ t, Vit

-1
r
1— :
Vats

If now the last factor be expanded and non-

linear terms in be dropped, we find,

xby

Sin 2 @ V_l]t/ —~H
2H [ t,

¢ =
r rVy
14 )-
Vxt; Vxts
. sin 2 ¢ Viuty — H
(6.35) o= .
2H iy

Vu
Va(Vut; — H)

- Ik

Recalling now the relation
Vllt/ —H=— "}.gtfz y

and using it in (6.35), we obtain

.......
................
..........
.............
---------

.t .
S
. - -~ % .

..........
.........

--------

. 4
(636) o= —~——<t;8in2¢ -
4H

H r
1+ . .
Vat; 3 gt/*

, we can put (6.36) in the

Since cot ¢ =

Vi,
form
. g 7 cot ¢
(6.37) ¢:——_—-t,sin2¢[1+——————— .
: 4H 1 gt/

Comparing (6.37) with (6.31) we note that the
quantity in the brackets in (6.37) is the neces-
sary correction factor to the vacuum rate given

by (6.31). Thus,
rcot <p]
1 gt

6.13 Basic Release Conditions for a
Stationary Target

(6.38)

Pair = fvacuum ':1 4

D. TOSS BOMBING

In toss bombing, the airplane is flown initially
along a collision course, a straight line path
containing the target. If the bomb were released
enroute, gravity would cause it to fall short. To
overcome the latter, the pilot pulls out of his
straight-line dive and releases the bomb at a
precalculated point along this pull-out curve.
The essential geometric features of the problem

~ are indicated in figure 97.

The straight-line dive at the target T, here
considered to be stationary, is begun at a point
above N, pull-out takes place at O along the
curve OP. If the point P is calculated properly
and release of the bomb occurs when this point

- is reached, the bomb trajectory will intersect

the target. In the theoretical development to
follow, we assume the final velocity of the air-
craft in the dive to be reached at the point N
and that this final velocity, which we shall
denote by V, remains constant along the timing
run NO and the pull-up arc OP. Knowledge of
the time it takes the aircraft to cover the dis-
tance NO is used in determining the closing
time, £, i.e., the time it would take the aircraft
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Figure 97, — Toss Bombing

to fly into the target along the collision course
OT. The quantity t., in turn, is needed for com-
puting the position of the release point P.
Since the speed V is constant, the point O can
be determined by requiring the time for the
aircraft to cover NO to be a fixed fraction f,
(f < 1), of the closing time, t.. If we denote the
altitudes of the points N and O by h, and k.,
then from similar triangles it is apparent that
tno

hl —h2
h. - t. o

wherein ty, is the time for the aircraft to cover

the timing run distance, NO. From this it fol-
lows that the point O corresponds to an altitude
h., where

1

1+f

(6.39) h. = R .

136

LIRS

\\\\\
nnnnnnn

The relationship (6.39) can be effected by use
of a suitably arranged altimeter. The quantity
t. is then 1/f of the time taken for h, to drop
to 1/(1 4 f) of its original value.

As a solution to the toss bombing problem,
we seek a formula, in terms of basic inputs, for
the pull-up time ¢,, that is, the time to fly along
the pull-up arc from the initial pull-up point O
to the bomb release point P. We shall assume a
stationary target and neglect air resistance.

We note first that the airplane has an accel-
eration arising from the curvature of the pull-
up path and that this acceleration is normal to
the direction of motion at any instant since
the tangential component of the acceleration
vanishes in accord with our assumption of con-
stant speed along the pull-up path. If we denote
this acceleration, measured in gees, by p, and
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the corresponding radius of curvature of the
pull-up path by R, then pg = V*/R. Let a set of
coordinate axes xOy be chosen with origin at O
and with the positive z-axis passing through
the target. If now ¢ is the time taken for the
aircraft to fly a distance s along the arc OP,
and 6 is the angle through which the tangent
to the path has turned during this time, then,

ds ©g rg

(6.40) df = =
R

Consequently, at any time during the pull-up
period, the angle 9 will be given by the integral

t
g

(6.41) a:__/ pdt, t < b,
14

o

where time is measured from the point O.
The total pull-up angle is then

i,
g
(6.42) 0,:—-——//1dt.
1%
o

If now we introduce the average normal acceler-
ation  computed over the time interval
0] < t<t, thatis,

i,
1
;T::—-——/ pat ,
t,
0

equation (6.42) can be rewritten

—_—

(6.43)

6, = ——1,.

A standard aircraft accelerometer mounted
in an airplane shows at each instant during
pull-up the number K of gees present at that
instant and acting normal to the direction of
motion. If § is the dive angle, then approxi-
mately,

(6.44)

This relation is sufficiently accurate to be useful
for small pull-up angles. It is exact at the be-
ginning of pull-up since in the dive, K = cos 3
and p = 0.

,ugé (K —cosd) g.

If z and ¥ are the coordinates of the bomb at
any time, t, always measured from the begin-
ning of pull-up, then the components of velocity
on the coordinate axes at any instant during
pull-up are,

(6.45) z="Vcos, y=Vsing.
Hence,
t t
(6.46) x:V/cos(?dt,y: V/sin()dt.
) 0

Eliminating dt from (6.46) by using (6.40),
we obtain 9

Ve cos @
g M

0

]
14 sin 4
Y = / ds .

g M

0

By placing ¢ = ¢, in these relations, expressions
are obtained for z,, ¥,, &, ¢, Where z, and ¥y, are
the coordinates of the release point P.

After the bomb has been released, the impor-
tant force acting on it is gravity. Hence, for
this phase of the motion, the components of
velocity and the coordinates are

2=z, g(t—t)sins,
y=1vy,—g(t—t) coss,

x:xr‘*’x.r(t— tr)+ %g(t"" tr)ZSinS;

y:yr+?}r(t”“ t)—3g(t —t.)2coss.

In order to secure a hit,  must equal Vi,
when ¥y = O, since the coordinates of the target
are (Vt,, O). Let this occur when £ = t;, so that,
from equations (6.48),

(6.48) Z

Vtc = X, + é:r(th - tr)
+ 39 (ti— t,)2sins,

O =Y, + y.r(th - tr)
— 3g(ty — t,)2cos 8.

(6.49)

On replacing 2, ¥r, Z,, ¥, by their values from
equations (6.46) and (6.47), the following basic
equations are obtained.
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6,
y* cos §
Vi, = dé
g I
0

+ V(5% )cosg,+3g (& — ¢.)* sin

Ve sin ¢
0= / a8
g po

(6.50)

+V( ti— tr)Siner_—%g(th - tr) cos 3.

Equations (6.50) form the basis for a toss
bomb computer since a formula for ¢, may be
obtained from them by eliminating the param-
eter t,. The formula will be a function of the
input parameters t., V, 4,, and §. The value for
t. is obtained during the timing run, & is given
by a dive angle indicator, and 4, is determined
in terms of pull-up acceleration. When values
for these parameters are fed into the computer,
the release time is automatically computed.
~ Instead of eliminating only t, from equations
(6.50), it is easier to eliminate ¢, — ¢t,, to solve
the resulting equation for 4,, and to then find
the release time ¢, from (6.43). Solving the
second of equations (6.50) for ¢, — ¢, we find,

14
(651) ¢ —t,=~———— siné, +
g cos &
br sin 8
sin? 4, 4+ 2 cos § / dé
"

0

Substituting the right member of (6.51) into
the first of equations (6.50) gives,

. gt cos 8§ cos 4, -+ sin §sin 4,
(6.52) =
v

cos? §

- br sin ¢
sin 6, 4 sin20,+2cossf dé
il

0

0, 6

cos 8 rsine
+ d0+tan8/ e .
I3 . 3

0 0
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In equation (6.51) the positive sign is used
before the radical since a negative sign would
make t, less than t,.

Equation (6.52) contains the desired quan-
tity 6, in a rather complicated way, one from
which an exact explicit solution is not easily
obtained. Nevertheless, this equation is basic
to further discussion insofar as a practical solu-
tion of the toss bombing problem is concerned.
We shall, in the next paragraph, solve equation
(6.52) for 6, by making suitable approxima-
tions. .

6.14 An Approximate Solution for the
Release Time

As a first step in obtaining an approximate
solution of the basic equation (6.52) we replace
i in the integrals by the average normal accel-
eration, & Approximate values for the integrals
can then be found. The resuiting form of the
relation is

gt. cos § ¢cos 4, -+ sin § sin 4,
(6.53) =
1% cos? §
1 —cos?d,
sin 6, 4 | sin* 6, 4 2 cos § ———
W
1 1 —cosd,
4 ~——sin 4, 4 — tan §.
# ) #

On the assumption that pull-up angles will
be small, we next replace the trigonometric
functions sin 4, and cos 4, by 4, and 1 — 3% 6,3,
respectively. The resulting equation in 4, then
has the form '

gte (1 —136,2)cosd46,s8in8
(654) —— =14, .
14 cos? 8

1 1 1
[1+ 14 —cosd |+ —0,+—07 tans.
A B 2p

Equation (6.54) is a cubic polynominal in 4,.
However, since the solution sought is expected
to be valid only for small pull-up angles, we may

[ S T T
VataTaty

o :v..-" VIR IR SL UM
ot . : DT el

el "‘r b




“1 r Y u
AN RERE A A

a7
[ S

. 2 ’1

............................

BOMBING

ignore the term of degree 3in 4, at leastif
cos § is not too small. This then gives the follow-
ing quadratic in 4,.

(6.55) (14+20) 6,2tans +-2(1 + o) 6,
2¢9t. u
- =0,
where
. 7w+ {5 (i + cos 9)
¢ =

cos 8

The corresponding equation for ¢,, obtained by
using relation (6.43), is

14-2¢
(6.56)

gut2tan 84+ (L4o)t, —t.=0.

Equation (6.56) has a positive and a negative
solution. The positive solution, whlch applies
here, is

(6.57) t, =

1420 _ -
Ztc[l—{—o‘-}—\/;l—{—a)z—l—z 7 gut.tan 8:|

This may be rewritten in the form

t.cos §
(6.58) t, = .
W4 cos s+ y u(n + cos 8)
2
1+ y1+28
where
1420 gutc
B = . tan §
(14 0)2 1%
gt.sin s i
vV w4 cos s

Let _K_designate the time average of K from
the beginning of pull-up until the release of the

"""""
e N e e e T e e T T e N S N

" bomb., From equation (6.44) it follows that

K =% -+ cos 8, so that equation (6.58) can be
expressed in the form

t.cos 8

t, = .

7-}— \/ ?(I?-cos 8)

(6.59)

2

H

14+ y 1428

wherein 8 can be rewritten now as

gt.sin§ K —cos$
(6.60) B = .

Vv K

As the final form for the expression for the
release time t,, we rewrite (6.59) as

tey
(6.61) ¢, = R

K+ YK —

where the function y is given by

E+YE—K

K + YK (K — cos 5) 1+\/1+23

2 cos 8

The particular property of the y function which
makes it useful in this connection is that,
although it is a function of the three variables
K, §,and t./V, it is chiefly a function of §, show-
ing but little variation with X and t./V over the
ranges of values of X and t./V which occur in
toss bombing. Values of the ¢ function are tabu-
lated for appropriate ranges of these variables
in table 6.1 (Units used in this table are feet
and seconds, with ¢ taken as 32.2).

Since y reduces to unity when § = O, and
since ¢ shows relatively little change when K
and {./V are varied, equation (6.61) shows that
¢ can be regarded as a factor whose purpose is
to reduce the pull-up time from that for hori-
zontal bombing to the correct value for bombing
from a dive,
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Table 6.1

Values of the i Function

i ! i
5 1)V =01 f 02 | 03 j 04 | 05 |
| ‘ l ¢
K =2 ' i
i 1 | x | | i
; 0 ; 1.000 i 1.000 1.000 | 1.000 i 1.000 |
10 < 0.968 ! 0.955 0.943 0.932 i 0.920 ;
20 | 0.903 0.880 0.859 0.840 0.822 :
30 ' 0.808 0.778 0.752 0.728 0.708 '
40 | 0.691 0.657 0.629 0.605 ! 0.584
50 0.558 0.525 0.498 . 0.476 | 0.437
60 | 0 418 i 0.388 0.366 0.347 | 0.332
70 ] 0.275 0.253 0.237 0.224 ©0.213
80 ' 0.134 0.123 0.114 0.107 0.102 ;
90 | 0.000 0.000 0.000 0.000 0.000
K=3
0 1.000 1.000 1.000 1.000 1.000
10 0.965 0.949 0.933 0.919 0.905
20 0.901 0.872 0.846 0.824 0.802
30 0.809 0.773 0.742 0.716 0.692
40 0.697 0.658 0.626 0.599 0.576
50 0.568 0.531 0.501 0.477 0.456
60 0.430 0.397 0.373 0.353 0.336
70 0.286 0.262 0.245 0.231 0.219
80 0.141 0.129 0.120 0.113 0.107
90 0.000 0.000 0.000 0.000 0.000
K =4
0 1.000 1.000 1.000 1.000 1.000
10 0.964 0.945 0.928 0.912 0.898
20 0.899 0.868 0.840 0.816 0.794
30 0.809 0.770 0.737 0.709 0.685
40 0.698 0.657 0.623 0.595 0.571
50 0.572 0.532 0.501 0.476 0.455
60 0.434 0.401 0.375 0.355 0.338
70 0.290 0.266 0.248 ‘0,234 0.222
80 0.144 0.132 0.122 0.115 0.109
90 0.000 0.000 0.000 0.000 0.000
K=5
0 1.000 1.000 1.000 1,000 1.000
10 0.963 0.943 0.925 0.909 0.893
20 0.898 0.865 0.836 0.811 0.788
30 0.809 0.768 0.734 0.705 0.680
40 0.699 0.656 0.621 0.593 0.568
50 0.574 0.533 0.501 0.475 0.454
0 0.437 0.402 0.376 0.356 0.338
70 0.293 0.268 0.250 0.235 0.223
80 0.146 0.133 0.124 0.116 0.110
90 0.000 0.000 0.000 0.000 0.000
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Figure 98. — Air and Vacuum Trajectories

6.15 Air Resistance in Toss Bombing

6.15.1 The Trajectory Equations in Air

In studying the effects of air resistance on
the bomb trajectory it is best to employ a coor-
dinate system consisting of horizontal and verti-
cal axes £ and 5 with origin at the point of
release as indicated in figure 98. In this figure,
the curve PT is a vacuum trajectory through
the target at T, PST’ an air trajectory with the
same release conditions, and P'T an air trajec-
tory from a release point determined so that the
bomb will hit the target. The percentage in-
crease in t. required to obtain the trajectory
P'Tis

At Vat, TS
(6.63) = —
tC Vtc OT

The equations of the vacuum trajectory, using
¢, n coordinates, are

¢=U,(t—t)

p=W(t—t) +49(t—1t)7,

(6.64)

where U, and W, are the horizontal and vertical
components of velocity at release. If the coor-

dinates of the target are & and u, at time t =&,
elimination of the quantity ¢, — ¢, from equa-
tions (6.64) yields the relation

w .
(665) ny = gh + Eh- .
U

The corresponding relation for the air frajec-
tory PST” will now be obtained. If u=¢ and
W= ;;, then the velocity of the bomb in its path
is v :\/ u? 4 v, The retarding acceleration, a,
due to the air, is assumed to be representable
in the form

(6.66) a = Bv?,

where B is constant along the trajectory. The
components of the acceleration in the £ and 5
directions are then,

(6.67) @, = Buv, a77 = Bwwv.
S

From equation (6.67) the equations of motion
of the bomb are

(6.68) 0= — Buw, w = g — Bwv.

..................
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Let ¢ be the angle between a tangent at any
point on the trajectory and the horizontal, so
that

2%

(669) tan [
U

Equations (6.68) can now be integrated ap-
proximately under the simplifying assumption
that the total change in direction along the
trajectory is small. Thus, if we denote the mean
value of ¢ over the arc PT’ by o, the constant B

COS ¢

can be conveniently replaced by B , SO
cos¢

that equations (6.68) then become
(6.70) 1w = — Bu? sec W = g — Buw secp.

Integrating the first of these equations and
simplifying, we obtain

U,

(6.71) u =
14 BU, (t —1t,) secy

Using this result in the second of equations
(6.70) gives

. BU,vsecy
w=g — ,
1+ BU, (t—t,) secs

whose solution is

W, [g(t—t.,) +$BU, (t—t.)? gsecy]
(6.72) w = -

14+ BU,(t—t,) secy

Equations (6.71) and (6.72) give the com-
ponents of velocity in terms of time measured
from the beginning of pull-up and the conditions
at release. Further integration gives the coor-
dinates ¢ and 5 of the bomb after release in the
form

142

cos ¢ BU.(t—t,)

B cos p
(6.73)
g (t—t,)
n=1g(t—¢t)* 4 —
2BU,secy
W.— gcos¢/(2BU,)
+ ~ .
BU, secy

BU, (t —t,)
ln[l—}- :l

coSp

The elimination of the quantity ¢t — ¢, be-
tween these equations yields the equation of the
air trajectory PT” in the form

w, 9&
(6.74) 7= £+ - [14-:(8)],
where
coS ¢
(6.75) () =—1— —
B¢
cos? ¢ 0B _
+ 2RB? 52(6 § sec - 1.
_ By taking the first four terms in the expansion
of ezBé Se€C ¢ and dropping the rest, an approxi-

mate formula for ¢ (¢) is found to be
(6.76) ¢(£) = 2 Btsecy.

Since equation (6.74) differs from equation

' (6.65) only in the term e (£), this term is then

the desired term that accounts for air resistance.

6.15.2 The Ground Errer

The distance T'T, which is the error on the
ground due to air resistance acting on the bomb,
can now be evaluated. We shall denote this error
by A &. (It will be recalled that the coordinates
of the target T are (&, m) in the & 4 system of
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coordinates.) The coordinates of the point 77
are then (& — A &, »,). If these are substituted
into equation (6.74) and use of relation (6.65)
be then made, the result is

W}‘A‘Sll .(]
+
U, 21,2

(6.77) 0= — [— 28 Ag,

+ Aghg + (Sh — A gh)2 € ('Sh — A 'i:/l) ] .

Since the unknown A §, is obviously much
smaller than ¢, the term A £ can be neglected
in comparison with the term — 2§, A §,. Simi-
larly, upon employing relation (6.76) with

é == "_-:h — A fh
we can replace the term
(& —a&) e (Bh—A&)
by

v

.!;B (ghx —3 gth éh) sec ;-
Thus equation (6.77) can be rewritten as

W:'Agh g

0=— +
U. 2U,2

[ - 2"3}1 Agh

+ 3B (& — 382 A &) sec ‘;] ’

whose solution for A g, is

Bg:f},:‘ sec ;

(6.78) A = — .
3 (UrWr + géh + B.(/;hz sec ‘F)

In using the formula (6.78) it is sufficiently
accurate to replace ¢ by §. The quantities U,,
W, and & can be computed from the formulas

U, =V cos (§ —0,),
W,=Vsin (6§ —46,),
& —=Vt.cos§ —x,c0o88 —~y,sins.

Formula (6.78) can now be used in calculating
the percontage correction A ¢,./t. of t. necessary
to secur: a hit. Upon adjusting the toss bomb
computer to account for this correction, the
bomb will then be released at point P’ (see
figure 98) and its trajectory will pass through
the target. Although we shall not justify the
statement here, it can be shown that the per-
centage correction cited is given approximately

Vi,

by k , Where k is an empirically determined

~ constant and C is the ballistic coefficient of the

bomb.
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Chapter 7

ROCKETRY

7.1 Introduction

The problem of how to aim and fire rockets
from aircraft is considerably more complicated
than that of aiming and firing bullets. The com-
plications stem mainly from the ballistics of
the rockets and the method of launching air-
borne rockets. The two are not mutually exclu-
sive since the trajectory of the rocket depends
upon the manner in which it is launched as well
as upon other considerations. A complete dis-
cussion of the theory of motion of a rocket is
beyond the scope of this book. For such a dis-
cussion the reader is referred to Reference 18
of the bibliography in the back of this book. We
shall concern ourselves only with a qualitative
discussion of how rocket trajectories are ob-
tained and the corresponding sighting problem.
Furthermore, we shall be mainly concerned with
air-to-ground firing of rockets. Air-to-air com-
bat using rockets will be briefly mentioned at
the close of this chapter.

7.2 Methods of Launching Airborne Rockets

The motion of a rocket can be divided into
three distinct periods: the launching period, the
period of burning after launching, and the period
of motion after burning is over. During the
launching period, the rocket is under the influ-
ence of the aircraft which is carrying it. During
the burning period, the rocket is subjected to
the forces of gravity, jet forces, and aerody-
namic forces. After the rocket fuel is consumed,
the rocket moves under the gravity and aero-
dynamic forces only and its behavior is then
similar to that of a bomb.

Most rockets are fin-stabilized in the same
manner as bombs. The trajectory of such rockets
differs from that of bullets in three respects:
(1) rockets are slower; (2) rockets tend to
follow the direction of flight of the aircraft
while bullets travel in the direction of aim of
the gun; and, (3) the rocket trajectory has an
appreciable curvature. These three character-

istics have considerable influence upon the aim-
ing problem. Since we have a longer time of
flight, greater allowance for target speed and
wind must be made and, in addition, the greater
curvature of the trajectory means larger grav-
ity drop allowance.

Since the rocket tends to follow the direction
of flight of the aircraft, its trajectory is highly
dependent upon the manner in which it is
launched. Thus the launching device, the
method of stabilization (whether fin or spin-
stabilized), and the attitude of the aircraft at
the instant of launching, all contribute to the
aiming problem. Since spin-stabilized rockets
are still very much in the experimental stage
we shall limit our discussion to fin-stabilized
rockets.

There are four methods in common use for
launching airborne rockets: (1) retro-launching,
(2) fixed launching, (3) Dynamic controlled-
displacement launching, and (4) drop launching.
Let us consider each of these in order.

In retro-launching, the rocket is fired to the
rear of the launching aireraft. This method of
launching is very effective in anti-submarine
warfare.

Fixed launching applies to rockets fired while
held in fixed positions and in orientation relative
to the launching aircraft. Thus the term in-
cludes: (a) post launching, in which the rocket
is held in position by lugs and is free of the
aircraft after moving a very short distance;
(b) rail or tube launching, in which the rocket
is guided for the first several feet of travel;
and (c¢) fixed displacement launching, whereby
the rocket is lowered into a fixed position below
the aircraft before it is ignited.

Dynamic controlled-displacement launching is
the term applied to the method of launching in
which the rocket is dropped before ignition, but
is guided by a yoke which holds the rocket in
fixed orientation relative to the airplane until
ignition occurs. This method of launching has
been abandoned in favor of drop launching.
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Figure 100. — Coordinate System 5
Drop launching is the term applied to the Z.L.L. = Zero lift line; a reference. lift :'_S‘_
method of launching in which the rocket is line fixed in the airplane; i
dropped completely free of the aircraft and is e = Angle of attack, angle from -::_
ignited by a delay firing device after it reaches the B.S.D.L. to the F.L.; -
a safe distance below the airplane, a, = Angle from the B.S.D.L. to “
i the Z.L.L.; -
7.3 Coordlndfe System 8 = Dive angle, angle from hori- =
Before we consider the trajectory of the zontal reference lin.e to F.L.; o
rocket, let us focus our attention upon the coor- o = Angle from the horizontal to i
dinate system which will be used to describe the the sight line; i ) =
trajectory. The action will be considered to take A= Angle from the sight line to gt
place in the vertical plane and any horizontal the flight line; )
corrections will be superimposed. Figure 100 A= Lead angle’ angle from the
shows the orientation of the lines and angles. sight line to the B.S.D.L.;
Let us further define v = Angle from the horizontal to o
. b."’
(71)  F.L.=TFlight line, the direction of the BS.D.L.; %
motion of the aircraft: fo = Angle from boresight datum ~
L.L.= Launcher line, attitude of line to E.L.L.;
Jaunchers ; ‘ 7 = Present range. o
E.L.L. = Effective launcher line, line of =~ The clockwise direction is taken to be positive.
departure of rocket; o
S.L. = Sight line, line from ownship Note that the launcher line may be offset i
to target; from the boresight datum line by a fixed angle. T
B.S.D.L. = Boresight datum line — a ref- Since both lines are fixed in the airplane, this -
erence line fixed in the air- angle is constant and is measurable. The angle e
plane; fa is actually the angle that the rocket turns L:'.:
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ROCKETRY

in the direction of the flight line from the
launcher line and thus it should actually be
defined from the launcher line. However, to
simplify the derivation which will appear later,
we shall assume that the boresight datum line
and launcher line coincide. In any airplane
where this is not the case, the constant offset
angle can easily be accounted for as is made
amply clear in rocket sighting tables.

7.4 Qualitative Discussion of Trajectories

The motion of a rocket can be defined by
Newton’s laws and the differential equations
involved can be derived. However, these equa-
tions are quite complex and their derivation
would consume considerable space as can easily
be seen by referring to Reference 18 in the
Bibliography. For the purpose of this book, let
it suffice to say that under justifiable assumption
of the aerodynamic forces and with experimen-
tally determined values of the necessary para-
meters, the equations of motion can be solved
and the pertinent data of the trajectory can be
tabulated. We shall, therefore, discuss only the
qualitative characteristics of the trajectories
and their application to the sighting problem.

We begin the discussion by considering the
{rajectories of fixed-launched rockets. Since the
rocket is already moving through the air mass
with the speed of the aircraft, the air acts on
the fins, turning it into the wind as soon as it

leaves-the launcher. Angular momentum carries

it beyond the direction of the wind and, conse-
quently, its direction oscillates about the direc-
tion of its vector velocity. This oscillation dies
out, leaving a well defined initial direction for
the rocket trajectory which we shall refer to as
the effective launcher line, Thus the initial
direction of the path is along this imaginary
line whose direction is a certain fraction f of
the way from the launcher line to the flight
direction. The quantity f is called the launching
factor. It is possible to derive a formula for this
launching factor and to compute its value which
depends upon the rocket type, the length of the
constrained motion on the launcher, the propel-
lant temperature, and the indicated airspeed of
the aircraft, but not on the dive angle. There is
a launching factor both in the vertical plane and
the traverse plane.

Since the rocket starts out in the general
direction of the aircraft it is necessary to de-

HORIZONTAL REFERENCE LINE
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Figure 101. — Angle of Attack
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termine the aircraft’s direction in terms of the
thrust direction. This is accomplished by con-
sidering the boresight datum line which is fixed
in the airplane. Since the latter is at an angle
a, from the zero lift line of the aircraft, then,
considering the influence of gravity, the flight
direction will be at some angle « — a, below the
zero lift line. This angle is inversely propor-
tional to the square of the indicated airspeed,
V.. If the airplane is nosing up or down, there
is a centripetal acceleration ay in the direction
normal to the flight path to be considered. This
acceleration is given by

(1.2) ay= V5.

The formula for the attack angle « can then

be written as
b

(7.3) a=a, + (g cos s — V(,-é)

2

Gi.'
where b is a constant of proportionality which

depends upon the airplane. See figure 101.
The above discussion assumes that the rocket

is launched into a uniform air stream. This
assumption does not hold in regions close to an
aircraft wing. It is, therefore, necessary to
determine an “effective angle of attack” from
sighting data. The method will bhe explained
subsequently. -

The gravity drop term of the rocket trajec-
tory depends upon the rocket type, propellant
temperature, the dive angle, the launching
speed, and the slant range to the target. This
gravity drop is computed from the simplified
equations of motion and the values are tabulated
together with other ballistic data for each
standard rocket type. This data consists of
tables of trajectory drops, launching factor,
flight times, and projectile velocities. Numeri-
cal studies on the values of the trajectory drop
for many rockets currently in use has revealed
that there exists linear and quadratic functions
of the range which can approximate the trajec-
tory drop and angle of fall. The coefficients for
these functions also are tabulated. A portion of
a typical trajectory drop table for a 80° dive
angle is illustrated in table 7.1.

Table 7.1
Trajectory Drop — 30° Dive Angle
Trajectory Drop (Mils) Normal to Effective Launching Line
Range 0°F 40°F 70°F 100°F 0°F 40°F 70°F 100°I+-
(yds)
320 knots 380 knots
> 98 97 97 .95 .99 .99 98 97
500 27 24 21 19 | 23 20 18 16
600 30 26 23 21 25 22 20 18
800 34 . 30 27 25 29 26 23 22
1000 39 34 31 29 33 29 27 25
1200 43 38 33 32 37 33 30 28
1500 49 44 41 39 43 39 36 34
2000 61 5H 5l 50 53 49 46 44
2500 74 68 6-4 62 65 60 57 35
3000 88 82 78 76 78 73 69 68
4000 118 112 107 106 107 101 97 97
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POSITION AT RELEASE

L L,
B, S. D, L'l
POSITION AT IGNITION

Figure 102. — Drop-launching Conditions

In drop launching, the rocket is dropped com-
pletely free of the airplane and the ignition of
the rocket is delayed. Thus, there is a period
of free fall. The effective launcher line becomes
effective at the ignition point and a further
correction would be necessary on the sighting
equation. See figure 102. Experiments have
been devised in order to obtain the necessary
information on the free-fall part of the trajec-
tory and the effective angle of attack.

Retro-launched rockets are fired backward

relative to the aircraft in a vertical plane and
at low altitudes. See figure 103. Under these
conditions we may make the assumption that
the only forces acting upon the rocket are the
rocket jet which produces a constant accelera-
tion equal to the velocity during burning divided
by the burning time, and the force of gravity.
The computation of the rocket’s velocity rela-
tive to the aircraft becomes the major ballistic
data. The trajectory is then combined with the
sighting problem.
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Figure 103.— Retro-launching Conditions
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(2) (b)

TRAJECTORY
OF SHELL

LINE OF SIGHT

‘ EFFECTIVE
LAUNCHER

\</ LINE

N\

TRAJECTORY
OF ROCKET

LINE OF SIGHT
LAUNCHER
N \< LINE

GRAVITY DROP
7 MILS

(c)

EFFECTIVE LAUNCHER LINE

TRAJECTORY OF BOMB
LINE OF SIGHT

~

EFFECTIVE

GRAVITY DROP
2N 115 MILS

GRAVITY DROP
28 MILS

A

A

(a) SHELL FIRING

SMALL GRAVITY DROP
SMALL SIGHTING ANGLE

\

(b) ROCKET FIRING

INTERMEDIATE GRAVITY DROP
INTERMEDIATE SIGHTING ANGLE

(c) BOMB DROPPING

LARGE GRAVITY DROP
LARGE SIGHTING ANGLE

Figure 104. — Gravity Drop Comparison

7.5 lllustrations of the Effects on Rocket
Trajectories

Many things enter into the determination
of rocket trajectories. Some of these factors
introduce errors in the firing of airborne rockets.
These effects are best described by illustrations
and the following figures are presented here for
visual explanation.

Figure 104 shows the difference in magnitude
of the gravity drop effect for shell fire, rocket
fire, and bomb dropping, and clearly illustrates
the intermediate role of the rocket.

Figure 105 shows the effect of the dive angle
on the trajectory drop and illustrates the fact

that the trajectory drop decreases as the dive
angle increases.

Figure 106 shows the effect of Launching
Speeds on the rocket trajectory and illustrates
the well-known fact that the greater the speed
the smaller the trajectory drop.

Figure 107 shows the effect of range misesti-
mation on the trajectory.

Figure 108 shows the effect of temperature
on the rocket trajectory. The burning time and
distance of a rocket depends greatly upon the
temperature of the rocket propellant at ignition.
This in turn affects the trajectory as illustrated
in the figure.
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Figure 105. — Effect of Dive Angle
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Figure 107. — Range Misestimation
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FLIGHT LINE OF AIRPLANE

FLIGHT LINE_PARALLEL

Figure 109. — Effective Launcher Line in Lateral Plane

Figure 109 illustrates how the rocket turns
into the flight line of the aircraft in the lateral
plane. Thus, there is an effective launcher line
in both the vertical and lateral plane.

Figure 110 illustrates the effect of firing in a
skid or side-slip. The rocket will again tend to
follow the direction of motion of the aireraft.

Figure 111 shows the effect of the angle of
attack on the aiming problem of rockets. If the
B.S.D.L. rides higher with respect to the flight
line, a large sighting angle is necessary. Condi-
tions to increase the angle of attack are shallow
dive, heavy airplane loading, or low indicated
airspeed.

Figure 112 illustrates the effect of nosing
over or pulling up at the time of fire. A pull-up
will tend to undershoot the target while a nosing

156

over will tend to overshoot the target. This kind
of pull-up is not to be confused with the toss
bombing technique where the projectile is re-
leased at a predetermined instance during a
pull-up from a straight-line dive.

Figure 113 illustrates a typical curve of ap-
proach for a standard airplane tracking a ground
target with a fixed sight setting.

Figure 114 illustrates the effect of wind and
target motion on the aiming problem. It is seen
that the effect of the wind is essentially the
same as a target motion and therefore need not
be considered as a separate problem. Conven-
tional sighting systems measure the relative
motion of the airplane and the target and this
relative motion contains the wind effect as an
inherent part.




LINE TO TARGET

LINE OF SIGHT TO TARGET

ANGLE OF SKID

Figure 110. — Skid

ANGLE OF ATTACK

SIGHTING
ANGLE

Figure 111. — Effect of Angle of Attack

157

S
IO

T

~ e -
.....................




NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE Fé

PATH OF NRPLANE

AR N
i * b £

Figure 112. — Nosing Over or Pulling Up
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CURVE OF APPROACH

S.L. 4000 YDS.

S. L. 5000 YDS.
S.L. 3000 YDS.
S.L. 2060 YDS.

Figure 113. — Curve of Approach
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" Figure 114. — Wind and Target Motion
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Figure 115. — Trajectory Drop, ¢

7.6 The Sighting Problem

It has been pointed out that in the forward
firing of rockets the direction of motion of the
rocket is essentially the direction of motion of
the airplane at the instant of firing. Hence, in

. order to hil the target the airplane must have

the proper direction of motion at the instant of
firing. The airplane, therefore, is maneuvered
into a correct attitude and held there for a
period of time after which the direction of
motion will have taken a calculable position
with respect to the airplane. This direction of

L S N T T P

motion may be specified in terms of an angle
between the flight line and the sight line. The
behavior (ballistics) of the rocket itself may
now be superimposed upon this problem and the
correct lead angle may be determined. This,
then, is the sighting problem, of which we con-
sider the following three distinct cases:

(a) attacks against a stationary target;

(b) attacks against a target moving in
range;

(¢) attacks against a target moving in
azimuth.
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Figure 116. — Rate of Change of &

These cases are treated separately and the com-
plete picture is obtained by superposition.

A. Stationary Target

We shall first consider “the sighting
angle” which is needed to compensate for the
gravity drop of the rocket, This angle may be
measured from the sight line to the boresight
datum line (A) or to the flight line (A). Since the
rocket turns from the launcher line to the effec-
tive launcher line through the angle fa, the tra-
jectory drop to be considered is y, the angle
between the effective launcher line and the sight
line. See figure 115.

It is then clear that

(74) A= — (¢ + fa)

or, in terms of the lead of the flight line over
the sight line,
162
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(75) "xmAt+e=—y¢v+ A —f)e.

The above formulas are expressions for the
sighting angle, except for the parallax correc-
tion which arises because the sighting system is
invariably mounted in the airplane at some dis-
tance, d, above the launchers. This correction
nmay be approximated by d/r and is added to the
right-hand side of equations (7.4) and (7.5).
Since this parallax correction can be superim-
posed it will not be carried along in future
mathematical expressions. ‘

Let us again emphasize that ¢ and f depend
upon the rocket type and the launching condi-
tions only and, therefore, tables of their values
may be used for all aircraft. On the other hand,
« and d depend upon the aircraft type and the
manner of installation of the launchers and,
therefore, must be determined separately for
each kind of aircraft and installation.

Th= existence of the sighting angle gives rise
to an angular rate of the sight line during a
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tracking period. This angular rate may be used
to obtain the required lead which must be com-
puted by any instrument which measures the
angular rate. Consequently, we need a relation-
ship between the angular rate of the sight line
and the lead angle.

Let us refer to figure 116 and ignore any
changes in the angle of attack, «, during the
time under consideration. The airplane is con-
sidered at two positions P(t,) and P,({, 4 Atf).
The law of sines applied to aAPP,T yields

sin (oAt) | |sin A

(7.6) = .
VAt r{t, 4+ at)

Since both ¢At and X are small, we may use the
angle approximation to the sine of the angle
so that

loat] Al lo|
(7.7) = or
V. At 7 (t, 4+ At) Vs
L
T r(t, AL

Since At is small, a further approximation may
be used on the range, so that » (¢, + At) =»(¢,)
=1. Let us now consider the signs and direc-
tions of the angles as given in figure 116 so
that we mayv remove the absolute value signs
in equation (7.7). According to our convention,
o 1s positive and A is negative. The motion
described is such that ¢ increases as t increases,
therefore ¢ is positive. Equation (7.7) may then
be written in the following form

Ve Ve
A= —
” r

(A4a) .

(78) o= —

This equation gives the rate of rotation of
the sight line that is required to keep it on the
target and to provide the proper gravity drop.

B. Target Moving Along the Firing Range

This problem is solved by resolving it
into two parts and superimposing their solu-
tions. The first part is the problem of the

988995 O - 52 - 12

stationary target discussed above from which
we get all the necessary information as far as
the gravity drop is concerned. In the second
part, we assume the airplane to be stationary
and the rocket path to be a straight line. We
are then interested in expressions for the kine-
matic lead required by the motion of the target
and for the rate of rotation of the sight line
necessary to produce this lead. We introduce
Ax to express the kinematic lead and give it
direction as shown in figure 117, where we have
pictured a situation with the target moving
away from the airplane at a speed V. Let {; be
the time of flight of the rocket over the path
r(t, + t;). From the law of sines we have

Isin Ayl sino
(1.9) -
Vrtf rr

Since Ay i1s small, we use the approximation

Vits

(7.10) sine.

[AXKI = |Sil’1 A\.A’l =
Py

Again we use the approximation 7, = » and the
fact that the times of flight over the present
and future ranges are very nearly equal. (Re-
member that the target is a ground target and
is, therefore, moving relatively slowly.) If we
let ¥ be the average velocity of the rocket over
the future range we have

”y
V=—-on

b

(7.11)

and the magnitude of the desired kinematic lead
at any instant of firing is given by

Ve
|Ax} = ——sing.

Vv

(7.12)

Since A, and ¢ are oppositely directed angles as
shown in figure 117, we have

Vi
(713) Ay = — ——s5sine.
v
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T (to)

Figure 117. — Target Moving in Range

By superposition we can now express the total
lead by

(7.14) A= -\S’.T. =+ A\K
or in terms of the flight line over the sight line

(7.15) A= Agr == A= — Y+ (1 —7f) e Ax

where Agr andAqr, are the leads for stationary
targets; the plus sign holds when the target is
moving away from the airplane and the minus
sign holds when the target is moving toward
the airplane.

The problem of -roper tracking to give this
lead requires an expression for o, the rate of

164

rotation of the sight line. Consider the problem
over a short increment of time, A¢, during which
both the airplane and the target are in motion.

T (to+tf )

Let us refer to figure 118.

Apply the law of sines to AT, T.T* to give

(7.16)

or,

(7.17)

j oTr_: V(,‘At
IsinA]  sin (180° — o)
V(;At 'sin ,\‘
7o:l‘.‘ =

sine
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Figure 118.— Kinematic lead — Stationary Target \i A
T

Now, ThT., = T.T. — T.T\ = T.T. — Vzat, and

Apply the law of sines to AP, T.T, to give
using sin A = \, we may write

(7.18) T = r(to+ A1) _ ) sine
sin (oAt) sin o (7.20) oat=- (T.T: — Vzal)
»
or, sine [ Vet ‘l
) . = - Ify.kt
sin o .
(7.19) oAt =T,1. , or r sine B
11 ’
LV v
(7.21) (r::————l,\] — —SMo.

since (¢, - Af) = r and sin oAt = oAt . ?
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T (to)

Vrtg

T (to +tf)

Figure 119, — Azimuth Target Motion

To remove the absolute value sign from A we
note that for the situation pictured ¢ > O and,
since A < O, it is necessary to have a negative
sign for the first term. Further, making use of

(7.13), we have ¢ in terms of A and Ax. Thus,

. Ve Vr
(7.22) o= — A — sin ¢
7 r
Ve \%4
= — A + AK .
r r

If the target is moving toward the airplane,
then ¢ is increasing more rapidly and the com-
ponent of ¢ due to target motion has the oppo-
site sign from that given in equation (7.22).

C. Azimuth Target Motion

Azimuth target motion is a correction applied
to the sighting problem. The amount of this
correction is obtained from the formula

Vits

(7.23) tan Ay = -

7
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which is easily obtained by considering figure
119.

By using an approximation for the tangent, this
expression usually takes the form

Vr
(7.24)

Ay =

7.7 Determination of Sighting Tables

Sighting settings are determined for aircraft-
launched rockets by firing enough rounds under
a number of specified controlled conditions and
from these data sight settings for all other
desired firing conditions are extrapolated or
interpolated by theoretical methods. The num-
ber of conditions needed for the computation of
reliable sighting tables depends upon how com-
pletely the ballistics for the particular rocket,
aircraft, and launcher aré known, Usually, a
large number of rounds have to be fired under
many conditions.

The usual procedure is first to determine the
launching factor and trajectory drop for the
particular type of ammunition. The parallax
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factor can be introduced by direct measurement
in the aircraft. The problem then is to determine
the “effective angle of attack” for the firing
condition. This is accomplished by having an
accurately boresighted airplane fire a given
number of rounds of one type of ammunition at
known initial release conditions, making succes-
sive passes in opposite directions to cancel out
wind effects. An arbitrarily chosen sight setting
is used. The range data are then reduced to a
standard set of firing conditions and the cor-
rected sight setting, which would bring the
mean point of impact on the target, is estab-
lished.

Thus, everything in equation (7.4) is known
except the angle of attack «, and thus the effec-
tive angle of attack is determined. Having estab-
lished the effective angle of attack, sighting

tables of the lead angle can then be computed.
It has been found that the effective angle of
attack can be computed from the formula

CW cos 8
_— K
V(,'ii’
where C and K are constants determined from
firings. Thus, (" and K are tabulated in sighting
tables for the particular aircraft.

The above discussion conveniently pertained
to post launchers. In the case of drop launchers,
another variable, namely the time of drop, must
be determined. This is again accomplished by
firing enough rounds to establish the correct
sight settings for a number of conditions.

A typical sight setting table is shown in
table 7.2,

Table 7.2

Typical Sight Setting Table

Type of Rocket 1
30° Dive } Sight Setting (Degrees)
Propellant Temperature (IF)
Slant I ‘ B
Range ° | 4w 70° 100° 0° 10° 70° [ 100°
(yels) ! | 1
Speed> 240 MPH 300 MPH
i - S—— MR—
400 2.9 i 2.5 2.3 2.2 1.5 1.3 ’ 1.2 1.1
500 3. 2.6 2.4 2.2 1.6 [RE I 1.3 1.1
600 3.1 2.7 2.5 2.3 1.7 1.5 i 1.3 1.2
800 3.3 2.9 [ 2.6 2.5 1.9 1.7 1.5 1.4
1000 3.4 3.0 2.8 2.6 2.1 1.8 .6 1.5
1200 ; 3.7 3.3 | 3.0 2.8 2.2 2.0 8 1.7
| I ' !
1500 4.0 35 | 32 3.1 25 | 22 | 20 1.9 |
2000 4.4 40 | 37 1 36 29 | 26 1 25 2.3
2500 4.9 4.5 42 4.0 3.4 3.1 2.9 | 2.8
3000 | 5.4 5.0 47 45 3.8 | 3.8 33 | 3.3
L 4000 % 6.6 | 6.1 | 5.7 i 5.7 4.8 1.5 4. i 4.2
1 !
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7.8 Basic Principles of a Rocket Sight

In the forward firing of any projectile, the
airecraft must have the proper direction of
motion at the instant of firing. A “sight” may
be regarded as a device which insures this cor-
rect direction of motion. As has already been
shown, this direction of motion may be specified
in terms of the sighting angle or lead angle and
hence is a function of a number of variables
such as range, airspeed, dive angle, type of
rocket, ete. The sight then must perform the
following functions:

(1) It must measure or predict the values
that the variables will assume at the
instant of fire;

‘(2) From these data it must compute the
correct lead angle;

(3) It must employ some aiming device
so that the pilot can produce the re-
quired direction of motion.

Each of these functions may be performed in
a number of ways and the goal is to arrive at a
combination of these ways which not only will
give the correct lead angle but also will be easy
to mechanize. Although the correct direction of
motion of the aircraft can be attained by using
a fixed sight, it has been demonstrated that
greater accuracy can be obtained by using a
computing sight. We shall, therefore, limit our
attention to computing sights.

A computing sight is a device which auto-
matically computes the correct lead from input
data which is continuously made available to
it. Such a device can be designed to reproduce
the tabular sight settings that have been
arrived at by calculations discussed in the last
section. Thus, a computer circuit of a sight may
be designed to provide a continuous solution to
a basic sighting equation and, by proper adjust-
ment of the computer constants to match the
equation, the computer can be made to repro-
duce the sight settings for any type nf projectile.
The tabular sight settings are then used to
calibrate the sight.

The fundamental equation may take many
forms depending upon the method of mechani-
zation to be used. Thus the simple rocket sight
may be based on the equation:
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(7.25) Sight angle = trajectory drop + f
times the angle of attack; i.e., equation (7.15);
or it may utilize the angular rate of the sight
line and be based upon equation (7.22).

7.9 A Rocket Sight Based on Equation {7.25)

A simple rocket sight suitable for use against
stationary targets can be designed on the basis
of equation (7.25). This equation for no target
motion also is equation (7.4) or,

(7.26) — A=y + fae.

Tests on rocket ballistics indicate that the
trajectory drop, y, can be approximated by
(a + br) cos § where @ and b are the coefficients
for a linear approximation. If, further, the sight
is based upon the measurement of the altitude
and not the range, we have .

h h

7= —

sin ¢

(7.27)

sin (8——A—a).

If we substitute these approximations into
(7.26), we have,

bh

(7.28) — A= (a +

sin e

>coss+fa.

The effective angle of attack is determined from
the following formula

CW cos §
V2

1

(729) o= K

where C and K are constants determined from
firings and given for the particular aireraft in
sighting tables. Equation (7.28) will then take
the form

hf.(v)
(7.30) — A =[f(v) + —_ >cos § — fK
SN o
where
fcw
file) =@+ ————and f.(v) = D.
G
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Figure 120. — Voltage Computer — Wiring Diagram

A further simplification is obtained from the
fact that

sin o

sin 8 — [A 4+ «])
= sin § cos(A 4 a)—cossin(A+ )
and since A 4- « is small, we may approximate
sin ¢ by

(7.31) Sin o = sin & — (A 4+ a) cos s
h

=——— (A+a)coss.
V(i

The function f.(v) is now assumed to be in-

versely proportional to V; ie., f,(v) =-—, so
G

.........................

v
.....

o« >
~ .
~

that the final form of equation (7.26) is then

(7.32)

A=

. hk

,-fl(v) + - ]coss — Kf.
L ’ h——-V(;(A.+(¥) cos 8

The mechanization of this equation is accom-
plished by a voltage computer in which the
various parameters are represented by variable
electrical potentials. The necessary operations
of addition, subtraction, multiplication, and
division are performed by suitably connected
potentiometers. A simplified diagram showing
the principle of this computing circuit is illus-
trated in figure 120,

169

.........

~~~~~~

NENMERIR A




. UNNOYO
AL TR R 0 P N SR R O : -

.
R 3 Rt et T Y T PR C AL S I T

i te & ........“.’N.
~ ~

. N

¥3LN3O DILINDYIN I~
NOLLYLOY ON ¥3GNM 3NIT LHOIS /
SIXY OYAD
~
3N LHOIS .

43LN3O DIHI3IN03D 0Y¥AD

X

.Q..
.

NAVORD REPORT 1493
(4=
>
N
b
=
LS V)]
o
}

170

1'3’S'8 ® 3NIT Y3IHINNVT

3NIT 43HONNVYT JAILD3443

ANIT LHOITS ~ i ’.~ ..""”/ /

NI 1417 0¥3Z ’ ’.nnn.l."l / /V\
[

mz_:ozwmwmm._ﬁzoumox /

MATHEMATICAL THEORY OF AIRBORNE FC




N AL LR B S s T S}

sssss

ROCKETRY

7.10 A Rate Gyro Rocket Sight

Another type of rocket sight utilizes the rate
of rotation of the sight line which may be mea-
sured by a gyroscope (gyro). If the basic
mechanization of the gunsight described in
chapter 5 is adopted for rocketry, then, as
explained there, the precession rate of the gyro
and the coupling factor or sight parameter, q,
will be employed for solving physically a linear
differential equation of the first order in the
lead, similar to equation (4.23) for gunnery.

To initiate the discussion that will finally lead
to a differential equation of the type just men-
tioned, let us assume that the rocket firing
aircraft is tracking a ground target, all motion
being in a vertical plane. Let us further assume
that the rocket sight, basically similar to the
gunsight of chapter 5, performs physically.in
its operation in accordance with the geometry
of figure 121, With the launcher line and bore-
sight datum line taken to be coincident for con-
venience, the essentially new feature to be noted
here is the initial angle 3. by which the gyro
axis is offset from its geometric center or, since
normally the latter direction and the B.S.D.L
are separated by an angle 3, the initial angle
B =p,+ B. between gyro axis and launcher
line. Thus, if initially the line of sight and gyro
axis coincide, the sight reticle will be depressed
below the B.S.D.L. by the angle 8. In order to
fly with the depressed reticle on the target, the
pilot must keep pushing the aircraft into a dive
of increasing steepness. This downward curva-
ture of the flight path, and consequent rotation
of the sight unit with the gyro loosely con-
strained, causes the reticle to drift up from the
offset position, thus reducing the lead.

Figure 121 shows the situation with gyro axis
and sight line undergoing rotation and also
shows where the sight line would be if there
were no rotation to influence the gyro.

The new angles which enter the problem are
defined as follows:

o, = sight line angle under no rotation;

¢ — angie from the reference line to the
magnetic center line of the gyro;

n = angle from the reference line to the
gyro axis;

¢ = angle from the reference line to the
gyro geometric centerline;

B, = angle from the B.S.D.L. to the gyro
geometric centerline; a constant
offset;

8. = angle from the gyro geometric center-
line to the sight line under no ro-
tation;

B =B+ B
The precession rate of the gvro is propor-
tional to the angle between the actual magnetic

field center and the gyro axis so that we may
write

(7.33) 7=K (§—1)
where & is a positive constant.

A discussion similar to the one in section 4.7
shows that the coupling factor, a, achieved by
an optical linkage satisfies the relationship.

[ —¢]

1—a

(7.34) |o— ¢ =

Furthermore, it is clear from figure 121 that
(7.35) IU“CI = I\+B1I = (&+B1)

so that the coupling equation (7.34) states

n—¢

(136) — (A+B) =

1—a
Differentiation of this equation yields
=i

i—a

(1.837) — A=

since 8, is a constant.
If we now employ equation (7.33), we have

(188) —(1—a) A= K(E—q) —£.
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Figure 121 clearly shows that 8, =¢, — ¢, SO

that in the zero position of the coupling equa-

tion
(739) ¢—¢(=(@0—a) (6, —{ == (1 —a) B..

From equation (7.36) we have

(740) 7=—Q10—a) (A 4B + .

If we combine (7.39) and (7.40), we obtain

(741) t—n=(1—0a) B4+ 1 —a) (A48
=1—a) (A4pB+4+8)

={1—a) (A4+7).
Equation (7.38) then takes the form
(7.42)

We now define

1
Kd—a)=—
U

(7.43)

. where u is the sensitivity of the gyro. Further-

more,

(744) (=o-2a +/31
so that

(745) ¢=o+ A

and equation (7.42) becomes

. 1 1 ..
(746) (1—a)Ad+—A=——pBF+o+4A
U U
or
. 1 .1
(7.47) —aA4+—A=0c——8.
u U

Equation (7.47) is the differential equation
whicb a rate gyro rocket sight solves. The quan-
tity o is obtained from (7.21) in terms of the
inputs to the system. The sighting system may
be calibrated for a few constant values of g8 or
a variable B may be introduced into the system.

i72

...........

—(1—a) A=Kl —a) [a4+p]=¢.

7.11 General Theory of Rocket Tossing

The technique for rocket tossing is similar to
that for bombs (see chapter 6). Rocket tossing
differs from bomb tossing in that the rocket has
a propellant which causes its trajectory to differ o
from that of bombs. The geometry of rocket ‘
tossing may be decomposed into three parts, see )
figure 122) : L

(1) The pull-up period, arc OP.
(2) The delay period, arc PD. N

(8) The period after the ignition of the
propellant, arc DT.

The forces acting on the aircraft during the
pull-up period are the same as those which we &
discussed in the case of bomb tossing. During
the delay period, the rocket is acted upon only .
by the force of gravity, and if we assume that '
the rocket is released so that its direction of
motion is that of the line of flight of the airplane "
at release, its coordinates may be obtained in :
the same manner as those for the falling bomb.
The deviation of rocket tossing from bomb
tossing then is in the behavior of the rocket
during the third period. Thus, the path ot the
rocket may be described completely by consider-
ing only two parts; namely, the part which is
the same as the bomb (path from O to D) and
the rocket trajectory from D to T. It also is
assumed that the rocket does not yaw.

We shall consider the rocket tossing problem -
under the same conditions that we considered L
the tossing of bombs. That is, the rocket carry- N
ing airplane flies a straight line collision course
at a constant velocity, V, against a stationary
target. The pull-up from this collision course
is begun at the point O ; the rocket is released at
the point P(z,,¥.) and is ignited at the point
D (x4, ys). The time delay between release and
ignition is denoted by t, end if there is no time
delay, it is only necessary to set ¢, = O in the
following equations.

The equations of motion of the rocket over
the path from O to D are the same as those for
the bomb. See equations (6.48), (6.45) and
(6.46). Let us rewrite equations (6.48) at the
end of the delay time, ¢,

.............
..................................
.................
.....................
.....................
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/ Ty = X, -L gtysin s
: 7., = ;',‘—- t;co8 8
(7.48) Ya Yy gty

Xy =X, + xrt’l +:}gt(12 Sin b

Yo =Y, - yots —Igts cos s .

Let us recall a few definitions and clearly
focus our notation. Refer again to figure 122.

The coordinate system which has
the 2z2-axis along the collision
course OT and the origin at the
point of initiation of pull-up, O.

(z, 1)

(%, ¥.) Coordinates of the rocket at release
time.

(24, ¥4) Coordinates of the rocket at point
© of ignition.

t, The release time.

t. The closing time.

ts The delay time.

74 The slant range of the rocket from
the ignition point to the target,
DT.

E) The flight line dive angle before
pull-up.

6 The pull-up angle at any instant, £.

4, The pull-up angle at release.

64 The angle the tangent to the path
of the rocket at D makes with
the x-axis.

v - The angle between the rocket slant

range and the collision course.

The trajectory drop of the rocket.

<

Sy The dive angle of the tangent line
to the path of the rocket at D.
Since the tangent line is actually
the effective launcher line at D,
the angle 8, = y 4 f«; see figure
121. From figure 122 it also is
easily seen that 8, = 8§ — 4,.
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The path of the recket from D to T is defined
by the trajectory ¢ . A study of trajectory drop
tables for rockets currently in use has shown
that it can be fitted with an empirical formula
of the type ‘ coreomoomTm T

Vb cd(T)
(149) y = [ar,e + —;——Jw (82)

where

a, b, and ¢ are empirical constants for a
particular type of rocket;

‘@ (T) is an empirically determined qua-
dratic function of the propellant temperature T;

e (84) is an empirical function which
depends essentially upon the dive angle 8, and
thus is the same for all rockets. This function
was originally defined graphically; however, a
table of values has been calculated and it also
has been fitted by expressions involving trigo-
nometric functions.

The rocket tossing problem can now be formu-

lated by a close study of figure 122. This study -

reveals that a necessary and sufficient condition
for the rocket to hit the target is that the fol-
lowing angular relation must be satisfied:

(1.50) ¢ =v 4 6.

The problem then reduces to one of finding
expressions for these angles which when sub-
stituted into equation (7.50) will permit that
equation to yield a solution for the correct pull-
up time,

It is easily seen by referring to figure 122 that

2/:/

(751) tan v =

6—7;“— 3«'41

and upon the substitution of the values for z,
and 1, from equation (7.48) and OT =t.V,; we
obtain

Y, + j,‘td — J1gtifcos §
(7.52)

tan v =

tcV.,- —_ 2 — Xty — %gtd"‘ sin §

Ly T,
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Figure 123, — Velocity Diagram at D

An expression for 4, is obtained by consider-
ing the velocity diagram at D as shown In
figure 123.

Thus,

Ya 7),~ — gt,cos 8

i

(7.53) tan#, =
.m:d x,+ gt;sin §

If we now recall from chapter 6, equations
(6.45) and (6.46), that

z =V.,cosé,,
g,
V.? cos 4
X, = —— ag,
g .M
0
(7.54)
Yy, = Visine,,
g,
Vi sin 6
Yy, = de,
g u
0

we could substitute these values into (7.52) and
(7.53) and obtain expressions involving only
the unkrown 4,. The subsequent substitution of
(7.49), (7.52) and (7.53) into (7.50) would yield
the general equation which should be solved for
f, and finally the release time t,. The complexity
of this equation, however, renders it imprac-
tical from the point of view of mechanization.
Consequently, further simplification is neces-

sary and we shall turn our attention to the
approximations which, although quite numer-
ous, nevertheless, has resulted in an equation
that, when mechanized, has given good results
in field tests.

7.12 A Specialized Equation for Pull-up Time
in Rocket Tossing

Due to the fact that the pull-up angle is small
and the rocket trajectories which are considered
in rocket tossing are rather flat, the following
approximations are considered to be acceptable:

(1) During pull-up, the spacial accelera-
tion of the airplane is in a direction perpendicu-
lar to the collision course.

(2) 'L'he slant range of the rocket is given
by

(1.55) 75 == HT = (te — tq — ) Vs

(3) The angle 4, is approximated by its
tangent.

(4) The angle v is approximated by ifs
tangent.

It is necessary to make one further assump-
tion which is to be placed on the spacial accelera-

~tion of the airplane during pull-up. There exists

two possibilities for this choice. One of these
assumes, as was done in toss bombing, that
there exists a suitable mean value K of K dur-
ing the pull-up. This assumption results in a
quadratic equation for the pull-up time.* How-
ever, studies of rocket tossing have shown that
the rocket is usually released while the spacial
acceleration is increasing so that the second
choice is to assume that the spacial acceleration
is proportional to some power of t ; that is,

y=rkgt or K =cosa«-+ kir.

In particular, the acceleration can be approxi-
mated by a linear expression s¢ that we shall
develop the case for which » =1 or

* The reader can easily verify this by following the
procedure which we shall present for the second choice.
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(7.56) ¥y = kgt,
where k is a constant of proportionality.

In view of these assumptions, the velocity
components at release are given by

ga.:r: VG;
t,

-

and the coordinates at release are given by

(7.57)
kgt dt = Ykgt,?

zr = Vi, ’

(7.58)
Yr= %kgtr3 .

If we substitute these values into equations
(7.52) and (7.53) and use approximations (3)
and (4) above, we obtain

(7.59) v=tanv
1kgt,® + Ykgt,* t; — 1gt2 cos B
- tVe— Vet, =Vt — gt sin §
and
. 3kgt® — gty co8
(7.60) ¢, =tan g, =

Ve gtasin g

Let us rewrite equation (7.49) in the form

1
(7.61) ¢ = (39 (tc — ta— 1) Az - c®] yu
(4]
where
2V2 -V /b
(162) A,=—"qe ¢
g

@ = O(T) and yp = yr (84)
and
7. has been replaced by its approximation

(2).
176

Upon substitution of (7.59), (7.60) and (7.61)
into equation (7.50), we have

1 2¢cd
l:Az (tc - t(l - tr) + ‘r”lc
G g9

g
(7.63) -—
2

3g [3kt, + ktet,? — t cos §]
[Ve(te —t, — ts) — $gts?sin §]

19 [kt,* — 2t; cos §]

[Ve -+ 9tssin §]

To simplify this equation and ease the notation,

2V, ,
first multiply by —— and let
g
2¢
¢, =gt;sins/Veand $; = —— P
g

. thus, we obtain

[(tc - td - tr)Az + (Dl] lpR

';}ktr"‘ + ktdtrz — tdz cos 8

t(! - tr - (1 + %Cl)td
kt,2 — 2¢;c08 8
14¢

‘After clearing the fractions and combining
terms, we get a cubic equation in't,

(7.64) 3(2 —¢)) Kt — B:t,* = Bit, + B, =0

where

B, =kt + 3c.its) — (1 4+ ¢,) Ay

B, =2t;cos8 + (1 +c)yr .
[(1)1 + 24, (. — t; — '}cltd)]

Bo = (1 + cl)'ﬁR [tc - (1 + %Cl)td]
[(tc — td)A'_‘ + q)l] + 2tdtc cos § — tyco8d

- vrow ow
S A WA N
» . T - L] AL
2 F) » 1] A ] . *
G N e

W Tt 4 e w e as
M l.a. et t e N

[ SR PN
. N

- “-.-!- NP RN
s R N

AN S |
s .

- - ,.
Lo AL I
1 t . ’ ot




...
_____

ROCKETRY

"\

Figure 124. — Rocket Tossing with No Time Delay ¥

The solution of this cubic equation will then
vield the release time t,.

The exact solution of this cubic equation is
difficult to express and, more to the point for
our consideration, is difficult to mechanize.
Consequently, varicus approximate solutions

have been derived. We shall not concern our-
selves with these approximations since that
would entail a study of the relative magnitudes
of the constants involved. Suffice it to say that
such approximations are arrived at by extensive
study of experimental data obtained from
firings. ’

177

-

- - -~ » -




NAVYORD REPORT 1493

MATHEMATICAL THEORY OF AIRBORNE FC

7.13 Rocket Tossing with no Time Delay

The special case of rocket tossing where there
is no time delay is of interest because one of the
first rocket tossing directors was fashioned
after the toss bombing director. Furthermore,
it is possible to design a rocket tossing director
by first ignoring the time delay and also the
temperature variations of the propellant, and
then to correct for these effects by proper
changes in the mechanism. We shall, therefore,
develop the equation which results when these
two assumptions are applied. Thus, if we delete
those terms in equation (7.64) which contain
t; and &,, this equation reduces to
(7.65)  3kt,* — (Fte — yrAs)t,2 — 2ypdot,

+ l,’/[eAg,tcz = O .

The solution of this equation would then yield
the release time £,. We shall, however, obtain
the equaticn in a different form. We note that
6, now becomes the pull-up angle §, (see figure
124) which is given by

i,

g
/ (K —cos 8) dt ;
Ve

o

[See equations (6.42) and (6.44)].
Thus, we now have -

(7.66) 4, =

= —— [39(t. — £,) A,] ya
Ve
. Yr
(7.67) Ve(t. —t,)
t, ¢t
g
. A f / (K — cos 8) dt'dt .
VG(tc - tr)
0 0
Equation (7.50) then takes the form
YrA-
(7.68) [t —t.] =
2V¢
i,
. g / (K —cos 8)dt
Ve
0
t, t
___5_7_____ f [ (K — cos 8) dt'dt.
VG(tC - tf) 0 0
178
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which, after multiplying through by
Ve(t, — t.) /g, may be written

(7.69)  JypA.(t.—t,)* =
t,
(te —t,) f (K — cos 8)dt

0

t, t
+/ / (K — cos 8)dt'dt .
0 o

If we now apply the assumption that
K —cos 8§ = kt we have

tr
/(K — cos 8)dt = }kt,?
0
and
t, t t, :
/ /(K — cos 8)dt'dt :/ ktrdt = 1kt
0 0. 0

and (7.69) becomes

(7.70)  dypd. (T2 — 2tct, + t,2) =
t,
t, / (K — cos 8) dt — 3kt -+ bkt
0

or, dividing through by t.,

(1.71)  Hgrdute + 3rdot 't = Yrdat,
i
— 3kt 4 / (K — cos 8) dt.
0
If we use

tz? ! At
r—k 2YRbc

as a first order approxirﬁation to the solution of
(7.65), equation (7.71) takes the form

1

(772) %’J/R.Aztc + ‘I/R2A22 -
2k

t
(SZ'RA:’ — ’J{AzlJfR) t, —}—[ (K — cos S)dt .
0
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t,
Since t, = / di, we rewrite to obtain
| 0
i,
(7.73)/ (K — cos § + 3yrd.)dt =
0

1

TR R R—— P
2k

The term 3kyz*A.,? would not have occurred if
we had replaced ET by OT in the formula for v.
If such an approximation is acceptable, equa-
tion (7.73) reduces to

t,
2
(7.74) —_f (K — cos § + 2ypA.)dt = grte.
A,
0

Equation (7.74) is easy to mechanize since the
electrical circuit can be made to solve

¢

2 dt
f = Sl’rtp
A, R(t)

0

where R(t) is a resistor whose value is deter-
mined by the integrand of (7.74).

7.14 Spin-Stabilized Aircraft Rockets

Since fin-stabilized rockets are suitable only
for forward firing from aircraft and because
their direction of travel is so dependent upon
the direction of motion of the aircraft and the
effective angle of attack, much thought has been
given to the problem of spin-stabilized rockets.
Such rockets are often called spinners. The
advantages of spinners are numerous. Theoreti-
cally, they may be fired in any direction and
thus may be used in air-to-air combat as well
as air-to-ground firings. They are less sensitive
to changes in angle of attack. They are shorter
and thus are adaptable to being released by
automatic launchers installed in many parts of
the aircraft. Their aeroballistics thus become
similar to the ballistics of spinning shells. They
differ from spinning shells in that they do not
have their final spin nor their final velocity when
released from the launcher since most spinners
obtain their spin as the propellant burns.

(7.75)

988995 O -~ 52 - 13

~~~~~

The stability of spinning rockets is a major
problem both in the design and the use of
spinners. When a spinning rocket is fired from
a mcving aircraft, it is acted upon by large
aerodynamic forces as soon as it is released.
Any slight yaw which may be produced by static
or dynamic unbalance, cross currents of air, or
gravity tip-off, transforms these forces into an
overturning moment as was explained in chap-
ter 1. Now the gyroscopic action of the spin
tends to turn the rocket about an axis at right
angles to that about which the moment is acting,
and if the spin is too weak the yaw will increase
ahd, in turn, the overturning moment increases
and the rocket may become unstable. The action
of the overturning moment causes the rocket to
travel in a spiral during its initial period of
motion. The phase and amplitude of this spiral
at the end of burning determine the subsequent
direction of flight. This spiral motion tends to
average out the cross thrust due to initial yaw;
however, the amplitude and period must be
made as small as possible.

It took much experimentation to develop spin-
stabilized rockets, but successful ones have been
designed and tested. The theoretical behavior
and analysis follows that of spinning shells.

7.15 Air-to-Air Rocketry

The entire discussion of this chapter has been
limited to air-to-ground rocketry. The air-to-air
problem should probably be compared with gun-
nery rather than bombing. Since rockets are
slower and have a larger trajectory drop than
buliets, the problem of aiming is far more diffi-
cult, However, the innovation of the spin-
stabilized rocket has led to considerable study
in attempting air-to-air combat with rockets.

The mathematical theory is similar to that
for gunnery. The only changes in the theory are
those arising from the differing ballistics of
rockets and bullets and the consequent redesign
of sighting systems. The large gravity drop and
the large target speed results in very large lead
angles. This in turn limits the combat tactics
of the attacking aireraft. An attack suitable for
a rocket salvo in air-to-air combat is that of a
collision or interceptor course which was con-
sidered briefly in chapter 3.
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TERMS AND SYMBOLS

GREEK ALPHABET
Letters Names Letters Names Letters Names
« Alpha I t Iota P p Rho
B B Beta K K Kappa b3 c Sigma.
r y “Gamma A A Lambda T T Tau
A 8 Delta M ° Mu T v Upsilen
E € Epsilon N v Nu & ¢ Phi
Z Z Zeta = £ Xi X X Chi
H 7 Eta 0] 0 Omicron ¥ ¥ Psi
] g Theta I T Pi Q @ Omega
SYMBOLS
= , is equal to; n > «, n approaching infinity; '
s, is not equal to; V7, square root of n;
= is aproximately equal to; Z ABC, angle with vertex at B;
< , is less than; | (V,u), angle from V to u;
>, is greater than; | A ABC, triangle ABC;
é , is less than or equal to; Az, increment of x;
> is greater than or equal to; ..., and so on;
z , derivative of x with respect to t; (_)71 , vector from O to A4;
Ve, Vsub F; A triangles;
A, A prime f(u) function of w.
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Chapter 8

GLOSSARY OF NOTATION

8.1 Introduction

The mathematical theory of airborne fire
control is the work of many writers. Each of
these writers has emploved more or less his
own notation, a circumstance which has often
led to considerable confusion. The publication
of this book affords an opportunity to attempt
to standardize the notation.

The notation emploved in this book con-
forms in general to the standard notation of
mathematical writers and insofar as is possible
agrees with that used by organizations such as
NACA, Bureau of Standards, Aberdeen Prov-
ing Grounds, universities, and with textbooks
on ballistics, veetor analysis, and other mathe-
matical subjects.

A situation which has been found to he un-
avoidable is that of employing the same letter
to represent more than one concept. However,
Judicious care has been taken to keep the mean-
ing of a letter or symbol the same throughout
any one chapter and thus the meaning to be
ascribed to a given symbol should be that corre-
sponding to the chapter in which it is defined.
Moreover, whenever it was possible to do so, a
given concept was represented by the same
svmbol in_aﬂ chapters. Thus, for example, the
lead angle has been denoted by A throughout ;
the present range by »: future range by r,.

Care has been exercised in the use of sub-
scripts and the attempt has been made to attach
a meaning to all the subscripts. Thus the prac-
tice of using the subscript “0” to denote initial
values has been applied to the muzzle velocity,
V.. In order to eliminate cumbersome mathe-
matical notation, subscripts are employed as
sparingly as possible.

There are some general definitions and state-
ments concerning notation which apply to the
book as a whole. These are summarized in sec-
tion 8.2. The. individual symbols are defined
chapter-by-chapter in sections 8.3 through 89,
inclusive,

8.2 General Definitions

The following definitions are general and hold
throughout the book.

Vectors are denoted by bold face letters and
their respective magnitudes are indicated by
ordinary print of the same letter.

Example: The vector V has magnitude V.
Unit vectors are denoted by small letters.

Example: i, j, k, e, e.

The derivative of any function with respect
to time is indicated by placing a dot above the
letter representing the function.

. dx .. d¥ .. d*y
Example: ¥ = ——; § = ——; Y = ———
dt dt? dt?

The resolution of forces, velocities, and sccel-
erations into their components along coordinate
axes is accomplished by attaching to the letters
denoting the quantity subscripts employing the
letters of the axes,

Example: The components of the velocity
V along the axes z, y, and z are
denoted by V,, V,, and V..

The position of any object in the figures and
diagrams is represented by a letter which most
nearly describes the object.

Example: The position of a gun station is
denoted by G. The position of a
bomber aircraft is denoted by B.

In the main, Greek letters are used to denote
angles. For the complete Greek alphabet, see the
list of Terms and Symbols at the beginning of
this chapter.
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It should be pointed out that the term mil has
four definitions. The Army mil is defined to be

1
an angle equal to —— of one revolution. Thus,
6400

.

0 degrees — 0.05625° =
6400

0.0009817 radians.

1 Army mil =

The Navy mil is defined to be an angle equal to
tan '.001. Thus,

1 Navy mil = tan-.001 = 3.438 minutes of arc.

The mathematical mil is defined to be an angle

.

of a radian; i.e., it is a milliradian.

1
equal to
1000

Thus, 1 mil = 0.001 radian = 0°3'26".3.

The bombing mil values suhtend the same dis-
tance on a base line, but are not equal in angular
measure. The value of an angle in bombing mils
may be found by dividing the distance on the

. 1 .
base line (the ground) by 1000 of the altitude.

8.3 Definitions of Symbols for Chapter |
A axial moment of inertia.

A, azimuth angle of the gun bore;
that is, the angle from the V,,
vector to the projection of the
gun bore axis upon the hori-
zontal plane.

A’ azimuth angle of the Siacci co-
ordinate P;i.e., the angle from
the gun station direction of
motion, V., to the projection
of the Siacci coordinate P upon
the horizontal plane. P'.

A (u)  Siacci altitude function.
a speed of sound.

B  moment of inertia about the
transverse axis.

182

AN K,
b= o (Formula 1.86).
md Ky
mg
C  the ballistic coefficient = ——.
id?

C. dimensionless ballistic coefficient
for type n projectile.

¢= (¢, 4 ¢.) po * (Formula 1.69).
d'K, d* K,
¢y = — 4+
2B 2m
dz
€y == ————
2(s,—1)m
D drag force.

(Formula 1.46).

K, (Formula 1.54).

d diameter of the projectile.

E, elevation angle of the gun bore.
¢ the exponential symbol.

F force acting on the projectile.

F., F,, F. components of the force F along
the z, y, z axes.

f subscript denoting future situ-
ation.

G  gun station position.

G.(u) drag function for type n projec-
tile at zero yaw.

g acceleration of gravity.

H  point vertically above projectile
at any time ¢ .

I'(#)  Siacei inclination function.
1 form factor for a projectile.
[i, 7, k] auxiliary coordinate system.
1 8o — ’}
K=— K835,
2C,.c 8, —1
(Formula 1.71).
K, drag coeflicient.
K,s vaw drag coeflicient.

K, yawing moment coefficient.
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K.
Ky

M

m

pP=
Q
R

Tr
S(u)
SO(H) =

8

T (u)

cross wind force coeffiient.
moment coeflicient.

cross wind force.
overturning moment,
mass.

spin of the projectile.

number of calibers for one turn
of the rifling.

origin of coordinate sys.em.
subscript denoting initial values.
Siacei range coordinate.

projection of P upon the hori-
zontal plane.

‘/m (Formula 1.43).
Siacei gravity drop coordinate.
retardation force.

future range of the projectile.
Siacei space function.

S(u,),

space
U = U,

initial value of Siacci
function for which

stability factor.
Vo8 pa,®.

value of the stability factor near
the muzzle of a stationary gun
in air of standard density.

Siacci time function.
time of flight of the projectile.
Siacci pseudo velocity.

initial true airspeed of the pro-
jectile.

projectile velocity relative to the
air,

gun station velocity.
muzzle velocity of the projectile.

velocity of the projectile.

Ve Uy, V-

w
w

[z, ¥, 2]

(z, y. 2)

1X, 7Y, Z]

Z
8
8,
e

(5,7,',{)

[5,7)’5]
a

b,

x

-

components of the projectile
velocity in the direction of the
coordinate axes r, y, 2.

weight of the projectile,
wind velocity.

stationary coordinate system
(See figure 2).

coordinates of the center of grav-
ity of the projectile at any
time ¢.

moving coordinate system (See
figure 1).

zenith angle of the gun bore.
angle of yaw.

initial angle of yaw.
windage jump.

projectile coordinates in gun-line
axes system.

gun-line coordinate system.

angle of inclination of the tan-
gent to the trajectory.

initial angle of inclination of the
trajectory.
moment factor.

lateral deflection.

vertical deflection.

angle from V, to u,.
3.14159

relative air density, p./p,.
air density.

reference density (.07513 lbs/-
ft*).

Viscosity of the air.
angle from V,; to V,.

angle of orientation of the plane
of yaw from the vertical.

angle betwéen the horizontal
plane and the plane containing
V,and V.
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8.4 Definitions of Symbols for Chapter 2

184

A,

A

a

B,
B:

B,

azimuth angle of the gun bore
axis.

azimuth angle of the sight line.

total acceleration of the ownship
with components a,, @, a,
along LI Y k(;'

i(. — component of § .

j“ — component of 5.

k(‘ — component of 5.

ballistic constant appearing in
the formula for windage jump.

air course of the gun-platform.

tangent line drawn to C” at point
T.

air course of the target.
parabola tangent to C” at point T.

elevation angle of the sight line.

elevation angle of the gun bore
axis.

unit vector in the direction of
the sight line to the target.

unit vector along the line of in-
tersection of the plane e, kG
with the plane e, iE .

unit vector in the direction of the
gun bore axis.

decrease in the vertical accelera-
tion of the bullet due to air re-
sistance.

acceleration due to gravity.

present position of the gun-plat-
form.

position of gun-platform at start
of combat.

future position of the gun-plat-
form.

i, unit vector along the terminal
side of angle A .

i, unit veector along the terminal
° side of angle 4,.

i unit vector along the terminal
™

side of angle A + .
. 2

¢ unit vector directed forward
along the longitudinal axis of
the ownship.

i, unit vector along the terminal
v

side of the angle E —

i horizontal unit vector fixed in
space.

J  windage jump vector.

j; unit vector directed outboard
from ownship and parallel to
the starboard wing.

j':nXi'.

k; unit vector directed downward
along the ownship vertical.

k =n
l:q—- 1.

M = r*w angular momentum of the
sight line at the time of fire.

M(t) angular momentum of the sight o
line at the time ¢. e

M. component of M along iE .

M, component of M along il .

m slope of gun-target line (co-
planar case) with respect to
fixed axes in space.

N = (1 — sin® a.8in%,) "2,

n unit vector directed vertically
downward in space.

O origin of coordinate system fixed
in space.

P  Siacci range.
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T,
T,

1

T,

Gravity drop of bullet during its
time of flight.

bullet slowdown factor.

-5
bullet range = GT, .

-5
present range to target = GT.

_)
future range to target = G/T,.
present position of target.

position of target at start of
combat.

future position of target.

position of target as predicted
by a first order computer.

position of target as predicted by
a second order computer.

variable time ¢ , measured from
instant of fire t = O .

present time of flight, i.e. time
of flight of the bullet over the
present range r.

time of flight of bullet from pres-
ent position nf the gun to the
point of impact with the
target.

value of ¢ at time of impact.

time for bullet to traverse R in
a vacuum.

initial speed of bullet with re-
spect to inertial space.

average speed of bullet over the
Siacci range.

average speed of bullet over the
future range.

velocity of gun-platform.
muzzle velocity of bullet,

average projectile speed over the
present range.

velocity of target.

w

(24, ¥4)

az

as

5,

g1y F2

Ay

Ay
Ar

ot

i3

rate of gravity drop.

rectangular coordinates of the
point labeled S.

approach angle of the target
= (—r, VT) .

angle of attack = (ic, %)
angle of skid (iG, g’) .

bank angle of ownship = angle
through which aircraft has
rolled.

gun angle-off = (iG, V.) .

initial yaw angle of the projec- o .
tile. :

dive angle of ownship
= 90° — (iG, n). T

first and second order bias er- B
rors. . .

angle from fixed reference line
to V.

angle directed from reference
line to sight line.

total lead angle = (e, e.) .

azimuth component of A
=A,— A.

ballistic lead = (V., r') .

elevation component of A
=F,—~F.

kinematic lead angle = (r‘, r).
sight lateral component of ..
sight vertical component of A .

angle directed from a horizontal
reference line to u .

angle (VG, uo) .
unit vector directed along VG.

unit vector directed along the
projection of V ; upon the own-
ship vertical plane determined
by iG, kG .
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€” unit vector directed along the
projection of V, upon the own-
ship azimuth plant determined
byi,J. .
G G

¢ central angle subtended at the
center of a circular path by an
arc traversed by the gun plat-

form at time of fire.

¢; valueof yattimet =1¢;.
p relative air density.
r sight line angle-off = (iG, r).
7o (iG, eo) .
r;  future range line angle-off
= (i(;’ r‘) .

¢ angle between bullet range and
the sight line = (R, r) .

£, angular velocity of the sight co-
ordinate system with respect
to space.

w angular velocity of the sight line
with respect to space

w. component of £2, alonge.
op component of S2, along is'

w, component of S2, along ix.'

8.5 Definitions of Symbols for Chapter 3

A azimuth angle of projectile’s rec-
tilinear trajectory.

AR aspect ratio, b%/'S .
a, normal acceleration.

B subseript pertaining to bomber
aircraft.

b wing span of aircraft.
C» drag coefficient.
C, lift coefficient.
=Y/ Vs.
e=Va/u.

¢; aerodvnamic constants
(Formula 3.66).

D  drag force,

E elevation angle of projectile’s
rectilinear trajectory.

F  force notation; as a subscript it
pertains to fighter aircraft. -

(i, j, k)  unit vectors.

2
K=——o—— (Formula 3.65).

1+2°K

K; dimensionless constants
(Formula 3.72).

L  lift force.

m  slope of line.

R radius of curvature.
B, projectile air range.

r  present range.

r;  future range.

S wing area.

8 length of arc; dimensionless
range (Formula 3.71).

T  thrust force.
t variable time.
t, time of flight of projectile.

t* dimensionless time
(Formula 3.71).

us dimensionless bomber velocity
(Formula 3.71).

V, velocity of bomber aircraft.

V. velocity of fighter aircraft.

7 average speed of projectile over '

Y.
Vi indicated air speed.

v  dimensionless velocity
(Formula 3.71).

W  weight of aircraft.
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(ry, ¥n, 24) coordinates of bomber aircraft.
(s, ¥r, 2¢)  coordinates of fighter aireraft.
a« angle of attack of gun bore line.

a, angle from zero lift line to thrust
line,

B bank angle.

angle from reference line to
flight line.

8 angle of deviation.
propeller efficiency.

angle from reference line to
sight line.

A angle from V, to sight line.
Apy Ar, A, see Formula (3.68).
p relative air density.

r+ angle-off of the sight line.

8.6 Definitions of Symbols for Chcfa’rer 4

a sight parameter.

A, B constants in the aided tracking
formula.

C amplification ratio = amplitude
of sight oscillation amplitude
of gun oscillation.

d distance from reticle to gyro
mirror.

e base of natural logarithms
271828 ...

f focal length of collimating lens.

f(t) arbitrary input function of the
time,

(), 1.6 “signal” and “noise’’ components

of f(t) .
G  present position of gun platform.
.".I
h=1+4+ 1}t (——), a dimensionless
quantity:

k  coefficient in !inear differential
equation, k xr 4+ 2 = f(t).

ki=1(1-a)u.

M angular momentum of line of
sight.

¢ Dbullet slowdown factor.
r  present range to target.
7, future range to target.
T, future position of target.

T, position of target at time of fire,

t time variable measured from an
arbitrary origin.

t; time of flight of projectile.
t, arbitrary origin of time ¢.

Ve speed of gun-platform at time of
fire.

Vr speed of target at time of fire.

V, average projectile speed over
present range,

V, average projectile speed over
future range.

V, projectile muzzle speed.

x  output functions of the time cor-
responding to the input f(¢) .

x, value of x at time ¢,.

z, output function of the time cor-
responding to the input f, (¢) .

x. output function of the time cor-
responding to the input f.(¢) .

« approach angle of target.
y gun angle-off = (VG, Vo) .

vi  sinusoidal oscillatory motion of
the gun.
y steady state value of v .

e time lag corresponding to phase
difference of gun and sight
oscillations.
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n  angle between reference line and
gyro axis,

n angle through which gunner’s
handgrips have turned from a
neutral position.

8 angular coordinate of tracking
device.

A total lead angle.
A»  Dballistic lead angle.
Ax  kinematic lead angle.
x=3.14159 . ..

o angle between reference line and
and sight line.

o, steady state value of o.
o, value of ¢ corresponding to y,.
¢+ sight line angle-off.

» angular rate of the line of sight.

8.7 Definitions of Syrﬁbols for Chapter 5

moments of inertia of a solid of
revolution with respect to the
principal axes of inertia, x,
¥ 2.

A, B C

e sight parameter.

B fixed mirror in the sight head
optical system.

proportionality constants.

d distance from reticle to gyro
mirror.

E  electro-motive force.

F  an arbitrary force.

f  focal length of collimating lens.
G viewing glass on the sight head.
H  magnetic field strength.

H moment of momentum of a force
system about the point O.

I. moment of inertia about the
z-axis,

OF AIRBORNE FC
i current strength.
1. eddy current strength.
k  unit vector along the z-axis.
K, constant of proportionality.
!l length of torque axis.
L arbitrary terque vector.
m  mass.
M, moment of riass m abeut point . @ _ ]
0. RN
. Rt
N center of spinuing dome, located R
on its surface. 3 i '.:J
O  any fixed point. ..p_._~-.*,4
. [ ]
P a particle. S
p  perpendiculardistance from point :-";_'_-",j’-“_:” "4
O to line of action of force F. RN
r position vector of particle P rela- RS
tive to O.
R electrical resistance.
R reaction force at point of gyro
support.
T torque vector, Wi
% gyro sensitivity.
V  velocity of particle P relative to
0. '
V, target velocity.
v linear speed of a point on the
spinning dome,
W  weight of gyro rotor.
|r,y,2] principal axes of inertia of a solid
of revolution.
a angle by which the line from the
reticle to the gyro mirror is
offset from the gun bore axis.
Also used elsewhere as a vari-
able angle and as angular ac-
celeration.
2= <

7

gun angile-off.
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b

Wy Oryy 1

12 —

angle hetween gryo spin axis and
gun bore axis.

error operator.

angle between reference line and
Zyro axis.

angle of deflection of gyro spin
axis in azimuth.

azimuth component of .
elevation component of 1.
kinematic lead angle.

3.14159 . ..

distance of mass m from z-axis.

angle between reference line and
line of sight.

angle of deflection of gyro spin
axis in elevation.

angular rate of the line of sight.
2 - w.

components of angular velocity
of w along r, y, z-axes.

angular velocity of precession.

spin angular velocity of gyro
rotor.

8.8 Definitions of Symbols for Chapter 6

A. AND B. LEVEL BoMBING

B,

B.

f(v)

position of bomb in still air at an
arbitrary time t since release.

position of bomb in vacuo at an
arbitrary time t since release.

diameter of bomb.

drag force due to air resistance
acting on bomb.

drag force acting on bomb; func-
ticn of bomb velocity only.

acceleration due to gravity.

altitude of plane above target
level.

' h(t)

m
oo

<
=1

N%ii.ﬁ

difference in altitudes of points
B, and B, at time ¢,

ballistic ferm factor of bomb.

empirical constant = .0000316
) § SEL

constant of proportionality,
mass of bomb.

line of flight of homber during
time of flight of bomb in vacuo.

range of target along the heri-
zontal.

bomb trail.

difference in abscissas of points
B, and B, at time ¢.

taryet.

arbitrary time since release of
bomb.

time of flight of bomb.

closing speed between plane and
target = ground speed of plane
when target is stationary.

true air speed of bomber.
indicated air speed of bomber.
target velocity.

velocity of bomb with respect to
the zair mass.

terminal velocity of bomb in air.
weight of the bomb.

wind velocity.

horizontal coordinate of bomb.

vertical coordinate of bomb.

angle which tangent line to bomb
trajectory makes with the ver-
tical.

drift angle.
3.14159 . ..

density of air at a given altitude.
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po - density of air at sea level.

¢ range angle of target.

C. DIVE orR GLIDE ROMBING
| Note: Letters not defined have same mean-
ing as for Level Bombing.]
L linear aiming allowance,
V.,  vertieal component of V',
1"y horizontal component of V.
X horizontal range of target.

4 angle between flight line and-the
horizontal.

A lead angle of ftiight line over the
sight line to the target,

D. Toss BoMBING

[Note: Letters not defined have the same
mvuning-js for Level and Dive
Bombing., Letters with zero sub-
script indicate values of letters at
the time of pull-out from a straight
dive.|

¢« retarding acceleration on bomb
due to air resistance.

B proportionality constant.

f=(h —-h) .

h. h. altitudes of points N and O, re-
spectively,

K number of gees acting on air-
craft due to both curvature
and gravity at any point on
the vull-up path.

& time average of K over the pull-
up are NP,

N point at which straight-line dive
at target is begun.

O point of pull-out from a straight
dive.

190

P
4

tyo

t, =

t

u,

€,y

xrv y"

point of bomb release.

radius of curvature of pull-up
path.

variable distance measured along
the pull-up path, beginning at
0.

time taken to flv the distance s,
a variable time since initiation
of pull-up.

closing time = time for aircraft
to cover distance OT .

time for aireraft to cover dis-
tance NO .

t, + t, = time when bomb strikes
the target measured from start
of pull-up.

pull-up time measured from point
of pull-out to point of bomb
release.

horizontal and vertical compo-
nents of bomb velocity since
release.

horizontal and vertical compo-
nents of V at P,

true air speed of plane along the
pull-up path.

coordinate axes, along and per-
pendicular to the collision
course, respectivelv, with ori-
gin at O.

coordinates of point P.
a particular function of input

variables t., 8, ,, V.
dive angle of the collision course

oT.

a term which accounts for change
in trajectory due to air resis-
tance.

angle between r-axis and the
tangent line to pull-up path at
time ¢.
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b,

"

Sy n

Srv s Nit
o

¢

4

¢

v

angle between s-axis and the
tangent line to the pull-up path
at P.

pw= K - cos 3 = normal acceleration

on aircraft along its pull-up
path, in gees.

average normal acceleration over
the pull-up arc OP.

horizontal and vertical axes with
origin at P.

coordinates of T at time ¢, .
a function of 7 and 5.

angle between the horizontal and
the tangent line to the bomb
trajectory,

mean value of ¢ over arc PT.

a function of K, § and 3.

8.9 Definitions of Symbols for Chapter 7

a,

B.S.D.L.

b
E.L.L.

F.L.

L.L.

L

S.L.

£

normal acceleration.

horesight datum line; a refer-
ence line fixed in the airplane.

constant of proportionality.

effective launcher line: the line
of departure of rocket.

flight line: the direction of mo-
tion of the aireraft.

launching factor.

altitude of the airplane above the
target.

launcher line; altitude of launch-
ers.

present range.
future range.

sight line; line from own ship to
target.

burning time of rocket.

"’l:‘ H

v

v

Z.L.L.

Ja

B

closure time.
the delay time.
time of flight of rocket.

the time the rocket stavs in the
launchers.

release time of rocket.

average velocity of the rocket
over future range.

gun station velocity,

indicated airspeed of the gun
station.

final velocity of the rocket reia-
tive to the aircraft.

velocity of the target.
horizontal position of the rocket.

zero lift line: a reference line
fixed in the airplane.

angle of attack of the B.S.D.L.
angle from B.S.D.L to Z.L.L.
angle from B.S.D.L. to E.L.L.

B+ B

angle from B.S.D.L. to the gvro
geometric centerline.

angle from the gyvro geometric
centerline to the sight line un-
der no rotation.

angle from the horizontal to the
B.S.D.L.

dive angle, angle from horizontal
reference line to the F.L.

angle from the reference line to
the gyro geometric centerline.

angle from the reference line to
the gyvro axis.

pull-up angle at any instant ¢.

pull-up angle at release.
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the angle the tangent to the path
of the rocket at D makes with
the ax-axis.

lead angle, angle from sight line
to B.S.D.L.

lead angle in azimuth plane.
kinematic lead angle,
lead angle for stationary target.

angle from the flight line to the
sight line.

angle \ for stationary target.

[

-

the angle between the rocket
slant range and the collision
course,

angle from reference line to the
magnetic  centerline of the
gyVro,

angle from the horizontal to the
sight line.

sight line angle under no rota-
tion.

trajectory drop; the angle from
the effective launcher line to
the sight line.




Appendix A

YECTOR OPERATIONS

A.l Vector Algebra—Addition and Sub-
traction

By a vector is meant a straight line segment
possessing a definite length and direction. Any
physical magnitude which also involves the idea
of direction may be represented vectorially.
Thus we may cite as examples: velocity, accel-
eration, force, and torque.

Notationally, we shall distinguish between a
vector quantity A and its corresponding scalar
value A by employing bold face type for the
former and ordinary type for the latter. Thus
for vector A we have A while its scalar value
is denoted by A. Alternately, we shall employ

.
the notation AR for the vector directed from
point A to point B.

Definition 1: Vectors possessing the same
length and direction are said to be equal. Geo-
metrically speaking, this means that the vectors
in question are necessarily parallel or segments
of the same straight line.

Definition 2: The sum of two vectors A and
B is written A + B and is defined as the vector
represented by the diagonal of a parallelogram
of which A and B are adjacent sides. This is
shown in figure 125.

Since from the figure we also have B = I—)Z?,
we see immediately that an alternate way of
constructing A + B is to draw B from the term-
inus of A and recognize that A + B is then the
vector ‘directed from the initial point of A to
the terminus of B.

R Q

Figure 125. — Vector Parollelogram

Also, from the figure, we note that
> > > >»
0P+PQ=OR+RQ,

which expresses the fact that vector addition
is commutative. Thus,

A+B=B+A.

The reader may convince himself, by drawing
an appropriate figure, that the associative law
also holds for vector addition:

(A+B)+C=A+(B+0).

The sum of any number of vectors may now be
obtained by constructing a broken line whose
component segments are the vectors in ques-
tion; the sum vector will then be directed from
the beginning to the end of the broken line.

Definition 3: The negative of a vector is
defined as a vector of the same length but of

-> >
opposite direction. Thus — AB = BA and

> >
— (— AB) = AB. To subtract the vector B
from the vector A, amounts then to forming
the sum A 4 (— B). In figure 125, A — b would

-2
be given by the vector RP.

Definition 4: The product aA or Aa of a
vector A and a real number « is defined as a
vector whose length is ‘a’ times that of A and
whose direction is the same as that of A if a
> 0, opposite to that of A if a < O.

Multiplication of vectors by real numbers is
commutative, associative, and distributive. This
is reflected in order by the following equations:

acA=Aqa
(ab) A = a (bA)
(a+b)A=aA+bA.

The product of the sum of two vectors by a
number also is distributive:

a(A+B)=aA+aB.
193
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In summary, we may say that so far as addi-
tion, subtraction, and multiplication by real
numbers is concerned, vectors may be operated
upon formally, using the rules of ordinary
algebra.

A.2 Vector Algebra—Scalar and Vector
Products

The product of one vector by another may
lead to a scalar or to a vector.quantity depend-
ing upon what type of product is specified. Two
types of product are defined: the scalar or “dot”
product and the vector or “cross” product. For
vectors A and B, these products are denoted by
A*Band A v B.

1. SCALAR PRCDUCT

Definition 5: The scalar product A * B is
defined by

A+*B = ABcos (A, B),

where (A, B) is the angle included between A
and B, (0> < (A, B) < 1807).

It will be noted that A «+ A = A* Thus the
scalar product of a vector by itself gives the
square of its length. Also, if A is a unit vector,
ie, A = 1, then A - B will give the directed
length of the projection of B upon the line of A.
Since the defir’  expression for A + B is sym-
metric in A an.a B, it follows that scalar multi-
plication of vectors is commutative:

A*B=B- A

Using the definition for dot product, it also can
be shown that scalar multiplication is distribu-
tive with respect to addition:

A (BLC)=A-B+A-C.

A useful formula for evaluating A + B can be
written when A and B are each referred to a
right-handed orthogonal set of unit vectors as
the basic coordinate system. Thus, if i, j, k are
unit vectors so oriented that a rotation of i into
J appears counterclockwise when viewed from
the terminus of k and if the same can be said
for rotations of j into k and k into i when viewed
from the termini of i and j, respectively, the
ordered triple [i,j.k| forms a right-handed

orthogonal set. If the components of A and B
in the i, j, and k directions are denoted respec-
tively by A,, A,, A., and B,, B.. R., then since
iri=jej=kek=1landi*j=ik=k*j=
0, we find

A . l; = (Ari + Auj + A:k) ¢ (Bri + Bllj + B-k)
= A;B; + A"Bu + A:B: .

2. VECTOR PrODUCT

Definition 6: The vector product A > B of
two vectors A and B is a vector perpendicular
to the plane of A and B and so oriented that the
ordered triple |A,B, A B] forms a right-
handed orthogonal set. The magnitude of A ~ B
is defined by A B sin (A, B), where 0" < (A,B)
< 180",

We note first, in the special case when A’ B,
that (A, B) is 0" or 180" and hence that A «~ B
= 0. Thus, we may say that two non-zero
vectors are parallel if and only if their cross-
product vanishes.

From figure 125, it is immediately evident
that the magnitude of A B is represented
geometrically by the area of the parallelogram
determined by A and B. Also, if the order of
A and B is reversed in A B, that is to say, if
one considers the product B~ A, then to pre-
serve the right - handedness of the triple | B, A,
B A} the direction of B A must be opposite
to that of A >~ B. Thus,

AXB=—-Bx-A
and we see that cross multiplication is not com-
mutative. As we shall see below, cross multipli-

cation is not associative either; that is,

(AXB)~C-~A¥ (BxC),

but it is distributive with respeet to addition:

AV (B4+C =A¥YB+AVC.

With A and B referred to a right-handed
orthogonal coordinate system {i, j, k], we may
derive a formula for

AV B = (Ai+ Aj+ AK) - (B.i + B,j+B.k)




by use of the distributive law and the relations

iXi=iXji=kxk=0,
iXi=k ixk=i kXi=j.

The result is
A x B= (A,,B; —- ABu)i+ (c4:Br band -413:)1'
+(A.B, - AB)k.

A more convenien* form for remembering the
latter is

i j k
A A A |,
B, B, B.

the determinant being expanded by minors
according to the elements of the first row.

3. THE SCALAR TRIPLE PRODUCT, A > B« C, is
first of all a scalar since it is obtained by finding
the dot product of the vectors A X Band C. One
can easily show that, when C has components
C, C, C., the product A ¥ B+ Cis given by the
formula

A A A,

B, B, B,

C.C,C:

AXB:C=

Geometrically, the numerical valueof A X B+ C
represents the volume of the parallelopiped
having A, B, C as concurrent edges. More pre-
cisely, it represents = Volume according as the
triple |A, B, C] is or is not a right-handed set.
Indeed, from figure 126, we have

AxB-C="AXB| Cjcosd
= (area of base parallelogram)
(= Altitude)
= = Volume.

Since cyclic permutation of the lettersin A X B
+ C does not alter the parallelopiped we note that

AXB:C=BxXxC+-A=CxA'B.

From this we conclude that a given scalar triple
product is left unchanged by interchanging the
dot and the cross.

988995 O - 52 - 14

A xB ”
e/
T /
1
)
0] femmmmae
ALTITUDE /Ji
l 7 AREA
Fd

Figure 126. — Scalar Triple Product

4. THE VECTOR TRIPLE PRODUCT, (A X B) X Cis
a vector perpendicular to A X B and hence is
coplanar with A and B. It is easily verified that

(AXB)XC=A"C)B—-—B-C)A,
and
AX(BXC=(A-C)B—-(A*B)C.

This shows, incidentally, that cross mdltiplica-
tion is not associative.

>

A

Figure 127. — Vector Differentiation

A.3 Vector Calculus—The Derivative

The derivative of a variable vector A (t) with
respect to the scalar variable ¢t is defined by

. dA AA
A(t) =—— =1lim
dt At>»0 At
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Where AA = A (14 At) — A(¢t) is the increment
vector representing the change in A(f) occa-
sioned by a change At in t. The difference

AA
quotient . shown in figure 127, is then sim-
At
1
ply the secant vector which is times as long
At

as AA. The limiting vector A (t) is then tangent
to the path traced by the terminus of A(¢#) as ¢
varies.

IFA() = A (ty i + A.(t) j. then the deriva-
tive with respect to the |i, j] frame of reference,
in which 4. and A, are variable components, is

A=A i+ A,

When A (1) is interpreted as the position vector
of a moving point P and # as the time, then A (1)
and A(f) are respectively the velocity and
acceleration of . We note also that if A(f) is
fixed in magnitude but variable in direction,
then A(#) will be perpendicular to A(t). More-
over, .-\(I)\\\'ill be given by the formula

.'i(f) = .4([)(01'

where « is the angular speed of the rotating
vector A, and T is a unit vector perpendicular
to A and advanced 90 from A in the direction
of increasing angle # (see figure 128). This
follows from
. dA
A(t) = —
dw

d#
dt
where u is a unit vector in the direction of A,
. Au .

since " —>1 when A4 0, as is well known

from the calculus.

T

Figure 128. — Unit Yector and
Its Derivation

196

‘The angular velocity of vector A = Au de-
noted by «, is a vector of magnitude » = § and
of direction u x T. Thus, the angular velocity
of a rotating vector is another vector perpen-
dicular to the plane in which the rotation takes
place. Hence,

(A1) w=o(@XT) =uXoT = uXu.
From Formula (A.1) it is easily established,

upon taking the vector product of both sides
with u, that

(A2) u=w > u,.
Formula (A.2) is equally valid in the following,
slightly more general, case:

Consider a rigid body rotating about a fixed
axis passing through the fixed point Q. Then
if P is a fixed point of the rigid body not situated
on the axis of rotation, the velocity of P is
obtained by replacing u in (A.2) by the vector

>
OP. Thus,

d - >
— (OP) = w X OP,
dt
where  is now the angular velocity of the rigid
body about the fixed axis. This is seen to be an
immediate consequence of (A.2) upon resolving

5)1’ into components along and perpendicular to
the axis of rotation and then differentiating.
The derivative of the component along the axis
is obviously zero while the derivative of the
component perpendicular to the axis is then
found from (A.2).

A.4 Time Derivative of a Vector Referred to
a Rotating Frame of Reference

The following theorem™® in mechanics, here
assumed without proof, is fundamental to our
discussion:

THEOREM: If O is any point of a free rigid
body, the velocities of its points are the same
as if they were compounded of an instantaneous
translation Y and an instantaneous rotation S2
about an axis through O; and &2 is the same
for any choice of 0.

“See “Vectorial Mechanics” by Brand; John Wiley &
Sons; p. 497,

. o




VECTOR OPERATIONS

Unlike the motion described in A.3., where

the axis of rotation was fixed, here the axis of
rotation passing throrygh O varies from instant
to instant. If P is another fixed point of the rigid
body different from O, then at each instant the

velocity of P relative te O is given by

-> >

1
(A.3) Z (OP) = s2 - 0P,
dt

AZ

Differentiating (A.4) we have

) L di dj
AW =Ai+Aj+Ak+A —+4,—
dt dt

dk

+ A, —.

dt

>
Identifying OP in (A.3) successively with i, j,
and k, we obtain

di dj dk
— =82 i — =42~ j; — = &2 k.
dt

dt dt

z ’A (t)

X
G Y
2
X
Figure 129. — Time Derivation of 2 Vector Referred to o Rotating Frame

In figure 129, let G-XYZ be a fixed system of
coordinate axes and O-ry: a moving system,
being rotated and translated relative to G-XYZ.
Let A(t) be a vector which is at times to be

referred to both systems of axes. We seek a
formula for A(t).

Let the vector A(t) in component form be

(Ad) A =Ai+Aj+ Ak.

Combining the above steps and simplifying, we
find

A=A+ A,j+Ak+ 82 X (Ai+ A
+ Ak),
or,

(A5) A=Ai4+Aj+rAk+sexA,

When A(t) is fixed in magnitude, (A.5) reduces
to (A.3).
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B.l Introduction

Throughout this book it has been necessary
to employ military terminology and for that

Appendix B

CONVERSION TABLES

reason it is convenient to have conversion tables
which change military units to standard units
and vice versa. Several such tables are listed in
this appendix.

Table B.!

Conversion Table — Knots to MPH to FT/SEC

6080 6080
1 knot =—— MPH =—— IFT SEC
5280 3600

1 knot =1.151515 MPH =1.68888) FT SEC .

’ ! ,s I ; !
KNOTS MPH @ FT SEC| KNOTS | MPH i FTSEC | KNOTS | MPH ' ST OSEC
200 L 230 338 350 103 591 500 576 844
210, 242 355 360 415 608 510 l 587 861
22() P233 372 370 126 625 520 1 599 878
2:30 L265 388 3R0) 138 642 530 j 610 805
240 1276 1 405 30 Y 659 540 1422 912
250, 288 | 422 00 46l 676 550 633 920
260 200 130 110 472 692 360 | 45 046
270 1 311 156 420 184 700 570 | 636 0963
280 L 320 173 130 05 1 T2 580 1 668 980
20 L 334 490 140 507 | T4 300 1 679 996 :
! i RO
300 | 345 307 450 518 760 600 691 1013
310 | 3a7 524 160 330 777 10 702 1030 z " .
320 P368 540 470 541 704 620 1 TH 1047 v,
330 | 380 557 180 553 811 630 | 725 1064
340 ! 302 574 190 t 564 828 10 e 1081
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Table B.2
P ‘ Conversion Table — MPH to FT/SEC to KNOTS

5280 5280
1 MPH=— FT, S1C = KNOTS
3600 6080

1 MPH = 1.466667 FT SEC = 868421 KNOTS

MPH  FT REC KNOTS | MPH  FT SEC KNOTR | MPH  FTSEC - KNOTS

200 203 174 400 587 347 600 K80 A2
210 308 182 410 601 356 610 84953 330
220 323 101 420 616 365 620 N0 538
230 337 200 430 631 373 630 924 347
240 352 208 440 645 382 640 939 BT
250 367 217 430 660 301 650 953 364
L 260 381 226 160 675 309 660 968 573
270 306 234 470 689 408 670 983 582
280 H1 243 180 704 417 680 997 391
200 425 252 00 1719 426 690 1012 399
T a0 440 261 00 733 434 700 1027 608
310 135 269 510 748 443 710 1041 617
L 320 469 278 520 763 452 720 1036 625
B X 184 287 530 777 460 TS0 1071 634
S X0 409 205 >0 792 469 740 1085 643
350 513 304 350 807 478 " B 11T IR 1
L 360 328 313 560 821 186 60 . 1115 660
boosio - 51 321 570 R36 195 70 1129 1 669
L 380 557 330 380 851 504 TR 14 67T
L 300 572 339 390 865 512 90 1 1139 686 j

Toble B.3
Conversion Table — FT/SEC to MPH to KNOTS

3600 3600
1T SEC = = MPH= - — KNOTS
5280 GORO

1 FT SEC = 681818 MPH =.502105 KNOTS

FT SEC MPH 7 KNOTS | FT SEC ! MPH KNOTS | FT SEC MPH ’ KNOTS |
300 205 178 60w 355 oK) 614 1 533
320 Co218 ! 189 20 1 423 36T 920 627 1 54
340 232 201 140 436 - 379 1% 1) I 1X Y It V)

360 245 0213 660 L 450 301 960 1 633 1 J6R
3RO 250 225 6RO 0 464 403 9801 668 580
400 N VE ] 237 ). T v S T ooy L 682 502
420 286 240 S0 7 401 | 428 020 695 604
110 300 21 U 1 B & 40 T 1 616
160 34 272 oo 518 1 450 w60 T2 T 628
480 327 24 RO 522 162 R0 1 e 639

] REY 206 S0 0 3s 4T Hon | 750 ’ 651
520 355 - 308 82 339 186 12 T 663
340 368 320 240 5373 97 140 777 | 673
5t4) n2 332 R0} 586 500 1160 01, GKRT
350 395 343 RR0) G 321 1180 . K03 | 690
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[3=lte L ] L =

24
30
31
32
33
34

T35

36
37
38
30
10
41
42
13
14

T2

200

0
17.
34
a2
6.

104
122

139.
157
174
191
200
226

244,

2749,
29
314
331

310,
366
383,
Il
418,
436,
453
471
488
B
223,
B33
Do,
375,
293
010
625,
643
(J1%1
680,
HO8.
713.
733,
7o) .
7.

()
4333
N6
35099
%132
2665
7198
1730
6263

L0704
24
862

4395

L RO28

3461

LTI

2527
7060
154934
126
0654
a4l
9724
1257
R0
BERA
TR’6

248G

H022
1459
DIRN

L0521

S04
OHRT
4119
852
31K5
TN

. 2251

6784
i317
HRH)
(0384
4916
0449

Table B.4

Conversion Table — DEGREES to MILS

T
1 DEGREE = - --(1000) MILS = 174533293 MILS
180

60
6l
62
63
4
i
it
67
68
649

70

2

i

-1
Lo

==l
for i

t

i
R

Bt

TR0

K1
N2
83
»4
83
86
X7
X%
o3l
(M)
91

S92

03
04
05
Ot
itn

H%

99
100

101

102 .

13

HH

Degrees

7.
1064 .
HE RS
1004
117,
1134,
LS
1169,
1186
1204 .
1221
12:349.
1256
1274.
1291

1326
1343,
1361
1378.
1396
1413,
1431.
148
1466 .

1640
1658 .
1675
1602
1710,
1727.
1745,
1762,
1780
1797.
I815.

1976
6308
[{1R 0]
3574
0107
4640

OI73

3706
8239
2772

L7305

1838
6:371
(ANH

o436
1308

HHGH4
4502
935

L3568

8101
2634
7167
1700
H2:33
0766

A2
0842
4364
(RROT
L3430
L7638
J2496
5. 7029
1562

6095
06528
A6l
9604
4227
8760
3203
825
2358
6891
1424

(The Fire Control Mil)

120 2004,
121 2111
122 2129,
123 20146,
124 2164,
125 2181
126 2199,
127 224,
128 2234,
120 2251
130 2268,
131 2286
132 2303,
133 . 2421
134 2338,
135 2356
136 ¢ 2373.
137 - 2391,
138 2408,
139 2426
140 2443
M1 2460,
42 478,
43 2495,
144 2513,
145 2530,
146 2548,
H7 . 2565,
148 . 2583
149 2600,
150 - 2617,
151 2635,
152 | 2652
153 i 2670.
154 | 2687,
155 . 2705.
156 | 2722
157 | 2740.
158 | 2757.
159 | 2775
160 2792
161 2809
162 - 2827,
163 2844,
164 2862

i

3951
8484
3017
7930
2083

L6616

1149
H682
0214

ATHT

9280

L3813

8346

2879

12

1945

6478
1011
5544

077
A610

9142
3675
8208
2741

274

1807
6340

873

3106
9930
172
90D
3338
8070
26403
7136
1664
65202

0735

2268
0]
4334
8RGT
3400

PN U e W=D

10
11
12
13
14
13
16
17
18
19
20

P

0

0.
0.
0.

.-

AUt e e A de S

~

-l

12

NN ——

Minutes

AXNN)
2009
I8N
8727
1636
4544
LT433
L0362
.3271
G180
HORY
1998
4007
L7815
0724
L3633
6542
451
. 2360
D260
BI78

i, 1087
h. 3905
3. G904
3. 0813

2722
5631
. 854)
1449
e X5
7206
OL7H
3084
5093
802
(1811
4720
L7629
1538
36
355
L0264
2173
COHR2
LT

26

30

35
36
37
39
10
41
42
43
44

ST s

L0970

a2

o9

L0533
L0582
L0630
0679
0727
0776
L0824
L0873
0921

L1018
1067
115
L1164

1261
L1309
L1357
1406
BENS
L1503
15351
1600
1648
1697
1745
1794
1842
1891

1988
. 2036
. 2085
2133
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45
46
47
48
449
o
al
a2
B¥]
a4
3D

a6
BY)

38

a0

L ,ﬁ“_,,

b o 8 —

=~

piogiy SR |

=P Lt a NN —

L3uR2 )5
831D 106

3045 107

LTHRD 108

203w
26646 110
NI Y
ATI2 112
245 0 113
ATTS 10
31 15

it .2 R 16
R3TY sy

L2010 1S
YR B B 19

AMT0TE 120

1000 Mils

372958
114,506
171.8873
2209 1831
286 4TRY
RER NS )
4010705
458 3662

213 6620

1000 mils

YAl It B 3
114%33°29 67
17195314 47
229°10'59.27
28692844 17
343°46°28 . 8”7
H01°413 6”
438°21°38 . 4"
5153074337

Degrees
IR32 5957
1834
1867 .
I8R4 .
1902,
1919,

1937

1054,
1972,
JORG
207 .
2024
22,
2054 .
20706
2000

Table B.4 — Continved

(The Fire Control Mil)

(HY0
2023
HA%TH
JOK89
8622
3155
THR8
222
6753
1286
a8y
0352
113,95
HET b

L3951

180
1 MIL =— 1077 DEGREES =.057206 DEGREES

Degrees, Minutes, and Seconds

100 mils

3.729
14502
17. IS87
22 9183
286479
34,3775
40,1070
45 8366
515662

165
16t
167
168
1649

i

171
172
173
174

175

176
177
178
179

180

Table B.S )
Conversion Table — MILS to DEGREES

1
i

i
1

; 28T TUBS

2807 . 2466
2904 .69
2032 1531
201 6064
2067 . 0597
2084 5130
0019663
30194196
3036 8729
3054 3262
0717795
3080 .2:328
J106. 6861
31241304
31415927

*
Decimal Values of Degrees

10 milx

.AT30
11459
1.7189
2 2018
2 8648
3.4377
4.0107
49837
. 766

100 mils

.07
47

ISR IN NN

11°27°33
17°11°19
22°55°'0:5. 97
2838732 47
34922948 .0"
40°6°25 . 4"

45°50°11.8"
51°33'58.3"

10 mils

0°34722 6

1°8°45.3"
1°43'07 .0~
2°17°30.6"
2°51°53.2"
3°26°15 97
1°0°38.5"
1°3531.2”
5°023.8”

Convers.on Table — DEGREES to MILS

r
I DEGREE = -~ (10000 MILS = 17453203 MI1LS
180

Minutes

45
46
47
48
44
al
al
52
a3
a4
29
o

[

14,
13.

-

St TV T LN e e e o

-
-

16.
6.
17.
17.

mils

L0573
6
AT
L2202
. 286
338
A0
A58

(M)
3800

Niva i
L9626
AR &Y
e NE)
83908

1262

ATl
L7080
LHOR0
i 2897

ARG
RilH
1624
1533

2HT

mils

0°3726.3"

0°6°52.5"

0°1’18.8”
0°1345. 1"
0°t7'11.3”
0°20°37 "
0°24°03.9"
0°27°30. 1"
0%30'36.4"

Soeconds !
45 . L2182
w20 |
472279 |
9% 2327
o 2376 '
30 ‘ 2424
A1 247 ‘
52 1 252 )
53 0 .2570 |
o218
55 L2066
A 2T
57 0 oreg |
A8 amI2
30 0 2860
6O, 2000

1

- mil

10

05T

0115

0172

0220

02586

AN |
401 i
0458 ‘
0316

1

-2 mil

10

0°0°20 67
0°041 .37
0°1'01.9”
0°r22.5"
04317
0°2°03.8"
0°2'24 4"
1°2'45.0"
(17305.6”

201
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Table B.6
CONSTANTS

VALUES RECIPROCALS
x 3.14139 26335 80793 ;lr | 031530 9ssel &3701
R 1.57070 63267 4807 2 0.63661 97723 67582
2 T
‘ 27 6.28318 33071 79586 ,'r 0. 15015 40430 01893
x 0. 86060 44010 89350 X 0.10132 11836 42338
rZ.
- 1
N J.97245 38509 05516 '\'f 0.36418 95835 47706
- 2
5 1.23331 41373 15500 . 0. 79788 45608 02865
- 1
N 2 ' 2. MN62 82746 31001 = 030804 225014 01433
‘ vz
¢ CO2.TINZRIN2%E SIMMG -('- 0.36787 04411 71442
t
e: | 7380005 6OURD 30650 ?l_,— 0. 13533 52832 36613
|
. 1
Ve ; 164872 12707 00128 v 0.60633 06507 12633
log 100 043420 44810 03252 log. 10 2.30238 50020 04046
. |

g =32.174 ft see? =10.725 yids see?

p.=.07513 ths ft! = 002335 slugs ft*

1 <statute mile = 5280 ft.

I nautieal mile

1 radian =57.209577 95130

I degree =0.01745 32925

82321 degrees,
19943 radians.

=H0M) ft.

The Speed of Sound

+

i Temperature = Speed of Sound . Speed of Sound
; : FT, SEC | MPH
; 0 : 1088 ‘ 742
i 20° ‘ 1129 770
! 10° 1266 8623
300° 13i4 | 1237
1000° 2297 ! 1566
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