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Ballistic Resear rm
" - Laboratory Report No. 459

•Ordnance Research Center
Project No. 3738

"Kent/McShane/app"Aberdeen Proving.Ground, Md.11 Aprl. 19J4

AN MEENTARY T -ATI-ZZT OF THE NOTION OF A SPINiIiJG
PROJECTILE ABOUT ITS CE41TM, OF GRAVITY..

(0evision of Laiiistic 8e~e.exi1 aor.toryw~wpart|Fo. S5),

*' . Abstract.

This report is intended to replace Ballistic Re'searoh.Laboratory
Report No. 85, by R.H. Kent. Its first twelve pages are taken-without
change from Report No. 85. In those pages the equations of motion are
denived for a projectile traversing a rectilinear trajectory and acted
'on by drag, cross-wind force and'overturyih'"torque-onily. Thb method
of deterzr ning th. ztabilit; factor s is givcn. Tb tho latcr sections
the damping and the pr~eeseional yaw are discussed in the light o,f
recent develop-nents.

A spin is imparted-to most artillery projectiles to prevent
their tumbling. It is of interest in desiCiing wrojectiles and
the rifling of canrw.onoto Xnow what spin is required to produce
a stable motion of the projectile about its centre of gravity.
The object.of this raper is to provide simply and clearly the
theoretical basis for the estimation of the required sDin and
to describe analytically the motion of a yawing-, spinning pro-
jectile. The treatmTent is, with a few exceptions, an amnplifi-
cation of that given in the British Reoort No. 422 A.A.E.S.
1L.I.D. which was written by Fowler, Gallop, Lock and Richmond.*

The procedure by which the equations of motion are deduced
is as follows:

p..

(a) Angular coordinates for the motion about the center
of gravity are defined.

(b) An exnression is obtained for the angular momentum
about any line through the centre of gravity.

* See also their artielt'in Phil. Trans. Roy. Soo. A. Vol. 222; -
pp. 295-387 (1920).
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•(c) An expression for the kinetic energy of spin is
deduced.

(d) The system of forces acting on the projectile isdescribed.,

(e) The equations of motion are obtained by the aoplica-
tion of the Drinciple of the conservation of energy and of the
principle that the vector rate of change of the anmi-lar momen-
tum is equal to the vector moment of the resultant, forpe.

Coordinate System

T-e -rojectile is assurmed to be moving in a straight line.
The position of the axis of the projectile with reference to
its rectilinear tr -. Iectory is defined by two angles 4 and 9
(see fi7jure 1). The an-le of yaw, &, is the anple between the
axis of the nrojectile and the trajectory, while (f called the
angle .of orientation is the a.•rle between the veRicai plane
including the trajectory and the plane of the yaw-including the
trajectory and the axis.

ýnnrla- Veioeities or Snins

The an!-ular veloCity or snin of a rigid body is a vector,
i.e., it has a direction an1d imanitude.* The direction of the
spin is by definition the direction of the axis about which
the body snins.

d6The sin 3y, where t is the time, is designated by 5. It
is evident that S is the spin about the axis which is perDen-
dicular to the plane of the yaw. The spin a', desinated by
is the spin about the tralectory, OT. The component of the spir
of the Drojectile about its axis of symretry is designated by N.

We now define three nernendicular axes, X,Y,Z of (see
Fig. 1) the orojectile and ascertain the components of the
vector, spin about the three axes.

The X axis is the axis of symmetry of the orojectile
pointing toward the nose. The Y axis is neroendicular to X
and to the trajectory OT and oasses through the centre of
Zravity Q. The Z axis is pernendicular to the X and Y axes
aid hence lies in the nlane of the yaw. If T and 5 are less
than ,/2, to an observer lookinr? along the trajectory, Y points
to the left of, and Z above the trajectory.

* See Jesn•'T~eoretical Mechanics for a discussion of spin, moment of
momentum and kinetic energy of spin. In this discussion, the word
'spin' is defined to be fully equivalent to 'angular velocity'.
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We now designate..the. components of the ve.ctor spin about
the three axes by wý, farand Cz respectively and evaluate

yand w. in terms .of 6, T and N.

N is by definition the component of the vector spin about
the axis of the projectile X, hence

-N.

-The.spin w, is the spin' about Y, but> is alsQothe sDin
about Y; hence ' . .. .

"The spin i fs the spin about OT. It has -no component
4bout' Y since OT and.Y are perpendicular. The'component of
T about Z is

• cos ZOT =, cos (.<./2 + 5) 4- sin &

Neither S nor N has a component a~'out Z, hence,,

W =. -y sin 6.
Z .

The results for wx' wyand wz are tabulated below.

w= N

Oz= - sin b.

1 A•nf]-11-ar iomenturn

It has been mentioned that spin is a vector. It may be shown
that angular momenturri is also a vector. If the moments of
inertia of a rigid body about the three axes, X, Y, Z are
respectively

IV, Ty, IV,

and the X, Y, Z axes are principal, axes of inVertia, the
components of the vector angulr momentum about these axes are
as follows:

* A principal axis is one about w)ich the moment of inertia is an

extrenum. The X, Y, Z axes of the projectile as defined on page 2
are principal axes.

"�- -3-



Axis Component of

Angular Momentum

X IO

Z IzWz

In the case of the projectile the moments I. and Iz are

equal and each May be represented by B while Ixis represented

by A. For the Dresent however, we shall continue to use the
sy~mbols Ix, Iy, Iz.

Suppose a line through 0 makes angles, F , r. and ý with
the axes X, Y, and Z; then it follows from the vector proper-
ties of the angular momentum that its component along the given
line Is

Ixcx Cos ý + I#yL cos 7, + I zw cos (2)

Kinetic Energy of Spin.

If the orojectile has a soin cx about X while uy and w

2
Ixwx

are zero, its kinetic ener•r. of rotation is . "IfX

and wz are zero, then its kinetic energy is 9 while if

2

x= y 0, its kinetic energy is --. If the projectile

has at a given instant spins cX, wy, and wz about the three

axes and if X, Y, and Z are princloal axes of inertia (as they
are In the-present problem) then the kinetic energj of spin is

+ + I W4 -

-4- .



Force System of: the Proiectile* .

Experiment has showm that aside from the force of
ravity, W, the force system acting on the projectile may

be approximately represented by a singleair-force Rsee figure 2) acting in the plane ,o'f the yawand ihtersecting

the axis of the projectile .at P, called'the center of pressure.
The component of R in a direction opposite to the direction of
motion is called the drag and is designated by D while the
component, of R perpendicular to the' direction Of motion is
called the 'ross wind force and is designated by L.

Experiment indicates that for small angles of yaw D is
approximately constant 'while L varies as sin 6. We accordingly
renresent L by X sin -,, where X is taken to be constant. The
forces D and L tend to ouerturn the projectile. To obtain the
overturning moment, ve first add the components of D and L
peroendicular to the axis and then multiply by the arm (see
figure (Q)). The sum o the two components is

D sin + X sin 6 cos ,
while the arm is M.

The moment, d~signated by N, about 0 is therefore

M(D sin & + X sin 6cos5).

If cos 5 is taken as unity and CP(D +x )is reDresented by p ,
called the moment fantor, we have

MN p sin 6.

This is the overturning moment actinp on the projectile. The
factor P is taken to be constant, whih implies that n is
constant.

The Equations of Motion

As mentioned in the preceding, one of the princioles used
in obtaining the eluations of motion is that the rate of change
of the vector anmular momentum is equal to the vector moment*
of the aorlied force. For this principle to be valid however,
the rate of change of. angular momentum must be obtained with
reference to a suitable reference frame. A reference frame
stationary

• See the chapter on Exterior Ballistics of the forthcoming Hayes'
Ordnance and Gunnery for a more nearly complete description.

-5-



with respect to the earth satisfies the requirements closely
enough. We use this principle to determine the variation of N,
the a-kial spin.

Consider a line, Q fixed in the reference frame. If this
line makes angles •, r, and r with the. three axes and these
are principal axes of Inertia then the component of the
angular momentum along Q is given by (2) as

.I Cos +•÷I• c.CosT IzIz cos . (2)

The moment about Q is given by the derivative of (2) with
resoect t-o t,

Ix (cos 6X • + Iy ( Cos.,) O + Iz (cos 6)z
(2a)

-Ixwx (sine) - Iyu(Sin 7) • - Izwz (sin ) l.

Let Q coincide with the X axis at the time t, then as may be
seen from Fig. 6

Oo x, ~ ~ = a/2; f, 41 -wy*

The moment about Q given by (2a) is zero at time. t, since
both W and R intersect the X axis which coincides with Q at
time t. Hence at time t,

I xx + yWZ (IZ- Iy) = O.

But, since the projectile is syrnetrical

Iz =1 . and I x6x = 0.

Since the instant chosen is any instant it follows that cx is
always zero and hence ux - N - constant.*

We now derive an expression for the angular momentum abaut
the trajectory OT. Aciording to equation (2) this is

1xW cos + Iyuycos ? + Izwz cos C

if , r and t are the angles OT makes with X, Y and Z
respectively.

*This proof that i is constant is due to Dr. Charters. Since this
report was written it has been discovercd that there is a hpin
destroying couple which causes an apn-reciable loss of spin for the
longer times of flight. See Ballistic Research Laboratory Report
No. 154.
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It may be seen from figure (3) that "

. ..r;

S'++1 YT/2*S .. ,

If these values are used and if A, B and B are substituted
for Ix, Iy and Iz respectively and the values of xl, wy and wz
are obtained from (1), the angular motnentum about OT is foundto be i26 'AN cos 8 + B sin 6 (P.

Since the force R is in the Dlane of the yaw it intersects
OT and has no moment about it, neither has W, hence

d(AN cos 6 + B i sin2 8)= 0ait

and AN cos 6 + B sin2 68 =F, (4) v

where F is a constant.

As the yaw increases, the moment, e sin 5, does work on
the projectile and therefore increases its kinetic energy. If
K is the kinetic energy at any time, t, Ko is the initial
kinetic energy and W is the work done, we have

K a Ko + W. (5)

The work done by the couple while 6 increases from 6o to6 is

Ssin a 5 =J- (cos 6o - cos 6)a w. (6)

From (3)
K = Ij + I "5+ Izz

If the I's are expressed In terms of A and B and'.the wts.in
terms of •, • and N (see (1))it is found that

K AN +B,(5 + sin 5~

Hence from (5) and (6)

B(2 2 sin6 )-2K0 2V (cos 60  8Cos ) -AN2.(7)

ge,% -7-
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.2 62

Nol COS 5 . and COS 5 1 &- . If these substitutions
ara made and the constant E is substituted for the constant
sum,

K P 2 AN2, (?) becomes

B( + 25 ) -- + E

or, if sin 5 is replaced by 6
22Y 2B(52 + 6 ) arb + E. (8)

If the initial values ar- desienatod by subscrint z--ros,
it follows th"It

E = B (0 2 +622 2 (8a)0 ) 0 0
S~52

If sin 5 is replaced by 6 in (4), cos 8 by, 1 - and the
equation is divided bi.B it becomnes.

* 5 2 AN 52 _AN F* " "- * "

If the initial vqlue of 5, 0 is designated 0, it follows

that
52ý = 2Sý + AN (62 _A2 2 6* ; "+ _52 2) =2 2+° . •(52 2), (9)

if L = If h is substituted for - Q'y2, (9) may be
written as h Q (10)

If cpfrom (10) is substituted in (8) the latter tecores upon
• 2

multinlying by 5 and dividing by B,
~212 +( 2 -4 2 (1

The substitution

* 52= X9 256=

is no,,. made and equation (11) becomes

- . -. -. . . . . . .. **.** * *-* **..-- - -. . . . .. . . . . . . . . . .. . . .-



1 2 2(2 - 4P /B) x2  +x÷ a (12)

where. _-.. %e' A •ntrs

22

62 228._h 2 Q E€ 2q 2K ,. , ... f2_. ;"

21 ''2. 0
._ .i . 2  ,- ,(13)

and the value of the constant. p2 is of no intercst because it
will be elimin'tted in the process of formning the equation o$f.
motion. We now make the substitution

Equation! (12). becomes, an differentiation and division by

S(1-1/s)x4a 1 + =0.

MaKing the substitution,

2a1

x;41(1 _ l/s)

we obtain.

+.... (i -ll/s)y- c,

or if

p2 = 2 (1 - /s), (14)

y + b2y = o., (15)

The solution is of the form

y = Cle it + C2e-Pit

where

If p2 Is negative, p is imaginary and pi is real. Hence,
unless C2 = O, the value of y will increase indefinitely.

I •'•: ' "-9- ,
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Because offthis fact the motion about y a 0 is said to be
unstable when p2 is negative.

It is evident from (14) that

p is ncative if s 41.

If s ,-i, then p is positive, and the solution of (15) is
known to be y a a cos (D t ÷+x (16)

where a and x are constants de%endirg upon the initial condi-
tions.

S,-N
It is thus shoVm that when s AP >-it Y oscillates

y s-2ac1

about y o or 6 about Never does y depart more

than 'a' from y = 0. The motIon is stable about y - 0.

In view of tha-t fact that the motion is stable only when
sý> 1, s is called the stability factor.

From the previous substitutions and (16) it may be shown
that

.62 = b + a cos (pt + ). (17)

where
- -~ ?2 'o~2

" .20• o t/2)÷ + T+- (1-i/sb t= oZl - - . , -. -
(- 1 /s) .o( i (18)

The origin of time is taken as the instant when the
projectile leaves the muzzle. It is assumed that the minimLun
value of 6 occurs at this time, t = 0. Therefore Y-= 0 or x,
5o = 0, and 0 is the minimum, yaw.

We take x= ir, and then equation (17) becomes

52 = b - a cos rt. (19)

If a is the maximum vrlue of 6 and 0 is the minimum, we have

. . - - . . . . . .
* * . . . . . . . . . . . - - -



"b - a - [ ' . • ' . , ,' - ".

whence a b<-' ;.b

and b + a a 2,. or
2  b + a =2b- 2 . (20)

Experiment .indicates that 0 is apvroximz-tely equal to E,
the ya? of the projectile in' the gun at the muzzle. Further-
more, Tois the spin of the axis of the projectile about the

axis of the bore and hence N =10 cos E. If cos c is replaced
by unity, we have

<Pý NK+ )
If this value of If is substituted in (18), 6 is taken as zero0
and 4 is comt'uted by.(20) it is found that

By expressing a and b in (19) in tcrms of :a and •, it may
be changed to

? pp-), (1 2 D2) CosPt

.~ 52. 12c~4
which may be trans2 omed "in n 1" t2

If • is ncgligible,

-vsin (4))
Equation (22) ot (p3) provides'a means of determining s.

If T is the observed time In.Crval,from zZro yaw to zero yaw,
or minimum to.'minimum -then

From this,

1- /s (2 /QT) 2  (24)

* This expression for a was first given in a paper by Kent and
Hitchcock on the "iffuct of CrossWind on Yaw".

............. ............. . •..•....... ,,. .,.-%.'-. •-



from which s may be determined from the observed value of

T, 9 - being assumed known, A and B rr.ay be measured
and it can be shown that

N a 2n-v0  (25)

where vo is the muzzle velocity, n is the number of calibers
for one turn of the rifling and-d'is thc caliber.. Of course Vo
and d must be measured in consistent units.

The motion in T mmay be obtained by substituting 62 from
(22) in (10) and integrating. The result is

T-• + Q t" +. a•~ c a

or Y T + I ýA + tan"I (* tan -) . (26)

The choice of the sin in (26) depends upon the initial
conditions. If the ÷ si holds, the motion is called
'stepped up': if the - sign holds, 'stepped down'.

The Damning of the Yaw

Equation (22) vas deriwd on the following assumptions:

(a) The trajectory is rcctilinear.

(b) The air force system has no elements exceTt D and L,
both of which lie in the D1anco of the yaw.

(c) P and hence also s are constants.

(d) The yaw is & -all.

These assum..ntions arc only approximately correct. Both
tha cross wind force. L, and the weight W, tcnd to cause
the trajectory to curve. There is afn air couple ovposing the
angular motion of te axis of the shell which has a comDoncnt
about the trajectory. Bscause of the diminishing air speed
of the projectile P is not a constant; it decreases, while s
increases.

While for well deslgned artillery projectiles, the yaw
near the gun is small, this is not always the case.

-12-
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:4.,= The Epicyclic INot ion~
.. 'i. . ! 1.. .'-', . * f,:..

* We alit line biicfl fwitho~ut 'proor tl.ýo ,moditicati S ofs
*c~ation*(22) roquirood tQ !take 'account 101f the faiJure-, 'ot

a~suinptions (a.), :( and '(d.);~-.*
* Assumptionl (.b) Is ii~c~rrdt -t0:thc_ 'ext-ent -that iAn .ý(di.
t- ton 'to the- ovecrturning moment therc -ar-e..thtec-.'coupl~s dap-....able bfDrOducix ~ -iI'gciab1lq effeet. mnhe otiton-. n'.

.6thsei ýtIy;ý4ýhgloment d'uc ta yawing. i th.dot
*angulý&,ve-lbtity~'p! ,the. *axis'of U16. 7irojoectile' is. eocd-'by

.p there is'. a- courle .yhich, tc.nds to, roduc~,, the. angular VolOC-

ity otthe -axis.' `Thiis -i's 'rcprc ented -bý.Y,04v. k~ vor-.by HwcA*
ýi6r ~K ~v.ard K " i~s a dýim~cnsionless co~ff .'ciPn1t
dcePonding on the: Macia nuitber. V .+ speed of. sound. This co~uple
.mV.ybe regarded 'as, t-hemomnent of a. force, -the. "pitching force"

whi~ch can be desri~ated býf VS.4 dvw and tends to move .the center

of 'gravity inthe sam. edirýct ion .as the nose *is turn~ing-
-icethe prdjeotý.1e ii*s both :ipi~nxjng -and 'yawing, it -is

actead. iicrn..b;- the sain-- tyo)e or forcii Ih~e "Mra'.nus -force,,, that
tcue~~olf ..balj to sli~ Id6r hoV. -The-rnagnitud~e of..thiis

force-is directed bý Kýp: v i where lkis.'another:
dimensionless coefficient.':LThe momrent of this -force' about 'the
center of gravity is the "Magnus moment". and is denoted. by,
K -dd vN "sinu ~Accordin.w to.established custom, based on a

fguestltiade abbut !i9'C by Fbowler, this Js regarded as. actin~g infroit of -the -ce'nter of gr .avity.. .However, e4xperimients ind i-tat e
that the riagnus: fodrce, usually. txt 'betnd the center of gravity
causing the slight' inconvenieýnce that: K: ig''ustlially- negat ive.

The' last couple which. we shall consider' Is *the' Soin-
decelerating couol~e, which acts to reduCe the spin of the
proj Pectil .e ab Iout t .he . axis. Th.i s ..is *d'not~d'by KýP dWNV,
where is another dixnensionless coefficient, ordinarily much

si~alir hanKjj XL,-ec.ThiS-couple.. an~d.. e Magnus m'oment
act togcthier in dampinq the yaw; their coefficiert'ts wiill not be
found ey~cept in thcr corbnblmtion KjiKA.

It is'evident that a couple will affect the yaW, for the
angular momnentum. vector points ncarly along the axis of the
shell (Viere is a-sinall cr'oss-ccorr.ponent. due to the snin of the
.axs :.nd the irippressad. ýpunle is e~qual to thý 'rate -of, change of

a~iulY ~8rn'D'1';' t-1.s less c-vident at.jrf gmýnce that a
force Pcri6,,ndicular to the trajectory will' affec~t the yaw. The
explanati.on is t-hat e~ern if-the axis of the shell kept-coflstant

-1 3-. . . .



dircction, the cross-force would curve the trajectory.I Thisi
would affect the Yaw, which is the an'zlc bctwecn shel1VC axis
and the line tangent to the trajoctoty; The coMplete stUdy of
the motion is rather tedlous, and will not be attempted, here.
The result is that the axig of the shell undergoes a damped
epicyclic motion, the motion described in previous pages is an
undam•cd eoiCyclic motion. We now dcscribe an epicyclic motion
in some dctai1. Imagine a plane set perpendicular to the tra-
Joctory and one unit of length ahead of .the center of gravity.
The axis of the shell will not intersect this plane at the same
pointas the traiectory, unlcss thcyaw hanpens to be zcro.
he intersection of the axis of the shell with the Dlane des-

cribes a curve ýwhich can be readily visualizcd thus. Imagine
an arm of length kI rotating about the Origin at a rate of n,
d-1grecs p~r fobt of tr-,wvcl of the shell. At the end of this
arm.wc attach another arm. of lonýth kC2, rotating at 'riate of
n2 degrees pcr foot of travwl of the shell. The end of this
second arm describcs an epicyclic curve. The.arms kI and k2

are not constant, but change exoonentially with distance
travMlled. Mlorcover, n1. and n2 arc not quite constant, but
change slowly along the trajectory. Thus the turn .of the
first epicyclic curve is not cxactly.nI z degrees In z feet,
but is bettcr recorese:ntAd asr'nldz, where nlis a slowly chang-
ing quantity.

If we denotz the length of arc of trajectory from muzzle
by f, and t0.2- initial valucs-of kI and k2 by-K and K then

the right and downward comooncýnts of yaw in radians, arc (if
the small effects of gravity arc ignordl given by

Right component of yaw = 1(1 C I I + k2 cos ,27)

Downward compohent of yaw k I1 sin If +k ,2 sin 92,

w hrc .. _. Irx I d2K

0 L

S - •,- (KA 2K )

K (2 K KV
* 1 K ,..1 : (O j) exp 'd. ÷

0 --

7- -' 21) d df)

-14- , "Lf"i"TD-
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I " (0) +- AN (1 ÷ a) df radians ' ..

t.

= •Io) ÷•/• AN
(fB()- (+ +o) dt radians, ,

0.
(28)

AN -T 2 (f 2(°) + AN-
0 Tv (1 -o) df radians

(f -o) cit radians.
o.. ..

0 -l -1/s 9

S= /. . • " ' - , °. 1 , .

The theory eadlng to these formulas is applicable with
only minor modifications to. the spinning rocket in which,
during burning, the spin is in a constant ratio to the velocity
The eTfcct of propulsion' ch-be" tftatcd as" tho(gil' it "were a
large nogative (ag. Howevor, experlment indicates that at
least some of tie aeroqynamic coefricipnts 4re considerably
dditefent durint burfini from the~value-s iich they have adlter
"burning. 'So tht possibillty of thenriutheomatical extengfon of
the formulas to the burning period does not mean that the num-
bers in the fomnulas are also unchanged.

""stsbilik y

From the enicyclic reor:sentation it is clear that a
maximum of yaw occurs when the 1two arms have, the same direction
in which case the yaw is-

S- ki + k2 . , .... ... ( )
A minimum occairs when .th two arms have opr"'site OlreptIons',i
at which time the yaw is ':r.s. .

, - K2 .' (30)

__ ~~~-' '15- f~CfIIh"



In order that the shell may have stablc flight the maxima
of yaw must diminish as f increases. That is, kI + k2

must diminish. This can only occur if each diminishos
scnarately, for if eithcr increascs its rate of incr_-asc also
Increases, .bcing cxoon-ýntial, and will eventually nullify any
decrease of the other. For k1 to decrease the Integral whose
exponential occurs in the formula for kI must have F. lositive
intcgrand W< since it os nrcc6ded by a minus sign. Therefore
it must be true that

KL +d2~KH + + d 2 KH dA2j 0
÷ .- o---÷ - d- (KA- 2Kj1>.

Likewise, for k. to di-.inish it must be true that

KL d2 KH 11;KL d2 -KH .d 2 >0XL+ + .(K 2,)-- ÷ "•ir ÷ A (KA-2KJ):>o.

As a result, the Droduct of the left members h:.ust bebositive:

(KL d KH) 1 KL d2KH d27÷ ~ .. Ir- - - -• & 2 jl->o.
L+F-(KA

Replacing a by its definition and D..rforming n algebraic
si .plification L:ads to the ncccssary condition for stability

rdK 2 dK29 < . -2 -- X" (KA,_ 2Kj) 2 ..mZ. (KA "2Kj " 31

KL +d2KH

Thc right member can n.var exceed 1, so this Implies the
familiar stability condition l/s<l. The convcrse is not true;
the stability condition just derivcd can be decidedly more
stringrnt than 1/s< I.

4
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Drift

So far, the trajectory has bcen treated as a straight line,
except that the cffects of the. aerodynamic force perpendicular
to the trajcctoty were considered in computing the yaw. We now
consider the curvature of the trajectory caused by gravity. If
the trajectory is in a fixed XY* plane, and no aerodynamic
force cxcept the drag is considcred, and the angle-between the
horizontal and-the tangent tothe trajectory Is designated
by , thaen , .

d= x - D cosin .... .. : .- ,.-

*dt m~
No a ,=yx hcn" by dfrnito ". ..

sc 2  g . ' ".. = , .

_ - D si n e. , gs..

m ;- .... ," - --..
.9 . .. •Butt

Now tan 9 = l/; hence by differentiation"

9 - - -.- 2':.

SCC2 G .. . " -

si-n) sin , - D 'Cos G',

--+ . 9.. I , ,.• , .

Iso..

""" • 9 . ..

But . - . ..

2 .2.si E) =

and

-cps @/v 7 (32)
This-is rate of turningof:the trjctory. a0o ointal
axis' pbrpendicular, ~ h traect ry.

•These axes are different from the XY axes of the projectiles



It will now be shown that there is a mathematically
possible motion of the shell in which the axis makes an angle
C to the right of the trajectory and an angle - above the tra-
jectory, both 4 and n being small a-nd slowly changing. This
means that the shell "trails" prorerly, continuing to point
nearly along Jhe t~ngcnt to the trajectory.

At some rarticular time to we choose the position of the

center of gravity as origin and construct a reciangular axis
system (x,, x.?x3,.); the first is tangent to the trajectory,

the third.-is horizontal, and to the right, and the second is

pcrDendiculA to the othier two arid is upwardly directed, If
the angles 4 and r, Arq *rsall, -:.t -,ll timcp t,the direction cthe
axis has comnonents ncarly equal to (cos (G - e )l sin
(e - U), .0), wIhee go is the inclination of

the trajectory at time t . Hence the arigUla momentum is
nearly

(AN cos (9 - 9o), AN sin (9 - Go), 0), and the

rate of change of angular momentum is

(-AN sin (9 - G0) .4, AN cos o- o) , O),

which at time to is

AN S cos o(00)
(o, . .

( 
0).

If the nose of the shell is directed at an angle k"
(radians) to the right of the trajectory, there results an

overturning moment yM.3 v2 si.n, E tending to increase •' It is

permissible to renlace sin t by ý, 4since . is small. The
couple tends to cause a clockwise (negative) rotation about the

- axis, so it is represented by the vector (O,-K~pd 3 v2 ,. 0).

Likewise, an urvlard angle rT produces a moment K,1pd3 v2 l,, tend-

ing to cause counierclockwise (positive) rotation about the
x3- axis. This moment is renresented by the vector

(0, 0, KMfd3 v2)n

If the nose of the projectile is to the right of the tra-
jectory by an amount k, the Magnus torque has magntude

K. $ 4Nv E . For right-hand rifling, the shell presents Its

risin; side forward, and so the Magnus force is upward.

-18-
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Assumifig as required in the definition of K. that this force
acts in front of the center of gravity, this tends to produce
counterclockwise rotation about the x3 axis, so its componentsa re • •(0, 0, K3 Pd4 Nv. ),

Likewise an upward tilt of angle n produces a Magrius torque
with components-

(0, Kip Nv n0 o),

The combined torques, due to both overturnin, and Magius
moments caused by a yaw of, to the right and rn upward must
equal the rate of.change (au)of angular momentum. This
yields the two equations.

-YV'_ 3  + pd4Nv = cos v '. (

KJp14~Nv + Yj,pd3v2r, 0

These equations have solutions

n~'Cos 0o KM -- '

(35)

- ANg cos go K, (dN/v)

Pd v 1, +K (dN/v

The quan',tity Kj (dN/v) is usually considerably smaller than YI'
and its square is negligible compared with K. Also go is the
angle at time to; which is arbitrary, so we may as well drop
the subscript zero. This yields

AN' cos G, ,..•.,,, , ..

(36)
ANg cos . Kj Ndd "M

-*19-.
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If the Drojectile points to the right of the trajectory
by the amount E (in radians) and above the trajectory by the
amount n , the rate of turning of the projectile 9bot't the x3
(or Z) axis will equal the rate of turning of the trajectory,
and the projectile will continue to make these angles E, r1
with the trajectory. This shouts that a possible motion of the
projectile when gravity causes the trn.jectory to turn is one in
which the projectile points to the right and above the trajec-
tory by the amounts C, n just given. A more nearly complete
theory shows that the gcneral motion consists very aporoxi:--
mrately of the epicyclic motion as previously given,, but with
the center of motion at (, )instead of at the tangent
(0,0) to the trajcctory, providbd alvrys that the yaw ncver
excecds a tow degrc-s, say 80 or l00. This theory has received
a rathcr satisfactory e-pcrimontal confirmation.

As a consequence of the yaw ( ., r, ) the shell is acted on
by the cross-wind force, of mnagitude

Kd22' sin 6,.

being the y:-.w, and also by the Magnus force

K1*d-vN sin 6.

The cross-,:i'id force acts in the olane of the yaw, while the
I 1tgnus force -acts ne'-rondicularly to it, its dir..ction being
uniard and to the left. The rcsultant force has comnonent

KLpd2v2E - KKpd vN a pd2 v2 [KLE- KK (Nd/v) n]

to the right and

KLpd 2 v2T. + K. Pd3vN~ = P 2V?2CKLT+ KK(Nd/v) E]
L upn.ard and peroendicular to the trajectory. Although KK has

not been vry accurately evaluated for any shell, experimcnts
indi'ate that it c.nnot greatly exceed KL,. whill. Nd/v is
dccidedly l-ss than 1 and rTiS raller than E. Hence the force
to the right is positive, and in fact differs little from

~2 2  KL _AN#- cos (

It is this steadily acting force vhich causes the rirt drift
of projectiles fired from r7uns with right-handed twists.

Except for large projectiles with small muzzle velocity,
the yaw due to gravity will be of small magnitude, much smallcr
ordin-rily than the eoicyclic yaw neiar the muzzle due to
launching conditionsi
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Dctcrm, in-ttion of Acrodyna'mic Coefficients from Yaw
=ar. or sMrK. PFOtOgraph, Data

If a projectile is fircd through a sequence of *cards, from
the shaDe of the hole it is oossible to deduce the amount and
orientation of the yaw at each card; and if desired, the right
and downward-comnoncnts can be found from tils. -Another method
of recording ylw, very satisf.ctory in accuracy, is-to take
horizontal and v'rtical photographs of the nrojectile at each
of several stations. From these data it is possible in either
of two ways to deduce the aerodynamniccoefficients of the shell.

A first possibility is to locate thp maxima and minima of
yaw and to mcasuro their. mangnitudes.

If hI and-h 2 are defined by the equations

= 1 0 / d2 .(ý.L +-2K

"o (38)

1hp fd 2(:.,K L''2KH' d 2

0

the equations for the maximum and minimum yaw take the form

K x (-) .(- .h9 1. ý:XD (-h + h2)3

(39)
-. Ii

-, ) (j1 .XP (-h ) "2 - 2 K x (-h+ h2 )j

uhere in the last qUqation the '+ sign is to be used if
K1 exp (-h 1 - h2 )

exceeds
K2 exp (-hI + h2 ) and the - sign othervise.

But
K1 exn (:h 1 -h 2) + K2  xp (-hi +'h2)

= exp (-hl) K1 e-h 2 + K e+h 2

Se-hi Llog K1 -h 2 + coloyK2+h 2j

- ehi + log K-ik('e Iogi K K2-12 + e-log ' K17K2

IV 2K1 el 1Cosh (1hg.\j K1 /1K -h2)-21-.

~I



so[ IK2N(b)c(O) _S 1eh cosh (log-i-2/KZ - h2 ). (40)

I n the sne way ....

0 f±7rn 7 e 1 siz~h (log .K3/K2 -hp), 4l)

the choice of sign b-Ang as Cxnlained after (). Leet
letters with subscriptl rztýr to measurements and values
correspondinfg to distance (l from the muzzle and those with

subscript 2 to measurements and values at distance 12 from the

muzzle. Assume N constant; this is very ,Iearly true over any

-short arc. Write J for 2,K, and j for log_ K2 Then

2 =J2 c(4)3 - h -1 cosh 2 (j -

J2 o e-2h~-irih (J-h

Since cosh2 x - sinh2x I, it follows that

2 2 2 a()e2Q 1 "1

Similarly
a2, _ 02, j2 o2e-2h12, ..

From the last two equations

- log (41 - 0)a l) log 2 Ja(0),

-2h 1 l og 2 (f2 ) - log J2 o(0).
su~a412 (02 log J2 (

Subtracting,2

-2hll + 2h12 log.

-22-
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If p, KL and K•, are constants, this takes the form

~rL

L'lg , (42)

the logarit~hms being natural log:rithmns.="
From (40) and (41)
tanh (log h . ...

the choice of sign being as exrlained after (•9)i-...."If- •/Gais
small, as is ordinarily thc case in firing from fixed mounts,
this can be adequatel~y replaced by the. apD'roximation

~K1 /K 2 -I= • 2

since tanh .z -• z for z near~zero, Applying this at distanc~es
U. and •2 from the rnu-.zle .•.nd s~ubtracting yields•

- 2 2 -h2 1(\ . 7 "" .- : '-

If KH, etc., are 'constants, by (39)

Y1 K d2  KL Ul) 2  d

fl,
Hence +" +

*,'- K,, d 2  -. -"

m . pdd2f-"

.. By (28), the:fast-turmn£.n epDicyclic arm rains on the slowntrelogatithe s t eu .o
Ia(- ((P)- . •-° rad;,ns/see,

t or o .
log ý,K: o radia oot.

S-23-
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since minima occur whenever i n 2 differ by 1800, or
radians, the 4istahce betwecn minima is the. distance r:quired
for If % to Armase -through 2 •adians:...Thust If is the
eictance betwieen minima

fd.

- ( . ds
e

rniim.t .r.a.. thisgi..

A N qAs

If v and o are supos;d constent bctvean two consccutiveminima A feet apart, this" Cive-s ' "

Thus by the l>st two of cquations (28) it is -ossible to deter-mine Y1i.

The drift of the projectile is seen from (37) to be the
product of KL/KMh by a readily ccr'nputable quantity, providcd-
that KL/KM is assumcd constant. If this quantity is'computed,
and the drift is maasured by means of soecial.firings, KL/KM
can be found. Since KM -is known, KL is also knovm. Now (42)
dctermines KH, and (43) det..'.rrnines [KA - 2Kj].

A different technique of reduction is in current use in
connection ,lath sDark-photograph" data. The pro ectile is photo-
griphzd as it pass-es a group of stations, sgy five,-equally
s oaced. By measurement of the photograohs the unward and right
components of the yaw arc doterrnincd and plotted. If we knew
the rate of rotation of the slow enicyclic arm, and imagined
th.e paper turnmd -at this rate, the motion of the axis regis-
tercd on the Daper wbuld be only that due to the fast epi cyclic
a8. Hence the points 1, 2, 3, 4, 5 would' b'equally spaced
around the circuizfrn.hce of sone circle. Accordingly, we make
scvcral guesses at the slow rate (which in practice turns out
to be rather easy) and plot - the positions 1', 2' 3' 4? 51
which the axis would have had at stations :1 2 3,'4, 6 haa the
taper boon rotating writh the small -arm., and ha& coincided with
ts actual position at so;r.e station, say 3. For our best guess

-24-
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5. 3

*the points 11, etc. will bc. almost cqually spaced about some
circle. Th,- ccnt3r of this circle will ropresont the end of
the slow arm at station 3, wrile the line from center to 31
rýrc..prscnts theC fast arm ~tstation.3. These may be in error
by scveral dcgres.

The procc:ss is* now rcnca~tod, usinc, the photographs takecn
atanothcr group of stations at soffi distance, say 150 foot,

from th-e first. Thc positions of the arms are thus found for
one of thcsc stations. Having these positions of the epi-
cyclic arms it two widcly.s-2parated points, the-ir rates of
rotation.arc6 d~tc~rjr.ifld.hAesicaC accumicy. If de,.,sircd
these w-1ll-tcrmnihc-d -rAtcc, mray,,'be usod instuad, of the prcvious
gucssed valu-s to givc a rl,.-visod granhical constructionl at cach
group.f

A:Now tthe' picyclic M, t:s aTI/df and 1dT d arc kon

equations: (2a), yield q, s and KM-The leneth of.the .epidydlic
f .

Wili



ams k and k are khown at two v.hl1.s of f, so by cquations

(28) we can rind the quantities

SKL/m + K~d2/3

-KL/m + KHd2/B - (d 2 /A) (KA - 2K,).

As beforc, KL/K n-•y he d~t.rmined by drift measurements. It
is also possibl: to deduce KL from the swcrve of +he center of
gravity of the projcdtile caused by the cross-wind force. This
knlown, K -and (KA - 2ký) are detcrnmined by the known values or
the quantities (44).

DpDndenc. o._,, Yaw on 2ravel

If in (27) and (28) we change variable from f to x a f/d.
which is the distancc travcled expressed in calibers, we find
(for example)

3 2.
IN(O)a(o) 1d

k Kl ýX f m KL + ''KH
0

0-1 . [_KL + Kli - -,-(KA .6 2Kj)])d X

Givcntwo projectiles having the svune shape and composed of
material of equal density similmirly distributed, the masses

"will be proportional to d3 and the moments of inertla will
2 5therefore be proportional to md2 or to d5. Hcnce for the twoDrojectills the exnressions d3 /m, md2/B and md2 /A will have

equal valucs. At any given velocity, then, the two projectiles
will give the s-ze value to kl/K1 at equal values of ). More-
over, even at different velocities this will be nearly true,
since the velocity enters only through tho cocfficients KL,.
etc., which are not sensitive to changcs in velocity (or rather
Mach number).

, -2.
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