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AN ELEMENTARY TREAT:IIT OF THE MOTION OF A SPINNILG
PROJZCTILE ABOUT ITS CENTER OF GRAVITY...
(hevision.or bgl;mstic hesearcin Laborutory KELOTt Wo. 85)
.- .- | I Abstract.

.

This report is irtended to replace Ballistic Research :laboratory
: Report No. 85, by R.H. Kent. 1Its first twelve pages are taken without
change from Report No. 85. 1In these pages the equetions of motion are
denived for a projectile traversing a rectilinear trdjectory and acted
on by drag, cross-wind force and overturning torqueé only. The method
of deterr ning thu stabili{; factor s is given. Tt the later sections
the damping end the présessionrl yaw are discussed in the light of
recent developments, ’ '

| A spin is imparted to most artillery projectiles to prevent
their tumbling. It is of interest in desigaing nrojectiles and

. the rifling of cancon.to know wihat spin is required to nroduce

- a stable motion of the projectile ahout its centre of gravity.

- The objiect. of this paper is to provide simply and clearly the

theoretical basis for the estimation of the required spin and

A to describe analytically the motion of a yawing, ‘spinning pro-

- jectile. The treatiuent 1is, with a few exceptions, an amplifi-

cation of that given in the British Revort iWo. 422 A.A.E.S.

M.I.D. which vas written vy Fowler, Gallop, Lock and Richmond.*

The procedure hy which the equations of motion are deduced
is as follovs: E S :

' (a) Angular coordinates for the motion about the center
of gravity are defined. : : . _

\
u
b

(b) An exnression is cbtzained for the angular momentum
about any line through the centre of gravity.

* See also their articl® in Phil. Trans. Roy. Soc. A. Vol, 222 -*
Pp. 295-387 (1920).
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E (c) An ‘expression for the kinetic energy of soin is

i deduced. R : ’

: (d) The system of forces acting on the projectile is
descrived." - - . - ‘

. (e) The equations of motion are obtained by the aoplica-

- : tion of the orincivle of the conservation of energy and of the

. nrinciple that the vector rate of change of the anfular momen-

tum is equal to the vector moment of the resultant forge.

Coordinate System

T:e ~rojectile is assured to be moving in a straizht line.
l The position of the axls of the nrojectile vwith refereace to
X its rectilinear tr-iectory is défined by two angles 5 and ¢
(see fimure 1). Tre ancle of yaw, o, is the ancle between the
axis of the nrojectile and the trijectory, while ¢, called the
angle of orientation, is the an~le between the vertical plane
including the trajecfory and thé plane of the yaw including the
trajectory an¢ the axis. : : .

‘ripalar Velocities or Snins

The ansular velotity or sn»in of a rieid body is a vector,
i.e., it has a direction and mamitude.* The direction of the
snin 1is by definition the direction of the axis about vhich
the body svins.

The snin %%, where t is the time, is designated by 5. It

is evident that °5 is the spin ahbout the axis which is perven-
dicular to the plane of the yav. The spin %%, designated by &,

is the spin about the trajlectory, OT. The compoaent of the spir
of the orojectile ahout its axis of symmetry is designated by N.

[ A SRSCN

We nov define three nermendicular axes, X,Y,Z of (see
Fieg. 1) the orojectile and ascertain the components of the
vector, spin =zbout the three axes. '

A e adary

The X axis i the axis of symmetry of the »orojectile
. pointing toward the nose. The Y axls 1s nerpendicular to X
and to the trajectory OT and passes through the centre of
rravity O, The Z arxis is nermendicular to the X and Y axes
and hence lies in the »nlane of the yaw. If ¢ and § are less
than /2, to an obsaerver lookins along the trajectory, Y points
to the left of, and Z above the trajectory.

® Seo Jeans! 'Thaoretical Mechanics for e dilscusaion of spin, moment of
momentum and kinetic energy of spin. In this discussion, the word
‘spin’ 1s defined to be fully equivalent tm-'angular velocity',

L]
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We now designate the comoonents of the vector spin about

the three axes by Wy s ‘and w, respectively and evaluate

,, wy and Wy in terms.of §, ¢ and N.

N is by definition the comporient of the vector spin about
the axis of the progectile X, hence

. 'a& = N. .

- Tne spin my is the spin about Y but & is also the spin
‘about Y; hence ¢ i N .

& = b

T The spin ¢ 1s the spin about OT. -It nas no component
%bogt Y since OT and.Y are pernendicular The component or
about Z is o © o

DRI .
a L

.% cos ZOT .9 cos ( =/2 + 6) —v sin 6.
Neither & nor N hezs a componeat '“out Z hence -

W, =, -‘P sin 6

Z i . i
The results for Wy uy and wz are tabulated below.
wX N
my:'é" . (D)

: Aﬂfﬂllr romentum

It has been mentioaed that spln is a vector. -It may be shown
that angular momentum. is 31sc a vector. If the moments of
inertia of a rigld body ahout the three axes, X, Y, Z are
respectively ) _

I Iys I,
and the X, Y, Z aXes are principal* axes of infertia, the

components or the vector angular momentum about these axes are
as follovs:

* A priancipal axis is one atout which the moment of inertia is an
extremum. The X, Y, Z axes of the projectile as definei on page 2
are principal axes.




Axls S Component of

| Angalar Momentum
X | ' S SV
Y Iy
'z A - Ty,

In the case of the projectile the moments Iy and Iz are
equal and each may be represented by B while Iy is represented
by A. For the vresent however, we shall continue to use the
symbols I, Iy, I,. :

Suppose a line through O makes angles, ¢, r, and ¢ with
the axes X, Y, and Z; then it follows from the vector proper-
t%es gf the ancular momentum that its component along the given
line 1is

I,wy COS £ + Iymy cos 7, + I w, COS & | (2)

Kinetic Energy of spin

-.If the projectile has a snin wy about X while uv and wg

e
) I
are zero, its kinetic enercy of rotation is -5;5. If w

2
: . I
and w, are zero, then its kinetic energy is _X;Z, while if

2
_ : , I w
wy = Oy = 0, its kinetic energy 1is -325. If the projectile ¢

has at a given instant spins wy, wy, and w, about the three

axes, and if X, Y, and 2 are principal axes of inertia (as they
are in the - present problem) then the kinetic energy of spin is

1 2 2 21 '
5 [E¥mx + Iymy + IZQEJ . (3)
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Force System:of: the Proiectilé*

. Experiment has showm that aside from the force of

1 gravity, W, the force system acting on the projectile may.

: be approximately represented by a single air.force,
(see figure 2) acting in the plane of the yaw and intersecting _
the axis of the pro;ectile at P, called 'the center of pressure, -

: The component of R 1n a direction opposite to the direction of

. motion 1s called the drag and is deslgnated by D while the

R component of R perpendicular to.the direction of motion is

' called the ~ross wind force and is designated by L.

Experiment indicates that for small angles of yaw D is
approximately constant while L varies as sin &. We accordingly
renresent L by A sin-6., where )\ is taken to be constant. The

[ forces D and L tend to overturn the projectile. To obtain the
: overturning moment, ve first add the components of D and L
pervendicular to the axis and then multiply by the arm (see
figeure () ). The sum of the two components is - '

_ . .Dsin 9+ sin & cos 9,
vhile the arm is TF.
The moment, désignated by M, abdut 0 is therefore
"OP(D sin 5+ A sin dcosd)..

B

If cos 5 is taken as unity and OP(D +% ) is revoresented by p ,
called the moment factor, we have

= M= p sin 3.
n This is the overturning moment acting on the projectile. The '

' factor p is taken to be constant, which implies that OPF is
constant.

»

.f.

The Equaticns of Motion

. As mentioned in the precedin%, one of the princivles used
in obtaining the ejquations of motlon is that the rate of change
of the vector angular mementum is equal to the vector moment
of the annlied force. For this nrinciple to be valid however,
the rate of change of.angular momehtum must be obtained with
reference to a suitable reference frame. A reference frame
stationary v :

* Sec the chapter on Exterior Ballistics of the forthcoming Hayes'
Ordnance and Gunnery for a more nearly comrlete description.
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with respect to the earth satisfies the requirements closely
enough. We use this principle to determine the variation of N,
the axial spin. L - ;

e T

Consider a 1iné, Q fixed in the reference frame. If this
line makes angles g, n, and Lwith the three axes and these
are principal axes of 1lnertia then the comnonent 6f the

angular mdmentumqalong Q is given vy (2) as

o wa* cos g *_Iy@y cos;1€+ T,w, COS & . a (2)1

The mbméht'aﬁout Q is given by the derivative of (2) with
resoect to t, . ‘

Iy (CQS E) W, + Iy (_cos-n) &y + I, (.cos-t.)'cbZ _
S o | " (2a)
-IXQX (sing )é - IYGS(Sin n)n - Isz (gin C)‘ig-

e S M flicnl

Let Q coincide with the X axis at the time t, then as may be %
seen from Fig. 6 .

Ezooo ﬂ: L= “/2; T’ingo C.= ‘wy'
The moment about 3 given by (2a) is zefo at time. t, since

both W and R intersect the X axis which coincides with Q at
time t. Hence at time t, S .

But, since the projectile is syrmetrical
and I o, = 0. : : , ]

I = Iy x“x

Since the instent chosen is any instant it follows that &, 1is ;
always zero and hence w, = N = constant.*

Wwe now derive an expression for the angular momentum about |
the trajectory OT. According to equation (2) this is . o :

wax COS E + Iygy COS n+ Izw2 cos ¢,

if ¢, r, and C are the angles OT makes with X, Y and 2
respectively.

*This proof that i is constunt is due to Dr. Charters. Since this
report was written it has leen discovered that there is a spin !
dcstroying couple which causes an ap:reciable loss of spin for the '
longer times of flight. See Ballistic Research laboratory Report

No. 154,
-6- ,
b
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It may be seen from figure (3) that
g =06
n=x/2
C=w/2 + 95,

If these values are used and if A, B and B are substituted
for Ivs Iy and I, respectively and the values of Wy Gy and w,

are obtained from (1), the angular momentum about OT is found

to be 2. .
AN cos § + B sin®d 9.

Since the force R is in the Dlane of the yaw it intersects
OT and has no moment about it, neither has W, hence

d(MN cos d + B ¢ sinzb)= 0
—dt °

and AN cos & + B sin®s ¢ = F, (4) v
where F 1s a constant.

As the yaw increzases, the moment, p sin 5, does work on
the projectile and therefore increases its kinétic ener Ir
K is the kinetic energy at any time, t, K, is the inltia

Kinetic energy and W is the work done, we navg

K=K, +W. (5)
5 1 The work done by the couple while & increases from 5 to
< "
psind &5 =4 (cos Eb -cos 5) =W. (6)
From (3) | .

K = ,‘xg& + Iyny + I .

It the I's are exoressed in tems’ oI A and B and the o's .in
terms of §, ¢ and N (see (1))it is round that
17N + B(S + sin 5 ¢

K=g AN 2)

Hence from (5) and (6) L
B(62 + sinPs &) = 2K, + 2y (cos b, - cos 8) -ANR.(7)
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Novw cos 5+ « o and cos & 35 1 - 0 « If these substitutions

- (o) g
arc made and the constant E is substitutod for the constant
sum

’ 2
2,0
0 t”2 .
axo ¢ ——— - , (7) becomes

B(5% + sin®> 9%) = 8% + E,
or, if sin 5 is replaced vy §,
B(32 + 3%¢%) 6% + E. - (8)

If the initial values arz designatcd by subscrint z2ros,
it follovs that
_ 2 2 2:2 2
E=B (62 + a°¢o) -85 . . (8a)
If sin 3 is replaced by & in (4), cos 8 by 1 - 5- and the
equation is divided by B it becomes.

'__AN:'E AN F
52‘?-23-.) "—B-"’B- .

If the initial value of 3, Q>is designated B, 1t follows

that .

26 = g%, + 8 6% - %) = BB + (BB - 0%),  (9)
it <= égu IT h is substituted for @0 - Q¥2, (9) may be
written as 4

0 = h s Q
= -—gz— +.—-20 (10)

If % from (10) is substituted in (8) the latter tecomes upon
multinlying by 5° and dividing by B,

N o
232 4 (npf e 1059t = B R et | (11)
The substitution

58

is now made and equation (11) becomes




A —— -

) N )

I

33 ef-apm) Fedxen, =0 - (1R)
where | o |
2 2'r‘. 2 2 o5, |
E ! co ' . . o) .
8y = WX Q- £ = B - & Q+Q°/2 + 95 + - =
1 E |~ Yo o g° | giJ
allieo —c/oy2 . O RV WENSL IR
- SQ)O -vQ/Z) 4 + ,.B.z ;0»...% (5. '-'_A , J', o - .13)

and the value of the constant o is of no interest because it

vwill ‘be elimintted in the process of forming the equation or
motion. We now make the substitution .

S.=A2N2=B$é2. T : -

Equation: (12) becomss, an dlfrerentiatlon and d1v1s10n by 2 .

% + o= (1 - l/s)x +eay = 0.

Maklng tne substitution,
2a1
92(1 - 1/s)
we obtain.. N
g .2 (A - 1/s)y =

x=y-

or if
p? =522 (1-1/s), . o (14)
¥+ ofy = 0. . (15)

The solution is of the form

it , o o-Pit

y = Cle

2

where i g_I——-ﬁ

Ir p2 is negative, p is imapinary and pi is real. Hence,
unless C, = O, the value of y will increase indefinitely.




SNSRI
B;cause-ot’this fact the motion about y = O 1is said to be
unstadble when p2 is negative,

e " Em V2 '

It is evident from (14) that
pz,is ncgative if s <1,

If s> 1, then p2 is nositive, and the solution of (15) is
known to be

ysacos (pt+x) (16)

where a and r» are constants depending'upon the initial condi-
tions. e NS

- v T

It is thus shown that vhen s = ‘g—?~>l, y oscillates o

. ~2a
about y = O or 52 about —2———%7-; . Never does y devart more
1-1/s
than 'a' from y = O. The motien is stable about y = O, $

In vicw of that fact that the motion is stable only when
s>»1, s is called thc stability factor. :

IR VN T T TS TERMEYTT T

From the pravious substitutions and (16) it may be shown
that

5% = b+ acos (Pt + x), (17)
where - ° |
. vosl {— 1o\ 55 2
“e(1~1/5s) Q% (1 - 1/s) (18)

The origin of time is taken as the instant when the
projestile leaves the muzzle. It is assumed that the minimun
value of & occurs at this time, t = O, Therefore »= O Or x,
50 = 0, and B is the minimum yaw. .

We take x= # and then equation (17) bacomes .

¥ =b-acos nt. (19)

If a is the maximum vslue of & and B is the minimum, we have

-10-
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whence a=b-5" i
and h+ac=a, or
Lep4+ags= b-52. | ‘ (20‘

Experlment indlcates that ﬁ is aporoxim:tely cqual to €,
the yay of the projectile im the at the muzzle. FPFurther-
more, @ is the spin of the axis of the nrojectile about the

axis of the bore and hznce N = ? cos €, 1If cos € is replaced
by unity, we have

=N CG+Y) -

If this value of ¢ is subetltuted in (18), 6 is taken as zero
and ' a is comruted by (20) it is found that

a= e A T (R1)
7 "T /,’\’rl - 1/$ .’_ _‘ >. ( 1)»

By expressing a and b in (19) in terms of a and B, it may
be changed to

B . T L IR IR R

2(@+a>~1<a -a)cosm:

YT
1]

. a2 _

vhich may be transformgd 1nto

52 - o2 sin? (“2) + B2 cosz( 1- R V(22)

'-.\

IT 8 1s negligible, ‘ _ , ,
5 o= asin (Ez) N ‘ | -(23)

VT vV v - wammmw v v

Equation (92) ot (23) provides a means of determmnb S.
ITf T is the observed time intérval from 2zro yav. to 2ero yaw,
or minimum to. minimum then - coL

From this, . . SRR v
| 1-1/s < (25/ 1) - - (24)

* This expression for a was first given in a paper by Kent and
Hitchcock on the "Effect of CrossViind on Yaw".




-
[
»
-~

O Anervapty
from which s may be determinad from the observed value of
T, 9 = ég being assumed Known. A and B ray be mecasured

and it can be shown that
, . ernv

N ==, | (25)
where Vo 1s the muzzle velocity, n is the number of calibers
for one turn of the rifling and-4°is thc caliber.. Of course Vo
and 4 must bte measured in consistent units.

The motion in ¢ may be obtaingd by substituting % from
(22) in (10) and integrating. The rcsult is

- l1 .. 28 h,..~1« t
P = q)O + 4 ¢t : Pa Fan (B- tan Ez)
or P = 4 + 3t + tan™? (@t EEO (25)
=%, t 54t # tan # an .

The choice of the sigh in (26) depends upon the initial
conditions. If the + si%n holds, the motion is called
'stepped up': 1f the - sign holds, 'stepped down'.

The Damning of the Yaw

Equation (22) was deriv:d on the following assumptions:
(a) The trajectory is rcetilinear,

(b) The air force system has no elements excent D and L,
both of which lie in the nlanc of the yaw.

(¢c)p and hence also s are constants.
(d) The vaw is swall. '

These assurntions arc only annroximatzly correct. Both
the cross wind force, L, and the welght, W, tcnd to cause
the trajecctory to curve, There is an air couple opposing the
ancular motion of the axis of the shell, which has a componcent
about tho trajectorv. Bzcause of the diminisning air speed
gr the projectile ¢ is not a constant; it decrcasss, while s
ncreascs. : :

While for well designed artillery pro ectiles, the yaw
near the gun is small, this 1s not always the case.




ST :“'-:‘: Tnc Epicvclic Motien
ue ohtlinu bricrly witncut proor tnu modiricattuns of":

q§pation (R2) roquired’ eo‘take'account 10%: the failurc of
assumptions (a) (b),,and (c)._.,;;,:.: K ;;_;.._ e

Cor e Assusptibn o) {s inesrract: ta the ‘eéxtent - tnat in. addia
. tion 1o the overturning moment therc .are-: -thice ' couplcs cap- -
-gble of.prdducing an apphsciable-effect: on the motlon. ong
“of tHese 1§ the Ty %ng ‘moment duc - to: yawing', If the | -
‘angular veloc1ty or axis of tht rroject 1» is .denotcd by
-0, thcre is a counle .which tends 1o, reducc: the angular’ VulOC-

ity of tne axis.. Phis is’ reprcsent q by ? rd4vd or:. by Hw
whern H 2 KH;d v and KH is a Qimunsionluss coefricient

- dcpﬂnding on the Mach nurber v ¢ specd of sound. . ThIs couple
may. be regarded as' the moment of a force,’ the. "pitching force"

whicn can be desimated by YS d3Vw and tends to move .the center
of grav:ty in thc same direction as the nose-is turning '

Since the pro*ectile is ‘both ‘spinning -and yawing, it 1s
acted upon. by the same tyve of forc:, the '"Mammus .force", that
causes a - golf ‘ball to slice or hou “The. magnitude of. this

.- force.is dlrected by Y py vN s}n ‘] where K {'s ‘another :

i dimensionless’ coefficlent {The ‘moment of’ tnis -force about the
center of gravity is the "Magmus moment", and is. d°noted by

Kde4vN sinv ¢ . Aecording to. established custom, based on a

guess Made abdut 1920 by Foviler, this is regarded as’ actin in

ront of-the -center of gravity,. However, experiments inditate

that the Magnus-force, usually acts. hehlnd the center O0f gravity
causing the slight inconvenignce that KJ 15 usually negative.

The last couple which we shall consider is the s$oin-
deccleratlng couvle, Which acts to reduce the spin of the

projectile about ‘thé ‘axis. This {s denoted by K Rdng
vhere K is another dimensiOUless coefficient, ordinarily much
smaliﬁr than K y K ,“ete’ . This~couple.anc. the Magnus moment

act togcther 1n dampinv the yaw; their coefficients will not be
found except in the combin-tion K; - 3 Ky

It is"evident that a couple will affect the yaw, for the
angular mementum vector points ncarly along the axis of the
shcll (there is a:small cross-component duc_to the soin of the

~axls) and mheimpresced.pounle is equal to the rate -of change of
afizular mdmentuny - Tt-4s less evident at first glance that a
force persendicular to the trajectory will affect the yaw. The
explanatlon is that even if-the axis of the shell kept-canstant

L)
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dircetion, - the cross-force would curve the trajectorY.‘ This
wvould affcct the Yaw, which is the an?le betwecn shell i
and the linc tangont to the trajcctoty: The complete 8tuay of
tho motion is rathcr tedious, and will not de attempted. here,
The result is that thce axis of the shell underfoes a damped
eplicyclic motion} the motion doscribed in previous pages is an
undamocd epicqcl ¢ motion. e now dcscribe an epicyclic motion
in somc dctall., Imagince a plane set perpendicular to the tras -
Jcctory and onc unit of length ahead of the centor of gravity.
The axls of the shell will not interscet ‘this plane at the same
goint as the trajectory, unlcss the yaw hanpens to be zero. - .
he intersection of tho axis of the shell with the plane des-
cribes a curve:vhich can be readily visualized thus. Imagine
an arm of lcngth kl rotating about the .origin at a rate of n,

dcgrecs per foot of travel of the shell. At the end of this
arm wc attach anothcr arm, of lingth kz' rotating at a'rate of

ny degrces ner foot of travel of the shell. The end of this
second arm describes an epicyelic curve, The arms kl.and ko

arc not constant, but change exoonentially with distance
travzlled. Morcovaer, n,. and n, arc not quite constant, but

change slowly along the trajectory. Thus the turn.of the
Tirst epicyclic curve is not exactly_nl Z degrees in 2 feet,

but is better reorescntod asj“nldz, where ny’is a slowly chang-
ing quantity. , |

' IT we dAcnots the 1cngth of arc of trajectory from muzzle
vy f, and thz- initial valucs -of k, and k5 by K, and K,, then

the right and downward componcnts of yaw, in radians, arc (if
the small effects of gravity arc ignorecd) given by -

Right comnonent of yaw = K, cos 9, + K, cOS ¢

Downwérd compohent of yaw = kl sin ¢1 + Ky sin Pos

{ | .
d2KH [~ K;, deH

wvhore e e
.};N 0)-(C
k1=K1 \

~

2k o
o /- ." -ﬁ -1-‘- ~——
. o . . .

- - 2] ) ar)




R OIS VAR NCRDKY radians
t | |
?4(0) + *)/ AN (1 +0) dt radians, '

(28)
Py = Po(0) + 3 _/ AN ‘
N o m (1 o) af radians
=9 (‘0)'4 3 AN (4 .
£ - 2 ’6 s “.E-,'(?l::"oﬁ2"q‘?; rag_i_ags.: :
o =-\jl ,._,1/8 , |
A2N-2 ™ _ :..- - .'..-.;.,,4. . .‘....: ..A “ _.,_.,__ "

. 4BKyPa v

Yy ', S

The tneo“¥ sceding to these formulas is applicable with
only minor modifications to the spinning rocket in which,
during burning, the spin is in a constant ratio to the velocity
The eIfcct of propulsion édh be fifcatcd as though it were a
large ncgative ¢rag. Howevcir, experiment indicates that at
least some of the aerodynamic coerrici;nts are consjiderably .
aifferent during burning from the'valueswhich they have after
burning. ‘So thé possibliiity of the mathematical -éxtenston of
the formulas to the burning period does not mean that the num-
bers in the Iormulas are also unchanged.

o ir et tﬂnnxx. sl T s
From thb ewicyclic reor-sentation 1t is clear that a
maximum of yaw occurs when the ‘two arms have the same direction

in which case the yaw is~ *
a=k1+K2..,. NI UIPRN (29)

. A minimum occurs when the two arms have opp site Qiractionsn

!

at which tima the yaw is . : A
B =k, - K. SR € )
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In order that the shcll may have stablce Tflight the maxima
of yaw must diminish as { incrcascs. That is, kl + kz

must diminish. Tnis can only occur if each diminishes

scnarately, for if cither incrcascs its rate of incr:ase also
incrcases, ‘being cxponontial, and will eventually nullify any
decrzasc of thc other. For kl to decrcasc the integral whose

exnonential occurs in the formula for k'l must have £ ~ositive

intcgrand gn(, since 4t fsnrcccded by a minus sign. Thercfore
it must be truc that , :

Kp A%y o[ Ky 0Ky 42 )]>o.

=2+ + = |-

Bt telm e Ko R
Likevwise, for ky to dirinish it must be true that

_ r
2' .( .-j

K A’k K a4~ 2
L H 11 %y H d .

As a result, the product of the left .membcfs wust be mositive:

2, 2 r SRR 2
K a~K ., K dzl( 2 o
L l i_ 7L ,. H d . ’

o}

Replacing ¢ by its definition and nurforming 4n algebraic
si plification 1l-ads to the ncecssary condition for stability

= 4% 2 — K .2 SRS
1 H _ a< ¢ ifls®L, a NEE
s KEgp—-x - (K - 2Ky l?ﬁ"‘r(KA‘axJ)J.(m;
&
K, &%
(. ~
" B /-

The right member can n.over excecd 1, so this implics the
familiar stahility condition 1/s<1. The converse is not true;

the stability condition just derived can be decidedly more
stringznt than 1/s<1.

‘4(\‘”11“:’7

A H“‘)l){{“f)‘
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So far, the trajectory has becn treated as a straight line,
except that "the cffocts of the acrodynamic force perpendicular
to the trajcctoty were considered in computing the yaw. We now
‘consider the curvature of the trajectory caused by vity. 1If
the trajectory is in a rixed XY* plane, and no aero§§%amic
force cxcept the drag is considcred, and thc angle between the
horizontal and the tangent to the trajectory 1s designated

by e then .~ . o | ' 5
X»;»dzx .-Decose . . ,,:}: L
: dtz K _m' ) R o S IR A T ,'
. (12 D sin 6 S L
BARY TS —-E,-n——-g» LT e
- dt . R o
Now tan @ = y/X' hence Dy differe ntlation | : R
'Sccz-'e-g-g= %xx-' V ' : . '._‘-'..
= <D sin & X ;. Dcos &'y
S - gk =
A xz T
But . ; o
sin 6 = yA5E + §F, 0059=X/_x +y2 s~:~- ’I{-; '
and
so: ;. i . «
'é,'=»,;-e cos e/v.r e a et R U (3

This is the rate: of turning .of:the trajectory about a.norizontal
axis ocrpendicular to the tra;ectory G

.. o . v

% These axes are different from the XY axes of ‘the px'.ojlect'i.lo-.

L BEE . °.
[ . - .. K
: N . , ,
«17- : B . L
: R —————
e e e — :
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It will now bc shown that there is a mathematically
possible motion of the shell in vhich the axis makes an angle
¢ to the right of the trajectory and an angle n above the tra-
jectory, both & and n being small and slowly changing. This
means that the shell "tralls" prorerly, continuing to point
nearly along the tgngent to the trajectory.

At some particular time t, we choose the position of the

center of gravity as origin and construct a rectangular axis
system (xl, xz,.xs,); the rirst is tangent to the trajectory,

the third-is horizontal and to the right, and the second is
pcroendicular to the othoir two and is uowardly directed. 1If
the anglos £and narg small,«t 211 times t,the dlrection o the
axis has comnonents ncarly cqual to (cos (6 - eo), sin

(6 - 6,), 0), Whcre 6, 1s the inclination of

the ifajecﬁory at time ty Herice the angdlar momentum is
nearly _ i ,

(AN cos (8 - 8,), AN sin (8 - 6,), 0), and the
rate of change of angular romentum is - L

(-AN sin (6 - 90) .8, AN cos (6 - QO) 8, 0),
vhich at time to is , , L

ANg cos ©
(0, - 222 o). . | (33)

~ If the nose of the shell 1s directed at an angle ¢
(radians) to the right of the trajectory, there results an

cverturning moment KMFU§V251UH £ tending to increase E. It is

permissiblc to replace sin £ by &, since £ is small. The
couple tcnds to cause a clockwise (negative) rotation about the

Xo = axis; so it is represenied by the vector (O,-Kﬁpdsvzg . 0).
Likewise, an urtward angle 7 produces a moment Kﬂpd3v2n, tend-
ing to cause counterclockwise (positivé) rotation about the

Xp = axis. This moment is renresented by the vector

(0, 0, Kya®n).

If the nose of the projectile is to the right of the tra-
jectory by an amount £, the Magnus torque has magnitude
KJ m4NvE, . For right-hand rifling, the shell presents its

risin; side forward, and so the Magnus force 1is upward,




......
.....

Iy

Assuming as required in the definition of Ky that this force
acts in front of the center of gravity this tends to produce
counterclockwise rotation 1bout the Xz axls, so its components
are _

(o, 0, KyeaNve ). .

Likewise an upward tilt or anele n produons g Magnus torque
with components: * :

(0, Kpatvn, o),

The combined torques due to both ove rturniny and Magnus
moments caused by a yaw of E to the right and n upward mus
?ual the rate of.change (2v) of angula‘ momentum. T -
lelds the two equations S

S et
KJFQ4NV £+ Kﬁpdévgﬁ_ﬁ=‘6 i:-:.» Do, SRR PR |
These equations have solutions
ANZ cos @ ‘_ . LKy )

&7 &3\!3— Kfl (cm/v)
(35)

- ANg cos 8, KJ_(dN/v)

paSv Kﬁ + K (dN/vfd )

The quantity K; (dN/v) is usually consliderably smaller than K,

and its square is negligible comoared with Kf. Also 9 is the
angle at time.t ; which is arbitrary 'S0 We may as well drop
the subscript ZGro This yields

-
I

f““‘z‘;'nﬂﬁ cos 8 .
pd™V Ky .
. S h (36)
n = - ANg cos 8 Kg . Na
Pdéégg;. Kﬁ Voo
-lg-
R PR R em——
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If the projectile points to the right of the trajectory
by the amount £ (in radians) @nd above the tra{ectorx»by the
amount v , the rate of tuming of the projcctile about the Xz

(or 2) axis will equal the rate of tuming of the trajectory,
and the projcctile will continue to make these angles §, 7
wvith the tragectory. This shows that a possible motion of the
projectile when gravity causcs the trajectory 0 turn is one in
which the projcctile points to the right and avove the trajec-
tory by the amounts §, n just given. A more n:arly complete
theory shows that the general motion consists very aporoxi- -
mately of the epleyclic motion as previously givon, but with
the center of motlon at (g, p) instead of at the tangent
(0,0) to the trajectory, provi&Ed always that the yaw ncver
excecds a fecw degre’s, say 8° or 10°. This thcory has received
a rather satisfactory experimzntal confirmation.

As 2 consequence of the yaw (g, r ) the shell is actcd on
by the cross-wind force, of magaitude !

p—
KLpd2V2 sin &, & =‘\l€2 +ne
being the yaw, and also by the Magnus force
Kkpd3vN sin s,
The cross-vind force acts in the vlanc of the yaw, while the
Mu:gnus force acts nermindicularly to it, its dir.ction being
unvAird and to the left. The resultant force has commnonent
2v2' I 2v2
K,ed™VE - K, pd”vNn = pd (K, E~ K (Nd/v) n)
L K L K :
to thc right and _ o :
K%+ K pBwNE = @®VRK n+ K (Na/v) E)
unvard and pernendiculzr to the trajectory. Although KK has

not veen vary accuratcly cvaluated for any shell, experiments
indi-ate that it cannot greatly excecd Kp. While Nd/v is

dccidedly 1¢ss than 1 and ris sraller than €. Hence the force
to the right is positive, and in fact differs little from

K
22 . 'L ANZ cos 6 :

It is this steadily acting force vhich ¢auses the richt drift
of projcctiles fired from runs with right-handed twists.

KLP

Except for 1ar§e nrojectiles with small muzzle velocity,
the yaw due to gravity will be of small magnitude, much smallcr

ordinarily than the enicyclic yaw near the muzzle due to
launching conditions:
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Dctcrmination of Acrodynamic Coefficients from Yaw
2rd o DT otooranrh Data - S

If a projectile is fired through a sequence of cards, from
the shape of the hole it is nossible to deduce the amount and
orientation of the yaw at cach card; and if desired, the right
and downward-componcnts c¢an be found from t1is. —Anothcr method
of recording yaw, very satisfactory in accuracy, is-to take
horizontal and vsrtical photozraphs of the nrojectile =t each
of several stations. From these data it is possible in either
of two ways to deduce the aerodynamic’ coefficients of the shell.

A Tirst possibility is to locate the maxima and minima of
yaw and to mcaswre their magnitudes.

If hy and‘he-are'definec by the equations
o8
‘ K. d%g. .
1 / Fdz( 'L.+' H)df R - -.».‘.-:._,
1 2 - E 0
o) (38)

o
n

o 2
N
)

. | .

2+ K, .- Q%K 42 N

R Y W2t R s SO 510) af,

2/"0 (a2
0]

the egquations for the maximum and minimum yaw take the form

H(0)e(0 (

=y ~§?§°E“LK1 ¢xp (-hy = hg) + Ky oxp (-hy + hp)h
. (39)
s“éO;O(O)

i'\\jl- o i}(l oXn ('hl - hz) - K2 CXp (“hl + hz)} ’

vhere in the 1ast equation the '+ sign is to ke used if

R
{

-
[

Ko exp (-hy + hy) and the - sign otherwise.

Ky €x2 (3h) -'hg) + Kp exp (-hy +'hp)

n

exp (-n)) Ky e™2 + }\'ze"hZ} |

- o7y 108 {Kokp (g 105] Kty o onloe (KK <+ m)

=" _-h 7.
2 KK 1o -
1K1Ky €771 cosh (1og (|K /Ky -hp)
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so (KK N(B)o(0)
| X -h oy
a = 2\ NIVGTIT ¢ "1 cosh (log. K /Ky - hy). (40)
In the swme way R -
KK N(CTE0)

5= iR L stnn (Log. Ky/Kp - hpd, L4D)

~ vy
the choice of sign baing as cxnlained after (3Q). ILet
letters with subscript 1 rcfor to moasurements and valucs
corresvonding to distance { 1 from the muzzle and those with

subscript 2 to mecasuremcnts and values at distgmce ,(2 from the
muzzle. Assume N constant: this 1s very .iearly true over any
short arc. Write J for 2\!}(1}(2 and j for log_\jl(ll(a. Then

a? =’ J2 z. T 1 e-hll C()Sh2 (J - hzl)'
2. ,26(0) o2y onn? |
B2 =g o‘é‘ﬁ'f ¢"2h11 sinn® (3-hgy e

Since coshgx - sinnzx =1, it follows ;Inat

% - a‘f = g° STE%L)' e~?Ny,
1
Similarly .
2 _ aR , 1R oioz =-2h

From the last two cquations
&

-2ny; = log (& - 82)¢ (fy) - 10g 3% 6 (0),
‘21'112 = log (lﬂg - ng ((2) - log J2 c(0). -
Subtracting,

,(ai - B?)’ (ll)

(% < b2y (fy)
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If p, KL and KH' are conctants tnis takes the Iorm

o

X uzx (a - BDalfy) |
'pde( mL JH ({2 - ll) e l 1)0' ‘1 .
) 2) (‘2) !- ‘\.‘~'~
or B ' .
e e 2 '~v2
K -
5, xgaz o L il . SV
pd ({2 - 11) (‘12 - Bz) 4] (‘{2)

the logarithms bglng natural logarithms. =" . : '
From (40) and (41) .

ta.nh (10g iKl/ke - hz) = + B/u, . . vl
the choice of 51§n being as cxplained after (39)... 1If B/a.is
na

small, as is ordinarily thc case in firing from tixed mounts,
__this can be adcquately rcpl ced by the an“roximation

log'\‘!K]_/Kg ‘nn =+ B/a. ' ¥

since tanh z % z.for z near: zero. Abplyinv this at distances
f,. ana 12 from the murzle .and subtracting ji=1ds _

: - 4B + B ORI
o 1\ ( 2 S
hop - hay <4y = 2)- L
.- - H
If Ky, etc., are'constants, by (39)
. e o . (
. 2 K K.d e .. 2 . .
' _pd 'L H o} af ..
hop = Mpy =& Gt v H— - Ky - ) g
. ., l. : . Il . Lo
Hence S +p +B
P - 1.2
IR it il YU LS U ety Pa ©o.(88)
pdzjl-. < ‘%L
D |

(28) the: rast-turning enicyclic arm gains on the Qlow
one at tne rate -

Hf (¢1 - %) = éﬁo radians/sec,
or

%g (¢1 - ¢2) = %%o radians/foot.
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RESTRICTED
since minima occur whenaver ? and 9, dirfer by léb°: or

radians, the Aistahce betvecn minima is the distance roquired
for P = By to incrcase ~through 2n,rad1ans. .Thus.{f 4 is the

dictance betve°n minima

[+a

’ e . ST L
[+o
~

31' AN st .

Je BV

IT v and o arc supposcd constent bvtve°n two consccutive
minima & fect apart, this glves
« &3BV
KNE‘

Thus by the 1ast two of cquptionc (28) 1t is “ossible to deter-
mine Kye

The drirt of the Droggctilc is seen from (37) to be the
product of KL by a readily camputable quantity, provided .

that KL/KM is assumcd constant. If this quantity is computed
and the drift is measured by means of” svecial firings, K /Ky
can be found. Sincc Ky is known, K is also known. Now (42)
dctermines Ky, and (43) det:rmines [KA - 2KJ].

A different technique of reduction is in curront use in
connaction with sparkephotograph data. The projcctile is photo-
graphcd as it pass:cs a group of staticns, say flve, cqually
snaced. By measurcment of the photogravhs the uoward and ricght
components of the yaw are dctormined and plotted., If we knew
the rate of rotation of tha slow enicvelic arm, and imagined:
the papor turncd <t this rate, the motion of the axis refis-
tircd an the vaper would be only that due to the Tast eplcyclic
am., Henee the points 1, 2, 3, 4, 5 would Be equally spaced
around the eircumforcnce of ,om° circle. Accordingly, ve make
scveral gucesses 2t the slow rate (which in practicb turns out
to be. rather casy) and Dplot - the positions 1!, 3t 4, 5
which the axi's would have had at stations 1, 2 3 4 3 nad the
fapgr bzen rotating with the small arm, and "'had cdincided with

ts actual position at sore station, say 3. For our bcst gucss
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the points 1', etc. will bc almost <qually spaced about some
circle. Thz ccntar of this circlc will ropresent the end of
the slow arm at station 3, while the linc from center to 3!
reprazsents the fast arm at station 3. These may be in crror
by scveral degrecs. - .

_ The proczss is nou rcncated, using the photographs taken
- at anothcr group of stations at come distance, say 150 feot,
from the first. The positions of thc arms are thus found for
onc of thcsc stations. Having thcse positions of the cpi-
cyciic arms 2t two widcly separatcd points, thcir rates of
rotation. ar¢ determincd with:censiderabic accuracy. If desircd
these well-dotcrmiied ratcd may:be uscd instcad of the previous
guessed valu.s to give 3 reviscd granhical construction at cach
group. ';“ e l.\l g . .. . f »
”° . . T e s .. ' 2 .
& Now that the cpicyclic rates 49,/df and dvald{ arc kngwn,

equations. (28) yicldio, s and K< ' ‘The length of’the epieyclic

Vi i - e
f semw oy vel

.

. . . -
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arms k, and Kq arc khown at two valuus of {, so by cquations
(28) we can rind tho quantitjes

K/m + ¥0%/8, "

K /m + K02/ - La®/n) (K, - 2K;).

As before, Kp /Ky may be d:tormined by drift mcasurements. It
is also possiblc to deduce KL from thc swerve of the center of

gravity of the projcctile causcd Wy the cross-wind force. Thgf
known, K, 2nd (K, - 2K;) arc detcrinined by the known valucs 0

the quantities (44).

Dapendencg of Yaw on Travel

If in (27) and (28) we change variable from f to A = [/d

~ which is the distancc travcled expressed in calibers, we £ind

A
[N(0)o(0) 1 a® ma® . -
k) = KI-QN{THT}F*P{‘ AR MR Ky

o)

(for oxamplc)

2 2 ,
o 2 0xg ¢ B Ky - B, < D)

Givantwo projectiles having thc samc shape and composed of
material of cqual density similarly distributed, the masses
will be proportional to d3 and thc momints of inocrtia will
therefore be provortional to md2 or to ds. Hence for the two

projectilcs the exnressions dz{m, mdalB and mdz/A will have
equal valucs. At any gliven velocity, then, the two projcctiles

will give the same value to xl/K1 at equal valuss of A . More-

over, even at different velocities this will be nearly true,
since the velocity onters only through the coefficients KL'*

etc., which arc not sensitive to changcs in velocity (or rather
Mach number). : - '
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