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Abstract

An equation for the coalescence of colloidal particles under the
influence of velocity gradients has been applied to the problem of coales-
cence of spray droplets in the turbulent fields surrounding two-fluid -
atomizers. Two derivations have been made, one which permits the estima-
tion of the probable upper limit of coulescence, and & second which takes
into account the effects of dilution of the spray in the jet which reduces
the coalescence. The first'consideration results in a relationship which
may be evaluated easily; the gecond gives rise to a pertial differential
equation which is not susceptible to analytical gsolution. A solution by .

iteration of the corresponding finite difference equation is discussed

in the Appendix.
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Introduction %

The creafgon and aseqof fine Sprays are probieme currently rééiiving
attention in several fields of ;cientific éndeavor. Proceesaengineers a;e
concerned with systems of mass ﬁranspor€ in which the large areas involved
in sprays provide a means for increasing overall transfer rates. Enéiné
designers, for similar reasons, pay increasing attemtion %o fuel sprays.‘ The
stability of small droplets is of interest in military problems involving
smoke screens and the dispersal of toxic materials. Agriculfural sclentists
are similarly concerned with dispersal of insecticides and chemical sub-
stances which control or regulate the growth of weeds. In all of these
cages, interest in the use of sprays leads to intersst in methods of creating
them.

The use of any means for producing a fine spray demands that no second-
ary effect should enlarge the spray particles. If the spray is produced by
a two-fluid nozzle, there is little to be gained by operating the nozzle in
such a way as to form extremely fine droplete if the turbu;ence'generated by
the nozzle causes the droplets to coalesce. Hence the problem of atomization
by & two-fluid nozzle involves both the design of the nozzle to produce spray
of the desired size, and the prevention of coalescence of the droplets in the
turbulent field through which they pass.

Theory
In considering the effect of agitation on the coalescence of colloidal

systems whose particles initially are spheres of uniform diameter,
Smoluchowski (12) derived the equation

0= 4 4026 (1)

where h is the number of collisions per second per cubic centimeter, 4

is the concentration of particles per cubic centimeter, O is the velocity
gradient, centimeters per second per centimeter, and 4 is the collision diam-~
eter of the particles concerned, in centimeters. The collision diameter is

defined as the distance between the centers of two spherical particles when
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a collision occurs, it will be assumed that each time & collision occurs,

coalescence takes place, Since each collision results in the disappearence
dy '
dat

collision, there are formed particles whose collision diameters are greater

cvg' -«
of one particle, n may be replaced by - . Furthermore, as a result of

than d, and such particles are also capable of removing particles from the
system by collision. For simplification, it will be assumed that in colli-
sions between unlike particles the collision diameter is equal to the diam-
eter of the larger particle. It follows that the rate of reduction of LG
by collision with particles of all sizes is given by the equation

Y Ry8 3 3
-t = olyd und s uud -]

=& w)/,[j/,a’3+uadf + J{,dja— . jl

= = /

where the subscripts refer to the number of particles of the original size
which have coalesced to form each particle of the size under consideration.

L\yd’ + 54 + wd |= 9

where ’ay.is the loading, or the volume of the dispersed phase per unit
volume of mixture of both pheses; therefore

Y, nY
dat n

Yow

The nature of GO depends upon the kydrodynamics of tune system. It will he
assumed, first, that the velocities of the dispersed and continuous phases
are identical; that is, no siip exists. Tunitzki (13) defines &) as u/L
where © and 1 are the turbulent velocity and diemeter, respectively, of the
smallest eddy capable of contributing to the dissipation of erergy. Such an
eddy is characterized by & Reynolds number of unity if the coutinusus yhuss
is air:

. . 2
miPn 4 4, hence -—f-g-) = I

. 4
o
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where %'is the kinematic viscosity of air. Thus

M el f
T (4) (3)

If a two-fluid nozzle is the means by which the spray is created, the system
approximates the hydrodynamics of the free jet, which can be described
adequately by a combination of theoretical and empirical equations. It is
first necessary to assume that Smoluchowski's equation may be applied without
great error in a system of non-uniform particles to the particles vhose diam-
eters are within an arbitrarily small range of the mean diameter. Equation
(3) will therefore be used without subscript, it being understood that the
particles under consideration are those within the size range described
above, before any coalescenceé occurs.

Two ways of treating the problem now appear. ln one we may attempt to
ascertain an approximate upper limit to the coalescence by a relatively
gsimple calculation. As an alternative, we can estimate more closely the
degree of coalescence by means of a system of simltaneous partial differen-
tial equations whose solution can be obtained only by means of high-speed

computing devices. Both methods will be investigated.

Estimate of Upper Limit of Coalescence

The upper limit of coalescence may be obtained by assuming that in
Equation (3) the term 7//' is constant and )/ 1is affected only by coales-
cence, and by applying Equation (3) along that path at which (ﬁ) has &
meximal value. Such conditions exist along the axis of the jet, if the
dilution effect of the jet which reduces both ’%f and L/ is ignored.
Rather than consider a system varying with time as Smoluchowski did, let us

consider instead one varying with distance along the axis of the jet, and in
s steady state at each point. This may be done by expressing u as %% .

Equation (3) then becomes

dy_ _ auﬁ
74’/— = V( (W)

— U
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Corrsin (5) has shown that, along the axis of a jet, the turbulent velocity

4 rarely exceeds 0.20 u., Alexander, Baron, and Comings (2) have shown that
the axial velocity u of a free jet is related to the axial displacement x by

the equation

(5)

where Ao is the area of the jet nozzle, w, is the velocity at the nozzle,
and ¢ is a constant whose value may be taken as 0.075. Substituting Equa-
tion (5) into (4), and expressing A  in terms of the diameter of a round jet,

a 0.2 VYW p oy,

= (6)
d x mTw 2c¢cX
Separating the variables, and substituting the numerical value of ¢,
Y AN (7)
J Tk 0 x

Since the turbulence is quite low in the potéhtial core of the jet, it may be
assumed that no coalescence occurs within that region; hence the lower limil
of x should be 4D, where experiments show the potential core ends. At this

point, the droplet concentration may be taken as I//O, the original value

before coalescence. Then Equation (7) may be integrated to give

P X
- 1n 1/ = 0.68 - Zﬁ ulD ln|=—-
Y " 3 4p
()
Then, recognizing that uoDp is NRe , the Reynolds number for flow through
u 0

the nozzle, the above equation may be rewritten as follows:

- -0.68 N ”V
A [ i (8)
J, [‘TF

Finally, in view of the uncertainties discussed later, which are inherent

in the foregoing derivation, the numerical constant 0.68 should be replaced
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by an empirical copstant K, which should in no case exceed unity. Tims,

K XNy '?/ ’
..!i... X n (8a)
Vo
By the use of Equation (8a) the smallest concentration of droplets likely
to exist along the axis of a two-fluid nozszle can be estimated, provided the
loading ’yV’ , the condition of airflow at the noszle as characterized by

Rne , and the initial concentration of droplets of the mean sise, L/o”
0
are knmown.

Corrgcéion for Dilntion in the Jet

‘A Sloser approxination %o the actual amount of coalescence to de
expected must take into account the reduction in J  caused by factors
other than coalescence. 1t is apparent that if the jet entrains air, the
concentration of droplets must necessarily fall, and the loading ryy’ mst
also be reduced. A difforent;pl equation may be set up relating the rate of
accumulation of droplets in a small volume to the net rate of transport into
the volume and the rate of gensration of droplets within the volume:

iE)'t/"" v OV - JeYv+n, 9)
The first term in Equation (9) is the rate of accumulation of droplets, the
gecond term the rate of transport by molecular processes, the third term the
rate of transport by convective processes, and the fourth term the rate of
generation; ij is an effective diffusivity for the droplets and V is the
velocity vector. At steady state, ths rate of accumulation is sero, and
transport by molecular processes is negligidle in comparison to convective

transport; thus Equation (9) becomes

VeJV - Ry =0 (10)

where the bar indicates the time average of the quantity. The first term of
Bquation (10) represents the removal of droplets from the element of volume
by convection, and the second the creation of droplets within the volume.
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For the case of axial syimetry, the first teram above may bs expanded %o the

form

V‘J/V=a—s-)-j;-5 + -} —:—;(r V) (11)

Pransport perpendicular to the axis, expressed in the the third term of
Equation (11), may nov be treated as suggested by Baron and Alexander (i),

i.e.,

2 -
T .- 58 (12)

The second term of Equation (10) is the rate of generation of dropiets.
Since coalescence removes droplets, the rate of generation is negative. This
term represents the change in concemtration of droplets brought about by
coalescence alone, and is given by lquatioi (3), which will be rewritten in

the form
y =-Ee Y P (1)

Now substitute Equations (11), (12), and (13) into {10); there results

B p— ar

ax r

2 t———
2 5 o:%(,w) - ELe @ v

The fluctuating velocity u may be related to the mean velocity u at any point

whose co-ordinates are x, r, by the expression

= glx,r)

21 |o-

whers g(x,r) is an empiriesl function of x and r. Thed

w? = £@? (15)

Substituting Equation (15) into (14),

"N
|0'

d YVu ¢
o x

or

n
&

T r

(,m) - BV @ a6




Assume now that L/ u= JJju (an

and that f;{/ﬁ- Wu

Equation (16) may then be rewritten

L. grx:r( °z_) -L2 (TRwd as)

To determine )/ at any values of x and r, Bquation (18) must first be
solved for ( )/ u) and then divided by the suitable value of u.” This
requires a knowledge of (’771). u and g2 as functions of x and r.

Equation (18) wis: obtainsd by means of a balance over the number of
droplets within an arbitrarily small size range. A similar balance odn be
performed with respsct to the total amount of the dispersed phase: that is,

the rate of accumulation of the dispersed phase in a given small volume
element must be equal to the net rate of transport of that phase through the
surface of the element by both molecular and convective transport plus the
rate of creation of dispersed phase within the element. The mathematical

statement of the balance is
/
Ve VY - VTP ay (19)

The first term in Equation (19) is the rate of accumulation of dispersed
phase, vhich is zero in a steady-state system; the second term u' the rate

of transport by molecular processes, which should be negligible in comparison
with the rate of transport by convective processes, the third term; the fourth
term, the rate of creation of dispersed phase, is zero. Xquation (19)

therefore becomes

V T =0 (20)

1f Bquation (20) is expanded for the case of axial symmetry, and the assump-
tion embodied in Bquation (12) is applied, there results

2 U _ g_g_(agzu) o1 (21)

ér
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Bquation (21) is lineer in )/ u; Baron mnd Alexader (4) cbtained the.
following equation as a solution at all values of r and x:

( //u) = N
) o +a8° -2 Y
(yu)xr/f ﬂc x 8 ‘ r .2 2'30. . .d'd)’ (22)

In Bquation (22), s and /4 refer to a systen of polar co-ordinates in the
DPlane of the nozzle from which the jet of air and dispersed phase issus, D is
the diameter of the noszsle, and C is a constant whose value has been found
empirically to be 0.087 (9). At values of x such that x/D 7 20, Equation
(22) simplifies to the form

(Y, (/Z// W, exp r- ( =] \»2} (23)

1402( /D)2 . 6x J

By similar reasoning applied to conservation of momentum, there results

%
r /) 2. |
(uz)x r = / ! :To-f% exp r- r +s8 ; 2;8 00.) "8 s d‘g(‘ &2’4)
' f 1 mwetx < x

/ — —
/0 [

in which the value for the conptant ¢ has been found to be 0.075 (2). At
values of x > 20D, Equation (24) eimplifies to the form

2
@), 0 () (25)
’ hce(x/D)?' - CoT

By the same assumption as was involved in Equation (17), u may be obtained by
taking the square root of the result of Equations (24) or (25). .

Pinally, Corrsin (5) has measured the intensity of turbulence at various
points in the field of a free jet. From his data values ef 52 havs been com-
puated as a function of x and r. Figures 1-3 show 32 as a function of r, at
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gseveral values of x; Figures i and 5 shov g2 as a function of x at several
values of r.

Thus L/ can be determined a.i a function of x and r by the solution of
Bquation (18) combined with Equations (22) and (24) and the data of Figures
1-5. It bas not been possible to obtain such a solution amalytically, and
a numerical or graphical apprcach is indicated. '

The methods investigated thus far are integration by meens of the
Differential Analyszer (8), by punched-card computation (11), and by high-
epeed digital computer (3). The two last mentioned would require that Bqua-
tion (18) be set up as a finite-difference equation. This has bdeen done by
Rose and Schilk (11) for this case; their analysis is preseated in the

Appendix. There is no certainty that a solution can be obtained, for it is
by no means obvious that the difference equations converge rapidly enough to

give a solution within a reascnable number of iterative computations on
panched-card computing equipment. AlY (3) bas indicated that solution by
means of a high-speed digital computer is possible. Ascording to Hunt (8),
solution by means of the Differential Analyser is not possible.

Bvaluvation of Errors

In the course of the foregoing derivations, many assunptions have been
made, some of which obviously are not completely valid. It is therefore
necessary to investigate the effects upon the resulting solution drought
about by these assumptions.

The equation of Smolushowski which foras the basis of this analysis is

subject to the limitation that the particles concerned be of such a sisze
that the fluid medium bebaves as a continuum. In dealing with particles in
the range of 10 microns, an error of about 1 per cent is made by ignoring
the particulate nature of the fluid; this error increases markedly as the
particle size decreases, and decreases as the particle sise increases. The
apalysis is therefere limited to particles greater than 10 microns in
diameter.

The assuaption of spherical particles obviously collapses entirely if
the particles are fidrous or needle-like. 1f the particles involved are
liquid droplets; the error introduced by the assumption of sphericity should
not be great, since small liquid droplets are often spherical or nearly so.

Thers is also question about the assumption that coalescence is assured each
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time coliision betwesn particles occurs. There is some doubt that this is
the case for either s0lid particles or liquid droplets. On the other hand,
it is impossible that coalescence occur without collision. Thus the assump-
tion made predicts the maximum possidle rate of coalescence, and reduces the
probadility that the actual coalescence should exceed the predicted value.
1f the ratio of coalescence to collision is less than unmity, K in Bquation
(8a) should be less than 0,68.

The assumption that, in collision between unlike particles, the colli-
sion diameter is equal to the diameter of the larger particle, is obviously
not correct. The error is small in the case of particles not widely different
in size, and increases with the difference in particle size. The coll;sion
diameter so assumed is always too large, and the effect is, again, to increase
the estimated degree of coalescence. However, there should be relatively few
particles so large that the predicted collision diameter is sericusly in
error. Thus the number of collisions involving those particles should be
smail. In any case, ths net sffect is to bring about an overly largs calcu-
jated coalescence rate, which is safe from the viewpoint of the upper limit
calculation. So far as Bquation (8a) is concerned, this would make the true

value of X iess than 0.68.

Tunitzki's reiationships regarding the term (O represent the most
serious possible error. Both the definition of () and the choice of a

1imiting Beynolds number of unity are without substantial experimental sonfir-
mation, This may introduce an error of an order of magnitude, in either
direction.

Finally, the application of the Smoluchowski equation %o a gystem of
particles non-uniform from the start ignores the effects of coalescencs among
particles smalier than the mean diameter. If these particles coalesce with
sach other, they eventually form particles of the mean diameter, apd dring
about a decrease in the total rate of removal of particles with that mean
diameter, If they coalesce with particies larger than the mean, they tend to
increase the diameters of those particles, and hemnce tc imcrease the rate of
removal of particles of the mean diameter. It is likely that these affecta
countsrbaiance each other entirely, or that the net effect is sc small as to

e negligidis,
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In summary, the assumption regarding the relative frequency of coales-
cence and collision, and the assumption regarding the collision diameter of
unlike particles have the effect of increasing the estimated degree of
coalescence above the valus to be expected, while the uncertainties inherent
in the value of CA0 ocan either increase or decrease the estimated valus.
It appears reasonable, however, to suppose that all these possible errors
may be encompassed by assuming that X in Equation (8a) may vary from 0.1 to
1,0, In the determination of the upper limit of coalescence, the assump-
tions make the systes as a whole behave as the narrov pencil of flow down the
axis, and the flowing nature of the jet does not alter the loading or ths
droplet concentration within the pencil. The effect of this choice of a
model assures that the coalescence predicted will exceed that which occurs,
and that the upper limit predicted will be greater than the probable value.

The correction for the dilution of the jet eliminates the inaccuracy of
the overly simplified model previously described. The errors inhereat in

the derivation 1ie in the extension of Corrsin's data to yield sufficiently
detailed intensity-of-turbulence data, in the averaging precedures by means
of which the )L/ - and QV ~fluxes transported by the turbulent components
are ignored, leaving only the fluxes transported by mean components of u,

J/ , and Vf , and in the rate of coalescence term as expressed in
Bquation (13). It is supposed that although the actual amount of coalescence
which occurred at any part of the flow field may be wubject to errors as
iarge as plus or minus 50 per cent, the relative amounts of coalescence at
various parts of the jet should be reasonadbly close to predicted values,
Thﬁ.s an experimental program should require far fewer observations than would
be required in the absence of a guiding relationship such as that hers
obtained.

Discussion

No experimental program has accompanied this work, and it is not pos-
sible at this time to obtain & quantitative evaluation of the relationships

obtained., There are, however, experimental fragments which are in qualita-

tive agreement wvith the preceding equations.
It has been observed beyond reasonable doudbt that coalescence does occur

in two-fiuid atomization systems. Donnelly (6) has shown, by means of high-
speed motion pictures, that collision and consequent coalescence between
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single droplets in & spray are frequent occurrences, Nukiyama and Tanasava
(10), in their equation relating mean droplet diameter to the conditions of
operation of two-fluid atomizing nozzles, show that the particie size
increases as the 3/2 powsr of the ratio of volumetric liquid flow rate to the
volumetric gas flow rate, This is consistent with the predictions here
obtained; one might therefore postulate that the increase in particle siszs
with loading is a phenomenon related to coalescence.

Peild (7) studied the charge on sprays created in a two-fluid atomizer,
using cylindrical prodes of two different diameters, connected to an elestron-
iz voitmeter, and making traverses of the flow field at several different
axial positions. He integrated the total charge at each of the axial posi-
tions, and found tbat thers was an apparent loss of charge as the traverse
moved away from the nozzls. This might be explained as follows: The procsss
of atomization was accompanied by a separation of charges; thus some of ths
droplets retained a positive charge, some & negative charge. The slectronic

voltmeter was sensitive to a net charge of one sign only. If all the drop-
lets in existence close to the nozzle were conserved, then there shonild havs

been no loss of charge, and successive integrated profilss should have indi-
cated no 1oss of charge. If coalescence occurred, it is probable that soms
droplets bearing opposite charges united, and that neutralisation took placs.
In that case, the resultant droplets must have had a net charge smallsr with
respect to the electronic voltmeter than did the original droplets befors
coalescence. Hence the loss of charge is consistent with the occurrense of
coalescences. Alexander (1), in similar experiments, confirmed the cbserva-
tions noted above.

Bquation (8a) can bs used to estimate the maximum coalescence likely in
a given application. It might be assumed, for example, that 1ittle or no
coalescence would occur farther than thirty nozzle diameters downstreanm of
the nozzle. Thms 30D might be substituted for x. The Reynolds numheg‘y@uld
be deternined by the flow conditions. Then a particulsr losding, 'f/ .

would be needed in oxdsr to prevent the ratie ,L/ from falling below tke

0
desired value. Or, if the value of the loading were predetermined, it wonld

likely %o exist,

be possidle to compate the smailest value of the ratio

&
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For example, suppose that it was necessary to Qstiuto the upper limit
of ccalescence for a case in which a liquid, predomimsntly water, vas atom-
ized in & two-fluid nossle by air at 80°F. flowing at 500 £t./sec. through &
1/2 inch nossle. The gas flov rate estadlishes the mean droplet size orig-
inally formed; that mean sise need not be known for the purposes of this
calculation. By using lqmﬁon (8a), 1t is possidble t'o compute the fraction
of the droplets of the original mean diameter which remained unaffected by
coalescence at a distance of 30 diameters from the noulo‘. as a function of

7Y/ . The Reynolds mumber for the flow conditions above is 127,000;
assume that K is 0.5. A weight ratio, vater to air, of 1.0 corresponds to a

loading, QV , of 1.18 x 1075, Table I gives J//Jjo , as a function
of f}V .

Table I
Upper Limit of Coalescence; J)/ ))o

as a function of (V at x/D = 30

(4 V/u,

1.18 x 107 1.2 z 1075
1z 107 2.8 x 107
1x107 0.28
1x 10‘6 0.88

The solution of Equations (18), (22) and (24) should permit onme to
mke & close estimate of the actual amount of coalescence likely to occur
under any given circumstances. Because of the complexities of the solution,
the value of the results must be weighed against the expense entailed. Such
an evaluation is beyond the scope of this report.

Susmary
The ccalescence of droplets in sprays from two-fluid nossles has been
attacked by analogy with the coalescence of colloidal particles under the

influence of velocity gradients, as set forth by Smoluchowski. %Two attacks
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have besn employed: the first considers only & thin pencil of spray along
the axis of the nozzle, and assumes that the jet is not diluted by mixing
with air. This method results in an upper limit to the amount of cocalescence
1ikely, and gives rise to an equation which may be readily employsd. The
second method takes into account the dilution effect of the jet, and affords
a measure of the number of particles within a given size range existing at
any point in the field of the jet. The latter result is presented in the
form of a partial differential equation whose solution by analytical means
has not been possible, Solution by iteration of a finite difference
equation is discussed in detail in the Appendix. o

The limits of accuracy of both methods are discussed. Experimental
data in qualitative agreement with this treatment are described.
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Table of Nomenclature

a
b

hy

hy
Area of a round nozzle
Jet spreading coefficient for droplets, whose numerical value
i3 0,087 '
Jet spreading coefficient for momentum, whose numerical value
is 0.075
Diameter of a round nozzle

Diffusion coefficient for droplets of a given size

Diffusion coefficient for the total discontinuous phase
Diameter of particles in Smoluchowski's equation for particle
coalsscence

A function of x and r by means of which u and u are related
Distance between two points on & grid

Distance between two points on a grid in the axial direction
Distance between two points on a grid in the radial direction
A constant

A length characteristic of the smallest eddy by means of which

energy may be dissipated
The Reynclds number for flow through the nozzle

The rate of collision per unit volume; the number of collisions
per second per cubic centimeter
The rate of generation of droplets of a given s8lize per cubic

centimeter

The rate of generation of discontinuous phase per cubic

centimeter
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The radial and axial co-ordinates, respectively, in an axially
symmetrical co-ordinate system

Normalized radial and axial co-ordinates in the axially symmet-
rical co-ordimate syatem, equal to r/D and x/D

A system of polar co-ordinates in the plane of the nozzle
Time, seconds

Axially directed velocity, centimeters per second

Fluctuating component of axially directed velocity; the root-
mean-square value of the velocity fluctuation

The velocity vector

The viscosity of air, grams per centimeter per second

The concentration of droplete of a given size, in droplets
per cubic centimeter

The density of air, grams per cubic centimeter

The loading, volume of the dispersed phase per unit volume of
mixture of both phases

A velocity gradient, in sec

The vector operator, Qi ) +
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Appendix

REPORT ON PRELIMINARY INVESTIGATION OF SOLUTION OF
ILLINOIS JEBT COALESCENCE EQUATION

Arthur Rose and Joan A. Schilk
The Pennsylvania State College

State College, Pa.

The method of iteration has been carefully studied as a possible approach

to the solution of the jet coalescence differential equation

2 _
o

% O (. QTU\ _ 8.P (A-1)
r C?PO or T4 wu W()g

N

fex
2

This iteration method involves first the estimation of a series of first
trial values of the dependent variab]e,ﬂ) and then improvement of these by
means of successive iterations with the difference equation corresponding to
the differential equation.

If B =(Uw),and £(z,r) = (Y w)e®, then Equation (A-1),
expressed in terms of difference quotients, takes the following forms: Using

the average first difference quotients, and /, = A,
(see nomenclature)
when I #0
” Ch
E(% r) = Cl%[é(’,lﬁf-i—h)'f‘E(’L’/’—/?)}]“ 2y (:g(%,f"'h)'g(’)'/,/"hﬂ 'f'h(é (‘7'h}f’)‘§(’lr;l7) v'“))
r)= o i - i
2Cf o+ 18hP fiyp)
T A (4-2)
when /" =0
- 2C218 reh) +g(n r 2]+ Hlbta-b )= €la-hr)
Elx,r)= — - -

4.7 +Lh—£ Fl2r)
(A=3)




2 Coaleln ) obin i) + 2{elu-a,r)-bluiayr]
2 /b bzp g A
4C2 4 T f{z,r)

&lx r)=
(4-9)

In order that the difference equation can be used for solution to

the problem, a grid with initial trial values of the dependent variable,
é’ , must be constructed. The iterative method of solution merely

involves repeated use of the difference equations for one point after another
in the grid, and repetition of this procedure, until successive values of

E(ac,r') for a given point are as nearly ldentical as is desired.
For the present problem, a grid for integral values of Z =0 to 40 and

;' =0 to 5 was necessary because of the boundary conditions (see Pig. 6).
This grid was first prepared for /z = A = 1.0, obtaining the
first trial values of é(oﬁ, r) by linear interpolation from the
boundary values (see Table II). Values of f(x,r) were alsc calculated for
the points of this grid (see Table 1I1). Using Equations (A-2) and (A-3)
and /7 = 1.0, a series of pilot calculations were made at various points
of the grid. This involved two iterations and use of Bquations (A=2) or
(A=3), a total of 115 times to obtain 115 new values of é . It was found
that some of the resulting values of &%, r) were greater than
1.0, or were negative. In an attempt %o avoid this lack of convergence, the
size of /) was reduced. Additional first trial values of 5 (% )
were obtained for fractional values of /7 amd Z , by linear interpola-

tion from previous values, and more pilot calculations were then made.

Reduction in /7 greatly increases the number of points on the grid, and
the amount of computation required.

The following values of h , 72 ,and /7 were used for the succes-
sive series of trial calculations, with the objective of finding an approach
that would lead to convergence (see Table 1v).

These pilot calculations showed tbat the largest value of ',L, which
could be used in Equations (A-2) and (A-3) was /7 =0.1. This would
involve calculaticn of 5(?’ i’”) for approximately 12,000 points for
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Using forward first difference quot’ients and h; = h,q
when 7 #0
2
£ 2h&lyhr) -Cx (&, reh)+ Elr,r-h)) - C—,?'—h— (2,r+h)
%= - e _Ciph _ 10H%P
¢h ~28% =3 i B (1-4)

wvhen /' =0

2 hélaehyr) = 2 Cox (el re b +8(x, r - h))

g(ﬁz)/“)?- 5 I i BT (4-5)
- - _ 1bh°P
2h - 4C% - 2 F(x,7)
Using backward first difference quotients and /]74 = %),,
when /7 #0
C*2h
24 El-hr) +Cr L8, pih)+bl, r-b)) — =57 El2,r-h)
Sans T _Cah L, B L
- = — r
2rn + 20% p= +77'/¢( Z, (1-6)
vhen / =0
Ety )= 2h&p-hr + 2Cx L& r+h) +&lx, r-F)
' 2h + 4Cz LLP fian) )
Using average first difference quotients, h} # Ap ' h7 = q,
Fn=b
when 7 #0
2 2 ,
Coelx r+b) + 8z, r-b)) + C—sz@(yz rrb)-El - g@(m 7) -é(m,@
Elr o) - Ao Yol “

2
2C2 + 10 bp Flu,r)
mu (A-8)

|
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each iteration. This is a prohibitive volume of computation.

Use of Bquations (A-U) and (A-5) and (A-6) and (A-7) resulted in
reasonable values of éf(ﬁi;f) for /5 = 1,0 in most portions of the
grid, but resulted in nonconvergence near certain of the boundaries.

Trial calculations were next performed with A7z = 1.0 and

/%n = 0,1, It was found that this method resulted in convergent
values of §<%*’) throughout the grid, as far as the process was

carried.

A tentative IBM program plan has therefore been worked out on this
basis, and cost estimates prepared accordingly.

As far as can be determined, Equation (A-1) is a type of partial
differential equation whose numerical solution has not been attempted
previously. There is, therefore, no guarantee that the proposed iterative
computation will give convergence and a solution within & reasonable number

of iterations. Apparently, the solution of this equation is itself a

research problem of considerable importance in applied mathematics.
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TABLE II

ABEREVIATED TABLE OF FIRST TRIAL VALUES OF &(7./)
x/r 0 1 2 3 4 5
1 9750 0 0 0 0 0
5 8750 2500 O 0 (] 0
10 .ggoo .2813 0 0 0 0
15 6250  .3125 0 0 0 0
20 5000 3077 L1154 0 0 0
25 3750 L2613 L1477 .03M)1 0 0
30 2500 .1859 1218 .0577 0 0
15 1250 .0979 .0707 .0435  .016 0

39 0250 .0201 .0152 .0103  .005 0005

Note: The complete table (127 values of f ) has been

prepared for all intermediate integrél values of X
and /7 , and also for certain additional intermediate

fractional values.

TABIE 111
ABBREVIATED TABLE OF FIRST TRIAL VALUES OF # %r) x 10

(%)0 =1x107°

4

Lr 0 1 2 3 4 5
1 0 0 0 0 0 0
5 1.515  0.053 0 0 0 0
10 1.427 o,eau 0 0 0 0
15 0.832  0.501 0 0 0 0
20 0.470  0.388  0.153 0 0 0
25 0.302 0.271  0.155  0.054 0 0
30 0.210 0,186 0.137  0.068 0 0
35 0.15% 0.149  0.116 0.071  0.033 0
39 0.12% 0.122 0.101 0.068 0.038  0.017

Note: The complete table (127 values) has been prepared for all
intermediate integral values of Z and / , and also

for certain additiocnal intermediate fractional values.
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