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NOTATION

A Arbitrary constant

Ai Plasticity coefficients

At Area of cross section of ring

a Small dimensionless quantity

b Faying width of frame

c (E1/ES) - 1

D Bending rigidity, E.h 3/12 (1 - V2)

E Young's modulus

ES Secant modulus

Et Tangent modulus

F (EgIE,) ( • + T- s + R

f Stress ratio, v1/0%

A Shell thickness

k "IR

L Unsupported length of cylinder

m, n Integers

N (cosh 0 - cos G)/(sinh 0 + sin 0)

N*, .Nx, Nx8 Forces per unit length

p Pressure

Elastic buckling pressure

p. Inelastic buckling pressure

Pp Plastic buckling pressure

R Radius of cylinder

8 Circumferential coordina&P

t, V, W Shell displacements

iii



* Axial coordinate

a (3/lr?) (1 - EtIj.)

19 (sinh 0 + sin G)/(oosh 0 - cos 0)

tl "(inh a + sin 0 )/ (osh - - Cos-

Y Shear strain

(9, *X Membrane strains

dji Strain intensity

0 (,IVR7) [3(1 - y2)1%

A mwIL

v Poisson's ratio

Ve Elastic value of Poisson's ratio

0"; aor -•R Circumferential and axial stresses

ori Stress intensity

X2 A A2 + k 2 )

4~ 12~ a2)2
Oeaork, - +i

pa (p4)2
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ABSTRACT

A solution to Gerard's differential equations for plastic buckling of

cylindrical shells is found for the case of lobar buckling under hydrostatic

pressure. An approximate formula based on this solution is then obtained

for buckling in the inelastic region.

According to this formula, the buckling pressure is a function of the

cylinder geometry and the secant and tangent mnoduli as determined from a

stress-strain intensity diagrain for the shell material. Agreement with

experiments on ring-stiffened cylinders is found to be within 4 percent.

INTRODUCTION

Experimental studies of the buckling of stiffened cylinders under hydrostatic pressure

have shown that collapse of the shell plating between frames is frequently preceded by yield-

ing of the shell material. This would indicate that inelastic shell buckling may be an impor-

tant consideration in the strength design of pressure vessels, particularly when it is realized

that residual welding and rolling stresses often induce inelastic behavior at pressures well

below the design strength.

Inelastic buckling of cylindrical shells induced by external hydrostatic pressure can

take place in two basic modes: axisymmetric buckling, during which circumferential corruga-

tions develop along the axis, and asymmetric or lobar buckling, whereby inward and outward

lobes appear alternately around the circumference. Buckling of Line first type has received

considerable attention, but it has usually been treated as a failure due to yielding rather than

a buckling phenomenon. Typically, an analysis is based on the concept of an ideal material

which, at a certain stress level, undergoes an abrupt transition to the perfectly plastic state.

The buckling pressure is determined not from stability considerations but from the state-of.

equilibrium stresses. Attempts to describe buckling of the second type have been rather

limited and have usually depended on the intuitive use of a reduced modulus in place of

Young's modulus in the elastic buckling equation.

In recent years, however, advances in plasticity theory have made it possible to ap-
proach these problems more rigorously. Investigations by Bijlaard, 1,2 llyushin, 3 and

Stowell, 4 among others, have contributed greatly to the development of theory for the inelas-

tic buckling of plates and shells. More recently, Gerards derived a general set of differential

equations for cylinders from which he obtained approximate solutions for torsional buckling

and axisymmetric buckling under axial compression for a strain-hardening material.

Lunchick 6 has since developed a similar, but more exact, theory for axisymmetric buckling

Refemences wre Usted on pagoe 2.



of ring-stiffened cylinders under hydrostatic prepsure. From recent tests conducted at the

David Taylor Model Basin, this theory appears to be very reliable.
At the same time, it appeared that the work of Gerard might also provide a worthwhile

approach to the problem of asymmetric or lobar buckling in ring-stiffened cylinders, since his

differential equations are sufficiently general to account for asymmetric deformations under

hydrostatic loading. Work was subsequently initiated to obtain a solution to Gerard's equa-

tions for the asymmetric problem. In this report the solution is derived, and an approximate

formula for inAlastic buckling is obtained. Experimental data from ring-stiffened cylinders

are used to evaluate the formula.

ANALYSIS

PLASTIC BUCKLING EQUATIONS

In the Appendix of this report, the general differential equations of Gerards for a fully

plastic cylinder are specialized for the case of hydrostatic pressure loading. The buckling
equations thereby obtained are:

- + - + +- - + - + - 2 + - - U [lal

2E, 2 az2 azas R / 4 az 2  4 &s2  4 dxas

El (1 aU aV 1aW) 1 a2 V 1 a2U.-- - + - + _ -_ + _ - + _ .0 [1b]

2 azas a82 R as/ 4 d 2  4 8:0s

4Egh (f) 1 au 0-v + w)+. [Eg ( 410 C4W a4t- 3 a4w a
4 W 1

S+ -( +- ) ( + + [ + + / +

3R' Es a as R Es4 ax4 ax2as2 &84 / 4 ax-4 ax2as2

82 w 02w

+ -NX + NS -+ .0 [1c]
aX2 C182

where x and a are respectively the axial and circumferential coordinates,

u, v, and w are the axial, tangential, and radial displacements,

E. and E, are the secant and'tangent moduli,

R is the radius to the shell midsurface,

.h is the shell thickness,

V is Poisson's ratio,

2



0 is the bending rigidity - Esh 3 /12(1 - v2 ),

NX and Ns are forces per unit length in the axial and circumferential directions, and

p is the hydrostatic pressure.
Since one function recurs in all three equation; let

Et (20u av WF M s 9 - - + as + R 2]

With several differentiations, u and v can bo eliminated from Equations [1a] and [1b] so that

one equation relating F and w results:

E ( a 4 F + 8 F 4 F 04 F 3 Et a 4W[

+ 4 - + [3]

ES dX4 az 2as 2  da4  ax4 R Es dx 4

With suitable differentiations, Equation [1c] can be combined with Equation [31 so that a

single eight-order equation in ut is obtained:

~ LV\ 2 a4W w a lE8  
5  astow i

+fj 11. ft N V4( - - + - - - 1 ) ( awE 2 a a22 1 2  4 E6 (a)3k a) C+ a~a

E8 A a4W a2w 3,E ~ a6w
* -- - + N 74 - +-(. 1

R2  aX4  aX2  4- -E ) aZ]

a82 4 Et ax4a,92J

where v4 indicates the operator [ a2+ a2 12

x2  as
2 a

A solution to this equation can be written:

w - A sin ks sin Az [5]
where k n

R

my

L

L is the l1. jgth of the shall, and

m and n are integers.



This solution satisfies the conditions of simple support at the ends of the cylinder; i.e., that

"to and-2 vanish at z a 0 and z = L. hese conditions are not unreasonable for stiffenedOX2

cylinders since it is likely that the effective rotational restraint will be limited by the forma.
tion of plastic regions arising from high bending stresses near stiffeners or end supports.

By substituting the solution (5] into the differential Equation (4], the following
characteristic-value equation is obtained:

2 2 4 E pR

+(--R-2 . 244 Et (6]

4 E

To simplify this equation the following substitutions are made:

A2  1

A2 +k 2  + n2L2(1m2ff2p'-,'

pR O, *

f -- as

ES/

The equation is then rearranged so that an expression for pp, the plastic buckling pressure,

is obtained:

2 #DX E L 2 + 4 4 R 2X2

P [.- 21 [81
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ELASTIC BUCKLING EQUATIONS

A similar procedure is followed in obtaining a solution for the elastic case. When

E- is set equal to unity, Equation [4] reduces to

LA• INV V aw 2 02wtO

DPs8 W+ + ; 4 - +N =0 [ 9]
R2 a_4  aX 2  0a2 /

which is the Donnell equation5 ' 7 for the case of hydrostatic pressure loading. The bending

rigidity is now given by

LA 3

D = [10]
12(1-mve)

where ve is the elastic value of Poisson's ratio. Substitution of solution [5] into Equation

[9] yields*

- A2A2  + 441

Pe = 2fe E h 12(l - v,2 ) 
[11]

where f, is the stress ratio for the elastic region. This 9quation could have been obtained
directly from Equation [8] by using the elastic value for D.

*It is of some interest to compare this result with a similar equation obtained by Von Sanden and Tdlke 8 in
their comprehensive study of stability problems in thin cylindrical shells. In considering the elastic buckling 6f
a ring-stiffened cylinder, they allow for the variability of the pro-buckling circumferential stress with the axial
coordinate. Their buckling pressure equation, in the terminology of this report is:

h 2A2 954

Pe2 R023AM2]

pR
where (a,) L - -- midbay circumferential stress

X= h
2

( a, = 10 -8 circumferentiai stress at a frame

and 8. and 80 are determined from the theory of Von Sanden and Gunther.9

If o, does not vary with x, then

and the buckling pressure equation reduces to Equation [I Il,

5



MINIMIZATION OF EXPRESSIONS FOR BUCKLING PRESSURE

Equation (81 expresses pp, the plastic buckling pressure, in terms of n, the number of
circumferential buckling waves, and m, the number of longitudinal half waves. The buckling
pressure can now be obtained in minimized form. It can be seen that pp is effectively

minimized with respect to n/m by setting

app
d- . 0 [12]

The resulting equation defines the value of q5 for which pp is a minimum:

tT-/2
m4 -4 E (Vl-4 1  - 2 0, (1-f,) + - 1

44

+ -- - [13]

1-20P (1-fp) + 4-

The corresponding equation for the minimized plastic buckling pressure is:

S2 2E -[1 + C4P 3+ + 3 6:P2

P m vtf( ) 2 .) 2 4 P [141

P ~t 3 -20p(1 -f ) + -

which is obtained through suitable combination of Equations [8] and [13]. Since pp in
Equation (4] is proportional to m2, it is clear that for the minimum value of pp m must be

equal to one in all cases where n is greater than 0.
The corresponding minimized equations can be obtained for the elastic case. After

minimizing p. with respect to 0 in Equation [111, one obtains the equivalents of Equations

[13] and [14] for the elastic case:

f4M4 4 F1-_2q0 (1-f*
(1 2)15]
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P, 2,r2 rn2Efe (A [ ~ 2 [ 2 e 1 f ) 16]

These equations could also have been obtained directly from Equations (13] and [14]. Again

it is seen that m must be equal to 1. For the case where fe is equal to % corresponding to the

prebuckling state of stress in an unstiffened tube, it can be shown that Equations [151 and

[16] are exactly those given by Windenburg and Trilling (Equations [201 and [21] of Reference

10) in expressing the Von Mises buckling pressure in minimized form.

Although Equations [14] and [16] are relatively simple in form, they contain the func-

tion q6 which is not readily determinable from Equations [13] and [15]. However, it is possi-

ble to obtain an approximate expression for 0b from a graphical representation of these

equations. Figure 1 shows plots of qS versus \/W,-/L (with m equal to one) for the following

cases:

E t /e - -
Elastic: - _ 1 ie -0.3

1
Et 1 1 P=2

Plastic: - - - V -

The value of !, for E,'Es was chosen as a typical case for the plastic region. The two stress

ratios, • and 1, are extreme values which should bound all cases of practical interest. The

curves terminate at the line where j is equal to 1, since this is the case of axisymmetric

(n = 0) buckling for which the minimized pressure expressions no longer have meaning. These

curves suggest that a simple linear relationship Letween 0 and V/T/L might serve as an

adequate approximation for all cases. Use of such an approximation implies that the number

of circumferential lobes is independent of the material properties. After some investigation,
the equation

- 1.23 V [171L

represented by the dotted line in Figure 1, was chosen as a reasonably good approximation.*

It is seen that this line falls roughly midway between the extremes of the curves presented.

Use of Equation [17] in conjunction with Equations [14] and [161] then provides approximate

expressions for pP and Pe" It is also helpful to make an additional approximation which

*Actually, the selection of the factor 1.23 was somewhat arbitrary since the buckling pressure is relatively
insensitive to this parameter so long as it falls between 1.0'end 1.S. In following an equivalent procedure

for minimizing the Von Mises buckling pressure, Windenburg and Trilling1 0 obtained the value 1.265.

7
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''igure 1 - Buckling-Mode Parameter 96 as a Function of V-RA/L

40 has the limiting value I corresponding to n = 0 which defines axisymmetric buckling.

simplifies Equation [14] for the plastic buckling pressure. That equation can be rearranged

so that

8w2 , fp (A' h ( -Rh 214 (1 -a)
P 9 \R L L3 -20(l-f) Q181
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where

a - o ( = [191

2 3-20(1-fp) + -T--

The subscript on p has been dropped, since the single function 0 is to be used in both the

elastic and plastic regions. It can be seen that a will take on its maximum value when k is
equal to 1. For the case Et/Es =, a is 0.091 when 4, is 12, and 0 when is 1. Thus for

all cases where Et/E, Ž V/. 0 < a < 0.091. Since E,/E' will seldom be much smaller than !
whereas q will always be less than 1, the approximation that a can be neglected will intro-

duce only small errors. Equation [18] is thus reduced to

91 ( 9-- L 1 [201

To examine the accuracy of the equations thus obtained, the results of the approximate equa-

tions are compared with those of the exact equations in Figure 2, where --E ) is plotted

a4 a function of -v/7U/L, p being the theoretical buckling pressure. The solid curves represent
the exact Equations [141 and [161 for the plastic and elastic cases, respectively, with the

corresponding values of 0 determined from the exact curves of Figure 1. The corresponding
approximate results, indicated in Figure 2 by the dotted curves, are obtained from Equations

[20] and [16] using the approximate expression [17] for j. It is seen that the approximate

method of calculation agrees quite closely with the exact method, even though Figure 1 shows
wide divergence between the approximate and exact values for 95, particularly in the upper
range of VIM/lL.

DETERMINATION OF SECANT AND TANGENT MODULI

Before iEquation [20] can be used, E. and E, must be related to the applied pressure.

The secant and tangent moduli

E.

[211
do.

are defined in the Appendix and are shown graphically in Figure 3. For hydrostatic pressure

9
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Figure 2 - Comparison of Approximate and Exact Methods
for Determining Minimum Buckling Pressure

loading, and with Poisson's ratio equal to ',., the stress and strain intensities are

S(o,2 + V, - V, a,)

[22]
di; (j2 +e,2 + g

The characteristic stress-strain curve of the shell material is first obtained from uni-

axial compression tests. In this case oi and e, are identical with the axial stress and strain

(regardless of the value of Poisson's ratio). Hence £, and E, are readily determined from the

stress-strain curve. In practice, it is convenient to determine E, by drawing tangents to the

curve.
Mention should be made of one difficulty which may be encountered in the interpreta-

tion of the stress-strain data. Conventional strain-measuring equipment such as an automatic

recording extensometer, although adequate for measuring yield strength, may not be suffi-

ciently accurate for the determination of Young's modulus. Unless a high-precision device

10
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is employed, it is best to obtain only the relative values E.,/E and E21/E from the stress-strain

data and assume a standard value for E.

Having determined E,/E and Et/E as functions of aj, one must then apply them to the
hydrostatically loaded cylindrical shell. According to a fundamental hypothesis of plasticity
theory, the stress and strain intensities are uniquely defined. 4 Thus by expressing hydrostatic

pressure in terms of the stress intensity, a relationship between E., Et, and pressure will be

established. Since equilibrium requires that a. be equal to pR/2h, only 7, in Equation [201
remains to be determined. As discussed in the Appendix, a. is actually a continuously vary-

ing function of z, whereas in this theory a. is treated as a constant. Thus a single value of

a. must be chosen, and it is taken to be the stress occurring midway between frames. Since
this is, generally, the maximum membrane stress in the shell, it might be regarded as a
conservative choice. However, it should be noted that for a material exhibiting a plateau-

type stress-strain curve, any other choice would probably overestimate the strength of the

shell.

In calculating a. it is particularly useful to make the further simplifying assumption
that a. is proportionil to the applied pressure in both the elastic and plastic regions. This

assumption is reasonable provided the deflections of the shell remain small compared with
its thickness. Then a. can be determined completely from the theory of Von Sanden and

Gunther 9 with ,equal to !:

11



0.75 -.- 2 [23

where

sinh Op+ sin Op
OP- o cosh OP - cos Op

P . OP OP

cosh - - cos
2 2

9p = (2.25)'' LR

Af is the cross-sectional area of the frame, and b is the laying width of the frame. The sub-

script p indicates that all functions are given for Poisson's ratio equal to •.

It will be observed that the "beam-column" effect, demonstrated theoretically by

Salerno and Pules, 1 is ignored in the assumption of proportional loading. This effect causes

a departure from proportional loading in the elastic region. However, this departure is ordi-

narily small and, in view of the approximations already made, to account for it would be an

unnecessary refinement. In those cases where the effect is large it can easily be included in

the value assumed for a,.*

The stress ratio for Poisson's ratio equal to 'j is then given by

0.5

(pA 051 [25]0.75 Apo--O

( Af +bA)

*Additional departures from proportional loading are exhibited by cylinders whose generators are not initielly

straight. This effect can be computed from en analysis by Lunchick and Short. 12

12



Solving Equation (22] for the applied pressure, one obtains

P 2aihfp (6

Rvf-f +[1

A plot of p versus oa from this equation is a straight line for the case of proportional loading

but becomes a curve if the aforementioned nonlinear effects are included.

INELASTIC BUCKLING

Although Equations [16], [20], and [26] define the buckling pressure for the elastic

and the fully plastic regions, no solution is given for the inelastic region which lies between

these two limiting cases. However, by employing an empirical correction factor wherein

Poisson's ratio is regarded as a variable, one can arrive at an expression which reduces to

the proper limiting values. Gerard and Wildhorn L have found that v can be accurately ex.

pressed as a function of E. in the inelastic region by the equation

1 E f \

2 _ E.( 2 [27]

which reduces to ý4 when ES/E is zero and to ve when Es/E is one. Since Equation [20] is

for the fully plastic case where' v has the value %, it could be written

2f 2 2E fp h r DT1
v I~f (A R(lh) [ 4~,) [28]

PP [(1)2) 2(l-

If % is now replaced by v, a variable defined by Equation [27] and f is replaced by f, a
function of v, the equation for p., the buckling pressure in the inelastic region, is

P, IN/Rhv~ () /) 2 ['~ j1'][291
With 5 given by Equation [17], p, reduces to pp when Es/E is zero and to p,, given by

Equation [16], when E8 /E is one. From Equation [29] it can be seen that the inelastic

buckling pressure depends on both the tangent and secant moduli.

13



In determining the stress ratio ,f a is again taken to be the stress midway between

frarnes as given by the theory of Von Sanden and Gunther, 9 but with v a variable defined by

Equation [271. It is found, however, that as is practically insensitive to variations in v and
that it is sufficient to treat f as a constant which depends only on tht .,eometry of the cylinder.

This is the satne as assuming that oa is proportional to the applied pressure. Since it has
been found in practice that variations in v are small, ve can be used for determining the stress

ratio. In this way p, will still reduce to pe when E,/E is equal to one, and Equation [29]
can be written

= 1(- £p) 4 [301

where

2ff2Ife. 2 ( L
PC. [16___1/~T

) ) 3 -26(1-) [ 16]

4, - 1.23 %/7'• [17]
L

- 0.5
f, - .5 ([311

1- l (Af+b6A

2 L k L ) +

and

M sinh Oe + sin Ge
* k cosh O -cos

oe 09
/ in 2 232

S- - cos [
2 2

0, L

The subscript e designates functions based on the elastic value of Poisson's ratio.

14



The inelastic buckling pressure p. can now be determined as follows: from the charac-

teristic stress-strain curve of the shell material, E./E and Eg/E are defined in terms of oi,

the stress intensity. Hence p, can be plotted as a function of ci using Equation [30].

Similarly, the applied pressure p can be plotted against ai from Equation [26]. Since Equation

(30] is valid only when p, and p are equal, the buckling pressure is obtained from the

intersection of the two plots.

Figure 4 illustrates the two general types of material encountered in practice. The

first is the strain-hardening type (Figure 4a) which exhibits a continuous stress-strain curve.

Plots of Equations [26] and [30] are shown in Figure 4b, where the buckling pressure is
defined by the intersection of the two curves. Figure 4c illustrates the case of an elastic-

perfectly-plastic material. Since the buckling pressure abruptly drops to zero when the plastic

region is reached, collapse is simply defined at the elastic limit of the material, as shown in

Figure 4d.

EVALUATION OF THEORY WITH EXPERIMENTAL DATA
ON STIFFENED CYLINDERS

To evaluate the theory, results wece examined from previous tests of seven cylinders

in which asymmetric (lobar) shell failures were observed. The properties of these cylinders,

all of which had external stiffeners, are listed in Table 1. Two *ere machined from seamless

steel tubing and had rectangular stiffeners. The other five had T-stiffeners and were rolled

and welded from U.S. Steel Carilloy steel plate. As indicated by the symbol (c) in Table 1,

in some cases specimens were taken from the collapsed cylinder, whereas in others (unmarked)

they were taken prior to fabrication. Data from uniaxial compression tests of these specimens
were used for the measurement of yield strength and for the determination of the secant and

tangent moduli. Since all data were obtained with an automatic recording extensometer, which
was not sufficiently precise for the absolute determination of Young's modulus, only the rela.

tive values E./E and E, IE were determinod from these data. For all cylinders a standard

value of 30 x 106 psi was used as Young's modulus E. Plots of a, versus e, for the seven

cylinders are shown in Figure 5.

In Table 2 the experimental collapse pressures are compared with the inelastic buck-

ling pressures calculated from the theory of this report (Equation [30]). This information is
also presented graphically in Figure 6, where the ratio of theoretical pressure to the elastic

buckling pressure pe (Equation [16]) is plotted against the ratio of experimental pressure to

Pe"
Table 2 also lists failure pressures predicted by several other criteria. Elastic buck-

ling pressures were calculated from Equation [16] of this report, from the theory o( Von Sanden
and Talk6, 8 and from the theory of Von Mises using the approximate EMB formula [101.10

Shell failure pressures are given for Von Sanden and Gunther formula [92a] 9 (based on simple

yielding of the exterior shell fiber. at midbay) and for the Hencky-Von Miises criterion applied

15



Pe Equation 30 P"

U.P Equation 26

Strain -Hardening
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Figure 4 - Graphical Determination of Buckling Pressure for Two General Classes of Material
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TABLE 1

Properties of Cylinders

UnsupportedI
Shell Lensth Frame Frame Yield

Cylinder Radius Thickness of Shell Area Faying Width Strength
R A L ,A b b y
in. in. in. sq in. in. psi

T- 2 38.87 0.264 7.24 1.885 0.260 88,000
(c)

T- 3 38.87 0.260 8.74 1.625 0.260 108,000
Welded (c)

with T- 6 26.87 0.256 7.24 1.170 0.260 115,000
T-Franes (c)

T- 2A 38.87 0.254 7.24 0.796 0.260 103,000
T- 7A 26.87 0.263 8.74 0.683 0.260 84,000

Machined
with U-J12 4.081 0.0446 1.06 0.0248 0.079 68,000

Rectangular U-22 4.077 0.0356 0.834 0.0185 0.068 70,500
Frames

.All yield strength* are defined at offset strain of 0,002.

(c) Specimens of shell material taken from collapsed cylinder.
Specimens for all other cylinders were obtained prior to fabrication.

TABLE 2

Comparison of Theoretical and Experimental Collapse Pressures

Welded Machined

Cyinder Number T-2 T-3 T-6 T-2A T-7A U-12 U-22

Experimental Collapse
Pressure 670 553 1005 680 770 975 735

Inelastic
Buckling Equation (30] (p,) 696 563 1016 705 748 938 734

Von Sanden and T61kee 930 631 1258 773 1032 2014 1054

Elastic Equation [16] (p.) 906 626 1259 756 1010 1907 1002
Buckling Von Mises10

(EMB Formula [101) 786 585 1180 705 995 1786 963

Hencky-Von Mises
Shell midbay, midplane 903 953 1429 912 976 1081 777

Yield Von Sanden and Gunther
Formula [92A09  695 742 1121 733 799 788 622
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(c) Material taken from collapsed cylinder

Axis of load cothrsponds to circumferential direction in cylinder
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Figure 6 - Comparison of Theoretical and ExperinentAd Collapse Pressures

pc = Inelastic Buckling Pressure (Equation [30])

P e = Elastic Buckling Pressure (Equation [16])

to the membrane stress at midbay, wherein failure is assumed to occur when the Istress inten-

sity, oi, computed from the theory of Von Sander. and Gunther, reaches the yield strength of

the shell material.
From Table 2 and Figure 6, it can be seen that Equation [30] is in close agreement

(within 4 percent) for all cylinders reported. In view of the many approximations contained

in the theory, this agreement is considered surprisingly good. It is also noted that for all
welded cylinders except T-7A the pressures according to Equation [30] are higher than those

observed. This is to be expected, since such cylinders are weakened by residual stresses

and geometrical imperfections introduced during fabrication, none of which are accounted for

in the theory. However, good correlation in these cases indicates that such weakening
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effects may not be as severe as had previously been suspected. From the uniformity of the

results there also appears to be no significant difference for the limited available test results

between those cases where test specimens were taken before fabricalon and those where they

were taken from the collapsed cylinder.

CONCLUSIONS

1. The theory of this report, on the basis of the limited test data available, appears to
predict the 'inelastic (lobar) buckling pressure with good accuracy.

2. Final evaluation of the theory must await additional experimental data, which should

include tests of cylinders with internal frames.
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APPENDIX

DERIVATION OF BUCKLING EQUATIONS

In deriving general plasticity equations for cylinders, Gerard5 defines stress and strain

intensities for Poisson's ratio equal to !' according to the octahedral shear law:

'Ii a 2 + a - a a + 3r2)%

[33]

2,- - + , 2 + ,•÷ es,+÷_

The secant and tangent moduli are then defined as

E" di

[34]
di

With the assumption that Poisson's ratio v is equal to !1 in both the elastic and plastic

region, the stress-strain relations become

iF • ( 0 ,X - - a

3-r
Es

The subscript a replaces y in Gerard's notation and refers to the tangential direction, as

shown in Figure 7.

In treating the general case, Gerard considers a cylinder subjected to external loads

Nx, Ns, and Nx, per unit width and external pressure p. The general differential equations

of equilibrium are:

a2u A 13 u2t, A3 a2, A13 a1 3 A A\A + -"
A 22 2 dx&8 4 as 2  4 dm2 2 4 amas

A2 3 a2v A1 2 ae A2 3 aw

-- - +- -- - -0
4 as 2  2R am 4R as
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U

Figure 7 - Coordinate System and
Cross Section of Stiffened Shell

t _

dBvtA 2v A~t aBv 2u A A3 d2u23 A3 BtA 13  12 3A2 + +| + /-
Bd2  2 aBd 4 d:2 4 dg2 \2 4 a zs [36]

A 2 3 B2u A 2 Bw A2 3 aw

I -- -- -0

4 B R2  R Ba 4R dz

FB 4tW B4 to B4 to 014 W 4w 1
D A- --A 13  - + (A12 + A 3) -A 2 3 - + A 2-

I- - - -- - ---j
0124 823618 dX2d82 dXza3 C184

BR 2 dz 4 d. 4 B8 Bz RI

d2W a2W a2W

+N, + 2N/ - + N 8 - +p -O
a.2 a.a. a,2

In this analysis, long cylinders which buckle in the oval (n - 2) mode will be excluded from

consideration, since the differential equations are derived with certain approximations which

are valid only when n»>>l.
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The bending rigidity for P equal to % is
E, s

D -[37]
9

Gerard defines the plasticity coefficients as follows:
SV2

.4 -1  - --l --

A2 - 1--i-
4

A3 .1 -ar2
[38]

A21 '-A1 2 -1 2

A31 - A 13 m~az?

A3 2 = A2 3 =00.r

where

In the case of uniform hydrostatic pressure, it is readily seen that.

N5 #
rv .. .0

A

[40]
N5  pR

A 2A

On the other hand, a, is not so easily disposed of. In deriving his equations, Gerard con.
siders N. as independent of x, -an assumption which is correct in the two cases (axial
compression and torsion) for which he obtained solutions, but one which is clearly not
correct in the case of hydrostatic pressure if the ends of the cylinder are restrained.
However, without such an assumption it would be difficult, if not impossible, to solve the
problem by means of differential equations. Furthermore, in order to simplify the plasticity
coefficients, the additio..al assumption is made that

NS pR
ao- ta. [41]
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whereby the stress intensity becomes

O0 - O4' [42]

and the resulting plasticity coefficients are

8 Es

4E
Et

A2 -A. - A1 2 - E-

A3 -1 [43]

A1- A 3 W- A 23 - A32 - 0

Although it would logically follow that N. in Equation [36] should be replaced by pR, this

substitution is not necessary for the solution of the differential equations. Instead, by

retaining N. as an arbitrary factor, a more general solution can be obtained. The load NS

can later be determined from appropriate theory, as described in the body of this report. The

resulting differential equations are:

Et 1 a 2  t 1 t ao\ 3 0 2u 1 a 2 U 1 0 2 V
I + - - + - - + - - + - - -la

2E,\ ( 2 a2 Oza. R ax 4 8w2 4 082 4 azxa

Es 1 a2, a1 ) 18
2V 1  [iU

+ -- + 1 -t + + 0 [-b]
Es 2 aia CS2  4 axas

ýL(-,)I - + )+D E- a + -8~

a4W a4  a4W a2W
+ - + + NX -88) 4. a-4 + -- 2---&82 N

a.
2
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