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NOTATION
Arbitrary constant
Plasticity coefficients
Area of cross section of ring
Small dimensionless quantity
Faying width of frame
(E,/E) -1
Bending rigidity, £,43/12 (1 - v3)
Young's modulus
Secant modulus
Tangent modulus

wa(3 2 23)

Stress ratio, 0 /0,

Shell thickness

n/R

Unsupported length of cylinder
Integers

(cosh 8 ~ cos 8)/(sinh 8 + sin 6)
Forces per unit length
Pressure

Elastic buckling pressure
Inelastic buckling pressure
Plastic buckling pressure
Radius of cylinder
Circumferential coordinate

Shell displacements
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Shear strain

Membrane strains

Strain intensity
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mn/L

Poisson's ratio
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i sinh 9 + sin
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é
sh E-cosg

Elastic value of Poisson’s ratio

Circumferential and axial stresses

Stress intensity
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ABSTRACT

A solution to Gerard's differential equations for plastic buckling of
cylindrical shells is found for the case of lobar buckling under hydrostatic
pressure. An approximate formula based on this solution is then obtained
for buckling in the inelastic region,

According to this forinula, the buckling pressure is a function of the
cylinder geometry and the secant and tangent moduli as determined from a
stress-strain intensity diagran for the shell material, Agreement with
experiments on ring-stiffened cylinders is found to be within 4 percent.

INTRODUCTION

Experimental studies of the buckling of stiffened cylinders under hydrostatic pressure
have shown that collapse of the shell plating between frames is frequently preceded by yield-
ing of the shell maverial, This would indicate that inelastic shell buckling nay be an impor-
tant consideration in the strength design of pressure vessels, particularly when it is realized
that residual welding and rolling stresses often induce inelastic behavior at pressures well
below the design strength,

Inelastic buckling of cylindrical shells induced by external hydrostatic pressure can
take place in two basic modes: axisymmetric buckling, during which circumferential corruga-
tions develop along the axis, and asymmetric or lobar buckling, whereby inward and outward
lobes appear alternately around the circumference. Buckling of the first type has received
considerable attention, but it has usually been treated as a failure due to yielding cather than
a buckling phenomenon. Typically, an analysis is based on the concept of an ideal material
which, at a certain stress level, undergoes an abrupt transition to the perfectly plastic state.
The buckling pressure is determined not from stability considerations but from the state-of-
equilibrium stresses, Attempts to describe buckling of the second type have been rather
limited and have usually depended on the intuitive use of a reduced modulus in place of
Young's modulus in the elastic buckling equation,

In recent years, however, advances in plasticity theory have made it possible to ap-
proach these problems more rigorously. Investigations by Bijlaard,!+2 Ilyushin,? and
Stowell,4 among others, have contributed greatly to the development of theory for the inelas-
tic buckling of plates and shells. More recently, GerardS derived a general set of differential
equations for cylinders from which he obtained approximate solutions for torsional buckling
and axisymmetric buckling under axial compression for a strain-hardening material.
Lunchick® has since developed a similar, but more exact, theory for axisymmetric buckling

IReferences are listed on page 28,



of ring-stiffened cylinders under hydrostatic preasure. From recent tests conducted at the
David Teylor Model Basin, this theory appears to be very reliable,

At the same time, it appeared that the work of Gerard might also provide a worthwhile
approach to the problem of asymmetric or lobar buckling in ring-stiffened cylinders, since his
differential equations are sufficiently general to account for asymmetric deformations under
hydrostatic loading, Work was subsequently initiated to obtain a solution to Gerard's equa-
tions for the asymmetric problem, In this report the solution is derived, and an approximate
formula for inelastic buckling is obtained. Experimental data from ring-stiffened cylinders
are used to evaluate the formula,

ANALYSIS
PLASTIC BUCKLING EQUATIONS

In the Appendix of this report, the general differential equations of GerardS for a fully
plastic cylinder are specialized for the case of hydrostatic pressure loading., The buckling
equations thereby obtained are:

E, (1 0% 9% 10w\ 3 90% 19d% 1 %
_(_—+—--+——-)-——-+--—-+-—_=u [1a]
2E,\ 2 9z 9298 R oz 4 3z2 4 982 4 Oazds

2 2 2 1 9%
1 Jd%u a“v 16w)+100 1 0% o (1b]
4 dz?2 4 Ozds

_-(_ % v 1w
E,\2 dxds ds? R 9s

4E,h(£,)(1 du v w) [E,(l 3w 04w otw\ 3 9w a‘w]
— =} —+ —+ =)+ D}|— |- — + +——)+-———+

88 \E,/\2 92 ds R E, ‘4 d2* 022982  9s*/ 4 dz* 922952
92w 92
+ Nx + N‘ o +p= 0 (1c]
922 as?
where zand s aro respectively the axial and circumferential coordinates,

u, v, and w are the axial, tangential, and radial displacements,

E, and E, are the secant and‘tangent moduli,

R is the radius to the shell midsurface,
A is the shell thickness,
v is Poisson’s ratio,



D is the bending rigidity = Esh3/12(1 - v?),
N, and N, are forces per unit length in the axial and circumferential directions, and
? is the hydrostatic pressure,

Since one function recurs in all three equations, let

E,(lau v w) (
Fom|lo —4 —+ — 2
E\% 0z s R :

With several differentiations, « and v can be eliminated from Equations [1a] and [1b] so that
one equation relating F and w results:

4,; 4 4 45
E (I, g S, 1), 0 o o

+ 4 —
E N\ ozt dz2ds? dsd

With suitable differentiations, Equation [1c] can be combined with Equation [3] so that a
single eight-order equation in w is obtained:

4 4 E 3 dw )
D_'ic_,ew+(1-ﬂ)[v4(zu°+ to ), 3(E: ) (22, )]
E E 2 dz%  9z29s2 4\E 4 02% 026082

s s ¢

E,h o*w 9w 3 /E, 0%w
+ +N:[v‘——+—-<—-1)——
R? 9z* 922 4 \E, 9z5
2 6
o, o 2L 2B ) 2] ®
082 4\ E, dz4ds?

[ 2 a2 2
where v 4 indicates the operator | — + _:l
dz?2  Js?

A solution to this equation can be written:

n w = A sin ks sin Az (5]
where % = —
R

mnr
A = —

L
L is the I« ..gth of the shell, and

m and n are integers.



This solution satisfies the conditions of simple support at the ends of the cylinder; i,e., that
. 9w
w and

" vanish at z = 0 and 2 = L. These conditions are not unreasonable for stiffened
dz
cylinders since it is likely that the effective rotational restraint will be limited by the forma-

tion of plastic regions arising from high bending stresses near stiffehers or end supports,
By substituting the solution [5] into the differential Equation [4], the following
characteristic-value equation is obtained:

D{ﬂ (k2+22)4 4 (1- .E_‘) a2[(k2+>«2)2 (ﬁ + k2) R (ﬂ - ) (3—"2 + kz)]
E, E -2

. 4 \E, 4
E.A R

N LA UNN AP X I A2+E(E_‘-1) A6+ 2 kz[(kzw\z)’
R? 2 4 \E, pR

+ _3(5 -1),\‘]} =0 (3
4 E

4

To simplify this equation the following substitutions are made:

A2 1
¢ = " = ( n2L2
A 14—
* T )
R o, *
=, "o, i
3 L]

The equation is then rearranged so that an expression for Pp» the plastic buckling pressure,
is obtained:

2 E 4
2/',0)‘2 _Ei 1+C¢ [1 + i +8 .C.'f; (1 )]}+ 9 ;:;/B:’
E 2 4 A

8

Pp = (8]

_¢
4
C¢?
Reli-g-fif14s ]

*The subscript on f indicates the stress ratio for the plastic region.



ELASTIC BUCKLING EQUATIONS

A similar procedure is followed in obtaining a solution for the elastic case, \When

-E‘-is set equal to unity, Equation [4] reduces to
3

A 94 92 9%w
Dvsw.p_E_.a_:a.q, V‘ (Nx_i”.pN‘ ——)=0 [9]
dz? ds2

which is the Donnell equationS:7 for the case of hydrostatic pressure loading, The bending
rigidity is now given by

3
D= _ﬂ_ {10}

12(1-v2)

where v, is the elastic value of Poisson’s ratio, Substitution of solution (5] into Equation
(9] yields*

h2a2 N ¢4
g | 120-v2)  R2A?
Ré|  1-¢(1-1,)

(11]

Pe =2,

where f, is the stress ratio for the elastic region. This equation could have been obtained
directly from Equation {8] by using the elastic value for D,

*It is of some interest to compare this result with a similar equation obtained by Von Sanden and Tétke® in
their comprehensive study of stability problems in thin cylindrical shells. In considering the elastic buckling of
& ring-stiffened cylinder, they allow for the variability of the pre-buckling circumferential stress with the axial
coordinate, Their buckling pressure equation, in the teminology of this report is;

A2)2 ¢4
+
2Eh 11-v2)  RAW2
pe ; ——
Rg| & (38”l b )
—+ (=l — + —
2 ¢ 4
pR
where (0) ;= § - - midbay circumferential stress
o =
2
PR
(os) =5 — = circumferential stress at a frame
Xm0 0
and 5 and N are determined from the theory of Von Sanden and Gunther,?

It o, does not vary with x, then )
5”. - 50 2w —
2f,

and the buckling pressure equation reduces to Equation [u].

5



MINIMIZATION OF EXPRESSIONS FOR BUCKLING PRESSURE

Equation [8] expresses Pps the plastic buckling pressure, in terms of n, the number of
circumferential buckling waves, and m, the number of longitudinal half waves, The buckling
pressure can now be obtained in minimized form. It can be seen that Pp is effectively
minimized with respect to n/m by setting

app

” =0 [12]

The resulting equation defines the value of ¢P for which Pp is & minimum:

3c¢;
mént E, (\/RT)‘ 1-2¢, (1-1)) + 1

‘-
% 9 £

L

2
' 3-2, (1-1)+ iggz

3¢e2[4f, Cé,
I e e A S
x <1+ (13]

30¢g
1-2¢, (1-1) + 1

The corresponding equation for the minimized plastic buckling pressure is:

Cé, 3C¢}
szan,fp( A )2 (,/73},' ) 2| 1+ (3 + ¢P + i )
P 9%, R L 3c¢;

326, (1- ;) +

which is obtained through suitable combination of Equations [8) and [13]. Since Pp in
Equation (4] is proportional to m2, it is clear that for the minimum value of Pp m must be
equal to one in all cases where n is greater than 0.

The cotresponding minimized equations can be obtained for the elastic case, After
minimizing p, with respect to ¢ in Equation [11], one obtains the equivalents of Equations
(18] and [14] for the elastic case:

44 41 1-2¢,(1-/,)
4 = _lJ[__(!E?) [15)
121-vH\ L 3-2¢,(1-1,)



) (O i) o
Pe” 3(1-v2)4, R L 3-2¢,(1-1,)

These equations could also have been obtained directly fron. Equations [13] and [14]. Again
it is seen that m must be equal to 1, For the case where f, is equal to % corresponding to the
prebuckling state of stress in an unstiffened tube, it can be shown that Equations [15] and
{16] are exactly those given by Windenburg and Trilling (quations [20] and [21] of Reference
10) in expressing the Von Mises buckling pressure in minimized form.

Although Equations [14] and [16] are relatively simple in form, they contain the func-
tion ¢ which is not readily determinable from Equations [13] and [15]. However, it is possi-
ble to obtain an approximate expression for ¢ froin a graphical representation of these
equations, Figure 1 shows plots of ¢ versus yRA/L (with m equal to one) for the following

cases:

1

Elasti b 1 0.3 fem 3

astic: — = = 0,

Es VG ufe- 1

E ! 1

Plastic: —' = -1- v =.l P 2

E, 2 2 fo=1

The value of i3 for £,/E_ was chosen as a typical case for the plastic region, The two stress
ratios, '; and 1, are extreme values which should bound all cases of practical interest, The
curves terminate at the line where ¢ is equal to 1, since this is the case of axisymmetric

(n = 0) buckling for which the minimized pressure expressions no longer have meaning., These
curves suggest that a simple linear relationship Letween ¢ and VEE/L might serve as an
adequate approximation for all cases, Use of such an approximation implies that the number
of circumferential lobes is independent of the material properties, After some investigation,
the equation

VEA
¢ =123 — [17]
L
represented by the dotted line in Figure 1, was chosen as a reasonably good approximation.*
It is seen that this line falls roughly midway between the extremes of the curves presented,
Use of Equation [17] in conjunction with Equations [14] and [16] then provides approximate

expressions for Pp and p,. It is also helpful to make an additional approximation which

*Actually, the selection of the factor 1,23 was somewhat arbitrary since the buckling pressure is relatively
insensitive to this parameter so long as it falls between 1.0%nd 1,8, In following an equivalent procedure
for minimizing the Von Mises buckling pressure, Windenburg and Trmlngm obtained the value 1,265,
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@ has the limiting value 1 corresponding to n = 0 which defines axisymmetric buckling.

simplifies Equation [14] for the plastic buckling pressure. That equation can be rearranged
so that

1 3C¢
8"2Elfp( A ) 2 (\/ﬁ 2 A (1-a) (18]
Pp™ "9 \& L ) 8-24(1-1)| ¢



where

Co’-lp [19]

3C¢2]

2 [3-2¢(1-fp) "

The subscript on ¢>p has been dropped, since the single function ¢ is to be used in both the
elastic and plastic regions, It can be seen that ¢ will take on its maximuin value when ¢ is
equal to 1. For the case E,/E_ =", ais 0.091 when /p is ', and 0 when fp is 1. Thus for
all cases where £,/E > %, 0 < e 0,091, Since E,/E will seldom be much smaller than !4
whereas ¢ will always be less than 1, the approximation that a can be neglected will intro-

duce only small errors, Equation [18] is thus reduced to

3C
1+ ¢

8”2E,f‘D ;,)2(@;7;)2 T4 (20]
PPT Teg (F L/ 82407,

To examine the accuracy of the equations thus obtained, the results of the approximate equa-

- R \?
tions are compared with those of the exact equations in Figure 2, where 2 (-h— > is plotted
¢

a-s a function of vRX/L, p being the theoretical buckling pressure, The solid curves represent
the exact Equations {14] and [16] for the plastic and elastic cases, respectively, with the
corresponding values of ¢ determined from the exact curves of Figure 1. The cormresponding
approximate results, indicated in Figure 2 by the dotted curves, are obtained from Equations
[20] and [18] using the approximate expression [17] for ¢. It is seen that the approximate
method of calculation agrees quite closely with the exact method, even though Figure 1 shows
wide divergence between the approximate and exact values for ¢, particularly in the upper
range of VRZA/L.

DETERMINATION OF SECANT AND TANGENT MODULI

Before iquation [20] can be used, £, and £, must be related to the applied pressure,
The secant and tangent moduli

(21]

are defined in the Appendix and are shown graphically in Figure 3. For hydrostatic pressure
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loading, and with Poisson's ratio equal to !, the stress and strain intensities are

2

o= (022 tog~0, ”s)%

(22]

2
Gia— (elrelee, )

Vi)

The characteristic stress-strain curve of the shell material is first obtained from uni-
axial compression tests. In this case o; and ¢, are identical with the axial stress and strain
(vegardless of the value of Poisson’s ratio). Hence E, and E, are readily determined from the
stress-strain curve. In practice, it is convenient to determine £, by drawing tangents to the
curve,

Mention should be made of one difficulty which may be encountered in the interpreta-
tion of the stress-strain data, Conventional strain-measuring equipment such as an automatic
recording extensometer, although adequate for measuring yield strength, may not be suffi-
ciently accurate for the determination of Young's modulus, Unless a high-precision device

10




Figure 3 — Typical Stress-Strain Diagram

is employed, it is best to obtain only the relative values £ _/E and E,/E from the stress-strain
data and assume a standard value for E,

Having determined £ ,/E and E,/E as functions of o;, one must then apply them to the
hydrostatically loaded cylindrical shell. According to a fundamental hypothesis of plasticity
theory, the stress and strain intensities are uniquely defined.* Thus by expressing hydrostatic
pressure in terms of the stress intensity, a relationship between £, E,, and pressure will be
established. Since equilibrium requires that o, be equal to pR/2A, only o in Equation [20]

remains to be determined. As discussed in the Appendix, o, is actually a continuously vary-

s
ing function nf z, whereas in this theory o, is treated as a constant, Thus a single value of
o, must be chosen, and it is taken to be the stress occurring midway between frames, Since
this is, generally, the maximum membrane stress in the shell, it might be regarded as a
conservative choice. However, it should be noted that for a material exhibiting a plateau-
type stress-strain curve, any other choice would probably overestimate the strength of the
shell.

In calculating o it is particularly useful to make the further simplifying assumption
that o, is proportional to the applied pressure in both the elastic and plastic regicns, This
assumption is reasonable provided the deflections of the shell remain small compared with
its thickness. Then o, can be determined completely from the theory of Von Sanden and
Gunther? with - equal to !4:

1




A,( 1 )
0.5 — (B, - —
pR za\"r= 7 B

— 11
s A 1 (A!+bh>
— B +1
2 7P LA

where

sinh op + sin Op )
B, = 6
P p (cosh 6, - cos 6,

8 )
. oP sinh? +sin? o)
P 2 e GP ¢
cosh > - cos -

w L
6, = (2.25)% T

A, is the cross-sectional area of the frame, and b is the faying width of the frame. The sub-
script p indicates that all functions are given for Poisson's ratio equal to .

It will be observed tnat the ‘‘beam-column’’ effect, demonstrated theoretically by
Salerno and Pulos, ! is ignored in the assumption of proportional loading. This effect causes
a departere from proportional loading in the elastic region. However, this departure is ordi-
narily small and, in view of the approximations already made, to account for it would be an
unnecessary refinement, In those cases where the effect is large it can easily be included in
the value assumed for o,.*

The stress ratio for Poisson’s ratio equal to !; is then given by

0.5

A! 1
0.75 ﬁ ( p--é- Bp)

1 (A,+bh
PN )"1

(25]

$®Additional departures from proportional loading are exhibited by cylinders whose generators are not initially
straight. This effect can be computed from an analysis by Lunchick and Short. 12
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Solving Equation [22] for the applied pressure, one obtains

20;hf, 0
p=————— 6]
RVIT -1, +1

A plot of p versus o, from this equation is a straight line for the case of proportional loading
but becomes a curve if the aforementioned nonlinear effects are included.

INELASTIC BUCKLING

Although Equations [16], [20], and [26] define the buckling pressure for the elastic
and the fully plastic regions, no solution is given for the inelastic region which lies between
these two limiting cases. However, by employing an empirical correction factor wherein
Poisson’s ratio is regarded as a variable, one can arrive at an expression which reduces to
the proper limiting values. Gerard and Wildhorn have found that v can be accurately ex-
pressed as a function of £ in the inelastic region by the equation

1 53(1 )
V.'E'——E—E-Ve [27]

which reduces to }; when £ _/E is zero and to v, when E _/E is one. Since Equation [20] is
for the fully plastic case where v has the value %, it could be written

3Cé
2n2E,f, ( h )'- (dﬁ )2 L == (o8]
=TT 7,2\ R L 3-2¢(1~1,)

mpay

If % is now replaced by v, a variable defined by Equation [27] and fp is replaced by f, a
function of v, the equation for p ., the buckling pressure in the inelastic region, is

(29]

3¢ (E,
2n2E,f (h)z <\/ﬁ)z 1+—Z<-i,: -1)

¢ 3g(1-vA)\ R L

With ¢ given by Equation [17], p_ reduces to Pp when E /E is zero and to p,, given by
Equation [16], when E_/E is one. From Equation [29] it can be seen that the inelastic
buckling pressure depends on both the tangent and secant moduli.

13



In determining the stress ratio f, o, is again taken to be the stress midway between
frames as given by the theory of Von Sanden and Gunther,? but with v a variable defined by
Equation [27). It is found, however, that o, is practically insensitive to variations in v and
that it is sufficient to treat f as a constant which depends only on the eometry of the cylinder.
This is the sane as assuming that o, is proportional to the applied pressure. Since it has
been found in practice that variations in v are small, v, can be used for determining the stress
ratio. In this way p_will still reduce to p. when E /E is equal to one, and Equation [29)
can be written

1_V82 E‘ 3¢ 3¢ E‘
e l_vz)[? (- %)% "E] ol
where
(=)
2r2kl, 14\ \" L
L (ay S
3¢(1-v2) R 3-2¢(1~f,)
¢ = 1.23-‘/—@ (17
L
/- 0.5 (31]
b-5)g (o~ 3 o,
. 1-? *L—h 3,-3 R,
1 (A,+bla)
2 .BG Lh +1
and

sinh 8, + sin 6, )
Be= 0, ( cosh 6, - cos 6,

9 6,
, 0. sinh —2 + 8in —2—
B, = —* (32]
2 9, 8,
h — - —_—
8 2 co8s 3

L
9, = [3(1-v2)I% JEE
The subscript ¢ designates functions based on the elastic value of Poisson’s ratio,

14



The inelastic buckling pressure p . can now be determined as follows: from the charac-
teristic stress-strain curve of the shell material, E, /E and E,/E are defined in tertns of o,
the stress intensity. Hence p_ can be plotted as a function of o; using Equation [30].
Similarly, the applied pressure p can be plotted against o; from Equation [26]. Since Equation
(30] is valid only when p, and p are equal, the buckling pressure is obtained from the
intersection of the two plots,

Figure 4 illustrates the two general types of material encountered in practice, The
first is the strain-hardening type (Figure 4a) which exhibits a continuous stress-strain curve,
Plots of Equations [28] and [30] are shown in Figure 4b, where the buckling pressure is
defined by the intersection of the two curves, Figure 4c illustrates the case of an elastic-
perfectly-plastic material, Since the buckling pressure abruptly drops to zero when the plastic
region is reached, collapse is simply defined at the elastic limit of the material, as shown in
Figure 4d.

EVALUATION OF THEORY WITH E XPERIMENTAL DATA
ON STIFFENED CYLINDERS

To evaluate the theory, results wece examined from previous tests of seven cylinders
in which asymmetric (lobar) shell failures were observed. The properties of these cylinders,
all of which had external stiffeners, are listed in Table 1. Two .ere machined from seamless
steel tubing and had rectangular stiffeners. The other five had T-stiffeners and were rolled
and welded from U.S. Steel Carilloy steel plate. As indicated by the symbol (c) in Table 1,
in some cases specimens were taken from the collapsed cylinder, whereas in others (unmarked)
they were taken prior to fabrication, Data from uniaxial compression tests of these specimens
were used for the measurement of yield strength and for the determination of the secant and
tangent moduli. Since all data were obtained with an automnatic recording extensometer, which
was not sufficiently precise for the absolute determination of Young's modulus, only the rela-
tive values £ /E and E,/E were determined from these data. For all cylinders a standard
value of 30 x 10° psi was used as Young's modulus E. Plots of o; versus ¢; for the seven
cylinders are shown in Figure 5.

In Table 2 the experimental collapse pressures are compared with the inelastic buck-
ling pressures calculated from the theory of this report (Equation [30]). This information is
also presented graphically in Figure 8, where the ratio of theoretical pressure to the elastic
buckling pressure p, (Equation [18]) is plotted against the ratio of experimental pressure to
Per

Table 2 also lists failure pressures predicted by several other criteria, Elastic buck-
ling pressures were calculated from Equation [16] of this report, from the theory of Von Sanden
and TGlké,® and from the theory of Von Mises using the approximate EM3 formula [10]. 10
Shell failure pressures are given for Von Sanden and Gunther formula [92a]° (based on simple
yielding of the exterior shell fiber. at midbay) and for the Hencky-Von Mises criterion applied
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Figure 4 — Graphical Determination of Buckling Pressure for Two General Classes of Material

16




TABLE 1

Properties of Cylinders

Unsupported .
Radi Shell Length Frame Frame Yield
Cylinder 30WS | Thickness |  of shell Area | Faying Width | Strength
R A L Af b o, .

in, in. in. sqin, in. psi
T- 2 38.87 0.264 1.24 1.885 0.260 8?,())00

C.
T-3 38.87 0.260 8.74 1.625 0.260 108,000

Welded (<)
with T- 6 26.87 0.256 7.24 1.170 0.260 115,000

T-Fraries (e)
T- 2A | 38.87 0.254 1.24 0.796 0.260 103,000
T- 7A | 26.87 0.263 8.4 0.683 0.260 84,000

Machined
| w1z | eosn | o.0u 106 | 0.0u8 | 0079 68,000
Rectangular| .92 4077 | 0,035 0.834 0.0185 0.068 70,500
Frames
*All yield strengths are defined st offset strain of 0.002.
(¢) Specimens of shell material teken from collapsed cylinder.
Specimens for all other cylinders were obtained prior to fabrication.

TARBRLE 2

Comparison of Theoretical and Experimental Collapse Pressures

Welded Machined
Cytinder Number T-2}T-3| T-6 | T-2A | T-7A | U-12 | U-22
Experimental Collapse
Pressure 670 ) 553 11005 680 | 770 ( 975 | 735
Inelastic
Buckling{  Equation [30) (p,) 696] 56311016 705 | 748 | 938 ] 734
Von Sanden and T&lke® | 930 | 631 1258 ( 773 | 1032 | 2014 | 1054
Elastic Equation (16} (p,) 906 626 ( 1259 | 756 | 1010 | 1907 | 1002
Buckling Vor Wisesto
on
(EMB Formula (10)) 786 {585 |1180 | 705 | 995 | 1786 | 963
Hencky-Von Mises
Shell midbay, midplane 903] 953 1429 912 | 976 | 1081 | 777
Yield Von Sanden and Gunther
Formula [92A)° 695| 742 | 1121] 733 ] 799 | 788 | 622
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Compressive Stress Intensity,o.,in ksi

Compressive Stress Intensity, o, in ksi
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Figure 5 — Compression Curves for Cylinder Materials

(c) Material taken from collapsed cylinder
Axis of load cotresponds to circumferential direction in cylinder
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® Welded Cylinders
© Machined Cylinders
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Figure 8 — Comparison of Theoretical and Experimental Collapse Pressures

P, = Inelastic Buckling Pressure (Equation [30])
Pe = Elastic Buckling Pressure (Equation [16])

to the membrane stress at midbay, wherein failure is assumed to occur when the Stress inten-
sity, g,, computed from the theory of Von Sander. and Gunther, reaches the yield strength of
the shell material,

From Table 2 and Figure 6, it can be seen that Equation [30] is in close agreement
(within 4 percent) for all cylinders reported. In view of the many approximations contained
in the theory, this agreement is considered surprisingly good. It is also noted that for all
welded cylinders except T-TA the pressures according to Equation [30] are higher than those
observed. This is to be expected, since such cylinders are weakened by residual stresses
and geometrical imperfections introduced during fabrication, none of which are accounted for
in the theory, However, good correlation in these cases indicates that such weakening
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effects may not be as severe as had previously been suspected. From the uniformity of the
results there also appears to be no significant difference for the limited available test results
between those cases where test specimens were taken before fabrica‘ion and those where they
were taken from the collapsed cylinder,

CONCLUSIONS

1. The theory of this report, on the basis of the limited test data available, appears to
predict the inelastic (lobar) buckling pressure with good accuracy.

2. Final evaluation of the theory must await additional experimental data, which should
include tests of cylinders with internal frames,
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APPENDIX
DERIVATION OF BUCKLING EQUATIONS

In deriving general plasticity equations for cylinders, GerardS defines stress and strain
intensities for Poisson's ratio equal to !} according to the octahedral shear law:

0; = (a,‘2 + asz -0, 0, + 3r2)%
[33]
9 2\ %
€ = '\/_;'3'(‘3+€32+" ¢‘+-{- )
The secant and tangent moduli are then defined as
9
e
]
(34]
do;
E,6 =
T de

With the assumption that Poisson's ratio v is equal to ) in both the elastic and plastic
region, the stress-strain relations become

1 o,
?("x'?)

(e 7)

o —— - — 3

€, E, o, 2 [35)
3r

Y

The subscript s replaces y in Gerard’s notation and refers to the tangential direction, as
shown in Figure 7,

In treating the general case, Gerard considers a cylinder subjected to external loads
N, N,, and N, per unit width and external pressute p. The general differential equations
of equilibrium are:

% A,y 9% A, 0% A, 9% (A,, Aa)a%
A, —- — ——-— —
922 2 9208 4 Jds2 4 922

Ayy 0% A, dw Ay, dw

- e— e — T an — =

4 982 2R odz 4R s

2 4 /Jwds
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- Figure T — Coordinate System and
Cross Section of Stiffened Shell

3% A,, v A4y v A4 (A,, A3>62u
A2 ———— e — t— - —— —— %

982 2 Oezds 4 022 4 92?2 2 4

{36]
Ay, 9%u A, dw A,y duw
—— e — e — 20
¢ 982 R Js 4R oz
[ 4w ) *w *w a‘w]
D |A\,— -4, — +(4,,+ 4,) -4 + A4, —
1 13 2
9z 3% 0 Y ag29s2 2 ozaed ! 9et

u:,h(A,, du Ay Ou A,y v Aydv A2w>

+ —_— e, e — — +—
3R 2 dz 4 oOJs 4 OJz OJs R
d%w 9w %
+N,— + N, —— + N,—— +p=0
* oa2 * ozas | 9s?

In this analysis, long cylinders which buckle in the oval (n = 2) mode will be excluded from
consideration, since the differential equations are derived with certain approximations which

are valid only when n?>>1,



The bending rigidity for v equal to % is

EA3
D= — (37]
Gerard defines the plasticity coefficients as follows:

2
aog

Al L

ca.z

4

A2 -] -

A3 =] -072
(38]

ao.0o,
Ay =4,,=1-~

A3, = A 3 =ao, T
A3y = 4y =ao,r

where

E
2 E

9 s

In the case of uniform hydrostatic pressure, it is readily seen that

Nes
A

=0
[40]
PR

Nx
o | — P —
A 2A

x
On the other hand, o, is not so easily disposed of, In deriving his equations, Gerard con-
siders N, as independent of 2, an assumption which is correct in the two cases (axial
compression and torsion) for which he obtained solutions, but one which is clearly not
correct in the case of hydrostatic pressure if the ends of the cylinder are restrained.
However, without such an assumption it would be difficult, if not impossible, to solve the
problem by means of differential equations, Furthermore, in order to simplify the plasticity
coefficients, the additio..al assumption is made that

N, R

0.-—h :-T [41]



whereby the stress intensity becomes

O;= 6,\/3_

and the resulting plasticity coefficients are

Az'Arx'sz'_:

A3-1

Ajg= A3, =4y3~45,=0

[42]

{43)

Although it would logically follow that N, in Equation [36] should be replaced by pR, this
substitution is not necessary for the solution of the differential equations, Instead, by

vetaining N, as an arbitrary factor, a more general solution can be obtained. The load N,
can later be determined from appropriate theory, as described in the body of this report., The

resulting differential equations are:
E,(1 w9 aw) g 0% 4 % 4 9%
2E,

E,(laﬁu 9%v law) L 0% | 9%

E, N2 9208 9s2 Ros/ 40322 ¢ g20s
4Eh(E,\[10u v w E, /1 0%v 3w
L R T

s8R \E/\252 98 R E, \4 924 922942

d*w\ g v tw 92w
+ )+ -~ + +N, —
dst 4 924 922982 9z

9w
+N,—/ +p=0
de?
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